Algebra

This is mainly from introductory level Youtube Video by Michael Penn https://www.youtube.com/watch? v=c6i6edrthFM&list=PL22w63XsKjqxaZ-v5N4AprggFkQXgkNoP&index=9.

1 Introduction

Definition: 1.1: Relation

A relation on a set A is a subset $R \subset A \times A$. Write $(x, y) \in R$ as $xRy, (x, y) \notin R$ as $x \not Ry$.

Example: $A = \text{any set}, R \text{ is equality. } (x, y) \in R \Leftrightarrow x = y, R = \{(a, a) : a \in A\}.$ If $A = \{1, 2, 3\}, R = \{(1, 1), (2, 2), (3, 3)\}$

Example: $A = \{1, 2, 3\}, R$ is less than or equal. Then $R = \{(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)\}$

Example: $A = \mathbb{N}$, R is divides. $(m, n) \in R \Leftrightarrow m | n, i.e. \exists d \in \mathbb{N}$ s.t. n = md. Then $(1, n) \in R$, since 1|n for any n, $(2, 10) \in R$, since 2|10.

Definition: 1.2: Equivalence Relation

A relation $R \subset A \times A$ is an equivalence relation if it has the following properties

- 1. Reflexivity: $(a, a) \in R, \forall a \in A$
- 2. Symmetry: $(a,b) \in R \Rightarrow (b,a) \in R$
- 3. Transitivity: $(a, b) \in R$ and $(b, c) \in R \Rightarrow (a, c) \in R$

Example: R is equality. $(a, b) \in R \Leftrightarrow a = b$ is an equivalence relation.

Example: R is nothing. $\forall a, b \in A, (a, b) \in R$. $R = A \times A$ is an equivalence relation.

Example: $A = C^1(\mathbb{R})$ (all differentiable functions on \mathbb{R}). $fRg \Leftrightarrow f' = g =$ is an equivalence relation.

Definition: 1.3: Equivalence Class

Given an equivalence relation $R \subset A \times A$. The equivalence class of $a \in A$ is $[a] = \{b \in A : (a, b) \in R\}$.

Example: *R* is equality. $[a] = \{b \in A : a = b\} = \{a\}$

Example: R is nothing. $[a] = \{b \in A : (a, b) \in R = A \times A\} = A$

Example: $A = C^1(\mathbb{R})$. $[f] = \{g \in A : f' = g'\} = \{g \in A : (f - g)' = 0\} = \{f + c : c \in \mathbb{R}\}.$

Definition: 1.4: Power Set

Given a set A. $\mathcal{P}(A) = \{B : B \subset A\}$ is the power set of A.

Definition: 1.5: Partition

 $P \subset \mathcal{P}(A) \text{ is a partition of } A \text{ if}$ $1. \bigcup_{X \in P} X = A$ $2. \text{ If } X \neq Y, \text{ then } X \cap Y = \emptyset$

Example: $A = \{1, 2, 3, 4, 5, 6\}, P = \{\{1\}, \{2, 3, 4\}, \{5, 6\}\}$ is a partition.

Example: $A = \mathbb{Z}, P = \{\{3k\}, \{3k+1\}, \{3k+2\}\}$ is a partition.

Theorem: 1.1:

There is a one-to-one correspondence between partitions of A and equivalence relations on A.

Proof. 1. Suppose P is a partition of A. Define a relation $R \subset A \times A$ s.t. $(a, b) \in R \Leftrightarrow a, b \in X \in P$. We need to check that R is an equivalence relation.

Reflexivity: $(a, a) \in R$, because $a \in X$ for some $X \in P$, since $\bigcup_{X \in P} X = A$ and $a \in A$.

Symmetry: Suppose $(a, b) \in R$, then $a, b \in X \in P$. This is the same as $b, a \in X \in P$, thus $(b, a) \in R$ **Transitivity:** Suppose $(a, b) \in R$ and $(b, c) \in R$, then $a, b \in X \in P$ and $b, c \in Y \in P$. But $X \cap Y = \emptyset$ if $X \neq Y$, thus X = Y. $a, c \in X \in P$, so $(a, c) \in R$

2. Suppose $R \subset A \times A$ is an equivalence relation. Let $P = \{[a] : a \in A\}$

Suppose $a \in A$, $(a, a) \in R$. $a \in [a] = \bigcup_{[a] \in P} [a] \Rightarrow A \subset \bigcup_{[a] \in P} [a]$ and by definition $\bigcup_{[a] \in P} [a] \subset A$, thus $A = \bigcup_{[a] \in P} [a]$

Take $a, b \in A$. Consider $[a] \cap [b]$. Suppose $x \in [a] \cap [b]$. Then $x \in [a]$ and $x \in [b]$. Then $(a, x) \in R$ and $(b, x) \in R$. By transitivity $(a, b) \in R$, [a] = [b]

Definition: 1.6: Binary Operation

Given a set S, a binary operation on S is a function $* : S \times S \to S$, write *(a,b) = a * b. The following properties may or may not hold.

- 1. Associativity: a * (b * c) = (a * b) * c
- 2. Commutativity: a * b = b * a

Example: $(\mathbb{N}, +)$, + is associative and commutative.

Example: $(\mathbb{Z}, +)$, + is associative and commutative, with identity and inverse.

Example: $M_n(\mathbb{R}) = \{A \in \mathbb{R}^{n \times n}\}, *$ is matrix multiplication. Then * is associative, but not commutative. If * is the commutator $[\cdot, \cdot], A*B = [A, B] = AB - BA$, then * is neither associative nor commutative.

2 Groups

Definition: 2.1: Groups

A group is a set G together with a binary operation * s.t.

- 1. Closure: If $a, b \in G$, then $a * b \in G$
- 2. Identity: $\exists e \in G \text{ s.t. } \forall a \in G, a * e = a = e * a$
- 3. Inverse: $\exists a^{-1} \in G$ s.t. $a * a^{-1} = a^{-1} * a = e$
- 4. Associative: $\forall a, b, c \in G, a * (b * c) = (a * b) * c$

Example: $(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +), (\mathbb{C}, +)$ are groups under addition.

Example: $(\{\pm 1\}, \cdot), (\mathbb{Q}^{\times}, \cdot)$ where $\mathbb{Q}^{\times} = \mathbb{Q} \setminus \{0\}, GL(n, \mathbb{R}) = \{A \in \mathbb{R}^{n \times n} : \det(A) \neq 0\}$ are groups are groups under multiplication.

Definition: 2.2: Integer Modulo n Groups

Let \mathbb{Z}_n be the set of all equivalence classes mod n. $\mathbb{Z}_n = \{[0], [1], ..., [n-1]\}$. Define [x] + [y] = [x+y]. Then $(\mathbb{Z}_n, +)$ forms a group with identity [0].

Example: $(\mathbb{Z}_6, +)$ is a group, but (\mathbb{Z}_6, \cdot) where $\cdot : [x][y] \to [xy]$ is not a group, because 2,3,4 do not have an inverse.

Definition: 2.3: Group of Units

Given $n \in \mathbb{N}$, the group of units $U_n = \{[m]_n : \gcd(m, n) = 1\}$ with operation [x][y] = [xy]. U_n is a group.

Proof. 1. Closure: Suppose gcd(x, n) = gcd(y, n) = 1, then gcd(xy, n) = 1. So $[x], [y] \in U_n \Rightarrow [xy] \in U_n$. 2. Identity: $[1] \in U_n$ since gcd(1, n) = 1 for any n.

- 3. Inverse: If $[a] \in U_n$, then gcd(a, n) = 1. Thus $\exists x, y \in \mathbb{Z}$ s.t. ax + ny = 1 and gcd(x, n) = 1. [a][x] = 1.
- 4. Associativity: From associativity of multiplication in \mathbb{Z}

Example: $U_6 = \{1, 5\}$. Example: $U_5 = \{1, 2, 3, 4, 5\}$

Definition: 2.4: Dihedral Groups

 $D_n = \{\text{rigid motions of regular n-gons}\}$ = $\{e, r, ..., r^{n-1}, s, sr, ..., sr^{n-1}\}, \text{ where } r = \text{rotation by } \frac{2\pi}{n}, s = \text{reflection through a vertex}$ = $\langle r, s : r^n = s^2 = e, rs = sr^{n-1} \rangle$ in generator representation

Example: n = 3, D_3 is the rigid motion on equilateral triangles. $r = \text{rotation counter clockwise by } \frac{2\pi}{3}$. $r^2 = \text{rotation by } \frac{4\pi}{3}$. $r^3 = e$, s = reflection through a vertex For an *n*-gon, we can rotate by $\frac{2\pi k}{n}$ for $0 \le k < n-1$, with a total of *n* rotations, and *n* total reflections through *n* vertices.

Example: n = 6, $rsr^4sr^3 = sr^5r^4sr^3 = sr^9sr^3 = sr^3sr^3 = e$, since sr^3 is a reflection.

 $r^k s = sr^{n-k}$ for all $1 \le k \le n-1$.

Proof. Base case: $rs = sr^{n-1}$ by definition. Induction Hypothesis: Suppose $r^k s = sr^{n-k}$ Induction Step: $r^{k+1}s = r^k rs \stackrel{\text{Base case}}{=} r^k sr^{n-1} \stackrel{\text{III}}{=} sr^{n-k}r^{n-1} = sr^{2n-(k+1)} = sr^{n-(k+1)}$

Definition: 2.5: Permutation Group

Given a set X, define $S_X = \{f : X \to X : f \text{ a bijection}\}$. S_X forms a group with operation given by composition of functions. S_X is called the permutation group of X. If $X = \{1, 2, ..., n\}$, we write $S_X = S_n$.

Proof. 1. Closure: $\forall f, g \in S_X, f \circ g : X \to X$ is a bijection, $f \circ g \in S_X$

- 2. Associativity: $\forall f, g, h \in S_X, f \circ (g \circ h)(x) = f(g(h(x))) = f \circ (g \circ h)(x)$
- 3. Identity: $\operatorname{id} : X \to X$, $\operatorname{id}(x) = x$. Then $\operatorname{id} \circ f = f$ for $f \in S_X$
- 4. Inverse: Given a function $f: X \to X$, f is a bijection $\Leftrightarrow f$ has an inverse. Thus $\forall f \in S_X$, $f^{-1} \in S_X$

Example: n = 3, S_3 has 6 elements, and in cycle notation, we write $S_3 = \{1, (12), (13), (23), (123), (132)\}$, where (123)(2) = 3, (123)(3) = 1, (132)(3) = 2.

Example: Composing cycles

- 1. (1352)(243) = (13)(245). 1 is sent to 1 by (243), then to 3 by (1352). We then look at 3, 3 is sent to 2 by (243), then sent to 1 by (1352)
- 2. (2974)(164) = (162974)
- 3. $(1325)^{-1} = (1523)$ (just write in reverse order)

Theorem: 2.2: Basic Properties of Groups

Given a group G,

- 1. The identity is unique
- 2. Inverses are unique
- 3. $\forall a, b \in G, (ab)^{-1} = b^{-1}a^{-1}$
- 4. If ab = ac, then b = c. Similarly, if ba = ca, then b = c

Proof. 1. Suppose $e_1, e_2 \in G$ are both identities, $e_1 \stackrel{e_2 \text{ is identity}}{=} e_1 e_2 \stackrel{e_1 \text{ is identity}}{=} e_2$

2. Suppose $a \in G$ with inverses b and c. *i.e.* ab = e = ba, ac = e = ba. Then $b = be \stackrel{e=ac}{=} b(ac) \stackrel{\text{associativity}}{=} (ba)c \stackrel{ba=e}{=} ec = c$

- 3. $(ab)(b^{-1}a^{-1}) = a(bb^{-1})a^{-1} = aa^{-1} = e$ and $(ab)(ab)^{-1} = e$. Thus $(ab)^{-1} = b^{-1}a^{-1}$, since inverses are unique.
- 4. ab = ac, then $a^{-1}(ab) = a^{-1}(ac)$. By associativity, b = c.

Definition: 2.6: Abelian Group

A group G is abelian, if it is commutative. *i.e.* $\forall a, b \in G, ab = ba$.

Definition: 2.7: Order of a Group

G has order n if |G| = n. *i.e.* G has n elements. n can be infinite.

Definition: 2.8: Order of an Element

 $g \in G$ has order m if m is the smallest natural number s.t. $g^m = e$. Write $|g| = \operatorname{ord}(g) = n$.

2.1 Subgroups

Definition: 2.9: Subgroups

Given a group G, a subset $H \subset G$ is a subgroup if H is a group. Write $H \leq G$.

Example: Suppose $H \leq \mathbb{Z}$ under addition, $H \neq \{0\}$. Let $n \in H$ be the smallest positive number, $m \in H$ be any other element. We can write m = nq + r, $0 \leq r < n$. $r = m - n - \dots - n \in H$, thus r = 0. *i.e.* any element $m \in H$ is a multiple of $n \in H$, the smallest positive element.

Thus we can write $H = n\mathbb{Z} = \{nk : k\mathbb{Z}\}$. *i.e.* The subgroups of \mathbb{Z} must be of the form $n\mathbb{Z} \leq \mathbb{Z}$.

Example: G any group, $\{e\} \leq G, G \leq G$ are the trivial subgroups.

Example: $\mathbb{C}^{\times} = \{a + bi : a, b \in \mathbb{R} \text{ not both zero}\}, \mathbb{Q}^{\times} \leq \mathbb{R}^{\times} \leq \mathbb{C}^{\times}. S^{1} \leq \mathbb{C}^{\times}, \text{ where } S^{1} = \{z \in \mathbb{C} : |z| = 1\}$

Example: $SL(n, \mathbb{R}) \leq GL(n, \mathbb{R})$, where $SL(n, \mathbb{R}) = \{A \in \mathbb{R}^{n \times n}, \det A = 1\}$

Theorem: 2.3: Subgroup Test

Suppose G is a group. $H \subset G$ non-empty. Then $H \leq G \Leftrightarrow \forall x, y \in H, xy^{-1} \in H$

Proof. (\Rightarrow) Suppose $H \leq G$. Let $x, y \in H$. Then $y^{-1} \in H$, since H is a group. By closure property, $xy^{-1} \in H$.

(⇐) Suppose $\forall x, y \in H, xy^{-1} \in H$.

- 1. Identity: Set y = x, then $xy^{-1} = xx^{-1} = e$, since $x \in G$, G is a group. Thus $e \in H$.
- 2. Inverse: Suppose $a \in H$. Let $x = e, y = a \in H$. $xy^{-1} = ea^{-1} = a^{-1} \in H$.

3. Closure: Suppose $a, b \in H$, then $b^{-1} \in H$. Let $x = a, y = b^{-1}$. $xy^{-1} = a(b^{-1})^{-1} = ab \in H$

Thus $H \leq G$.

Definition: 2.10: Centralizer

Let $H \leq G$. The centralizer of H is

$$C(H) = \{g \in G : gh = hg, \forall h \in H\}$$

$$C(H) \le G$$

Proof. Suppose $x, y \in C(H)$, we want to show $xy^{-1} \in C(H)$.

Notice that gh = hg for all $h \in H$. Left and right multiply by g^{-1} , we get $g^{-1}ghg^{-1} = g^{-1}hgg^{-1}$. Thus $hg^{-1} = g^{-1}h$.

Let $h \in H$, $(xy^{-1})h \stackrel{\text{associativity}}{=} x(y^{-1}h) \stackrel{hg^{-1}=g^{-1}h}{=} xhy^{-1} \stackrel{gh=hg}{=} h(xy^{-1})$ Thus $xy^{-1} \in C(H), C(H) \leq G$

Definition: 2.11: Conjugate Subgroup

Let $H \leq G$. The conjugate subgroup is $g^{-1}Hg = \{g^{-1}hg : h \in H\} \leq G$.

Proof. Suppose $x \in g^{-1}Hg$ and $y \in g^{-1}Hg$. Then $x = g^{-1}hg$, $y = g^{-1}\hat{h}g$ for $h, \hat{h} \in H$. Then $y^{-1} = q^{-1}\hat{h}^{-1}g$. $xy^{-1} = q^{-1}hqq^{-1}\hat{h}^{-1}g = q^{-1}h\hat{h}^{-1}g \in q^{-1}Hg$.

Definition: 2.12: Center

Given a group G, the center of G is $Z(G) = \{g \in G : gx = xg, \forall x \in G\}$. $Z(G) \leq G$. *i.e.* $g \in Z(G) \Leftrightarrow gx = xg, \forall x \in G \Leftrightarrow xgx^{-1} = g, \forall x \in G$

Proof. Let $x, y \in Z(G)$. Then $gxg^{-1} = x$, $\forall x \in G$, and $gyg^{-1} = y, \forall y \in G$ Then $xy^{-1} = gxg^{-1}(gyg^{-1})^{-1} = gxg^{-1}gy^{-1}g^{-1} = g(xy^{-1})g^{-1}$, Thus $xy^{-1} \in Z(G)$. By Theorem 2.3, $Z(G) \leq G$.

Example: Find the center of $D_4 = \langle r, s : r^4 = s^2 = e, rs = sr^3 \rangle$

Proof. If $x \in Z(D_4)$, then rx = xr and sx = xs, thus $x = r^3xr$ and $x = s^{-1}xs = sxs$ Suppose x is a rotation, $x = r^k$, $0 \le k \le 3$. Then $r^3xr = r^3r^kr = r^{k+4} = r^kr^4 = r^k = x$, so any rotation commutes with x. $sxs = sr^ks \stackrel{\text{By Theorem 2.1}}{=} ssr^{4-k} = r^{4-k} = x = r^k$. Then $r^{2k} = e$, $2k \equiv 0 \mod 4$, k is even. Thus $x = r^0$ or r^2 . Suppose x is a reflection, $x = sr^k$, $0 \le k \le 3$. Then $r^3xr = r^3sr^kr \stackrel{\text{By Theorem 2.1}}{=} srr^kr = sr^{k+2} = x = sr^2$. Then $r^{k+2} = r$, $r^2 = e$. Impossible.

In summary: if x is a reflection, it cannot be in the center. Only rotations in $Z(D_4)$ are e and r^2 . Thus $Z(D_4) = \{e, r^2\} = \langle r^2 \rangle$.

2.2 Types of Groups

2.2.1 Cyclic Groups

Definition: 2.13: Cyclic Subgroups

Given any group G and element $a \in G$, the cyclic subgroup of G generated by a is $\langle a \rangle = \{a^n : n \in \mathbb{Z}\}.$

Proof. Suppose $x, y \in \langle a \rangle$. Then $x = a^m, y = a^n$ for $m, n \in \mathbb{Z}$ Then $xy^{-1} = a^m (a^n)^{-1} = a^m a^{-n} = a^{m-n} \in \langle a \rangle$, since $m - n \in \mathbb{Z}$. Thus $\langle a \rangle \leq G$ by Theorem 2.3.

Theorem: 2.4:

 $\langle a \rangle$ is the smallest subgroup of G containing a.

Proof. We want to show that for any $H \leq G$ with $a \in H$, $\langle a \rangle \subset H$. Suppose $H \leq G$ with $a \in H$, then $a^n \in H$, $\forall n \in \mathbb{Z}$, because subgroups are closed under the operation. Thus $\langle a \rangle \subset H$ and $\langle a \rangle \leq H$.

Example: $(\mathbb{Z}, +), \langle 5 \rangle = \{5n : n \in \mathbb{Z}\} = 5\mathbb{Z} \leq \mathbb{Z}$

Example: \mathbb{Z}_{12} , $\langle 4 \rangle = \{0, 4, 8\} \leq \mathbb{Z}_{12}$, $\langle 5 \rangle = \{0, 5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7\} = \mathbb{Z}_{12}$

Example: $U_8 = \{1, 3, 5, 7\}, \langle 3 \rangle = \{1, 3\}, \langle 5 \rangle = \{1, 5\}, \langle 7 \rangle = \{1, 7\}$

Figure 1: Lattice Diagram for U_8

Example: $S_5 =$ all bijections of $\{1, 2, 3, 4, 5\}$. $\langle (123) \rangle = \{1, (123), (132)\}$

Definition: 2.14: Cyclic Groups

A group G is a cyclic group if $G = \langle g \rangle = \{g^n : n \in \mathbb{Z}\}$ for some $g \in G$.

Theorem: 2.5:

Every cyclic group is abelian

Proof. Suppose $G = \langle g \rangle$. Take $x, y \in G. x = g^m, y = g^n$ for $m, n \in \mathbb{Z}$. Then, $xy = g^m g^n = g^{m+n} = g^n g^m = yx$. Thus the cyclic group is abelian.

Example: Cyclic groups: $\mathbb{Z} = \langle 1 \rangle = \{n \cdot 1 : n \in \mathbb{Z}\}$. $\mathbb{Z}_n = \langle 1 \rangle$. $U_6 = \{1, 5\} = \langle 5 \rangle$. $U_9 = \{1, 2, 4, 5, 7, 8\} = \langle 2 \rangle$ All non-abelian groups are not cyclic. $\mathbb{Z}_2 \times \mathbb{Z}_2 = \{(0, 0), (1, 0), (0, 1), (1, 1)\}$ is abelian, but not cyclic. $\langle (1, 0) \rangle = \{(1, 0), (0, 0)\}, \langle (0, 1) \rangle = \{(0, 1), (0, 0)\}, \langle (1, 1) \rangle = \{(1, 1), (0, 0)\}$

Theorem: 2.6:

Every subgroup of a cyclic group is cyclic.

Proof. Suppose $G = \langle g \rangle$, $H \leq G = \langle g \rangle$.

Let $S = \{a \in \mathbb{N} : g^a \in H\} \subset \mathbb{N}$, so it has a minimal element $m \in S$, $g^m \in H$. Take $g^n \in H$. Perform division algorithm with m and n. n = mq + r, $0 \leq r < m - 1$. $g^n = g^{mq+r} = (g^m)^q g^r$. Then $g^r = g^n (g^m)^{-q} \in H$. This means that r = 0. Otherwise, m is not the minimal. Thus, $g^n = (g^m)^q g^r = (g^m)^q \in \langle g^m \rangle$. Then $H \subset \langle q^m \rangle$.

Since $g^m \in H$, $\langle g^m \rangle \leq H$ by Theorem 2.4, Thus $H = \langle g^m \rangle$

Lemma: 2.1:

Suppose $G = \langle g \rangle$ with |G| = n or equivalently |g| = n. Then $g^k = e \Leftrightarrow n|k$

Proof. (\Leftarrow) Suppose n|k, then k = nd for $d \in \mathbb{N}$. $g^k = g^{nd} = (g^n)^d = e^d = e$

(⇒) Suppose $g^k = e$. Perform division with n and k. k = nq + r, $0 \le r < n - 1$. Then $e = g^k = g^{nq+r} = (g^n)^q g^r = e^q g^r = g^r$. Thus r = 0, k = nq, n|k.

Theorem: 2.7: Element Order in Cyclic Group

Let $G = \langle g \rangle$ with |G| = |g| = n. If $x = g^k$, then $|x| = \frac{n}{\gcd(n,k)}$.

Proof. Let m = |x|. By Definition 2.8, $x^m = (g^k)^m = e$. Thus $g^{km} = e$. By Lemma 2.1, n|km, or equivalently $\frac{n}{\gcd(n,k)} = \frac{km}{\gcd(n,k)}$. But $\frac{n}{\gcd(n,k)}$ and $\frac{k}{\gcd(n,k)}$ are relevantly prime. Thus $\frac{m}{\gcd(n,k)}|m$ Notice $x^{\frac{n}{\gcd(n,k)}} = (g^k)^{\frac{n}{\gcd(n,k)}} = (g^n)^{\frac{k}{\gcd(n,k)}} = e$. By Lemma 2.1, $m|\frac{n}{\gcd(n,k)}$. Thus $m = \frac{n}{\gcd(n,k)}$

Corollary 1. If $G = \langle g \rangle$ with |G| = n|g|, then $G = \langle g^m \rangle \Leftrightarrow gcd(m, n) = 1$. **Corollary 2.** $\mathbb{Z}_n = \langle m \rangle \Leftrightarrow gcd(m, n) = 1$.

Example: $\mathbb{Z}_9 = \langle 1 \rangle = \langle 2 \rangle = \langle 4 \rangle = \langle 5 \rangle = \langle 7 \rangle = \langle 8 \rangle$ For *p* prime, $\mathbb{Z}_p = \langle m \rangle$, $\forall m \in [1, p-1]$.

2.2.2 Alternating Groups

Definition: 2.15: k-cycle and Transposition

A k-cycle is a permutation $(a_1a_2...a_k), a_i \in \{1, ..., n\}$. A 2-cycle is known as a transposition.

Theorem: 2.8:

Any k-cycle can be written as a product of transpositions.

Proof. $(a_1a_2...a_{k-1}a_k) = (a_1a_2)(a_2a_3)...(a_{k-1}a_k).$

Remark 1. The composition is not unique. *e.g.* (123) = (12)(13) = (12)(23)(23)(13)

Lemma: 2.2:

If $\tau_1, ..., \tau_n \in S_n$ are transpositions with $\tau_1 \cdots \tau_r = 1$, then r is even.

Proof. Note r = 1 is impossible. So we assume $r \ge 2$.

Induction Hypothesis: Assume that for $k \leq r$ if $\tau_1, ..., \tau_k \in S_n$ are transpositions with $\tau_1 \cdots \tau_k = 1$, then k is even.

Induction Step: We can write the final two transpositions $\tau_{r-1}\tau_r = \begin{cases} (ab)(ab) = (1) \\ (bc)(ab) = (ac)(bc) \\ (cd)(ab) = (ab)(cd) \\ (ac)(ab) = (ab)(bc) \end{cases}$

Using this we can move the last appearance of a to the left. Suppose a appears in τ_r , we can move it left until

- 1. The resulting final appearance of a is (ab') and it encounters its inverse. $\tau'_{k-1}\tau_k = (1)$. Then $\tau_1 \cdots \tau_r = \tau'_1 \cdots \tau'_{r-2} = (1)$. r-2 is even by IH, thus r is even.
- 2. The first occurrence of a moves all the way to the left, $(1) = \tau_1 \cdots \tau_r = (ab)' \tau'_2 \cdots \tau'_r$. Then $\tau'_2 \cdots \tau'_r$ fixes a, and $(1) = \tau_1 \cdots \tau_r = (ab)' \tau'_2 \cdots \tau'_r$ sends a to b, contradiction that (1) is identity.

Thus we only have the first case, and r must be even.

Theorem: 2.9:

If $\tau_1 \cdots \tau_m$ and $\tau'_1 \cdots \tau'_n$ are transpositions s.t. $\tau_1 \cdots \tau_m = \tau'_1 \cdots \tau'_n$, then $m \equiv n \mod 2$.

Proof. Note $\forall \tau = (ab), \tau^2 = 1$, thus $\tau^{-1} = \tau$.

Then right multiply both sides of the given equation by $(\tau'_1 \cdots \tau'_n)^{-1}$, we get $\tau_1 \cdots \tau_m (\tau'_n)^{-1} \cdots \tau'_1 = (1)$. Thus $(m+n) \equiv 0 \mod 2$, *i.e.* $m \equiv n \mod 2$.

Definition: 2.16: Even/Odd Cycles

 $\sigma \in S_n$ is said to be even/odd if it can be written as a product of an even/odd number of transpositions. $(a_1...a_k)$ is even if k is odd, odd if k is even, because $(a_1...a_k) = (a_1a_2)\cdots(a_{k-1}a_k)$ contains k-1 transpositions.

Definition: 2.17: Alternating Group

Define the alternating group $A_n = \{ \sigma \in S_n : \sigma \text{ is even} \}$. $A_n \leq S_n$

Proof. Suppose $\mu, \sigma \in A_n$. Then $\mu = \tau_1 \cdots \tau_{2k}, \sigma = \tau'_1 \cdots \tau'_{2m}$ for $k, m \in \mathbb{N}$. Then $\sigma^{-1} = \tau'_{2m} \cdots \tau'_1$. $\mu \sigma^{-1} = \tau_1 \cdots \tau_{2k} \tau'_{2m} \cdots \tau'_1$ has a total of 2(k+m) transpositions. Thus $\mu \sigma^{-1} \in A_n$. By Theorem 2.3, $A_n \leq S_n$.

<i>Theorem:</i> 2.10:		
$ A_n = \frac{n!}{2}$		

Proof. $S_n \setminus A_n = \{ \text{odd permutations} \}$. Then S_n is the disjoint union of A_n and $S_n \setminus A_n$.

Consider $\phi: A_n \to S_n \setminus A_n$ s.t. $\phi(\sigma) = (12)\sigma$. We want to show that ϕ is a bijection.

- 1. Injective: $\phi(\sigma_1) = \phi(\sigma_2)$, $(12)\sigma = (12)\sigma$, then $\sigma_1 = \sigma_2$
- 2. Surjective: Let $\mu \in S_n \setminus A_n$. Then $\mu = \tau_1 \cdots \tau_{2k-1} = (12)(12)\tau_1 \cdots \tau_{2k-1}$ Note that $(12)\tau_1 \cdots \tau_{2k-1} \in A_n$ as a even permutation, $\phi((12)\tau_1 \cdots \tau_{2k-1}) = \tau_1 \cdots \tau_{2k-1} = \mu$.

Thus ϕ is bijective. $|A_n| = |S_n \setminus A_n|$. $n! = |S_n| = |A_n| + |S_n \setminus A_n| = 2|A_n|$. Then $|A_n| = \frac{n!}{2}$

Example: Show that A_{10} has an element of order 15.

Proof. Let $\sigma = (123)(45678) \in A_{10}$. (123) has order 3, (45678) has order 5. Then $|\sigma| = \text{lcm}(3,5) = 15$.

2.2.3 Quaternion Group

Definition: 2.18: Quaternion Group

The Quaternion Group is $Q_8 = \{\pm 1, \pm i, \pm j, \pm j\}$ with the following operations:

• id = 1• $(-1)^2 = 1$ • $i^2 = j^2 = k^2 = 1$ • ij = k, ji = -k• jk = i, kj = -i• ki = j, ik = -jNote: $i \rightarrow j \rightarrow k \rightarrow i$ gives the positive orientation.

Cyclic subgroups of Q_8 are $\langle -1 \rangle = \{1, -1\}, \langle i \rangle = \langle -i \rangle = \{1, i, -1, -i\}, \langle j \rangle = \langle -j \rangle = \{1, j, -1, -j\}, \langle k \rangle = \langle -k \rangle = \{1, k, -1, -k\}.$

Figure 2: Lattice Diagram for Q_8

2.3 Cosets and Lagrange's Theorem

Definition: 2.19: Cosets

Suppose G is a group and $H \leq G$. Then the left coset of H in G with representative $g \in G$ is $gH = \{gh : h \in H\}$. The right coset of H in G with representative $g \in G$ is $Hg = \{hg : h \in H\}$. Note: Cosets are not necessarily subgroups.

Example: $4\mathbb{Z} \leq \mathbb{Z}$

The coset with 0 is $0 + 4\mathbb{Z} = \{0 + 4n : n \in \mathbb{Z}\} = 4\mathbb{Z}$. The coset with 1 is $1 + 4\mathbb{Z} = \{1 + 4n : n \in \mathbb{Z}\} = \{..., -3, 1, 5, 9...\}$. The coset with 2 is $2 + 4\mathbb{Z} = \{2 + 4n : n \in \mathbb{Z}\} = \{..., -2, 2, 6, 10...\}$. The coset with 3 is $3 + 4\mathbb{Z} = \{3 + 4n : n \in \mathbb{Z}\} = \{..., -1, 3, 7, 11...\}$. $\mathbb{Z} = 4\mathbb{Z} \cup (1 + 4\mathbb{Z}) \cup (2 + 4\mathbb{Z}) \cup (3 + 4\mathbb{Z})$.

Example: $\langle 2 \rangle = \{0, 2, 4, 6\} \leq \mathbb{Z}_8$ $0 + \langle 2 \rangle = \{0, 2, 4, 6\} = 2 + \langle 2 \rangle = 4 + \langle 2 \rangle = 6 + \langle 2 \rangle = \langle 2 \rangle$ $1 + \langle 2 \rangle = \{1, 3, 5, 7\} = 3 + \langle 2 \rangle = 5 + \langle 2 \rangle = 7 + \langle 2 \rangle$ $\mathbb{Z}_8 = \langle 2 \rangle \cup (1 + \langle 2 \rangle).$

Example: $\langle i \rangle = \{1, i, -1, -i\} \leq Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$ $i\langle i \rangle = \{i, -1, -i, 1\} = \langle i \rangle, j\langle i \rangle = \{j, -k, -j, k\}$ $Q_8 = \langle i \rangle \cup (j\langle i \rangle).$

Example: $\langle 5 \rangle = \{1, 5\} \le U_{12} = \{1, 5, 7, 11\}$ $7\langle 5 \rangle = \{7, 11\}$ $U_{12} = \langle 5 \rangle \cup (7\langle 5 \rangle).$

Example: $H = \{e, r^2, s, sr^2\} \le D_4 = \{e, r, r^2, r^3, sr, sr^2, sr^3\}$ $eH = r^2H = sH = (sr^2)H = H, rH = \{r, r^3, rs, rsr^2\} = \{r, r^3, sr^3, sr\}$ (By Theorem 2.1) $D_4 = H \cup (rH).$

Example: $\langle (12) \rangle = \{(1), (12)\} \le S_3 = \{(1), (12), (13), (23), (123), (132)\}$ $(123)\langle (12) \rangle = \{(123), (13)\}, (132)\langle (12) \rangle = \{(132), (23)\}$ $S_3 = \langle (12) \rangle \cup ((123)\langle (12) \rangle) \cup ((132)\langle (12) \rangle).$

Lemma: 2.3: Coset Partition

Distinct left cosets of H in G partition G.

Proof. Suppose $x \in g_1 H \cap g_2 H$. Then $x = g_1 h = g_2 h'$ for $h, h' \in H$. Then $g_1 = g_2 h' h^{-1} \in g_2 H$. Thus $g_1 h'' = g_2 (h' h^{-1} h'') \in g_2 H$, so $g_1 H \subset g_2 H$. Similarly, we get $g_2 H \subset g_1 H$. Thus $g_1 H = g_2 H$. So different cosets are disjoint. *i.e.* $g_1 H = g_2 H$ or $g_1 H \cap g_2 H = \emptyset$.

Suppose $g \in G$, then $g = ge \in gH$. Thus any element $g \in G$ must live in some coset. *i.e.* Distinct left cosets of H in G partition G.

Lemma: 2.4:

|H| = |gH| for any $g \in G$.

Proof. Consider $\phi: H \to gH$ s.t. $\phi(h) = gh$ Injective: suppose $\phi(h) = \phi(h')$, then gh = gh', meaning that h = h'. Surjective: let $x \in gH$. By Definition 2.19, x = gh for $h \in H$. $\phi(h) = gh = x$. Thus ϕ is bijective, |H| = |gH|.

Theorem: 2.11: Lagrange's Theorem

Let G be a finite group with $H \leq G$. Then |G| = |H|[G:H], where [G:H] is the number of cosets of H in G. Thus |H|||G|. [G:H] is also called the index of H in G.

Proof. Suppose |G| = n and $g_1H, ..., g_kH$ is a complete list of left cosets of H in G. By Lemma 2.3, $G = g_1H \cup g_2H \cup \cdots \cup g_kH$ with $g_iH \cap g_jH = \emptyset$ for $i \neq j$.

 $\text{Then } |G| = \sum_{i=1}^{\kappa} |g_i H| \stackrel{\text{By Lemma 2.4}}{=} \sum_{i=1}^{k} |H| = k|H|. \ k = [G:H] \in \mathbb{Z}. \ \text{Thus } |G| = |H|[G:H] \text{ and } |H|||G|. \quad \Box$

Corollary 3. If G is a finite group, Then

- 1. $\forall g \in H, |g|||G|$
- 2. If |G| = p a prime, then the only subgroups are G and $\{e\}$
- 3. If |G| = p, G is cyclic.

Proof. 1. Since $\langle g \rangle \subset G$ by Theorem 2.4, and $|g| = |\langle g \rangle|$ which divides |G| by Theorem 2.11.

- 2. A prime number can only be divided by 1 and itself
- 3. Choose $g \neq e \in G$, $\{e\} \neq \langle g \rangle \leq G$, then $\langle g \rangle = G$ by previous.

Lemma: 2.5: Coset Equality

Let G be a group, $H \leq G$ and $g_1, g_2 \in G$. Then the following are equivalent: 1. $g_1H = g_2H$ 2. $Hg_1^{-1} = Hg_2^{-1}$ 3. $g_1H \subset g_2H$ 4. $g_1 \in g_2H$ 5. $g_1^{-1}g_2 \in H$

Proof. $(1 \Rightarrow 2)$ Suppose $g_1H = g_2H$. Let $x \in Hg_1^{-1}$, then $x = hg_1^{-1}$ for some $h \in H$. $x^{-1} = g_1h^{-1} \in g_1H = g_2H$, thus $x^{-1} = g_2\hat{h}$ for some $\hat{h} \in H$, then $x = (x^{-1})^{-1} = \hat{h}^{-1}g_2^{-1} \in Hg_2^{-1}$. Thus $Hg_1^{-1} \subset Hg_2^{-1}$. Similarly, we can show that $Hg_2^{-1} \subset Hg_1^{-1}$. Thus $Hg_1^{-1} = Hg_2^{-1}$.

 $(2 \Rightarrow 3)$ Suppose $Hg_1^{-1} = Hg_2^{-1}$. Let $x \in g_1H$, then $x = g_1h$ for some $h \in H$. $x^{-1} = h^{-1}g_1^{-1} \in Hg_1^{-1} = Hg_2^{-1}$. Thus $x^{-1} = \hat{h}g_2^{-1}$ for some $\hat{h} \in H$. Then $x = (x^{-1})^{-1} = g_2\hat{h}^{-1} \in g_2H$. Thus $g_1H \subset g_2H$. $(3 \Rightarrow 4)$ Suppose $g_1H \subset g_2H$. Then $\forall x \in g_1H, x \in g_2H$. $g_1 = g_1e \in g_1H$ so $g_1 \in g_2H$. $(4 \Rightarrow 5)$ Suppose $g_1 \in g_2H$. Then $g_1 = g_2h$ for some $h \in H$, then $g_2^{-1}g_1 = h$. Thus $g_1^{-1}g_2 = h^{-1} \in H$.

 $(5 \Rightarrow 1)$ Suppose $g_1^{-1}g_2 \in H$. Then $g_1^{-1}g_2 = h$ for some $h \in H$. $g_2 = g_1h \in g_1H$. By Lemma 2.3, $g_1H = g_2H$.

2.4 Group Isomorphism

Definition: 2.20: Isomorphism

Two groups (G, \cdot) and (H, \circ) are isomorphic if there is a bijection $\phi : G \to H$ s.t. $\phi(xy) = \phi(x) \circ \phi(y)$, for all $x, y \in G$. ϕ is called an isomorphism. Write $G \cong H$.

Example: Show that $(\mathbb{Z}_2, +) \cong \{\{\pm 1\}, \cdot\}$.

Proof. Let $\phi : \mathbb{Z}_2 \to \{\pm 1\}$ s.t. $\phi(0) = 1, \phi(1) = -1.$ $\phi(0+0) = \phi(0) = 1 = 1 \cdot 1 = \phi(0)\phi(0)$ $\phi(0+1) = \phi(1) = -1 = 1(-1) = \phi(0)\phi(1)$ $\phi(1+0)$ is by commutativity of Abelian groups. $\phi(1+1) = \phi(0) = 1 = (-1)(-1) = \phi(1)\phi(1)$

Thus $\mathbb{Z}_2 \cong \{\pm 1\}$

Example: Show that $(\mathbb{R}, +) \cong (\mathbb{R}^+, \cdot)$

Proof. Let $\phi : \mathbb{R} \to \mathbb{R}^+$ s.t. $\phi(x) = e^x$ Injective: $\phi(x) = \phi(y) \Rightarrow e^x = e^y \Rightarrow x = y$ Surjective: Let $y \in \mathbb{R}^+$, $\ln y \in \mathbb{R}$. Set $x = \ln y$, $\phi(x) = e^{\ln y} = y$. $\phi(x+y) = e^{x+y} = e^x e^y = \phi(x)\phi(y)$

Example: Show that $U_5 \cong U_{10}$.

Proof. $U_5 = \{1, 2, 3, 4\} = \langle 3 \rangle$, $U_{10} = \{1, 3, 7, 9\} = \langle 7 \rangle$ (Any generator works.) Let $\phi : U_5 \to U_{10}$ s.t. $\phi(3^k) = 7^k$, *i.e.* $\phi(1) = 1$, $\phi(3) = 7$, $\phi(4) = 9$, $\phi(2) = 3$ $\phi(3^k 3^l) = \phi(3^{k+l}) = 7^{k+l} = 7^k 7^l = \phi(3^k)\phi(3^l)$

Theorem: 2.12: Properties of Isomorphism

Let $\phi: G \to H$ be an isomorphism. Then 1. $\phi^{-1}: H \to G$ is an isomorphism 2. |G| = |H|3. If G is abelian, then so is H 4. If G is cyclic, then so is H 5. If G has a subgroup of order n, then so does H

Proof. 1. ϕ is bijective, so ϕ^{-1} exists.

Suppose $u, v \in H$, $\exists x, y \in G$ s.t. $\phi(x) = u, \phi(y) = v$ $\phi^{-1}(uv) = \phi^{-1}(\phi(x)\phi(y)) = \phi^{-1}(\phi(xy)) = xy = \phi^{-1}(u)\phi^{-1}(v)$

- 2. By definition of bijections
- 3. Suppose G is abelian. Let $u, v \in H$, $u = \phi(x)$, $v = \phi(y)$, $x, y \in G$ $uv = \phi(x)\phi(y) = \phi(xy) \stackrel{G \text{is abelian}}{=} \phi(yx) = \phi(y)\phi(x) = vu$ Thus H is abelian.
- 4. Suppose G is cyclic. $G = \langle g \rangle$. Let $u \in H$. $u = \phi(x)$ for some $x \in G = \langle g \rangle$. Then $x = g^n$ for some $n \in \mathbb{Z}$. Then $u = \phi(g^n) = (\phi(g))^n \in \langle \phi(g) \rangle$ Thus $H \leq \langle \phi(g) \rangle \leq H$, $H = \langle \phi(g) \rangle$ is cyclic.
- 5. Suppose $K \leq G$ with |K| = nConsider $\phi(K) \subset H$ with $|\phi(K)| = n$. Let $x, y \in \phi(K)$. Then $x = \phi(k_1), y = \phi(k_2)$ for some $k_1, k_2 \in K$. $k_1 k_2^{-1} \in K$, because K is a subgroup. $xy^{-1} = \phi(k_1)\phi(k_2)^{-1} = \phi(k_1 k_2^{-1}) \in \phi(K)$ By Theorem 2.3, $\phi(K) \leq H$.

2.4.1 Classification of Cyclic Groups

Theorem: 2.13: Infinite Cyclic Groups

If $G = \langle g \rangle$ with $|G| = \infty$, then $G \cong \mathbb{Z}$.

Proof. Consider $\phi : \mathbb{Z} \to G$ s.t. $\phi(n) = g^n$ $\phi(m+n) = g^{m+n} = g^m g^n = \phi(m)\phi(n)$

Injective: suppose $\phi(m) = \phi(n)$ with $m \ge n$. Then $g^m = g^n \Rightarrow g^{m-n} = e$. If m = n, then done, ϕ is injective. If m > n, then let k = m - n > 0. $\langle g \rangle = \{e, g, ..., g^{k-1}\}$ is finite, because $g^k = e$.

Surjective: suppose $x \in G = \langle g \rangle$, $x = g^n$ for some $n \in \mathbb{Z}$, then $\phi(n) = x$.

Theorem: 2.14: Finite Cyclic Groups

Suppose $G = \langle g \rangle$ with |G| = n. Then $G \cong \mathbb{Z}_n$.

Proof. Consider $\phi : \mathbb{Z}_n \to G$ with $\phi(m) = g^m$ for $0 \le m \le n-1$ Suppose $m \equiv m' \mod n$, then m - m' = kn for some integer k. $\phi(m - m') = \phi(kn) \Rightarrow g^{m-m'} = (g^n)^k = e$. Thus $g^m = g^{m'}, \phi(m) = \phi(m')$. So the map ϕ is well-defined. Suppose $l, m \in \mathbb{Z}_n$. Then $\phi(l+m) = g^{l+m} = g^l g^m = \phi(l)\phi(m)$ Surjective: Suppose $x \in G = \langle g \rangle$. $x = g^m$ for $0 \le m \le n-1$, then $\phi(m) = g^m = x$. Injective: Suppose $l, m \in \mathbb{Z}_n$. $\phi(l) = \phi(m)$ means $l = m, g^{l-m} = e$.

If $l \neq m$, then $l - m \in \{1, ..., n - 1\}$, $|g| = |\langle g \rangle| < n$, which is a contradiction. Thus l = m.

Thus ϕ is bijective and $G \cong \mathbb{Z}_n$

Remark 2. In summary:

- 1. All infinite cyclic groups are isomorphic to $\mathbb Z$
- 2. All finite cyclic groups are isomorphic to \mathbb{Z}_n for some n

2.4.2 Cayley's Theorem

Theorem: 2.15: Cayley's Theorem

Every group is isomorphic to a permutation group.

Proof. For $g \in G$, define $\lambda_q : G \to G$ s.t. $\lambda_q(x) = gx$

We firstly show that λ_g is a bijection, *i.e.* $\lambda_g \in S_g$ Injective: $\lambda_g(x) = \lambda_g(y) \Rightarrow gx = gy \Rightarrow x = y$ Surjective: Suppose $y \in G$, $g^{-1}y \in G$, $\lambda_g(g^{-1}y) = gg^{-1}y = y$ Thus λ_g is a bijection and a permutation on G.

Let $H = \{\lambda_g : g \in G\}$. We show that H is a group.

- 1. Associativity: is from associativity of function composition.
- 2. Closure: because $\forall g, h \in G$, $gh \in G$, then for all $\lambda_g, \lambda_h \in H$, $(\lambda_g \circ \lambda_h)(x) = ghx = \lambda_{gh}(x)$, and thus $\lambda_g \circ \lambda_h = \lambda_{gh} \in H$
- 3. Identity: $(\lambda_q \circ \lambda_e)(x) = gex = gx = \lambda_q(x)$, thus $\lambda_q \circ \lambda_e = \lambda_q$. λ_e is the identity

4. Inverses:
$$(\lambda_g \circ \lambda_{g^{-1}})(x) = gg^{-1}x = x = ex = \lambda_e(x)$$
. Thus $\lambda_g \circ \lambda_{g^{-1}} = \lambda_e$. $\lambda_{g^{-1}} = (\lambda_g)^{-1}$

Now we show that $G \cong H$ Consider $\phi: G \to H$, $\phi(g) = \lambda_g$ $\phi(gh) = \lambda_{gh}$. Thus $\phi(gh)(x) = \lambda_{gh}(x) = ghx = (\lambda_g \circ \lambda_h)(x) = \phi(g)(x)\phi(h)(x)$. So $\phi(gh) = \phi(g)\phi(h)$. Injective: Suppose $\phi(g) = \phi(h)$. *i.e.* $\lambda_g = \lambda_h$, then $\lambda_g(x) = \lambda_h(x)$, $\forall x \Rightarrow gx = hx$, $\forall x \Rightarrow g = h$ Surjective: from definition of ϕ .

Thus $G \cong H$

Corollary 4. If |G| = n, then there is a subgroup $H \subset S_n$ s.t. $G \cong H$.

Example: Find a subgroup $H \leq S_3$ s.t. $\mathbb{Z}_3 \cong H$.

Proof. Consider $S_{\mathbb{Z}_3}$ = all permutation $\{0, 1, 2\} \rightarrow \{0, 1, 2\}$. $S_{\mathbb{Z}_3} = S_3$. Define $\phi : \mathbb{Z}_3 \rightarrow H = \{\lambda_g : g \in \mathbb{Z}_3\}$. $\lambda_0 : \mathbb{Z}_3 \rightarrow \mathbb{Z}_3 \text{ s.t. } \lambda_0(x) = 0 + x$. This is the identity (0). $\lambda_1 : \mathbb{Z}_3 \rightarrow \mathbb{Z}_3 \text{ s.t. } \lambda_1(x) = 1 + x$. This is the 3-cycle (012). $\lambda_2 : \mathbb{Z}_3 \rightarrow \mathbb{Z}_3 \text{ s.t. } \lambda_2(x) = 2 + x$. This is the 3-cycle (021). Thus $H = \{(0), (012), (021)\} \leq S_3$ and $\mathbb{Z}_3 \cong H$.

2.5 Group Products and Quotients

Definition: 2.21: External Direct Product

Given groups G_1, G_2 . Their external direct product is $G_1 \times G_2$. The respective group operations are componentwise.

Example: $\mathbb{Z}_5 \times \mathbb{Z} = \{m \in \mathbb{Z}_5, n \in \mathbb{Z}\}.$

Example: $\mathbb{R}^{\times} \times \mathbb{Z}_3 = \{(x, m) : x \in \mathbb{R}^{\times}, m \in \mathbb{Z}_3\}$ with (x, n) * (y, m) = (xy, n + m)

Theorem: 2.16: Property of External Direct Product

Let $(x, y) \in G_1 \times G_2$ with |x| = r, |y| = s, then |(x, y)| = lcm(r, s).

Proof. Set $l = \operatorname{lcm}(r, s)$, then l = ra = sb for some $a, b \in \mathbb{N}$. $(x, y)^l = (x^l, y^l) = ((x^r)^a, (y^s)^b) = (e_1^a, e_2^b) = (e_1, e_2)$. Thus |(x, y)||lSet l' = |(x, y)|, then $(x, y)^{l'} = (e_1, e_2) \Rightarrow (x^{l'}, y^{l'}) = (e_1, e_2)$, so $x^{l'} = e_1, y^{l'} = e_2$. r|l' and s|l'. Thus $l = \operatorname{lcm}(r, s)|l' = |(x, y)|$ Then $|(x, y)| = \operatorname{lcm}(r, s)$

Theorem: 2.17:

 $\mathbb{Z}_m \times \mathbb{Z}_n \cong \mathbb{Z}_{mn} \Leftrightarrow \gcd(m, n) = 1$

Proof. (\Rightarrow) Suppose $\mathbb{Z}_m \times \mathbb{Z}_n \cong \mathbb{Z}_{mn}$. Assume $d = \gcd(m, n) > 1$ Take $(a, b) \in \mathbb{Z}_m \times \mathbb{Z}_n$. Then if we sum $(a, b) \frac{mn}{d}$ times, we have $(a, b) + \cdots + (a, b) = (\frac{mn}{d}a, \frac{mn}{d}b) = (m(\frac{n}{d})a, n(\frac{m}{d}b)) = (0, 0)$. But this shows that $|(a, b)||\frac{mn}{d}$ and thus |(a, b)| < mn for any $(a, b) \in \mathbb{Z}_m \times \mathbb{Z}_n$. Thus $\mathbb{Z}_m \times \mathbb{Z}_n$ is not cyclic. Contradiction. Therefore $\gcd(m, n) = 1$.

 (\Leftarrow) Suppose gcd(m,n) = 1, |1| = m in \mathbb{Z}_m , |1| = n in \mathbb{Z}_n . Then |(1,1)| = lcm(m,n) = mn by Theorem 2.16. Thus $\mathbb{Z}_m \times \mathbb{Z}_n = \langle (1,1) \rangle$ has order mn. $\mathbb{Z}_m \times \mathbb{Z}_n \cong \mathbb{Z}_{mn}$ by Theorem 2.14.

Definition: 2.22: Internal Direct Product

Suppose G is a group with $H, K \leq G$ s.t. 1. $G = HK = \{hk : h \in H, k \in K\}$ 2. $H \cap K = \{e\}$ 3. $hk = kh, \forall h \in H, k \in K$ Then G is the internal direct product of H and K.

Theorem: 2.18: Isomorphism of Direct Products

If G is the internal direct product of H and K, then $G \cong H \times K$.

Proof. We want to find a bijective map $\phi : G \to H \times K$, that satisfy the isomorphism property (Definition 2.20).

Let $\phi: G \to H \times K$. Take $g \in G$, write g = hk, $\phi(g) = (h, k)$.

We firstly show that ϕ is well defined. Suppose g = hk = h'k', then $h'^{-1}h = k'k^{-1}$. $h'^{-1}h \in H$ and $k'k^{-1} \in K$. Then both sides in $H \cap K = \{e\}$. $h'^{-1}h = e \Rightarrow h = h'$. Similarly, k = k'.

Let $g, g' \in G, g = hk, g' = h'k'$. $\phi(gg') = \phi(hkh'k') \stackrel{byproperty3}{=} \phi(hh'kk') = (hh', kk') = (h, k)(h', k') = \phi(g)\phi(g')$.

Injective: $\phi(g) = \phi(g')$, g = hk, g' = h'k', then (h, k) = (h', k'), Thus h' = h, k' = k, g = g'. Surjective: Take $(h, k) \in H \times K$. Let $hk \in G$, $\phi(hk) = (h, k)$,

Example: Find groups that are isomorphic to $U_{12} = \{1, 5, 7, 11\}$. Note $\langle 5 \rangle = \{1, 5\} \leq U_{12}$, and $\langle 7 \rangle = \{1, 7\} \leq U_{12}, 5 \cdot 7 \equiv 11 \mod 12$. Then $U_{12} = \langle 5 \rangle \langle 7 \rangle \cong \langle 5 \rangle \times \langle 7 \rangle \overset{\text{By Theorem 2.18}}{\cong} \mathbb{Z}_2 \times \mathbb{Z}_2$.

Example: Find groups that are isomorphic to $D_6 = \langle r, s : r^6 = s^2 = e, rs = sr^5 \rangle$ $(r^3s = sr^3)$ $H = \langle r^3 \rangle \cong \mathbb{Z}_2, K = \langle s, r^3 \rangle = \{e, r^2, r^4, s, sr^2, sr^4\} \cong D_3.$ Note that $r = r^7 = r^3 \cdot r^4, D_6 = HK$, Thus $D_6 \stackrel{\text{By Theorem 2.18}}{\cong} H \times K \cong \mathbb{Z}_2 \times \mathbb{Z}_3$

Definition: 2.23: Normal Subgroup

Given a group G, we say $N \leq G$ is normal if $gN = Ng, \forall g \in G$. Equivalently, $gNg^{-1} = N, \forall g \in G \Leftrightarrow gng^{-1} \in N, \forall g \in G, n \in N$. Write $N \leq G$.

Theorem: 2.19:

Every subgroup of an abelian group is normal.

Proof. Let G be an abelian group, $H \leq G$. Take $h \in H$, $g \in G$. $ghg^{-1} \stackrel{\text{abelian}}{=} gg^{-1}h = h \in H$. Thus $H \leq G$.

Example: Find the normal subgroups of $D_3 = \langle r, s \rangle = \{e, r, r^2, s, sr, sr^2\}$ We only need to consider the generator subgroups of $\langle r \rangle$ and $\langle s \rangle$. For $\langle r \rangle = \{e, r, r^2\}$. $s \langle r \rangle = \{s, sr, sr^2\}$, $\langle r \rangle s = \{s, rs = sr^2, r^2s = sr\}$, thus $\langle r \rangle \leq D_3$ For $\langle s \rangle = \{e, s\}$, $r \langle s \rangle = \{r, rs\} = \{r, sr^2\}$, $\langle s \rangle r = \{r, sr\} \neq r \langle s \rangle$. Thus $\langle s \rangle$ is not a normal subgroup of D_3 .

Definition: 2.24: Left Cosets

For any subgroup $H \leq G$, denote the set of left cosets $G/H = \{gH : g \in G\}$. By Theorem 2.11, $|G/H| = [G:H] = \frac{|G|}{|H|}$.

Theorem: 2.20: Quotient Groups

If $N \leq G$, then G/N forms a group known as the quotient group with (xN)(yN) = (xy)N.

Proof. Suppose $N \leq G$. Let $x_1, x_2, y_1, y_2 \in G$ s.t. $x_1N = x_2N$ $(x_1x_2^{-1} \in N)$ and $y_1N = y_2N$ $(y_1y_2^{-1} \in N)$. Then

$$(x_1N)(y_1N) = (x_1y_1)N$$

= $(x_1y_1y_1^{-1}y_2)N$ (since $y_1^{-1}y_2 \in N$)
= $(x_1y_2)N = N(x_1y_2)$ (By Definition 2.23)
= $N(x_2x_1^{-1}x_1y_2)$ (since $x_2x_1^{-1} \in N$)
= $N(x_2y_2) = (x_2y_2)N$

Thus $(x_1N)(y_1N) = (x_2N)(y_2n)$. The operation is well defined.

Check that G/N is indeed a group:

- 1. Identity: eN = N, (xN)(eN) = (xe)N = xN
- 2. Inverse: $(xN)^{-1} = x^{-1}N$ (Only when N is normal)
- 3. Associative: ((xN)(yN))zN = xyzN = (xN)((yN)(zN)) (Only when N is normal)
- 4. Closed since G is closed.

Thus G/N is a group.

Example: Find the quotient group of $D_3 = \{e, r, r^2, s, sr, sr^2\}$ by $\langle r \rangle = \{e, r, r^2\}$. Note that $s\langle r \rangle = \langle r \rangle s$, $\langle r \rangle \leq D_3$ By Theorem 2.11, $|D_3/\langle r \rangle| = [D_3 : \langle r \rangle] = \frac{|D_3|}{|\langle r \rangle|} = 2$. $D_3/\langle r \rangle = \{\langle r \rangle, s\langle r \rangle\} \cong \mathbb{Z}_2$. $(\langle r \rangle \to 0, s\langle r \rangle \to 1)$

Example: Find the quotient groups of $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\} = \langle i, j \rangle$. Firstly, we consider $\langle i \rangle = \{1, i, -1, -i\}$ Note that $j \langle i \rangle = \langle i \rangle j = \{j, -k, -j, k\}$. Thus $\langle i \rangle \trianglelefteq Q_8$ $Q_8/\langle i \rangle = \{\langle i \rangle, j \langle i \rangle\} \cong \mathbb{Z}_2$. The quotient groups by $\langle j \rangle$ and $\langle k \rangle$ are similar. Then, we consider $\langle -1 \rangle = \{1, -1\} \trianglelefteq Q_8$ $Q_8/\langle -1 \rangle = \{\langle -1 \rangle, i \langle -1 \rangle, j \langle -1 \rangle, k \langle -1 \rangle\} \cong \mathbb{Z}_2 \times \mathbb{Z}_2$, because each of the non-identity element has order 2. $\langle 1 \rangle \rightarrow (0,0), i \langle 1 \rangle \rightarrow (1,0), j \langle 1 \rangle \rightarrow (0,1), k \langle 1 \rangle \rightarrow (1,1).$

Theorem: 2.21:

 $Z(G) \leq G$. If G/Z(G) is cyclic, then G is abelian.

Proof. Firstly, we show that $Z(G) \leq G$ Let $g \in G$, $gZ(G) = \{gx : x \in Z(G)\} \stackrel{\text{By Definition 2.12}}{=} \{xg : x \in Z(G)\} = Z(G)g$ Thus by Definition 2.23, $Z(G) \leq G$.

Assume $G/Z(G) = \langle xZ(G) \rangle$. By Theorem 2.3, $G = \bigcup_{n=0}^{\infty} x^n Z(G)$. Take $a, b \in G$, $a = x^n Z(G) = x^n y$, $b = x^m Z(G) = x^m z$ for some $m, n \in \mathbb{Z}$, $m, n \ge 0$, $y, z \in Z(G)$. $ab = x^n y x^m z \xrightarrow{\text{By Definition 2.12}} x^n x^m y z = x^{n+m} z y = x^m x^n z y = x^m z x^n y = ba$. Thus G is abelian.

2.6 Group Homomorphism

Definition: 2.25: Group Homomorphism

Suppose G and H are groups. A map $\phi: G \to H$ is called a homomorphism if $\phi(xy) = \phi(x)\phi(y)$ for all $x, y \in G$.

Example: $\phi : \mathbb{Z} \to G$ s.t. $\phi(n) = g^n$. *G* any group. $g \in G$ fixed. Then ϕ is a homomorphism. $\phi(m+n) = g^{m+n} = g^m g^n = \phi(m)\phi(n)$.

Example: $\phi : GL_2(\mathbb{R}) \to \mathbb{R}^{\times}, \ \phi(A) = \det A \text{ is a homomorphism. } \phi(AB) = \det(AB) = \det A \det B = \phi(A)\phi(B).$

_	_

Example: $\phi : \mathbb{R} \to S^1 = \{z \in \mathbb{C} : |z| = 1\}$. $\phi(x) = e^{ix}$ is a homomorphism. $\phi(x+y) = e^{i(x+y)} = e^{ix}e^{iy} = \phi(x)\phi(y)$.

Theorem: 2.22: Properties of Homomorphism

Let $\phi: G_1 \to G_2$ be a homomorphism. Then 1. $\phi(e_1) = e_2$ 2. $\forall x \in G, \ \phi(x^{-1}) = (\phi(x))^{-1}$ 3. If $H_1 \leq G_1$, then $\phi(H_1) \leq G_2$ 4. If $H_2 \leq G_2$, then $\phi^{-1}(H_2) \leq G_1$. If $H_2 \leq G_2$, then $\phi^{-1}(H_2) \leq G_1$.

Proof. 1. Let $x \in G_1$, $e_1 x = x$. Since ϕ is a homomorphism, $\phi(e_1 x) = \phi(x) = \phi(e_1)\phi(x)$. Then $\phi(e_1) = \phi(x)(\phi(x))^{-1} = e_2$

2.
$$e_1 = xx^{-1}$$
. $e_2 \stackrel{\text{By 1.}}{=} \phi(e_1) = \phi(xx^{-1}) = \phi(x)\phi(x^{-1})$. Thus $\phi(x^{-1}) = (\phi(x))^{-1}$

- 3. Let $x, y \in H_1$, then By Theorem 2.3, $xy^{-1} \in H_1$. $\phi(x) \in \phi(H_1), \phi(y) \in \phi(H_1), (\phi(y))^{-1} = \phi(y^{-1}) \in \phi(H_1)$. Then $\phi(x)(\phi(y))^{-1} = \phi(xy^{-1}) \in \phi(H_1)$. Thus $\phi(H_1) \leq G_2$.
- 4. Suppose $H_2 \leq G$. Let $x, y \in \phi^{-1}(H_2), \phi(x), \phi(y) \in H_2$. Then $\phi(x)(\phi(y))^{-1} = \phi(xy^{-1}) \in H_2$ $\Rightarrow xy^{-1} \in \phi^{-1}(H_2)$. By Theorem 2.3, $\phi^{-1}(H_2) \leq G_1$. Suppose $H_2 \leq G_2$. Take $n \in \phi^{-1}(H_2), \phi(n) \in H_2, x \in G_1$. $\phi(xnx^{-1}) = \phi(x)\phi(n)\phi(x)^{-1} \in H_2$ because $H_2 \leq G_2$. Thus $xnx^{-1} \in \phi^{-1}(H_2), \phi^{-1}(H_2) \leq G_1$.

Remark 3. $H_1 \trianglelefteq G_1 \not\Rightarrow \phi(H_1) \trianglelefteq G_2$. e.g. $\phi : \mathbb{Z} \to D_n$. $\phi(m) = s^m$. $\mathbb{Z} \trianglelefteq \mathbb{Z}$, but $\phi(\mathbb{Z}) = \langle s \rangle$ is not normal in D_n .

Lemma: 2.6:

If $\phi: G \to H$ is a homomorphism, then $|\phi(x)|||x|, \forall x \in G$.

Proof. Suppose $\phi: G \to H$ is a homomorphism. Take $x \in G$ s.t. $|x| = n < \infty$. $x^n = e_G \in G$, $(\phi(x))^n = \phi(x^n) = \phi(e_G) = e_H \in H$ Let $m = |\phi(x)|$. Perform division algorithm n = mq + r, $0 \le r < m$. n - mq = r. $(\phi(x))^r = \phi(x)^n [\phi(x)^m]^{-q} = e_H$. Thus r = 0 and m|n.

Lemma: 2.7:

If $C_n = \langle x : x^n = e \rangle \cong \mathbb{Z}_n = \langle 1 \rangle$, then $|x^m| = |\langle x^m \rangle| = \frac{n}{\gcd(m,n)}$. $|m| = \frac{n}{\gcd(m,n)}$ in \mathbb{Z}_n

Proof. Follows Theorem 2.7.

Example: Find all homomorphism $\phi : \mathbb{Z}_{24} \to \mathbb{Z}_{18}$

Proof. We find the map of the generator $\phi(1)$. By Lemma 2.6, $|\phi(1)|||1| = 24$. Thus $|\phi(1)| \in \{1, 2, 3, 4, 6, 8, 12\}$ In \mathbb{Z}_{18} , we want to find m s.t. $|m| = \frac{18}{\gcd(m,18)}$ is in $\{1, 2, 3, 4, 6, 8, 12\}$. |1| = |5| = |7| = |11| = |13| = |17| = 18 |2| = |4| = |8| = |10| = |14| = |16| = 9, not possible |3| = |15| = 6, $\phi(1) = 3$ and $\phi(1) = 15$ |6| = |12| = 3, $\phi(1) = 6$ and $\phi(1) = 12$ |9| = 2, $\phi(1) = 9$.

 $\phi(1) = 0$ mapping the identity is also a homomorphism.

Definition: 2.26: Kernel

Given $\phi G_1 \to G_2$ a homomorphism, the kernel of ϕ is $\operatorname{Ker}(\phi) = \{x \in G_1 : \phi(x) = e_2\} = \phi^{-1}(e_2)$.

Example: $\phi : \mathbb{Z} \to \mathbb{Z}_5$, $\phi(n) = [n]$. Then $\operatorname{Ker}(\phi) = \{n \in \mathbb{Z} : \phi(n) = [0]\} = 5\mathbb{Z}$.

Example: $\phi : \mathbb{R} \to \mathbb{C}^{\times}, \ \phi(x) = e^{2\pi i x}$. Then $\operatorname{Ker}(\phi) = \{x \in \mathbb{R} : e^{2\pi i x} = 1\} = \mathbb{Z}$.

Theorem: 2.23:

For a homomorphism $\phi: G_1 \to G_2$, $\operatorname{Ker}(\phi) \trianglelefteq G_1$.

Proof. Firstly, we show that $\operatorname{Ker}(\phi) \leq G_1$. Let $x, y \in \operatorname{Ker}(\phi), \ \phi(xy^{-1}) = \phi(x)\phi(y)^{-1} = e_2e_2^{-1} = e_2$. Thus $xy^{-1} \in \operatorname{Ker}(\phi)$. By Theorem 2.3, $\operatorname{Ker}(\phi) \leq G_1$.

Let $x \in G_1$, $n \in \text{Ker}(\phi)$, $\phi(xnx^{-1}) = \phi(x)\phi(n)\phi(x)^{-1} = \phi(x)e_2\phi(x)^{-1} = \phi(x)\phi(x)^{-1} = e_2$. Thus $xnx^{-1} \in \text{Ker}(\phi)$, $\text{Ker}(\phi) \trianglelefteq G_1$.

Theorem: 2.24: Inverse Homomorphism

 $\psi: G \to G$ defined by $\psi(x) = x^{-1}$ is a homomorphism $\Leftrightarrow G$ is abelian.

Proof. (\Leftarrow) Suppose G is abelian. Let $x, y \in G, xy = yx$ $\psi(xy) = (xy)^{-1} = y^{-1}x^{-1} \stackrel{\text{abelian}}{=} x^{-1}y^{-1} = \psi(x)\psi(y)$. Thus ψ is a homomorphism. (\Rightarrow) Suppose $\psi(x) = x^{-1}$ is a homomorphism. Let $x, y \in G. \ \psi(xy) = \psi(x)\psi(y) \Rightarrow (xy)^{-1} = x^{-1}y^{-1} \Rightarrow y^{-1}x^{-1} = x^{-1}y^{-1} \Rightarrow xy = yx$. G is abelian. \Box

2.7 Isomorphism Theorems for Groups

2.7.1 First Isomorphism Theorem

Theorem: 2.25: First Isomorphism Theorem

If $\phi: G \to H$ is a homomorphism and $\pi: G \to G/\operatorname{Ker}(\phi)$, then there exists a unique isomorphism $\psi: G/\operatorname{Ker}(\phi) \to Im(\phi) \leq H$ s.t. $\psi \pi = \phi$.

Proof. Let $\psi: G/\operatorname{Ker}(\phi) \to H$ s.t. $\psi(x\operatorname{Ker}(\phi)) = \phi(x) \in Im(\phi) \leq H$.

Well defined: Suppose $x \operatorname{Ker}(\phi) = y \operatorname{Ker}(\phi)$, thus $xy^{-1} \in \operatorname{Ker}(\phi)$. $\phi(xy^{-1}) = \phi(x)\phi(y)^{-1} = e$. Thus $\psi(x \operatorname{Ker}(\phi)) = \phi(x) = \phi(y) = \psi(y \operatorname{Ker}(\phi))$

Homomorphism:

$$\psi((x\operatorname{Ker}(\phi))(y\operatorname{Ker}(\phi))) \stackrel{\text{Definition 2.20}}{=} \psi(xy\operatorname{Ker}(\phi)) \stackrel{\text{Definition of }\psi}{=} \phi(xy) = \phi(x)\phi(y) = \psi(x\operatorname{Ker}(\phi)\psi(y\operatorname{Ker}(\phi)))$$

Injective: Suppose $x \operatorname{Ker}(\phi) \in \operatorname{Ker}(\psi)$, then $\psi(x \operatorname{Ker}(\phi)) = e = \phi(x)$. Thus $x \in \operatorname{Ker}(\phi)$, $x \operatorname{Ker}(\phi) = e \operatorname{Ker}(\phi)$. Thus $\operatorname{Ker}(\psi) = {\operatorname{Ker}(\phi)}$. Kernal is trivial and ψ is injective.

Surjective: suppose $y \in Im(\phi)$, there exists $x \in G$ s.t. $\phi(x) = y$, then $\psi(x \operatorname{Ker}(\phi)) = \phi(x) = y$

Thus $\psi: G/\operatorname{Ker}(\phi) \to H$ is an isomorphism.

Note that $\pi(x) = x \operatorname{Ker}(\phi)$. Then $\psi(x \operatorname{Ker}(\phi)) = \psi(\pi(x)) = \phi(x)$. Thus $\psi \pi = \phi$.

Suppose $\bar{\psi} : G/\operatorname{Ker}(\phi) \to H$ s.t. $\bar{\psi}\pi = \phi$. Take $x\operatorname{Ker}(\phi) \in G/\operatorname{Ker}(\phi)$. Then $\bar{\psi}(x\operatorname{Ker}(\phi)) = \bar{\psi}(\pi(x)) = \phi(x) = \psi(\pi(x)) = \psi(x\operatorname{Ker}(\phi))$.

Definition: 2.27: Group of Automorphisms and Inner Automorphisms

Let G be a group.

The automorphism group of G is $Aut(G) = \{\phi : G \to G : \phi \text{ is an isomorphism}\}$. The inner automorphism group of G is $Inn(G) = \{I_g : G \to G : I_g(x) = gxg^{-1}\}$. Aut(G) forms a group with function composition and $Inn(G) \leq Aut(G)$.

Proof. For Aut(G), the identity is $id : G \to G$ s.t. id(g) = g. Inverse: if $\phi : G \to G$ is an isomorphism, then $\phi^{-1} : G \to G$ is also a well-defined isomorphism. $\phi \in Aut(G)$ $\Leftrightarrow \phi^{-1} \in Aut(G)$. Associativity follows associativity of function compositions.

Closure: composition of automorphisms is still an automorphism.

Show that $Inn(G) \leq Aut(G)$: Let $I_x, I_y \in Inn(G)$. Note $I_y \circ I_{y^{-1}}(g) = y(y^{-1}gy)y^{-1} = g$, so $(I_y)^{-1} = I_{y^{-1}}$. $I_x \circ (I_y)^{-1}(g) = I_x \circ I_{y^{-1}}(g) = x(y^{-1}gy)x^{-1} = (xy^{-1})g(yx^{-1}) = (xy^{-1})g(xy^{-1})^{-1} = I_{xy^{-1}}(g)$ Thus $I_x \circ (I_y)^{-1} = I_{xy^{-1}} \in Inn(G)$. By Theorem 2.3, $Inn(G) \leq Aut(G)$.

Theorem: 2.26:

 $G/Z(G) \cong Inn(G)$

Proof. Define $\phi: G \to Inn(G) \leq Aut(G)$. $\phi(g) = I_a$, where $I_a(x) = gxg^{-1}$.

Homomorphism: Let $x \in G$, $\phi(qh)(x) = I_{ah}(x) = ghx(gh)^{-1} = g(hxh^{-1})g^{-1} = I_a(I_h(x)) = I_a \circ I_h(x)$.

Surjectivity is obvious by definition of the function.

Consider the kernel. Ker $(\phi) = \{g \in G : \phi(g) = I_g = id\}$. $I_g(x) = gxg^{-1} = x, \forall x \in G \Leftrightarrow gx = xg$ which follows Definition 2.12.

By Theorem 2.25, $G/Z(G) \cong Inn(G)$.

Example: $\phi : \mathbb{Z} \to \mathbb{Z}_n$ s.t. $\phi(m) = [m] = \{k \in \mathbb{Z} : k \equiv m \mod n\}$ Surjective: $\forall 0 \le m \le n-1, \ \phi(m) = [m]$ Homomorphism: $\phi(m_1 + m_2) = [m_1 + m_2] = [m_1] + [m_2] = \phi(m_1) + \phi(m_2)$ $\operatorname{Ker}(\phi) = \{m \in \mathbb{Z} : [m] = [0]\} = n\mathbb{Z}$

By Theorem 2.25, $\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}_n$.

Example: $\phi : \mathbb{Z}_4 \to \mathbb{Z}_2$ s.t. $\phi([m]_4) = [m]_2$ Well Defined: Suppose $[m_1]_4 = [m_2]_4$, then $[m_1 - m_2]_4 = [0]_4 \Rightarrow m_1 - m_2 \equiv 0 \mod 4 \equiv 0 \mod 2$. Then, $[m_1 - m_2]_2 = [0]_2$. $\phi(m_1) = [m_1]_2 = [m_2]_2 = \phi(m_2)$. Homomorphism: $\phi([m_1]_4 + [m_2]_4) = \phi([m_1 + m_2]_4) = [m_1 + m_2]_2 = [m_1]_2 + [m_2]_2 = \phi([m_1]_4) + \phi([m_2]_4).$ Surjective: $\phi([0]_4) = [0]_2, \ \phi([1]_4) = [1]_2$ $\operatorname{Ker}(\phi) = \{ [m]_4 : \phi([m]_4) = [m]_2 = [0]_2 \} = \{ [0]_4, [2]_4 \} = 2\mathbb{Z}_4 \cong \mathbb{Z}_2.$ By Theorem 2.25, $\mathbb{Z}_4/2\mathbb{Z}_4 \cong \mathbb{Z}_4/\mathbb{Z}_2 \cong \mathbb{Z}_2$.

Example: $\phi : \mathbb{Z}_6 \to \mathbb{Z}_{15}$.

Example: $\phi : \mathbb{Z}_6 \to \mathbb{Z}_{15}$. The order of elements of \mathbb{Z}_{15} $\begin{cases} 1 : [0]_{15} \\ 3 : [5]_{15}, [10]_{15} \\ 5 : [3]_{15}, [6]_{15}, [9]_{15}, [12]_{15} \end{cases}$

If $\phi([1]_6) = [0]_{15}$. Then $\operatorname{Ker}(\phi) = \mathbb{Z}_6$, $\operatorname{Im}(\phi) = \{[0]_{15}\}$. $\mathbb{Z}_6/\mathbb{Z}_6 \cong \{[0]_{15}\} \leq \mathbb{Z}_15$. If $\phi([1]_6) = [5]_{15}$. Then $\phi([0]_6) = \phi([3]_6) = [0]_{15}$, $\phi([1]_6) = \phi([4]_6) = [5]_{15}$, $\phi([2]_6) = \phi([5]_6) = [10]_{15}$ $\operatorname{Ker}(\phi) = \{[0]_6, [3]_6\} = \langle [3]_6 \rangle \cong \mathbb{Z}_2. \ Im(\phi) = \{[0]_{15}, [5]_{15}, [10]_{15}\} = \langle [5]_{15} \rangle \cong \mathbb{Z}_3$ By Theorem 2.25, $\mathbb{Z}_6/\mathbb{Z}_2 \cong \mathbb{Z}_6/\langle [3]_6 \rangle \cong \langle [5]_{15} \rangle \cong \mathbb{Z}_3$.

Example: $D_n = \langle r, s : r^n = s^2 = e, rs = sr^{n-1} \rangle, \phi : D_n \to \mathbb{Z}_2$ s.t. $\phi(r) = 0, \phi(s) = 1$. $\phi(r^n) = n\phi(r) = 0, \ \phi(s^2) = \phi(e) = 0 = \phi(s) + \phi(s) = 1 + 1.$ $1 = \phi(s) + \phi(r) = \phi(sr) = \phi(sr^{n-1}) = \phi(s) + (n-1)\phi(r).$ $\operatorname{Ker}(\phi) = \langle r \rangle, \ \phi(r^k) = k\phi(r) = 0, \ \phi(sr^k) = \phi(s) + k\phi(r) = 1, \ \text{and} \ D_n/\langle r \rangle \cong \mathbb{Z}_2 \text{ by Theorem 2.25.}$

Example: $\phi: D_n \to \mathbb{Z}_n$ s.t. $\phi(r) = 1, \phi(s) = 0.$ $\phi(rs) = \phi(r) + \phi(s) = 1 + 0 = 1, \ \phi(sr^{n-1}) = \phi(s) + (n-1)\phi(r) = n - 1$ Note $rs = sr^{n-1}$, but $\phi(rs) \neq \phi(sr^{n-1})$ unless n = 2, so ϕ is not a homomorphism in general.

Example: $\phi: D_{2n} \to \mathbb{Z}_2$ s.t. $\phi(r) = 1, \phi(s) = 0$ $0 = 2n = 2n\phi(r) = \phi(r^{2n}) = \phi(e) = 0$, and $1 = \phi(r) + \phi(s) = \phi(rs) = \phi(sr^{2n-1}) = \phi(s) + (2n-1)\phi(r) = \phi(s)$ $2n-1 \mod 2 = 1$

$$\begin{split} &\operatorname{Ker}(\phi) = \{e, r^{2k}, sr^{2k}\} \text{ for } 0 \leq k \leq n-1, \operatorname{Ker}(\phi) = \langle s, r^2 \rangle \cong D_n. \\ &\operatorname{By Theorem } 2.25, \ D_{2n}/\langle s, r^2 \rangle \cong D_{2n}/D_n \cong \mathbb{Z}_2. \end{split}$$

 $\begin{array}{l} \textbf{Example: } \phi: D_6 \rightarrow S_6 \text{ s.t. } \phi(r) = (123456), \ \phi(s) = (16)(25)(34) \\ \phi(r^6) = (123456)^6 = (1) = \phi(e), \ \phi(s^2) = ((16)(25)(34))^2 = (16)^2(25)^2(34)^2 = e = \phi(e) \\ \phi(rs) = (123456)(16)(25)(34) = (1)(26)(35)(4) = (26)(35) \\ \phi(sr^5) = (16)(25)(34)(123456)^5 = (16)(25)(34)(165432) = (26)(35) \\ \text{Then } Im(\phi) = \langle (123456), (16)(25)(34) \rangle \\ \text{Note that } |r| = 6 = |(123456)|, \ \phi(r^n) \neq e \text{ for } n = 1, 2, 3, 4, 5. \\ \text{Thus } \operatorname{Ker}(\phi) = \{e\}. \end{array}$

Remark 4. We can similarly construct homomorphism $\phi: D_n \to S_n$

Example:
$$\phi: S_n \to \mathbb{Z}_2, \ \phi(\sigma) = \begin{cases} 0, \sigma \text{ is even} \\ 1, \sigma \text{ is odd} \end{cases}$$

It is easy to check that ϕ is homomorphism by Definition 2.16. $\operatorname{Ker}(\phi) = \{\sigma \in S_n : \sigma \text{ even}\} = A_n.$ By Theorem 2.25, $S_n/A_n \cong \mathbb{Z}_2.$

Example: $\phi : GL_2(\mathbb{R}) \to \mathbb{R}^{\times}$ s.t. $\phi(A) = \det(A)$. $\phi(AB) = \det(AB) = \det(A) \det(B) = \phi(A)\phi(B)$. $\operatorname{Ker}(\phi) = \{A \in GL_2(\mathbb{R}) : \phi(A) = \det(A) = 1\} = SL_2(\mathbb{R})$. By Theorem 2.25, $GL_2(\mathbb{R})/SL_2(\mathbb{R}) \cong \mathbb{R}^{\times}$.

Example: Define $gl_2(\mathbb{R}) = \{A \in \mathbb{R}^{2 \times 2}\}, sl_2(\mathbb{R}) = \{A \in gl_2(\mathbb{R}) : \operatorname{Tr}(A) = 0\}.$ Define $\phi : gl_2(\mathbb{R}) \to \mathbb{R}$ s.t. $\phi(A) = \operatorname{Tr}(A). \ \phi(A + B) = \operatorname{Tr}(A + B) = \operatorname{Tr}(A) + \operatorname{Tr}(B) = \phi(A) + \phi(B).$ $\operatorname{Ker}(\phi) = \{A \in gl_2(\mathbb{R}) : \operatorname{Tr}(A) = 0\} = sl_2(\mathbb{R}).$ By Theorem 2.25, $gl_2(\mathbb{R})/sl_2(\mathbb{R}) \cong \mathbb{R}.$

Example:
$$\phi : gl_2(\mathbb{R}) \to sl_2(\mathbb{R}), \phi \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a-d & b \\ c & d-a \end{bmatrix}.$$

 $\operatorname{Ker}(\phi) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : \phi \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a-d & b \\ c & d-a \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right\} = \left\{ \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} : a \in \mathbb{R} \right\} \cong \mathbb{R}.$
By Theorem 2.25, $gl_2(\mathbb{R})/\mathbb{R} \cong sl_2(\mathbb{R}).$

Example: Homomorphisms for \mathbb{Z} , \mathbb{R} , \mathbb{C}

1.
$$\phi: \mathbb{Z} \to \mathbb{R}^{\times}$$

(a) $\phi(1) = 1, \phi(n) = 1^{n} = 1, \operatorname{Ker}(\phi) = \mathbb{Z}, Im(\phi) = 1, \mathbb{Z}/\mathbb{Z} \cong \{1\} \leq \mathbb{R}^{\times}$
(b) $\phi(1) = -1, \phi(n) = (-1)^{n}. \operatorname{Ker}(\phi) = 2\mathbb{Z}, \mathbb{Z}/2\mathbb{Z} \cong \{\pm 1\} \leq \mathbb{R}^{\times}$
(c) $\phi(1) = a, \phi(n) = a^{n}, a \in \mathbb{R}^{\times} \setminus \{\pm 1\}. \operatorname{Ker}(\phi) = \{0\}, \mathbb{Z} \cong \{\pm a^{n} : n \in \mathbb{Z}\}$
2. $\phi: \mathbb{R} \to \mathbb{R}^{\times}_{+}, \phi(x) = 2^{x}. \operatorname{Ker}(\phi) = \{0\}. Im(\phi) = \mathbb{R}^{\times}_{+}, \mathbb{R} \cong \mathbb{R}^{\times}_{+}$
3. $\phi: \mathbb{Z} \to \mathbb{C}, \phi(n) = i^{n}. Im(\phi) = \{1, i, -1, -i\}. \operatorname{Ker}(\phi) = \{n \in \mathbb{Z} : i^{n} = 1\} = 4\mathbb{Z}. \mathbb{Z}/4\mathbb{Z} \cong \langle i \rangle.$
4. $\phi: \mathbb{Z} \to \mathbb{C}^{\times}. \phi(m) = e^{\frac{2\pi i m}{n}}. \operatorname{Ker}(\phi) = \{m: e^{\frac{2\pi i m}{n}}\} = n\mathbb{Z}, \mathbb{Z}/n\mathbb{Z} \cong \{1, \omega_{n}, ..., \omega_{n}^{n-1}\} = \langle \omega_{n} \rangle \cong \mathbb{Z}_{n} \leq \mathbb{C}^{\times}, \text{ where } \omega_{n} = e^{\frac{2\pi i}{n}}$
5. $\phi: \mathbb{Z} \to \mathbb{C}, \phi(n) = (2i)^{n}. \operatorname{Ker}(\phi) = \{0\}. Im(\phi) = \{(2i)^{n} : n \in \mathbb{Z}\} \leq \mathbb{C}^{\times}. \mathbb{Z} \cong \{(2i)^{n} : n \in \mathbb{Z}\}.$
6. $\phi: \mathbb{R} \to \mathbb{C}^{\times}, \phi(x) = e^{2\pi i x}. Im(\phi) = \{z \in \mathbb{C}^{\times} : |z| = 1\} = S^{1}. \operatorname{Ker}(\phi) = \{x \in \mathbb{R} : e^{2\pi i x} = 1\} = \mathbb{Z}.$

Example: $\phi : Q_8 \to \mathbb{Z}_2 \times \mathbb{Z}_2$ s.t. $\phi(\pm 1) = (0,0), \ \phi(\pm i) = (1,0), \ \phi(\pm j) = (0,1), \ \phi(\pm k) = (1,1).$ Ker $(\phi) = \{\pm 1\} = \langle -1 \rangle. \ Q_8 / \langle -1 \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_2.$ **Example:** $U_{15} = \{1, 2, 4, 7, 8, 11, 13, 14\}. \ \langle 2 \rangle = \{1, 2, 4, 8\} \cong \langle 7 \rangle = \{1, 7, 4, 13\} \cong \mathbb{Z}_4, \ \langle 4 \rangle = \{1, 4\} \cong \mathbb{Z}_2.$ $U_{15} = \langle 2 \rangle \langle 11 \rangle$ Define $\phi : \mathbb{Z} \times \mathbb{Z} \to U_{15}$ s.t. $\phi(m, n) = 2^m 11^n$. Ker $(\phi) = 4\mathbb{Z} \times 2\mathbb{Z}$. Thus $(\mathbb{Z} \times \mathbb{Z}) / (4\mathbb{Z} \times 2\mathbb{Z}) \cong U_{15} \cong \mathbb{Z}_4 \times \mathbb{Z}_2.$

2.7.2 Second Isomorphism Theorem

Theorem: 2.27: Second Isomorphism Theorem

Let $H \leq G$ and $N \leq G$, then 1. $HN \leq G$ 2. $H \cap N \leq H, N \leq HN$ 3. $H/(H \cap N) \cong HN/N$

- *Proof.* 1. Let $x, y \in HN$, *i.e.* $x = h_1 n_1$, $y = h_2 n_2$ for $h_1, h_2 \in H$, $n_1, n_2 \in N$ Since $N ext{ } G$, $gN = Ng \forall g \in G$, then gn = n'g for some $n, n' \in N$. $xy^{-1} = (h_1 n_1)(h_2 n_2)^{-1} = h_1(n_1 n_2^{-1})h_2^{-1} \stackrel{\text{Definition 2.23}}{=} h_1 h_2^{-1} \hat{n}$ for some $\hat{n} \in N$. Thus $xy^{-1} \in HN$. $HN \leq G$ by Theorem 2.3.
 - 2. $H \cap N \leq H$ can be shown in 3. We show $N \leq HN$ here. Let $n \in N$, x = hn' for $h \in H$, $n' \in N$ $xnx^{-1} = h(n'nn'^{-1})h^{-1} = h\hat{n}h^{-1}$ for $\hat{n} = n'nn'^{-1} \in N$. Thus $xnx^{-1} = h\hat{n}h^{-1} \in N$, because $h \in G$, $\hat{h} \in N$ and $N \leq G$.
 - 3. Define $\phi : H \to HN/N$ s.t. $\phi(h) = hN$. $\phi(xy) = xyN \stackrel{\text{By Definition 2.20}}{=} (xN)(yN) = \phi(x)\phi(y)$

Surjective: Suppose $xN \in HN/N$, *i.e.* $x \in HN$, then x = hn where $h \in H$, $n \in N$.

Injective: Note xN = (hn)N = hN, $\phi(h) = hN = xN$, thus ϕ is injective.

 $\operatorname{Ker}(\phi) = \{h \in H : \phi(h) = eN = N\}$. Note if $h \in \operatorname{Ker}(\phi)$, then $\phi(h) = hN$. Thus $h \in N \Rightarrow h \in H \cap N$. *i.e.* $\operatorname{Ker}(\phi) \subset H \cap N$.

Suppose $x \in H \cap N$, then $x \in H$ and $x \in N$. Then xN = N. Thus $\phi(x) = xN = N$, $x \in \text{Ker}(\phi)$. Then $H \cap N \subset \text{Ker}(\phi)$. Thus $\text{Ker}(\phi) = H \cap N$.

By Theorem 2.25, $H/(H \cap N) \cong HN/N$.

Since $\operatorname{Ker}(\phi) = H \cap N$, by Theorem 2.23, $H \cap N \leq H$.

Example: Let $G = \mathbb{Z}$, $H = m\mathbb{Z}$, $N = n\mathbb{Z}$. $H + N = m\mathbb{Z} + n\mathbb{Z} = \{mx + ny : x, y \in \mathbb{Z}\} = \gcd(m, n)\mathbb{Z}$. $H \cap N = \{a \in \mathbb{Z} : a = mx \text{ and } a = ny\} = \operatorname{lcm}(m, n)\mathbb{Z}$. Let $d = \gcd(m, n), l = \operatorname{lcm}(m, n)$ By Theorem 2.27, $m\mathbb{Z}/l\mathbb{Z} \cong d\mathbb{Z}/n\mathbb{Z}$. Consider $\phi : d\mathbb{Z} \to \mathbb{Z}_{n/d}, \phi(dx) = [x]$. $\operatorname{Ker}(\phi) = \{dx \in d\mathbb{Z} : \phi(dx) = 0\} = \{dx \in d\mathbb{Z} : [x] = 0\} = n\mathbb{Z}$ Then by Theorem 2.25, $d\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}_{n/d}$. Thus $\mathbb{Z}_{n/d} \cong d\mathbb{Z}/n\mathbb{Z} \cong m\mathbb{Z}/l\mathbb{Z} \cong \mathbb{Z}_{l/m}$. Then $\frac{n}{d} = |\mathbb{Z}_{n/d}| = |\mathbb{Z}_{l/m}| = \frac{l}{m} \Rightarrow \frac{m}{\gcd(m,n)} = \frac{\operatorname{lcm}(m,n)}{n}$. $\operatorname{lcm}(m,n) = \frac{mn}{\gcd(m,n)}$.

2.7.3 Third Isomorphism Theorem

Theorem: 2.28: Third Isomorphism Theorem

Let $N \leq H \leq G$, then $(G/N)/(H/N) \approx G/H$

Proof. Define $\phi: G/N \to G/H$ s.t. $\phi(gN) = gH$.

Well defined: suppose gN = g'N, then $g(g')^{-1} \in N \leq H$. Thus $g(g')^{-1} \in H$. By Lemma 2.5, gH = g'H. Therefore, $\phi(gN) = \phi(g'N)$.

Homomorphism: $\phi((gN)(g'N)) = \phi(gg'N) = gg'H = (gH)(g'H) = \phi(gN)\phi(g'N)$

Surjective: Let $gH \in G/H$. Then $gN \in G/N$ since $N \leq H$. Then $\phi(gN) = gH$.

Let $gN \in \operatorname{Ker}(\phi) = \{gN \in G/N : \phi(gN) = gH = H\}$. Then $g \in H, gN \in H/N$. Thus $\operatorname{Ker}(\phi) \subset H/N$ Let $hN \in H/N$. Then $hN \in G/N$, since $h \in G$. $\phi(hN) = hH = H$. Thus $hN \in \operatorname{Ker}(\phi)$. $H/N \subset \operatorname{Ker}(\phi)$ Thus $H/N = \operatorname{Ker}(\phi)$. By Theorem 2.25, $(G/N)/(H/N) \cong G/H$.

Example: Let $G = \mathbb{Z}$, $H = m\mathbb{Z}$, $N = mn\mathbb{Z}$, $N \leq H \leq G$

$$\mathbb{Z}_m \cong \mathbb{Z}/m\mathbb{Z} = G/H \stackrel{\text{By Theorem 2.28}}{\cong} (G/N)/(H/N) = (\mathbb{Z}/mn\mathbb{Z})/(m\mathbb{Z}/mn\mathbb{Z}) \cong \mathbb{Z}_{mn}/\langle m \rangle$$

Consider $\phi : m\mathbb{Z} \to \mathbb{Z}_{mn}$, $\phi(mx) = [mx]$. $Im(\phi) = \langle [m] \rangle \leq \mathbb{Z}_{mn}$. Ker $(\phi) = mn\mathbb{Z}$. By Theorem 2.25, $m\mathbb{Z}/mn\mathbb{Z} \cong \langle [m] \rangle \leq \mathbb{Z}_{mn}$.

Theorem: 2.29:

 $\mathbb{Z}_n/\langle m\rangle \cong \mathbb{Z}_{\gcd(m,n)}$

Proof. We want to show $\langle m \rangle = \langle \gcd(m, n) \rangle$. Let $d = \gcd(m, n)$

 $(\leq) d \mid m$, so m = dk for some $k \in \mathbb{N}$, $\langle m \rangle = \{mx : x \in \mathbb{Z}\} = \{dkx : x \in \mathbb{Z}\} \leq \langle d \rangle$

 (\geq) By extended Euclidean algorithm, write d = ma + nb for $a, b \in \mathbb{Z}$. Inside \mathbb{Z}_n , d = ma for $a \in \mathbb{Z}$, $\langle d \rangle = \langle m \rangle$.

3 Rings

Definition: 3.1: Ring

A set R together with operations (+, ·) is called a ring if
1. (R, +) is an abelian group with identity 0.
2. (ab)c = a(bc), ∀a, b, c ∈ R
3. a(b + c) = ab + ac
4. (a + b)c = ac + bc

Remark 5. In the context of rings, identity, inverses, and commutativity specifically refer to the ones for multiplication. We don't necessarily need identity, inverses or commutativity for a ring.

Example: \mathbb{Z} : identiy=1, commutative, ± 1 are the only integers with inverses.

Example: $2\mathbb{Z}$: no identity, commutative, no inverses.

Example: \mathbb{Z}_n : identity=1, commutative, $m^{-1} \in \mathbb{Z}_n$ exists $\Leftrightarrow \operatorname{gcd}(m, n) = 1$.

Example: $\mathbb{R}^{n \times n}$: identity= I_n , not commutative, A^{-1} exists $\Leftrightarrow \det(A) \neq 0$.

Example: $\mathbb{Z}[x] = \{a_0 + a_1x + \cdots + a_nx^n : n \ge 0, a_i \in \mathbb{Z}\}$, identity=1, commutative, only ±1 have inverses.

Definition: 3.2: Zero Divisors

If $a, b \neq 0 \in R$ and ab = 0, then a and b are the zero divisors of R.

Definition: 3.3: Unit

 $a \in R$ is a unit if $\exists b \in R$ s.t. $ab = 1_R$.

Example: \mathbb{Z}_{12} . Units: 1, 5, 7, 11 (they are not zero divisors). Zero divisors: 2, 3, 4, 6, 8, 9, 10

Theorem: 3.1: Units and Zero Divisors of \mathbb{Z}_n

 $m \in \mathbb{Z}_n$ is a unit $\Leftrightarrow \gcd(m, n) = 1$ $m \in \mathbb{Z}_n$ is a zero divisor $\Leftrightarrow \gcd(m, n) \neq 1$

Proof. Units:

(⇒) Suppose $m \in \mathbb{Z}_n$ is a unit, then $\exists x \in \mathbb{Z}_n$ s.t. $mx = 1 \Leftrightarrow mx \equiv 1 \mod n \Leftrightarrow n \mid (mx - 1)$, so $\exists y \in \mathbb{Z}$ s.t. mx - ny = 1. Thus $gcd(m, n) \mid 1$, gcd(m, n) = 1.

(\Leftarrow) Suppose gcd(m, n) = 1, then $\exists x, y \in \mathbb{Z}$, mx + ny = 1, mx - 1 = -ny, so n|mx - 1, $mx \equiv 1 \mod n$, then $mx = 1 \in \mathbb{Z}_n$.

Zero divisors:

(\Rightarrow) Suppose that $m \in \mathbb{Z}_n$ is a zero divisor. Assume gcd(m, n) = 1Then m is a unit by previous statement, $\exists a \neq 0 \in \mathbb{Z}_n$ with $ma = 0 \in \mathbb{Z}_n$, *i.e.* n|ma. $gcd(m, n) = 1 \Rightarrow \exists x, y \in \mathbb{Z}$ s.t. mx + ny = 1. $\Rightarrow (ma)x + (na)y = a$. Since n|ma, then n|(ma)x + n(ay), thus n|a. $a \equiv 0 \mod n$, $a = 0 \in \mathbb{Z}_n$. Contradiction. Thus $gcd(m, n) \neq 1$. (\Leftarrow) Suppose $m = 0 \in \mathbb{Z}_n$ with $gcd(m, n) = d \neq 1$. Then $\exists a \in \mathbb{Z}$ with 1 < a < n and ad = n. (If a = 1, d = n = m, similar for a = n.)

Find $x, y \in \mathbb{Z}$ with mx + ny = d, amx + any = ad = n. By commutativity of \mathbb{Z}_n , $(ax)m = n(1 - ay) \equiv 0$ mod n. Thus $(ax)m = 0 \in \mathbb{Z}_n$. m is zero divisor.

Theorem: 3.2: Units and Zero Divisors of $\mathbb{R}^{2 \times 2}$

 $A \in \mathbb{R}^{2 \times 2}$ is a unit $\Leftrightarrow \det A \neq 0$ $A \in \mathbb{R}^{2 \times 2}$ is a zero divisor $\Leftrightarrow \det A = 0$

Proof. The first statement follows the invertibility of matrices.

Consider the second statement:

 (\Rightarrow) Suppose $A \in \mathbb{R}^{2 \times 2}$ is a zero divisor $A \neq 0$ and $\exists B \neq 0$ s.t. AB = 0.

Assume det $A \neq 0$, A has an inverse A^{-1} , then $A^{-1}AB = A^{-1}0 = 0$. Then B = 0. Contradiction. Thus A does not have an inverse, $\det A = 0$

 (\Leftarrow) Suppose $A \neq 0$, but det A = 0. Then $\exists v \neq 0 \in Nul(A)$. Let $B = (v \ v) \neq 0$. $AB = A(v \ v) = 0$ (Av Av) = (0 0) = 0. A is a zero divisor.

Theorem: 3.3:

If $a \in R$ is a unit, then it is not a zero divisor.

If $a \in R$ is a zero divisor, then it is not a unit.

Proof. Suppose $a \in R$ is a unit and $b \in R$ with ab = 0. $b = (a^{-1}a)b = a^{-1}ab = a^{-1}0 = 0$. Thus b has to be 0, and a is not a zero divisor.

The second statement is true by contrapositive.

Lemma: 3.1: Identities with -1

 $(-1)^2 = 1$ -a = (-1)a = a(-1)

Proof. $(-1)^2 + (-1) = (-1)(-1) + (-1)1 = (-1)(-1+1) = (-1)0 = 0$. Thus $(-1)^2$ and (-1) are additive inverse. By uniqueness of inverses, $(-1)^2 = 1$.

a + (-1)a = 1a + (-1)a = (1 - 1)a = 0. And a + a(-1) = a(1) + a(-1) = a(1 - 1) = 0.

Theorem: 3.4:

If R is a ring with 1, $u \in R$ is a unit, then so is -u.

Proof. Take $u^{-1} \in R$ s.t. $uu^{-1} = 1$. $(-u)(-u^{-1}) = u(-1)(-1)u^{-1} \stackrel{\text{By Lemma 3.1}}{=} uu^{-1} = 1$. Thus $(-u)^{-1} = -u^{-1}$

Definition: 3.4: Nilpotent

 $x \in R$ is nilpotent if $x^m = 0$ for some $m \in \mathbb{N}$.

Example: In \mathbb{Z}_4 , $2^2 = 4 = 0$, 2 is a nilpotent element.

Theorem: 3.5: Properties of Nilpotents

If x is nilpotent, then

- 1. x = 0 or x is a zero divisor.
- 2. If R is a ring with 1, $1 + x \in R$ is a unit.
- *Proof.* 1. Suppose $x \neq 0$. Let $x \in \mathbb{N}$ s.t. $x^m = 0$ and m = 0 is the smallest, then $x^m = x(x^{m-1}) = 0$, but $x \neq 0$ and $x^{m-1} \neq 0$. Both are zero divisors by Definition 3.2.
 - 2. Let $m \in \mathbb{N}$ s.t. $x^m = 0$ and m is minimum. Then $1 = 1 + x^m = (1 + x)(1 x + \dots + (-1)^{m-1}x^{m-1})$ Therefore $(1 + x)^{-1} = (1 - x + \dots + (-1)^{m-1}x^{m-1})$ exists in R. By Definition 3.3, 1 + x is a unit.

3.1 Types of Rings

Definition: 3.5: Ring with 1

If R has a multiplication identity $1 \in R$, then R is a ring with 1.

Example: $\mathbb{R}^{n \times n}$, $f : \mathbb{R} \to \mathbb{R}$, \mathbb{Z}_n .

Definition: 3.6: Commutative Ring

If ab = ba, $\forall a, b \in R$, then R is a commutative ring.

Example: $n\mathbb{Z}, x\mathbb{Z}[x] = \{a_1x + a_2x^2 + \dots + a_nx^n\}, \mathbb{Z}_n.$

Definition: 3.7: Integral Domain

If R is commutative with 1 and $ab = 0 \Rightarrow a = 0$ or b = 0, then R is an integral domain.

Remark 6. R is an integral domain if it is a commutative ring with 1 and has no zero divisors.

Example: $\mathbb{Z}, \mathbb{Z}[x]$.

Definition: 3.8: Division Ring

If a^{-1} exists for all $a \neq 0 \in R$, then R is a division ring.

Example: Quaternion Ring $H = \{a + bi + cj + dk : a, b, c, d \in \mathbb{R}, i^2 = j^2 = k^2 = -1\}.$

Definition: 3.9: Field

A commutative division ring is a field.

Example: \mathbb{Z}_p , \mathbb{Q} , \mathbb{R} , \mathbb{C} .

Theorem: 3.6: Classification of \mathbb{Z}_n

If n is comoposite, then \mathbb{Z}_n is a commutative ring with 1 and not an integral domain. If p is a prime, then \mathbb{Z}_p is a finite field.

Proof. Note: \mathbb{Z}_n is definitely a commutative ring with 1.

If n is composite, then n = ab with 1 < a, b < n. $a \neq 0 \in \mathbb{Z}_n$, $b \neq 0 \in \mathbb{Z}_n$, but $ab = 0 \in \mathbb{Z}_n$, thus \mathbb{Z}_n is not integral domain.

 \mathbb{Z}_p is integral domain: Suppose $a, b \in \mathbb{Z}_p$ with $ab = 0 \in \mathbb{Z}_p$. $ab \equiv 0 \mod p$, then p|ab. Since p is a prime, then p|a or p|b. Thus $a = 0 \in \mathbb{Z}_p$ or $b = 0 \in \mathbb{Z}_p$.

 \mathbb{Z}_p is a field (check inverse): Let $a \neq 0 \in \mathbb{Z}_p$. Then $gcd(a, p) = 1 \Rightarrow \exists x, y \in \mathbb{Z}$ s.t. ax + py = 1, $ax \equiv 1 \mod p$, $a^{-1} = x \in \mathbb{Z}_p$.

Theorem: 3.7: Quaternion Ring

 $H = \{a + bi + cj + dk : a, b, c, d \in \mathbb{R}, i^2 = j^2 = k^2 = -1\}$ is a division ring.

Proof. It is easy to see that $1 + (0i + bj + 0k) \in H$ is the identity. We want to find the inverse.

Consider $(a + bi + cj + dk)^{-1} = \frac{a - bi - cj - dk}{a^2 + b^2 + c^2 + d^2}$. Then $(a + bi + cj + dk)(a + bi + cj + dk)^{-1} = \frac{1}{a^2 + b^2 + c^2 + d^2}(a + bi + cj + dk)(a - bi - cj - dk) = \frac{1}{a^2 + b^2 + c^2 + d^2}(a^2 + b^2 + c^2 + d^2 + (ab - ab + cd - cd)i + (-bd + bd + ac - ac)j + (ad - ad + bc - bc)k) = 1$.

Theorem: 3.8:

Let R be a commutative ring with 1. Then R is an integral domain $\Leftrightarrow \forall a \neq 0 \in R$, with ab = ac, then b = c.

Proof. (\Rightarrow) Suppose R is an integral domain, and $a \neq 0 \in R$, ab = acSubtract both sides by ac, $ab - ac = 0 \xrightarrow{\text{Associativity}} a(b - c) = 0$. Since $a \neq 0$ and R is an integral domain, we have b - c = 0, *i.e.* b = c.

(\Leftarrow) Suppose $a \neq 0 \in R$ and $b \in R$ s.t. ab = 0. We want to show that b = 0 $ab = 0 = a \cdot 0$ *i.e.* a(b-0) = 0. Since $a \neq 0$, b = 0. Thus R is an integral domain.

Theorem: 3.9: Finite Integral Domain

Every finite integral domain is a field.

Proof. Consider $R^* = \{r \in R : r \neq 0\} = R \setminus \{0\}$. Define $\lambda_a : R^* \to R^*, a \neq 0$ s.t. $\lambda_a(b) = ab$. Injective: Suppose $\lambda_a(b) = \lambda_a(c), i.e. ab = ac$. Since R is an integral domain, by Theorem 3.8. b = c. Note: Injection on finite sets \Rightarrow Bijective \Rightarrow Surjective. Then $1 \in \mathbb{R}^* \Rightarrow \exists b \in \mathbb{R}^*$ s.t. $\lambda_a(b) = ab = 1, b = a^{-1}$. Every non-zero element has an inverse, then it is a field.

Definition: 3.10: Boolean Ring

R is a boolean ring if $a^2 = a$ for all $a \in R$.

Theorem: 3.10:

All Boolean Rings are commutative.

Proof. Let $x, y \in R$.

$$(x + y) = (x + y)^2 = x^2 + y^2 + xy + yx$$

= $x + y + xy + yx$ (By Definition 3.10)

Thus xy + yx = 0, $xy = -yx \Rightarrow xy = (xy)^2 = (-yx)^2 = (-1)^2(yx)^2 = yx$

Example: Given X a non-empty set, $\mathcal{P}(X)$ is a boolean ring with $+ = \cup, \cdot = \cap$.

Theorem: 3.11: Gaussian Integers

The Gaussian integers $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}$ is an integral domain.

Proof. Let z = a + bi, $w = c + di \in \mathbb{Z}[i]$. Suppose zw = 0. $0 = (a + bi)(c + di) = (a - bi)(a + bi)(c + di)(c - di) = (a^2 + b^2)(c^2 + d^2)$ We need $a^2 + b^2 = 0$ or $c^2 + d^2 = 0$.

Since \mathbb{Z} is an integral domain, then $a^2 + b^2 = 0 \Rightarrow a = 0$ and b = 0. Similarly, $c^2 + d^2 = 0 \Rightarrow c = 0$ and d = 0. Thus, z = 0 or w = 0. By Definition 3.7, $\mathbb{Z}[i]$ is an integral domain.

Definition: 3.11: Characteristic of a Ring

The least $n \in \mathbb{N}$ s.t. $\forall r \in R$, $nr = (r + \dots + r) = 0$ is the characteristic of R. Write char(R) = n. If no such n exists, then char(R) = 0.

Example: $\operatorname{char}(\mathbb{Z}) = \operatorname{char}(\mathbb{Q}) = \operatorname{char}(\mathbb{R}) = \operatorname{char}(\mathbb{C}) = \operatorname{char}(\mathbb{Z}[x]) = 0$

Theorem: 3.12: Characteristic of \mathbb{Z}_n

 $\operatorname{char}(\mathbb{Z}_n) = n$

Proof. For all $a \in \mathbb{Z}_n$, $na = 0 \in \mathbb{Z}_n$, thus $\operatorname{char}(\mathbb{Z}_n) \leq n$ Suppose $\operatorname{char}(\mathbb{Z}_n) = m$, $m = m \cdot 1 = 0 \in \mathbb{Z}_n$. $m \equiv 0 \mod n$, n|m. Thus $\operatorname{char}(\mathbb{Z}_n) = m \neq n$ Thus $\operatorname{char}(\mathbb{Z}_n) = n$.

Lemma: 3.2: Characteristic of Ring with 1

Let R be a ring with 1. If $n \in \mathbb{N}$ is the least number s.t. $n \cdot 1 = 0$, then char(R) = n

Proof. $n \cdot r = (r + \dots + r) = r \cdot 1 + \dots + r \cdot 1 = r(1 + \dots + 1) = rn = r \cdot 0 = 0.$

Example: $2\mathbb{Z}_6 = \{0, 2, 4\}$. char $(2\mathbb{Z}_6) = 3$.

Theorem: 3.13: Characteristic of Integral Domains

If R is an integral domain, then char(R) is prime or char(R) = 0.

Proof. Use the contrapositive. If char(R) = n is composite, then R is not an integral domain. Suppose $n = \operatorname{char}(R)$ with n = ab (a, b > 1). $0 = n \cdot 1 = (ab)1 = (a1)(b1)$. By Lemma 3.2, otherwise n = aor n = b. Then $a1 \neq 0$ and $b1 \neq 0$. Thus R is not an integral domain.

Theorem: 3.14: Characteristic of Prime Commutative Ring with 1

Suppose R is a commutative ring with 1 with char(R) = p a prime, then $\forall a, b \in R$, $(a+b)^p = a^p + b^p$.

Proof. By binomial theorem, $(a+b)^p = \sum_{k=0}^p {p \choose k}_B a^k b^{p-k} = b^p + \sum_{k=1}^{p-1} {p \choose k}_B a^k b^{p-k} + a^p$, where ${p \choose k}_R = b^p + \sum_{k=0}^{p-1} {p \choose k}_B a^k b^{p-k} + a^p$.

 $\underbrace{\left(1+\dots+1\right)}_{\binom{p}{k} \text{ times in } R}.$

For $k \in [1, p-1]$, $\binom{p}{k} = \frac{p!}{(p-k)!k!} = p\frac{(p-1)\cdots(p-k+1)}{k!}$ is a multiple of p. Thus $\binom{p}{k}_R = 0_R$.

3.2**Ring Homomorphism**

Definition: 3.12: Ring Homomorphism and Isomorphism

Let R, S be rings. $\phi: R \to S$ is a ring homomorphism if $\forall a, b \in R, \ \phi(a+b) = \phi(a) + \phi(b)$ and $\phi(ab) = \phi(a)\phi(b).$ If ϕ is bijective, then ϕ is an ismorphism. $Ker(\phi) = \{a \in R : \phi(a) = 0_S\}.$

Example: $\phi : \mathbb{Z} \to \mathbb{Z}_n$ s.t. $\phi(m) = [m]$. Homomorphism: Let $m_1, m_2 \in \mathbb{Z}, \ \phi(m_1 + m_2) = \phi(m_1) + \phi(m_2)$ from Group Homomorphism. $\phi(m_1m_2) = [m_1m_2] = [m_1][m_2] = \phi(m_1)\phi(m_2).$ $\operatorname{Ker}(\phi) = n\mathbb{Z}$ from group homomorphism.

Example: $\phi : \mathbb{C} \to \mathbb{R}^{2 \times 2}$ s.t. $\phi(a+bi) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$. $\text{Homomorphism: } \phi((a+bi)+(c+di)) = \phi((a+c)+(b+d)i) = \begin{bmatrix} a+c & -b-d \\ b+d & a+c \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} + \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} + \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} + \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} + \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} + \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} + \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} + \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} + \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} + \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} + \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} + \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} + \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} + \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} + \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} + \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} + \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} + \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} + \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} + \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} + \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} + \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} + \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \begin{bmatrix} c & \phi(a+bi) + \phi(c+di)$ $\phi((a+bi)(c+di)) = \phi((ac-bd) + (ad+bc)i) = \begin{bmatrix} ac - bd & -ad - bc \\ ad + bc & ac - bd \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \phi(a+bi)\phi(c+di)$ $Ker(\phi) = \{a + bi : \phi(a + bi) = 0\} = \{0\}.$ Thus ϕ is injective. $\mathbb{C} \cong Im(\phi) = \left\{ \begin{bmatrix} a & -b \\ b & a \end{bmatrix} : a, b \in \mathbb{R} \right\} \subset \mathbb{R}^{2 \times 2}$

Example: $\phi : \mathbb{Q}[x] \to \mathbb{R}$ s.t. $\phi(p(x)) = p(\sqrt{2})$. $\phi(x^3 + x^2 - 3) = (\sqrt{2})^3 + (\sqrt{2})^2 - 3 = 2\sqrt{2} - 1$. $Im(\phi) = \mathbb{Q}[\sqrt{2}] = \mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$ is a field. Homomorphism: Let $p(x), q(x) \in \mathbb{Q}[x]$. $\phi(p(x) + q(x)) = p(\sqrt{2}) + q(\sqrt{2}) = \phi(p(x)) + \phi(q(x))$

 $\begin{aligned} \phi(p(x)q(x)) &= p(\sqrt{2})q(\sqrt{2}) = \phi(p(x))\phi(q(x))\\ \operatorname{Ker}(\phi) &= \{p(x) \in \mathbb{Q}[x] : p(\sqrt{2}) = 0\}. \text{ If } p(x) \in \operatorname{Ker}(\phi), \text{ then } \sqrt{2} \text{ is a root of } p(x). \end{aligned}$

$$p(x) = (x - \sqrt{2})q(x) \text{ over } \mathbb{R}[x]$$
$$= (x^2 - 2)\tilde{q}(x) \text{ over } \mathbb{Q}[x]$$

Thus $\operatorname{Ker}(\phi) = \{(x^2 - 2)f(x) : f(x) \in \mathbb{Q}[x]\} = (x^2 - 2)\mathbb{Q}[x].$

Example: $\phi : \mathbb{R}[x] \to \mathbb{C}$ s.t. $\phi(f(x)) = f(i)$. $\phi(x^4 + x^3 - 3x^2 + 2) = i^4 + i^3 - 3i^2 + 2 = 6 - i$, $Im(\phi) = \{a + bi : a, b \in \mathbb{R}\}$. Homomorphism: $\phi(f(x) + g(x)) = f(i) + g(i) = \phi(f(x)) + \phi(g(x))$ $\phi(f(x)g(x)) = f(i)g(i) = \phi(f(x))\phi(g(x))$ $\operatorname{Ker}(phi) = \{f(x) \in \mathbb{R}[x] : f(i) = 0\}$

$$f(x) = (x - i)g(x) \in \mathbb{C}[x]$$
$$= (x^2 + 1)h(x) \in \mathbb{R}[x]$$

Thus $\operatorname{Ker}(\phi) = (x^2 + 1)\mathbb{R}[x].$

Theorem: 3.15: Identities under Ring Homomorphism

If $\phi : R \to S$ is a ring homomorphism, then 1. $\phi(0) = 0$ 2. If $1_R \in R$, $1_S \in S$ and ϕ is onto, then $\phi(1_R) = 1_S$

Proof. $\phi(0) = \phi(0+0) = \phi(0) + \phi(0)$, thus $\phi(0) = 0$.

Take $a \in R$ s.t. $\phi(a) = 1_S$. $\phi(1_R) = \phi(1_R) 1_S = \phi(1_R) \phi(a) = \phi(1_R a) = \phi(a) = 1_S$.

Example: $2\mathbb{Z} \cong 3\mathbb{Z}$ as groups, but not rings.

Proof. As groups, $\phi : \mathbb{Z} \to n\mathbb{Z}$ s.t. $\phi(m) = mn$ is a homomorphism with $\text{Ker}(\phi) = \{0\}$ and surjective. $2\mathbb{Z} \cong \mathbb{Z} \cong 3\mathbb{Z}$.

As rings, suppose $\phi : 2\mathbb{Z} \to 3\mathbb{Z}$ is a homomorphism. $\phi(2) \in 3\mathbb{Z}$, thus $\phi(2) = 3n$ for $n \in \mathbb{Z}$. $\phi(4) = \phi(2+2) = \phi(2) + \phi(2) = 6n$. But $\phi(4) = \phi(2 \cdot 2) = \phi(2)\phi(2) = 9n^2$. $6n = 9n^2$ gives $n = \frac{2}{3} \notin \mathbb{Z}$. Contradiction, so there is no ring homomorphism $2\mathbb{Z} \to 3\mathbb{Z}$.

Example: $\mathbb{Q}[\sqrt{2}] \cong \mathbb{Q}[\sqrt{3}]$ as group but not as fields.

Proof. As groups, define $\phi : \mathbb{Q}[\sqrt{2}] \to \mathbb{Q}[\sqrt{3}]$ as $\phi(a + b\sqrt{2}) = a + b\sqrt{3}$. ϕ is a well-defined homomorphism under addition.

Suppose $\phi : \mathbb{Q}[\sqrt{2}] \to \mathbb{Q}[\sqrt{3}]$ is a field isomorphism. $\phi(\sqrt{2}) = a + b\sqrt{3}$ for some $a, b \in \mathbb{Q}$. Then $\phi(2) = \phi(\sqrt{2}\sqrt{2}) = \phi(\sqrt{2})\phi(\sqrt{2}) = (a + b\sqrt{3})^2 = (a^2 + 3b^2) + 2ab\sqrt{3}$. Also $\phi(2) = \phi(1+1) = \phi(1) + \phi(1) \stackrel{\text{By Theorem 3.15}}{=} 1 + 1 = 2$. So we need $(a^2 + 3b^2) + 2ab\sqrt{3} = 2$. This gives $a = 0, b = \pm\sqrt{\frac{2}{3}}$ or $a = \pm\sqrt{2}, b = 0$. Both are not in \mathbb{Q} . Thus there is no field homomorphism $\mathbb{Q}[\sqrt{2}] \to \mathbb{Q}[\sqrt{3}]$. **Example:** Find ring homomorphisms $\phi : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$, where for $\mathbb{Z} \times \mathbb{Z}$, both addition and multiplication are component-wise.

Proof. Note that $\mathbb{Z} \times \mathbb{Z}$ has 2 generators (1,0) and (0,1). Suppose $\phi(1,0) = m$ and $\phi(0,1) = n$. Then $\phi(0,0) = \phi((1,0)(0,1)) = mn = 0 \Rightarrow m = 0$ or n = 0. $\phi(a,b) = \phi(a(1,0) + b(0,1)) = a\phi(1,0) + b\phi(0,1) = am + bn$ Case 1: m = 0, $\phi(a,b) = bn$, then Ker(ϕ) = $\mathbb{Z} \times \{0\}$, $Im(\mathbb{Z}) = n\mathbb{Z}$. Case 2: n = 0, $\phi(a,b) = am$, then Ker(ϕ) = $\{0\} \times \mathbb{Z}$, $Im(\mathbb{Z}) = m\mathbb{Z}$. □

Example: Let $\phi : \mathbb{R}^{2 \times 2} \to \mathbb{R}$, which of $\phi(A) = A_{11}$, $\phi(A) = \det(A)$, $\phi(A) = \operatorname{Tr}(A)$ makes ϕ a ring homomorphism?

Proof. Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, $B = \begin{bmatrix} x & y \\ z & w \end{bmatrix}$

 $\phi(A) = A_{11}, \ \phi(A+B) = a + x = \phi(A) + \phi(B)$, thus a group homomorphism, but $\phi(AB) = ax + bz \neq ax = \phi(A)\phi(B)$, thus not a ring homomorphism.

 $\phi(A) = \det(A), \ \phi(AB) = \det(AB) = \det A \det B = \phi(A)\phi(B), \text{ thus a group homomorphism, but } \phi(A + B) = (a+x)(d+w) - (b+y)(c+z) \neq (ad-bc) + (xw-yz) = \phi(A) + \phi(B), \text{ thus not a ring homomorphism.}$

 $\phi(A) = \text{Tr}(A), \ \phi(A+B) = a + d + x + w = \phi(A) + \phi(B), \text{ thus a group homomorphism, but } \phi(AB) = ax + bz + cy + dw \neq (a+d)(x+w) = \phi(A)\phi(B), \text{ thus not a ring homomorphism.}$

3.3 Ideal

Definition: 3.13: Subring

Let R be a ring, a subring S of R is $S \subset R$ that satisfies ring properties.

Theorem: 3.16: Subring Test

Let R be a ring, $S \subset R$ is a subring if $\forall a, b \in S$, $a - b \in S$ and $ab \in S$.

Definition: 3.14: Cosets of Rings

Let R be a ring and $S \subset R$ be a subring. The cosets of $r \in R$ is $r + S = \{r + s : s \in S\}$.

Note S, R are abelian, thus $S \leq R$. (R/S, +), where $R/S = \{r + S : r \in R\}$, is an abelian group.

For (R/S, +) to be a ring, we need (a + S)(b + S) = ab + S for all $a, b \in R$. *i.e.* For all $s, s' \in S$, we need $(a + s)(b + s') = ab + as' + sb + ss' \in ab + S$. Therefore, we need $as' + sb \in S \Rightarrow as' \in S$ and $sb \in S$.

Definition: 3.15: Ideal

Let $I \subset R$ be a subring.

- 1. I is a right ideal if $\forall r \in R, i \in I, ir \in I$. (absorbs multiplication from right)
- 2. I is a left ideal if $\forall r \in R, i \in I, ri \in I$. (absorbs multiplication from left)
- 3. I is an ideal if it is a right ideal and a left ideal.

Theorem: 3.17: Quotient Ring

If $I \subset R$ is an ideal, then $R/I = \{r + I : r \in R\}$ is a ring.

Proof. R/I is an abelian group because R, I are abelian groups and $I \leq R$.

We now show that the multiplication is well defined. Let $a, a', b, b' \in R$ with a+I = a'+I and b+I = b'+I. $a-a' \in I$ and $b-b' \in I$. Then $(a-a')b \in I$ by Definition 3.15, $ab-ab' \in I \Rightarrow ab+I = a'b+I$ Similarly, $a'(b-b') \in I \Rightarrow a'b-a'b' \in I \Rightarrow a'b+I = a'b'+I$. Thus (a+I)(b+I) = ab+I = a'b'+I = (a'+I)(b'+I).

Definition: 3.16: Principal Ideal

Suppose R is a commutative ring with 1 and $a \in R$, then the principal ideal of R generated by a is $(a) = \{ra : r \in R\} = Ra \stackrel{\text{Commutative}}{=} \{ar : r \in R\}.$

Proof. We show that $(a) \subset R$ is indeed an ideal for any a. Suppose $i \in (a)$ and $r \in R$, then by Definition 3.16, i = ar' for some $r' \in R$. Note $ir = (ar)r' = a(rr') \in (a)$.

Example: In \mathbb{Z} : (3) = $\{3n : n \in \mathbb{Z}\}\)$ = 3 \mathbb{Z} is the principal ideal generated by 3.

Example: In \mathbb{Z}_{15} , $(2) = \{2n : n \in \mathbb{Z}\} = \{0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13\} = \mathbb{Z}_{15}$ is the ideal generated by a unit 2. $(5) = \{5n : n \in \mathbb{Z}_{15}\} = \{0, 5, 10\}$

Theorem: 3.18:

 $(a) = R \Leftrightarrow a \in R$ is a unit.

Proof. (\Rightarrow) Suppose $a \in R$ with (a) = R, then $1 \in (a)$. Thus, exists $r \in R$ s.t. ar = 1. By Definition 3.3, a is a unit.

(⇐) Suppose $a \in R$ is a unit, there exists $r \in R$ s.t. ar = 1. Then $1 \in (a)$. For $b \in R$, $b = b(1) \in (a)$ Thus $R \subset (a)$, and R = (a).

Theorem: 3.19: Principal Ideals of \mathbb{Z}

Every ideal of \mathbb{Z} is a principal ideal.

Proof. Suppose $I \subset \mathbb{Z}$ is an ideal, and take $n \in I$ to be the smallest non-negative element. (Note, if n = 0, then $I = \{0\}$ is the trivial ideal.) We show that I = (n). Firstly, $(n) \subset I$ by definition. Suppose $m \in I$, use division algorithm with m and n. m = nq + r where $0 \leq r < n$. $r = m - nq \in I$ since $m \in I, n \in I$, and $nq \in I$. Thus $r = 0, m = nq, m \in (n)$. Therefore $I \subset (n)$ and I = (n).

Theorem: 3.20:

Let $\phi: R \to S$ be a ring homomorphism, then $\operatorname{Ker}(\phi)$ is an ideal.

Proof. let $a, b \in \operatorname{Ker}(\phi)$. $\phi(a-b) = \phi(a) - \phi(b) = 0 - 0 = 0$, then $a - b \in \operatorname{Ker}(\phi)$. $\phi(ab) = \phi(a)\phi(b) = 0 \cdot 0 = 0, ab \in \text{Ker}(\phi).$ Thus $\text{Ker}(\phi)$ is a subring by Theorem 3.16.

Suppose $a \in \text{Ker}(\phi), r \in R$. $\phi(ar) = \phi(a)\phi(r) = \phi(a)0 = 0$. $\phi(ra) = \phi(r)\phi(a) = 0\phi(a) = 0$ Thus $ar, ra \in \text{Ker}(\phi)$, and $\text{Ker}(\phi)$ is an ideal by Definition 3.15.

Theorem: 3.21:

Let $\phi : R \to S$ be a homomorphism. If $J \subset S$ is an ideal, then $\phi^{-1}(J) = \{a \in R : \phi(a) \in J\} \subset R$ is an ideal.

Proof. Suppose $a, b \in \phi^{-1}(J)$, then $\phi(a) \in J$, $\phi(b) \in J$. $\phi(a-b) = \phi(a) - \phi(b) \in J$, because J is a subring, then $a-b \in \phi^{-1}(J)$ $\phi(ab) = \phi(a)\phi(b) \in J$, thus $ab = \phi^{-1}(\phi(a)\phi(b)) \in \phi^{-1}(J)$ By Theorem 3.16, $\phi^{-1}(J)$ is a subring of R.

Let $a \in \phi^{-1}(J)$, $r \in R$. $\phi(ar) = \phi(a)\phi(r) \in J$, since J is an ideal. $ar \in \phi^{-1}(J)$. Similarly $\phi(ra) = \phi(r)\phi(a) \in J$. $ra \in \phi^{-1}(J)$. Thus $\phi^{-1}(J)$ is an ideal.

Definition: 3.17: Prime Ideal

An ideal $P \subset R$ is a prime ideal if $ab \in P \Leftrightarrow a \in P$ or $b \in P$. (This is the generalization of prime numbers.)

Definition: 3.18: Maximal Ideal

An ideal $M \subset R$ is a maximal ideal if for any ideal $I \subset R$ with $M \subset I \subset R$, we have I = M or I = R.

Theorem: 3.22:

If R is a commutative ring with 1. Then $P \subset R$ is a prime ideal $\Leftrightarrow R/P$ is an integral domain.

Proof. (\Rightarrow) Suppose P is a prime ideal and $(a+P)(b+P) = 0 + P \in R/P$. Then ab+P = 0 + P and thus $ab \in P$ by Definition 3.15.

Since P is prime ideal, $a \in P$ or $b \in P$, then a + P = 0 + P or b + P = 0 + P. Thus R/P is an integral domain by Definition 3.7.

(\Leftarrow) Suppose that R/P is an integral domain and $ab \in P$. We want to show that $a \in P$ or $b \in P$. Since $ab \in P$, $ab + P = 0 + P \in R/P$, thus (a + P)(b + P) = 0 + P. This gives either a + P = 0 + P or b + P = 0 + P. Therefore, $a \in P$ or $b \in P$. $P \subset R$ is a prime ideal.

Theorem: 3.23:

If R is a commutative ring with 1. Then $M \subset R$ is a maximal ideal $\Leftrightarrow R/M$ is a field.

Proof. (\Rightarrow) Suppose $M \subset R$ is a maximal ideal and $a + M \in R/M$ with $a \notin M$. Consider $\langle 0 + M \rangle \subset \langle a + M \rangle \subset R/M$. Note $\langle a + M \rangle = I/M$, where $M \subset I \subset R$. $a \in I$ and $a \notin M$ means $M \neq I$.

	_	п

Then I = R because M is maximal. Then $\langle a + M \rangle = R/M$, $1 + M \in \langle a + M \rangle$. Then there exists $b \in R$ s.t. (a + M)(b + M) = (1 + M). Inverse exsists, R/M is a field.

(⇐) Suppose R/M is a field. Take $I \subset R$, $M \subsetneq I \subset R$. We want to show that I = R. Since $M \subsetneq I$, there exists $a \in I$ s.t. $a \notin M$, then $M \subsetneq \langle a, M \rangle \subset I \subset R$, since $a + M \neq 0 + M \in R/M$. Then there exists $b \in R$ s.t. (a + M)(b + M) = 1 + M, so inverse of a + M exists. $1 + M \in \langle a, M \rangle \subset I$. Thus I = R by Theorem 3.18, since the unit is in I.

Example: Which are ideals in $\mathbb{Z}[x]$?

- 1. $I = \{p(x) : p(x) = xq(x) + 2k, k \in \mathbb{Z}, q(x) \in \mathbb{Z}[x]\}$, polynomials with even constant terms.
- 2. $I = \{p(x) : p(x) = x^2 q(x) + 2kx + l, k, l \in \mathbb{Z}, q(x) \in \mathbb{Z}[x]\}$, polynomials with even coefficients for x.
- 3. $I = \{p(x) \in \mathbb{Z}[x] : p'(0) = 0\}$

Proof. 1. Let $p_1(x) = xq_1(x) + 2k_1 \in I$, $p_2(x) = xq_2(x) + 2k_2 \in I$. Then $p_1(x) - p_2(x) = x(q_1 - q_2) + 2(k_1 - k_2) \in I$ $p_1p_2 = (xq_1 + 2k_1)(xq_2 + 2k_2) = x^2q_1q_2 + 2x(k_1q_2 + k_2q_1) + 4k_1k_2 \in I$. Thus I is a subring by Theorem 3.16 Take $f(x) = xg(x) + l \in \mathbb{Z}[x]$ with $l \in \mathbb{Z}$, then $p(x)f(x) = x^2qg + 2xkg + lxq + 2kl \in I$. Thus I is an ideal.

- 2. Let $p_1(x) = x^2 q_1(x) + 2k_1 x + l_1 \in I$, $p_2(x) = x^2 q_2(x) + 2k_2 x + l_2 \in I$. Then $p_1(x) p_2(x) \in I$ $p_1 p_2 = (x^2 q_1 + 2k_1 x + l_1)(x^2 q_2 + 2k_2 x + l_2) = x^2(x^2 q_1 q_2 + l_1 q_2 + l_2 q_1 + 4k_1 k_2) + 2(k_1 l_2 + k_2 l_1) + l_1 l_2 \in I$. Thus *I* is a subring by Theorem 3.16 Take $f(x) = x^2 g + mx + n \in \mathbb{Z}[x]$ with $l \in \mathbb{Z}$, then $p(x)f(x) = x^2(x^2 gq + nq + mg + 2km) + (lm + 2kn)x + ln \notin I$, since lm + 2kn is not even when l = m = 1. Thus *I* is not an ideal.
- 3. Let $p(x), q(x) \in I$. Then p'(0) = q'(0) = 0. $(p-q)'|_{x=0} = p'(0) q'(0) = 0$. $(pq)'|_{x=0} = p'(0)q(0) + p(0)q'(0) = 0$ Thus I is a subring by Theorem 3.16 Take $f(x) \in \mathbb{Z}[x]$ with $l \in \mathbb{Z}$, then $(fp)'|_{x=0} = f'(0)p(0) + f(0)p'(0) = f'(0)p(0) \neq 0$. Thus I is not an ideal.

For the third case, if we have $I = \{p(x) \in \mathbb{Z}[x] : p'(0) = 0, p(0) = 0\}$. Then I is an ideal.

Theorem: 3.24: Smallest Enclosing Ideal

Let $I, J \subset R$ be ideals. I + J is the smallest ideal containing I and J.

Proof. $I + J = \{i + j : i \in I, j \in J\}$. Let $a, b \in I, J$, then a = i + j, b = i' + j' for $i, i' \in I, j, j' \in J$. Then $b - a = (i' - i) + (j' - j) \in I + J$, ab = (i + j)(i' + j') = ii' + ij' + jj' + ji'. Since $ii' + ij' \in I$ and $ji' + jj' \in J$ by Definition 3.15. Then $ab \in I + J$. I + J is a subring by Theorem 3.16.

Let $a \in I$, $x \in R$, a = i + j for $i \in I$, $j \in J$. $ax = (i + j)x = ix + jx \in I + J$, since $ix \in I$, $jx \in J$. $xa = xi + xj \in I + J$. Since $i \in I \Rightarrow i + 0 = I + J$, $0 \in J$, then $I \subset I + J$. Similarly, $J \subset I + J$.

Suppose $K \subset R$ an ideal s.t. $I \subset K$ and $J \subset K$. Let $a \in I + J$, a = i + j for $i \in I$, $j \in J$. Then $i \in K$ and $j \in K$, thus $a \in K$. $I + J \subset K$.
3.4 Isomorphism Theorems for Rings

Theorem: 3.25: First Isomorphism Theorem for Rings

Let $\phi : R \to S$ be a ring homomorphism. Then there is a unique isomorphism $\psi : R/\operatorname{Ker}(\phi) \to \operatorname{Im}(\phi)$ s.t. $\psi(r + \operatorname{Ker}(\phi)) \cong Im(\phi)$.

Proof. Define $\psi : R/\operatorname{Ker}(\phi) \to Im(\phi)$ s.t. $\psi(r + \operatorname{Ker}(\phi)) = \phi(r)$

Well-defined: Suppose that $r + \operatorname{Ker}(\phi) = r' + \operatorname{Ker}(\phi)$, then $r - r' \in \operatorname{Ker}(\phi)$. $\phi(r + \operatorname{Ker}(\phi)) = \phi(r) = \phi(r) + 0 = \phi(r) + \phi(r' - r) = \phi(r + r' - r) = \phi(r') = \psi(r' + \operatorname{Ker}(\phi))$

Ring Homomorphism: $\psi(a + \operatorname{Ker}(\phi) + b + \operatorname{Ker}(\phi)) = \psi(a + b + \operatorname{Ker}(\phi)) = \phi(a + b) = \phi(a) + \phi(b) = \psi(a + \operatorname{Ker}(\phi)) + \psi(b + \operatorname{Ker}(\phi))$ $\psi((a + \operatorname{Ker}(\phi))(b + \operatorname{Ker}(\phi))) = \psi(ab + \operatorname{Ker}(\phi)) = \phi(ab) = \phi(a)\phi(b) = \psi(a + \operatorname{Ker}(\phi))\psi(b + \operatorname{Ker}(\phi))$

Injective: Suppose $r + \text{Ker}(\phi) \in \text{Ker}(\phi)$, $\psi(r + \text{Ker}(\phi)) = 0 = \phi(r)$. Thus $r \in \text{Ker}(\phi)$, $r + \text{Ker}(\phi) = 0 + \text{Ker}(\phi)$. Ker $(\psi) = \{0 + \text{Ker}(\phi)\}$, ψ is injective.

Surjective: Suppose $\phi(r) \in Im(\phi)$, then $\psi(r + \text{Ker}(\phi)) = \phi(r)$

Uniqueness: Suppose $\bar{\psi}(r + \operatorname{Ker}(\phi)) = \phi(r) = \psi(r + \operatorname{Ker}(\phi))$. Thus $\bar{\psi} = \psi$.

Example: $R = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} : a, b, c \in \mathbb{R} \right\} \subset \mathbb{R}^{2 \times 2}$. Show that $I = \left\{ \begin{bmatrix} 0 & x \\ 0 & 0 \end{bmatrix} : x \in \mathbb{R} \right\}$ is an ideal for R and $R/I \cong \mathbb{R} \times \mathbb{R}$.

Proof. Let $A = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$, $B = \begin{bmatrix} x & y \\ 0 & z \end{bmatrix}$ Then $A - B = \begin{bmatrix} a - x & b - y \\ 0 & c - z \end{bmatrix} \in R$ and $AB = \begin{bmatrix} ax & ay + bz \\ 0 & cz \end{bmatrix} \in R$. Therefore, R is a ring by Theorem 3.16.

Let $I_1 = \begin{bmatrix} 0 & x \\ 0 & 0 \end{bmatrix}$, $I_2 = \begin{bmatrix} 0 & y \\ 0 & 0 \end{bmatrix}$ Then $I_1 - I_2 = \begin{bmatrix} 0 & x - y \\ 0 & 0 \end{bmatrix} \in I$ and $I_1 I_2 = \begin{bmatrix} 0 & xy \\ 0 & 0 \end{bmatrix} \in I$. Therefore, I is a subring of R by Theorem 3.16.

To show that I is an ideal of R. Consider AI_1 and I_1A . $AI_1 = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \begin{bmatrix} 0 & x \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & xc \\ 0 & 0 \end{bmatrix} \in I, I_1A = \begin{bmatrix} 0 & x \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} = \begin{bmatrix} 0 & xc \\ 0 & 0 \end{bmatrix} \in I$

Consider $\phi: R \to \mathbb{R} \times \mathbb{R}$ s.t. $\phi \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} = (a, c)$. Then $\phi(A + B) = (a + x, c + z) = (a, c) + (x, z) = \phi(A) + \phi(B)$, and $\phi(AB) = (ax, cz) = (a, c)(x, z) = \phi(A)\phi(B)$. Thus ϕ is a ring homomorphism.

 $\operatorname{Ker}(\phi) = \{A \in R : \phi(A) = (a, c) = (0, 0)\}$, so we need a = c = 0. $\operatorname{Ker}(\phi) = I$, and I is an ideal. Thus by Theorem 3.25, $R/I \cong \mathbb{R} \times \mathbb{R}$.

Example: $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}, (3) = 3\mathbb{Z}[i] = \{3a + 3bi : a, b \in \mathbb{Z}\}.$ Show that $3\mathbb{Z}[i] \subset \mathbb{Z}[i]$ is a maximal ideal.

Proof. Let $\phi : \mathbb{Z}[i] \to \mathbb{Z}_3[i]$ s.t. $\phi(a+bi) = [a+bi]_3 = [a]_3 + [b]_3i$. ϕ is a homomorphism. Ker $(\phi) = \{a+bi : \phi(a+bi) = [a]_3 + [b]_3i = [0]_3 + [0]_3i\}$. Thus $a \equiv 0 \mod 3$ and $b \equiv 0 \mod 3$. a = 3m, b = 3n for some $m, n \in \mathbb{Z}$. Then, $a+bi \in 3\mathbb{Z}[i] = (3)$. By Theorem 3.25, $\mathbb{Z}[i]/(3) \cong \mathbb{Z}_3[i]$.

Note: $\mathbb{Z}_3[i] = \{0, 1, 2, i, 2i, 1+i, 1+2i, 2+i, 2+2i\}$ is a field since inverses exist for all elements. Thus $(3) \subset \mathbb{Z}[i]$ is maximal by Theorem 3.23.

Theorem: 3.26: Second Isomorphism Theorem for Rings

Let $I \subset R$ be a subring and $J \subset R$ be an ideal. Then 1. $I \cap J \subset I$ is an ideal 2. $I/(I \cap J) \cong (I + J)/J$

- *Proof.* 1. Suppose $a \in I \cap J$ and $b \in I$, we want to show that $ab \in I \cap J$ and $ba \in I \cap J$. Note $a \in I \cap J$ means $a \in I$ and $I \in J$, $b \in J \subset R$. Then $ab \in J$ since $J \subset R$ is an ideal. $ab \in I$ since $I \subset R$ is a subring. Thus $ab \in I \cap J$. Similarly, we have $ba \in I \cap J$, thus $I \cap J \subset I$ is an ideal.
 - 2. Define $\phi : I \to (I+J)/J$ s.t. $\phi(a) = a + J$ Homomorphism: $\phi(a+b) = (a+b) + J = (a+J) + (b+J) = \phi(a) + \phi(b)$ $\phi(ab) = ab + J = (a+J)(b+J) = \phi(a)\phi(b)$

Surjective: Let a + J s.t. $a \in I + J$, (then $a + J \in (I + J)/J$) *i.e.* a = i + j for $i \in I$, $j \in J$. Then a + J = i + j + J = i + J. Therefore, $\exists i \in I$ s.t. $\phi(i) = i + J = a + J$, thus surjective.

Find kernel: Suppose $a \in I \cap J$, *i.e.* $a \in I$ and $a \in J$. $\phi(a) = a + J \stackrel{a \in J}{=} 0 + J$. Thus $a \in \text{Ker}(\phi) \Rightarrow I \cap J \subset \text{Ker}(\phi)$. Suppose $a \in \text{Ker}(\phi) \subset I$, then $a \in I$, and $\phi(a) = a + J = 0 + J$. Then $a \in J$, thus $a \in I \cap J$. So $\text{Ker}(\phi) \subset I \cap J$. Therefore, $\text{Ker}(\phi) = I \cap J$, $I/(I \cap J) \cong (I + J)/J$ by Theorem 3.25.

3.5 Polynomial Rings

Definition: 3.19: Polynomial Rings

Suppose R is a commutative ring with 1, $p(x) = a_0 + a_1x + \cdots + a_nx_n^n$ with $a_i \in R$ is a polynomial over R with indeterminate x

1. $a_n \neq 0$ is called the leading coefficient of p(x)

2. $\deg(p(x)) = n$

3. If $a_n = 1$, then p(x) is monic

4. The set of all polynomials is denoted R[x]

Theorem: 3.27:

R[x] is a commutative ring with 1.

Proof. Let $p(x) = a_0 + a_1 x + \dots + a_n x^n$, $q(x) = b_0 + b_1 x + \dots + b_m x^m$. $pq = c_0 + c_1 x + \dots + c_{m+n} x^{m+n}$, where $c_k = \sum_{l=0}^k a_{k-l} b_l$. $qp = \hat{c}_0 + \hat{c}_1 x + \dots + \hat{c}_{m+n} x^{m+n}$, where $\hat{c}_k = \sum_{l=0}^k a_l b_{k-l} \stackrel{\text{set } l=k-l}{=} \sum_{l'=0}^k a_{l'} b_{k-l'} = c_k$. Thus qp = pq, multiplication is commutative.

Theorem: 3.28:

If R is an integral domain, then so is R[x].

Proof. Contrapositive: if R[x] is not is integral domain, then R is not an integral domain. Let $p(x) = a_0 + a_1 x + \cdots + a_n x^n$, $q(x) = b_0 + b_1 x + \cdots + b_m x^m$, with $a_n \neq 0, b_m \neq 0$. Suppose R[x] is not an integral domain, then we have $p(x) \neq 0$, $q(x) \neq 0$, but p(x)q(x) = 0, *i.e.* $a_n b_m = \operatorname{coeff}_{x^{n+m}}(pq) = 0$. Then $\exists a_n, b_m \in R$ s.t. $a_n \neq 0, b_m \neq 0$, but $a_n b_m = 0$. We have a zero divisor, thus R is not an integral domain.

Remark 7. 1. If K is a field, K[x] is not a field. p(x) = x does not have an inverse.

2. If K is a field $K[[x]] = \left\{\sum_{n=0}^{\infty} a_n x^n : a_n \in R\right\}$ is a field. $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$, so $(1-x)\sum_{n=0}^{\infty} x^n = 1$. And we can show that every element has an inverse.

we can show that every element has an inverse.

3. If K is a field,
$$K[x, x^{-1}] = \left\{ \sum_{n=-N}^{M} a_n x^n : a_n \in R \right\}$$
 (Laurent polynomials) is not a field.

3.5.1 Division Algorithm

Theorem: 3.29: Division Algorithm for Polynomials

Let K be a field and $f(x), g(x) \in K[x]$. Then there are unique q(x), r(x) s.t. f(x) = g(x)q(x) + r(x), where $0 \leq \deg(r(x)) < \deg(g(x))$

Proof. Let f(x), g(x) be polynomials s.t. $\deg(f(x)) = n$, $\deg(g(x)) = m$. Assume $m \le n$, otherwise, f(x) = 0g(x) + r(x) a trivial case.

We do induction on n = m + k. **Base Case:** $k = 0, m = n, f(x) = a_n x^n + \dots + a_0, g(x) = b_n x^n + \dots + b_0, a_n \neq 0, b_n \neq 0$. Then $f(x) = \frac{a_n}{b_n} g(x) + \left[f(x) - \frac{a_n}{b_n} g(x) \right]$. $r(x) = f(x) - \frac{a_n}{b_n} g(x) = \left(a_{n-1} - \frac{a_n}{b_n} b_{n-1} \right) x^{n-1} + \dots$, $\deg(r(x)) < n$ **Induction Hypothesis:** Assume for all p(x) with degree < n, we can do the division algorithm. **Induction Step:** Consider $\hat{f}(x) = f(x) - \frac{a_n}{b_m} x^{n-m} g(x) = (a_n x^n + \dots) - \frac{a_n}{b_m} x^{n-m} (b_m x^m + \dots) = \left(a_n - \frac{a_n}{b_m} b_m \right) x^n + \hat{a}_{n-1} x^{n-1} + \dots + \hat{a}_0 = \hat{a}_{n-1} x_{n-1} + \dots + \hat{a}_0$ has degree < n. Apply IH to $\hat{f}(x)$ and $g(x), \hat{f} = g\hat{q} + r$ with $0 \le \deg(\hat{r}) < m$. $f(x) = \hat{f} + \frac{a_n}{b_m} x^{n-m} g = g\hat{q} + \hat{r} + \frac{a_n}{b_m} x^{n-m} g = g\left(\hat{q} + \frac{a_n}{b_m} x^{n-m}\right) + \hat{r}$. Let $q = \hat{q} + \frac{a_n}{b_m} x^{n-m}$, $r = \hat{r}$, then f = gq + r where $0 \le \deg(r) < m$.

Uniqueness: Suppose $f = gq_1 + r_1 = gq_2 + r_2$, $0 \le \deg r_i < \deg g$ Then $0 = g(q_1 - q_2) + (r_1 - r_2)$, $r_2 - r_1 = g(q_1 - q_2)$, $\deg(r_2 - r_1) < \deg(g) \le \deg(g(q_1 - q_2))$. Thus, $r_1 = r_2$, and $q_1 = q_2$. The factorization is unique.

Definition: 3.20: GCD of Polynomials

Let K be a field, $d(x) \in K[x]$ is the gcd of $f(x), g(x) \in K[x]$ if d(x)|f(x) and d(x)|g(x) and if $\hat{d}(x)|f(x)$ and $\hat{d}(x)|g(x)$, then $\hat{d}(x)|d(x)$. If gcd(f,g) = 1, then f and g are relatively prime.

Theorem: 3.30: Bezout's Identity

If $d(x) = \gcd(f, g)$, then $\exists a(x), b(x) \in K[x]$ s.t. a(x)f(x) + b(x)g(x) = d(x)

Proof. Consider the set $S = \{p(x)f(x) + q(x)g(x) : p(x), q(x) \in K[x]\}$. Suppose $u(x), v(x) \in S$, both monic with the smallest degree, then $u(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$, $v(x) = x^n + b_{n-1}x^{n-1} + \cdots + b_0$. Note $u(x) - v(x) \in S$, $u(x) - v(x) = (a_{n-1} - b_{n-1})x^{n-1} + \cdots + (a_0 - b_0)$, $deg(u - v) \leq n - 1 < deg(u) = n$, thus u(x) - v(x) = 0, u = v. *i.e.* There is a unique polynomial in S which is monic with the smallest degree.

Let $d(x) = a(x)f(x) + b(x)g(x) \in S$ be the monic polynomial with min degree. We show that d(x)|f(x) and d(x)|g(x).

Use Theorem 3.29 on f and g, f(x) = d(x)q(x) + r(x), $0 \le \deg(r) < \deg(d)$. $r(x) = f(x) - d(x)q(x) = f(x) - (a(x)f(x) + b(x)g(x))q(x) = (1 - a(x)q(x))f(x) - b(x)q(x)g(x) \in S$. Thus r(x) = 0, d(x)|f(x). Similarly d(x)|g(x).

Suppose $\hat{d}(x) \in K[x]$ s.t. $\hat{d}(x)|f(x)$ and $\hat{d}(x)|g(x)$. Then $f(x) = \hat{d}(x)u(x)$ and $g(x) = \hat{d}(x)v(x)$. Thus $d(x) = a(x)u(x)\hat{d}(x) + b(x)v(x)\hat{d}(x) = (a(x)u(x) + b(x)v(x))\hat{d}(x)$. $\hat{d}(x)|d(x)$

Example: Find a(x) and b(x) s.t. $a(x)f(x) + b(x)g(x) = \gcd(f(x), g(x))$, where $f(x) = x^4 - 2x^3 - 3x - 2$, $g(x) = x^3 + 4x^2 + 4x + 1$ In $\mathbb{Q}[x]$, $f(x) = (x - 4)g(x) + (10x^2 + 12x + 2)$, $g(x) = (\frac{1}{10}x + \frac{7}{25})(10x^2 + 12x + 2) + \frac{11}{25}(x + 1)$ Note that $(x + 1)|(10x^2 + 12x + 2)$, so (x + 1)|g(x) and (x + 1)|f(x) is the gcd.

$$\begin{aligned} x+1 &= \frac{25}{11}g(x) - \frac{25}{11}\left(\frac{1}{10}x + \frac{7}{25}\right)(10x^2 + 12x + 2) \\ &= \frac{25}{11}g(x) - \frac{25}{11}\left(\frac{1}{10}x + \frac{7}{25}\right)(f(x) - (x - 4)g(x)) \\ &= \left(\frac{5x^2}{22} - \frac{3x}{11} - \frac{3}{11}\right)g(x) + \left(-\frac{5}{22}x - \frac{7}{11}\right)f(x) \end{aligned}$$

Thus $a(x) = \left(\frac{5x^2}{22} - \frac{3x}{11} - \frac{3}{11}, b(x)\right) = -\frac{5}{22}x - \frac{7}{11}$

In $\mathbb{Z}_2[x]$, $f(x) = x^4 + x$, $g(x) = x^3 + 1$, f(x) = xg(x). Thus g(x)|f(x), $gcd(f,g) = g = x^3 + 1$.

In $\mathbb{Z}_{11}[x]$, we start with $f(x) = (x-4)g(x) + (10x^2 + 12x + 2)$. Reduce in \mathbb{Z}_{11} , we get $f(x) = (x-4)g(x) + (-x^2 + x + 2)$ Note $g(x) = (-x^2 + x + 2)(-x - 5)$. Thus $gcd(f,g) = -x^2 + x + 2$ $-x^2 + x + 2 = f(x) - (x-4)g(x)$

3.5.2 Irreducible Polynomials

Definition: 3.21: Irreducible Polynomials

We say a non constant polynomial $f(x) \in K[x]$ is irreducible if it cannot be written as f(x) = g(x)h(x) with $\deg(g), \deg(h) < \deg(f)$.

Theorem: 3.31:

 $p(x) \in K[x]$ is irreducible $\Leftrightarrow K[x]/(p(x))$ is a field. (p(x)) is the principal ideal generated by p(x).

Proof. (\Rightarrow) Suppose $p(x) \in K[x]$ is irreducible. Consider an ideal $I \subset K[x]$, where $(p(x)) \subsetneq I \subset K[x]$. Take $f(x) \in I \setminus (p(x))$. p(x) is irreducible and f(x) is not a multiple of p(x), otherwise $f(x) \in (p(x))$. Thus gcd(f, p) = 1.

By Theorem 3.30, $\exists a(x), b(x) \in K[x]$ s.t. a(x)f(x) + b(x)p(x) = 1Note $f(x) \in I$, $p(x) \in I$. By Definition 3.15, $1 \in I$. By Theorem 3.18, I = K[x]. Thus (p(x)) is maximal by Definition 3.18. And by Theorem 3.23, K[x]/(p(x)) is a field.

(\Leftarrow) Suppose K[x]/(p(x)) is a field, then (p(x)) is a maximal ideal by Theorem 3.23. Suppose p(x) = f(x)g(x), then $p(x) \in (f(x)), (p(x)) \subset (f(x)) \subset K[x]$. Case 1: (p(x)) = (f(x)), then f(x) = p(x)h(x), $\deg(f) = \deg(p), p(x) = \operatorname{const} f(x)$. p(x) is irreducible. Case 2: (f(x)) = K[x]. Then f(x) is a unit in K[x]. $f(x) = \alpha$ is a constant. $\deg(f) = 0$. Thus $\deg(g) = \deg(p)$. p is irreducible.

Example: Show that \mathbb{C} is a field.

Proof. $\phi : \mathbb{R}[x] \to \mathbb{C}$ s.t. $\phi(f(x)) = f(i)$ is a homomorphism with $\operatorname{Ker}(\phi) = (x^2 + 1)$. $x^2 + 1$ is irreducible in $\mathbb{R}[x]$. Thus $\mathbb{R}[x]/(x^2 + 1) \cong \mathbb{C}$ is a field by Theorem 3.25 and 3.31.

Example: Show that $\mathbb{Q}(\sqrt{2})$ is a field.

Proof. $\phi : \mathbb{Q}[x] \to \mathbb{Q}(\sqrt{2})$ s.t. $\phi(f(x)) = f(\sqrt{2})$ is a homomorphism, $\operatorname{Ker}(\phi) = (x^2 - 2)$. $x^2 - 2$ is irreducible in $\mathbb{Q}[x]$. Thus $\mathbb{Q}[x]/(x^2 - 2) \cong \mathbb{Q}(\sqrt{2})$ is a field.

Example: Show that $\mathbb{Z}[x]/(x^2 + x + 1)$ is a field.

Proof. $x^2 + x + 1$ is irreducible in $\mathbb{Z}_2[x]$. The field has order $2^2 = 4$.

Lemma: 3.3:

Let $p(x) \in \mathbb{Q}[x]$, then $p(x) = \frac{r}{s}(a_0 + a_1x + \dots + a_nx^n)$ with gcd(r, s) = 1, $gcd(\{a_i\}) = 1$.

Proof. Let $p(x) = \frac{b_0}{c_0} + \frac{b_1}{c_1}x + \dots + \frac{b_n}{c_n}x^n$ for $b_i, c_i \in \mathbb{Z}$, $p(x) \in \mathbb{Q}[x]$. We can write $p(x) = \frac{1}{c_0 \cdots c_n}(d_0 + d_1x + \dots + d_nx^n)$, where $d_i = \frac{c_0 \cdots c_n}{c_i}b_i$. Let $d = \gcd(d_0, \dots, d_n)$, then $d_0 = da_0$, $d_n = da_n$ with $\gcd(a_0, \dots, a_n) = 1$ $p(x) = \frac{1}{c_0 \cdots c_n}(da_0 + da_1x + \dots + da_nx^n) = \frac{d}{c_0 \cdots c_n}(a_0 + a_1x + \dots + a_nx^n) = \frac{r}{s}(a_0 + a_1x + \dots + a_nx^n)$ by reducing the fractions.

Lemma: 3.4: Gauss Lemma

Let $p(x) \in \mathbb{Z}[x]$ be monic that factors $p(x) = \alpha(x)\beta(x) \in \mathbb{Q}[x]$ with $\deg(\alpha), \deg(\beta) < \deg(p)$. Then $\exists a(x), b(x) \in \mathbb{Z}[x]$ s.t. a(x), b(x) are monic with $\deg(a) = \deg(\alpha), \deg(b) = \deg(\beta)$ and p(x) = a(x)b(x).

Proof. Suppose $p(x) = \alpha(x)\beta(x), \alpha(x), \beta(x) \in \mathbb{Q}[x]$. By Lemma 3.3, $\alpha(x) = \frac{c_1}{d_1}(a_0 + \dots + a_m x^m)$. Similarly, $\beta(x) = \frac{c_2}{d_2}(a_0 + \dots + a_m x^n)$. Let $\alpha_1(x) = (a_0 + \dots + a_m x^m), \beta_1(x) = (a_0 + \dots + a_n x^n), c = c_1c_2, d = d_1d_2$. Then $p(x) = \alpha(x)\beta(x) = \frac{c_1c_2}{d_1d_2}\alpha_1(x)\beta_1(x) = \frac{c}{d}\alpha_1(x)\beta_1(x)$. Thus $c\alpha_1(x)\beta_1(x) = dp(x)$.

Case 1: d = 1. $\alpha_1(x)\beta_1(x) \in \mathbb{Z}[x]$. 1 $\stackrel{p(x) \text{ is monic}}{=} \operatorname{coeff}_{x^{m+n}} p(x) = ca_m b_n$ If c = 1, $a_m = b_n = 1$, $a(x) = \alpha_1(x)$, $b(x) = \beta_1(x)$, or $a_m = b_n = -1$, $a(x) = -\alpha_1(x)$, $b(x) = -\beta_1(x)$. If c = -1, $a_m = 1$, $b_n = -1$, $a(x) = \alpha_1(x)$, $b(x) = -\beta_1(x)$, or $a_m = -1$, $b_n = 1$, $a(x) = -\alpha_1(x)$, $b(x) = \beta_1(x)$.

Case 2: $d \neq 1$. Pick a prime s.t. p|d and $p \not\mid c$. Take a_l with $p \not\mid a_l$, b_k with $p \not\mid b_k$. Set $\hat{\alpha}(x) \equiv \alpha_1(x) \mod \mathbb{Z}_p[x]$, $\hat{\beta}(x) \equiv \beta_1(x) \mod \mathbb{Z}_p[x]$. Then $\hat{\alpha}(x) \neq 0$ and $\hat{\beta}(x) \neq 0$. $\hat{\alpha}(x)\hat{\beta}(x) \equiv \alpha_1(x)\beta_1(x) \mod \mathbb{Z}_p[x] \equiv \frac{d}{c}p(x) \mod \mathbb{Z}_p[x] \equiv 0 \mod \mathbb{Z}_p[x]$ since p|d. Contradiction, because $\mathbb{Z}_p[x]$ is an integral domain. Thus $d \neq 1$ is not possible.

Theorem: 3.32: Einstein's Criterion

Let p be a prime and $f(x) = a_0 + \cdots + a_n x^n \in \mathbb{Z}[x]$. If $p|a_i$ for $i \in \{0, ..., n-1\}$, but $p \not|a_n$ and $p^2 \not|a_0$, then f(x) is irreducible over $\mathbb{Q}[x]$.

Proof. Assume $f(x) = a_0 + a_1 x + \cdots + a_n x^n = (b_0 + \cdots + b_r x^r)(c_0 + \cdots + c_s x^s)$. $p^2 \not| a_0 \text{ with } a_0 = b_0 c_0 \text{ means } p \not| b_0 \text{ or } p \not| c_0. \text{ WLOG, we assume } p \not| b_0, \text{ but } p \mid c_0.$ $p \not| a_n \text{ with } a_n = b_r c_s \text{ means } p \not| b_r \text{ and } p \not| c_s.$ Let m be the minimal integer s.t. $p \not| c_m$ and consider $a_m = b_0 c_m + b_1 a_{m-1} + \cdots + b_m c_0.$ Then $p \not| a_m.$

By the constraints (the minimal integer s.t. $p \not| a_m$ should be n), $a_m = a_n$, thus m = n. $\deg(c_0 + \cdots + c_s x^s) = \deg(f(x))$. Thus there is no factorization. f(x) is irreducible.

Example: $3x^6 + 25x^5 - 20x^2 + 15x - 10$ is irreducible with p = 5.

Example: $5x^3 + 14x^2 - 7x + 7$ is irreducible with p = 7.

3.6 Integral Domains

Theorem: **3.33**:

Every ideal in K[x] is a principal ideal. K[x] is a PID (Principal Ideal Domain).

Proof. Suppose $I \subset K[x]$ is an ideal. Take $p(x) \in I$ s.t. p(x) is monic, and $\deg(p(x))$ is minimal over all polynomials of positive degree. $(p(x)) \subset I$.

Let $f(x) \in I$. Do division algorithm with f(x) and p(x), f(x) = p(x)q(x) + r(x) with $0 \le \deg(r) < \deg(p)$. Thus $\deg(r) = 0$, because p(x) is minimal degree.

Case 1: $r(x) = 0, f(x) \in (p(x)), I \subset (p(x))$. Then (p(x)) = I. I is principal ideal.

Case 2: $\alpha \neq 0 \in K$. Then $(p(x)) = (\alpha) = K[x] = I$. I is a principal ideal.

Example: $\mathbb{Z}[x]$ is not a PID.

Proof. We find an ideal I that is not principal.

Let $I = (x, 2) = \{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + 2a_0 : a_i \in \mathbb{Z}\}.$ Suppose $p(x) \in \mathbb{Z}[x]$ with (p(x)) = I = (x, 2), then $2 \in (p(x)), 2 = p(x)f(x)$ for some $f(x) \in \mathbb{Z}[x].$ Then $\deg(p) = \deg(f) = 0$. p(x) = 1 or p(x) = 2. But $p(x) \neq 1$, otherwise $(p(x)) = (1) = \mathbb{Z}[x].$ Thus p(x) = 2, I = (2), but $x \notin I$, since x is not necessarily a multiple of 2. Contradiction. Thus I is not principal.

3.6.1 Field of Fractions

We can think of \mathbb{Q} as a set of symbols $\frac{a}{b}$, $a, b \in \mathbb{Z}$, $b \neq 0$, where $\frac{a}{b} = \frac{c}{d} \Leftrightarrow ad = bc$.

Theorem: 3.34: Field of Fractions

Let *D* be any integral domain. $S = \{(a, b) : a, b \in D, b \neq 0\}$. $\sim \subset S \times S$ s.t. $(a, b) \sim (c, d) \Leftrightarrow ad = bc$ is an equivalence relation. The equivalence classes are $[a, b] = \{(c, d) \in S : (a, b) \sim (c, d)\}$. Define $F_D = \{[a, b] : a, b \in D, b \neq 0\}$. F_D is a field (the field of fraction of *D*). It is the unique smallest field s.t. *D* can be embedded in F_D .

Proof. Firstly, we show that \sim is an equivalence relation.

- 1. Reflexivity: $(a, b) \sim (b, a)$, because ab = ab
- 2. Symmetry: If $(a, b) \sim (c, d)$, then ad = bc, $bc = ad \Rightarrow (c, d) \sim (a, b)$
- 3. Transitivity: If $(a,b) \sim (c,d)$ and $(c,d) \sim (e,f)$, then ad = bc and cf = de. Then adcf = bcde, af = be, $(a,b) \sim (e,f)$.

Now we show that F_D is a field.

We define the addition [a, b] + [c, d] = [ad + bc, bd]. We check that the addition is well-defined: Suppose $[a, b] = [\hat{a}, \hat{b}], [c, d] = [\hat{c}, \hat{d}]$. *i.e.* $a\hat{b} = \hat{a}b, c\hat{d} = \hat{c}d$. $[a, b] + [c, d] = [ad + bc, bd], [\hat{a}, \hat{b}] + [\hat{c}, \hat{d}] = [\hat{a}\hat{d} + \hat{b}\hat{c}, \hat{b}\hat{d}]$.

 $(ad+bc)(\hat{b}\hat{d}) = ad\hat{b}\hat{d} + bc\hat{b}\hat{d} = a\hat{b}d\hat{d} + c\hat{d}b\hat{b} \stackrel{\text{Equivalence}{of}[a,b] = [\hat{a},\hat{b}]}{=} \hat{a}bd\hat{d} + \hat{c}db\hat{b} = bd(\hat{a}\hat{d} + \hat{c}\hat{b}).$ Thus addition is well-defined.

We define the multiplication [a, b][c, d] = [ac, bd]. It is also easy to check that the multiplication is well defined.

 F_D is abelian, additive identity is [0, d], inverse of [a, b] is [-a, b]. Multiplication is associative, distributive, commutative and identity is [a, a], with inverse of [a, b] being [b, a] for $a \neq 0$.

Now we show that we can embed D in F_D . Consider $I: D \to F_D$ s.t. I(a) = [a, 1]. Homomorphism: I(a, b) = [a + b, 1] = [a, 1] + [b, 1] = I(a) + I(b)I(ab) = [ab, 1] = [a, 1][b, 1] = I(a)I(b)Injective: Suppose $a \in \text{Ker}(I)$, *i.e.* I(a) = 0. Then $[a, 1] = [0, 1] \Rightarrow a = 0$. Thus Ker(I) = 0. Thus I is an injective ring homomorphism.

We now show that F_D is the smallest such field. Suppose $\exists K$ a field s.t. D is embedded in K. *i.e.* $\exists \phi : D \to K$ an injective field homomorphism. We want to find $\psi : F_D \to K$ s.t. $\phi = \psi \circ I$. Set $\psi([a, b]) = \phi(a)\phi(b)^{-1}$. With $a, b \in D$, $\phi(a), \phi(b) \in K$.

Homomorphism:

$$\begin{split} \psi([a,b]+[c,d]) &= \psi([ad+bc,bd]) = \phi(ad+bc)\phi(bd)^{-1} = (\phi(a)\phi(d) + \phi(b)\phi(c))\phi(b)^{-1}\phi(d)^{-1} = \phi(a)\phi(b)^{-1} + \phi(c)\phi(d)^{-1} = \psi([a,b]) + \psi([c,d]). \\ \psi([a,b][c,d]) &= \psi([ac,bd]) = \phi(ac)\phi(bd)^{-1} = \phi(a)\phi(b)^{-1}\phi(c)\phi(d)^{-1} = \psi([a,b])\psi([c,d]) \\ \text{Injective: Suppose } [a,b] \in \text{Ker}(\psi). \ \psi([a,b]) = \phi(a)\phi(b)^{-1} = 0, \text{ but } \phi(b)^{-1} \neq 0. \text{ Thus } \phi(a) = 0. \ a = 0. \\ \text{Ker}(\psi) &= \{[0,b]\} = \{[0,1]\} \text{ is trivial. } \psi \text{ is injective field homomorphism.} \end{split}$$

Now we show that $\phi = \psi \circ I$, $\psi \circ I(a) = \psi([a, 1]) = \phi(a)\phi(1)^{-1} = \phi(a)$. Thus $\phi = \psi \circ I$.

Definition: 3.22: Irreducibles and Primes

Let R be a commutative ring with 1, D be an integral domain. Let $a, b \in R$.

- 1. a|b if $\exists c \in R$ s.t. b = ac
- 2. a and b are associates if there exists a unit u s.t. a = ub
- 3. A non-unit $p \in D$ is irreducible if when p = ab, a or b is a unit
- 4. *p* is prime if $p|ab \Rightarrow p|a$ or p|b

Example: $R = \langle x^2, y^2, xy \rangle \subset \mathbb{Q}[x, y].$

Note: $R = \mathbb{Q}[x, y]^{\mathbb{Z}_2}$ is $\mathbb{Q}[x, y]$ under the group action of \mathbb{Z}_2 . $\mathbb{Z}_2(x) = -x$, $\mathbb{Z}_2(y) = -y$. x^2, y^2, xy are irreducible in R, but xy is not prime. $xy|x^2y^2$, but $xy \not|x$ and $xy \not|y$.

$\overline{\textit{Definition: 3.23: } \mathbb{Z}[i\sqrt{3}]} \text{ and Norm}$

Consider the ring $\mathbb{Z}[i\sqrt{3}] = \{a + bi\sqrt{3} : a, b \in \mathbb{Z}\}$. We can associate a norm function $N : \mathbb{Z}[i\sqrt{3}] \to \mathbb{N}$ s.t. $N(a + bi\sqrt{3}) = a^2 + 3b^2$ with the following properties: 1. $N(x) = 0 \Leftrightarrow x = 0$

1. $N(x) = 0 \Leftrightarrow x = 0$ 2. N(xy) = N(x)N(y)

- 3. u is a unit $\Leftrightarrow N(u) = 1$
- 5. u is a unit $\Leftrightarrow N(u) = 1$
- 4. If N(x) is a prime, x is irreducible.

Proof. We show that N(x) is a well-defined norm function.

- 1. (\Rightarrow) Let $x = a + bi\sqrt{3}$. If N(x) = 0, $a^2 + 3b^2 = 0$. Since $a^2 \ge 0$, $b^2 \ge 0$, we have a = b = 0, x = 0. (\Leftarrow) trivial.
- 2. Let $x = a + bi\sqrt{3}$, $y = c + di\sqrt{3}$. $xy = (ac 3bd) + (ad + bc)i\sqrt{3}$. $N(xy) = (ac - 3bd)^2 + 3(ad + bc)^2 = (a^2 + 3b^2)(c^2 + 3d^2) = N(x)N(y)$
- 3. (⇒) Suppose *u* is a unit. $\exists u^{-1} \in \mathbb{Z}[i\sqrt{3}]$ s.t. $uu^{-1} = 1$. $N(uu^{-1}) = 1 \stackrel{\text{By 2.}}{=} N(u)N(u^{-1})$. But $N(u), N(u^{-1}) \in \mathbb{N}$, then $N(u) = N(u)^{-1} = 1$ (⇐) Suppose N(u) = 1, $u = a + bi\sqrt{3}$. $N(u) = a^2 + 3b^2$. If $b^2 > 0$, N(u) > 1. Thus $b^2 = 0$, b = 0, and $a^2 = 1$, $a = \pm 1$. $u = \pm 1$, both are units.
- 4. Suppose x = yz. Then N(x) = N(y)N(z). If N(x) is prime. WLOG, N(y) = 1, N(x) = N(z), y is a unit, x is irreducible.

We now show that $(1 + i\sqrt{3})$ is irreducible but not a prime in $\mathbb{Z}[i\sqrt{3}]$. Suppose $1 + i\sqrt{3} = xy$, $N(x)N(y) = N(1 + i\sqrt{3}) = 4$. Case 1: x or y is a unit, then $1 + i\sqrt{3}$ is irreducible. Case 2: x and y are not unit, then N(x) = N(y) = 2, but $a^2 + 3b^2 = 2$ has no solution in natural numbers. Contradiction. This case is impossible. $(1+i\sqrt{3})(1-i\sqrt{3}) = 4 = 2 \cdot 2$ Thus $(1+i\sqrt{3})|4 \Rightarrow (1+i\sqrt{3})|2 \cdot 2$, but $(1+i\sqrt{3})$ /2, thus it is not a prime.

3.6.2 Unique Factorization Domain

Definition: 3.24: Unique Factorization Domain

An integral domain D is a unique factorization domain (UFD) if

- 1. Every non-zero non-unit element can be written as the product of irreducibles.
- 2. If $a = p_1 \cdots p_r = q_1 \cdots q_s$ with p_i, q_j irreducible, then r = s and $\exists \sigma \in S_r$ with $p_i = q_{\sigma(i)}u_i$, u_i a unit. *i.e.* p_i and $q_{\sigma(i)}$ are associates.

Example: \mathbb{Z} is a UFD by the fundamental theorem of arithmetic.

 $30 = 2 \cdot 3 \cdot 5 = 2(-3)(-5)$, but (-3) = (-1)3, where (-1) is a unit. $\{2, 3, 5\}$ is the same as $\{2, -3, -5\}$ up to a unit.

Example: $\mathbb{Z}[i], K[x]$ are UFD.

Example: $\mathbb{Z}[i\sqrt{3}]$ is not a UFD. Consider $4 = 2 \cdot 2 = (1 + i\sqrt{3})(1 - i\sqrt{3})$. For $\mathbb{Z}[i\sqrt{3}]$ to be a UFD, we need $2 = (1 + i\sqrt{3})u$, where u is a unit. Let $u = a + bi\sqrt{3} \in \mathbb{Z}[i\sqrt{3}]$. $u^{-1} = \frac{a - bi\sqrt{3}}{a^2 + 3b^2} \in \mathbb{Z}[i\sqrt{3}]$. We need $\frac{a}{a^2 + 3b^2} \in \mathbb{Z}$, b = 0, $\frac{a}{a^2} = \frac{1}{a} = \mathbb{Z}$, then $a = \pm 1$. $u = \pm 1$, which is impossible, because $2 \neq 1 + i\sqrt{3}$.

Example: $\mathbb{Z}[\sqrt{5}]$ is not a UFD. Consider $4 = 2 \cdot 2 = (1 + \sqrt{5})(-1 + \sqrt{5})$. We need $2 = u(1 + \sqrt{5})$. Let $u = a + b\sqrt{5}$. $2 = (1 + \sqrt{5})(a + b\sqrt{5}) = a + 5b + (a + b)\sqrt{5}$. $\begin{cases} a + 5b = 2 \\ a + b = 0 \end{cases} \Rightarrow \begin{cases} a = -\frac{1}{2} \\ b = \frac{1}{2} \end{cases}$, $a, b \notin \mathbb{Z}$.

Definition: 3.25: Primitive and Content

Let *D* be an integral domain, *F* be a field of fraction. Let $p(x) = a_n x^n + \cdots + a_0 \in D[x]$. Define the content of p(x) to be $\operatorname{cont}(p(x)) = \operatorname{gcd}(a_0, \dots, a_n)$. p(x) is primitive if $\operatorname{cont}(p(x)) = 1$.

Lemma: 3.5:

- 1. If $f(x), g(x) \in D[x]$ are primitive, then so is f(x)g(x)
- 2. $\operatorname{cont}(fg) = \operatorname{cont}(f)\operatorname{cont}(g)$
- 3. Suppose $p(x) \in D[x]$ with $p(x) = f(x)g(x) \in F(x)$, then $\exists \hat{f}(x), \hat{g}(x) \in D[x]$ s.t. $p = \hat{f}\hat{g}$

Corollary 5. p(x) is irreducible in $D[x] \Leftrightarrow p(x)$ is irreducible in F[x].

Theorem: 3.35:

D is a UFD $\Leftrightarrow D[x]$ is a UFD.

3.6.3 Principal Ideal Domain

Definition: 3.26: Principal Ideal Domain

An integral domain is called a principal ideal domain (PID) if every ideal is principal.

Example: \mathbb{Z} , K[x] are PIDs.

Lemma: 3.6: Properties of PID

Let *D* be a PID with $a, b \in D$, then 1. $a|b \Leftrightarrow \langle b \rangle \subset \langle a \rangle$ 2. *a* and *b* are associates $\Leftrightarrow \langle a \rangle = \langle b \rangle$ 3. *a* is a unit $\Leftrightarrow \langle a \rangle = D$

Proof. 1. (\Rightarrow) Suppose a|b, then b = ar for $r \in D$. Suppose $x \in \langle b \rangle$, then x = by for $y \in D$. Then $x = ary \in \langle a \rangle$. Thus $\langle b \rangle \subset \langle a \rangle$

 (\Leftarrow) Suppose $\langle b \rangle \subset \langle a \rangle$, then $b \in \langle a \rangle$, b = ar for some $r \in D$, thus a|b.

2. (\Rightarrow) Suppose a, b are associates, by Definition 3.22, there exists unit $u \in D$ s.t. a = ub. thus b|a. By $1, \langle a \rangle \subset \langle b \rangle$. Also $au^{-1} = b, u^{-1}$ is a unit, then $a|b, \langle b \rangle \subset \langle a \rangle$. Therefore $\langle a \rangle = \langle b \rangle$.

(\Leftarrow) Suppose $\langle a \rangle = \langle b \rangle$. Then $\langle a \rangle \subset \langle b \rangle \Rightarrow a | b, b = ax; \langle b \rangle \subset \langle a \rangle \Rightarrow b | a, a = yb$. Therefore a = yax = axy. 1 = xy, x is a unit. a and b are associates.

3. (\Rightarrow) Suppose a is a unit, a^{-1} exists. Take $x \in D$ and $x = x \cdot 1 = xa^{-1}a \in \langle a \rangle$. $D \subset \langle a \rangle \subset D$, thus $\langle a \rangle = D$

 (\Leftarrow) Suppose $D = \langle a \rangle$. In particular $1 \in \langle a \rangle$. Then $\exists b \in D$ s.t. ab = 1, a is a unit.

Theorem: 3.36:

Let D be a PID and $0 \neq \langle p \rangle \subset D$, then $\langle p \rangle$ is a maximal ideal $\Leftrightarrow p$ is irreducible.

Proof. (\Rightarrow) Suppose $\langle p \rangle$ is a maximal ideal and p = ab. Then a|p. By Lemma 3.6, $\langle p \rangle \subset \langle a \rangle \subset D$. By Definition 3.18, either $\langle p \rangle = \langle a \rangle$ or $\langle a \rangle = D$. If $\langle p \rangle = \langle a \rangle$, then p and a are associates by Lemma 3.6, b is a unit. If $\langle a \rangle = D$, then a is a unit. Thus p is irreducible by Definition 3.22. (\Leftarrow) Suppose p is irreducible. Consider $a \in D$ with $\langle p \rangle \subset \langle a \rangle \subset D \xrightarrow{\text{By Lemma 3.6}} a|p \Rightarrow p = ab$ for some $b \in D$. But p is irreducible, then a is a unit or b is a unit. If a is a unit, $\langle a \rangle = D$ If b is a unit, p and a are associates, $\langle p \rangle = \langle a \rangle$. By Definition 3.18, $\langle p \rangle$ is maximial.

Corollary 6. Let D be a PID. If $p \in D$ is irreducible, then it is prime. In general prime \subset irreducible.

Proof. Suppose p is irreducible and p|ab.

Then ab = pr for some $r \in D$. By Theorem 3.36, $ab \in \langle p \rangle$ Then $\langle p \rangle$ is a prime ideal by Definition 3.17. This means that $a \in \langle p \rangle$, p|a or $b \in \langle p \rangle$, p|b. By Definition 3.22, p is a prime.

Definition: 3.27: Accending Chain Condition (Noetherian Ring)

A ring satisfies the accending chain condition if for every set of ideals $\{I_j\}_{j=1}^{\infty}$ s.t. $I_1 \subset I_2 \subset \cdots$, there exists $N \in \mathbb{N}$ s.t. $I_n \geq I_N$ for all $n \geq N$. These rings are called Noetherian Rings.

Lemma: 3.7:

Every PID satisfies Accending Chain Condition.

Proof. Let D be a PID, and $\{I_j\}_{j=1}^{\infty}$ be a set of ideals s.t $I_1 \subset I_2 \subset \cdots$.

Let $I = \bigcup_{j=1}^{l} I_j$. We show that I is an ideal. Subring: Suppose $a, b \in I$, $\exists k, l$ s.t. $a \in I_k$, $b \in I_l$. $a, b \in I_{\max(l,k)}$. Then $a - b, ab \in I_{\max(l,k)} \subset I$. Thus I is a subring by Theorem 3.16. Ideal: Suppose $a \in I$ and $r \in D$, then $a \in I_k$ for some $k, ra \in I_k \subset I$, I is then an ideal.

By Definition 3.26, every ideal is principal. Thus I = (a) for some $a \in D$. $a \in I = \bigcup_{j=1}^{\infty} I_j$. Thus $a \in I_N$ for

some $N \in \mathbb{N}$. Therefore $I = (a) \subset I_N \subset I_{N+1} \subset \cdots \subset I$. Then $I_N = I_{N+1} = \cdots = I$.

Theorem: 3.37:

Every PID is a UFD.

Proof. We show that factorization is possible and is unique in PIDs.

Let D be a PID.

Factorization: Suppose $a \in D$ is a non-zero non-unit element.

We can write $a = a_1b_1$ where a_1 is not an unit. We can iteratively factor a_k and write $a_k = a_{k+1}b_{k+1}$, where a_{k+1} is not a unit.

Then we form a divisibility chain $a_1|a, a_2|a_1, ..., a_{k+1}|a_k$. Thus $\langle a \rangle \subset \langle a_1 \rangle \subset \cdots \subset \langle a_k \rangle \subset \cdots$ by Definition 3.26.

By Lemma 3.7, $\exists N$ s.t. $\langle a_N \rangle = \langle a_{N+1} \rangle = \cdots = \langle a_n \rangle$ for all $n \geq N$.

By Lemma 3.6, a_N and a_n are associates for all $n \ge N$. Thus $a_N = pu$ for p irreducible and u unit.

Then $a = p_1 x_1$ for some irreducible p_1 . Iterate on $x_k = p_{k+1} x_{k+1}$ where p_{k+1} irreducible.

 $\langle x_1 \rangle \subset \cdots \subset \langle x_N \rangle = \langle x_{N+1} \rangle$. x_N is irreducible. Set $x_N = p_{N+1}$. Then $a = p_1 \cdots p_{N+1}$ where p_i are irreducible.

Uniqueness: Suppose $a = p_1 \cdots p_r = q_1 \cdots q_s$. We show taht r = s and $p_i = u_j q_j$. Assume r < s. $p_1 | a \Rightarrow p_1 | q_1 \cdots q_s$, then $p_1 | q_j$ for some j. Reorder s.t. $p_1 | q_1$. $q_1 = u_1 p_1$ s.t. u_1 is a unit, since q_1 is irreducible.

Then $p_1(p_2 \cdots p_r) = p_1(u_2q_2 \cdots q_s)$. Iterate and we get $u_1 \cdots u_rq_{r+1} \cdots q_s = 1$. This means that $q_{r+1} \cdots q_s = 1$, which is a contradiction.

3.6.4 Euclidean Domain

Definition: 3.28: Euclidean Domain

An integral domain D is known as a Euclidean domain if $\exists N : D \to \mathbb{N}$ (norm function) s.t. 1. If $0 \neq a, b \in D$, then $N(a) \leq N(ab)$

2. If $a, b \in D$ with $b \neq 0$, there exists $q, r \in D$ s.t. a = bq + r with r = 0 or N(r) < N(b)

Example: \mathbb{Z} with N(m) = |m|, K[x] with $N(f(x)) = \deg(f)$ are Euclidean domains.

Example: Show that the Gaussian Integers $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}$ is a Euclidean domain.

Proof. Define $N(\alpha) = \alpha \overline{\alpha} = |\alpha|^2$. If $\alpha = a + bi$, $N(\alpha) = a^2 + b^2$

We show that the two properties in Definition 3.28 are satisfied.

Let $0 \neq \alpha, \beta \in \mathbb{Z}[i]$. $N(\alpha\beta) = \alpha\beta\bar{\alpha}\bar{\beta} = \alpha\bar{\alpha}\beta\bar{\beta} = N(\alpha)N(\beta) \ge N(\alpha)$, since $N(x) \ge 1$ for any $x \neq 0 \in \mathbb{Z}[i]$. Let $\alpha, \beta \in \mathbb{Z}[i]$ with $\beta \neq 0$. Write $\alpha = a + bi$, $\beta = c + di$. Then $\beta^{-1} = \frac{c - di}{c^2 + d^2}$

$$\begin{aligned} \alpha \beta^{-1} &= (a+bi)\frac{c-di}{c^2+d^2} = \frac{1}{c^2+d^2}((ac+bd)+(bc-ad)i) \\ &= (q_1+r_1)+(q_2+r_2)i, \text{ where } -\frac{1}{2} \le r_1, r_2 \le \frac{1}{2}, q_1, q_2 \in \mathbb{Z} \\ &= (q_1+q_2i)+(r_1+r_2i) \end{aligned}$$

Let $\gamma = q_1 + q_2 i \in \mathbb{Z}[i]$. $\alpha = \beta \gamma + \beta (r_1 + r_2 i)$. Since $\alpha, \beta, \gamma \in \mathbb{Z}[i]$, then $\rho = \beta (r_1 + r_2 i) \in \mathbb{Z}[i]$ (Rings are closed under addition and multiplication)

$$N(\rho) = \beta \bar{\beta}(r_1 + r_2 i)(r_1 - r_2 i) = N(\beta)(r_1^2 + r_2^2) \stackrel{-\frac{1}{2} \le r_1, r_2 \le \frac{1}{2}}{\le} \frac{1}{2}N(\beta) < N(\beta)$$

Thus $\mathbb{Z}[i]$ is a Euclidean domain.

Theorem: 3.38:

If D is a Euclidean domain, then it is a PID.

Proof. Let $I \subset D$ be an ideal. We want to show that I = (a), *i.e.* I is principal. Take $b \in I$ s.t. N(b) is minimal among all elements from I, $\langle b \rangle \subset I$. Take $a \in I$, find q, r with a = bq + r where r = 0 or N(r) < N(b). Note that N(r) < N(b) is not possible, otherwise N(b) is not minimal. Therefore $r = a - bq = 0 \in I$. $a = bq \in \langle b \rangle$. $I \subset \langle b \rangle$. Therefore $I = \langle b \rangle$. I is principal.

3.6.5 Summary of Integral Domains

Commutative Ring with $1 \supseteq$ Integral domain \supseteq UFD \supseteq PID \supseteq Euclidean Domain \supseteq Field.

Example:

- 1. Commutative Ring with 1: \mathbb{Z}_{12} , $3 \cdot 4 = 0 \in \mathbb{Z}_{12}$, thus not an Integral domain
- 2. $\mathbb{Z}[i\sqrt{5}]$: $6 = 2 \cdot 3 = (1 i\sqrt{5})(1 + i\sqrt{5})$, factorization is not unique, thus not a UFD
- 3. $\mathbb{Z}[x]$: $\langle x, 2 \rangle$ is not principal. $\mathbb{Q}[x, y], \langle x, y \rangle$ not principal. Thus not PID.
- 4. $\mathbb{Z}[\frac{1}{2}(1+i\sqrt{19})]$ is a PID but not Euclidean domain
- 5. $\mathbb{Z}, K[x]$ are Euclidean domain, but not fields
- 6. \mathbb{Q} , \mathbb{R} , F_D , \mathbb{Z}_p are fields.

In commutative ring with 1, we always have prime \Rightarrow irreducible.

Starting from UFD, we have prime \Leftrightarrow irreducible.

Note: in field, there is no irreducible or prime. Every element is a unit.

4 Fields

Consider $\mathbb{Z}_2[x]/(x^2 + x + 1)$, $x^2 + x + 1$ is irreducible in $\mathbb{Z}_2[x]$. $\mathbb{Z}_2[x]/(x^2 + x + 1)$ is a field. Define $\mathbb{Z}_2(\alpha) = \{a + b\alpha : a, b \in \mathbb{Z}_2, \alpha^2 = \alpha + 1\}$, where α is the root of $x^2 + x + 1$. $\mathbb{Z}_2(\alpha) = \{0, 1, \alpha, \alpha + 1\}$. char $(\mathbb{Z}_2(\alpha)) = 2$, *i.e.* $\forall x \in \mathbb{Z}_2(\alpha), x + x = 0$ Sometimes, we write $\mathbb{Z}_2(\alpha) = F_{2^2} = F_4$. It is a finite field of order 4.

Facts: Every finite field is of order p^r for some prime p and characteristic of p. There is only one finite field up to isomorphism of any given order, F_{p^r} . To construct F_{p^r} , we find an irreducible degree r polynomial $f(x) \in \mathbb{Z}_p[x]$, then $F_{p^r} \cong \mathbb{Z}_p[x]/(f(x))$.

5 Lie Algebra

5.1 Basic Definitions

Definition: 5.1: Lie Algebra

Let \mathbb{F} be a field (e.g. \mathbb{C}, \mathbb{R}). A Lie algebra L is a vector space together with a bilinear map known as the Lie bracket $[\cdot, \cdot] : L \times L \to L$ s.t. for all $x, y, z \in L$:

- Alternating: [x, x] = 0
- Jacobi Identity: [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0

Theorem: 5.1:

If char(\mathbb{F}) $\neq 2$ (*i.e.* $1 + 1 \neq 0$), then $[x, x] = 0 \Leftrightarrow [y, x] = -[x, y], \forall x, y \in L$.

 $\begin{array}{l} \textit{Proof.} \ (\Rightarrow) \ [y,x] \stackrel{\text{Alternating}}{=} \ [y,x] - [x+y,x+y] \stackrel{\text{Linearity}}{=} \ [y,x] - [x,x] - [x,y] - [y,x] - [y,y] = -[x,y] \\ (\Leftarrow) \ [x,x] = -[x,x] \Rightarrow [x,x] + [x,x] = 0, \ \text{so} \ [x,x] = 0. \end{array}$

Definition: 5.2: $\mathbf{gl}_n(\mathbb{F})$

 $gl_n(\mathbb{F}) = \{\mathbb{F}^{n\times}\}$ all $n \times n$ matrices with entries in \mathbb{F} is a Lie algebra. [A, B] = AB - BA (commutator).

Proof. Alternating: $[A, A] = A^2 - A^2 = 0$. Jacobi identity: [A, [B, C]] + [C, [A, B]] + [B, [C, A]] = [A, BC - CB] + [C, AB - BA] + [B, CA - AC] = ABC - ACB - BCA + CBA + CAB - CBA - ABC + BAC + BCA - BAC - CAB + ACB = 0

Definition: 5.3: $sl_2(\mathbb{C})$

$$sl_2(\mathbb{C}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a + d = 0 \right\} = \{ x \in gl_2(\mathbb{C}) : Tr(x) = 0 \}.$$

Alternatively, $sl_2(\mathbb{C}) = span \{ e, f, h \}$, where $e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Proof. Since $\mathrm{sl}_2(\mathbb{C}) \subset \mathrm{gl}_2(\mathbb{C})$, we only need to check the span set is closed under the bracket. $[h, e] = he - eh = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} = 2e$ Similarly [h, f] = -2f, [e, f] = h.

Definition: 5.4: Derivation

Given an algebra A, a linear map $D: A \to A$ is a derivation if D(ab) = aD(b) + D(a)b.

Theorem: 5.2:

 $Der(A) = \{D : A \to A : D \text{ is a derivation}\}\$ is a Lie algebra with $[D_1, D_2] = D_1 D_2 - D_2 D_1$.

Proof. We need to check that if $D_1, D_2 \in \text{Der}(A)$, then $[D_1, D_2] \in \text{Der}(A)$.

$$\begin{split} [D_1, D_2](ab) &= D_1(D_2(ab)) - D_2(D_1(ab)) = D_1(aD_2(b) + D_2(a)b) - D_2(aD_1(b) + D_1(a)b) \\ &= aD_1D_2(b) + D_1(a)D_2(b) + D_1D_2(a)b + D_2(a)D_1(b) \\ &- aD_2D_1(b) - D_2(a)D_1(b) - D_1(a)D_2(b) - D_2D_1(a)b \\ &= a(D_1D_2 - D_2D_1)(b) + (D_1D_2 - D_2D_1)(a)b \\ &= a[D_1, D_2](b) - [D_1, D_2](a)b \end{split}$$

Definition: 5.5: Witt Lie Algebra

Witt = Der $(\mathbb{C}[z, z^{-1}])$ = span $\{l_n : n \in \mathbb{Z}\}, l_n = -z^{n+1}\frac{d}{dz}$. (Derivation on Laurent polynomials)

$$\begin{split} [l_m, l_n] &= \left[-z^{m+1} \frac{d}{dz}, -z^{n+1} \frac{d}{dz} \right] \\ &= z^{m+1} \frac{d}{dz} \left(z^{n+1} \frac{d}{dz} \right) - z^{n+1} \frac{d}{dz} \left(z^{m+1} \frac{d}{dz} \right) \\ &= z^{m+1} \left((n+1) z^n \frac{d}{dz} + z^{n+1} \frac{d^2}{dz^2} \right) - z^{n+1} \left((m+1) z^m \frac{d}{dz} + z^{m+1} \frac{d^2}{dz^2} \right) \\ &= -(m-n) z^{(m+n)+1} \frac{d}{dz} = (m-n) l_{m+n}. \end{split}$$

Definition: 5.6: Cross Product

 \mathbb{R}^3 with cross product $\begin{pmatrix} a_1\\a_2\\a_3 \end{pmatrix} \times \begin{pmatrix} b_1\\b_2\\b_3 \end{pmatrix} = \begin{pmatrix} a_2b_3 - a_3b_2\\a_3b_1 - a_1b_3\\a_1b_2 - a_2b_1 \end{pmatrix}$ is a Lie algebra.

Note: $u \times (v \times w) = (u \cdot w)v - (u \cdot v)w$

Definition: 5.7: Lie Group

Lie group G is a group that is a smooth manifold. Lie algebra can be written as tangent space to Lie group at identity. *i.e.* $g = T_e(G)$ =tangent space at the identity (corresponding Lie algebra).

Example:
$$\operatorname{SL}_2(\mathbb{C}) = \{A \in \mathbb{C}^{2 \times 2} : \det A = 1\}, \gamma : \mathbb{R} \to \operatorname{SL}_2(\mathbb{C}) \text{ s.t. } \gamma(0) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Take $\gamma(t) = \begin{pmatrix} a(t) & b(t) \\ c(t) & d(t) \end{pmatrix}$, $a(t)d(t) - b(t)c(t) = 1 \ \forall t$ by definition of SL₂.

With the identity $\gamma(0)$, we have a(0) = d(0) = 1, b(0) = c(0) = 0.

 $\frac{d}{dt}(ad-bc) = a'd+ad'-b'c-bc' = 0. \text{ At } t = 0, a'(0)+d'(0) = 0 \text{ (trace zero)}, \gamma'(0) = \begin{pmatrix} a'(0) & b'(0) \\ c'(0) & d'(0) \end{pmatrix} \in \text{sl}_2(\mathbb{C})$ (tangent space at identity)

Theorem: 5.3:

A Lie algebra is abelian if $[x, y] = 0, \forall x, y$. Every one dimensional Lie algebra is abelian.

Theorem: 5.4:

Let E_{ij} =matrix with all zeros except a 1 in E[i, j]. $[E_{ij}, E_{kl}] = \delta_{jk}E_{il} - \delta_{il}E_{kj}$.

Theorem: 5.5: Sympletic Group and Sympletic Algebra

The Sympletic group is
$$\operatorname{SP}_4(\mathbb{C}) = \{A \in \mathbb{C}^{4 \times 4} : A^T J A = J\}$$
 where $J = \begin{pmatrix} 0 & I_2 \\ -I_2 & 0 \end{pmatrix}$. $\operatorname{sp}_4(\mathbb{C}) = \{x \in \mathbb{C}^{4 \times 4} : J X - X^T J = 0\}$

5.2 Subalgebra, Ideals, Quotients

Definition: 5.8: Subalgebra

Given a Lie algebra L and a vector subspace $K \subset L$, K is a Lie subalgebra if for all $x, y \in K$, $[x, y] \in K$.

Example: $\mathrm{sl}_n(\mathbb{F}) = \{x \in \mathrm{gl}_n(\mathbb{F}) : \mathrm{Tr}(x) = 0\}$ is a subalgebra of $\mathrm{gl}_n(\mathbb{F})$. **Note:** Since $\mathrm{Tr}(xy) = \mathrm{Tr}(yx)$, then $\mathrm{Tr}([x, y]) = 0$ for all $x, y \in \mathrm{gl}_n(\mathbb{F})$.

Example: $b_n(\mathbb{F})$ =upper triangular matrices, $n_n(\mathbb{F})$ =strictly upper triangular matrices, span $\{l_{-1}, l_0, l_1\} \subset$ Witt are examples of subalgebra.

Definition: 5.9: Ideal

A Lie subalgebra $I \subset L$ is an ideal if $\forall x \in L, i \in I, [i, x] \in I$, or equivalently, $[I, L] \subset I$.

Example: $sl_2(\mathbb{F}) \subset gl_2(\mathbb{F})$ is an ideal.

Proof. Take
$$i = \begin{pmatrix} a & b \\ c & -a \end{pmatrix} \in \operatorname{sl}_2(\mathbb{F}), \ x = \begin{pmatrix} x & y \\ z & w \end{pmatrix} \in \operatorname{gl}_2(\mathbb{F}).$$

 $[i, x] = ix - xi = \begin{pmatrix} ax + bz & \cdot \\ \cdot & cy - aw \end{pmatrix} - \begin{pmatrix} ax + cy & \cdot \\ \cdot & cy - bz \end{pmatrix} = \begin{pmatrix} bz - cy & \cdot \\ \cdot & cy - bz \end{pmatrix}$
 $\operatorname{Tr}([i, x]) = 0, \text{ so } [i, x] \in \operatorname{sl}_2(\mathbb{F}).$

Example: $b_2(\mathbb{F}) \subset gl_2(\mathbb{F})$ is not an ideal.

Proof. Take
$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \in b_2(\mathbb{F}), x = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \in gl_2(\mathbb{F}).$$

$$\begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \end{bmatrix} = \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix} \notin b_2(\mathbb{F}).$$

Definition: 5.10: Center

Given a Lie algebra L, its center is $Z(L) = \{z \in L : [x, z] = 0, \forall x \in L\}$

Theorem: 5.6:

 $Z(L) \subset L$ is an ideal.

Proof. (i)Vector subspace: Suppose $a, b \in \mathbb{F}, z, w \in Z(L)$. Take $x \in L$, [x, az + bw] = a[x, z] + b[x, w] = 0. $az + bw \in Z(L)$.

(ii) Absorption: take $z \in Z(L), x, y \in L, [y, [x, z]] = [y, 0] = 0$, so $[x, z] \in Z(L)$.

Definition: 5.11: Quotient Lie Algebra

Given a Lie algebra with ideal $I \subset L$, the quotient Lie algebra is the quotient vector space $L/I = \{x + I : x \in L\}$ with [x + I, y + I] = [x, y] + I.

Theorem: 5.7:

Suppose $I \subset L$ is a subalgebra, then L/I is a Lie algebra $\Leftrightarrow I$ is an ideal.

Proof. (⇐) Suppose *I* is an ideal, we want to show that *L/I* is a Lie algebra Alternating: [x + I, x + I] = [x, x] + I = 0 + I. Jacobi: $[x + I, [y + I, z + I]] + \cdots = [x, [y, z]] \cdots + I = 0 + I$. Well-defined: Suppose x + I = x' + I, y + I = y' + I, *i.e.* $x - x' = i_1 \in I$, $y - y' = i_2 \in I$. $[x+I, y+I] = [x, y] + I = [x'+i_1, y'+i_2] + I = [x', y'] + [i_1, y'] + [x', i_2] + [i_1, i_2] + I = [x', y'] + I = [x'+I, y'+I]$.

$(\Rightarrow) \text{ Suppose } x \in L, i \in I, \ [x,i] + I = [x + I, i + I] = [x + I, 0 + I] = [x,0] + I = 0 + I, \text{ so } [x,i] \in I. \qquad \Box$

Theorem: 5.8:

Suppose that $I, J \subset L$ are ideals. Then so are 1. $I \cap J$ 2. $I + J = \{i + j : i \in I, j \in J\}$

- 3. $[I, J] = \text{span} \{ [i, j] : i \in I, j \in J \}$
- *Proof.* 1. Suppose $k \in I \cap J$, $x \in L$. Then $k \in I$ and $k \in J$. By definition, $[x, k] \in I$ and $[x, k] \in J$. Thus $[x, k] \in I \cap J$, so $I \cap J$ is an ideal.
 - 2. Suppose $i + j \in I + J$, $x \in L$, $[x, i + j] = [x, i] + [x, j] \in I + J$
 - 3. Suppose $y \in [I, J]$, then $y = a_1[i_1, j_1] + a_2[i_2, j_2] + \dots + a_n[i_n, j_n]$. By Jacobi, $[x, [i_k, j_k]] = -[j_k, [x, i_k]] - [i_k, [x, j_k]] \in [I, J]$. Then $[x, y] \in [I, J]$ by linearity.

Definition: 5.12: Commutator Subalgebra

Given a Lie algebra L, its commutator/derived subalgebra is $L' = [L, L] = \text{span} \{[x, y] : x, y \in L\}.$

Example: Find the commutator algebra of $gl_2(\mathbb{C})$ and $sl_2(\mathbb{C})$.

Proof. For $gl_2(\mathbb{C})$, the basis are $e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $i = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. [h, e] = 2e, [h, f] = -2f, [e, f] = h, so $e, f, h \in gl_2(\mathbb{C})'$. $sl_2(\mathbb{C}) = span \{e, f, h\} \subset gl_2(\mathbb{C})'$. Note: [h, h] = [e, e] = [f, f] = [i, x] = 0, so $i \notin gl_2(\mathbb{C})'$. $sl_2(\mathbb{C}) = gl_2(\mathbb{C})'$ *i.e.* commutator subalgebra of $gl_2(\mathbb{C})$ is $sl_2(\mathbb{C})$. Also $sl_2(\mathbb{C})' = sl_2(\mathbb{C})$.

5.3 Homomorphism, Isomorphism and Classification

Definition: 5.13: Lie Algebra Homomorphism and Isomorphism

Given Lie algebras L_1 and L_2 , a linear transformation $\phi : L_1 \to L_2$ is a Lie algebra homomorphism if $\forall x, y \in L_1$, we have $\phi([x, y]) = [\phi(x), \phi(y)]$. If ϕ is bijective, then it is a Lie algebra isomorphism. Ker $\phi = \{x \in L_1 : \phi(x) = 0\}$. Im $\phi = \{y \in L_2 : y = \phi(x) \text{ for some } x \in L_1\}$.

Theorem: 5.9: First Isomorphism Theorem

Suppose $\phi: L_1 \to L_2$ is a Lie algebra homomorphism, then

- 1. Ker $\phi \subset L_1$ is an ideal
- 2. Im $\phi \subset L_2$ is a subalgebra
- 3. $L_1/\text{Ker}\phi \cong \text{Im}\phi$

Proof. 1. Suppose $x \in \text{Ker}\phi$, $y \in L_1$, $\phi([x, y]) = [\phi(x), \phi(y)] = [0, \phi(y)] = 0$, so $[x, y] \in \text{Ker}\phi$.

- 2. Suppose $y_1, y_2 \in \text{Im}\phi$, then $\exists x_1, x_2 \in L$ s.t. $\phi(x_1) = y_1$ and $\phi(x_2) = y_2$ Then $[y_1, y_2] = [\phi(x_1), \phi(x_2)] = \phi([x_1, x_2]) \in \text{Im}\phi$
- 3. Define $\psi : L_1/\operatorname{Ker}\phi \to \operatorname{Im}\phi$ s.t. $\psi(x + \operatorname{Ker}\phi) = \phi(x)$ Well-defined: suppose $x_1 + \operatorname{Ker}\phi = x_2 + \operatorname{Ker}\phi$, then $x_1 - x_2 \in \operatorname{Ker}\phi$, $\phi(x_1 - x_2) = 0$. Since ϕ is linear, $\phi(x_1) - \phi(x_2) = 0$. Thus $\psi(x_1 + \operatorname{Ker}\phi) = \phi(x_1) = \phi(x_2) = \psi(x_2 + \operatorname{Ker}\phi)$. Homomorphism: $\psi([x + \operatorname{Ker}\phi, y + \operatorname{Ker}\phi]) = \psi([x, y] + \operatorname{Ker}\phi) = \phi([x, y]) = [\phi(x), \phi(y)] = [\psi(x + \operatorname{Ker}\phi), \psi(y + \operatorname{Ker}\phi)]$. Injective: Suppose $\psi(x + \operatorname{Ker}\phi) = \psi(y + \operatorname{Ker}\phi)$, then $\phi(x) = \phi(y)$ by definition. $\phi(x - y) = \phi(x) - \phi(y) = 0$, so $x - y \in \operatorname{Ker}\phi$, $x + \operatorname{Ker}\phi = y + \operatorname{Ker}\phi$. Surjective: Suppose $y \in \operatorname{Im}\phi$, *i.e.* $y = \phi(x)$ for $x \in L_1$, then $\psi(x + \operatorname{Ker}\phi) = \phi(x) = y$.

Example: $\phi : \operatorname{gl}_2(\mathbb{C}) \to \operatorname{sl}_2(\mathbb{C}) \text{ s.t. } \phi \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} \frac{1}{2}(a-d) & b \\ c & \frac{1}{2}(d-a) \end{pmatrix}$

Proof. Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $B = \begin{pmatrix} x & y \\ w & z \end{pmatrix}$. $\begin{bmatrix} \phi(A), \phi(B) \end{bmatrix} = \phi(A)\phi(B) - \phi(B)\phi(A)$ $= \begin{pmatrix} \frac{1}{2}(a-d) & b \\ c & \frac{1}{2}(d-a) \end{pmatrix} \begin{pmatrix} \frac{1}{2}(x-w) & b \\ c & \frac{1}{2}(w-x) \end{pmatrix}$ $- \begin{pmatrix} \frac{1}{2}(x-w) & b \\ c & \frac{1}{2}(w-x) \end{pmatrix} \begin{pmatrix} \frac{1}{2}(a-d) & b \\ c & \frac{1}{2}(d-a) \end{pmatrix}$

$$= \begin{pmatrix} bz - cy & \cdot \\ \cdot & cy - bz \end{pmatrix} = \phi([A, B])$$

If $A \in \operatorname{Ker}\phi$, then $\phi(A) = 0$, so b = c = 0, a = d. $\operatorname{Ker}\phi = \left\{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} : a \in \mathbb{C} \right\} \cong \mathbb{C}$. Thus $\operatorname{gl}_2(\mathbb{C})/\mathbb{C} \cong \operatorname{sl}_2(\mathbb{C})$.

Example: $\pi : \mathrm{gl}_2(\mathbb{C}) \to \mathbb{C} \text{ s.t. } \pi \begin{pmatrix} a & b \\ c & d \end{pmatrix} = a + d.$ Ker $\pi = \mathrm{sl}_2(\mathbb{C}), \text{ so } \mathrm{gl}_2(\mathbb{C})/\mathrm{sl}_2(\mathbb{C}) \cong \mathbb{C}.$

Note: $gl_2(\mathbb{C}) \cong sl_2(\mathbb{C}) \oplus \mathbb{C} = span \{e, f, h\} \oplus span \{i\}.$

Theorem: 5.10:

Suppose $\Pi_1 : L_1 \oplus L_2 \to L_1, \Pi_2 : L_1 \oplus L_2 \to L_2$ s.t. $\Pi_1(x, y) = x, \Pi_2(x, y) = y.$ Then Ker $\Pi_1 = \{0\} \oplus L_2 \cong L_2, L_1 \oplus L_2/L_2 \cong L_1$. Ker $\Pi_2 = L_1 \oplus \{0\} \cong L_1, L_1 \oplus L_2/L_1 \cong L_2.$

Theorem: 5.11: Second Isomorphism Theorem

If I and J are ideals of L, then $(I + J)/J \cong I/(I \cap J)$.

Proof. Consider $\phi: I + J \to I/(I \cap J), \ \phi(i+j) = i + I \cap J.$ $i+j \in \operatorname{Ker} \phi \Leftrightarrow \phi(i+j) = 0 + I \cap J \Leftrightarrow i+I \cap J = 0 + I \cap J \Leftrightarrow i \in I \cap J \Leftrightarrow i \in J \Leftrightarrow i+j \in J.$ So $\operatorname{Ker} \phi = J$. By Theorem 5.9, $(I+J)/J \cong I/(I \cap J)$.

Theorem: 5.12: Third Isomorphism Theorem

If I and J are ideals of L, and $I \subset J$, then $(L/I)/(J/I) \cong L/J$.

Proof. Consider $\psi : L/I \to L/J$ s.t. $\psi(x+I) = x+J$. Well-defined: suppose x + I = y + I, then $x - y \in I \subset J$, so $\psi(x+I) = x + J = y + J = \psi(y+I)$. Homomorphism: $\psi([x+I, y+I]) = \psi([x, y] + I) = [x, y] + J = [x + J, y + J] = [\psi(x+I), \psi(y+I)]$. Kernel: $x + I \in \text{Ker}\psi \Leftrightarrow x + J = 0 + J \Leftrightarrow x \in J \Leftrightarrow x + I \in J/I \Leftrightarrow \text{Ker}\psi = J/I$. Thus $(L/I)/(J/I) \cong L/J$ by Theorem 5.9.

5.3.1 Classification

Definition: 5.14: Adjoint

For $v \in L$, define $\operatorname{ad}_v : L \to L$ s.t. $\operatorname{ad}_v(w) = [v, w]$.

1-Dimension: $L = \text{span} \{v\}$. If $x, y \in L$, then x = av, y = bv, [x, y] = [av, bv] = ab[v, v] = 0. All 1D Lie algebra are abelian.

2-Dimension non-abelian: Let $L = \text{span} \{v, w\}$.

If $x, y \in L$, then x = av + bw, y = cv + dw for $a, b, c, d \in \mathbb{F}$. [x, y] = [av + bw, cv + dw] = ac[v, v] + ad[v, w] + bc[w, v] + bd[w, w] = (ad - bc)[v, w]Note $[x, y] \in L'$, so $L' = \text{span} \{[v, w]\}$. Set x = [v, w], extend to a basis $\{x, y\}$ of L. [x, y] = ax. Choose y s.t. [x, y] = x. There is a single 2D non-abelian Lie-algebra up to isomorphism. We can find a basis $\{x, y\}$ s.4. [x, y] = x.

3-Dimension non-abelian: Consider $L' = \text{span} \{ [x, y] : x, y \in L \}.$

1. dim $L' = 0 \Leftrightarrow L$ is abelian.

- 2. When dim L' = 1:
 - (a) $L' \subset Z(L)$:

Since L is non-abelian, we can find $x, y \in L$ s.t. $[x, y] \neq 0$. Define z = [x, y], then $L' = \text{span} \{z\}, [L, z] = \{0\}$ **Claim:** $\{x, y, z\}$ forms a basis for L

Proof. Suppose $a, b, c \in \mathbb{F}$ s.t. ax + by + cz = 0 0 = [0, y] = [ax + by + cz, y] = a[x, y] + b[y, y] + c[z, y] = az, so a = 0 0 = [x, 0] = [x, ax + by + cz] = a[x, x] + b[x, y] + c[x, z] = bz, so b = 0Combining the above with ax + by + cz = 0, we get $cz = 0 \Rightarrow c = 0$.

Example: Heisenberg Lie algebra: $L = \text{span} \{a_{-1}, a_0, a_1\}$, s.t. $[a_1, a_{-1}] = a_0, a_0 \in Z(L)$ More generally, Heisenberg Lie algebra is Lie algebra with $a_{-n}, ..., a_{-2}, a_{-1}, a_0, a_1, a_2, ..., a_n$ where $[a_k, a_l] = k\delta_{k+l,0}a_0$.

(b) $L' \not\subset Z(L)$

Take $L' = \text{span} \{x\}$, note $x \notin Z(L)$. $\exists y \in L \text{ s.t. } [x, y] \neq 0$, also $[x, y] \in L' = \text{span} \{x\}$. Thus [x, y] = x by rescaling. Now set $\tilde{L} = \text{span} \{x, y\} \subset L$ is a subalgebra, and is a 2D non-abelian Lie algebra. Extend $\{x, y\}$ to $\{x, y, z\}$ a basis of L. Note: $[x, w] \in L'$ so [x, w] = ax, $[y, w] \in L'$, so [y, w] = bx for $a, b \in \mathbb{F}$. Set $z = \alpha x + \beta y + \gamma w$, $[x, z] = (\beta + \alpha \gamma)x$, $[y, z] = (\gamma b - \alpha)x$. Choose $\gamma = 1$, $\beta = -a$, $\alpha = b$, then [x, z] = [y, z] = 0, so $z \in Z(L)$. $L = \tilde{L} \oplus Z(L)$ is a direct sum of a 2D non-abelian Lie algebra with a 1D abelian Lie algebra.

3. When dim L' = 2.

Claim: L' is abelian.

Proof. Take $\{y, z\}$ =basis of L', extend to $\{x, y, z\}$ basis of L. Since $y \in L'$, then $y = [y_1, y_2]$ for $y_1, y_2 \in L$.

$$ad_{y}(w) = [y, w] = [[y_{1}, y_{2}], w]$$

= - [[w, y_{1}], y_{2}] - [[y_{2}, w], y_{1}] (By Jacobi)
= - [y_{2}, [y_{1}, w]] + [y_{1}, [y_{2}, w]] (Alternating)
= ad_{y_{1}}ad_{y_{2}}(w) - ad_{y_{2}}ad_{y_{1}}(w)
= [ad_{y_{1}}, ad_{y_{2}}] (w)

Thus $\operatorname{ad}_y = [\operatorname{ad}_{y_1}, \operatorname{ad}_{y_2}]$ and $\operatorname{Tr}(\operatorname{ad}_y) = \operatorname{Tr}([\operatorname{ad}_{y_1}, \operatorname{ad}_{y_2}]) = 0.$ If [y, z] = ay + bz, then $\operatorname{ad}_y = \begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix}$. Since $\operatorname{Tr}(\operatorname{ad}_y) = 0$, b = 0, so [y, z] = ay. Thus L' is abelian and [y, z] = 0.

Note also $L' = \text{span} \{ [x, y], [x, z], [y, z] \}$. So we get two basis for L'. $B_1 = \{ y, z \}, B_2 = \{ [x, y], [x, z] \}$ ad_x : $L' \to L'$ changes basis from B_1 to B_2 , ad_x is an isomorphism. The final structure is determined by ad_x.

(a) We can choose $x \in L$ s.t. ad_x is diagonal. Let $L_b = \operatorname{span} \{x, y, z\}$ s.t. [x, y] = y, [x, z] = bz, $\operatorname{ad}_x = \begin{pmatrix} 1 & 0 \\ 0 & b \end{pmatrix}$ Let $L_B = \operatorname{span} \{X, Y, Z\}$, [X, Y] = Y, [X, Z] = BZ.

Suppose $\phi: L_b \to L_B$ is a Lie algebra isomorphism.

 $\begin{cases} \phi(x) = a_1 X + a_2 Y + a_3 Z \\ \phi(y) = c_1 X + c_2 Y + c_3 Z \\ \phi(z) = d_1 X + d_2 Y + d_3 Z \end{cases}$. We look at the system $\begin{cases} \phi(y) = \phi([x, y]) = [\phi(x), \phi(y)] \\ b\phi(z) = [\phi(x), \phi(z)] \end{cases}$. This gives B = b or $B = \frac{1}{b}$.

(b) ad_x is not diagonalizable, it can be chosen s.t. $\operatorname{ad}_x = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$. $[x, y] = \lambda y, [x, z] = y + \lambda z, \text{ so } [x, y] = y, [x, z] = y + z$ with rescaling.

4. dim L' = 3

Claim: $\exists h \in L \text{ s.t. } ad_h : L \to L \text{ has a non-zero eigen value.}$

Proof. Take $0 \neq x \in L$. If ad_x has a non-zero eigen value, then done, set h = xOtherwise, all eigenvalues of ad_x are 0. Extend $\{x, y, z\}$ a basis of L $L = L' = \operatorname{span} \{[x, y], [x, z], [y, z]\}$ The Jordan Canonical form of ad_x is $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ over \mathbb{C} . Choose x, y, z s.t. [x, y] = x, [x, z] = y, then $[y, x] = \operatorname{ad}_y(x) = -x$. Set y = h. Let corresponding eigenvector be e, [h, e] = ae, $a \neq 0$ Rescale s.t. [h, e] = 2e. Also note that [h, h] = 0h, [h, f] = -2f, so eigenvalues of h are 0, 2, -2. Also $h \in L'$, so $\operatorname{Tr}(\operatorname{ad}_h) = 0$. [h, [e, f]] = -[f, [h, e]] - [e, [f, h]] = -[f, 2e] - [e, 2f] = 0, so [e, f] = h by scaling. Thus dim $L' = 3 \Leftrightarrow L' \cong \operatorname{sl}_2(\mathbb{C})$.

5.3.2 Solvable and Nilpotent Algebras

Theorem: 5.13:

Given a Lie algebra L and an ideal $I \subset L, L/I$ is abelian $\Leftrightarrow L' \subset I$.

Proof. (\Rightarrow) Suppose L/I is abelian.

Take $z \in L'$, $z = a_1[x_1, y_1] + \dots + a_n[x_n, y_n]$ with $x_i, y_i \in L$. $z + I = a_1[x_1, y_1] + \dots + a_n[x_n, y_n] + I = a_1[x_1 + I, y_1 + I] + \dots + a_n[x_n + I, y_n + I] = 0 + I$, so $z \in I$ and $L' \subset I$.

(⇐) Suppose $L' \subset I$, take $x + I, y + I \in L/I$. Note $[x, y] \in L' \subset I$. Then [x, y] + I = 0 + I, [x + I, y + I] = 0 + I, so L/I is abelian.

Definition: 5.15: Solvable Lie Algebra

For $n \in \mathbb{N}$, inductively define $L^{(1)} = L'$, $L^{(n+1)} = [L^{(n)}, L^{(n)}] = (L^{(n)})'$ and get a string of ideals $\cdots \subset L^{(n)} \subset L^{(n-1)} \subset \cdots \subset L^{(2)} \subset L^{(1)} \subset L$. L is solvable if there is $N \in \mathbb{N}$ s.t. $L^{(N)} = 0$.

Example: $L = \operatorname{gl}_2(\mathbb{F}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{F} \right\}.$ $L' = \operatorname{sl}_2(\mathbb{F}), \ L^{(2)} = \operatorname{sl}_2(\mathbb{F})' = \operatorname{sl}_2(\mathbb{F}).$ So $L^{(n)} = \operatorname{sl}_2(\mathbb{F})$ for $n \ge 2$. Thus $\operatorname{gl}_2(\mathbb{F})$ and $\operatorname{sl}_2(\mathbb{F})$ are not solvable.

Example:
$$L = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : a, b, c \in \mathbb{F} \right\}.$$

$$\begin{bmatrix} \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}, \begin{pmatrix} x & y \\ 0 & z \end{pmatrix} \end{bmatrix} = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \begin{pmatrix} x & y \\ 0 & z \end{pmatrix} - \begin{pmatrix} x & y \\ 0 & z \end{pmatrix} \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$$

$$= \begin{pmatrix} ax & ay + bz \\ 0 & cz \end{pmatrix} - \begin{pmatrix} ax & bx + cy \\ 0 & cz \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$L^{(1)} = \left\{ \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} : a \in \mathbb{F} \right\}.$$

$$\begin{bmatrix} \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix} \end{bmatrix} = \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} = 0$$
Therefore $L^{(2)} = 0$ and L is solvable.

Theorem: 5.14:

Suppose L is a Lie algebra with ideals $I_0, ..., I_N$ s.t. 1. $0 = I_N \subset I_{N-1} \subset \cdots I_2 \subset I_1 \subset I_0 = L$ 2. For all $0 \le n \le N$, I_{n-1}/I_n is abelian then L is solvable.

Proof. By Theorem 5.13, L/I_1 is abelian, then $L' \subset I_1$. Similarly, since I_1/I_2 is abelian, then $I'_1 \subset I_2$, thus $L^{(2)} \subset I'_1 \subset I_2$.

 I_2/I_3 is abelian, then $I'_2 \subset I_3$, $L^{(3)} \subset I^{(2)}_1 \subset I'_2 \subset I_3$. Inductively, $\forall 0 \le n \le N$, we have $L^{(n)} \subset I_n$, $L^{(N)} \subset I_N = 0$, so $L^{(N)} = 0$, L is solvable.

Theorem: 5.15:

Suppose L is a Lie algebra and K is a subalgebra. Then L solvable \Rightarrow K solvable.

Proof. $K' = [K, K] \subset [L, L] = L'$, so $K^{(n)} \subset L^{(n)}$. Find $N \in \mathbb{N}$ s.t. $L^{(N)} = 0$, then $K^{(N)} \subset L^{(N)} = 0$, so $K^{(N)} = 0$, K is solvable.

Theorem: 5.16:

Suppose L is a Lie algebra and $I \subset L$ is an ideal. Then I and L/I are solvable $\Rightarrow L$ solvable.

Proof. Claim: $(L/I)^{(n)} = (L^{(n)} + I)/I$ for all $n \in \mathbb{N}$. Base case: when n = 0, $(L + I)/I \cong L/(L \cap I) = L/I$ by Theorem 5.11 and $I \subset L$. IH: Suppose for some $k \ge 0$, we have $(L/I)^{(k)} = (L^{(k)} + I)/I$. Consider $(L/I)^{(k+1)} = ((L/I)^{(k)})' = ((L^{(k)} + I)/I)' = (L^{(k+1)} + I' + I)/I = (L^{(k+1)} + I)/I$. Take $M, N \in \mathbb{N}$ s.t. $I^{(M)} = 0$, $(L/I)^{(N)} = 0$, then $0 = (L/I)^{(N)} = (L^{(N)} + I)/I$. So $(L^{(N)} + I) \subset I$, and thus $L^{(N)} \subset I$. $L^{(M+N)} = \{L^{(N)}\}^{(M)} \subset I^{(M)} = 0$, so $L^{(M+N)} = 0$, L is solvable. □

Theorem: 5.17:

Suppose L is a Lie algebra and $I, J \subset L$ are ideals. Then I, J solvable $\Rightarrow I + J$ solvable.

Proof. Take $M, N \in \mathbb{N}$ s.t. $I^{(M)} = J^{(N)} = 0$. By Theorem 5.11 $(I + J/J)^{(M)} \cong (I/I \cap J)^{(M)} = (I^{(M)} + I \cap J)/I \cap J = I \cap J/I \cap J = 0$ (I + J)/J and J are solvable, so I + J is solvable by Theorem 5.16

Definition: 5.16: Radical of Lie Algebra

The radical of L, rad(L) is the unique solvable ideal of L containing all solvable ideals of L.

Theorem: 5.18:

Given a finite dimensional Lie algebra L, there is a unique solvable ideal containing any solvable ideal of L.

Proof. Consider $C = \{I \subset L : I \text{ is a solvable ideal}\}$. Take $R \in C$ s.t. $\dim I \leq \dim R$ for all $I \in C$. Note $\forall I \in C$, we have $R \subset R + I$ and $R + I \in C$ Then $\dim R \leq \dim(R+I) \leq \dim R$. So $\dim(R+I) = \dim R$, $I \subset R$. Any other R' will be s.t. $R' \subset R$ and $R \subset R'$, so R = R', it is unique.

Definition: 5.17: Simple Lie Algebra

We say a non-abelian Lie algebra L is simple if it has non-trivial ideals. A Lie algebra L is semisimple if rad $L = 0 \Leftrightarrow$ it has no non-trivial solvable ideals.

Theorem: 5.19:

If L is a Lie algebra, then L/radL is semisimple

Proof. Ideals of $L/\operatorname{rad} L$ are of the form $I/\operatorname{rad} L$ where $\operatorname{rad} L \subset I$.

Suppose I/radL is solvable, then together with radL is solvable, using Theorem 5.16, we have I is solvable. Then $\text{rad}L \subset I \subset \text{rad}L$, I = radL, so I/radL = 0, L/radL is semisimple.

Definition: 5.18: Nilpotent Lie Algebra

Given a Lie algebra L, inductively define $L^1 = L'$, $L^{n+1} = [L, L^n]$. L is nilpotent if $L^N = 0$ for some $N \in \mathbb{N}$.

Theorem: 5.20:

Suppose L is a Lie algebra, then L/Z(L) is nilpotent $\Rightarrow L$ is nilpotent.

Proof. Claim: $(L/Z(L))^n = (L^n + Z(L))/Z(L)$. If L/Z(L) is nilpotent, then we have $N \in \mathbb{N}$ s.t. $0 = (L/Z(L))^N = (L^N + Z(L))/Z(L)$. So $L^N \subset Z(L)$, $L^{N+1} = [L, L^N] \subset [L, Z(L)] = 0$.

Theorem: 5.21:

Every nilpotent Lie algebra is solvable, but not every solvable Lie algebra is nilpotent.

Definition: 5.19: gl(V) Nilpotent Element

 $(0, a)^2$ (0, 0)

Given a vector space V, $gl(V) = \{x : V \to V : x \text{ is linear}\}$. If $x \in gl(V)$, $x \neq 0$ is nilpotent if $x^N = 0$ for some $N \in \mathbb{N}$.

Example: Example:

$$\begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix}^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \text{ so } \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} \text{ is nilpotent.}$$
$$\begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix}^2 = \begin{pmatrix} 0 & 0 & ac \\ 0 & 0 & a \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix}^3 = 0 \text{ so } \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix} \text{ is nilpotent.}$$

Definition: 5.20: Adjoing Operation on gl(V)

Given any $x \in gl(V)$, $x : V \to V$, $ad_x : gl(V) \to gl(V)$ is defined as $ad_x(y) = [x, y] = xy - yx$.

Theorem: 5.22:

If $x \in gl(V)$ is nilpotent, then $ad_x : gl(V) \to gl(V)$ is nilpotent.

(0, a)

Proof. Suppose $y \in gl(V)$. $ad_x(y) = xy - yx$. $(ad_x)^2(y) = [x, xy - yx] = x^2y - 2xyx + yx^2$ $(ad_x)^3(y) = [x, x^2y - 2xyx + yx^2] = x^3y - 3x^2yx + 3xyx^2 - yx^3$ In general $(ad_x)^n y = \sum_{k=0}^n (-1)^k \binom{n}{k} x^{n-k} yx^k$. Suppose $x^N = 0$ for $N \in \mathbb{N}$, then

$$(\mathrm{ad}_{x}y)^{2N}y = \sum_{k=0}^{2N} (-1)^{k} \binom{2N}{k} x^{2N-k} y x^{k}$$
$$= x^{N} \left(\sum_{k=0}^{N-1} (-1)^{k} \binom{2N}{k} x^{N-k} y x^{k} \right) + \left(\sum_{k=N}^{2N} (-1)^{k} \binom{2N}{k} x^{2N-k} y x^{k-N} \right) x^{N} = 0$$

5.4 More Theorems

5.4.1 Invariance Lemma

Definition: 5.21: Eigen Transformation

Let $H \subset L \subset gl(V)$ be subalgebra and $\lambda : H \to \mathbb{F}$ be a linear transformation ($\lambda \in H^*$ dual space). Define $V_{\lambda} = \{v \in V : h(v) = \lambda(h)v, \forall h \in H\}, v$ is an eigenvector of every element of H.

Theorem: 5.23:

 $V_{\lambda} \subset V$ is a subspace

Proof. Suppose $v, w \in V_{\lambda}, \alpha, \beta \in \mathbb{F}$. Take $h \in H$. $h(\alpha v + \beta w) = \alpha h(v) + \beta h(w) = \alpha \lambda(h)v + \beta \lambda(h)w = \lambda(h)[\alpha v + \beta w]$, so $\alpha v + \beta w \in V_{\lambda}$.

Definition: 5.22: Weight

 $\lambda \in H^*$ is a weight if $V_{\lambda} \neq 0$

Lemma: 5.1: Invariance Lemma

Suppose that $L \subset \operatorname{gl}(V)$ is over a field of char = 0, dim $(V) < \infty$. $I \subset L$ is an ideal and $\lambda \in I^*$ is a weight. Then V_{λ} is an L-invariant subspace.

 $\begin{array}{l} Proof. \text{ We want to show that if } v \in V_{\lambda}, x \in L, \text{ then } xv \in V_{\lambda}. \\ \text{Suppose } v \in V_{\lambda}, x \in L. \text{ Take } h \in I. \\ h(xv) = (hx)v = (xh + [h, x])v = xh(v) + [h, x]v = \lambda(h)xv + \lambda([h, x])v, \text{ since } h \in I, [h, x] \in I. \\ \text{Then } xv \in V_{\lambda} \text{ if } \lambda[h, x] = 0. \\ \text{Consider } W = \text{span } \{v, xv, x^{2}v, ..., x^{n}v\}, B_{W} = \{v, xv, ..., x^{n}v\} \text{ is a basis for } W. \\ \text{Suppose } y \in I, \text{ we claim } [y]_{B_{W}} = \begin{pmatrix} \lambda(y) & * & * \\ 0 & \ddots & * \\ 0 & 0 & \lambda(y) \end{pmatrix} \\ \text{Base case: left most column, } y(v) = \lambda(y)v + 0 \cdot xv + 0 \cdot x^{v} + \dots + 0 \cdot x^{n}v. \\ \text{IH: Suppose } y(x^{k}v) = \alpha_{0}v + \alpha_{1}xv + \dots + \alpha_{k-1}x^{k-1}v + \lambda(v)x^{k}v \\ \text{Consider } y(x^{k+1}v) = yx(x^{k}v) = (xy - [x, y])(x^{k}v) = \alpha_{0}vv + \alpha_{1}x^{2}v + \dots + \alpha_{k-1}x^{k}v + \lambda(v)x^{k+1}v - [x, y]x^{k}. \\ \text{Since } [x, y] \in I, \text{ by I.H. } [x, y]x^{k}v = \beta_{0}v + \beta_{1}xv + \dots + \beta_{k-1}x^{k-1}v + \lambda([x, y])x^{k}v. \\ \text{Then } y(x^{k+1}v) = \gamma_{0}v + \gamma_{1}xv + \dots + \gamma_{k}x^{k}v + \lambda(v)x^{k+1}v \\ \text{Thus, } W \text{ is } x\text{-invarint by construction and } h\text{-invariant for } h \in I. \\ \text{Set } y = [h, x], y \in I. \text{ Tr}(y) = (n+1)\lambda(y), \text{ then } \text{Tr}(y) = \text{Tr}([h, x]) = 0. \text{ Thus } (n+1)\lambda(y) = 0, \lambda(y) = 0 \\ \text{Then } \lambda[h, x] = 0. \text{ Thus we have } V_{\lambda} \text{ is an L-invariant subspace.} \\ \Box \end{array}$

5.4.2 Engel's Theorem

Lemma: 5.2:

Let V be an n-dim vector space and $x: V \to V$ be a nilpotent linear map. Then \exists a basis B of V s.t. $[x]_B$ is strictly upper triangular.

Proof. Since x is nilpotent, there exists $N \in \mathbb{N}$ s.t. $x^N = 0$. For $v \neq 0$, $v \in V$, we have $x^N(v) = 0$ Let $m \in \mathbb{N}$ be minimum s.t. $x^m(v) = 0$ and $w = x^{m-1}(v) \neq 0$. $w \neq 0$ and x(w) = 0, so $w \in \ker(x) = \operatorname{Nul}(x) \neq \{0\}$ Base case: n = 1, $v = \operatorname{span} \{w\}$, [x] = 0 is strictly upper triangular. IH: suppose the statement is true for any k-dim vector space. IS: Let dim(V) = k + 1, set $W = \operatorname{span} \{w\} \subset V$, then dim(V/W) = k + 1 - 1 = kWith $x : V \to V$, $\Pi : V \to V/W$, define $\bar{x} = \Pi \circ x$ s.t. $\bar{x}(v + W) = x(v) + W$ Apply IH to V/W, $\bar{B} = \{v_1 + W, ..., v_k + W\}$, where $[\bar{x}]_{\bar{B}}$ is upper triangular. *i.e.* $\forall 1 \leq j \leq k$, $\bar{x}(v_j + W) = \alpha_1 v_1 + \dots + \alpha_{j-1} v_{j-1} + W$. Set $B = \{w, v_1, ..., v_k\}$, $x(v_j) = \alpha_0 w + \alpha_1 v_1 + \dots + \alpha_{j-1} v_{j-1}$, so $[x]_B$ is strictly upper triangular.

Lemma: 5.3:

Suppose $V \neq 0$ and $L \subset gl(V)$ is s.t. every $x \in L$ is nilpotent. Then $\exists v \neq 0 \in V$ s.t. x(v) = 0 for all $x \in L$, or equivalently, $\bigcap_{x \in L} Nul(x) \neq 0$.

Proof. Base case: dim L = 1, $L = \text{span} \{x\}$. Find $v \in V$, x(v) = 0 but $v \neq 0$. IS: Suppose the statement is true for all Lie algebras of dimension up to k. Suppose dim L = k + 1Claim: there is an ideal $I \subset L$ s.t. dim I = k.

Proof. Let $A \subsetneq L$ be a subalgebra of max dimension. $\dim(A) < \dim(L)$. Consider the quotient vector space L/A and $\overline{\mathrm{ad}} : A \to \mathrm{gl}(L/A)$ s.t. $\overline{\mathrm{ad}}(a) = \mathrm{ad}_a$ *i.e.* $\overline{\mathrm{ad}}_a(x+A) = [a, x] + A.\overline{\mathrm{ad}}$ is a Lie algebra homomorphism

$$[\overline{ad}_a, \overline{ad}_b](x+A) = (\overline{ad}_a \overline{ad}_b - \overline{ad}_b \overline{ad}_a)(x+A)$$
$$= \overline{ad}_a([b, x] + A) - \overline{ad}_b([a, x] + A)$$
$$= [a, [b, x]] - [b, [a, x]] + A$$
$$= [[a, b], x] + A = \overline{ad}_{[a,b]}(x+A)$$

 $\tilde{A} = \operatorname{Im}(\operatorname{ad}) \subset \operatorname{gl}(L/A)$ is a Lie subalgebra. Then $\dim(\tilde{A}) \leq \dim(A) < \dim(L) = k + 1$. Since x is nilpotent $\forall x \in L$, then $\forall a \in A, a$ is nilpotent. ad_a is nilpotent, and \tilde{A} satisfies IH. Then $\exists y + A \in L/A$ s.t. $y \neq 0$, but $\operatorname{ad}_a(y + A) = 0 \ \forall a \in A$. Then $\forall a \in A, [a, y] + A = 0 + A$, so $[a, y] \in A \ \forall a \in A$. A is an ideal with dim A = k.

 $A \subsetneqq A \oplus \text{span} \{y\} \subset L$, then $L = A \oplus \text{span} \{y\}$ Apply IH to A. $u \neq 0 \in V$ s.t. a(u) = 0 for all $a \in A$. $W = \bigcap_{a \in A} \text{Nul}(A) \neq 0$.

So $y|_W \in \text{gl}(W)$, and there exists $w \neq 0 \in W$ s.t. y(w) = 0Take $x \in L$, $x = a + \alpha y$, $a \in A$, $\alpha \in \mathbb{F}$, $x(w) = a(w) + \alpha y(w) = 0$.

Theorem: 5.24: Engel's Theorem

- 1. Suppose $L \subset gl(V)$ is a Lie algebra s.t. every $x \in L$ viewed as a linear transformation $x : V \to V$ is nilpotent. Then there is a basis of V, B s.t. $\forall x \in L, [x]_B$ is strictly upper triangular.
- 2. Suppose L is a Lie algebra, L is nilpotent $\Leftrightarrow \forall x \in L, ad_x \text{ is nilpotent.}$

Proof. 1. Base case: n = 1 is Lemma 5.2. IS: suppose for all Lie algerbas of dim $\leq k$, the statement holds. Suppose dim(L) = k + 1By Lemma 5.3, $\exists u \neq 0 \in V$ s.t. x(u) = 0, $\forall x \in L$. Set $U = \text{span} \{u\}$. $\forall x \in L$, consider $x : V \to V$ and $\Pi : V \to V/U$, $\bar{x}(v + U) = x(v) + U$. dim(V/U) = k, so $\bar{B} = \{v_1 + U, ..., v_k + U\}$ forms the basis. Define $\bar{L} = \{\bar{x} : x \in L\}$. $\forall \bar{x} \in \bar{L}, [\bar{x}]_{\bar{B}}$ is strictly upper-triangular. $\bar{x}(v + U) = x(v) + U$. Set $B = \{u, v_1, ..., v_k\}$. Since $\forall x, x(u) = 0$, $[x]_B$ is strictly upper-triangular.

2. (\Rightarrow) Suppose L is nilpotent, then $\exists N \in \mathbb{N}$ s.t. $L^N = 0$ Take $x, y \in L$, $[x, [x, ..., [x, y]]...] \in L^N = 0$. *i.e.* $(\mathrm{ad}_x)^{N-1}(y) = 0$, so $(\mathrm{ad}_x)^{N-1} = 0$

(\Leftarrow) Suppose ad_x is nilpotent $\forall x \in L$. Consider $\operatorname{ad} : L \to \operatorname{gl}(V)$ s.t. $\operatorname{ad}(x) = \operatorname{ad}_x$. ad is a Lie algebra homomorphism. Let $\tilde{L} = \operatorname{Im}(\operatorname{ad})$. Apply previous part, $[\operatorname{ad}_x]_B$ is strictly upper triangular. By iteratively commuting strictly upper triangular matrices, we get a zero matrx.

Theorem: 5.25:

Suppose L is a Lie algebra over \mathbb{C} , then L is nilpotent \Leftrightarrow Every 2-dim Lie subalgebra is nilpotent.

5.4.3 Lie's Theorem

Lemma: 5.4:

Suppose $V \cong \mathbb{C}^n$ and $x: V \to V$ is linear $(x \in gl(V))$, then there exists a basis B of V s.t. $[x]_B$ is upper triangular.

Proof. First show that x has an eigenvector.

Take any $v \neq 0 \in V$. Consider $\{v, xv, x^2v, ..., x^nv\} \subset V$, which is linearly dependent. Take $1 \leq m \leq n$ to be min s.t. $\{x, xv, ..., x^mv\}$ is linearly dependent. Find $\alpha_0, \alpha_1, ..., \alpha_m \in \mathbb{C}$ s.t. $\alpha_0 v + \alpha_1 xv + \cdots \alpha_m x^m v = 0$ where $\alpha_m \neq 0$. Factorize the equation: $\alpha_m (x - \lambda_0 I)(x - \lambda_1 I) \cdots (x - \lambda_m I)v = 0$ Take k to be min s.t. $w = (x - \lambda_{k+1}I) \cdots (x - \lambda_m I)v \neq 0$ Now $(x - \lambda_k I)w = 0$, $xw = \lambda_k w$, w is an eigenvector of x with eigenvalue $\lambda = \lambda_k$. Induction on n: Base n = 1: x acts a scalar multiplication IH: Suppose the statement holds for all vector spaces of dim k and that $V \cong \mathbb{C}^{k+1}$ IS: Let $w \in V$ be an eigenvector of x with value $\lambda, xw = \lambda w$.

Consider $x: V \to V$, $\Pi: V \to V/\mathbb{C}w$, $\bar{x} = \Pi \circ x$ s.t. $\bar{x}(v + \mathbb{C}w) = x(v) + \mathbb{C}w$. Note: dim $(V/\mathbb{C}w) = k + 1 - 1 = k$. Apply IH to $V/\mathbb{C}w$, construct $\bar{B} = \{v_1 + \mathbb{C}w, ..., v_k + \mathbb{C}w\}$. Set $B = \{w, v_1, ..., v_k\}, x(v_j) = \beta_0 w + \beta_1 v_1 + \dots + \beta_j v_j$, because $\bar{x}(v_j + \mathbb{C}w) = \beta_1 v_1 + \dots + \beta_j v_j + \mathbb{C}w$. Thus $[x]_B$ is upper triangular.

Lemma: 5.5:

Suppose $V \cong \mathbb{C}^n$ and $L \subset gl(V)$ is solvable. Then there is a $v \in V$ that is an eigenvector $\forall x \in L$.

Proof. Induction on dim L. Base n = 1 nothing to do. IH: suppose the statement holds for all Lie algebra of $\dim k$. IS: when dim L = k + 1. If L is solvable, then $L^{(N)} = \{0\}$ for some N. Then $L' \subseteq L$, otherwise, $L^{(n)} = L$ for all n. Take a subspace $A \subsetneq L$ s.t. dim A = k, $L' \subset A$ and $L = A \oplus \mathbb{C}z$. Take $x \in L, a \in A, [x, a] \in [L, L] = L' \subset A$, so A is an ideal. dim A = k, A is solvable, by IH, $\exists w \in V$ s.t. w is an eigenvector for all $a \in A$. Let $\lambda : A \to \mathbb{C}$ be the corresponding weights $aw = \lambda(a)w$. Consider $V_{\lambda} = \{v \in V : a(v) = \lambda(a)v, \forall a \in A\}, w \neq 0 \in V_{\lambda}$, then $V_{\lambda} \neq 0$. Apply Lemma 5.1 to $V_{\lambda} \subset V$, V_{λ} is L-invariant, then $\forall x \in L, x(v) \in V_{\lambda}$ for all $v \in V_{\lambda}$. Consider $z|_{V_{\lambda}}: V_{\lambda} \to V_{\lambda}, z|_{V_{\lambda}} \in \mathrm{gl}(V_{\lambda}).$ $\exists v \in V_{\lambda} \text{ s.t. } z(v) = \mu v \text{ for } \mu \in \mathbb{C}.$ Claim: v is an eigenvector for all $x \in L$. If $x \in L$, then $x = a + \alpha z$ for $a \in A$, $\alpha \in \mathbb{C}$. $x(v) = a(v) + \alpha z(v) + \lambda(a)v + \alpha \mu v + (\lambda(a) + \alpha \mu)v.$

Theorem: 5.26: Lie's Theorem

Let $V \cong \mathbb{C}^n$ and $L \subset gl(V)$ be a solvable Lie algebra. Then there is a basis of V, B s.t. $[x]_B =$ upper triangular for all $x \in L$.

Proof. Induction on dim V: Suppose the statement holds for all vector spaces of dim V.

When dim V = k + 1. Find $v \in V$ s.t. v is an eigenvector for all $x \in L$. Then $x(v) = \lambda(x)v$ for $\lambda : V \to \mathbb{C}, \lambda \in V^*$. Consider $\bar{x} : V \to V/\mathbb{C}w$ s.t. $\bar{x}(v + \mathbb{C}w) = x(v) + \mathbb{C}w$. $\tilde{L} = \{\bar{x} : x \in L\} \subset \mathrm{gl}(V/\mathbb{C}w)$. Define $\bar{B} = \{v_1 + \mathbb{C}w, ..., v_k + \mathbb{C}w\}$ s.t. $[\bar{x}]_{\bar{B}}$ is upper triangular. Then $B = \{w, v_1, ..., v_k\}, [x]_B$ is upper triangular.

Theorem: 5.27:

Let L be a Lie algebra over \mathbb{C} , L solvable $\Leftrightarrow L'$ is nilpotent.

5.5 Representation and Modules

Definition: 5.23: Representation

Suppose that L is a Lie algebra over \mathbb{F} . A representation of L is a pair (ϕ, V) , where V is a vector space over \mathbb{F} , and $\phi : L \to \operatorname{gl}(V)$ is a Lie algebra homomorphism. If ϕ is injective, we say this representation is faithful.

Example: Any matrix Lie algebra is a faithful representation of the underlying abstract Lie algebra.

Example: Given any Lie algebra L, the adjoint representation is (ad, L), where $ad_x \in gl(L)$ is defined as $ad_x(y) = [x, y]$.

Note: $\dim(\operatorname{gl}(L)) = (\dim(L))^2$

Example: Adjoint representation of sl₂. Let $h \to \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, e \to \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, f \to \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ be the basis ad_h(h) = [h, h] = 0, ad_h(e) = [h, e] = 2e, ad_h(f) = [h, f] = -2f, ad_h = $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2 \end{pmatrix}$ ad_e(h) = [e, h] = -2e, ad_e(e) = 0, ad_e(f) = [e, f] = h, ad_e = $\begin{pmatrix} 0 & 0 & 1 \\ -2 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ ad_f(h) = [f, h] = 2f, ad_f(e) = [f, e] = -h, ad_f(f) = 0, ad_e = $\begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 2 & 0 & 0 \end{pmatrix}$

Example: Heisenberg Lie algebra (Fock Representation)

 $\hat{h} = \text{span}\left(\{a_n : n \in \mathbb{Z}\} \cup \{k\}\right), [a_m, a_n] = m \delta_{m+n,0}k, k \in Z(\hat{h}). V = \mathbb{C}[x_1, x_2, ...]$ (vector field of polynomials over \mathbb{C}).

Let $\phi : h \to \operatorname{gl}(\mathbb{C}[x_1, x_2, \ldots])$ s.t.

- $\phi(a_0)$ =multiplication by $\lambda \in \mathbb{C}$
- $\phi(a_n) = n \frac{\partial}{\partial x_n}, n > 0$
- $\phi(a_{-n}) = x_n, n > 0$
- $\phi(k)$ =multiplication by 1

When m, n > 0,

•
$$[\phi(a_m), \phi(a_n)] = \left[m\frac{\partial}{\partial x_m}, n\frac{\partial}{\partial x_n}\right] = mn\left(\frac{\partial^2}{\partial x_m\partial x_n} - \frac{\partial^2}{\partial x_n\partial x_m}\right) = 0$$

•
$$[\phi(a_m), \phi(a_{-n})] = \left[m\frac{\partial}{\partial x_m}, x_n\right] = m\frac{\partial}{\partial x_m}x_n - mx_n\frac{\partial}{\partial x_m} = \begin{cases} m\phi(k), m = n\\ 0, \text{ else} \end{cases}$$

Definition: 5.24: Module

Given a Lie algebra L over a field \mathbb{F} , an L-module is a vector space V over \mathbb{F} with a map $L \times V \to V$, $(x, v) \mapsto x \cdot v$ with

- 1. $(\alpha x + \beta y) \cdot v = \alpha (x \cdot v) + \beta (y \cdot v)$
- 2. $x \cdot (\alpha v + \beta w) = \alpha (x \cdot v) + \beta (x \cdot w)$
- 3. $[x, y] \cdot v = x \cdot (y \cdot v) + y \cdot (x \cdot v)$
- *i.e.* This is a linear transformation.

Theorem: 5.28:

The notions of a Lie algebra representation and a Lie algebra module are equivalent.

Proof. Suppose (ϕ, V) is a Lie algebra representation. Define $x \cdot v = \phi(x)v$ s.t. $\phi(x) \in gl(V)$.

1.
$$(\alpha x + \beta y) \cdot v = \phi(\alpha x + \beta y)v = (\alpha \phi(x) + \beta \phi(y))v = \alpha \phi(x)v + \beta \phi(y)v = x \cdot (y \cdot v) + y \cdot (x \cdot v)$$

2. $x \cdot (\alpha v + \beta w) = \phi(x)(\alpha v + \beta w) = \alpha \phi(x)v + \beta \phi(x)v = \alpha(x \cdot v) + \beta(x \cdot w)$

3.
$$[x, y] \cdot v = \phi([x, y])v = [\phi(x), \phi(y)]v = (\phi(x)\phi(y) - \phi(y)\phi(x))v = x \cdot (y \cdot v) - y \cdot (x \cdot v)$$

Suppose we have V an L-module, then we can define ϕ by $\phi(x)v = x \cdot v$ and work in reverse.

Definition: 5.25: Submodule

Suppose V is an L-module and $W \subset V$ is a vector subspace. We say W is a submodule if for all $w \in W$ and $x \in L$, $x \cdot w \in W$. In this case V/W is a quotient module with $x \cdot (v + W) = x \cdot v + W$.

Proof. This is well-defined. Suppose $v_1 + W = v_2 + W$, then $\exists w = v_1 - v_2 \in W$. $x \cdot (v_1 + W) = x \cdot v_1 + W = x \cdot (v_2 + w) + W = x \cdot v_2 + x \cdot w + W = x \cdot v_2 + W$, since $x \cdot w \in W$. \Box

$$\begin{aligned} \mathbf{Example:} \ L &= \left\{ \begin{pmatrix} a_1 & a_2 & a_3 \\ 0 & a_4 & a_5 \\ 0 & 0 & a_6 \end{pmatrix} : a_i \in \mathbb{C} \right\}, \ V = \mathbb{C}^3. \\ U &= \left\{ \begin{pmatrix} b \\ 0 \\ 0 \end{pmatrix} : b \in \mathbb{C} \right\}, \ \begin{pmatrix} a_1 & a_2 & a_3 \\ 0 & a_4 & a_5 \\ 0 & 0 & a_6 \end{pmatrix} \begin{pmatrix} b \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} a_1 b \\ 0 \\ 0 \end{pmatrix} \in U, \ U \text{ is a submodule.} \\ W &= \left\{ \begin{pmatrix} b \\ c \\ 0 \end{pmatrix} : b, c \in \mathbb{C} \right\}, \ \begin{pmatrix} a_1 & a_2 & a_3 \\ 0 & a_4 & a_5 \\ 0 & 0 & a_6 \end{pmatrix} \begin{pmatrix} b \\ c \\ 0 \end{pmatrix} = \begin{pmatrix} a_1 b + a_2 c \\ a_4 c \\ 0 \end{pmatrix} \in W, \ W \text{ is a submodule.} \end{aligned}$$

Theorem: 5.29:

Suppose L is a module over itself via $x \cdot y = [x, y]$. Then $I \subset L$ is a submodule $\Leftrightarrow I$ is an ideal.

Definition: 5.26: Irreducible L-Module

Suppose L is a Lie algebra and V is an L-module. We say that V is irreducible (simple) if $V \neq \{0\}$ and it does not contian any proper submodule.

Example: $\hat{h} = \text{span}(\{a_n : n \in \mathbb{Z}\} \cup \{k\}), [a_m, a_n] = m\delta_{m+n,0}k, k \in Z(\hat{h}). V = \mathbb{C}[x_1, x_2, ...]$

Proof. Suppose $W \subset V$ is a submodule and $p(x) \neq 0 \in W$ Define < on monomials $x_{m_1}x_{m_2}\cdots x_{m_l}$ by lexigraphical order. Take the largest monomial $x_{m_1}\cdots x_{m_l}$ from p(x). $a_{m_1}\cdots a_{m_l}p(x) = \frac{\partial^l}{\partial x_{m_1}\cdots \partial x_{m_l}}p = \text{coefficient of } x_{m_1}\cdots x_{m_l} \text{ in } p(x), \text{ then } 1 \in W.$ $x_{n_1}\cdots x_{n_k} = a_{-n_1}\cdots a_{-n_k} 1 \in W, \text{ so } V = W.$

Definition: 5.27: L-module Homomorphism

Let V, W be L-modules. A linear map $\theta : V \to W$ is an L-module homomorphism if for all $x \in L$ and $v \in V$, we have $\theta(x \cdot v) = x \cdot \theta(v)$

Theorem: 5.30: L-module Isomorphism Theorems

Let $\theta: V \to W$ be an L-module homomorphism. Then

- 1. First Isomorphism: $\operatorname{Ker} \theta \subset V$ is a submodule, $\operatorname{Im} \theta \subset W$ is a submodule, $V/\operatorname{Ker} \theta \cong \Im \theta$
- 2. Second Isomorphism: $U, W \subset V$ submodules. Then U + W and $U \cap W$ are submodules, $(U+W)/W \cong U/(U \cap W)$
- 3. Third Isomorphism: If $U \subset W$, then $(V/U)/(W/U) \cong V/W$

Proof. Proof for first isomorphism theorem: Suppose $x \in L$ and $v \in \operatorname{Ker}\theta$, then $\theta(x \cdot v) = x \cdot \theta(v) = x \cdot 0 = 0$, so $\operatorname{Ker}\theta \subset V$ is a submodule. Suppose $x \in L$ and $w \in \operatorname{Im}\theta$, then there exists $v \in V$ s.t. $\theta(v) = w$. $x \cdot w = x \cdot \theta(v) = \theta(x \cdot v) \in \operatorname{Im}\theta$, so $\operatorname{Im}\theta$ is a submodule. Define $\hat{\theta} : V/\operatorname{Ker}\theta \to \operatorname{Im}\theta$ s.t. $\hat{\theta}(v + \operatorname{Ker}\theta) = \theta(v)$. Then $\hat{\theta}(x \cdot (v + \operatorname{Ker}\theta)) = \hat{\theta}(x \cdot v + \operatorname{Ker}\theta) = \theta(x \cdot v) = x \cdot \theta(v) = x \cdot \hat{\theta}(v + \operatorname{Ker}\theta)$.

5.5.1 Schur's Lemma

Lemma: 5.6: Schur's Lemma

Let L be a complex Lie algebra and V is a finite dimensional simple L-module where $\theta: V \to V$ is an L-module homomorphism. Then $\theta = \lambda \operatorname{Id}_v$ for some $\lambda \in \mathbb{C}$.

Proof. Take $\lambda \in \mathbb{C}$ to be an eigenvalue of θ . Let $v \in V$ be the corresponding eigenvector, $\theta(v) = \lambda v$. This is equivalent to $v \in \operatorname{Nul}(\theta - \lambda \operatorname{Id}_v)$, so $\{0\} \neq \operatorname{Nul}(\theta - \lambda \operatorname{Id}_v) \subset$ is a submodule. $\operatorname{Nul}(\theta - \lambda \operatorname{Id}_v) = V$, so $\forall u \in V$, $\theta(u) = \lambda u$, $\theta = \lambda \operatorname{Id}_v$.

Theorem: 5.31:

Suppose L is an abelian complex Lie algebra and V is a simple finite dim module, then $\dim(V) = 1$.

Proof. For $x \in L$, define $\theta_x : V \to V$ by $\theta_x(v) = x \cdot v$. $y \cdot \theta_x(v) = y \cdot (x \cdot v) = x \cdot (y \cdot v) - [x, y] \cdot v = x \cdot (y \cdot v) = \theta_x(y \cdot v)$ (since *L* is abelian). Thus θ_x is an L-module homomorphism. By Lemma 5.6, $\exists \lambda_x \in \mathbb{C}$ s.t. $\theta_x = \lambda_x \operatorname{Id}_v$. *i.e.* $\forall x \in L, x \cdot v = \theta_x(v) = \lambda_x v$. Thus, span $\{v\} \subset V$ is a submodule. By simplicity of $V, V = \operatorname{span}\{v\}$, so dim(V) = 1.

Definition: 5.28: Indecomposable and Completely Reducible L-modules

An L-module V is indecomposable if there are no nontrivial submodules $U, W \subset V$ s.t. $V = U \oplus W$. V is completely reducible if there are simple $U_k \subset V$ s.t. $V = U_1 \oplus \cdots \oplus U_n$.

Fact: Irreducible \Rightarrow Indecomposable, but Indecomposable \Rightarrow Irreducible.

Example:
$$L = \left\{ \begin{pmatrix} a_1 & a_2 & a_3 \\ 0 & a_4 & a_5 \\ 0 & 0 & a_6 \end{pmatrix} : a_i \in \mathbb{C} \right\}, V = \mathbb{C}^3.$$
 V is indecomposable but not irreducible.

Proof. Suppose $W \subset V$ is a submodule, take $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \neq 0 \in W$. $\begin{pmatrix} a_1 & a_2 & a_3 \\ 0 & a_4 & a_5 \\ 0 & 0 & a_6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a_1 x + a_2 y + a_3 z \\ a_4 y + a_5 z \\ a_6 z \end{pmatrix} \in W$, for all $a_i \in \mathbb{C}$. In particular, $\begin{pmatrix} x \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ y \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ z \end{pmatrix} \in W$. Also if $z \neq 0$, then $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \in W$. $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \in W$. Similarly, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \in W$. Thus, V = W (all 3 basis vectors of V are in W) So we must have z = 0, $W_1 = \left\{ \begin{pmatrix} x \\ y \\ 0 : x, y \in \mathbb{C} \end{pmatrix} \right\}$ and $W_1 = \left\{ \begin{pmatrix} x \\ 0 \\ 0 \end{pmatrix} : x \in \mathbb{C} \right\}$ are proper submodules of

V.

 $\{0\} \subset W_2 \subset W_1 \subset V, V$ is not irreducible. However, $V \neq W_1 \oplus W_2$, so V is indecomposable.

Theorem: 5.32:

Suppose L is a complex Lie algebra and V is a finite dimension module. Then for all $z \in Z(L)$, there is a $\lambda_z \in \mathbb{C}$ s.t. $z \cdot v = \lambda_z v$ for all $v \in V$.

Theorem: 5.33:

Suppose V is a 1D L-module. For all $x \in L'$, $x \cdot v = 0$ for all $v \in V$.

5.5.2 Modules of Special Lie Algebra

 $y \frac{\partial p}{\partial u}$

Recall $sl_2(\mathbb{C}) = span \{e, f, h\}$, where [h, e] = 2e, [h, f] = -2f, [e, f] = h. Classify all simple, finite dimensional $sl_2(\mathbb{C})$ -modules. Define for $d \ge 0$, $V_d \subset \mathbb{C}[x, y]$, $V_d = span \{x^d, x^{d-1}y, ..., y^d\}$, with $sl_2(\mathbb{C})$ actions:

1.
$$e \cdot p(x, y) = x \frac{\partial p}{\partial y}$$

2. $f \cdot p(x, y) = y \frac{\partial p}{\partial x}$
3. $h \cdot p(x, y) = x \frac{\partial p}{\partial x} - y$

Example:

1. $e \cdot x^a y^b = b x^{a+1} y^{b-1}$ 2. $f \cdot x^a y^b = a x^{a-1} y^{b+1}$

3. $h \cdot x^a y^b = x \frac{\partial}{\partial x} (x^a y^b) - y \frac{\partial}{\partial y} (x^a y^b) = (a - b) x^a y^b$ ($x^a y^b$ is an eigenvector of h with eigenvalue a - b) **Claim:** This action makes V_d an $sl_2(\mathbb{C})$ -module, for all $d \ge 0$ *Proof.* Linearity quickly follows since partial derivatives are linear transformations on V_d . We require:

- 1. $[h, e]p(x, y) = h \cdot (e \cdot p(x, y)) e \cdot (h \cdot p(x, y))$
- 2. $[e, f]p(x, y) = e \cdot (f \cdot p(x, y)) f \cdot (e \cdot p(x, y))$
- 3. $[h, f]p(x, y) = h \cdot (f \cdot p(x, y)) f \cdot (h \cdot p(x, y))$

We only check the first here, the other two are similar.

$$\begin{aligned} h \cdot (e \cdot p(x, y)) &- e \cdot (h \cdot p(x, y)) = h \cdot \left(x \frac{\partial p}{\partial y}\right) - e \cdot \left(x \frac{\partial p}{\partial x} - y \frac{\partial p}{\partial y}\right) \\ &= x \frac{\partial}{\partial x} \left(x \frac{\partial p}{\partial y}\right) - y \frac{\partial}{\partial y} \left(x \frac{\partial p}{\partial y}\right) - x \frac{\partial}{\partial y} \left(x \frac{\partial p}{\partial x} - y \frac{\partial p}{\partial y}\right) \\ &= x \frac{\partial p}{\partial y} + x^2 \frac{\partial^2 p}{\partial x \partial y} - xy \frac{\partial^2 p}{\partial y^2} - x^2 \frac{\partial^2 p}{\partial x \partial y} + x \frac{\partial p}{\partial y} + xy \frac{\partial^2 p}{\partial y^2} \\ &= 2x \frac{\partial p}{\partial y} \\ &= 2e \cdot p(x, y) = [h, e] p(x, y) \end{aligned}$$

Theorem: 5.34:

For all $d \ge 0$, V_d is a simple $sl_2(\mathbb{C})$ -module.

Proof. Suppose $W \neq 0 \subset V_d$ is a submodule and take $p(x, y) = a_0 y^d + a_1 x y^{d-1} + \dots + a_d x^d \in W$. Pick $0 \leq k \leq d$ to be minimal s.t. $a_k \neq 0$, then $p(x, y) = a_k x^k y^{d-k} + \text{degree} < d - k$ of y.

$$\begin{split} e^{d-k}p(x,y) &= a_k \left(x\frac{\partial}{\partial y}\right)^{d-k} x^k y^{d-k} + 0 = a_k(d-k)! x^d, \text{ so } x^d \in W.\\ \text{Note } f \cdot x^d &= dx^{d-1} y \in W, \text{ so } x^{d-1} y \in W.\\ f^n x^d &= d(d-1) \cdots (d-n+1) x^{d-n} y^n \in W, \text{ so } x^{d-n} y \in W.\\ \text{Therefore, } V_d &= W. \end{split}$$

Lemma: 5.7:

Suppose that V is an $sl_2(\mathbb{C})$ -module and $v \in V$ s.t. $h \cdot v = \lambda v$, then $h \cdot (e^n \cdot v) = (\lambda + 2n)e^n \cdot v$, $h \cdot (f^n \cdot v) = (\lambda - 2n)f^n \cdot v$ or $e^n \cdot v = 0$, $f^n \cdot v = 0$.

Proof. Base case: suppose $e \cdot v \neq 0$, $h \cdot (e \cdot v) = e \cdot (h \cdot v) + [h, e]v = \lambda(e \cdot v) + 2e \cdot v = (\lambda + 2)e \cdot v$ IH: If $e^{k+1} \cdot v \neq 0$ and $h \cdot (e^k \cdot v) = (\lambda + 2k)(e^k \cdot v)$ IS: Then $h \cdot (e^{k+1} \cdot v) = h \cdot (e \cdot (e^k \cdot v)) = (\lambda + 2(k+1))e^{k+1} \cdot v$.

Lemma: 5.8:

Let V be a finite dimensional $sl_2(\mathbb{C})$ -module. Then there is an h-eigenvector $w \in V$ s.t. $e \cdot w = 0$ and $u \in V$ s.t. $f \cdot u = 0$

Proof. Take $v \in V$ s.t. $h \cdot v = \lambda v$. Consider $v, e \cdot v, e^2 \cdot v, \dots$ By Lemma 5.7, $h \cdot (e^n \cdot v) = (\lambda + 2n)(e^n \cdot v)$. So they are all h-eigenvectors with different eigenvalues. They are linearly independent. Then $\exists m \in \mathbb{N} \text{ s.t. } e^m \cdot v \neq 0$, but $e^{m+1} \cdot v = 0$. Set $w = e^m \cdot v$, then $h \cdot w = (\lambda + 2m)w$, $e \cdot w = 0$.

Theorem: 5.35:

If V is a finite dimensional, simple $sl_2(\mathbb{C})$ -module, then there is $d \ge 0$ s.t. $V \cong V_d$.

Proof. By Lemma 5.8, $\exists w \in V$ s.t. $h \cdot w = \lambda w$, $e \cdot w = 0$. Consider $w, f \cdot w, ..., f^d \cdot w \neq 0$, but $f^{d+1} \cdot w = 0$. Define $W = \text{span} \{w, f \cdot w, ..., f^d \cdot w\}$. We show that $W \subset V$ is a submodule: $f \cdot (f^n \cdot w) = f^{n+1} \cdot w$, so $\forall u \in W, f \cdot u \in W$. By Lemma 5.7, $h \cdot (f^n \cdot w) = (\lambda - 2n)f^n \cdot w$, so $\forall u \in W, h \cdot u \in W$. Note $e \cdot w = 0$ and $e \cdot (f \cdot w) = f \cdot (e \cdot w) + h \cdot w = \lambda w \in W$, $e \cdot (f^2 \cdot w) = f \cdot (e \cdot f \cdot w) + h \cdot (f \cdot w) = 2(\lambda - 1)(f \cdot w)$. Inductively, $e \cdot (f^n \cdot w) = n(\lambda - n - 1)(f^{n-1} \cdot w)$, then for all $u \in W$, $e \cdot u \in W$. Thus W is a submodule.

We now show that $\lambda = d$. Since $h \cdot (f^n \cdot w) = (\lambda - 2n)(f^n \cdot w)$, $[h]_B = \text{diag}(\lambda, \lambda - 2, ..., \lambda - 2d)$. Then $\text{Tr}(h) = (d + 1)(\lambda - d)$. Since [e, f] = h, Tr(h) = Tr([e, f]) = 0, $(d + 1)(\lambda - d) = 0$ gives $\lambda = d$.

 $\begin{array}{l} \text{Define } \theta: V \to V_d \text{ s.t. } \theta(f^n \cdot w) = (d-n-1)! x^{d-n} y^n \\ \theta(h \cdot (f^n \cdot w)) = \theta((d-2n)(f^n \cdot w)) = (d-2n)(d-n-1)! x^{d-n} y^n = (d-n-1)h \cdot (x^{d-n} y^n) = h \cdot \theta(f^n \cdot w). \\ \text{Therefore, } \theta(h \cdot v) = h \cdot \theta(v) \text{ for all } v \in V. \\ \theta(f \cdot (f^n \cdot w)) = \theta(f^{n+1} \cdot w) = (d-n)! x^{d-n-1} y^{n+1} = (d-n-1)! f \cdot (x^{d-n} y^n) = f \cdot \theta(f^n \cdot w). \\ \theta(e \cdot (f^n \cdot w)) = n(d-n+1) \theta(f^{n-1} \cdot w) = n(d-n+1)(d-n)! x^{d-n+1} y^{n-1} = (d-n+1)! e \cdot x^{d-n} y^n = e \cdot \theta(f^n \cdot w). \\ \text{Then } \forall a \in \text{sl}_2(\mathbb{C}), v \in V, \ \theta(a \cdot v) = a \cdot \theta(v), V \cong V_d \text{ since } \theta \text{ is bijection.} \end{array}$

Summary:

All finite dimensional $sl_2(\mathbb{C})$ submodule are isomorphic to $V_d = span \{x^a y^b : a, b \ge 0, a + b = d\}$. $e \cdot p(x, y) = x \frac{\partial p}{\partial x}, f \cdot p(x, y) = y \frac{\partial p}{\partial x}, h \cdot p(x, y) = x \frac{\partial p}{\partial x} - y \frac{\partial p}{\partial y}$.

Theorem: 5.36: Weyl's Theorem

Finite dimensional representations of semi-simple complex Lie algebras are completely reducible.

Example:
$$\operatorname{sl}_2(\mathbb{C})$$
 acting on \mathbb{C}^2 : $e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$
 $e \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, e \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, e^2 \cdot \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
 $f \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, f \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$
 $h \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, h \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \text{ so } v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \text{ and } v_{-1} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \text{ are eigenvectors of}$
 $\mathbb{C}^2 \cong V_1 \text{ s.t. } v_1 \mapsto x, v_{-1} \mapsto y.$

 V_d is generated by x^d with $d \in \mathbb{Z}_{>0}$, x^d is a heighest weight vector, weight $(x^d) = 2^d$.

$$v_d = x^d \to f \cdot v_d = x^{d-1}y \to f^2 v_d = x^{d-2}y \to \dots \to f^d v_d = y^d \to 0$$

h

If $d \notin \mathbb{Z}_{\geq 0}$, $\lambda \in \mathbb{C} \setminus \mathbb{Z}_{\geq 0}$. Let $M(\lambda)$ be the highest weight vector. $M(-1): v_{-1} = x^{-1} \to f \cdot v_{-1} = x^{-2}y \to f^2 v_{-1} = x^{-3}y^2 \to \cdots, x^{-1}$ is the highest weight vector. $M(\lambda): v_{\lambda} = x^{\lambda} \to f \cdot v_{\lambda} = x^{\lambda-1}y \to f^2 v_{\lambda} = v^{\lambda-2}y \to \cdots.$

Definition: 5.29: Heighest/Lowest Weight Module

Highest weight module, $M(\lambda) = \text{span} \{ f^n \cdot v_\lambda : n \ge h v_\lambda = \lambda v_\lambda \}$, is an infinite dimensional module generated by x^λ , $\lambda \notin \mathbb{Z}_{\ge 0}$.

Similarly a lowest weight module is $M^{-}(\lambda) = \text{span} \{ e^{n} \cdot v_{\lambda} : n \ge 0, h \cdot v_{\lambda} = \lambda v_{\lambda} \}, \lambda \notin \mathbb{Z}_{\ge 0}.$

Let V be a finite dimensional $sl_2(\mathbb{C})$ module and consider $\Omega = ef + fe + \frac{1}{2}h^2$. $\Omega \in U(sl_2(\mathbb{C}))$ the universal enveloping algebra, $\theta : V \to V$, $\theta(v) = \Omega \cdot v$.

Claim: θ is an L-module homomorphism.

Proof. Use [xy, z] = xyz - zxy + (-xzy + xzy) = x(yz - zy) + (xz - xz)y = x[y, z] + [x, z]y. $[\Omega, e] = [ef, e] + [fe, e] + \frac{1}{2}[h^2, e] = 0$. Similarly, $[\Omega, f] = [\Omega, h] = 0$.

If $[\Omega, x] = 0$, then $\theta(x \cdot v) = \Omega \cdot (x \cdot v) = x \cdot \Omega \cdot v = x \cdot \theta(v)$. If $V = V_d$, then by Lemma 5.6, Ω acts as a constant (scalar multiplication of identity map).

$$\begin{aligned} \Omega \cdot x^{d} &= \left(x\frac{\partial}{\partial y}\right) \left(y\frac{\partial}{\partial x}\right) x^{d} + \left(y\frac{\partial}{\partial x}\right) \left(x\frac{\partial}{\partial y}\right) x^{d} + \frac{1}{2} \left(x\frac{\partial}{\partial x} - y\frac{\partial}{\partial y}\right)^{2} x^{d} \\ &= dx\frac{\partial}{\partial y} (x^{d-1}y) + \frac{1}{2} \left(x\frac{\partial}{\partial x} - y\frac{\partial}{\partial y}\right) dx^{d} \\ &= dx^{d} + \frac{1}{2} d^{2} x^{d} \\ &= \frac{1}{2} d(d+2) x^{d} \end{aligned}$$

So $\theta = \frac{1}{2}d(d+2)\mathrm{Id}_v$.

г		1
		I
		L