
ALIENs for Continuous Time Economies.∗

Goutham Gopalakrishna†, Yuntao Wu‡

December 13, 2024

Abstract

This paper extends the growing deep learning based literature on solving
equilibrium economic models and introduces Active Learning Inspired Equilibrium
Nets (ALIENs). The method is particularly tailored for continuous-time models
involving high-dimensional state spaces, aggregate shocks, and nonlinear dynamics.
ALIENs extend the deep learning methods to include time-stepping and
active learning to transform non-linear problems into sequences of contraction
mappings, ensuring stability and convergence. Active learning prioritizes
computational efforts in economically significant regions of the state space,
improving accuracy. The proposed methodology is validated across a few
applications, from infinite-horizon heterogeneous agent models with free boundaries
to high-dimensional asset pricing models. Additionally, the paper introduces
Deep-Macrofin+, a numerical library that facilitates the implementation of
these techniques for researchers.

Keywords: Deep learning, global dynamics, computational methods.

1 Introduction
The past decade has seen a surge in macroeconomic and asset pricing models to
capture nonlinear global dynamics. Models in continuous time offer the ability to
capture complex interactions due to their tractability and offer portfolio choices
in closed form compared to the discrete time counterparts. While continuous-time

∗We are very grateful to the comments and discussion from Markus Brunnermeier, Pierre Collin-
Dufresne, Marlon Azinovic, Jonathan Payne, Moritz Lenel, Sebastian Merkel, Galo Nuno, Simon
Scheidegger, and Yucheng Yang.

†University of Toronto, Rotman School of Management.
Email: goutham.gopalakrishna@rotman.utoronto.ca

‡University of Toronto, Electrical and Computer Engineering.
Email: winstonyt.wu@mail.utoronto.ca

1

models characterizing the global dynamics are certainly an improvement over models
with linearized solutions, most of the papers resort to low-dimensional state spaces
due to computational bottlenecks. The difficulty is amplified when the state variables
are endogenous and correlated, and the equilibrium quantities exhibit stark non-
linearities. In problems with aggregate shocks and long-lived assets, the standard
finite difference method breaks down even with two state variables, since it is difficult
to preserve the monotonicity of finite difference schemes.1 Therefore, it is not just
the curse of dimensionality, but the combination of nonlinear dynamics and high
dimensions that is problematic in these models. Recent advances have used neural
networks that alleviate some of these problems.2 Neural network methods work
in theory but are often hard to implement in practice. The flexibility that the
neural network methods provide is both a blessing and a curse since there are many
hyperparameter choices to make that affect the neural network approximations to
equilibrium quantities.

This paper adds to the existing neural networks based numerical literature by
proposing a deep learning method with high stability and convergence properties
through active learning. The methodology proposed is tailored to solve continuous-
time equilibrium economic models that feature aggregate shocks, long-lived assets,
and high nonlinearities in policy and value functions. The contribution of this
paper is twofold. First, we show through examples how a time-stepping based
method enhances the stability of continuous-time economic models when the value
and policy functions are approximated using deep neural networks with multilayered
perceptrons (MLPs) and recently developed Kolmogorov Arnold Networks (KANs).
The enhanced properties arise because the time-stepping procedure transforms the
numerical problem to resemble a contraction mapping. We formalize this using
the contraction mapping principle and apply the technique to a class of low- and
high-dimensional problems where policy functions are highly nonlinear. The results
show that our solution technique performs better than both the traditional finite
difference method and the basic neural network method. In particular, active
learning plays a critical role in achieving convergence by strategically selecting
training points that guide the algorithm to learn equilibrium relationships within
the most economically relevant areas of the state space. Second, the paper offers
a numerical library, Deep-Macrofin+, powered with active learning. Compared to
packages with traditional numerical methods like finite difference, it has the potential
to solve higher dimensional models, with less restrictions in the types of derivatives
in HJB equations. Compared with existing neural network based packages, it is

1Preserving monotonocity is important when there are cross partial derivatives in the HJB
equation. See, for example, D’avernas, Petersen and Vandeweyer (2023) and Merkel (2020) for
details.

2See, for example, Duarte, Duarte and Silva (2024), Maliar, Maliar and Winant (2021), Azinovic,
Gaegauf and Scheidegger (2022), Han, Yang and E (2021), Gu, Laurière, Merkel and Payne (2024),
Huang (2023), among others.

2

more targeted at economic models and integrates various active learning techniques
for better convergence. Lastly, it offers a more user-friendly approach with latex
and string equation inputs.3 To the best of our knowledge, this is the first paper
to use neural networks with a time-stepping scheme and active learning, and offer a
user-friendly toolbox tailored for high dimensional equilibrium economic models.

While our method follows the deep learning-based solution techniques in the
literature in employing neural networks that are trained to solve a supervised learning
problem, there are two main differences. First, we implement a time-stepping scheme
with neural networks that ensures stability, especially in problems where policy
functions are highly nonlinear. Second, the training points are sampled from the
most important part of the subspace depending on the economic and computational
complexity of the problem. We focus on two types of active sampling (i) “residual-
based” and (ii) “loss weight-based”. In the “residual-based” sampling, training points
are drawn from regions where the training losses are large. That is, the subspace
where equilibrium conditions are violated is given more importance. In the “loss
weight-based” sampling, each training point is assigned dynamic weights over training
iterations. The weights are assigned on the basis of the relative progression in the
loss. While the residual-loss method focuses on the subspace with larger residual,
the loss weight-based method focuses on the change in the loss over time. That is,
individual losses in a multi-loss problem that decrease slower get a higher weight.
The intuition is that the equilibrium relationships that are harder to learn relative
to other relationships get a higher relative weight dynamically over the training
iterations. Ultimately, both methods focus on drawing samples from the most relevant
subspace for convergence dynamically without the need for manual intervention in the
intermittent training procedure.

We demonstrate our technique using a few applications with varying degrees
of complexity. In the first application, we solve an infinite-horizon heterogeneous
agent macro-finance model with short-selling constraints that feature an endogenous
free-boundary, rendering the policy functions non-smooth.4 In theory, MLPs can be
made infinitely deep or wide to minimize approximation errors. However, accurately
approximating a function around a jump discontinuity is challenging, especially in
equilibrium models that involve market clearing on long-lived assets. Our time-
stepping-based method transforms the non-linear problem into a quasi-linear problem
and solves the model as if there were a finite horizon. Convergence analysis shows
that under certain conditions in the HJB equations, the neural network converges with
sufficient accuracy.5 The theoretical basis for the convergence comes from the fact

3Link to software, documentation and replication package can be found in Appendix E
4Approximations using deep neural networks often fail because the universal approximation

theorem for MLPs with smooth activation functions assumes that the approximated functions and
their partial derivatives are continuous. (Hornik, Stinchcombe and White (1989); Hornik (1991)).
In contrast, the approximation theorem for non-smooth activation functions, such as ReLU, assumes
that the approximated function is piecewise linear Petersen and Zech (2024).

5We present the conditions more precisely in the methodology section.

3

that the time-stepping scheme converts the problem into a sequence of contraction
mappings.

In the second application, we solve the model without short-selling constraint
but with contractible idiosyncratic and long-run risk.6 The model features high non-
linearities due to stochastic volatility and concentrated long-lived asset positions in
one group of agents. This is a multi-loss problem with first-order conditions with
respect to consumption and portfolio choices, goods market clearing, and capital
market clearing conditions entering the loss function. We show how a loss weight-
based active sampling leads to superior convergence by stabilizing the approximation
of higher-order derivatives.

Lastly, we test our method in a high-dimensional model where we introduce asset
heterogeneity a la Martin (2013). We show that our method solves up to 100 trees
with an accuracy (MSE) of order 10−6, where active learning leads to a better accuracy
of policy functions. To understand why active learning helps in this high-dimensional
model, we reduce the dimensionality of the same model and study a 3-tree version.
Analyzing this model reveals that the residual-based active training is concentrated
at the boundaries of the state space, where the equilibrium relationships are the most
important and yet get violated when approximated with the basic neural network
without active learning.

We build an active learning based numerical library called “Deep-Macrofin+” that
facilitates researchers to solve such models with nonlinear policy functions without
having to write deep learning training modules. The HJB equations and algebraic
equations are treated as loss functions that the training algorithm optimizes to
approximate the value and policy functions, following the core idea of deep learning-
based solution methods in the literature. In addition to this standard feature, the tool
incorporates two types of active sampling methods, a loss-weight-based method and
a residual-based method. We demonstrate its usage in solving several macrofinance
models in the GitHub repository7, in addition to the ones in this paper.

Literature review: There have been many papers with deep learning-based techniques
to solve discrete-time economic problems (Maliar and Maliar (2015), Azinovic et al.
(2022), Maliar et al. (2021), Han et al. (2021), Bretscher, Fernández-Villaverde and
Scheidegger (2022) etc.) Recently, few papers have emerged that solve continuous-
time models by training neural networks on simulated points of discrete time approximations
(Han, Jentzen and E (2018), Huang (2023), etc.). These techniques share the
same spirit as the discrete-time methods in the sense that equilibrium functions
are approximated on simulated paths after discretizing them. This paper fits within
a growing yet nascent literature that solves continuous-time models by taking an
analytic PDE approach. The papers closest in spirit are Duarte et al. (2024),

6This model builds on Di Tella (2017)
7The python library along with implementation details can be found in https://github.com/

rotmanfinhub/deep-macrofin.

4

https://github.com/rotmanfinhub/deep-macrofin
https://github.com/rotmanfinhub/deep-macrofin

Gopalakrishna, Gu and Payne (2024), Gu et al. (2024), Sauzet (2021), and Payne,
Rebei and Yang (2024). Duarte et al. (2024) takes a reinforcement learning-based
approach by converting the equilibrium economic model into an optimal control
problem and then solves it as a supervised learning problem. Our paper differs
by introducing time-stepping and active learning, allowing for flexibility to tackle
discontinuous policy functions and multi-loss objective functions leading to improved
convergence properties. Since the time the paper has been made publicly available,
the idea that smart sampling from the state space is required to improve convergence
properties has proven to be useful for macro models. For example, Gu et al. (2024)
finds that a sampling method similar to the residual-based active sampling in this
paper leads to better convergence in a continuous-time version of the Krusell-Smith
model. In Fernández-Villaverde, Hurtado and Nuño (2023), the law of motion of
aggregate wealth is solved using neural network approximations, while value functions
are solved using traditional finite difference schemes. Moreover, their model does
not feature “long-lived” capital, which has proven to be tricky to handle in high
dimensions with aggregate shocks (see Gopalakrishna et al. (2024), for example).
The loss-weight based active sampling relates to Bretscher et al. (2022) where the
weights in the loss function are normalized. The difference is that in this paper, the
losses are computed based on the progression over epochs with a memory decay.

There is a substantial literature in computational physics and applied mathematics
to approximate PDEs and HJBs using neural networks, starting from Sirignano
and Spiliopoulos (2018) and Raissi, Perdikaris and Karniadakis (2019). Sirignano
and Spiliopoulos (2018) proposes a deep Galerkin method to solve PDEs in high
dimensions and incorporates Monte Carlo methods to compute second-order derivatives
to speed up computation. In contrast to these papers, the framework that we propose
is suited to solving problems in financial economics. For instance, many problems in
macrofinance and asset pricing come with endogenous state variables that are often
correlated - a feature that the models in applied mathematics do not typically deal
with. Moreover, the non-linearity of the PDEs in the economic models comes from
the fact that the advection, diffusion, linear, and cross-term coefficients of the PDE
are endogenously dependent on the equilibrium policy functions. Lastly, the usage
of active points in this paper relates to the literature on adaptive sparse grids that
are concerned with a systematic way of generating the state-space grid. For example,
Brumm and Scheidegger (2017) and Schaab and Zhang (2022), uses adaptive sparse
grids to solve dynamic economic models, whereas Bungartz, Heinecke, Pflüger and
Schraufstetter (2012) solves option pricing models using the finite element method.

While there have been many attempts at solving economic models using neural
networks, the literature on providing a user-friendly toolbox to solve economic models
has been sparse. Lu, Meng, Mao and Karniadakis (2021) offers a physics-informed
neural network (PINN) library to solve both forward and inverse PDE problems
using deep neural networks, but no active learning is implemented. D’avernas et
al. (2023) provides a dedicated library to solve macro-finance equilibrium problems

5

in continuous time with one or two state variables, but does not expand to higher
dimensions or problems with more complicated equilibrium relations. Our toolbox
fills this gap.

2 Methodology
In this section, we present the deep learning methodology. We start by briefly
describing neural network approximations, and then formalize the time-stepping
scheme. We then explain active sampling implementation and present algorithms.

2.1 Neural network approximations
Let J(x) denote the function that takes as input x and needs approximation. Assume
that J : Rd → R is continuous.8 Let Ĵ(x) denote the neural network approximation
represented as a parametric function built using a sequence of linear and non-linear
transformations. That is, we have

Ĵ(x) = WL(σ(WL−1(σ(...(σ(W 0x + b0)) + bL−1)...))) + bL,

where σ is the activation function, W l is the weight matrix for the l-th layer, bl is the
bias vector for the l-th layer, and L is the number of layers. This is a feedforward
neural network with d inputs, a single hidden layer of n hidden units, and a single
output. There are other complex architectures that can be used, such as CNNs, RNNs,
and Transformers, but we focus on the feedforward neural network for simplicity. The
goal is to approximate any equilibrium function that is unknown in the economic
model using the above architecture, and train it using the loss function defined as the
residual of the equilibrium conditions. The loss function is model-specific and may
contain multiple terms, such as the residual of the HJB equation, the residual of the
boundary conditions, the residual of the market clearing conditions, etc. This is a
supervised learning problem, where the training data is a set of points (xi) that are
drawn from the state space. This follows the large literature on using neural networks
to solve equilibrium problems in economics. Our innovation is to incorporate time-
stepping and active learning to improve the convergence properties of the training
algorithm, as explained later in section 2.3.

8This is required to apply the universal approximation theorem of MLPs with continuous
activation (tanh, SiLu, SoftMax, etc). To approximate the derivatives, then J needs to be continuous
upto the order of derivatives we want to approximate (e.g. if we want to approximate J upto 2nd
order derivative, then J needs to be C2). When this condition is violated, MLPs will have poor
approximations which we will get to in section 3.

6

2.2 Kolmogorov Arnold Networks
Kolmogorov Arnold Network (KAN) is a newly developed alternative of feedforward
neural network proposed by Liu, Wang, Vaidya, Ruehle, Halverson, Soljačić, Hou and
Tegmark (2024), based on the Kolmogorov–Arnold representation theorem, which
posits that if f : [0, 1]n → R is a multivariate continuous function, then f can be
expressed as a finite composition of continuous functions of a single variable and the
binary operation of addition:

f(x) =
2n+1∑
q=1

Φq

 n∑
p=1

ϕq,p(xp)
 ,

where ϕq,p : [0, 1]→ R, Φq : R→ R. KAN is claimed to outperform MLP in terms of
accuracy and interpretability. However, Shukla, Toscano, Wang, Zou and Karniadakis
(2024) suggests that KAN requires further improvements to match MLP in solving
PDEs due to its lack of robustness and computational parallelism. The network’s
implementation is complex and challenging to optimize efficiently. The functions
ϕ(x) (subscripts omitted) are constructed using a base activation function b(x)9 and
a linear combination of B-spline functions Bi,k(x), which are piecewise polynomial
functions of order k:

ϕ(x) = wbb(x) + ws

∑
i

ciBi,k(x),

where wb, ws, and ci are trainable parameters, and the values of k and the number of
spline grids are user-defined. For our one-dimensional free boundary model, as shown
in section 3, we use a one-input, one-output KAN with no hidden layer, b(x) =
SiLU(x), and k = 3 with 3 grids for the splines, which can be directly represented as
ϕ(x).

2.3 Solution method
Let θ be the parameters of the neural network (weights of the matrices W and biases
b), and T be the training data. The overall loss function is defined as10:

L(θ, T) =
∑

i

λiLi(θ, T),

where Li(θ, T) are the residuals for boundary/initial conditions, HJB equations,
inequality constraints, and constraint-activated systems, and λis are corresponding
weights. Under continuity assumptions, the neural network approximation converges
to the equilibrium functions.

9b(x) can be any common activation function, such as SiLU, tanh, etc.
10For simplicity, we assume all individual loss functions are L2-loss, and ∥·∥ = ∥·∥2 represents the

L2-norm.

7

Neural network methods that are set up to minimize L(θ, T) work with the
information from the first order conditions of the model and HJB equations. Hence,
by design, the approximations will not hold exactly at every point in the state space.
The loss function L(θ, T) measures how well the approximated solution Φθ satisfies
the algebraic constraints, boundary conditions, initial conditions, HJB equations, and
constraint-activated systems, but assumes no prior knowledge of the actual solution
f . Assuming the following conditions hold: 1) the universal approximation theorem
for neural networks; 2) smoothness of the neural network approximation with non-
ReLU activations; 3) continuity properties of the PDEs; and 4) the existence of a
unique solution to the PDE system, we can apply the approach outlined in Sirignano
and Spiliopoulos (2018) to demonstrate that Φθ → f . In practice, rather than a
wide neural network with many neurons in a single layer, a deep neural network
with multiple layers tends to achieve better convergence. The true solution f or its
derivatives may not always be continuous or well-defined across the entire domain.
They only need to be defined and continuous a.e. for the solution to exist. When
using smooth activation functions, accurately approximating discontinuities becomes
challenging.11 We formalize this in Proposition 1. This situation is analogous to
the Fourier approximation of functions with jump discontinuities, where the Gibbs
phenomenon occurs, leading to oscillations around the discontinuity. In practice, since
neural networks are neither infinitely wide nor infinitely deep, the approximation Φ(x)
deviates from f(x) within Bϵ(x0), a neighborhood around the discontinuity, much like
how a low-order partial Fourier series fails to accurately approximate functions near
jumps.

Proposition 1. If f : [0, 1] → R has a jump discontinuity at x0 ∈ (0, 1), then the

neural network approximation Φθ : [0, 1] → R satisfies Φθ(x0) →
f(x+

0) + f(x−
0)

2 :=

lim
h→0

f(x0 + h) + f(x0 − h)
2 .

Proof. See Appendix D.

Our general approach to solving equilibrium models is to numerically solve them
as if there was a finite horizon T , even for infinite horizon models. That is, in addition
to the state variables of the model, a false transient time dimension t is added. In
continuous time models, this amounts to modifying the HJB equations by adding a
time derivative when computing the drifts using Ito’s lemma. Terminal values at t = T
are set to constant at the beginning, and Φ is solved backward in time. Regardless
of the terminal values chosen, we need to find a stationary point of the system such
that the L1-norm of time derivative ∥∇tΦ∥1 = 0. Since the algebraic constraints need
to be satisfied for all time t, the only thing that needs to be modified is the way
we solve HJB equations by incorporating time derivatives. Algorithm 1 outlines the

11This is demonstrated using a free boundary model as example in section 3.

8

Algorithm 1 Time Stepping Scheme
Input: X: state variables with time t,
Ji : X → R: agent value variables,
Ej : X → R: endogenous variables,
Output: Trained approximations Ĵi, Êj.

1: τ ← 0, Ĵi,τ=0 = 1, Êi,τ=0 = 1 {Initialize as constant}
2: while True do
3: Sample X = (x0, ..., xn, t) from domain (x0, ..., xn are defined by the problem

domain, t ∈ [0, 1])
4: Embed boundary conditions: Ji,τ+1(t = 1) = Ĵi,τ , Ei,τ+1(t = 1) = Êi,τ {At

maximum time, the functions should satisfy the value from the previous step}
5: while True do
6: Update variables using neural networks, with ∂Ji

∂t
, and ∂Ei

∂t
integrated.

7: Compute loss on boundary conditions, endogenous equations, HJB
equations and systems

8: Compute total loss
9: if inner_iter ≥ max_inner_loop OR inner loss converges then

10: break
11: end if
12: end while
13: Ĵi,τ+1 ← Ji,τ+1(t = 0), Êi,τ+1 ← Ei,τ+1(t = 0), τ ← τ + 1
14: if outer_iter ≥ max_outer_loop OR Ĵi, Êi converge then
15: break
16: end if
17: end while

workflow of this time-stepping scheme with neural networks. The inner loop optimizes
the neural networks based on the terminal values and the loss function L(θ, T) for
equilibrium, while the outer loop updates the time boundary condition at t = T to
ensure the time derivative vanishes. The underlying concept of this approach is the
Value Function Iteration (VFI) algorithm. The Bellman operator B, defined such
that BU = sup f + Et(U), in the value function is a contraction map and possesses
a unique fixed point U∗ s.t. BU∗ = U∗. The inner loop minimizes the L2-norm of
all loss functions over the entire domain of the state variables X = (x0, . . . , xn, t).
Therefore, Φθ approximates the solution f , satisfying both the endogenous and HJB
equations, with the time derivative ∂ξ

∂t
. To show that Φθ converges to the solution

where the transient time derivative vanishes, we must demonstrate that ∥∇tΦ∥1 → 0
through the outer loop iterations. We show this in the below proposition.

Proposition 2. Define Cn =
{
Φθ(x, t) : Rd+1 → R

}
as the class of neural networks

with d+1 inputs and a single hidden layer of n hidden units. Under certain conditions,

9

∃Φθ ∈ Cn s.t. as n→∞, after performing the training in Algorithm 1, Φθ converges
and ∥∇tΦ∥1 → 0.

Proof. See Appendix D.

Note that the derivative in the auxiliary time dimension vanishes, yielding
the exact solution to the original problem without time perturbation. With any
reasonable initial guess for the value functions, the algorithm is guaranteed to
converge, which is shown using the contraction mapping principle - for any initial
condition/initial guess x0 ∈ X, there exists a mapping P s.t. the sequence x0, x1, ...,
xi+1 = P (xi) converges to the fixed point x∗, as long as P is a contraction. Here, X
can be any Banach space, including the L1 space of functions.

2.4 Active learning
In principle, neural networks can be trained using points drawn uniformly from the
state space in our time-stepping method. There are two potential bottlenecks with
this kind of sampling. First, when policy functions are discontinuous and/or highly
nonlinear, neural networks struggle to approximate them accurately. Second, when
the number of state variables is large, it is computationally infeasible to sample
points from the entire state space. Researchers in the past have tackled this problem
by sampling from ergodic distribution of the state variables instead (Azinovic et al.
(2022), Duarte et al. (2024), etc.) or sampling from the Kolmogorov forward equation
(Gu et al. (2024)). In the first case, active learning improves the accuracy of the neural
network approximation by focusing more on points that have violated equilibrium
conditions as a result of discontinuity and/or nonlinearity of policy functions. In
the second case, active learning helps reduce the computational burden by playing
the same role among the training points drawn from the ergodic distribution. Thus,
active learning is agnostic about the type of sampling but acts as a guiding mechanism
for choosing the right training points. We implement two active learning methods (i)
residual-based, and (ii) loss weight-based.

Residual-based: In uniform sampling, all positions in the domain have an equal
likelihood of being sampled. However, equilibrium models may be more challenging
to learn in certain regions, such as those with higher curvature or where regime shifts
and discontinuities occur, as in the free boundary model. Residual-based sampling
aims to improve the distribution of training points by focusing on areas where the
residual of the system is large. These are the areas where equilibrium conditions are
violated. After a fixed number of learning iterations, a dense set of points is sampled
from the state space, and their losses are computed. Points with higher residuals
are then added to the training set, allowing the model to focus on the regions where
equilibrium conditions are violated. Algorithm 2 shows the process precisely.

10

Algorithm 2 Residual-based Learning
This only modifies the inner loop of Algorithm 1 (Line 5 to Line 12)
Additional Input: τ : number of times for residual-based sampling

1: while True do
2: Update variables using neural networks, with ∂Ji

∂t
, and ∂Ei

∂t
integrated.

3: Compute loss on boundary conditions, endogenous equations, HJB equations
and systems

4: Compute total loss
5: if inner_iter % (max_inner_loop // τ) == 0 then
6: Randomly sample 1000 points in the state space for loss computation
7: Retrieve k = batch_size/τ points with highest loss, add to the training set

for further inner loop iterations.
8: end if
9: if inner_iter ≥ max_inner_loop OR inner loss converges then

10: break
11: end if
12: end while

Loss weight-based: For equilibrium models involving multiple components in the loss
function, some components may be more important than others. The loss weight-
based method assigns weights to each loss item based on how well it progresses.
While residual-based active sampling focuses on areas where equilibrium conditions
have been violated in the current epoch, the loss weight-based method focuses on
areas where the change in the loss has been low. Intuitively, this forces the neural
network method to focus on equilibrium relationships that are harder to learn. The
implementation is inspired by Bischof and Kraus (2021), where the weights are
updated using the following equations:

λbal
i (t, t′) = m

exp
(

Li(t)
T Li(t′)

)
∑m

j=1 exp
(

Lj(t)
T Lj(t′)

)
λhist

i (t) = ρλi(t− 1) + (1− ρ)λbal
i (t, 0)

λi(t) = αλhist
i + (1− α)λbal

i (t, t− 1)

m is the number of loss functions. i ∈ {1, ...,m} are indices for loss functions. T
is softmax temperature. ρ is a Bernoulli random variable with E(ρ) ≈ 1. α is the
exponential decay rate. As we can see, the weights λbal

i depend on the ratio
(

Li(t)
T Li(t′)

)
.

The weight λbal
i (t, t′) represents the relative improvement of loss functions between

epochs t′ and t. The parameter ρ randomly decides whether to carry forward the
loss weight λi(t− 1) from the previous epoch t− 1, or to recompute the loss weights
based on the relative improvement from the beginning, denoted as λbal

i (t, 0). The

11

parameter α regulates the exponential decay of the weight, balancing between the
previous epoch’s weights and those calculated for the current epoch.

3 Applications
In this section, we apply our technique to solve three classes of equilibrium models
that feature highly nonlinear policy functions. In each class of models, we demonstrate
how our method leads to better convergence compared to either a traditional finite-
difference method or a basic neural network method.

3.1 Free boundary model
Assume that time is continuous and the horizon is infinite (i.e. t ∈ [0,∞)). There are
two types of agents: households (h) and experts (e) who trade capital denoted by kt

that gets a stochastic depreciation shock driven by a standard Brownian motion Zt.
The output follows AK technology for simplicity. Agents have recursive preferences
on consumption and choose optimal consumption, investment, and capital holdings
by maximizing their lifetime utility subject to wealth constraints. Experts have
a higher productivity rate of managing capital but cannot issue outside equity to
households, reflecting the classic skin-in-the-game constraint found in macro-finance
literature. In addition, agents cannot short-sell capital. These two assumptions
mean that the market is incomplete, and there is an endogenous free-boundary in
the state space at which the short-selling constraint binds. In the region where the
short-selling constraint binds, the policy functions are linear. When the constraint
does not bind, agents trade capital with each other and policy functions are highly
nonlinear. These features are present in many heterogeneous agent macro-finance
models with incomplete markets and are often notoriously difficult to solve using
traditional methods. We first solve a simpler one-dimensional model since it allows
us to compare against the finite difference solution. We then solve a variant of this
model with more shocks with two state variables to demonstrate the performance of
our model. We keep the number of state variables low in this section to demonstrate
our technique, and then proceed to higher-dimensional models in Section 3.3. Note
that even though the number of state variables is low, the difficulty in solving it
numerically comes from the fact that the model has kinks in multiple policy functions,
with an endogenous barrier to be pinned down in equilibrium. D’avernas et al. (2023)
shows that a naive finite difference method does not work for this model even in two
dimensions with correlated shocks, reflecting the difficulty in solving models with
long-lived assets and aggregate shocks.

The model follows Brunnermeier and Sannikov (2014) and a detailed description
is found in Appendix A.1. The goal is to demonstrate the difficulty in approximating
policy functions with a kink in a model with an endogenous free boundary. In
this simple 1D model, one remedy is to approximate functions with different neural

12

networks in different regions in the state space. To reiterate, the purpose of using a
simple 1D model is to demonstrate that our method provides a solution that is close
to the finite-difference approximation. The method is scalable to high dimensions,
which will be demonstrated in Section 3.3 where we solve up to 100 dimensions. The
model and calibration details are relegated to the Appendix A. The two approaches
we consider are as follows.

1. Basic Neural Network method: train one neural network for each value and
policy function, trying to capture the discontinuity.

2. Our Method: Train two neural networks for each value and policy functions,
one for each subdomain in the state space split by an endogenous free boundary.

3.1.1 Results

Table 1 shows the configurations used for the 1D free boundary model. The activation
function for all models is SiLU (xσ(x)). We use the Adam optimizer and train for
20,000 epochs for all MLP models, and we use a second-order LBFGS optimizer and
train for 200 epochs for the KAN models. The MLP approximation converges in
10,000 epochs, whereas the KAN models converge in 20 epochs. The difference in the
number of epochs is because the KANs have few parameters to optimize compared
to the MLP method. The parsimony in the number of parameters is not only an
advantage in terms of optimization speed but also in terms of interpretability. In the
basic neural network method with KANs, q and ψ are approximated as hyperbolic
cosine functions:

q = 1.0955− 0.0009 cosh(8.6206η − 4.9742)
ψ = 1.4576− 0.2371 cosh(4.1472η − 2.5626)

In our method with KANs instead of MLPs, the functions are approximated using
a linear function on the region ψ = 1. That is, we have

q =

1.0067− 0.114 sin(1.9996η − 9.1262), ψ < 1
1.1041− 0.0182η, ψ = 1

ψ = −1.5368 sin(2.1795η − 9.3218)− 0.0984, ψ < 1

Table 1 shows that the loss from our method and the basic neural network
method are comparable. However, the basic neural network method has low accuracy,
particularly around the free boundary. Figure 1 shows the equilibrium plots for
q, ψ, σq using MLP models, together with finite-difference methods. Figure 9 in
Appendix A shows the equilibrium plots using KAN instead of MLP. The return
volatility function σq has a jump at the endogenous free boundary, and the price

13

Model Type Hidden Units Number of Parameters Learning Rate Total Loss
Basic Neural Network (MLP) [30]*4 2881 1e-3 4.32e-4
Our Method (MLP) [30]*4 2881 1e-3 1.48e-4 (ψ < 1) 5.61e-8 (ψ = 1)
Basic Neural Network (KAN) [1,1] 19 1 4.89e-3
Our Method (KAN) [1,1] 19 1 1.70e-3 (ψ < 1) 1.83e-9 (ψ = 1)

Table 1: 1D Free Boundary Model Configurations and Losses. The region ψ < 1 is where
financial constraints bind and there is capital misallocation. The endogenous point where
ψ becomes 1 is the free-boundary.

(a) Price (b) Capital Share: Experts (c) Price Return Diffusion

Figure 1: 1D Free Boundary Model Equilibrium Plots (MLP). The MSE between our
method and finite difference solution is 1.99 × 10−8, 1.60 × 10−6, and 3.80 × 10−8 for the
price, capital share, and return diffusion functions, respectively.

and capital share functions feature kinks. Compared with the basic neural network
method, our method provides more accurate policy functions.

We next proceed to solving a slightly richer model with two state variables and
an endogenous barrier. This model is an extension of the simple 1D model with
an additional exogenous state variable, namely the productivity of experts ae,t. We
relegate the model details to the appendix and use this model as an apparatus to
introduce our time-stepping method with active learning. The value functions are Je,t

and Jh,t, and the policy functions are (qt, χt, ψt). We parameterize each of these as a
deep neural network object with MLPs. Each network contains 4 hidden layers with
64 neurons, activated by SiLU. At the end of the model, the outputs are restricted
to be positive only with SoftPlus. The learning rates are set to 0.001 for all models.
500 points are randomly sampled in each training time step. For the basic neural
network method, we train for 20,000 epochs in each region. For the time-stepping
scheme, we train for 5,000 epochs in each time step and train for 50 time iterations.
The 50 time iterations are unnecessary for regions 2 and 3, where the equilibrium
conditions are simpler, but we use the same configuration for consistency. Table 2
presents the final loss of each model. Although the basic neural network method
converges faster, the time-stepping scheme provides a better approximation, which
can be seen in the capital share approximation in Figure 1 panel (b). The theoretical

14

basis for the improved convergence properties comes from the fact that the time-
stepping scheme transforms the non-linear problem into a sequence of contraction
mappings. Our method, which augments time-stepping with active learning, has a
slightly lower accuracy compared to the pure time-stepping scheme but converges
much faster. This is because active learning enables the learning of equilibrium
functions more accurately in economically interesting regions, which in this case is
around the free boundary as seen in Figure 3. A comparison with the basic neural
network method (without time stepping and/or active learning) in Figure 12 in the
appendix reveals that our method has captured the endogenous jump in price return
at the free boundary, which the basic neural network method fails to do.

Model Type Financing Constraint Shorting Constraint No Constraint
Basic Neural Network 1.88e-4 (287) 2.48e-5 (186) 2.73e-5 (215)
Time-stepping 5.00e-6 (48398) 2.95e-6 (53793) 1.75e-7 (49364)
Our Method 2.58e-5 (9420) 1.48e-5 (8920) 2.12e-6 (11493)

Table 2: 2D Free Boundary Model Convergence Results. In the loss columns, the loss
values are reported together with the number of epochs it takes for convergence in brackets.

(a) Value Functions (b) Portfolio Choice (c) Price Return Diffusion

Figure 2: 2D Free Boundary Model Equilibrium functions solved using our method.

3.2 Long-run risk model
Next, we solve a model that introduces complexity in terms of having a coupled
system of PDEs and algebraic equations with a highly non-linear value function
throughout the state space. The presence of idiosyncratic state and concentrated
risk makes these functions nonlinear. Moreover, there are multiple components in the
loss function, including a market clearing condition. Adding a risky capital market
clearing condition in the loss is prone to instabilities (see, for example, Azinovic and
Zemlicka (2023)) and in general makes it difficult for neural networks to converge

15

Figure 3: 2D Free Boundary Model Residual-based Sampled Points. In the first outer
loop iteration, the residual-based sampling is mostly uniform across the state space. In the
second iteration, the sampled points are mostly around the extreme wealth shares z = 0
and z = 1. In the third and fourth iterations, additional points are sampled around the free
boundary z ∈ [0.4, 0.5].

to the correct equilibrium function. To address this problem, we make a slight
modification to active learning. Instead of sampling from regions where the loss
is high as in the residual-based method, we turn to a weight-based method where the
algorithm actively allocates different weights to the components of the loss function
depending on the trajectory of the loss over previous iterations. For example, if
the algorithm struggles to learn the market clearing condition consistently in prior
iterations, then a loss weight-based method allocates higher weight to this particular
loss component in the current iteration. Similarly, if the algorithm found it easier
to learn the clearing condition, then it attaches a lower weight. This is active in the
sense that the aggregate loss function dynamically adapts the weights and guides the
learning process to reach the correct equilibrium solution. To show this concretely
in action, we apply this to the long-run risk model that contains several components
in the total loss - a) consumption first order condition, b) capital market clearing
condition, c) portfolio first order condition, d) HJB equation of experts, and e) HJB
equation of households. The parameters can be found in Appendix B, while we refer
the readers to Di Tella (2017) for the detailed setup of the model. We parameterize the
value functions ξ, ζ and endogenous variables q, r using neural networks. Each neural
network contains 4 hidden layers with 30 neurons, activated by a tanh function. The
final layer of ξ, ζ, q is restricted to be positive using a SoftPlus activation function.
The learning rate is set to 0.001 for all models. A total of 500 points are randomly

16

sampled in each time step for training. For the basic neural network method, we train
for 20000 epochs. For our method with the time-stepping scheme, we train for 5000
epochs in each time step and train for 50 time iterations.

Figure 4a shows the progression of the loss over time. The basic neural network
method appears to converge but in fact provides an inaccurate solution, as shown
in Figure 13, especially when the level of stochastic volatility is low. For example,
the price of risk is monotonic in the wealth share of experts (see Di Tella (2017)),
but basic neural network training provides a non-monotonic approximation. As the
wealth share of experts increases, the price of risk has to decrease as more wealth is
concentrated in the expert, and the aggregate risk aversion in the economy decreases.
This results in a lower endogenous risk (σ + σp) and a lower risk price (π), which is
well captured by our method. The spikes in the progression of the loss in Figure 4a
are due to time steps. Even within each time step, the active learning method has
superior performance compared to other methods.

(a) Loss Convergence (b) Loss Weights in the First Time Step

Figure 4: Long-run Risk Model Loss Progression. The loss for Basic Neural Network
decreases to 1.57 × 10−4 in 222 epochs, but the approximated functions are not accurate.
The loss for Time-stepping decreases to 5.23 × 10−5 in 46827 epochs. The loss for our
method decreases to 3.92× 10−5 in 46967 epochs.

Figure 4b presents the dynamic weights over epochs in the first time iteration. We
can see that our method automatically assigns a higher weight to the market clearing
condition at the beginning of the training process. As the market clearing condition
is satisfied in the later stages, the portfolio first-order conditions are violated, thus
receiving larger weights. After a sufficient number of iterations, the weights are close
to each other. The loss weights typically do not add to one at convergence and are

17

associated with the variance of the loss values.12 At the end of each time step, we
restart the weights and begin the dynamic updating again. The MSE with finite
difference solution on the 961 referenced grids from Di Tella (2017) are 6.12 × 10−4

for ê and 6.18× 10−4 for ĉ. The fit for the other equilibrium quantities are provided
in Figure 5.

(a) Value Functions (b) Price of Risk (c) Price Return Diffusion

Figure 5: Long-run risk Model Equilibrium Plots. The MSE between our method and
finite difference solution is 1.08 × 10−4, 2.34 × 10−5, 8.80 × 10−7 for the ratio of value
functions, price of risk, and price return diffusion, respectively.

3.3 N trees model
In the final section, we solve a high-dimensional model with multiple risky assets,
in the spirit of Martin (2013). The model details are provided in the Appendix C.
In high dimensions, sampling from the entire state space can be computationally
infeasible. Hence, we sample from the ergodic distribution of the state variables,
similar to Azinovic et al. (2022) and Duarte et al. (2024). However, the idea of active
sampling is still applicable. In particular, we use a residual-based active learning
method to focus on the regions that are computationally more problematic. That is,
we pad the training data that come from the ergodic distribution with points from the
regions that have violated equilibrium conditions in previous iterations. Specifically,
we do the following. We first start the model training without active learning. After
a predefined number of epochs, we randomly sample a large set of test data points
from the ergodic distribution of the state space and compute the residuals (loss) on
each of the training data points. We select k points with the largest residuals to
add to the training set. We iterate this procedure until we reach convergence. The
procedure is given in Algorithm 2.

We solve a 100-tree model, where each tree is an exogenous stochastic process
driven by uncorrelated Brownian shocks. We denote κi and qi to be the dividend

12See, for example, Bischof and Kraus (2021) and Cipolla, Gal and Kendall (2018).

18

share of the tree. The average values of κi and qi are 1 and 0.01 respectively. In the
100 trees, we also use ergodic sampling. Figure 6 shows the progression of loss and κ
value over time. The dashed line in Figure 6b shows the approximation of the neural
network to the dividend share κ that has a true solution equal to 1 in a 100-tree
symmetric model. The basic neural network solution has trouble approximating the
dividend share function, and the approximation error reduces when active learning
is used in the solid line. The distribution plots can be found in Figure 20 in the
appendix.

(a) Loss Convergence (b) Convergence of κ

Figure 6: Progression of Time Stepping Scheme (100-Tree). In both plots, left axis is for
our method and right axis is for basic neural network. We show the first 200 epochs for
exposition. Basic neural network method gives a lower loss, but converges to the wrong
solution (κ ≈ 0.6925). Also both the loss and κ oscillates. Our method stabilizes faster in
comparison.

Although the 100-dimensional example demonstrates that active learning helps
converge faster and provides more accurate approximations, it does not tell us why it
helps. We provide some insights into this using a 3-tree model. We employ a residual-
based active sampling in which the training points are drawn uniformly from the state
space. Figure 7a presents the progression of loss with and without active sampling.
We see that active learning helps with faster convergence. More importantly, our
method converges to the true solution compared to the basic neural network method.
Figure 7c displays active training points over time iterations. The blue dots represent
the training points at the first time iteration. They are uniformly distributed in the
simplex of the state variables z1 ∈ [0, 1] and z2 ∈ [0, 1]. The green dots are the points
that are sampled from the regions that have violated the equilibrium conditions in

19

(a) Loss Convergence (b) Convergence of κ (c) Residual loss method

Figure 7: Progression of Time Stepping Scheme (3-Tree)

the first iteration. As the simulation progresses, the active points are concentrated
near the boundary of the state space, where the approximation error is highest.

3.3.1 Training time and memory analysis

In this section, we analyze the training time and memory required for the N-tree
model. We solve a total of 7 models for N = 2, 3, 5, 10, 20, 50, 100. We solve the model
using the basic neural network method, the time-stepping method, and the time-
stepping method with active learning (our method). The epoch training time includes
the time for sampling, the forward pass of the neural network, loss computation, the
backward propagation of the gradient, and the optimization step. The experiments
are performed on Google Colab A100 GPU, and repeated 100 times13. The left panel
of Figure 8 shows the average training time per epoch for each N-tree model, and
the right panel shows the average training time to convergence for each N-tree model.
The vertical dashed line is at n = 10, where we switch from uniform random sampling
to ergodic log-normal sampling. The mean is plotted as lines, and the gray area shows
the [5%, 95%] region of the runtime. First, we observe that the training time does
not explode as the number of trees grows large. This exemplifies the power of using
neural networks as emphasized by many in the literature. The second thing to note
is that the per epoch time taken for our method is similar to the basic neural network
method, as seen in the left panel of Figure 8. The right panel shows the total training
time. We see a hump-shaped pattern for our method because for low-dimensional
models (N < 6), we use uniform sampling from the state space, which has a higher
complexity. Beyond that, we use ergodic sampling which reduces the computational
bottleneck and helps converge faster. The limitation of ergodic sampling is that we
obtain a solution of the model where the economy lives in the long run, and not
throughout the state space.

13We run 100 tree model on A100 GPU with 80GB VRAM on www.runpod.io and run the
experiments one time only since the [5%,95%] for low dimensional models are tight with less variation.

20

www.runpod.io

(a) Training Time per Epoch (b) Training Time (Total)

Figure 8: N-Tree Model Training Time.

CUDA Memory (MB) FLOPS (×109)
2-Tree 3-Tree 5-Tree 10-Tree 20-Tree 50-Tree 2-Tree 3-Tree 5-Tree 10-Tree 20-Tree 50-Tree

Basic 18.52 23.36 65.87 263.63 1142.16 8063.87 0.57 0.93 1.98 6.49 24.68 173.63
Time-stepping 14.84 30.38 78.06 289.02 1176.91 8129.29 0.73 1.15 2.30 7.10 25.93 177.53
Our Method 94.21 190.44 483.21 1812.23 7287.14 2.14 3.37 6.73 20.66 75.12

Table 3: N-Tree Model Memory Consumption and FLOPs. Note that our method uses
higher memory and FLOPs because we sample 5 times more points for residual computation.
The memory and FLOPs used are about 6 times of time-stepping and basic methods. This
aligns with the number of points we sample.

Table 3 shows the total memory usage and FLOPs for one full training iteration
for each model for a batch size of 200 training points. The full iteration includes
sampling stage, forward pass of the neural network, loss value computation, backward
gradient propagation, and optimization. For residual-based sampling, we use 1000
random points and compute the residuals to select k points with the highest residual.
The memory usage and FLOPs are computed using PyTorch’s profiler, which has a
tendency to overestimate the usage due to the additional computation from tracking
done by the profiler.14 One caveat is that due to the additional computation required
by the profiler, the algorithm runs out of memory easily. Therefore, we report the
memory usage and FLOPs for models up to N = 20 and N = 50 for with and without
active learning, respectively.

14See https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html.

21

https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html

4 Conclusion
This paper introduces Active Learning Inspired Equilibrium Nets (ALIENs), a neural
network-based method for solving equilibrium models in continuous-time economics.
By combining time-stepping and active learning, ALIENs address computational
challenges in high-dimensional, nonlinear models, transforming them into sequences
of contraction mappings to ensure stability and convergence. We demonstrate our
method using a few applications in macrofinance and asset pricing and show that it
improves accuracy and convergence by focusing computational efforts on economically
relevant regions. The accompanying Deep-Macrofin+ library further supports the
adoption of these techniques. Our method offers a robust framework for solving
complex economic models, paving the way for future exploration of higher-dimensional
problems and new neural network architectures.

22

Appendix

A Free Boundary Models

A.1 One-dimensional Benchmark
This section reports the parameters and system setup for the one-dimensional free
boundary model. The model is based on Brunnermeier and Sannikov (2014).

State Variable: Experts’ share of wealth: z ∈ (0, 1), for implementation, use
[0.01, 0.99]

Parameter Definition Value
σ exogenous volatility of capital 0.1
δe depreciation rate of capital for experts 0.05
δh depreciation rate of capital for households 0.05
a productivity of experts 0.11
ah productivity of households 0.07
ρ discount rate of experts 0.06
r discount rate of households 0.05
κ adjustment cost parameter 2

Table 4: Free Boundary 1D Constant Parameters

We solve for the following system of PDEs when ψ < 1:

(r(1− η) + ρη)q = ψae + (1− ψ)ah − ι

σq
t + σ = σ

1− 1
q

∂q
∂η

(ψ − η)

(σ + σq
t)2 q(ψ − η)

η(1− η) = ae − ah,

and the following PDE when ψ = 1:

(r(1− η) + ρη)q = ae − ι

σq
t + σ = σ

1− 1
q

∂q
∂η

(ψ − η)
.

A.2 2D Free Boundary Model
State Variable:

• Experts’ share of wealth: z ∈ (0, 1)

23

(a) Price (b) Capital Share: Experts (c) Price Return Diffusion

Figure 9: 1D Free Boundary Model Equilibrium Plots (KAN)

• Productivity of experts: ae ∈ (fl, fu)

For implementation, we use [0.01, 0.99]× [0.1, 0.2] (Therefore âe = fl+fu
2 = 0.15).

Agents: Experts value function Je and Households value function Jh.

Endogenous variables: Capital share of expert ψ, price q, and expert’s inside equity
share χ.

Parameter Definition Value
ah productivity of households 0.03
σ exogenous volatility of capital 0.1
δ depreciation rate of capital 0.05
p persistent parameter for ae 0.01
v variation parameter for ae 2.5
âe mean of ae 0.15
fl min of ae 0.1
fu max of ae 0.2
ϕ correlation between dZk

t and dZa
t 0.5

γ risk aversion 5
ρ discount rate 0.05
κ adjustment cost parameter 5
λd birth/death rates of agents 0.03
z̄ portion of experts born 0.1

Table 5: Free Boundary 2D Constant Parameters

Let j ∈ {e, h} index the agents. The model follows from Brunnermeier and
Sannikov (2016) with Epstein Zin utility and an additional state variable ae,t denoting

24

productivity of experts.15 Taking the additional state variable into account leads to
the following growth rate equations:

σq,k,1 = σ + σq,k

µz = ae − ι
q
− ĉe

+ (θe − 1)(σq,k,1(ζ1
e − σq,k,1) + σq,a(ζ2

e − σq,a)− 2ϕσq,k,1σq,a)

+ (1− χ)(σq,k,1(ζ1
e − ζ1

h) + σq,a(ζ2
e − ζ2

h)) + λd

z
(z̄ − z)

µq = 1
q

(
∂q

∂z
µzz + ∂q

∂ae

µae + 1
2
∂2q

∂z2 z
2((σz,k)2 + (σz,a)2 + 2ϕσz,kσz,a)

)

+ 1
q

(
1
2
∂2q

∂a2
e

σ2
ae + ∂2q

∂z∂ae

(ϕσz,k + σz,a)σaez

)

µJ
j = γ

2 ((σJ,k
j)2 + (σJ,a

j)2 + 2ϕσJ,k
j σJ,a

j + σ2)− (Φ− δ)

+ (γ − 1)(σJ,k
j σ + ϕσσJ,a

j)− ρ(log(ρ)− log(Jj) + log(zq))

µR
j = aj − ι

q
+ Φ− δ + µq + σσq,k + ϕσσq,a

µJ
j Jj = ∂Jj

∂t
+ ∂Jj

∂z
µzz + ∂Jj

∂ae

µae + 1
2
∂2Jj

∂z2 z
2
(
(σz,k)2 + (σz,a)2 + 2ϕσz,kσz,a

)
+ 1

2
∂2Jj

∂a2
e

σ2
ae + ∂2Jj

∂z∂ae

(ϕσz,k + σz,a)σaez

15Details of the model are provided in Gopalakrishna (2020).

25

Figure 10: 2D Free Boundary Model Loss Progression

26

(a) Absolute Change of Je per Time Step (b) Absolute Change of Jh per Time Step

Figure 11: 2D Free Boundary Model Convergence of Value Functions

(a) Value Functions (b) Portfolio Choice (c) Price Return Diffusion

Figure 12: 2D Free Boundary Model Equilibrium Plots (Comparison - Appendix)

27

B Long-run Risk Model
This model follows Di Tella (2017), and we refer the readers to the original paper for
more details. Here, we only provide the set of parameters used.

Parameter Definition Value
a relative risk aversion 1
σ volatility of TFP shocks 0.0125
λ mean reversion coefficient for idiosyncratic risk 1.38
v̄ long-run mean of idiosyncratic risk 0.25
σ̄v idiosyncratic volatility of capital on aggregate risk -0.17
ρ discount rate 0.0665
γ risk aversion rate 5
ψ inverse of elasticity of intertemporal substitution ψ = 0.5 s.t. EIS=2
τ Poisson retirement rate for experts 1.15
ϕ moral hazzard 0.2
A second order coefficient for investment function 53
B first order coefficient for investment function -0.87
δ shift for investment function 0.05

Table 6: Long-run Risk Model Constant Parameters

Type Definition
State Variables (x, v) ∈ [0.05, 0.95]× [0.05, 0.95]
Agents ξ (experts), ζ (households)
Endogenous Variables p (price), r (risk-free rate)

Table 7: Long-run Risk Model Variables

(a) Value Functions (b) Price of Risk (c) Price Return Diffusion

Figure 13: Long-run Risk Model Equilibrium Plots (Comparison - Appendix)

28

(a) Absolute Change of ξ per Time Step (b) Absolute Change of ζ per Time Step

(c) Absolute Change of ê per Time Step (d) Absolute Change of ĉ per Time Step

Figure 14: Long-run Risk Model Convergence of Value Functions and consumption

29

C N-Trees
State Variable:

• Wealth Share of agent i ∈ [1, N − 1]: zi ∈ (0, 1)

Define z = (z1, ..., zN−1), and z̃ =
(
z1, ..., zN−1, 1−

∑N−1
i=1 zi

)
. Similarly, we define the

geometric drifts by µz = (µz1 , ..., µzN−1), and µz̃ = (µz1 , ..., µzN−1 , µzN). The geometric
diffusions σz and σz̃ and the arithmetic drifts and diffusions µz

a, µ
z̃
a, σ

z
a, σ

z̃
a are defined

similarly. We use · to denote the dot product and× to denote the Hadamard (element-
wise) product.
Endogenous Variables: κ : RN−1 → RN , z 7→ κ(z).

Parameter Definition Value
γ Household risk aversion 5
ρ Fund discount rate 0.05
µyi Mean of the ith state variable 0.01i for i ≥ 10, 0.02 + 0.03i for i < 10
σyi Std of the ith state variable 0.01i for i ≥ 10, 0.02 + 0.03i for i < 10

Table 8: N-Tree Constant Parameters

Equations:

q = z̃
κ

µzi = µyi − µy · z̃ + σy · z̃(σy · z̃− σyi)
σzi = σyi − σy · z̃
µz

a = µz × z
σz

a = σz × z

µzN
a = −

N−1∑
i=1

µzi
a

σzN
a = −

N−1∑
i=1

σzi
a

µzN = µzN
a

zN

σzN = σzN
a

zN

µq = 1
q
×
(
∇zqµz

a + 1
2(σz

a)T∇2
zqσz

a

)
σq = 1

q
× (∇zqσz

a)

30

r = ρ+ γµy · z̃− 1
2γ(γ + 1)(z̃)2 · (σy)2

ζ = γz̃ · σy

µκ = µz̃ − µq + σq × (σq − z̃)
σκ = σz̃ − σq

HJB Equations:

µκ × κ =∇tκ+∇zκµ
z
a + 1

2(σz
a)T∇2

zκσ
z
a

σκ × κ =∇zκσ
z
a

We parameterize κ as a multi-input, multi-output neural network with N − 1
inputs and N outputs. Each neural network has 4 hidden layers with 80 neurons each,
activated by tanh. Outputs are restricted to be positive using SoftPlus. Learning rates
are set to 0.005 for all models. In each time step (or epoch without time-stepping),
200 points are randomly sampled for training. Non-time-stepping models are trained
for 200 epochs, while time-stepping models are trained for 200 epochs in each time
step and for upto 10 time iterations. Residual-based learning occurs 5 times at equal
intervals within each time step or throughout the 200 epochs. For example, with 200
epochs, residual-based sampling occurs every 40 epochs.

For the 2-Tree, 3-Tree and 5-Tree models, we use uniform sampling, with µy and σy

set to [0.02, 0.05], [0.02, 0.05, 0.08], [0.02, 0.05, 0.08, 0.11, 0.14] respectively. Starting
from the 10-tree model, we switch to ergodic sampling. This involves first sampling
yis values from LogNormal(µyi , σyi), then computing zi by renormalization. Both µyi

and σyi are set to 0.01i for all i. Table 9 shows the final loss of each model and
the number of epochs required for convergence. While the basic non-time-stepping
methods converge faster and yield lower loss, we show that time-stepping models
achieve greater accuracy in the 2-Tree model.

Model Type 2-Tree Loss 3-Tree Loss 50-Tree Loss 100-Tree Loss
Basic Neural Network 2.82e-18 (7) 1.85e-17 (5) 6.60e-14 (3) 1.27e-12 (9)
Time-stepping 2.09e-6 (427) 3.24e-6 (526) 7.23e-6 (316) 3.69e-6 (311)
Our Method 1.24e-6 (243) 1.93e-6 (347) 8.32e-6 (166) 4.77e-6 (178)

Table 9: Tree Model Convergence Results

C.1 One-dimensional 2-Tree Model
We train a simple 2-Tree model on one-dimension using both a neural network
approach and a finite difference method to validate our model setup. Figure 15

31

shows the loss convergence of these models, comparing scenarios with and without
residual-based learning. It is evident that the neural network model achieves faster
convergence with residual-based sampling. Figure 16 presents the equilibrium plots
of the 2-Tree model using both finite difference and neural network approaches. The
neural network approach, particularly with residual-based learning, provides the best
approximation of the equilibrium distribution for κs and qs. Meanwhile, all models
perform similarly for ζs and r.

Figure 15: Loss Progression of Time Stepping Scheme (2-Tree)

32

(a) κ1 (b) κ2 (c) q1

(d) q2 (e) ζ1 (f) ζ2 (g) r

Figure 16: 2-Tree Model Equilibrium Plots. The MSE between our method and finite
difference solution is 4.77 × 10−6, 8.37 × 10−6, 1.44 × 10−6, 2.38 × 10−6, 1.09 × 10−16,
7.69× 10−18, 5.35× 10−17 for κ1, κ2, q1, q2, r, ζ1 and ζ2, respectively.

33

C.2 Two-Dimensional 3-Tree Model

Figure 17: Equilibrium Plots in High Residual Domains (3-Tree)

34

C.3 50/100-Tree
At ergodic sampling, the κ values are expected to be 1, and the q values are anticipated
to be around 1/50 = 0.02. Figure 18 illustrates the progression of loss and κ
convergence for the 50-Tree model. Figure 19 displays the distribution of equilibrium
values for the 50-Tree model. To construct the distribution, we sample 1,000 points
from the ergodic distribution and compute the κ and q values. We then plot the
distributions of κ and q, focusing on the κ with the highest mean q value. Figure 20
shows the distribution of equilibrium for the 100-Tree model, based on 500 points
from the ergodic distribution.

(a) Loss Convergence (b) Convergence of κ

Figure 18: Progression of Time Stepping Scheme (50-Tree) In both plots, left axis is for our
method and right axis is for basic neural network. The first 200 epochs for time-stepping
is shown. Basic Neural Network gives a lower loss, but converge to the wrong solution
(κ ≈ 0.6898). Also both the loss and κ values oscillates. Our method stabilizes faster.

35

A. Basic Neural Network

B. Basic Neural Network (Residual-based Learning)

C. Time-stepping

D. Our Method

Figure 19: Distribution of Equilibrium Values (50-Tree)

36

A. Basic Neural Network

B. Basic Neural Network (Residual-based Learning)

C. Time-stepping

D. Our Method

Figure 20: Distribution of Equilibrium Values (100-Tree)

37

D Proofs of Propositions
(i). Proposition 1

Proof. Let {xi}i and {xj}j be sequences of data samples in T s.t. xi < x0, xi ↗ x−
0

and xj > x0, xj ↘ x+
0 . Consider the objective function L on the set {xi}i ∪ {xj}j ∪

{x0}:

arg min
θ,c

∑
xi↗x−

0

|Φθ(xi)− f(xi)|2 +
∑

xj↘x+
0

|Φθ(xj)− f(xj)|2 + |Φθ(x0)− c|2 ,

where c ∈ R can also be optimized relevant to the behavior of f around x0, as f(x0)
is not defined.
By the universal approximation theorem, Φθ(xi) → f(xi) as xi ↗ x−

0 and Φθ(xj) →
f(xj) as xj ↘ x+

0 .
Since Φθ is continuous, but f(x) has a jump discontinuity at x0. The optimal c

value should balance the values on either side of the jump, so c = f(x+
0) + f(x−

0)
2 .

Then the optimal parameter θ∗ will minimize |Φθ(x0)− c|2, and hence, Φθ(x0) →
f(x+

0) + f(x−
0)

2 .

(ii). Proposition 2 In addition to the state variables determining the equilibrium,
a fake transient time dimension t is added. The system is solved as if there was a finite
horizon T . This requires modifying the HJB equations by adding a time derivative
when computing the drifts using Ito’s lemma:

µJJ = ∂J

∂t
+
∑

i

µxi
∂J

∂xi

+
∑

i

∑
j

σxiσxj

2
∂2J

∂xi∂xj

. (D.1)

Proof. By rearranging (D.1) and replace J with a general Φθ approximator, we can
rewrite the HJB equations involving time derivatives to be

Φ̇θ(x, t) := ∇tΦ(x, t) = F(x, t), Φθ,0(x, 0) = Φθ,1(x, 1) = 1.

Assume that F is locally Lipschitz, and we can apply Picard-Lindelof iteration. Let
T be the number of outer loop iterations. The time interval [0, T] can be broken down
into T pieces, [0, 1] ∪ [1, 2] ∪ · · · ∪ [T − 1, T]. The initial condition Φθ,1(x, 1) = 1 and
the algorithm iteration set the following recursive definition:

Φθ,1(x, T) = 1, Φθ,k+1(x, T − k) = Φθ,k(x, T − k)

Φθ,1(x, T − 1) = Φθ,1(x, T)−
∫ 1

0
Φ̇θ,1(x, T − 1 + τ)dτ

Φθ,2(x, T − 2) = Φθ,2(x, T − 1)−
∫ 1

0
Φ̇θ,2(x, T − 2 + τ)dτ

38

...

Φθ,T (x, 0) = Φθ,T (x, 1)−
∫ 1

0
Φ̇θ,T (x, τ)dτ

⇒ Φθ,T (x, 0) = 1−
∫ 1

0
Φ̇θ,1(x, T − 1 + τ)dτ − · · · −

∫ 1

0
Φ̇θ,T (x, τ)dτ

= 1−
T∑

i=1

∫ 1

0
Φ̇θ,i(x, T − i+ τ)dτ

As T →∞, we approximate infinite time horizon with finite time iterations, and
Φθ,T (x, 0) is the approximaion.

Now we want to show that this iteration converges. Define a mapping P :
Cn[0, 1] → Cn[0, 1] s.t. (PΦθ)(x, t) = Φθ(x, t) −

∫ t

0
F(x, τ)dτ . Define {ϕk}k ={

P kΦθ

}
k
, and norm on Cn[0, 1] by ∥·∥C = max

t∈[0,T]
∥ϕ(x, t)∥.

∥ϕ1 − ϕ0∥ =
∥∥∥∥∫ t

0
F(x, τ)dτ

∥∥∥∥ ≤ ∫ t

0
∥F(x, τ)∥ dτ ≤Mt (for some M ∈ (0, 1))

∥ϕ2 − ϕ1∥ = ∥Pϕ1 − Pϕ0∥
(By Lipschitz continuity)

≤ L
∫ t

0
∥ϕ1 − ϕ0∥ dτ ≤ LM

t2

2
...

∥ϕk+1 − ϕk∥ ≤ L
∫ t

0
∥ϕk − ϕk−1∥ dτ ≤ Lk−1M

tk

k!

⇒ ∥ϕk+p − ϕk∥ ≤
p−1∑
i=0
∥ϕk+i+1 − ϕk+i∥ ≤

p−1∑
i=0

Li−1M
ti

i!

∥ϕk+p − ϕk∥C = max
t∈[0,T]

∥ϕk+p(x, t)− ϕk(x, t)∥ ≤
k+p∑

i=k+1
Li−1M

T i

i!

≤
∞∑

i=k+1
MLi−1T

i

i! → 0, as k →∞.

The convergence
∞∑

i=k+1
MLi−1T

i

i! → 0 comes from the fact that

∞∑
i=0

M

L

(LT)i

i! = M

L
exp(LT),

and we can take a large k for
∞∑

i=k+1
MLi−1T

i

i! =
∞∑

i=0
MLi−1T

i

i! −
k∑

i=0
MLi−1T

i

i! = 0.

Now we show that Φ̇θ(x, t) vanishes.
The convergence of the outer loop iteration implies that ∥Φθ,T (x, 0)− Φθ,T −1(x, 0)∥ =

39

∥Φθ,T (x, 0)− Φθ,T (x, 1)∥ → 0 as T → ∞ (with contraction mapping principle). The
convergence of the inner loop iteration, based on Sirignano and Spiliopoulos (2018),
ensures that both Φθ,T (x, 0) and Φθ,T (x, 1) converge to the same unique solution f
augmented with ∇tΦ. Therefore, we have ∇tΦ(x, 0) = ∇tΦ(x, 1), creating a periodic
boundary condition for both Φ and ∇tΦ along the time dimension. Given that Φ
converges to a stable, unique solution as the outer iterations progress, and that the
economic equilibrium problem guarantees a unique solution, we can conclude that
∇tΦ→ 0.

E Software and Replication Package
The python library along with implementation details can be found in https://
github.com/rotmanfinhub/deep-macrofin. We provide a sample Jupyter notebook
that demonstrates the parsing of equations at https://github.com/rotmanfinhub/
deep-macrofin/blob/main/examples/time_step/ditella.ipynb. A comprehensive
documentation of the library is available at https://rotmanfinhub.github.io/
deep-macrofin/. Additionally, the replication package for the experiments conducted
in this paper is available at https://github.com/yuntaowu2000/active_learning_
paper.

References
Azinovic, Markon and Jan Zemlicka, “Intergenerational consequences of rare

disasters,” 2023.

Azinovic, Marlon, Luca Gaegauf, and Simon Scheidegger, “Deep equilibrium
nets,” International Economic Review, 2022, 63 (4), 1471–1525.

Bischof, Rafael and Michael Kraus, “Multi-Objective Loss Balancing for Physics-
Informed Deep Learning,” 2021.

Bretscher, Lorenzo, Jesús Fernández-Villaverde, and Simon Scheidegger,
“Ricardian Business Cycles,” SSRN Electronic Journal, 11 2022.

Brumm, Johannes and Simon Scheidegger, “Using Adaptive Sparse Grids to
Solve High-Dimensional Dynamic Models,” Econometrica, 2017.

Brunnermeier, Markus K. and Yuliy Sannikov, “A Macroeconomic Model with
a Financial Sector,” American Economic Review, 2 2014, 104 (2), 379–421.

Brunnermeier, Markus K and Yuliy Sannikov, “Macro, Money and Finance: A
Continuous Time Approach,” Working Paper 22343, National Bureau of Economic
Research 6 2016.

40

https://github.com/rotmanfinhub/deep-macrofin
https://github.com/rotmanfinhub/deep-macrofin
https://github.com/rotmanfinhub/deep-macrofin/blob/main/examples/time_step/ditella.ipynb
https://github.com/rotmanfinhub/deep-macrofin/blob/main/examples/time_step/ditella.ipynb
https://rotmanfinhub.github.io/deep-macrofin/
https://rotmanfinhub.github.io/deep-macrofin/
https://github.com/yuntaowu2000/active_learning_paper
https://github.com/yuntaowu2000/active_learning_paper

Bungartz, Hans Joachim, Alexander Heinecke, Dirk Pflüger, and Stefanie
Schraufstetter, “Option pricing with a direct adaptive sparse grid approach,” in
“Journal of Computational and Applied Mathematics” 2012.

Cipolla, Roberto, Yarin Gal, and Alex Kendall, “Multi-task Learning Using
Uncertainty to Weigh Losses for Scene Geometry and Semantics,” in “2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition” 2018,
pp. 7482–7491.

D’avernas, Adrien, Damon Petersen, and Quentin Vandeweyer, “A Solution
Method for Continuous-Time Models,” 2023.

Duarte, Victor, Diogo Duarte, and Dejanir H Silva, “Machine Learning for
Continuous-Time Finance,” 2024.

Fernández-Villaverde, Jesús, Samuel Hurtado, and Galo Nuño, “Financial
Frictions and the Wealth Distribution,” Econometrica, 2023, 91, 869–901.

Gopalakrishna, Goutham, “A Macro-Finance model with Realistic Crisis
Dynamics,” in “Proceedings of Paris December 2021 Finance Meeting EUROFIDAI
- ESSEC” 11 2020. Swiss Finance Institute Research Paper No. 20-96.

, Zhouzhou Gu, and Jonathan Payne, “Asset Pricing, Participation
Constraints, and Inequality.,” Princeton Univeristy Working Paper, 2024.

Gu, Zhouzhou, Mathieu Laurière, Sebastian Merkel, and Jonathan Payne,
“Global Solutions to Master Equations for Continuous Time Heterogeneous Agent
Macroeconomic Models,” 6 2024.

Han, Jiequn, Arnulf Jentzen, and Weinan E, “Solving high-dimensional partial
differential equations using deep learning,” Proceedings of the National Academy of
Sciences, 2018, 115 (34), 8505–8510.

, Yucheng Yang, and Weinan E, “DeepHAM: A Global Solution Method for
Heterogeneous Agent Models with Aggregate Shocks,” SSRN Electronic Journal,
12 2021.

Hornik, Kurt, “Approximation capabilities of multilayer feedforward networks,”
Neural Networks, 1991, 4 (2), 251–257.

, Maxwell Stinchcombe, and Halbert White, “Multilayer feedforward
networks are universal approximators,” Neural Networks, 1989, 2 (5), 359–366.

Huang, Ji, “A Probabilistic Solution to High-Dimensional Continuous-Time Macro
and Finance Models,” 2023.

Liu, Ziming, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James

41

Halverson, Marin Soljačić, Thomas Y Hou, and Max Tegmark, “KAN:
Kolmogorov-Arnold Networks,” arXiv preprint arXiv:2404.19756, 2024.

Lu, Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis,
“DeepXDE: A Deep Learning Library for Solving Differential Equations,” SIAM
Review, 2021, 63 (1), 208–228.

Maliar, Lilia and Serguei Maliar, “Merging simulation and projection approaches
to solve high-dimensional problems with an application to a new Keynesian model,”
Quantitative Economics, 3 2015, 6, 1–47.

, , and Pablo Winant, “Deep learning for solving dynamic economic models.,”
Journal of Monetary Economics, 2021, 122, 76–101.

Martin, Ian, “The Lucas Orchard,” Econometrica, 1 2013, 81, 55–111.

Merkel, Sebastian, “The Macro Implications of Narrow Banking: Financial
Stability versus Growth,” 2020.

Payne, Jonathan, Adam Rebei, and Yucheng Yang, “Deep Learning for Search
and Matching Models,” SSRN Electronic Journal, 2 2024.

Petersen, Philipp and Jakob Zech, “Mathematical theory of deep learning,” 2024.

Raissi, M, P Perdikaris, and G E Karniadakis, “Physics-informed neural
networks: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations,” Journal of Computational
Physics, 2019.

Sauzet, Maxime, “Projection Methods via Neural Networks for Continuous-Time
Models,” 2021.

Schaab, Andreas and Allen Zhang, “Dynamic Programming in Continuous Time
with Adaptive Sparse Grids,” SSRN Electronic Journal, 5 2022.

Shukla, Khemraj, Juan Diego Toscano, Zhicheng Wang, Zongren Zou,
and George Em Karniadakis, “A comprehensive and FAIR comparison between
MLP and KAN representations for differential equations and operator networks,”
arXiv preprint arXiv:2406.02917, 2024.

Sirignano, Justin and Konstantinos Spiliopoulos, “DGM: A deep learning
algorithm for solving partial differential equations,” Journal of Computational
Physics, 2018.

Tella, Sebastian Di, “Uncertainty Shocks and Balance Sheet Recessions,” Journal
of Political Economy, 2017, 125 (6), 2038–2081.

42

	Introduction
	Methodology
	Neural network approximations
	Kolmogorov Arnold Networks
	Solution method
	Active learning

	Applications
	Free boundary model
	Results

	Long-run risk model
	N trees model
	Training time and memory analysis

	Conclusion
	Free Boundary Models
	One-dimensional Benchmark
	2D Free Boundary Model

	Long-run Risk Model
	N-Trees
	One-dimensional 2-Tree Model
	Two-Dimensional 3-Tree Model
	50/100-Tree

	Proofs of Propositions
	Software and Replication Package

