
Algebra

This is mainly from introductory level Youtube Video by Michael Penn https://www.youtube.com/watch?
v=c6i6edrthFM&list=PL22w63XsKjqxaZ-v5N4AprggFkQXgkNoP&index=9.

1 Introduction

Definition: 1.1: Relation

A relation on a set A is a subset R ⊂ A×A. Write (x, y) ∈ R as xRy, (x, y) /∈ R as x ̸ Ry.

Example: A =any set, R is equality. (x, y) ∈ R⇔ x = y, R = {(a, a) : a ∈ A}.
If A = {1, 2, 3}, R = {(1, 1), (2, 2), (3, 3)}

Example: A = {1, 2, 3}, R is less than or equal.
Then R = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)}

Example: A = N, R is divides. (m,n) ∈ R⇔ m|n, i.e. ∃d ∈ N s.t. n = md.
Then (1, n) ∈ R, since 1|n for any n, (2, 10) ∈ R, since 2|10.

Definition: 1.2: Equivalence Relation

A relation R ⊂ A×A is an equivalence relation if it has the following properties
1. Reflexivity: (a, a) ∈ R, ∀a ∈ A
2. Symmetry: (a, b) ∈ R⇒ (b, a) ∈ R
3. Transitivity: (a, b) ∈ R and (b, c) ∈ R ⇒ (a, c) ∈ R

Example: R is equality. (a, b) ∈ R⇔ a = b is an equivalence relation.

Example: R is nothing. ∀a, b ∈ A, (a, b) ∈ R. R = A×A is an equivalence relation.

Example: A = C1(R) (all differentiable functions on R). fRg ⇔ f ′ = g = is an equivalence relation.

Definition: 1.3: Equivalence Class

Given an equivalence relation R ⊂ A×A. The equivalence class of a ∈ A is [a] = {b ∈ A : (a, b) ∈ R}.

Example: R is equality. [a] = {b ∈ A : a = b} = {a}

Example: R is nothing. [a] = {b ∈ A : (a, b) ∈ R = A×A} = A

Example: A = C1(R). [f ] = {g ∈ A : f ′ = g′} = {g ∈ A : (f − g)′ = 0} = {f + c : c ∈ R}.
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Definition: 1.4: Power Set

Given a set A. P(A) = {B : B ⊂ A} is the power set of A.

Definition: 1.5: Partition

P ⊂ P(A) is a partition of A if
1.

⋃
X∈P

X = A

2. If X ̸= Y , then X ∩ Y = ∅

Example: A = {1, 2, 3, 4, 5, 6}, P = {{1}, {2, 3, 4}, {5, 6}} is a partition.

Example: A = Z, P = {{3k}, {3k + 1}, {3k + 2}} is a partition.

Theorem: 1.1:

There is a one-to-one correspondence between partitions of A and equivalence relations on A.

Proof. 1. Suppose P is a partition of A. Define a relation R ⊂ A×A s.t. (a, b) ∈ R⇔ a, b ∈ X ∈ P .
We need to check that R is an equivalence relation.

Reflexivity: (a, a) ∈ R, because a ∈ X for some X ∈ P , since
⋃
X∈P

X = A and a ∈ A.

Symmetry: Suppose (a, b) ∈ R, then a, b ∈ X ∈ P . This is the same as b, a ∈ X ∈ P , thus (b, a) ∈ R

Transitivity: Suppose (a, b) ∈ R and (b, c) ∈ R, then a, b ∈ X ∈ P and b, c ∈ Y ∈ P . But X∩Y = ∅
if X ̸= Y , thus X = Y . a, c ∈ X ∈ P , so (a, c) ∈ R

2. Suppose R ⊂ A×A is an equivalence relation. Let P = {[a] : a ∈ A}

Suppose a ∈ A, (a, a) ∈ R. a ∈ [a] =
⋃

[a]∈P

[a] ⇒ A ⊂
⋃

[a]∈P

[a] and by definition
⋃

[a]∈P

[a] ⊂ A, thus

A =
⋃

[a]∈P

[a]

Take a, b ∈ A. Consider [a] ∩ [b]. Suppose x ∈ [a] ∩ [b]. Then x ∈ [a] and x ∈ [b]. Then (a, x) ∈ R
and (b, x) ∈ R. By transitivity (a, b) ∈ R, [a] = [b]

Definition: 1.6: Binary Operation

Given a set S, a binary operation on S ia a function ∗ : S × S → S, write ∗(a, b) = a ∗ b. The
following properties may or may not hold.

1. Associativity: a ∗ (b ∗ c) = (a ∗ b) ∗ c
2. Commutativity: a ∗ b = b ∗ a

Example: (N,+), + is associative and commutative.

Example: (Z,+), + is associative and commutative, with identity and inverse.

Example: Mn(R) = {A ∈ Rn×n}, ∗ is matrix multiplication. Then ∗ is associative, but not commutative.
If ∗ is the commutator [·, ·], A∗B = [A,B] = AB−BA, then ∗ is neither associative nor commutative.
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2 Groups

Definition: 2.1: Groups

A group is a set G together with a binary operation ∗ s.t.
1. Closure: If a, b ∈ G, then a ∗ b ∈ G
2. Identity: ∃e ∈ G s.t. ∀a ∈ G, a ∗ e = a = e ∗ a
3. Inverse: ∃a−1 ∈ G s.t. a ∗ a−1 = a−1 ∗ a = e
4. Associative: ∀a, b, c ∈ G, a ∗ (b ∗ c) = (a ∗ b) ∗ c

Example: (Z,+), (Q,+), (R,+), (C,+) are groups under addition.

Example: ({±1}, ·), (Q×, ·) where Q× = Q \ {0}, GL(n,R) = {A ∈ Rn×n : det(A) ̸= 0} are groups are
groups under multiplication.

Definition: 2.2: Integer Modulo n Groups

Let Zn be the set of all equivalence classes mod n. Zn = {[0], [1], ..., [n−1]}. Define [x]+[y] = [x+y].
Then (Zn,+) forms a group with identity [0].

Example: (Z6,+) is a group, but (Z6, ·) where · : [x][y] → [xy] is not a group, because 2,3,4 do not have
an inverse.

Definition: 2.3: Group of Units

Given n ∈ N, the group of units Un = {[m]n : gcd(m,n) = 1} with operation [x][y] = [xy]. Un is a
group.

Proof. 1. Closure: Suppose gcd(x, n) = gcd(y, n) = 1, then gcd(xy, n) = 1. So [x], [y] ∈ Un ⇒ [xy] ∈ Un.

2. Identity: [1] ∈ Un since gcd(1, n) = 1 for any n.

3. Inverse: If [a] ∈ Un, then gcd(a, n) = 1. Thus ∃x, y ∈ Z s.t. ax+ny = 1 and gcd(x, n) = 1. [a][x] = 1.

4. Associativity: From associativity of multiplication in Z

Example: U6 = {1, 5}.
Example: U5 = {1, 2, 3, 4, 5}

Definition: 2.4: Dihedral Groups

Dn = {rigid motions of regular n-gons}

= {e, r, ..., rn−1, s, sr, ..., srn−1}, where r = rotation by
2π

n
, s = reflection through a vertex

= ⟨r, s : rn = s2 = e, rs = srn−1⟩ in generator representation

Example: n = 3, D3 is the rigid motion on equilateral triangles. r =rotation counter clockwise by 2π
3 .

r2 =rotation by 4π
3 . r3 = e, s =reflection through a vertex
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For an n-gon, we can rotate by 2πk
n for 0 ≤ k < n − 1, with a total of n rotations, and n total reflections

through n vertices.

Example: n = 6, rsr4sr3 = sr5r4sr3 = sr9sr3 = sr3sr3 = e, since sr3 is a reflection.

Theorem: 2.1:

rks = srn−k for all 1 ≤ k ≤ n− 1.

Proof. Base case: rs = srn−1 by definition.
Induction Hypothesis: Suppose rks = srn−k

Induction Step: rk+1s = rkrs
Base case

= rksrn−1 IH
= srn−krn−1 = sr2n−(k+1) = srn−(k+1)

Definition: 2.5: Permutation Group

Given a set X, define SX = {f : X → X : f a bijection}. SX forms a group with operation given by
composition of functions. SX is called the permutation group of X.
If X = {1, 2, ..., n}, we write SX = Sn.

Proof. 1. Closure: ∀f, g ∈ SX , f ◦ g : X → X is a bijection, f ◦ g ∈ SX

2. Associativity: ∀f, g, h ∈ SX , f ◦ (g ◦ h)(x) = f(g(h(x))) = f ◦ (g ◦ h)(x)

3. Identity: id : X → X, id(x) = x. Then id ◦ f = f for f ∈ SX

4. Inverse: Given a function f : X → X, f is a bijection ⇔ f has an inverse. Thus ∀f ∈ SX , f−1 ∈ SX

Example: n = 3, S3 has 6 elements, and in cycle notation, we write S3 = {1, (12), (13), (23), (123), (132)},
where (123)(2) = 3, (123)(3) = 1, (132)(3) = 2.

Example: Composing cycles

1. (1352)(243) = (13)(245). 1 is sent to 1 by (243), then to 3 by (1352). We then look at 3, 3 is sent to
2 by (243), then sent to 1 by (1352)

2. (2974)(164) = (162974)

3. (1325)−1 = (1523) (just write in reverse order)

Theorem: 2.2: Basic Properties of Groups

Given a group G,
1. The identity is unique
2. Inverses are unique
3. ∀a, b ∈ G, (ab)−1 = b−1a−1

4. If ab = ac, then b = c. Similarly, if ba = ca, then b = c

Proof. 1. Suppose e1, e2 ∈ G are both identities, e1
e2 is identity

= e1e2
e1 is identity

= e2

2. Suppose a ∈ G with inverses b and c. i.e. ab = e = ba, ac = e = ba.
Then b = be

e=ac
= b(ac)

associativity
= (ba)c

ba=e
= ec = c
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3. (ab)(b−1a−1) = a(bb−1)a−1 = aa−1 = e and (ab)(ab)−1 = e. Thus (ab)−1 = b−1a−1, since inverses are
unique.

4. ab = ac, then a−1(ab) = a−1(ac). By associativity, b = c.

Definition: 2.6: Abelian Group

A group G is abelian, if it is commutative. i.e. ∀a, b ∈ G, ab = ba.

Definition: 2.7: Order of a Group

G has order n if |G| = n. i.e. G has n elements. n can be infinite.

Definition: 2.8: Order of an Element

g ∈ G has order m if m is the smallest natural number s.t. gm = e. Write |g| = ord(g) = n.

2.1 Subgroups

Definition: 2.9: Subgroups

Given a group G, a subset H ⊂ G is a subgroup if H is a group. Write H ≤ G.

Example: Suppose H ≤ Z under addition, H ̸= {0}.
Let n ∈ H be the smallest positive number, m ∈ H be any other element. We can write m = nq + r,
0 ≤ r < n. r = m− n− · · · − n ∈ H, thus r = 0.
i.e. any element m ∈ H is a multiple of n ∈ H, the smallest positive element.
Thus we can write H = nZ = {nk : kZ}. i.e. The subgroups of Z must be of the form nZ ≤ Z.

Example: G any group, {e} ≤ G, G ≤ G are the trivial subgroups.

Example: C× = {a+ bi : a, b ∈ R not both zero}, Q× ≤ R× ≤ C×. S1 ≤ C×, where S1 = {z ∈ C : |z| =
1}

Example: SL(n,R) ≤ GL(n,R), where SL(n,R) = {A ∈ Rn×n, detA = 1}

Theorem: 2.3: Subgroup Test

Suppose G is a group. H ⊂ G non-empty. Then H ≤ G ⇔ ∀x, y ∈ H, xy−1 ∈ H

Proof. (⇒) Suppose H ≤ G. Let x, y ∈ H. Then y−1 ∈ H, since H is a group. By closure property,
xy−1 ∈ H.

(⇐) Suppose ∀x, y ∈ H, xy−1 ∈ H.

1. Identity: Set y = x, then xy−1 = xx−1 = e, since x ∈ G, G is a group. Thus e ∈ H.

2. Inverse: Suppose a ∈ H. Let x = e, y = a ∈ H. xy−1 = ea−1 = a−1 ∈ H.

3. Closure: Suppose a, b ∈ H, then b−1 ∈ H. Let x = a, y = b−1. xy−1 = a(b−1)−1 = ab ∈ H

Thus H ≤ G.
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Definition: 2.10: Centralizer

Let H ≤ G. The centralizer of H is

C(H) = {g ∈ G : gh = hg,∀h ∈ H}

C(H) ≤ G

Proof. Suppose x, y ∈ C(H), we want to show xy−1 ∈ C(H).

Notice that gh = hg for all h ∈ H. Left and right multiply by g−1, we get g−1ghg−1 = g−1hgg−1. Thus
hg−1 = g−1h.

Let h ∈ H, (xy−1)h
associativity

= x(y−1h)
hg−1=g−1h

= xhy−1 gh=hg= h(xy−1)

Thus xy−1 ∈ C(H), C(H) ≤ G

Definition: 2.11: Conjugate Subgroup

Let H ≤ G. The conjugate subgroup is g−1Hg = {g−1hg : h ∈ H} ≤ G.

Proof. Suppose x ∈ g−1Hg and y ∈ g−1Hg. Then x = g−1hg, y = g−1ĥg for h, ĥ ∈ H.

Then y−1 = g−1ĥ−1g. xy−1 = g−1hgg−1ĥ−1g = g−1hĥ−1g ∈ g−1Hg.

Definition: 2.12: Center

Given a group G, the center of G is Z(G) = {g ∈ G : gx = xg,∀x ∈ G}. Z(G) ≤ G.
i.e. g ∈ Z(G) ⇔ gx = xg,∀x ∈ G⇔ xgx−1 = g,∀x ∈ G

Proof. Let x, y ∈ Z(G). Then gxg−1 = x, ∀x ∈ G, and gyg−1 = y,∀y ∈ G
Then xy−1 = gxg−1(gyg−1)−1 = gxg−1gy−1g−1 = g(xy−1)g−1, Thus xy−1 ∈ Z(G).
By Theorem 2.3, Z(G) ≤ G.

Example: Find the center of D4 = ⟨r, s : r4 = s2 = e, rs = sr3⟩

Proof. If x ∈ Z(D4), then rx = xr and sx = xs, thus x = r3xr and x = s−1xs = sxs
Suppose x is a rotation, x = rk, 0 ≤ k ≤ 3.
Then r3xr = r3rkr = rk+4 = rkr4 = rk = x, so any rotation commutes with x.
sxs = srks

By Theorem 2.1
= ssr4−k = r4−k = x = rk. Then r2k = e, 2k ≡ 0 mod 4, k is even.

Thus x = r0 or r2.
Suppose x is a reflection, x = srk, 0 ≤ k ≤ 3.
Then r3xr = r3srkr

By Theorem 2.1
= srrkr = srk+2 = x = sr2. Then rk+2 = r, r2 = e. Impossible.

In summary: if x is a reflection, it cannot be in the center. Only rotations in Z(D4) are e and r2.

Thus Z(D4) = {e, r2} = ⟨r2⟩.
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2.2 Types of Groups

2.2.1 Cyclic Groups

Definition: 2.13: Cyclic Subgroups

Given any group G and element a ∈ G, the cyclic subgroup of G generated by a is ⟨a⟩ = {an : n ∈ Z}.

Proof. Suppose x, y ∈ ⟨a⟩. Then x = am, y = an for m,n ∈ Z
Then xy−1 = am(an)−1 = ama−n = am−n ∈ ⟨a⟩, since m− n ∈ Z.
Thus ⟨a⟩ ≤ G by Theorem 2.3.

Theorem: 2.4:

⟨a⟩ is the smallest subgroup of G containing a.

Proof. We want to show that for any H ≤ G with a ∈ H, ⟨a⟩ ⊂ H.
Suppose H ≤ G with a ∈ H, then an ∈ H, ∀n ∈ Z, because subgroups are closed under the operation.

Thus ⟨a⟩ ⊂ H and ⟨a⟩ ≤ H.

Example: (Z,+), ⟨5⟩ = {5n : n ∈ Z} = 5Z ≤ Z

Example: Z12, ⟨4⟩ = {0, 4, 8} ≤ Z12, ⟨5⟩ = {0, 5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7} = Z12

Example: U8 = {1, 3, 5, 7}, ⟨3⟩ = {1, 3}, ⟨5⟩ = {1, 5}, ⟨7⟩ = {1, 7}

Figure 1: Lattice Diagram for U8

U8

⟨3⟩ ⟨5⟩ ⟨7⟩

{1}

Example: D4 = {e, r, r2, r3, s, sr, sr2, sr3}, ⟨r⟩ = {e, r, r2, r3}, ⟨r2⟩ = {e, r2}, ⟨s⟩ = {e, s}, ⟨s, r⟩ =
{e, sr}

Example: S5 = all bijections of {1, 2, 3, 4, 5}. ⟨(123)⟩ = {1, (123), (132)}

Definition: 2.14: Cyclic Groups

A group G is a cyclic group if G = ⟨g⟩ = {gn : n ∈ Z} for some g ∈ G.

Theorem: 2.5:

Every cyclic group is abelian

Proof. Suppose G = ⟨g⟩. Take x, y ∈ G.x = gm, y = gn for m,n ∈ Z.
Then, xy = gmgn = gm+n = gngm = yx. Thus the cyclic group is abelian.
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Example: Cyclic groups: Z = ⟨1⟩ = {n · 1 : n ∈ Z}. Zn = ⟨1⟩.
U6 = {1, 5} = ⟨5⟩. U9 = {1, 2, 4, 5, 7, 8} = ⟨2⟩
All non-abelian groups are not cyclic.
Z2 × Z2 = {(0, 0), (1, 0), (0, 1), (1, 1)} is abelian, but not cyclic. ⟨(1, 0)⟩ = {(1, 0), (0, 0)}, ⟨(0, 1)⟩ =
{(0, 1), (0, 0)}, ⟨(1, 1)⟩ = {(1, 1), (0, 0)}

Theorem: 2.6:

Every subgroup of a cyclic group is cyclic.

Proof. Suppose G = ⟨g⟩, H ≤ G = ⟨g⟩.
Let S = {a ∈ N : ga ∈ H} ⊂ N, so it has a minimal element m ∈ S, gm ∈ H.
Take gn ∈ H. Perform division algorithm with m and n. n = mq + r, 0 ≤ r < m− 1.
gn = gmq+r = (gm)qgr. Then gr = gn(gm)−q ∈ H. This means that r = 0. Otherwise, m is not the
minimal.
Thus, gn = (gm)qgr = (gm)q ∈ ⟨gm⟩.
Then H ⊂ ⟨gm⟩.
Since gm ∈ H, ⟨gm⟩ ≤ H by Theorem 2.4, Thus H = ⟨gm⟩

Lemma: 2.1:

Suppose G = ⟨g⟩ with |G| = n or equivalently |g| = n. Then gk = e ⇔ n|k

Proof. (⇐) Suppose n|k, then k = nd for d ∈ N. gk = gnd = (gn)d = ed = e

(⇒) Suppose gk = e. Perform division with n and k. k = nq + r, 0 ≤ r < n− 1.
Then e = gk = gnq+r = (gn)qgr = eqgr = gr. Thus r = 0, k = nq, n|k.

Theorem: 2.7: Element Order in Cyclic Group

Let G = ⟨g⟩ with |G| = |g| = n. If x = gk, then |x| = n
gcd(n,k) .

Proof. Let m = |x|. By Definition 2.8, xm = (gk)m = e. Thus gkm = e. By Lemma 2.1, n|km, or
equivalently n

gcd(n,k) =
km

gcd(n,k) .
But n

gcd(n,k) and k
gcd(n,k) are relevantly prime. Thus m

gcd(n,k) |m

Notice x
n

gcd(n,k) = (gk)
n

gcd(n,k) = (gn)
k

gcd(n,k) = e.
By Lemma 2.1, m| n

gcd(n,k) .
Thus m = n

gcd(n,k)

Corollary 1. If G = ⟨g⟩ with |G| = n|g|, then G = ⟨gm⟩ ⇔ gcd(m,n) = 1.

Corollary 2. Zn = ⟨m⟩ ⇔ gcd(m,n) = 1.

Example: Z9 = ⟨1⟩ = ⟨2⟩ = ⟨4⟩ = ⟨5⟩ = ⟨7⟩ = ⟨8⟩
For p prime, Zp = ⟨m⟩, ∀m ∈ [1, p− 1].
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2.2.2 Alternating Groups

Definition: 2.15: k-cycle and Transposition

A k-cycle is a permutation (a1a2...ak), ai ∈ {1, ..., n}. A 2-cycle is known as a transposition.

Theorem: 2.8:

Any k-cycle can be written as a product of transpositions.

Proof. (a1a2...ak−1ak) = (a1a2)(a2a3)...(ak−1ak).

Remark 1. The composition is not unique. e.g. (123) = (12)(13) = (12)(23)(23)(13)

Lemma: 2.2:

If τ1, ..., τn ∈ Sn are transpositions with τ1 · · · τr = 1, then r is even.

Proof. Note r = 1 is impossible. So we assume r ≥ 2.

Induction Hypothesis: Assume that for k ≤ r if τ1, ..., τk ∈ Sn are transpositions with τ1 · · · τk = 1, then
k is even.

Induction Step: We can write the final two transpositions τr−1τr =


(ab)(ab) = (1)

(bc)(ab) = (ac)(bc)

(cd)(ab) = (ab)(cd)

(ac)(ab) = (ab)(bc)

.

Using this we can move the last appearance of a to the left. Suppose a appears in τr, we can move it left
until

1. The resulting final appearance of a is (ab′) and it encounters its inverse. τ ′k−1τk = (1). Then
τ1 · · · τr = τ ′1 · · · τ ′r−2 = (1). r − 2 is even by IH, thus r is even.

2. The first occurrence of a moves all the way to the left, (1) = τ1 · · · τr = (ab)′τ ′2 · · · τ ′r. Then τ ′2 · · · τ ′r
fixes a, and (1) = τ1 · · · τr = (ab)′τ ′2 · · · τ ′r sends a to b, contradiction that (1) is identity.

Thus we only have the first case, and r must be even.

Theorem: 2.9:

If τ1 · · · τm and τ ′1 · · · τ ′n are transpositions s.t. τ1 · · · τm = τ ′1 · · · τ ′n, then m ≡ n mod 2.

Proof. Note ∀τ = (ab), τ2 = 1, thus τ−1 = τ .
Then right multiply both sides of the given equation by (τ ′1 · · · τ ′n)−1, we get τ1 · · · τm(τ ′n)−1 · · · τ ′1 = (1).
Thus (m+ n) ≡ 0 mod 2, i.e. m ≡ n mod 2.

Definition: 2.16: Even/Odd Cycles

σ ∈ Sn is said to be even/odd if it can be written as a product of an even/odd number of transposi-
tions. (a1...ak) is even if k is odd, odd if k is even, because (a1...ak) = (a1a2) · · · (ak−1ak) contains
k − 1 transpositions.
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Definition: 2.17: Alternating Group

Define the alternating group An = {σ ∈ Sn : σ is even}. An ≤ Sn

Proof. Suppose µ, σ ∈ An. Then µ = τ1 · · · τ2k, σ = τ ′1 · · · τ ′2m for k,m ∈ N. Then σ−1 = τ ′2m · · · τ ′1.
µσ−1 = τ1 · · · τ2kτ ′2m · · · τ ′1 has a total of 2(k + m) transpositions. Thus µσ−1 ∈ An. By Theorem 2.3,
An ≤ Sn.

Theorem: 2.10:

|An| =
n!

2

Proof. Sn \An = {odd permutations}. Then Sn is the disjoint union of An and Sn \An.

Consider ϕ : An → Sn \An s.t. ϕ(σ) = (12)σ. We want to show that ϕ is a bijection.

1. Injective: ϕ(σ1) = ϕ(σ2), (12)σ = (12)σ, then σ1 = σ2

2. Surjective: Let µ ∈ Sn \An. Then µ = τ1 · · · τ2k−1 = (12)(12)τ1 · · · τ2k−1

Note that (12)τ1 · · · τ2k−1 ∈ An as a even permutation, ϕ((12)τ1 · · · τ2k−1) = τ1 · · · τ2k−1 = µ.

Thus ϕ is bijective. |An| = |Sn \An|. n! = |Sn| = |An|+ |Sn \An| = 2|An|. Then |An| = n!
2

Example: Show that A10 has an element of order 15.

Proof. Let σ = (123)(45678) ∈ A10. (123) has order 3, (45678) has order 5. Then |σ| = lcm(3, 5) = 15.

2.2.3 Quaternion Group

Definition: 2.18: Quaternion Group

The Quaternion Group is Q8 = {±1,±i,±j,±j} with the following operations:
• id = 1
• (−1)2 = 1
• i2 = j2 = k2 = 1
• ij = k, ji = −k
• jk = i, kj = −i
• ki = j, ik = −j

Note: i→ j → k → i gives the positive orientation.

Cyclic subgroups of Q8 are ⟨−1⟩ = {1,−1}, ⟨i⟩ = ⟨−i⟩ = {1, i,−1,−i}, ⟨j⟩ = ⟨−j⟩ = {1, j,−1,−j},
⟨k⟩ = ⟨−k⟩ = {1, k,−1,−k}.

Figure 2: Lattice Diagram for Q8

Q8

⟨i⟩ ⟨j⟩ ⟨k⟩

⟨−1⟩

{1}
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2.3 Cosets and Lagrange’s Theorem

Definition: 2.19: Cosets

Suppose G is a group and H ≤ G. Then the left coset of H in G with representative g ∈ G is
gH = {gh : h ∈ H}. The right coset of H in G with representative g ∈ G is Hg = {hg : h ∈ H}.
Note: Cosets are not necessarily subgroups.

Example: 4Z ≤ Z
The coset with 0 is 0 + 4Z = {0 + 4n : n ∈ Z} = 4Z.
The coset with 1 is 1 + 4Z = {1 + 4n : n ∈ Z} = {...,−3, 1, 5, 9...}.
The coset with 2 is 2 + 4Z = {2 + 4n : n ∈ Z} = {...,−2, 2, 6, 10...}.
The coset with 3 is 3 + 4Z = {3 + 4n : n ∈ Z} = {...,−1, 3, 7, 11...}.
Z = 4Z ∪ (1 + 4Z) ∪ (2 + 4Z) ∪ (3 + 4Z).

Example: ⟨2⟩ = {0, 2, 4, 6} ≤ Z8

0 + ⟨2⟩ = {0, 2, 4, 6} = 2 + ⟨2⟩ = 4 + ⟨2⟩ = 6 + ⟨2⟩ = ⟨2⟩
1 + ⟨2⟩ = {1, 3, 5, 7} = 3 + ⟨2⟩ = 5 + ⟨2⟩ = 7 + ⟨2⟩
Z8 = ⟨2⟩ ∪ (1 + ⟨2⟩).

Example: ⟨i⟩ = {1, i,−1,−i} ≤ Q8 = {±1,±i,±j,±k}
i⟨i⟩ = {i,−1,−i, 1} = ⟨i⟩, j⟨i⟩ = {j,−k,−j, k}
Q8 = ⟨i⟩ ∪ (j⟨i⟩).

Example: ⟨5⟩ = {1, 5} ≤ U12 = {1, 5, 7, 11}
7⟨5⟩ = {7, 11}
U12 = ⟨5⟩ ∪ (7⟨5⟩).

Example: H = {e, r2, s, sr2} ≤ D4 = {e, r, r2, r3, sr, sr2, sr3}
eH = r2H = sH = (sr2)H = H, rH = {r, r3, rs, rsr2} = {r, r3, sr3, sr} (By Theorem 2.1)
D4 = H ∪ (rH).

Example: ⟨(12)⟩ = {(1), (12)} ≤ S3 = {(1), (12), (13), (23), (123), (132)}
(123)⟨(12)⟩ = {(123), (13)}, (132)⟨(12)⟩ = {(132), (23)}
S3 = ⟨(12)⟩ ∪ ((123)⟨(12)⟩) ∪ ((132)⟨(12)⟩).

Lemma: 2.3: Coset Partition

Distinct left cosets of H in G partition G.

Proof. Suppose x ∈ g1H ∩ g2H. Then x = g1h = g2h
′ for h, h′ ∈ H.

Then g1 = g2h
′h−1 ∈ g2H. Thus g1h′′ = g2(h

′h−1h′′) ∈ g2H, so g1H ⊂ g2H.
Similarly, we get g2H ⊂ g1H. Thus g1H = g2H. So different cosets are disjoint. i.e. g1H = g2H or
g1H ∩ g2H = ∅.

Suppose g ∈ G, then g = ge ∈ gH. Thus any element g ∈ G must live in some coset. i.e. Distinct left
cosets of H in G partition G.

Lemma: 2.4:

|H| = |gH| for any g ∈ G.
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Proof. Consider ϕ : H → gH s.t. ϕ(h) = gh
Injective: suppose ϕ(h) = ϕ(h′), then gh = gh′, meaning that h = h′.
Surjective: let x ∈ gH. By Definition 2.19, x = gh for h ∈ H. ϕ(h) = gh = x.
Thus ϕ is bijective, |H| = |gH|.

Theorem: 2.11: Lagrange’s Theorem

Let G be a finite group with H ≤ G. Then |G| = |H|[G : H], where [G : H] is the number of cosets
of H in G. Thus |H|||G|. [G : H] is also called the index of H in G.

Proof. Suppose |G| = n and g1H, ..., gkH is a complete list of left cosets of H in G.
By Lemma 2.3, G = g1H ∪ g2H ∪ · · · ∪ gkH with giH ∩ gjH = ∅ for i ̸= j.

Then |G| =
k∑
i=1

|giH| By Lemma 2.4
=

k∑
i=1

|H| = k|H|. k = [G : H] ∈ Z. Thus |G| = |H|[G : H] and |H|||G|.

Corollary 3. If G is a finite group, Then

1. ∀g ∈ H, |g|||G|

2. If |G| = p a prime, then the only subgroups are G and {e}

3. If |G| = p, G is cyclic.

Proof. 1. Since ⟨g⟩ ⊂ G by Theorem 2.4, and |g| = |⟨g⟩| which divides |G| by Theorem 2.11.

2. A prime number can only be divided by 1 and itself

3. Choose g ̸= e ∈ G, {e} ≠ ⟨g⟩ ≤ G, then ⟨g⟩ = G by previous.

Lemma: 2.5: Coset Equality

Let G be a group, H ≤ G and g1, g2 ∈ G. Then the following are equivalent:
1. g1H = g2H
2. Hg−1

1 = Hg−1
2

3. g1H ⊂ g2H
4. g1 ∈ g2H
5. g−1

1 g2 ∈ H

Proof. (1 ⇒ 2) Suppose g1H = g2H.
Let x ∈ Hg−1

1 , then x = hg−1
1 for some h ∈ H.

x−1 = g1h
−1 ∈ g1H = g2H, thus x−1 = g2ĥ for some ĥ ∈ H, then x = (x−1)−1 = ĥ−1g−1

2 ∈ Hg−1
2 .

Thus Hg−1
1 ⊂ Hg−1

2 .
Similarly, we can show that Hg−1

2 ⊂ Hg−1
1 . Thus Hg−1

1 = Hg−1
2 .

(2 ⇒ 3) Suppose Hg−1
1 = Hg−1

2 .
Let x ∈ g1H, then x = g1h for some h ∈ H.
x−1 = h−1g−1

1 ∈ Hg−1
1 = Hg−1

2 . Thus x−1 = ĥg−1
2 for some ĥ ∈ H. Then x = (x−1)−1 = g2ĥ

−1 ∈ g2H.
Thus g1H ⊂ g2H.
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(3 ⇒ 4) Suppose g1H ⊂ g2H.
Then ∀x ∈ g1H, x ∈ g2H.
g1 = g1e ∈ g1H so g1 ∈ g2H.

(4 ⇒ 5) Suppose g1 ∈ g2H.
Then g1 = g2h for some h ∈ H, then g−1

2 g1 = h. Thus g−1
1 g2 = h−1 ∈ H.

(5 ⇒ 1) Suppose g−1
1 g2 ∈ H.

Then g−1
1 g2 = h for some h ∈ H. g2 = g1h ∈ g1H. By Lemma 2.3, g1H = g2H.

2.4 Group Isomorphism

Definition: 2.20: Isomorphism

Two groups (G, ·) and (H, ◦) are isomorphic if there is a bijection ϕ : G→ H s.t. ϕ(xy) = ϕ(x)◦ϕ(y),
for all x, y ∈ G. ϕ is called an isomorphism. Write G ∼= H.

Example: Show that (Z2,+) ∼= {{±1}, ·}.

Proof. Let ϕ : Z2 → {±1} s.t. ϕ(0) = 1, ϕ(1) = −1.
ϕ(0 + 0) = ϕ(0) = 1 = 1 · 1 = ϕ(0)ϕ(0)
ϕ(0 + 1) = ϕ(1) = −1 = 1(−1) = ϕ(0)ϕ(1)
ϕ(1 + 0) is by commutativity of Abelian groups. ϕ(1 + 1) = ϕ(0) = 1 = (−1)(−1) = ϕ(1)ϕ(1)

Thus Z2
∼= {±1}

Example: Show that (R,+) ∼= (R+, ·)

Proof. Let ϕ : R → R+ s.t. ϕ(x) = ex

Injective: ϕ(x) = ϕ(y) ⇒ ex = ey ⇒ x = y
Surjective: Let y ∈ R+, ln y ∈ R. Set x = ln y, ϕ(x) = eln y = y.
ϕ(x+ y) = ex+y = exey = ϕ(x)ϕ(y)

Example: Show that U5
∼= U10.

Proof. U5 = {1, 2, 3, 4} = ⟨3⟩, U10 = {1, 3, 7, 9} = ⟨7⟩ (Any generator works.)
Let ϕ : U5 → U10 s.t. ϕ(3k) = 7k, i.e. ϕ(1) = 1, ϕ(3) = 7, ϕ(4) = 9, ϕ(2) = 3
ϕ(3k3l) = ϕ(3k+l) = 7k+l = 7k7l = ϕ(3k)ϕ(3l)

Theorem: 2.12: Properties of Isomorphism

Let ϕ : G→ H be an isomorphism. Then
1. ϕ−1 : H → G is an isomorphism
2. |G| = |H|
3. If G is abelian, then so is H
4. If G is cyclic, then so is H
5. If G has a subgroup of order n, then so does H

Proof. 1. ϕ is bijective, so ϕ−1 exists.
Suppose u, v ∈ H, ∃x, y ∈ G s.t. ϕ(x) = u, ϕ(y) = v
ϕ−1(uv) = ϕ−1(ϕ(x)ϕ(y)) = ϕ−1(ϕ(xy)) = xy = ϕ−1(u)ϕ−1(v)
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2. By definition of bijections

3. Suppose G is abelian.
Let u, v ∈ H, u = ϕ(x), v = ϕ(y), x, y ∈ G

uv = ϕ(x)ϕ(y) = ϕ(xy)
Gis abelian

= ϕ(yx) = ϕ(y)ϕ(x) = vu
Thus H is abelian.

4. Suppose G is cyclic. G = ⟨g⟩.
Let u ∈ H. u = ϕ(x) for some x ∈ G = ⟨g⟩. Then x = gn for some n ∈ Z.
Then u = ϕ(gn) = (ϕ(g))n ∈ ⟨ϕ(g)⟩
Thus H ≤ ⟨ϕ(g)⟩ ≤ H, H = ⟨ϕ(g)⟩ is cyclic.

5. Suppose K ≤ G with |K| = n
Consider ϕ(K) ⊂ H with |ϕ(K)| = n.
Let x, y ∈ ϕ(K). Then x = ϕ(k1), y = ϕ(k2) for some k1, k2 ∈ K. k1k

−1
2 ∈ K, because K is a

subgroup.
xy−1 = ϕ(k1)ϕ(k2)

−1 = ϕ(k1k
−1
2 ) ∈ ϕ(K)

By Theorem 2.3, ϕ(K) ≤ H.

2.4.1 Classification of Cyclic Groups

Theorem: 2.13: Infinite Cyclic Groups

If G = ⟨g⟩ with |G| = ∞, then G ∼= Z.

Proof. Consider ϕ : Z → G s.t. ϕ(n) = gn

ϕ(m+ n) = gm+n = gmgn = ϕ(m)ϕ(n)

Injective: suppose ϕ(m) = ϕ(n) with m ≥ n. Then gm = gn ⇒ gm−n = e.
If m = n, then done, ϕ is injective.
If m > n, then let k = m− n > 0. ⟨g⟩ = {e, g, ..., gk−1} is finite, because gk = e.

Surjective: suppose x ∈ G = ⟨g⟩, x = gn for some n ∈ Z, then ϕ(n) = x.

Theorem: 2.14: Finite Cyclic Groups

Suppose G = ⟨g⟩ with |G| = n. Then G ∼= Zn.

Proof. Consider ϕ : Zn → G with ϕ(m) = gm for 0 ≤ m ≤ n− 1
Suppose m ≡ m′ mod n, then m−m′ = kn for some integer k. ϕ(m−m′) = ϕ(kn) ⇒ gm−m′

= (gn)k = e.
Thus gm = gm

′ , ϕ(m) = ϕ(m′). So the map ϕ is well-defined.

Suppose l,m ∈ Zn. Then ϕ(l +m) = gl+m = glgm = ϕ(l)ϕ(m)

Surjective: Suppose x ∈ G = ⟨g⟩. x = gm for 0 ≤ m ≤ n− 1, then ϕ(m) = gm = x.

Injective: Suppose l,m ∈ Zn. ϕ(l) = ϕ(m) means l = m, gl−m = e.
If l ̸= m, then l −m ∈ {1, ..., n− 1}, |g| = |⟨g⟩| < n, which is a contradiction. Thus l = m.

Thus ϕ is bijective and G ∼= Zn

Remark 2. In summary:
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1. All infinite cyclic groups are isomorphic to Z

2. All finite cyclic groups are isomorphic to Zn for some n

2.4.2 Cayley’s Theorem

Theorem: 2.15: Cayley’s Theorem

Every group is isomorphic to a permutation group.

Proof. For g ∈ G, define λg : G→ G s.t. λg(x) = gx

We firstly show that λg is a bijection, i.e. λg ∈ Sg
Injective: λg(x) = λg(y) ⇒ gx = gy ⇒ x = y
Surjective: Suppose y ∈ G, g−1y ∈ G, λg(g−1y) = gg−1y = y
Thus λg is a bijection and a permutation on G.

Let H = {λg : g ∈ G}. We show that H is a group.

1. Associativity: is from associativity of function composition.

2. Closure: because ∀g, h ∈ G, gh ∈ G, then for all λg, λh ∈ H, (λg ◦ λh)(x) = ghx = λgh(x), and thus
λg ◦ λh = λgh ∈ H

3. Identity: (λg ◦ λe)(x) = gex = gx = λg(x), thus λg ◦ λe = λg. λe is the identity

4. Inverses: (λg ◦ λg−1)(x) = gg−1x = x = ex = λe(x). Thus λg ◦ λg−1 = λe. λg−1 = (λg)
−1.

Now we show that G ∼= H
Consider ϕ : G→ H, ϕ(g) = λg
ϕ(gh) = λgh. Thus ϕ(gh)(x) = λgh(x) = ghx = (λg ◦ λh)(x) = ϕ(g)(x)ϕ(h)(x). So ϕ(gh) = ϕ(g)ϕ(h).
Injective: Suppose ϕ(g) = ϕ(h). i.e. λg = λh, then λg(x) = λh(x), ∀x ⇒ gx = hx,∀x ⇒ g = h
Surjective: from definition of ϕ.

Thus G ∼= H

Corollary 4. If |G| = n, then there is a subgroup H ⊂ Sn s.t. G ∼= H.

Example: Find a subgroup H ≤ S3 s.t. Z3
∼= H.

Proof. Consider SZ3 = all permutation {0, 1, 2} → {0, 1, 2}. SZ3 = S3.
Define ϕ : Z3 → H = {λg : g ∈ Z3}.
λ0 : Z3 → Z3 s.t. λ0(x) = 0 + x. This is the identity (0).
λ1 : Z3 → Z3 s.t. λ1(x) = 1 + x. This is the 3-cycle (012).
λ2 : Z3 → Z3 s.t. λ2(x) = 2 + x. This is the 3-cycle (021).
Thus H = {(0), (012), (021)} ≤ S3 and Z3

∼= H.

2.5 Group Products and Quotients

Definition: 2.21: External Direct Product

Given groups G1, G2. Their external direct product is G1×G2. The respective group operations are
componentwise.

Example: Z5 × Z = {m ∈ Z5, n ∈ Z}.
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Example: R× × Z3 = {(x,m) : x ∈ R×,m ∈ Z3} with (x, n) ∗ (y,m) = (xy, n+m)

Theorem: 2.16: Property of External Direct Product

Let (x, y) ∈ G1 ×G2 with |x| = r, |y| = s, then |(x, y)| = lcm(r, s).

Proof. Set l = lcm(r, s), then l = ra = sb for some a, b ∈ N.
(x, y)l = (xl, yl) = ((xr)a, (ys)b) = (ea1, e

b
2) = (e1, e2). Thus |(x, y)||l

Set l′ = |(x, y)|, then (x, y)l
′
= (e1, e2) ⇒ (xl

′
, yl

′
) = (e1, e2), so xl′ = e1, yl

′
= e2. r|l′ and s|l′.

Thus l = lcm(r, s)|l′ = |(x, y)|
Then |(x, y)| = lcm(r, s)

Theorem: 2.17:

Zm × Zn ∼= Zmn ⇔ gcd(m,n) = 1

Proof. (⇒) Suppose Zm × Zn ∼= Zmn. Assume d = gcd(m,n) > 1
Take (a, b) ∈ Zm × Zn. Then if we sum (a, b) mn

d times, we have (a, b) + · · · + (a, b) = (mnd a,
mn
d b) =

(m(nd )a, n(
m
d b)) = (0, 0).

But this shows that |(a, b)||mnd and thus |(a, b)| < mn for any (a, b) ∈ Zm × Zn.
Thus Zm × Zn is not cyclic. Contradiction.
Therefore gcd(m,n) = 1.

(⇐) Suppose gcd(m,n) = 1, |1| = m in Zm, |1| = n in Zn.
Then |(1, 1)| = lcm(m,n) = mn by Theorem 2.16.
Thus Zm × Zn = ⟨(1, 1)⟩ has order mn. Zm × Zn ∼= Zmn by Theorem 2.14.

Definition: 2.22: Internal Direct Product

Suppose G is a group with H,K ≤ G s.t.
1. G = HK = {hk : h ∈ H, k ∈ K}
2. H ∩K = {e}
3. hk = kh, ∀h ∈ H, k ∈ K

Then G is the internal direct product of H and K.

Theorem: 2.18: Isomorphism of Direct Products

If G is the internal direct product of H and K, then G ∼= H ×K.

Proof. We want to find a bijective map ϕ : G → H × K, that satisfy the isomorphism property (Defini-
tion 2.20).

Let ϕ : G→ H ×K. Take g ∈ G, write g = hk, ϕ(g) = (h, k).

We firstly show that ϕ is well defined.
Suppose g = hk = h′k′, then h′−1h = k′k−1. h′−1h ∈ H and k′k−1 ∈ K. Then both sides in H ∩K = {e}.
h′−1h = e⇒ h = h′. Similarly, k = k′.

Let g, g′ ∈ G, g = hk, g′ = h′k′. ϕ(gg′) = ϕ(hkh′k′)
byproperty3

= ϕ(hh′kk′) = (hh′, kk′) = (h, k)(h′, k′) =
ϕ(g)ϕ(g′).
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Injective: ϕ(g) = ϕ(g′), g = hk, g′ = h′k′, then (h, k) = (h′, k′), Thus h′ = h, k′ = k, g = g′.
Surjective: Take (h, k) ∈ H ×K. Let hk ∈ G, ϕ(hk) = (h, k),

Example: Find groups that are isomorphic to U12 = {1, 5, 7, 11}.
Note ⟨5⟩ = {1, 5} ≤ U12, and ⟨7⟩ = {1, 7} ≤ U12, 5 · 7 ≡ 11 mod 12.

Then U12 = ⟨5⟩⟨7⟩ ∼= ⟨5⟩ × ⟨7⟩
By Theorem 2.18∼= Z2 × Z2.

Example: Find groups that are isomorphic to D6 = ⟨r, s : r6 = s2 = e, rs = sr5⟩ (r3s = sr3)
H = ⟨r3⟩ ∼= Z2, K = ⟨s, r3⟩ = {e, r2, r4, s, sr2, sr4} ∼= D3.

Note that r = r7 = r3 · r4, D6 = HK, Thus D6

By Theorem 2.18∼= H ×K ∼= Z2 × Z3

Definition: 2.23: Normal Subgroup

Given a group G, we say N ≤ G is normal if gN = Ng,∀g ∈ G. Equivalently, gNg−1 = N, ∀g ∈
G⇔ gng−1 ∈ N, ∀g ∈ G,n ∈ N .
Write N ⊴ G.

Theorem: 2.19:

Every subgroup of an abelian group is normal.

Proof. Let G be an abelian group, H ≤ G.
Take h ∈ H, g ∈ G. ghg−1 abelian

= gg−1h = h ∈ H. Thus H ⊴ G.

Example: Find the normal subgroups of D3 = ⟨r, s⟩ = {e, r, r2, s, sr, sr2}
We only need to consider the generator subgroups of ⟨r⟩ and ⟨s⟩.
For ⟨r⟩ = {e, r, r2}. s⟨r⟩ = {s, sr, sr2}, ⟨r⟩s = {s, rs = sr2, r2s = sr}, thus ⟨r⟩ ⊴ D3

For ⟨s⟩ = {e, s}, r⟨s⟩ = {r, rs} = {r, sr2}, ⟨s⟩r = {r, sr} ̸= r⟨s⟩. Thus ⟨s⟩ is not a normal subgroup of
D3.

Definition: 2.24: Left Cosets

For any subgroup H ≤ G, denote the set of left cosets G/H = {gH : g ∈ G}. By Theorem 2.11,
|G/H| = [G : H] = |G|

|H| .

Theorem: 2.20: Quotient Groups

If N ⊴ G, then G/N forms a group known as the quotient group with (xN)(yN) = (xy)N .

Proof. Suppose N ⊴ G. Let x1, x2, y1, y2 ∈ G s.t. x1N = x2N (x1x−1
2 ∈ N) and y1N = y2N (y1y−1

2 ∈ N).
Then

(x1N)(y1N) = (x1y1)N

= (x1y1y
−1
1 y2)N (since y−1

1 y2 ∈ N)

= (x1y2)N = N(x1y2) (By Definition 2.23)

= N(x2x
−1
1 x1y2) (since x2x−1

1 ∈ N)

= N(x2y2) = (x2y2)N
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Thus (x1N)(y1N) = (x2N)(y2n). The operation is well defined.

Check that G/N is indeed a group:

1. Identity: eN = N , (xN)(eN) = (xe)N = xN

2. Inverse: (xN)−1 = x−1N (Only when N is normal)

3. Associative: ((xN)(yN))zN = xyzN = (xN)((yN)(zN)) (Only when N is normal)

4. Closed since G is closed.

Thus G/N is a group.

Example: Find the quotient group of D3 = {e, r, r2, s, sr, sr2} by ⟨r⟩ = {e, r, r2}.
Note that s⟨r⟩ = ⟨r⟩s, ⟨r⟩ ⊴ D3

By Theorem 2.11, |D3/⟨r⟩| = [D3 : ⟨r⟩] = |D3|
|⟨r⟩| = 2.

D3/⟨r⟩ = {⟨r⟩, s⟨r⟩} ∼= Z2. (⟨r⟩ → 0, s⟨r⟩ → 1)

Example: Find the quotient groups of Q8 = {±1,±i,±j,±k} = ⟨i, j⟩.
Firstly, we consider ⟨i⟩ = {1, i,−1,−i} Note that j⟨i⟩ = ⟨i⟩j = {j,−k,−j, k}. Thus ⟨i⟩ ⊴ Q8

Q8/⟨i⟩ = {⟨i⟩, j⟨i⟩} ∼= Z2. The quotient groups by ⟨j⟩ and ⟨k⟩ are similar.
Then, we consider ⟨−1⟩ = {1,−1} ⊴ Q8

Q8/⟨−1⟩ = {⟨−1⟩, i⟨−1⟩, j⟨−1⟩, k⟨−1⟩} ∼= Z2 × Z2, because each of the non-identity element has order 2.
⟨1⟩ → (0, 0), i⟨1⟩ → (1, 0), j⟨1⟩ → (0, 1), k⟨1⟩ → (1, 1).

Theorem: 2.21:

Z(G) ⊴ G. If G/Z(G) is cyclic, then G is abelian.

Proof. Firstly, we show that Z(G) ⊴ G

Let g ∈ G, gZ(G) = {gx : x ∈ Z(G)} By Definition 2.12
= {xg : x ∈ Z(G)} = Z(G)g

Thus by Definition 2.23, Z(G) ⊴ G.

Assume G/Z(G) = ⟨xZ(G)⟩. By Theorem 2.3, G =
∞⋃
n=0

xnZ(G).

Take a, b ∈ G, a = xnZ(G) = xny, b = xmZ(G) = xmz for some m,n ∈ Z, m,n ≥ 0, y, z ∈ Z(G).
ab = xnyxmz

By Definition 2.12
= xnxmyz = xn+mzy = xmxnzy = xmzxny = ba.

Thus G is abelian.

2.6 Group Homomorphism

Definition: 2.25: Group Homomorphism

Suppose G and H are groups. A map ϕ : G→ H is called a homomorphism if ϕ(xy) = ϕ(x)ϕ(y) for
all x, y ∈ G.

Example: ϕ : Z → G s.t. ϕ(n) = gn. G any group. g ∈ G fixed. Then ϕ is a homomorphism.
ϕ(m+ n) = gm+n = gmgn = ϕ(m)ϕ(n).

Example: ϕ : GL2(R) → R×, ϕ(A) = detA is a homomorphism. ϕ(AB) = det(AB) = detAdetB =
ϕ(A)ϕ(B).
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Example: ϕ : R → S1 = {z ∈ C : |z| = 1}. ϕ(x) = eix is a homomorphism. ϕ(x+ y) = ei(x+y) = eixeiy =
ϕ(x)ϕ(y).

Theorem: 2.22: Properties of Homomorphism

Let ϕ : G1 → G2 be a homomorphism. Then
1. ϕ(e1) = e2
2. ∀x ∈ G, ϕ(x−1) = (ϕ(x))−1

3. If H1 ≤ G1, then ϕ(H1) ≤ G2

4. If H2 ≤ G2, then ϕ−1(H2) ≤ G1. If H2 ⊴ G2, then ϕ−1(H2) ⊴ G1.

Proof. 1. Let x ∈ G1, e1x = x. Since ϕ is a homomorphism, ϕ(e1x) = ϕ(x) = ϕ(e1)ϕ(x). Then
ϕ(e1) = ϕ(x)(ϕ(x))−1 = e2

2. e1 = xx−1. e2
By 1.
= ϕ(e1) = ϕ(xx−1) = ϕ(x)ϕ(x−1). Thus ϕ(x−1) = (ϕ(x))−1

3. Let x, y ∈ H1, then By Theorem 2.3, xy−1 ∈ H1. ϕ(x) ∈ ϕ(H1), ϕ(y) ∈ ϕ(H1), (ϕ(y))−1 = ϕ(y−1) ∈
ϕ(H1).
Then ϕ(x)(ϕ(y))−1 = ϕ(xy−1) ∈ ϕ(H1). Thus ϕ(H1) ≤ G2.

4. Suppose H2 ≤ G. Let x, y ∈ ϕ−1(H2), ϕ(x), ϕ(y) ∈ H2. Then ϕ(x)(ϕ(y))−1 = ϕ(xy−1) ∈ H2

⇒ xy−1 ∈ ϕ−1(H2). By Theorem 2.3, ϕ−1(H2) ≤ G1.

Suppose H2 ⊴ G2. Take n ∈ ϕ−1(H2), ϕ(n) ∈ H2, x ∈ G1. ϕ(xnx−1) = ϕ(x)ϕ(n)ϕ(x)−1 ∈ H2

because H2 ⊴ G2.
Thus xnx−1 ∈ ϕ−1(H2), ϕ−1(H2) ⊴ G1.

Remark 3. H1 ⊴ G1 ̸⇒ ϕ(H1) ⊴ G2. e.g. ϕ : Z → Dn. ϕ(m) = sm. Z ⊴ Z, but ϕ(Z) = ⟨s⟩ is not normal
in Dn.

Lemma: 2.6:

If ϕ : G→ H is a homomorphism, then |ϕ(x)|||x|, ∀x ∈ G.

Proof. Suppose ϕ : G→ H is a homomorphism.
Take x ∈ G s.t. |x| = n <∞. xn = eG ∈ G, (ϕ(x))n = ϕ(xn) = ϕ(eG) = eH ∈ H
Let m = |ϕ(x)|. Perform division algorithm n = mq + r, 0 ≤ r < m. n−mq = r.
(ϕ(x))r = ϕ(x)n[ϕ(x)m]−q = eH . Thus r = 0 and m|n.

Lemma: 2.7:

If Cn = ⟨x : xn = e⟩ ∼= Zn = ⟨1⟩, then |xm| = |⟨xm⟩| = n
gcd(m,n) . |m| = n

gcd(m,n) in Zn

Proof. Follows Theorem 2.7.

Example: Find all homomorphism ϕ : Z24 → Z18

Proof. We find the map of the generator ϕ(1).
By Lemma 2.6, |ϕ(1)|||1| = 24. Thus |ϕ(1)| ∈ {1, 2, 3, 4, 6, 8, 12}
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In Z18, we want to find m s.t. |m| = 18
gcd(m,18) is in {1, 2, 3, 4, 6, 8, 12}.

|1| = |5| = |7| = |11| = |13| = |17| = 18
|2| = |4| = |8| = |10| = |14| = |16| = 9, not possible
|3| = |15| = 6, ϕ(1) = 3 and ϕ(1) = 15
|6| = |12| = 3, ϕ(1) = 6 and ϕ(1) = 12
|9| = 2, ϕ(1) = 9.

ϕ(1) = 0 mapping the identity is also a homomorphism.

Definition: 2.26: Kernel

Given ϕG1 → G2 a homomorphism, the kernel of ϕ is Ker(ϕ) = {x ∈ G1 : ϕ(x) = e2} = ϕ−1(e2).

Example: ϕ : Z → Z5, ϕ(n) = [n]. Then Ker(ϕ) = {n ∈ Z : ϕ(n) = [0]} = 5Z.

Example: ϕ : R → C×, ϕ(x) = e2πix. Then Ker(ϕ) = {x ∈ R : e2πix = 1} = Z.

Theorem: 2.23:

For a homomorphism ϕ : G1 → G2, Ker(ϕ) ⊴ G1.

Proof. Firstly, we show that Ker(ϕ) ≤ G1.
Let x, y ∈ Ker(ϕ), ϕ(xy−1) = ϕ(x)ϕ(y)−1 = e2e

−1
2 = e2. Thus xy−1 ∈ Ker(ϕ). By Theorem 2.3, Ker(ϕ) ≤

G1.

Let x ∈ G1, n ∈ Ker(ϕ), ϕ(xnx−1) = ϕ(x)ϕ(n)ϕ(x)−1 = ϕ(x)e2ϕ(x)
−1 = ϕ(x)ϕ(x)−1 = e2.

Thus xnx−1 ∈ Ker(ϕ), Ker(ϕ) ⊴ G1.

Theorem: 2.24: Inverse Homomorphism

ψ : G→ G defined by ψ(x) = x−1 is a homomorphism ⇔ G is abelian.

Proof. (⇐) Suppose G is abelian.
Let x, y ∈ G, xy = yx

ψ(xy) = (xy)−1 = y−1x−1 abelian
= x−1y−1 = ψ(x)ψ(y). Thus ψ is a homomorphism.

(⇒) Suppose ψ(x) = x−1 is a homomorphism.
Let x, y ∈ G. ψ(xy) = ψ(x)ψ(y) ⇒ (xy)−1 = x−1y−1 ⇒ y−1x−1 = x−1y−1 ⇒ xy = yx. G is abelian.
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2.7 Isomorphism Theorems for Groups

2.7.1 First Isomorphism Theorem

Theorem: 2.25: First Isomorphism Theorem

If ϕ : G → H is a homomorphism and π : G → G/Ker(ϕ), then there exists a unique isomorphism
ψ : G/Ker(ϕ) → Im(ϕ) ≤ H s.t. ψπ = ϕ.

G

G/Ker(ϕ)

Im(ϕ) ≤ H

π

ϕ

ψ

Proof. Let ψ : G/Ker(ϕ) → H s.t. ψ(xKer(ϕ)) = ϕ(x) ∈ Im(ϕ) ≤ H.

Well defined: Suppose xKer(ϕ) = yKer(ϕ), thus xy−1 ∈ Ker(ϕ). ϕ(xy−1) = ϕ(x)ϕ(y)−1 = e. Thus
ψ(xKer(ϕ)) = ϕ(x) = ϕ(y) = ψ(yKer(ϕ))

Homomorphism:
ψ((xKer(ϕ))(yKer(ϕ))) Definition 2.20

= ψ(xyKer(ϕ)) Definition of ψ
= ϕ(xy) = ϕ(x)ϕ(y) = ψ(xKer(ϕ)ψ(yKer(ϕ))

Injective: Suppose xKer(ϕ) ∈ Ker(ψ), then ψ(xKer(ϕ)) = e = ϕ(x). Thus x ∈ Ker(ϕ), xKer(ϕ) =
eKer(ϕ) = Ker(ϕ). Thus Ker(ψ) = {Ker(ϕ)}. Kernal is trivial and ψ is injective.

Surjective: suppose y ∈ Im(ϕ), there exists x ∈ G s.t. ϕ(x) = y, then ψ(xKer(ϕ)) = ϕ(x) = y

Thus ψ : G/Ker(ϕ) → H is an isomorphism.

Note that π(x) = xKer(ϕ). Then ψ(xKer(ϕ)) = ψ(π(x)) = ϕ(x). Thus ψπ = ϕ.

Suppose ψ̄ : G/Ker(ϕ) → H s.t. ψ̄π = ϕ. Take xKer(ϕ) ∈ G/Ker(ϕ). Then ψ̄(xKer(ϕ)) = ψ̄(π(x)) =
ϕ(x) = ψ(π(x)) = ψ(xKer(ϕ)).

Definition: 2.27: Group of Automorphisms and Inner Automorphisms

Let G be a group.
The automorphism group of G is Aut(G) = {ϕ : G→ G : ϕ is an isomorphism}.
The inner automorphism group of G is Inn(G) = {Ig : G→ G : Ig(x) = gxg−1}.
Aut(G) forms a group with function composition and Inn(G) ≤ Aut(G).

Proof. For Aut(G), the identity is id : G→ G s.t. id(g) = g.
Inverse: if ϕ : G→ G is an isomorphism, then ϕ−1 : G→ G is also a well-defined isomorphism. ϕ ∈ Aut(G)
⇔ ϕ−1 ∈ Aut(G).
Associativity follows associativity of function compositions.
Closure: composition of automorphisms is still an automorphism.

Show that Inn(G) ≤ Aut(G):
Let Ix, Iy ∈ Inn(G). Note Iy ◦ Iy−1(g) = y(y−1gy)y−1 = g, so (Iy)

−1 = Iy−1 .
Ix ◦ (Iy)−1(g) = Ix ◦ Iy−1(g) = x(y−1gy)x−1 = (xy−1)g(yx−1) = (xy−1)g(xy−1)−1 = Ixy−1(g)
Thus Ix ◦ (Iy)−1 = Ixy−1 ∈ Inn(G). By Theorem 2.3, Inn(G) ≤ Aut(G).
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Theorem: 2.26:

G/Z(G) ∼= Inn(G)

Proof. Define ϕ : G→ Inn(G) ≤ Aut(G). ϕ(g) = Ig, where Ig(x) = gxg−1.

Homomorphism: Let x ∈ G, ϕ(gh)(x) = Igh(x) = ghx(gh)−1 = g(hxh−1)g−1 = Ig(Ih(x)) = Ig ◦ Ih(x).

Surjectivity is obvious by definition of the function.

Consider the kernel. Ker(ϕ) = {g ∈ G : ϕ(g) = Ig = id}. Ig(x) = gxg−1 = x, ∀x ∈ G ⇔ gx = xg which
follows Definition 2.12.

By Theorem 2.25, G/Z(G) ∼= Inn(G).

Example: ϕ : Z → Zn s.t. ϕ(m) = [m] = {k ∈ Z : k ≡ m mod n}
Surjective: ∀0 ≤ m ≤ n− 1, ϕ(m) = [m]
Homomorphism: ϕ(m1 +m2) = [m1 +m2] = [m1] + [m2] = ϕ(m1) + ϕ(m2)
Ker(ϕ) = {m ∈ Z : [m] = [0]} = nZ
By Theorem 2.25, Z/nZ ∼= Zn.

Example: ϕ : Z4 → Z2 s.t. ϕ([m]4) = [m]2
Well Defined: Suppose [m1]4 = [m2]4, then [m1 −m2]4 = [0]4 ⇒ m1 −m2 ≡ 0 mod 4 ≡ 0 mod 2. Then,
[m1 −m2]2 = [0]2. ϕ(m1) = [m1]2 = [m2]2 = ϕ(m2).
Homomorphism: ϕ([m1]4 + [m2]4) = ϕ([m1 +m2]4) = [m1 +m2]2 = [m1]2 + [m2]2 = ϕ([m1]4) + ϕ([m2]4).
Surjective: ϕ([0]4) = [0]2, ϕ([1]4) = [1]2
Ker(ϕ) = {[m]4 : ϕ([m]4) = [m]2 = [0]2} = {[0]4, [2]4} = 2Z4

∼= Z2.
By Theorem 2.25, Z4/2Z4

∼= Z4/Z2
∼= Z2.

Example: ϕ : Z6 → Z15.

The order of elements of Z15


1 : [0]15

3 : [5]15, [10]15

5 : [3]15, [6]15, [9]15, [12]15

15 : all other elements
If ϕ([1]6) = [0]15. Then Ker(ϕ) = Z6, Im(ϕ) = {[0]15}. Z6/Z6

∼= {[0]15} ≤ Z15.
If ϕ([1]6) = [5]15. Then ϕ([0]6) = ϕ([3]6) = [0]15, ϕ([1]6) = ϕ([4]6) = [5]15, ϕ([2]6) = ϕ([5]6) = [10]15
Ker(ϕ) = {[0]6, [3]6} = ⟨[3]6⟩ ∼= Z2. Im(ϕ) = {[0]15, [5]15, [10]15} = ⟨[5]15⟩ ∼= Z3

By Theorem 2.25, Z6/Z2
∼= Z6/⟨[3]6⟩ ∼= ⟨[5]15⟩ ∼= Z3.

Example: Dn = ⟨r, s : rn = s2 = e, rs = srn−1⟩, ϕ : Dn → Z2 s.t. ϕ(r) = 0, ϕ(s) = 1.
ϕ(rn) = nϕ(r) = 0, ϕ(s2) = ϕ(e) = 0 = ϕ(s) + ϕ(s) = 1 + 1.
1 = ϕ(s) + ϕ(r) = ϕ(sr) = ϕ(srn−1) = ϕ(s) + (n− 1)ϕ(r).
Ker(ϕ) = ⟨r⟩, ϕ(rk) = kϕ(r) = 0, ϕ(srk) = ϕ(s) + kϕ(r) = 1, and Dn/⟨r⟩ ∼= Z2 by Theorem 2.25.

Example: ϕ : Dn → Zn s.t. ϕ(r) = 1, ϕ(s) = 0.
ϕ(rs) = ϕ(r) + ϕ(s) = 1 + 0 = 1, ϕ(srn−1) = ϕ(s) + (n− 1)ϕ(r) = n− 1
Note rs = srn−1, but ϕ(rs) ̸= ϕ(srn−1) unless n = 2, so ϕ is not a homomorphism in general.

Example: ϕ : D2n → Z2 s.t. ϕ(r) = 1, ϕ(s) = 0
0 = 2n = 2nϕ(r) = ϕ(r2n) = ϕ(e) = 0, and 1 = ϕ(r) + ϕ(s) = ϕ(rs) = ϕ(sr2n−1) = ϕ(s) + (2n− 1)ϕ(r) =
2n− 1 mod 2 = 1
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Ker(ϕ) = {e, r2k, sr2k} for 0 ≤ k ≤ n− 1, Ker(ϕ) = ⟨s, r2⟩ ∼= Dn.
By Theorem 2.25, D2n/⟨s, r2⟩ ∼= D2n/Dn

∼= Z2.

Example: ϕ : D6 → S6 s.t. ϕ(r) = (123456), ϕ(s) = (16)(25)(34)
ϕ(r6) = (123456)6 = (1) = ϕ(e), ϕ(s2) = ((16)(25)(34))2 = (16)2(25)2(34)2 = e = ϕ(e)
ϕ(rs) = (123456)(16)(25)(34) = (1)(26)(35)(4) = (26)(35)
ϕ(sr5) = (16)(25)(34)(123456)5 = (16)(25)(34)(165432) = (26)(35)
Then Im(ϕ) = ⟨(123456), (16)(25)(34)⟩
Note that |r| = 6 = |(123456)|, ϕ(rn) ̸= e for n = 1, 2, 3, 4, 5. Thus Ker(ϕ) = {e}.

Remark 4. We can similarly construct homomorphism ϕ : Dn → Sn

Example: ϕ : Sn → Z2, ϕ(σ) =

{
0, σ is even
1, σ is odd

It is easy to check that ϕ is homomorphism by Definition 2.16.
Ker(ϕ) = {σ ∈ Sn : σ even} = An.
By Theorem 2.25, Sn/An ∼= Z2.

Example: ϕ : GL2(R) → R× s.t. ϕ(A) = det(A).
ϕ(AB) = det(AB) = det(A) det(B) = ϕ(A)ϕ(B).
Ker(ϕ) = {A ∈ GL2(R) : ϕ(A) = det(A) = 1} = SL2(R).
By Theorem 2.25, GL2(R)/SL2(R) ∼= R×.

Example: Define gl2(R) = {A ∈ R2×2}, sl2(R) = {A ∈ gl2(R) : Tr(A) = 0}.
Define ϕ : gl2(R) → R s.t. ϕ(A) = Tr(A). ϕ(A+B) = Tr(A+B) = Tr(A) + Tr(B) = ϕ(A) + ϕ(B).
Ker(ϕ) = {A ∈ gl2(R) : Tr(A) = 0} = sl2(R).
By Theorem 2.25, gl2(R)/sl2(R) ∼= R.

Example: ϕ : gl2(R) → sl2(R), ϕ
[
a b
c d

]
=

[
a− d b
c d− a

]
.

Ker(ϕ) =
{[
a b
c d

]
: ϕ

[
a b
c d

]
=

[
a− d b
c d− a

]
=

[
0 0
0 0

]}
=

{[
a 0
0 a

]
: a ∈ R

}
∼= R.

By Theorem 2.25, gl2(R)/R ∼= sl2(R).

Example: Homomorphisms for Z, R, C

1. ϕ : Z → R×

(a) ϕ(1) = 1, ϕ(n) = 1n = 1, Ker(ϕ) = Z, Im(ϕ) = 1, Z/Z ∼= {1} ≤ R×

(b) ϕ(1) = −1, ϕ(n) = (−1)n. Ker(ϕ) = 2Z, Z/2Z ∼= {±1} ≤ R×

(c) ϕ(1) = a, ϕ(n) = an, a ∈ R× \ {±1}. Ker(ϕ) = {0}, Z ∼= {±an : n ∈ Z}

2. ϕ : R → R×
+, ϕ(x) = 2x. Ker(ϕ) = {0}. Im(ϕ) = R×

+, R ∼= R×
+

3. ϕ : Z → C, ϕ(n) = in. Im(ϕ) = {1, i,−1,−i}. Ker(ϕ) = {n ∈ Z : in = 1} = 4Z. Z/4Z ∼= ⟨i⟩.

4. ϕ : Z → C×. ϕ(m) = e
2πim

n . Ker(ϕ) = {m : e
2πim

n } = nZ, Z/nZ ∼= {1, ωn, ..., ωn−1
n } = ⟨ωn⟩ ∼= Zn ≤

C×, where ωn = e
2πi
n

5. ϕ : Z → C, ϕ(n) = (2i)n. Ker(ϕ) = {0}. Im(ϕ) = {(2i)n : n ∈ Z} ≤ C×. Z ∼= {(2i)n : n ∈ Z}.

6. ϕ : R → C×, ϕ(x) = e2πix. Im(ϕ) = {z ∈ C× : |z| = 1} = S1. Ker(ϕ) = {x ∈ R : e2πix = 1} = Z.
R/Z ∼= S1
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Example: ϕ : Q8 → Z2 × Z2 s.t. ϕ(±1) = (0, 0), ϕ(±i) = (1, 0), ϕ(±j) = (0, 1), ϕ(±k) = (1, 1).
Ker(ϕ) = {±1} = ⟨−1⟩. Q8/⟨−1⟩ ∼= Z2 × Z2.

Example: U15 = {1, 2, 4, 7, 8, 11, 13, 14}. ⟨2⟩ = {1, 2, 4, 8} ∼= ⟨7⟩ = {1, 7, 4, 13} ∼= Z4, ⟨4⟩ = {1, 4} ∼= Z2.
U15 = ⟨2⟩⟨11⟩
Define ϕ : Z × Z → U15 s.t. ϕ(m,n) = 2m11n. Ker(ϕ) = 4Z × 2Z. Thus (Z × Z)/(4Z × 2Z) ∼= U15

∼=
Z4 × Z2.

2.7.2 Second Isomorphism Theorem

Theorem: 2.27: Second Isomorphism Theorem

Let H ≤ G and N ⊴ G, then
1. HN ≤ G
2. H ∩N ⊴ H, N ⊴ HN
3. H/(H ∩N) ∼= HN/N

Proof. 1. Let x, y ∈ HN , i.e. x = h1n1, y = h2n2 for h1, h2 ∈ H, n1, n2 ∈ N
Since N ⊴ G, gN = Ng ∀g ∈ G, then gn = n′g for some n, n′ ∈ N .
xy−1 = (h1n1)(h2n2)

−1 = h1(n1n
−1
2 )h−1

2
Definition 2.23

= h1h
−1
2 n̂ for some n̂ ∈ N .

Thus xy−1 ∈ HN . HN ≤ G by Theorem 2.3.

2. H ∩N ⊴ H can be shown in 3. We show N ⊴ HN here.
Let n ∈ N , x = hn′ for h ∈ H, n′ ∈ N
xnx−1 = h(n′nn′−1)h−1 = hn̂h−1 for n̂ = n′nn′−1 ∈ N . Thus xnx−1 = hn̂h−1 ∈ N , because h ∈ G,
ĥ ∈ N and N ⊴ G.

3. Define ϕ : H → HN/N s.t. ϕ(h) = hN .
ϕ(xy) = xyN

By Definition 2.20
= (xN)(yN) = ϕ(x)ϕ(y)

Surjective: Suppose xN ∈ HN/N , i.e. x ∈ HN , then x = hn where h ∈ H, n ∈ N .

Injective: Note xN = (hn)N = hN , ϕ(h) = hN = xN , thus ϕ is injective.

Ker(ϕ) = {h ∈ H : ϕ(h) = eN = N}. Note if h ∈ Ker(ϕ), then ϕ(h) = hN . Thus h ∈ N ⇒
h ∈ H ∩N . i.e. Ker(ϕ) ⊂ H ∩N .

Suppose x ∈ H ∩ N , then x ∈ H and x ∈ N . Then xN = N . Thus ϕ(x) = xN = N , x ∈ Ker(ϕ).
Then H ∩N ⊂ Ker(ϕ). Thus Ker(ϕ) = H ∩N .

By Theorem 2.25, H/(H ∩N) ∼= HN/N .

Since Ker(ϕ) = H ∩N , by Theorem 2.23, H ∩N ⊴ H.

Example: Let G = Z, H = mZ, N = nZ. H +N = mZ+ nZ = {mx+ ny : x, y ∈ Z} = gcd(m,n)Z.
H ∩N = {a ∈ Z : a = mx and a = ny} = lcm(m,n)Z.
Let d = gcd(m,n), l = lcm(m,n)
By Theorem 2.27, mZ/lZ ∼= dZ/nZ.
Consider ϕ : dZ → Zn/d, ϕ(dx) = [x]. Ker(ϕ) = {dx ∈ dZ : ϕ(dx) = 0} = {dx ∈ dZ : [x] = 0} = nZ
Then by Theorem 2.25, dZ/nZ ∼= Zn/d.
Thus Zn/d ∼= dZ/nZ ∼= mZ/lZ ∼= Zl/m.
Then n

d = |Zn/d| = |Zl/m| = l
m ⇒ m

gcd(m,n) =
lcm)m,n

n . lcm(m,n) = mn
gcd(m,n) .
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2.7.3 Third Isomorphism Theorem

Theorem: 2.28: Third Isomorphism Theorem

Let N ⊴ H ⊴ G, then (G/N)/(H/N) ∼= G/H

Proof. Define ϕ : G/N → G/H s.t. ϕ(gN) = gH.

Well defined: suppose gN = g′N , then g(g′)−1 ∈ N ≤ H. Thus g(g′)−1 ∈ H. By Lemma 2.5, gH = g′H.
Therefore, ϕ(gN) = ϕ(g′N).

Homomorphism: ϕ((gN)(g′N)) = ϕ(gg′N) = gg′H = (gH)(g′H) = ϕ(gN)ϕ(g′N)

Surjective: Let gH ∈ G/H. Then gN ∈ G/N since N ⊴ H. Then ϕ(gN) = gH.

Let gN ∈ Ker(ϕ) = {gN ∈ G/N : ϕ(gN) = gH = H}. Then g ∈ H, gN ∈ H/N . Thus Ker(ϕ) ⊂ H/N
Let hN ∈ H/N . Then hN ∈ G/N , since h ∈ G. ϕ(hN) = hH = H. Thus hN ∈ Ker(ϕ). H/N ⊂ Ker(ϕ)
Thus H/N = Ker(ϕ). By Theorem 2.25, (G/N)/(H/N) ∼= G/H.

Example: Let G = Z, H = mZ, N = mnZ, N ⊴ H ⊴ G

Zm ∼= Z/mZ = G/H
By Theorem 2.28∼= (G/N)/(H/N) = (Z/mnZ)/(mZ/mnZ) ∼= Zmn/⟨m⟩

Consider ϕ : mZ → Zmn, ϕ(mx) = [mx]. Im(ϕ) = ⟨[m]⟩ ≤ Zmn. Ker(ϕ) = mnZ.
By Theorem 2.25, mZ/mnZ ∼= ⟨[m]⟩ ≤ Zmn.

Theorem: 2.29:

Zn/⟨m⟩ ∼= Zgcd(m,n)

Proof. We want to show ⟨m⟩ = ⟨gcd(m,n)⟩.
Let d = gcd(m,n)

(≤) d|m, so m = dk for some k ∈ N, ⟨m⟩ = {mx : x ∈ Z} = {dkx : x ∈ Z} ≤ ⟨d⟩

(≥) By extended Euclidean algorithm, write d = ma + nb for a, b ∈ Z. Inside Zn, d = ma for a ∈ Z,
⟨d⟩ = ⟨m⟩.
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3 Rings

Definition: 3.1: Ring

A set R together with operations (+, ·) is called a ring if
1. (R,+) is an abelian group with identity 0.
2. (ab)c = a(bc), ∀a, b, c ∈ R
3. a(b+ c) = ab+ ac
4. (a+ b)c = ac+ bc

Remark 5. In the context of rings, identity, inverses, and commutativity specifically refer to the ones for
multiplication. We don’t necessarily need identity, inverses or commutativity for a ring.

Example: Z: identiy=1, commutative, ±1 are the only integers with inverses.

Example: 2Z: no identiy, commutative, no inverses.

Example: Zn: identity=1, commutative, m−1 ∈ Zn exists ⇔ gcd(m,n) = 1.

Example: Rn×n: identity=In, not commutative, A−1 exists ⇔ det(A) ̸= 0.

Example: Z[x] = {a0 + a1x + · · · anxn : n ≥ 0, ai ∈ Z}, identity=1, commutative, only ±1 have in-
verses.

Definition: 3.2: Zero Divisors

If a, b ̸= 0 ∈ R and ab = 0, then a and b are the zero divisors of R.

Definition: 3.3: Unit

a ∈ R is a unit if ∃b ∈ R s.t. ab = 1R.

Example: Z12. Units: 1, 5, 7, 11 (they are not zero divisors). Zero divisors: 2, 3, 4, 6, 8, 9, 10

Theorem: 3.1: Units and Zero Divisors of Zn

m ∈ Zn is a unit ⇔ gcd(m,n) = 1
m ∈ Zn is a zero divisor ⇔ gcd(m,n) ̸= 1

Proof. Units:
(⇒) Suppose m ∈ Zn is a unit, then ∃x ∈ Zn s.t. mx = 1 ⇔ mx ≡ 1 mod n ⇔ n|(mx− 1), so ∃y ∈ Z s.t.
mx− ny = 1. Thus gcd(m,n)|1, gcd(m,n) = 1.
(⇐) Suppose gcd(m,n) = 1, then ∃x, y ∈ Z, mx+ ny = 1, mx− 1 = −ny, so n|mx− 1, mx ≡ 1 mod n,
then mx = 1 ∈ Zn.

Zero divisors:
(⇒) Suppose that m ∈ Zn is a zero divisor. Assume gcd(m,n) = 1
Then m is a unit by previous statement, ∃a ̸= 0 ∈ Zn with ma = 0 ∈ Zn, i.e. n|ma.
gcd(m,n) = 1 ⇒ ∃x, y ∈ Z s.t. mx+ ny = 1. ⇒ (ma)x+ (na)y = a. Since n|ma, then n|(ma)x+ n(ay),
thus n|a. a ≡ 0 mod n, a = 0 ∈ Zn. Contradiction. Thus gcd(m,n) ̸= 1.
(⇐) Suppose m = 0 ∈ Zn with gcd(m,n) = d ̸= 1. Then ∃a ∈ Z with 1 < a < n and ad = n. (If a = 1,
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d = n = m, similar for a = n.)
Find x, y ∈ Z with mx+ ny = d, amx+ any = ad = n. By commutativity of Zn, (ax)m = n(1− ay) ≡ 0
mod n. Thus (ax)m = 0 ∈ Zn. m is zero divisor.

Theorem: 3.2: Units and Zero Divisors of R2×2

A ∈ R2×2 is a unit ⇔ detA ̸= 0
A ∈ R2×2 is a zero divisor ⇔ detA = 0

Proof. The first statement follows the invertibility of matrices.

Consider the second statement:
(⇒) Suppose A ∈ R2×2 is a zero divisor A ̸= 0 and ∃B ̸= 0 s.t. AB = 0.
Assume detA ̸= 0, A has an inverse A−1, then A−1AB = A−10 = 0. Then B = 0. Contradiction. Thus A
does not have an inverse, detA = 0
(⇐) Suppose A ̸= 0, but detA = 0. Then ∃v ̸= 0 ∈ Nul(A). Let B = (v v) ̸= 0. AB = A(v v) =
(Av Av) = (0 0) = 0. A is a zero divisor.

Theorem: 3.3:

If a ∈ R is a unit, then it is not a zero divisor.
If a ∈ R is a zero divisor, then it is not a unit.

Proof. Suppose a ∈ R is a unit and b ∈ R with ab = 0. b = (a−1a)b = a−1ab = a−10 = 0. Thus b has to be
0, and a is not a zero divisor.
The second statement is true by contrapositive.

Lemma: 3.1: Identities with -1

(−1)2 = 1
−a = (−1)a = a(−1)

Proof. (−1)2 + (−1) = (−1)(−1) + (−1)1 = (−1)(−1+ 1) = (−1)0 = 0. Thus (−1)2 and (−1) are additive
inverse. By uniqueness of inverses, (−1)2 = 1.

a+ (−1)a = 1a+ (−1)a = (1− 1)a = 0. And a+ a(−1) = a(1) + a(−1) = a(1− 1) = 0.

Theorem: 3.4:

If R is a ring with 1, u ∈ R is a unit, then so is −u.

Proof. Take u−1 ∈ R s.t. uu−1 = 1. (−u)(−u−1) = u(−1)(−1)u−1 By Lemma 3.1
= uu−1 = 1.

Thus (−u)−1 = −u−1

Definition: 3.4: Nilpotent

x ∈ R is nilpotent if xm = 0 for some m ∈ N.

Example: In Z4, 22 = 4 = 0, 2 is a nilpotent element.
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Theorem: 3.5: Properties of Nilpotents

If x is nilpotent, then
1. x = 0 or x is a zero divisor.
2. If R is a ring with 1, 1 + x ∈ R is a unit.

Proof. 1. Suppose x ̸= 0. Let x ∈ N s.t. xm = 0 and m = 0 is the smallest, then xm = x(xm−1) = 0,
but x ̸= 0 and xm−1 ̸= 0. Both are zero divisors by Definition 3.2.

2. Let m ∈ N s.t. xm = 0 and m is minimum. Then 1 = 1 + xm = (1 + x)(1− x+ · · ·+ (−1)m−1xm−1)
Therefore (1 + x)−1 = (1− x+ · · ·+ (−1)m−1xm−1) exists in R. By Definition 3.3, 1 + x is a unit.

3.1 Types of Rings

Definition: 3.5: Ring with 1

If R has a multiplication identity 1 ∈ R, then R is a ring with 1.

Example: Rn×n, f : R → R, Zn.

Definition: 3.6: Commutative Ring

If ab = ba, ∀a, b ∈ R, then R is a commutative ring.

Example: nZ, xZ[x] = {a1x+ a2x
2 + · · ·+ anx

n}, Zn.

Definition: 3.7: Integral Domain

If R is commutative with 1 and ab = 0 ⇒ a = 0 or b = 0, then R is an integral domain.

Remark 6. R is an integral domain if it is a commutative ring with 1 and has no zero divisors.

Example: Z, Z[x].

Definition: 3.8: Division Ring

If a−1 exists for all a ̸= 0 ∈ R, then R is a division ring.

Example: Quaternion Ring H = {a+ bi+ cj + dk : a, b, c, d ∈ R, i2 = j2 = k2 = −1}.

Definition: 3.9: Field

A commutative division ring is a field.

Example: Zp, Q, R, C.

Theorem: 3.6: Classification of Zn

If n is comoposite, then Zn is a commutative ring with 1 and not an integral domain.
If p is a prime, then Zp is a finite field.
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Rings

Commutative Rings Rings with 1

Integral Domains Division Rings

Fields

General

Restrictive

Proof. Note: Zn is definitely a commutative ring with 1.

If n is composite, then n = ab with 1 < a, b < n. a ̸= 0 ∈ Zn, b ̸= 0 ∈ Zn, but ab = 0 ∈ Zn, thus Zn is not
integral domain.

Zp is integral domain: Suppose a, b ∈ Zp with ab = 0 ∈ Zp. ab ≡ 0 mod p, then p|ab. Since p is a prime,
then p|a or p|b. Thus a = 0 ∈ Zp or b = 0 ∈ Zp.
Zp is a field (check inverse): Let a ̸= 0 ∈ Zp. Then gcd(a, p) = 1 ⇒ ∃x, y ∈ Z s.t. ax + py = 1, ax ≡ 1
mod p, a−1 = x ∈ Zp.

Theorem: 3.7: Quaternion Ring

H = {a+ bi+ cj + dk : a, b, c, d ∈ R, i2 = j2 = k2 = −1} is a division ring.

Proof. It is easy to see that 1 + (0i+ bj + 0k) ∈ H is the identity. We want to find the inverse.

Consider (a+ bi+ cj + dk)−1 = a−bi−cj−dk
a2+b2+c2+d2

.
Then (a+bi+cj+dk)(a+bi+cj+dk)−1 = 1

a2+b2+c2+d2
(a+bi+cj+dk)(a−bi−cj−dk) = 1

a2+b2+c2+d2
(a2+

b2 + c2 + d2 + (ab− ab+ cd− cd)i+ (−bd+ bd+ ac− ac)j + (ad− ad+ bc− bc)k) = 1.

Theorem: 3.8:

Let R be a commutative ring with 1. Then R is an integral domain ⇔ ∀a ̸= 0 ∈ R, with ab = ac,
then b = c.

Proof. (⇒) Suppose R is an integral domain, and a ̸= 0 ∈ R , ab = ac

Subtract both sides by ac, ab − ac = 0
Associativity⇒ a(b − c) = 0. Since a ̸= 0 and R is an integral domain,

we have b− c = 0, i.e. b = c.

(⇐) Suppose a ̸= 0 ∈ R and b ∈ R s.t. ab = 0. We want to show that b = 0
ab = 0 = a · 0 i.e. a(b− 0) = 0. Since a ̸= 0, b = 0. Thus R is an integral domain.

Theorem: 3.9: Finite Integral Domain

Every finite integral domain is a field.

Proof. Consider R∗ = {r ∈ R : r ̸= 0} = R \ {0}. Define λa : R∗ → R∗, a ̸= 0 s.t. λa(b) = ab.
Injective: Suppose λa(b) = λa(c), i.e. ab = ac. Since R is an integral domain, by Theorem 3.8. b = c.
Note: Injection on finite sets ⇒ Bijective ⇒ Surjective.
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Then 1 ∈ R∗ ⇒ ∃b ∈ R∗ s.t. λa(b) = ab = 1, b = a−1. Every non-zero element has an inverse, then it is a
field.

Definition: 3.10: Boolean Ring

R is a boolean ring if a2 = a for all a ∈ R.

Theorem: 3.10:

All Boolean Rings are commutative.

Proof. Let x, y ∈ R.

(x+ y) = (x+ y)2 = x2 + y2 + xy + yx

= x+ y + xy + yx (By Definition 3.10)

Thus xy + yx = 0, xy = −yx ⇒ xy = (xy)2 = (−yx)2 = (−1)2(yx)2 = yx

Example: Given X a non-empty set, P(X) is a boolean ring with + = ∪, · = ∩.

Theorem: 3.11: Gaussian Integers

The Gaussian integers Z[i] = {a+ bi : a, b ∈ Z} is an integral domain.

Proof. Let z = a+ bi, w = c+ di ∈ Z[i]. Suppose zw = 0.
0 = (a+ bi)(c+ di) = (a− bi)(a+ bi)(c+ di)(c− di) = (a2 + b2)(c2 + d2)
We need a2 + b2 = 0 or c2 + d2 = 0.
Since Z is an integral domain, then a2 + b2 = 0 ⇒ a = 0 and b = 0. Similarly, c2 + d2 = 0 ⇒ c = 0 and
d = 0. Thus, z = 0 or w = 0. By Definition 3.7, Z[i] is an integral domain.

Definition: 3.11: Characteristic of a Ring

The least n ∈ N s.t. ∀r ∈ R, nr = (r + · · ·+ r) = 0 is the charactersitic of R. Write char(R) = n. If
no such n exists, then char(R) = 0.

Example: char(Z) = char(Q) = char(R) = char(C) = char(Z[x]) = 0

Theorem: 3.12: Characteristic of Zn

char(Zn) = n

Proof. For all a ∈ Zn, na = 0 ∈ Zn, thus char(Zn) ≤ n
Suppose char(Zn) = m, m = m · 1 = 0 ∈ Zn. m ≡ 0 mod n, n|m. Thus char(Zn) = m ̸= n
Thus char(Zn) = n.

Lemma: 3.2: Characteristic of Ring with 1

Let R be a ring with 1. If n ∈ N is the least number s.t. n · 1 = 0, then char(R) = n

Proof. n · r = (r + · · ·+ r) = r · 1 + · · ·+ r · 1 = r(1 + ·+ 1) = rn = r · 0 = 0.
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Example: 2Z6 = {0, 2, 4}. char(2Z6) = 3.

Theorem: 3.13: Characteristic of Integral Domains

If R is an integral domain, then char(R) is prime or char(R) = 0.

Proof. Use the contrapositive. If char(R) = n is composite, then R is not an integral domain.
Suppose n = char(R) with n = ab (a, b > 1). 0 = n · 1 = (ab)1 = (a1)(b1). By Lemma 3.2, otherwise n = a
or n = b. Then a1 ̸= 0 and b1 ̸= 0. Thus R is not an integral domain.

Theorem: 3.14: Characteristic of Prime Commutative Ring with 1

Suppose R is a commutative ring with 1 with char(R) = p a prime, then ∀a, b ∈ R, (a+b)p = ap+bp.

Proof. By binomial theorem, (a + b)p =

p∑
k=0

(
p

k

)
R

akbp−k = bp +

p−1∑
k=1

(
p

k

)
R

akbp−k + ap, where
(
p
k

)
R

=

(1 + · · ·+ 1)︸ ︷︷ ︸
(pk) times in R

.

For k ∈ [1, p− 1],
(
p
k

)
= p!

(p−k)!k! = p (p−1)···(p−k+1)
k! is a multiple of p. Thus

(
p
k

)
R
= 0R.

3.2 Ring Homomorphism

Definition: 3.12: Ring Homomorphism and Isomorphism

Let R,S be rings. ϕ : R → S is a ring homomorphism if ∀a, b ∈ R, ϕ(a + b) = ϕ(a) + ϕ(b) and
ϕ(ab) = ϕ(a)ϕ(b).
If ϕ is bijective, then ϕ is an ismorphism.
Ker(ϕ) = {a ∈ R : ϕ(a) = 0S}.

Example: ϕ : Z → Zn s.t. ϕ(m) = [m].
Homomorphism: Let m1,m2 ∈ Z, ϕ(m1 +m2) = ϕ(m1) + ϕ(m2) from Group Homomorphism.
ϕ(m1m2) = [m1m2] = [m1][m2] = ϕ(m1)ϕ(m2).
Ker(ϕ) = nZ from group homomorphism.

Example: ϕ : C → R2×2 s.t. ϕ(a+ bi) =

[
a −b
b a

]
.

Homomorphism: ϕ((a+ bi) + (c+ di)) = ϕ((a+ c) + (b+ d)i) =

[
a+ c −b− d
b+ d a+ c

]
=

[
a −b
b a

]
+

[
c −d
d c

]
=

ϕ(a+ bi) + ϕ(c+ di)

ϕ((a+bi)(c+di)) = ϕ((ac−bd)+(ad+bc)i) =

[
ac− bd −ad− bc
ad+ bc ac− bd

]
=

[
a −b
b a

] [
c −d
d c

]
= ϕ(a+bi)ϕ(c+di)

Ker(ϕ) = {a+ bi : ϕ(a+ bi) = 0} = {0}.

Thus ϕ is injective. C ∼= Im(ϕ) =

{[
a −b
b a

]
: a, b ∈ R

}
⊂ R2×2

Example: ϕ : Q[x] → R s.t. ϕ(p(x)) = p(
√
2).

ϕ(x3 + x2 − 3) = (
√
2)3 + (

√
2)2 − 3 = 2

√
2− 1. Im(ϕ) = Q[

√
2] = Q(

√
2) = {a+ b

√
2 : a, b ∈ Q} is a field.

Homomorphism: Let p(x), q(x) ∈ Q[x]. ϕ(p(x) + q(x)) = p(
√
2) + q(

√
2) = ϕ(p(x)) + ϕ(q(x))
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ϕ(p(x)q(x)) = p(
√
2)q(

√
2) = ϕ(p(x))ϕ(q(x))

Ker(ϕ) = {p(x) ∈ Q[x] : p(
√
2) = 0}. If p(x) ∈ Ker(ϕ), then

√
2 is a root of p(x).

p(x) = (x−
√
2)q(x) over R[x]

= (x2 − 2)q̃(x) over Q[x]

Thus Ker(ϕ) = {(x2 − 2)f(x) : f(x) ∈ Q[x]} = (x2 − 2)Q[x].

Example: ϕ : R[x] → C s.t. ϕ(f(x)) = f(i).
ϕ(x4 + x3 − 3x2 + 2) = i4 + i3 − 3i2 + 2 = 6− i, Im(ϕ) = {a+ bi : a, b ∈ R}.
Homomorphism: ϕ(f(x) + g(x)) = f(i) + g(i) = ϕ(f(x)) + ϕ(g(x))
ϕ(f(x)g(x)) = f(i)g(i) = ϕ(f(x))ϕ(g(x))
Ker(phi) = {f(x) ∈ R[x] : f(i) = 0}

f(x) = (x− i)g(x) ∈ C[x]
= (x2 + 1)h(x) ∈ R[x]

Thus Ker(ϕ) = (x2 + 1)R[x].

Theorem: 3.15: Identities under Ring Homomorphism

If ϕ : R→ S is a ring homomorphism, then
1. ϕ(0) = 0
2. If 1R ∈ R, 1S ∈ S and ϕ is onto, then ϕ(1R) = 1S

Proof. ϕ(0) = ϕ(0 + 0) = ϕ(0) + ϕ(0), thus ϕ(0) = 0.

Take a ∈ R s.t. ϕ(a) = 1S . ϕ(1R) = ϕ(1R)1S = ϕ(1R)ϕ(a) = ϕ(1Ra) = ϕ(a) = 1S .

Example: 2Z ∼= 3Z as groups, but not rings.

Proof. As groups, ϕ : Z → nZ s.t. ϕ(m) = mn is a homomorphism with Ker(ϕ) = {0} and surjective.
2Z ∼= Z ∼= 3Z.

As rings, suppose ϕ : 2Z → 3Z is a homomorphism.
ϕ(2) ∈ 3Z, thus ϕ(2) = 3n for n ∈ Z. ϕ(4) = ϕ(2 + 2) = ϕ(2) + ϕ(2) = 6n.
But ϕ(4) = ϕ(2 · 2) = ϕ(2)ϕ(2) = 9n2. 6n = 9n2 gives n = 2

3 /∈ Z. Contradiction, so there is no ring
homomorphism 2Z → 3Z.

Example: Q[
√
2] ∼= Q[

√
3] as group but not as fields.

Proof. As groups, define ϕ : Q[
√
2] → Q[

√
3] as ϕ(a+ b

√
2) = a+ b

√
3. ϕ is a well-defined homomorphism

under addtion.

Suppose ϕ : Q[
√
2] → Q[

√
3] is a field isomorphism. ϕ(

√
2) = a+ b

√
3 for some a, b ∈ Q.

Then ϕ(2) = ϕ(
√
2
√
2) = ϕ(

√
2)ϕ(

√
2) = (a+ b

√
3)2 = (a2 + 3b2) + 2ab

√
3.

Also ϕ(2) = ϕ(1 + 1) = ϕ(1) + ϕ(1)
By Theorem 3.15

= 1 + 1 = 2.

So we need (a2 + 3b2) + 2ab
√
3 = 2. This gives a = 0, b = ±

√
2
3 or a = ±

√
2, b = 0. Both are not in Q.

Thus there is no field homomorphism Q[
√
2] → Q[

√
3].
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Example: Find ring homomorphisms ϕ : Z × Z → Z, where for Z × Z, both addition and multiplication
are component-wise.

Proof. Note that Z× Z has 2 generators (1, 0) and (0, 1).
Suppose ϕ(1, 0) = m and ϕ(0, 1) = n. Then ϕ(0, 0) = ϕ((1, 0)(0, 1)) = mn = 0 ⇒ m = 0 or n = 0.
ϕ(a, b) = ϕ(a(1, 0) + b(0, 1)) = aϕ(1, 0) + bϕ(0, 1) = am+ bn
Case 1: m = 0, ϕ(a, b) = bn, then Ker(ϕ) = Z× {0}, Im(Z) = nZ.
Case 2: n = 0, ϕ(a, b) = am, then Ker(ϕ) = {0} × Z, Im(Z) = mZ.

Example: Let ϕ : R2×2 → R, which of ϕ(A) = A11, ϕ(A) = det(A), ϕ(A) = Tr(A) makes ϕ a ring
homomorphism?

Proof. Let A =

[
a b
c d

]
, B =

[
x y
z w

]
ϕ(A) = A11, ϕ(A+B) = a+x = ϕ(A)+ϕ(B), thus a group homomorphism, but ϕ(AB) = ax+ bz ̸= ax =
ϕ(A)ϕ(B), thus not a ring homomorphism.

ϕ(A) = det(A), ϕ(AB) = det(AB) = detAdetB = ϕ(A)ϕ(B), thus a group homomorphism, but ϕ(A +
B) = (a+x)(d+w)− (b+y)(c+z) ̸= (ad− bc)+(xw−yz) = ϕ(A)+ϕ(B), thus not a ring homomorphism.

ϕ(A) = Tr(A), ϕ(A + B) = a + d + x + w = ϕ(A) + ϕ(B), thus a group homomorphism, but ϕ(AB) =
ax+ bz + cy + dw ̸= (a+ d)(x+ w) = ϕ(A)ϕ(B), thus not a ring homomorphism.

3.3 Ideal

Definition: 3.13: Subring

Let R be a ring, a subring S of R is S ⊂ R that satisfies ring properties.

Theorem: 3.16: Subring Test

Let R be a ring, S ⊂ R is a subring if ∀a, b ∈ S, a− b ∈ S and ab ∈ S.

Definition: 3.14: Cosets of Rings

Let R be a ring and S ⊂ R be a subring. The cosets of r ∈ R is r + S = {r + s : s ∈ S}.

Note S,R are abelian, thus S ⊴ R. (R/S,+), where R/S = {r + S : r ∈ R}, is an abelian group.

For (R/S,+) to be a ring, we need (a+ S)(b+ S) = ab+ S for all a, b ∈ R. i.e. For all s, s′ ∈ S, we need
(a+ s)(b+ s′) = ab+ as′ + sb+ ss′ ∈ ab+S. Therefore, we need as′ + sb ∈ S ⇒ as′ ∈ S and sb ∈ S.

Definition: 3.15: Ideal

Let I ⊂ R be a subring.
1. I is a right ideal if ∀r ∈ R, i ∈ I, ir ∈ I. (absorbs multiplication from right)
2. I is a left ideal if ∀r ∈ R, i ∈ I, ri ∈ I. (absorbs multiplication from left)
3. I is an ideal if it is a right ideal and a left ideal.

Theorem: 3.17: Quotient Ring

If I ⊂ R is an ideal, then R/I = {r + I : r ∈ R} is a ring.
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Proof. R/I is an abelian group because R, I are abelian groups and I ⊴ R.

We now show that the multiplication is well defined. Let a, a′, b, b′ ∈ R with a+I = a′+I and b+I = b′+I.
a− a′ ∈ I and b− b′ ∈ I.
Then (a− a′)b ∈ I by Definition 3.15, ab− ab′ ∈ I ⇒ ab+ I = a′b+ I
Similarly, a′(b − b′) ∈ I ⇒ a′b − a′b′ ∈ I ⇒ a′b + I = a′b′ + I. Thus (a + I)(b + I) = ab + I = a′b′ + I =
(a′ + I)(b′ + I).

Definition: 3.16: Principal Ideal

Suppose R is a commutative ring with 1 and a ∈ R, then the principal ideal of R generated by a is
(a) = {ra : r ∈ R} = Ra

Commutative
= {ar : r ∈ R}.

Proof. We show that (a) ⊂ R is indeed an ideal for any a.
Suppose i ∈ (a) and r ∈ R, then by Definition 3.16, i = ar′ for some r′ ∈ R.
Note ir = (ar)r′ = a(rr′) ∈ (a).

Example: In Z: (3) = {3n : n ∈ Z} = 3Z is the principal ideal generated by 3.

Example: In Z15, (2) = {2n : n ∈ Z} = {0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13} = Z15 is the ideal
generated by a unit 2. (5) = {5n : n ∈ Z15} = {0, 5, 10}

Theorem: 3.18:

(a) = R ⇔ a ∈ R is a unit.

Proof. (⇒) Suppose a ∈ R with (a) = R, then 1 ∈ (a). Thus, exists r ∈ R s.t. ar = 1. By Definition 3.3,a
is a unit.

(⇐) Suppose a ∈ R is a unit, there exists r ∈ R s.t. ar = 1. Then 1 ∈ (a). For b ∈ R, b = b(1) ∈ (a) Thus
R ⊂ (a), and R = (a).

Theorem: 3.19: Principal Ideals of Z

Every ideal of Z is a principal ideal.

Proof. Suppose I ⊂ Z is an ideal, and take n ∈ I to be the smallest non-negative element. (Note, if n = 0,
then I = {0} is the trivial ideal.)
We show that I = (n).
Firstly, (n) ⊂ I by definition.
Suppose m ∈ I, use division algorithm with m and n. m = nq + r where 0 ≤ r < n. r = m− nq ∈ I since
m ∈ I, n ∈ I, and nq ∈ I. Thus r = 0, m = nq, m ∈ (n). Therefore I ⊂ (n) and I = (n).

Theorem: 3.20:

Let ϕ : R→ S be a ring homomorphism, then Ker(ϕ) is an ideal.

Proof. let a, b ∈ Ker(ϕ).
ϕ(a− b) = ϕ(a)− ϕ(b) = 0− 0 = 0, then a− b ∈ Ker(ϕ).

34



ϕ(ab) = ϕ(a)ϕ(b) = 0 · 0 = 0, ab ∈ Ker(ϕ).
Thus Ker(ϕ) is a subring by Theorem 3.16.

Suppose a ∈ Ker(ϕ), r ∈ R.
ϕ(ar) = ϕ(a)ϕ(r) = ϕ(a)0 = 0. ϕ(ra) = ϕ(r)ϕ(a) = 0ϕ(a) = 0
Thus ar, ra ∈ Ker(ϕ), and Ker(ϕ) is an ideal by Definition 3.15.

Theorem: 3.21:

Let ϕ : R → S be a homomorphism. If J ⊂ S is an ideal, then ϕ−1(J) = {a ∈ R : ϕ(a) ∈ J} ⊂ R is
an ideal.

Proof. Suppose a, b ∈ ϕ−1(J), then ϕ(a) ∈ J , ϕ(b) ∈ J .
ϕ(a− b) = ϕ(a)− ϕ(b) ∈ J , because J is a subring, then a− b ∈ ϕ−1(J)
ϕ(ab) = ϕ(a)ϕ(b) ∈ J , thus ab = ϕ−1(ϕ(a)ϕ(b)) ∈ ϕ−1(J)
By Theorem 3.16, ϕ−1(J) is a subring of R.

Let a ∈ ϕ−1(J), r ∈ R. ϕ(ar) = ϕ(a)ϕ(r) ∈ J , since J is an ideal. ar ∈ ϕ−1(J). Similarly ϕ(ra) =
ϕ(r)ϕ(a) ∈ J . ra ∈ ϕ−1(J).
Thus ϕ−1(J) is an ideal.

Definition: 3.17: Prime Ideal

An ideal P ⊂ R is a prime ideal if ab ∈ P ⇔ a ∈ P or b ∈ P . (This is the generalization of prime
numbers.)

Definition: 3.18: Maximal Ideal

An ideal M ⊂ R is a maximal ideal if for any ideal I ⊂ R with M ⊂ I ⊂ R, we have I = M or
I = R.

Theorem: 3.22:

If R is a commutative ring with 1. Then P ⊂ R is a prime ideal ⇔ R/P is an integral domain.

Proof. (⇒) Suppose P is a prime ideal and (a+P )(b+P ) = 0+P ∈ R/P . Then ab+P = 0+P and thus
ab ∈ P by Definition 3.15.
Since P is prime ideal, a ∈ P or b ∈ P , then a + P = 0 + P or b + P = 0 + P . Thus R/P is an integral
domain by Definition 3.7.

(⇐) Suppose that R/P is an integral domain and ab ∈ P . We want to show that a ∈ P or b ∈ P .
Since ab ∈ P , ab + P = 0 + P ∈ R/P , thus (a + P )(b + P ) = 0 + P . This gives either a + P = 0 + P or
b+ P = 0 + P . Therefore, a ∈ P or b ∈ P . P ⊂ R is a prime ideal.

Theorem: 3.23:

If R is a commutative ring with 1. Then M ⊂ R is a maximal ideal ⇔ R/M is a field.

Proof. (⇒) Suppose M ⊂ R is a maximal ideal and a+M ∈ R/M with a /∈M .
Consider ⟨0 +M⟩ ⊂ ⟨a+M⟩ ⊂ R/M . Note ⟨a+M⟩ = I/M , where M ⊂ I ⊂ R. a ∈ I and a /∈M means
M ̸= I.
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Then I = R because M is maximal. Then ⟨a+M⟩ = R/M , 1+M ∈ ⟨a+M⟩. Then there exists b ∈ R s.t.
(a+M)(b+M) = (1 +M). Inverse exsists, R/M is a field.

(⇐) Suppose R/M is a field. Take I ⊂ R, M ⊊ I ⊂ R. We want to show that I = R.
Since M ⊊ I, there exists a ∈ I s.t. a /∈M , then M ⊊ ⟨a,M⟩ ⊂ I ⊂ R, since a+M ̸= 0 +M ∈ R/M .
Then there exists b ∈ R s.t. (a +M)(b +M) = 1 +M , so inverse of a +M exists. 1 +M ∈ ⟨a,M⟩ ⊂ I.
Thus I = R by Theorem 3.18, since the unit is in I.

Example: Which are ideals in Z[x]?

1. I = {p(x) : p(x) = xq(x) + 2k, k ∈ Z, q(x) ∈ Z[x]}, polynomials with even constant terms.

2. I = {p(x) : p(x) = x2q(x) + 2kx+ l, k, l ∈ Z, q(x) ∈ Z[x]}, polynomials with even coefficients for x.

3. I = {p(x) ∈ Z[x] : p′(0) = 0}

Proof. 1. Let p1(x) = xq1(x) + 2k1 ∈ I, p2(x) = xq2(x) + 2k2 ∈ I. Then p1(x) − p2(x) = x(q1 − q2) +
2(k1 − k2) ∈ I
p1p2 = (xq1 + 2k1)(xq2 + 2k2) = x2q1q2 + 2x(k1q2 + k2q1) + 4k1k2 ∈ I. Thus I is a subring by
Theorem 3.16
Take f(x) = xg(x) + l ∈ Z[x] with l ∈ Z, then p(x)f(x) = x2qg + 2xkg + lxq + 2kl ∈ I. Thus I is an
ideal.

2. Let p1(x) = x2q1(x) + 2k1x+ l1 ∈ I, p2(x) = x2q2(x) + 2k2x+ l2 ∈ I. Then p1(x)− p2(x) ∈ I
p1p2 = (x2q1+2k1x+ l1)(x

2q2+2k2x+ l2) = x2(x2q1q2+ l1q2+ l2q1+4k1k2)+2(k1l2+k2l1)+ l1l2 ∈ I.
Thus I is a subring by Theorem 3.16
Take f(x) = x2g +mx + n ∈ Z[x] with l ∈ Z, then p(x)f(x) = x2(x2gq + nq +mg + 2km) + (lm +
2kn)x+ ln /∈ I, since lm+ 2kn is not even when l = m = 1. Thus I is not an ideal.

3. Let p(x), q(x) ∈ I. Then p′(0) = q′(0) = 0. (p − q)′|x=0 = p′(0) − q′(0) = 0. (pq)′|x=0 = p′(0)q(0) +
p(0)q′(0) = 0 Thus I is a subring by Theorem 3.16
Take f(x) ∈ Z[x] with l ∈ Z, then (fp)′|x=0 = f ′(0)p(0) + f(0)p′(0) = f ′(0)p(0) ̸= 0. Thus I is not
an ideal.

For the third case, if we have I = {p(x) ∈ Z[x] : p′(0) = 0, p(0) = 0}. Then I is an ideal.

Theorem: 3.24: Smallest Enclosing Ideal

Let I, J ⊂ R be ideals. I + J is the smallest ideal containing I and J .

Proof. I + J = {i+ j : i ∈ I, j ∈ J}. Let a, b ∈ I, J , then a = i+ j, b = i′ + j′ for i, i′ ∈ I, j, j′ ∈ J .
Then b− a = (i′ − i) + (j′ − j) ∈ I + J , ab = (i+ j)(i′ + j′) = ii′ + ij′ + jj′ + ji′. Since ii′ + ij′ ∈ I and
ji′ + jj′ ∈ J by Definition 3.15. Then ab ∈ I + J . I + J is a subring by Theorem 3.16.

Let a ∈ I, x ∈ R, a = i + j for i ∈ I, j ∈ J . ax = (i + j)x = ix + jx ∈ I + J , since ix ∈ I, jx ∈ J .
xa = xi+ xj ∈ I + J . Since i ∈ I ⇒ i+ 0 = I + J, 0 ∈ J , then I ⊂ I + J . Similarly, J ⊂ I + J .

Suppose K ⊂ R an ideal s.t. I ⊂ K and J ⊂ K.
Let a ∈ I + J , a = i+ j for i ∈ I, j ∈ J . Then i ∈ K and j ∈ K, thus a ∈ K. I + J ⊂ K.
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3.4 Isomorphism Theorems for Rings

Theorem: 3.25: First Isomorphism Theorem for Rings

Let ϕ : R→ S be a ring homomorphism. Then there is a unique ismorphism ψ : R/Ker(ϕ) → Im(ϕ)
s.t. ψ(r + Ker(ϕ)) ∼= Im(ϕ).

R

R/Ker(ϕ)

Im(ϕ) ⊂ S

π

ϕ

ψ

Proof. Define ψ : R/Ker(ϕ) → Im(ϕ) s.t. ψ(r + Ker(ϕ)) = ϕ(r)

Well-defined: Suppose that r + Ker(ϕ) = r′ + Ker(ϕ), then r − r′ ∈ Ker(ϕ).
ϕ(r + Ker(ϕ)) = ϕ(r) = ϕ(r) + 0 = ϕ(r) + ϕ(r′ − r) = ϕ(r + r′ − r) = ϕ(r′) = ψ(r′ + Ker(ϕ))

Ring Homomorphism: ψ(a + Ker(ϕ) + b + Ker(ϕ)) = ψ(a + b + Ker(ϕ)) = ϕ(a + b) = ϕ(a) + ϕ(b) =
ψ(a+ Ker(ϕ)) + ψ(b+ Ker(ϕ))
ψ((a+ Ker(ϕ))(b+ Ker(ϕ))) = ψ(ab+ Ker(ϕ)) = ϕ(ab) = ϕ(a)ϕ(b) = ψ(a+ Ker(ϕ))ψ(b+ Ker(ϕ))

Injective: Suppose r+Ker(ϕ) ∈ Ker(ϕ), ψ(r+Ker(ϕ)) = 0 = ϕ(r). Thus r ∈ Ker(ϕ), r+Ker(ϕ) = 0+Ker(ϕ).
Ker(ψ) = {0 + Ker(ϕ)}, ψ is injective.

Surjective: Suppose ϕ(r) ∈ Im(ϕ), then ψ(r + Ker(ϕ)) = ϕ(r)

Uniqueness: Suppose ψ̄(r + Ker(ϕ)) = ϕ(r) = ψ(r + Ker(ϕ)). Thus ψ̄ = ψ.

Example: R =

{[
a b
0 c

]
: a, b, c ∈ R

}
⊂ R2×2. Show that I =

{[
0 x
0 0

]
: x ∈ R

}
is an ideal for R and

R/I ∼= R× R.

Proof. Let A =

[
a b
0 c

]
, B =

[
x y
0 z

]
Then A−B =

[
a− x b− y
0 c− z

]
∈ R and AB =

[
ax ay + bz
0 cz

]
∈ R. Therefore, R is a ring by Theorem 3.16.

Let I1 =
[
0 x
0 0

]
, I2 =

[
0 y
0 0

]
Then I1 − I2 =

[
0 x− y
0 0

]
∈ I and I1I2 =

[
0 xy
0 0

]
∈ I. Therefore, I is a subring of R by Theorem 3.16.

To show that I is an ideal of R. Consider AI1 and I1A.

AI1 =

[
a b
0 c

] [
0 x
0 0

]
=

[
0 xc
0 0

]
∈ I, I1A =

[
0 x
0 0

] [
a b
0 c

]
=

[
0 xc
0 0

]
∈ I

Consider ϕ : R→ R× R s.t. ϕ
[
a b
0 c

]
= (a, c).

Then ϕ(A + B) = (a + x, c + z) = (a, c) + (x, z) = ϕ(A) + ϕ(B), and ϕ(AB) = (ax, cz) = (a, c)(x, z) =
ϕ(A)ϕ(B). Thus ϕ is a ring homomorphism.
Ker(ϕ) = {A ∈ R : ϕ(A) = (a, c) = (0, 0)}, so we need a = c = 0. Ker(ϕ) = I, and I is an ideal. Thus by
Theorem 3.25, R/I ∼= R× R.
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Example: Z[i] = {a + bi : a, b ∈ Z}, (3) = 3Z[i] = {3a + 3bi : a, b ∈ Z}. Show that 3Z[i] ⊂ Z[i] is a
maximal ideal.

Proof. Let ϕ : Z[i] → Z3[i] s.t. ϕ(a+ bi) = [a+ bi]3 = [a]3 + [b]3i. ϕ is a homomorphism.
Ker(ϕ) = {a + bi : ϕ(a + bi) = [a]3 + [b]3i = [0]3 + [0]3i}. Thus a ≡ 0 mod 3 and b ≡ 0 mod 3. a = 3m,
b = 3n for some m,n ∈ Z. Then, a+ bi ∈ 3Z[i] = (3). By Theorem 3.25, Z[i]/(3) ∼= Z3[i].

Note: Z3[i] = {0, 1, 2, i, 2i, 1 + i, 1 + 2i, 2 + i, 2 + 2i} is a field since inverses exist for all elements. Thus
(3) ⊂ Z[i] is maximal by Theorem 3.23.

Theorem: 3.26: Second Isomorphism Theorem for Rings

Let I ⊂ R be a subring and J ⊂ R be an ideal. Then
1. I ∩ J ⊂ I is an ideal
2. I/(I ∩ J) ∼= (I + J)/J

Proof. 1. Suppose a ∈ I ∩ J and b ∈ I, we want to show that ab ∈ I ∩ J and ba ∈ I ∩ J .
Note a ∈ I ∩ J means a ∈ I and I ∈ J , b ∈ J ⊂ R. Then ab ∈ J since J ⊂ R is an ideal. ab ∈ I since
I ⊂ R is a subring. Thus ab ∈ I ∩ J .
Similarly, we have ba ∈ I ∩ J , thus I ∩ J ⊂ I is an ideal.

2. Define ϕ : I → (I + J)/J s.t. ϕ(a) = a+ J
Homomorphism: ϕ(a+ b) = (a+ b) + J = (a+ J) + (b+ J) = ϕ(a) + ϕ(b)
ϕ(ab) = ab+ J = (a+ J)(b+ J) = ϕ(a)ϕ(b)

Surjective: Let a + J s.t. a ∈ I + J , (then a + J ∈ (I + J)/J) i.e. a = i + j for i ∈ I, j ∈ J . Then
a+ J = i+ j + J = i+ J . Therefore, ∃i ∈ I s.t. ϕ(i) = i+ J = a+ J , thus surjective.

Find kernel: Suppose a ∈ I ∩ J , i.e. a ∈ I and a ∈ J . ϕ(a) = a + J
a∈J
= 0 + J . Thus a ∈ Ker(ϕ) ⇒

I ∩ J ⊂ Ker(ϕ).
Suppose a ∈ Ker(ϕ) ⊂ I, then a ∈ I, and ϕ(a) = a + J = 0 + J . Then a ∈ J , thus a ∈ I ∩ J . So
Ker(ϕ) ⊂ I ∩ J .
Therefore, Ker(ϕ) = I ∩ J , I/(I ∩ J) ∼= (I + J)/J by Theorem 3.25.

3.5 Polynomial Rings

Definition: 3.19: Polynomial Rings

Suppose R is a commutative ring with 1, p(x) = a0 + a1x+ · · ·+ anx
n
n with ai ∈ R is a polynomial

over R with indeterminate x
1. an ̸= 0 is called the leading coefficient of p(x)
2. deg(p(x)) = n
3. If an = 1, then p(x) is monic
4. The set of all polynomials is denoted R[x]

Theorem: 3.27:

R[x] is a commutative ring with 1.
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Proof. Let p(x) = a0 + a1x+ · · · anxn, q(x) = b0 + b1x+ · · · bmxm.

pq = c0 + c1x+ · · ·+ cm+nx
m+n, where ck =

k∑
l=0

ak−lbl.

qp = ĉ0 + ĉ1x+ · · ·+ ĉm+nx
m+n, where ĉk =

k∑
l=0

albk−l
set l=k−l

=
k∑

l′=0

al′bk−l′ = ck.

Thus qp = pq, multiplication is commutative.

Theorem: 3.28:

If R is an integral domain, then so is R[x].

Proof. Contrapositive: if R[x] is not is integral domain, then R is not an integral domain.
Let p(x) = a0 + a1x+ · · · anxn, q(x) = b0 + b1x+ · · · bmxm, with an ̸= 0, bm ̸= 0.
Suppose R[x] is not an integral domain, then we have p(x) ̸= 0, q(x) ̸= 0, but p(x)q(x) = 0, i.e. anbm =
coeffxn+m(pq) = 0.
Then ∃an, bm ∈ R s.t. an ̸= 0, bm ̸= 0, but anbm = 0. We have a zero divisor, thus R is not an integral
domain.

Remark 7. 1. If K is a field, K[x] is not a field. p(x) = x does not have an inverse.

2. If K is a field K[[x]] =

{ ∞∑
n=0

anx
n : an ∈ R

}
is a field.

1

1− x
=

∞∑
n=0

xn, so (1 − x)
∞∑
n=0

xn = 1. And

we can show that every element has an inverse.

3. If K is a field, K[x, x−1] =

{
M∑

n=−N
anx

n : an ∈ R

}
(Laurent polynomials) is not a field.

3.5.1 Division Algorithm

Theorem: 3.29: Division Algorithm for Polynomials

Let K be a field and f(x), g(x) ∈ K[x]. Then there are unique q(x), r(x) s.t. f(x) = g(x)q(x)+r(x),
where 0 ≤ deg(r(x)) < deg(g(x))

Proof. Let f(x), g(x) be polynomials s.t. deg(f(x)) = n, deg(g(x)) = m. Assume m ≤ n, otherwise,
f(x) = 0g(x) + r(x) a trivial case.

We do induction on n = m+ k.
Base Case: k = 0, m = n, f(x) = anx

n + · · ·+ a0, g(x) = bnx
n + · · ·+ b0, an ̸= 0, bn ̸= 0.

Then f(x) = an
bn
g(x)+

[
f(x)− an

bn
g(x)

]
. r(x) = f(x)− an

bn
g(x) =

(
an−1 − an

bn
bn−1

)
xn−1+· · · , deg(r(x)) < n

Induction Hypothesis: Assume for all p(x) with degree < n, we can do the division algorithm.
Induction Step: Consider f̂(x) = f(x) − an

bm
xn−mg(x) = (anx

n + · · · ) − an
bm
xn−m(bmx

m + · · · ) =(
an − an

bm
bm

)
xn + ân−1x

n−1 + · · ·+ â0 = ân−1xn−1 + · · ·+ â0 has degree < n.

Apply IH to f̂(x) and g(x), f̂ = gq̂ + r with 0 ≤ deg(r̂) < m.
f(x) = f̂ + an

bm
xn−mg = gq̂ + r̂ + an

bm
xn−mg = g

(
q̂ + an

bm
xn−m

)
+ r̂.

Let q = q̂ + an
bm
xn−m, r = r̂, then f = gq + r where 0 ≤ deg(r) < m.

39



Uniqueness: Suppose f = gq1 + r1 = gq2 + r2, 0 ≤ degri < degg
Then 0 = g(q1 − q2) + (r1 − r2), r2 − r1 = g(q1 − q2), deg(r2 − r1) < deg(g) ≤ deg(g(q1 − q2)).
Thus, r1 = r2, and q1 = q2. The factorization is unique.

Definition: 3.20: GCD of Polynomials

Let K be a field, d(x) ∈ K[x] is the gcd of f(x), g(x) ∈ K[x] if d(x)|f(x) and d(x)|g(x) and if
d̂(x)|f(x) and d̂(x)|g(x), then d̂(x)|d(x). If gcd(f, g) = 1, then f and g are relatively prime.

Theorem: 3.30: Bezout’s Identity

If d(x) = gcd(f, g), then ∃a(x), b(x) ∈ K[x] s.t. a(x)f(x) + b(x)g(x) = d(x)

Proof. Consider the set S = {p(x)f(x) + q(x)g(x) : p(x), q(x) ∈ K[x]}.
Suppose u(x), v(x) ∈ S, both monic with the smallest degree, then u(x) = xn + an−1x

n−1 + · · · + a0,
v(x) = xn + bn−1x

n−1 + · · ·+ b0. Note u(x)− v(x) ∈ S, u(x)− v(x) = (an−1 − bn−1)x
n−1 + · · ·+ (a0 − b0),

deg(u − v) ≤ n − 1 < deg(u) = n, thus u(x) − v(x) = 0, u = v. i.e. There is a unique polynomial in S
which is monic with the smallest degree.

Let d(x) = a(x)f(x) + b(x)g(x) ∈ S be the monic polynomial with min degree. We show that d(x)|f(x)
and d(x)|g(x).
Use Theorem 3.29 on f and g, f(x) = d(x)q(x) + r(x), 0 ≤ deg(r) < deg(d).
r(x) = f(x)− d(x)q(x) = f(x)− (a(x)f(x)+ b(x)g(x))q(x) = (1− a(x)q(x))f(x)− b(x)q(x)g(x) ∈ S. Thus
r(x) = 0, d(x)|f(x). Similarly d(x)|g(x).

Suppose d̂(x) ∈ K[x] s.t. d̂(x)|f(x) and d̂(x)|g(x). Then f(x) = d̂(x)u(x) and g(x) = d̂(x)v(x).
Thus d(x) = a(x)u(x)d̂(x) + b(x)v(x)d̂(x) = (a(x)u(x) + b(x)v(x))d̂(x). d̂(x)|d(x)

Example: Find a(x) and b(x) s.t. a(x)f(x)+ b(x)g(x) = gcd(f(x), g(x)), where f(x) = x4− 2x3− 3x− 2,
g(x) = x3 + 4x2 + 4x+ 1
In Q[x], f(x) = (x− 4)g(x) + (10x2 + 12x+ 2), g(x) =

(
1
10x+ 7

25

)
(10x2 + 12x+ 2) + 11

25(x+ 1)
Note that (x+ 1)|(10x2 + 12x+ 2), so (x+ 1)|g(x) and (x+ 1)|f(x) is the gcd.

x+ 1 =
25

11
g(x)− 25

11

(
1

10
x+

7

25

)
(10x2 + 12x+ 2)

=
25

11
g(x)− 25

11

(
1

10
x+

7

25

)
(f(x)− (x− 4)g(x))

=

(
5x2

22
− 3x

11
− 3

11

)
g(x) +

(
− 5

22
x− 7

11

)
f(x)

Thus a(x) = (5x
2

22 − 3x
11 − 3

11 , b(x) = − 5
22x− 7

11

In Z2[x], f(x) = x4 + x, g(x) = x3 + 1, f(x) = xg(x).
Thus g(x)|f(x), gcd(f, g) = g = x3 + 1.

In Z11[x], we start with f(x) = (x− 4)g(x)+ (10x2+12x+2). Reduce in Z11, we get f(x) = (x− 4)g(x)+
(−x2 + x+ 2)
Note g(x) = (−x2 + x+ 2)(−x− 5). Thus gcd(f, g) = −x2 + x+ 2
−x2 + x+ 2 = f(x)− (x− 4)g(x)
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3.5.2 Irreducible Polynomials

Definition: 3.21: Irreducible Polynomials

We say a non constant polynomial f(x) ∈ K[x] is irreducible if it cannot be written as f(x) =
g(x)h(x) with deg(g), deg(h) < deg(f).

Theorem: 3.31:

p(x) ∈ K[x] is irreducible ⇔ K[x]/(p(x)) is a field. (p(x)) is the principal ideal generated by p(x).

Proof. (⇒) Suppose p(x) ∈ K[x] is irreducible. Consider an ideal I ⊂ K[x], where (p(x)) ⊊ I ⊂ K[x].
Take f(x) ∈ I \ (p(x)). p(x) is irreducible and f(x) is not a multiple of p(x), otherwise f(x) ∈ (p(x)). Thus
gcd(f, p) = 1.
By Theorem 3.30, ∃a(x), b(x) ∈ K[x] s.t. a(x)f(x) + b(x)p(x) = 1
Note f(x) ∈ I, p(x) ∈ I. By Definition 3.15, 1 ∈ I. By Theorem 3.18, I = K[x]. Thus (p(x)) is maximal
by Definition 3.18. And by Theorem 3.23, K[x]/(p(x)) is a field.

(⇐) Suppose K[x]/(p(x)) is a field, then (p(x)) is a maximal ideal by Theorem 3.23.
Suppose p(x) = f(x)g(x), then p(x) ∈ (f(x)), (p(x)) ⊂ (f(x)) ⊂ K[x].
Case 1: (p(x)) = (f(x)), then f(x) = p(x)h(x), deg(f) = deg(p), p(x) = constf(x). p(x) is irreducible.
Case 2: (f(x)) = K[x]. Then f(x) is a unit in K[x]. f(x) = α is a constant. deg(f) = 0. Thus
deg(g) = deg(p). p is irreducible.

Example: Show that C is a field.

Proof. ϕ : R[x] → C s.t. ϕ(f(x)) = f(i) is a homomorphism with Ker(ϕ) = (x2 + 1). x2 + 1 is irreducible
in R[x]. Thus R[x]/(x2 + 1) ∼= C is a field by Theorem 3.25 and 3.31.

Example: Show that Q(
√
2) is a field.

Proof. ϕ : Q[x] → Q(
√
2) s.t. ϕ(f(x)) = f(

√
2) is a homomorphism, Ker(ϕ) = (x2−2). x2−2 is irreducible

in Q[x]. Thus Q[x]/(x2 − 2) ∼= Q(
√
2) is a field.

Example: Show that Z[x]/(x2 + x+ 1) is a field.

Proof. x2 + x+ 1 is irreducible in Z2[x]. The field has order 22 = 4.

Lemma: 3.3:

Let p(x) ∈ Q[x], then p(x) = r
s(a0 + a1x+ · · ·+ anx

n) with gcd(r, s) = 1, gcd({ai}) = 1.

Proof. Let p(x) = b0
c0

+ b1
c1
x+ · · ·+ bn

cn
xn for bi, ci ∈ Z, p(x) ∈ Q[x].

We can write p(x) = 1
c0···cn (d0 + d1x+ · · · dnxn), where di = c0···cn

ci
bi.

Let d = gcd(d0, ..., dn), then d0 = da0, dn = dan with gcd(a0, ..., an) = 1
p(x) = 1

c0···cn (da0+da1x+ · · ·+danxn) = d
c0···cn (a0+a1x+ · · ·+anxn) = r

s(a0+a1x+ · · · anxn) by reducing
the fractions.
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Lemma: 3.4: Gauss Lemma

Let p(x) ∈ Z[x] be monic that factors p(x) = α(x)β(x) ∈ Q[x] with deg(α), deg(β) < deg(p).
Then ∃a(x), b(x) ∈ Z[x] s.t. a(x), b(x) are monic with deg(a) = deg(α), deg(b) = deg(β) and
p(x) = a(x)b(x).

Proof. Suppose p(x) = α(x)β(x), α(x), β(x) ∈ Q[x]. By Lemma 3.3, α(x) = c1
d1
(a0+ · · ·+amxm). Similarly,

β(x) = c2
d2
(a0 + · · ·+ anx

n).
Let α1(x) = (a0 + · · · + amx

m), β1(x) = (a0 + · · · + anx
n), c = c1c2, d = d1d2. Then p(x) = α(x)β(x) =

c1c2
d1d2

α1(x)β1(x) =
c
dα1(x)β1(x). Thus cα1(x)β1(x) = dp(x).

Case 1: d = 1. α1(x)β1(x) ∈ Z[x]. 1
p(x) is monic

= coeffxm+np(x) = cambn
If c = 1, am = bn = 1, a(x) = α1(x), b(x) = β1(x), or am = bn = −1, a(x) = −α1(x), b(x) = −β1(x).
If c = −1, am = 1, bn = −1, a(x) = α1(x), b(x) = −β1(x), or am = −1, bn = 1, a(x) = −α1(x),
b(x) = β1(x).

Case 2: d ̸= 1. Pick a prime s.t. p|d and p ̸ |c. Take al with p ̸ |al, bk with p ̸ |bk.
Set α̂(x) ≡ α1(x) mod Zp[x], β̂(x) ≡ β1(x) mod Zp[x]. Then α̂(x) ̸= 0 and β̂(x) ̸= 0.
α̂(x)β̂(x) ≡ α1(x)β1(x) mod Zp[x] ≡ d

cp(x) mod Zp[x] ≡ 0 mod Zp[x] since p|d.
Contradiction, because Zp[x] is an integral domain. Thus d ̸= 1 is not possible.

Theorem: 3.32: Einstein’s Criterion

Let p be a prime and f(x) = a0 + · · · + anx
n ∈ Z[x]. If p|ai for i ∈ {0, ..., n − 1}, but p ̸ |an and

p2 ̸ |a0, then f(x) is irreducible over Q[x].

Proof. Assume f(x) = a0 + a1x+ · · · anxn = (b0 + · · ·+ brx
r)(c0 + · · ·+ csx

s).
p2 ̸ |a0 with a0 = b0c0 means p ̸ |b0 or p ̸ |c0. WLOG, we assume p ̸ |b0, but p|c0.
p ̸ |an with an = brcs means p ̸ |br and p ̸ |cs.
Let m be the minimal integer s.t. p ̸ |cm and consider am = b0cm

not divisible by p
+ b1am−1 + · · ·+ bmc0

divisible by p
. Then

p ̸ |am.
By the constraints (the minimal integer s.t. p ̸ |am should be n), am = an, thus m = n.
deg(c0 + · · ·+ csx

s) = deg(f(x)). Thus there is no factorization. f(x) is irreducible.

Example: 3x6 + 25x5 − 20x2 + 15x− 10 is irreducible with p = 5.

Example: 5x3 + 14x2 − 7x+ 7 is irreducible with p = 7.

3.6 Integral Domains

Theorem: 3.33:

Every ideal in K[x] is a principal ideal. K[x] is a PID (Principal Ideal Domain).

Proof. Suppose I ⊂ K[x] is an ideal. Take p(x) ∈ I s.t. p(x) is monic, and deg(p(x)) is minimal over all
polynomials of positive degree. (p(x)) ⊂ I.
Let f(x) ∈ I. Do division algorithm with f(x) and p(x), f(x) = p(x)q(x) + r(x) with 0 ≤ deg(r) < deg(p).
Thus deg(r) = 0, because p(x) is minimal degree.
Case 1: r(x) = 0, f(x) ∈ (p(x)), I ⊂ (p(x)). Then (p(x)) = I. I is principal ideal.
Case 2: α ̸= 0 ∈ K. Then (p(x)) = (α) = K[x] = I. I is a principal ideal.
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Example: Z[x] is not a PID.

Proof. We find an ideal I that is not principal.
Let I = (x, 2) = {anxn + an−1x

n−1 + · · ·+ a1x+ 2a0 : ai ∈ Z}.
Suppose p(x) ∈ Z[x] with (p(x)) = I = (x, 2), then 2 ∈ (p(x)), 2 = p(x)f(x) for some f(x) ∈ Z[x].
Then deg(p) = deg(f) = 0. p(x) = 1 or p(x) = 2. But p(x) ̸= 1, otherwise (p(x)) = (1) = Z[x].
Thus p(x) = 2, I = (2), but x /∈ I, since x is not necessarily a multiple of 2. Contradiction. Thus I is not
principal.

3.6.1 Field of Fractions

We can think of Q as a set of symbols a
b , a, b ∈ Z, b ̸= 0, where a

b = c
d ⇔ ad = bc.

Theorem: 3.34: Field of Fractions

Let D be any integral domain. S = {(a, b) : a, b ∈ D, b ̸= 0}. ∼⊂ S×S s.t. (a, b) ∼ (c, d) ⇔ ad = bc
is an equivalence relation. The equivalence classes are [a, b] = {(c, d) ∈ S : (a, b) ∼ (c, d)}. Define
FD = {[a, b] : a, b ∈ D, b ̸= 0}.
FD is a field (the field of fraction of D). It is the unique smallest field s.t. D can be embedded in
FD.

Proof. Firstly, we show that ∼ is an equivalence relation.

1. Reflexivity: (a, b) ∼ (b, a), because ab = ab

2. Symmetry: If (a, b) ∼ (c, d), then ad = bc, bc = ad ⇒ (c, d) ∼ (a, b)

3. Transitivity: If (a, b) ∼ (c, d) and (c, d) ∼ (e, f), then ad = bc and cf = de. Then adcf = bcde,
af = be, (a, b) ∼ (e, f).

Now we show that FD is a field.
We define the addtion [a, b] + [c, d] = [ad+ bc, bd]. We check that the addition is well-defined:
Suppose [a, b] = [â, b̂], [c, d] = [ĉ, d̂]. i.e. ab̂ = âb, cd̂ = ĉd.
[a, b] + [c, d] = [ad+ bc, bd], [â, b̂] + [ĉ, d̂] = [âd̂+ b̂ĉ, b̂d̂].

(ad+ bc)(b̂d̂) = adb̂d̂+ bcb̂d̂ = ab̂dd̂+ cd̂bb̂
Equivalenceof [a,b]=[â,b̂]

= âbdd̂+ ĉdbb̂ = bd(âd̂+ ĉb̂). Thus addition is
well-defined.
We define the multiplication [a, b][c, d] = [ac, bd]. It is also easy to check that the multiplication is well
defined.
FD is abelian, additive identity is [0, d], invserse of [a, b] is [−a, b]. Multiplication is associative, distributive,
commutative and identity is [a, a], with inverse of [a, b] being [b, a] for a ̸= 0.

Now we show that we can embed D in FD.
Consider I : D → FD s.t. I(a) = [a, 1].
Homomorphism: I(a, b) = [a+ b, 1] = [a, 1] + [b, 1] = I(a) + I(b)
I(ab) = [ab, 1] = [a, 1][b, 1] = I(a)I(b)
Injective: Suppose a ∈ Ker(I), i.e. I(a) = 0. Then [a, 1] = [0, 1] ⇒ a = 0. Thus Ker(I) = 0.
Thus I is an injective ring homomorphism.

We now show that FD is the smallest such field.
Suppose ∃K a field s.t. D is embedded in K. i.e. ∃ϕ : D → K an injective field homomorphism. We want
to find ψ : FD → K s.t. ϕ = ψ ◦ I.
Set ψ([a, b]) = ϕ(a)ϕ(b)−1. With a, b ∈ D, ϕ(a), ϕ(b) ∈ K.
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Homomorphism:
ψ([a, b]+[c, d]) = ψ([ad+bc, bd]) = ϕ(ad+bc)ϕ(bd)−1 = (ϕ(a)ϕ(d)+ϕ(b)ϕ(c))ϕ(b)−1ϕ(d)−1 = ϕ(a)ϕ(b)−1+
ϕ(c)ϕ(d)−1 = ψ([a, b]) + ψ([c, d]).
ψ([a, b][c, d]) = ψ([ac, bd]) = ϕ(ac)ϕ(bd)−1 = ϕ(a)ϕ(b)−1ϕ(c)ϕ(d)−1 = ψ([a, b])ψ([c, d])
Injective: Suppose [a, b] ∈ Ker(ψ). ψ([a, b]) = ϕ(a)ϕ(b)−1 = 0, but ϕ(b)−1 ̸= 0. Thus ϕ(a) = 0. a = 0.
Ker(ψ) = {[0, b]} = {[0, 1]} is trivial. ψ is injective field homomorphism.

Now we show that ϕ = ψ ◦ I, ψ ◦ I(a) = ψ([a, 1]) = ϕ(a)ϕ(1)−1 = ϕ(a). Thus ϕ = ψ ◦ I.

Definition: 3.22: Irreducibles and Primes

Let R be a commutative ring with 1, D be an integral domain. Let a, b ∈ R.
1. a|b if ∃c ∈ R s.t. b = ac
2. a and b are associates if there exists a unit u s.t. a = ub
3. A non-unit p ∈ D is irreducible if when p = ab, a or b is a unit
4. p is prime if p|ab ⇒ p|a or p|b

Example: R = ⟨x2, y2, xy⟩ ⊂ Q[x, y].
Note: R = Q[x, y]Z2 is Q[x, y] under the group action of Z2. Z2(x) = −x, Z2(y) = −y.
x2, y2, xy are irreducible in R, but xy is not prime. xy|x2y2, but xy ̸ |x and xy ̸ |y.

Definition: 3.23: Z[i
√
3] and Norm

Consider the ring Z[i
√
3] = {a+ bi

√
3 : a, b ∈ Z}. We can associate a norm function N : Z[i

√
3] → N

s.t. N(a+ bi
√
3) = a2 + 3b2 with the following properties:

1. N(x) = 0 ⇔ x = 0
2. N(xy) = N(x)N(y)
3. u is a unit ⇔ N(u) = 1
4. If N(x) is a prime, x is irreducible.

Proof. We show that N(x) is a well-defined norm function.

1. (⇒) Let x = a+ bi
√
3. If N(x) = 0, a2 + 3b2 = 0. Since a2 ≥ 0, b2 ≥ 0, we have a = b = 0, x = 0.

(⇐) trivial.

2. Let x = a+ bi
√
3, y = c+ di

√
3. xy = (ac− 3bd) + (ad+ bc)i

√
3.

N(xy) = (ac− 3bd)2 + 3(ad+ bc)2 = (a2 + 3b2)(c2 + 3d2) = N(x)N(y)

3. (⇒) Suppose u is a unit. ∃u−1 ∈ Z[i
√
3] s.t. uu−1 = 1. N(uu−1) = 1

By 2.
= N(u)N(u−1).

But N(u), N(u−1) ∈ N, then N(u) = N(u)−1 = 1
(⇐) Suppose N(u) = 1, u = a + bi

√
3. N(u) = a2 + 3b2. If b2 > 0, N(u) > 1. Thus b2 = 0, b = 0,

and a2 = 1, a = ±1. u = ±1, both are units.

4. Suppose x = yz. Then N(x) = N(y)N(z). If N(x) is prime. WLOG, N(y) = 1, N(x) = N(z), y is a
unit, x is irreducible.

We now show that (1 + i
√
3) is irreducible but not a prime in Z[i

√
3].

Suppose 1 + i
√
3 = xy, N(x)N(y) = N(1 + i

√
3) = 4.

Case 1: x or y is a unit, then 1 + i
√
3 is irreducible.

Case 2: x and y are not unit, then N(x) = N(y) = 2, but a2 +3b2 = 2 has no solution in natural numbers.
Contradiction. This case is impossible.
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(1 + i
√
3)(1− i

√
3) = 4 = 2 · 2

Thus (1 + i
√
3)|4 ⇒ (1 + i

√
3)|2 · 2, but (1 + i

√
3) ̸ |2, thus it is not a prime.

3.6.2 Unique Factorization Domain

Definition: 3.24: Unique Factorization Domain

An integral domain D is a unique factorization domain (UFD) if
1. Every non-zero non-unit element can be written as the product of irreducibles.
2. If a = p1 · · · pr = q1 · · · qs with pi, qj irreducible, then r = s and ∃σ ∈ Sr with pi = qσ(i)ui, ui a

unit. i.e. pi and qσ(i) are associates.

Example: Z is a UFD by the fundamental theorem of arithmetic.
30 = 2 · 3 · 5 = 2(−3)(−5), but (−3) = (−1)3, where (−1) is a unit. {2, 3, 5} is the same as {2,−3,−5} up
to a unit.

Example: Z[i], K[x] are UFD.

Example: Z[i
√
3] is not a UFD.

Consider 4 = 2 · 2 = (1 + i
√
3)(1− i

√
3).

For Z[i
√
3] to be a UFD, we need 2 = (1 + i

√
3)u, where u is a unit.

Let u = a+ bi
√
3 ∈ Z[i

√
3]. u−1 = a−bi

√
3

a2+3b2
∈ Z[i

√
3].

We need a
a2+3b2

∈ Z, b = 0, a
a2

= 1
a = Z, then a = ±1. u = ±1, which is impossible, because 2 ̸=

1 + i
√
3.

Example: Z[
√
5] is not a UFD.

Consider 4 = 2 · 2 = (1 +
√
5)(−1 +

√
5).

We need 2 = u(1 +
√
5). Let u = a+ b

√
5. 2 = (1+

√
5)(a+ b

√
5) = a+5b+ (a+ b)

√
5.

{
a+ 5b = 2

a+ b = 0
⇒{

a = −1
2

b = 1
2

, a, b /∈ Z.

Definition: 3.25: Primitive and Content

Let D be an integral domain, F be a field of fraction. Let p(x) = anx
n + · · · a0 ∈ D[x]. Define the

content of p(x) to be cont(p(x)) = gcd(a0, ..., an).
p(x) is primitive if cont(p(x)) = 1.

Lemma: 3.5:

1. If f(x), g(x) ∈ D[x] are primitive, then so is f(x)g(x)
2. cont(fg) = cont(f)cont(g)
3. Suppose p(x) ∈ D[x] with p(x) = f(x)g(x) ∈ F (x), then ∃f̂(x), ĝ(x) ∈ D[x] s.t. p = f̂ ĝ

Corollary 5. p(x) is irreducible in D[x] ⇔ p(x) is irreducible in F [x].

Theorem: 3.35:

D is a UFD ⇔ D[x] is a UFD.
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3.6.3 Principal Ideal Domain

Definition: 3.26: Principal Ideal Domain

An integral domain is called a principal ideal domain (PID) if every ideal is principal.

Example: Z, K[x] are PIDs.

Lemma: 3.6: Properties of PID

Let D be a PID with a, b ∈ D, then
1. a|b ⇔ ⟨b⟩ ⊂ ⟨a⟩
2. a and b are associates ⇔ ⟨a⟩ = ⟨b⟩
3. a is a unit ⇔ ⟨a⟩ = D

Proof. 1. (⇒) Suppose a|b, then b = ar for r ∈ D. Suppose x ∈ ⟨b⟩, then x = by for y ∈ D. Then
x = ary ∈ ⟨a⟩. Thus ⟨b⟩ ⊂ ⟨a⟩

(⇐) Suppose ⟨b⟩ ⊂ ⟨a⟩, then b ∈ ⟨a⟩, b = ar for some r ∈ D, thus a|b.

2. (⇒) Suppose a, b are associates, by Definition 3.22, there exists unit u ∈ D s.t. a = ub. thus b|a. By
1, ⟨a⟩ ⊂ ⟨b⟩. Also au−1 = b, u−1 is a unit, then a|b, ⟨b⟩ ⊂ ⟨a⟩. Therefore ⟨a⟩ = ⟨b⟩.

(⇐) Suppose ⟨a⟩ = ⟨b⟩. Then ⟨a⟩ ⊂ ⟨b⟩ ⇒ a|b, b = ax; ⟨b⟩ ⊂ ⟨a⟩ ⇒ b|a, a = yb. Therefore
a = yax = axy. 1 = xy, x is a unit. a and b are associates.

3. (⇒) Suppose a is a unit, a−1 exists. Take x ∈ D and x = x · 1 = xa−1a ∈ ⟨a⟩. D ⊂ ⟨a⟩ ⊂ D, thus
⟨a⟩ = D

(⇐) Suppose D = ⟨a⟩. In particular 1 ∈ ⟨a⟩. Then ∃b ∈ D s.t. ab = 1, a is a unit.

Theorem: 3.36:

Let D be a PID and 0 ̸= ⟨p⟩ ⊂ D, then ⟨p⟩ is a maximal ideal ⇔ p is irreducible.

Proof. (⇒) Suppose ⟨p⟩ is a maximal ideal and p = ab.
Then a|p. By Lemma 3.6, ⟨p⟩ ⊂ ⟨a⟩ ⊂ D.
By Definition 3.18, either ⟨p⟩ = ⟨a⟩ or ⟨a⟩ = D.
If ⟨p⟩ = ⟨a⟩, then p and a are associates by Lemma 3.6, b is a unit.
If ⟨a⟩ = D, then a is a unit.
Thus p is irreducible by Definition 3.22.

(⇐) Suppose p is irreducible.
Consider a ∈ D with ⟨p⟩ ⊂ ⟨a⟩ ⊂ D

By Lemma 3.6⇒ a|p ⇒ p = ab for some b ∈ D.
But p is irreducible, then a is a unit or b is a unit.
If a is a unit, ⟨a⟩ = D
If b is a unit, p and a are associates, ⟨p⟩ = ⟨a⟩.
By Definition 3.18, ⟨p⟩ is maximial.

Corollary 6. Let D be a PID. If p ∈ D is irreducible, then it is prime. In general prime⊂irreducible.
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Proof. Suppose p is irreducible and p|ab.
Then ab = pr for some r ∈ D. By Theorem 3.36, ab ∈ ⟨p⟩
Then ⟨p⟩ is a prime ideal by Definition 3.17. This means that a ∈ ⟨p⟩, p|a or b ∈ ⟨p⟩, p|b.
By Definition 3.22, p is a prime.

Definition: 3.27: Accending Chain Condition (Noetherian Ring)

A ring satisfies the accending chain condition if for every set of ideals {Ij}∞j=1 s.t. I1 ⊂ I2 ⊂ · · · ,
there exists N ∈ N s.t. In ≥ IN for all n ≥ N . These rings are called Noetherian Rings.

Lemma: 3.7:

Every PID satisfies Accending Chain Condition.

Proof. Let D be a PID, and {Ij}∞j=1 be a set of ideals s.t I1 ⊂ I2 ⊂ · · · .

Let I =
∞⋃
j=1

Ij . We show that I is an ideal.

Subring: Suppose a, b ∈ I, ∃k, l s.t. a ∈ Ik, b ∈ Il. a, b ∈ Imax(l,k). Then a− b, ab ∈ Imax(l,k) ⊂ I. Thus I is
a subring by Theorem 3.16.
Ideal: Suppose a ∈ I and r ∈ D, then a ∈ Ik for some k, ra ∈ Ik ⊂ I, I is then an ideal.

By Definition 3.26, every ideal is principal. Thus I = (a) for some a ∈ D. a ∈ I =

∞⋃
j=1

Ij . Thus a ∈ IN for

some N ∈ N.
Therefore I = (a) ⊂ IN ⊂ IN+1 ⊂ · · · ⊂ I. Then IN = IN+1 = · · · = I.

Theorem: 3.37:

Every PID is a UFD.

Proof. We show that factorization is possible and is unique in PIDs.

Let D be a PID.

Factorization: Suppose a ∈ D is a non-zero non-unit element.
We can write a = a1b1 where a1 is not an unit. We can iteratively factor ak and write ak = ak+1bk+1,
where ak+1 is not a unit.
Then we form a divisibility chain a1|a, a2|a1,..., ak+1|ak. Thus ⟨a⟩ ⊂ ⟨a1⟩ ⊂ · · · ⊂ ⟨ak⟩ ⊂ · · · by Defini-
tion 3.26.
By Lemma 3.7, ∃N s.t. ⟨aN ⟩ = ⟨aN+1⟩ = · · · = ⟨an⟩ for all n ≥ N .
By Lemma 3.6, aN and an are associates for all n ≥ N . Thus aN = pu for p irreducible and u unit.
Then a = p1x1 for some irreducible p1. Iterate on xk = pk+1xk+1 where pk+1 irreducible.
⟨x1⟩ ⊂ · · · ⊂ ⟨xN ⟩ = ⟨xN+1⟩. xN is irreducible. Set xN = pN+1. Then a = p1 · · · pN+1 where pi are
irreducible.

Uniqueness: Suppose a = p1 · · · pr = q1 · · · qs. We show taht r = s and pi = ujqj .
Assume r < s. p1|a ⇒ p1|q1 · · · qs, then p1|qj for some j. Reorder s.t. p1|q1. q1 = u1p1 s.t. u1 is a unit,
since q1 is irreducible.
Then p1(p2 · · · pr) = p1(u2q2 · · · qs). Iterate and we get u1 · · ·urqr+1 · · · qs = 1. This means that qr+1 · · · qs =
1, which is a contradiction.
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3.6.4 Euclidean Domain

Definition: 3.28: Euclidean Domain

An integral domain D is known as a Euclidean domain if ∃N : D → N (norm function) s.t.
1. If 0 ̸= a, b ∈ D, then N(a) ≤ N(ab)
2. If a, b ∈ D with b ̸= 0, there exists q, r ∈ D s.t. a = bq + r with r = 0 or N(r) < N(b)

Example: Z with N(m) = |m|, K[x] with N(f(x)) = deg(f) are Euclidean domains.

Example: Show that the Gaussian Integers Z[i] = {a+ bi : a, b ∈ Z} is a Euclidean domain.

Proof. Define N(α) = αᾱ = |α|2. If α = a+ bi, N(α) = a2 + b2

We show that the two properties in Definition 3.28 are satisfied.

Let 0 ̸= α, β ∈ Z[i]. N(αβ) = αβᾱβ̄ = αᾱββ̄ = N(α)N(β) ≥ N(α), since N(x) ≥ 1 for any x ̸= 0 ∈ Z[i].

Let α, β ∈ Z[i] with β ̸= 0. Write α = a+ bi, β = c+ di. Then β−1 = c−di
c2+d2

αβ−1 = (a+ bi)
c− di

c2 + d2
=

1

c2 + d2
((ac+ bd) + (bc− ad)i)

= (q1 + r1) + (q2 + r2)i, where − 1

2
≤ r1, r2 ≤

1

2
, q1, q2 ∈ Z

= (q1 + q2i) + (r1 + r2i)

Let γ = q1 + q2i ∈ Z[i]. α = βγ + β(r1 + r2i). Since α, β, γ ∈ Z[i], then ρ = β(r1 + r2i) ∈ Z[i] (Rings are
closed under addition and multiplication)

N(ρ) = ββ̄(r1 + r2i)(r1 − r2i) = N(β)(r21 + r22)
− 1

2
≤r1,r2≤ 1

2

≤ 1
2N(β) < N(β)

Thus Z[i] is a Euclidean domain.

Theorem: 3.38:

If D is a Euclidean domain, then it is a PID.

Proof. Let I ⊂ D be an ideal. We want to show that I = (a), i.e. I is principal.
Take b ∈ I s.t. N(b) is minimal among all elements from I, ⟨b⟩ ⊂ I.
Take a ∈ I, find q, r with a = bq + r where r = 0 or N(r) < N(b).
Note that N(r) < N(b) is not possible, otherwise N(b) is not minimal.
Therefore r = a− bq = 0 ∈ I. a = bq ∈ ⟨b⟩. I ⊂ ⟨b⟩. Therefore I = ⟨b⟩. I is principal.
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3.6.5 Summary of Integral Domains

Commutative Ring with 1 ⊋ Integral domain ⊋ UFD ⊋ PID ⊋ Euclidean Domain ⊋ Field.

Example:

1. Commutative Ring with 1: Z12, 3 · 4 = 0 ∈ Z12, thus not an Integral domain

2. Z[i
√
5]: 6 = 2 · 3 = (1− i

√
5)(1 + i

√
5), factorization is not unique, thus not a UFD

3. Z[x]: ⟨x, 2⟩ is not principal. Q[x, y], ⟨x, y⟩ not principal. Thus not PID.

4. Z[12(1 + i
√
19)] is a PID but not Euclidean domain

5. Z, K[x] are Euclidean domain, but not fields

6. Q, R, FD, Zp are fields.

In commutative ring with 1, we always have prime⇒irreducible.

Starting from UFD, we have prime⇔irreducible.

Note: in field, there is no irreducible or prime. Every element is a unit.
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4 Fields

Consider Z2[x]/(x
2 + x+ 1), x2 + x+ 1 is irreducible in Z2[x]. Z2[x]/(x

2 + x+ 1) is a field.
Define Z2(α) = {a+ bα : a, b ∈ Z2, α

2 = α+ 1}, where α is the root of x2 + x+ 1.
Z2(α) = {0, 1, α, α+ 1}. char(Z2(α)) = 2, i.e. ∀x ∈ Z2(α), x+ x = 0
Sometimes, we write Z2(α) = F22 = F4. It is a finite field of order 4.

Facts: Every finite field is of order pr for some prime p and charactersitic of p. There is only one finite field
up to isomorphism of any given order, Fpr . To construct Fpr , we find an irreducible degree r polynomial
f(x) ∈ Zp[x], then Fpr ∼= Zp[x]/(f(x)).
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5 Lie Algebra

5.1 Basic Definitions

Definition: 5.1: Lie Algebra

Let F be a field (e.g. C,R). A Lie algebra L is a vector space together with a bilinear map known
as the Lie bracket [·, ·] : L× L→ L s.t. for all x, y, z ∈ L:

• Alternating: [x, x] = 0
• Jacobi Identity: [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0

Theorem: 5.1:

If char(F) ̸= 2 (i.e. 1 + 1 ̸= 0), then [x, x] = 0 ⇔ [y, x] = −[x, y], ∀x, y ∈ L.

Proof. (⇒) [y, x]
Alternating

= [y, x]− [x+ y, x+ y]
Linearity

= [y, x]− [x, x]− [x, y]− [y, x]− [y, y] = −[x, y]

(⇐) [x, x] = −[x, x] ⇒ [x, x] + [x, x] = 0, so [x, x] = 0.

Definition: 5.2: gln(F)

gln(F) = {Fn×} all n×n matrices with entries in F is a Lie algebra. [A,B] = AB−BA (commutator).

Proof. Alternating: [A,A] = A2 −A2 = 0.
Jacobi identity: [A, [B,C]] + [C, [A,B]] + [B, [C,A]] = [A,BC − CB] + [C,AB −BA] + [B,CA−AC]
= ABC−ACB−BCA+CBA+CAB−CBA−ABC+BAC+BCA+BCA−BAC−CAB+ACB = 0

Definition: 5.3: sl2(C)

sl2(C) =
{(

a b
c d

)
: a+ d = 0

}
= {x ∈ gl2(C) : Tr(x) = 0}.

Alternatively, sl2(C) = span {e, f, h}, where e =
(
0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)

Proof. Since sl2(C) ⊂ gl2(C), we only need to check the span set is closed under the bracket.

[h, e] = he− eh =

(
1 0
0 −1

)(
0 1
0 0

)
−
(
0 1
0 0

)(
1 0
0 −1

)
=

(
0 1
0 0

)
−
(
0 −1
0 0

)
=

(
0 2
0 0

)
= 2e

Similarly [h, f ] = −2f , [e, f ] = h.

Definition: 5.4: Derivation

Given an algebra A, a linear map D : A→ A is a derivation if D(ab) = aD(b) +D(a)b.

Theorem: 5.2:

Der(A) = {D : A→ A : D is a derivation} is a Lie algebra with [D1, D2] = D1D2 −D2D1.
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Proof. We need to check that if D1, D2 ∈ Der(A), then [D1, D2] ∈ Der(A).

[D1, D2](ab) = D1(D2(ab))−D2(D1(ab)) = D1(aD2(b) +D2(a)b)−D2(aD1(b) +D1(a)b)

= aD1D2(b) +D1(a)D2(b) +D1D2(a)b+D2(a)D1(b)

− aD2D1(b)−D2(a)D1(b)−D1(a)D2(b)−D2D1(a)b

= a(D1D2 −D2D1)(b) + (D1D2 −D2D1)(a)b

= a[D1, D2](b)− [D1, D2](a)b

Definition: 5.5: Witt Lie Algebra

Witt = Der
(
C
[
z, z−1

])
= span {ln : n ∈ Z}, ln = −zn+1 d

dz . (Derivation on Laurent polynomials)

[lm, ln] =

[
−zm+1 d

dz
,−zn+1 d

dz

]
= zm+1 d

dz

(
zn+1 d

dz

)
− zn+1 d

dz

(
zm+1 d

dz

)
= zm+1

(
(n+ 1)zn

d

dz
+ zn+1 d

2

dz2

)
− zn+1

(
(m+ 1)zm

d

dz
+ zm+1 d

2

dz2

)
= −(m− n)z(m+n)+1 d

dz
= (m− n)lm+n.

Definition: 5.6: Cross Product

R3 with cross product

a1a2
a3

×

b1b2
b3

 =

a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1

 is a Lie algebra.

Note: u× (v × w) = (u · w)v − (u · v)w

Definition: 5.7: Lie Group

Lie group G is a group that is a smooth manifold. Lie algebra can be written as tangent space to
Lie group at identity. i.e. g = Te(G) =tangent space at the identity (corresponding Lie algebra).

Example: SL2(C) =
{
A ∈ C2×2 : detA = 1

}
, γ : R → SL2(C) s.t. γ(0) =

(
1 0
0 1

)
.

Take γ(t) =
(
a(t) b(t)
c(t) d(t)

)
, a(t)d(t)− b(t)c(t) = 1 ∀t by definition of SL2.

With the identity γ(0), we have a(0) = d(0) = 1, b(0) = c(0) = 0.
d
dt(ad−bc) = a′d+ad′−b′c−bc′ = 0. At t = 0, a′(0)+d′(0) = 0 (trace zero), γ′(0) =

(
a′(0) b′(0)
c′(0) d′(0)

)
∈ sl2(C)

(tangent space at identity)

Theorem: 5.3:

A Lie algebra is abelian if [x, y] = 0,∀x, y. Every one dimensional Lie algebra is abelian.
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Theorem: 5.4:

Let Eij =matrix with all zeros except a 1 in E[i, j]. [Eij , Ekl] = δjkEil − δilEkj .

Theorem: 5.5: Sympletic Group and Sympletic Algebra

The Sympletic group is SP4(C) =
{
A ∈ C4×4 : ATJA = J

}
where J =

(
0 I2

−I2 0

)
. sp4(C) ={

x ∈ C4×4 : JX −XTJ = 0
}

5.2 Subalgebra, Ideals, Quotients

Definition: 5.8: Subalgebra

Given a Lie algebra L and a vector subspace K ⊂ L, K is a Lie subalgebra if for all x, y ∈ K,
[x, y] ∈ K.

Example: sln(F) = {x ∈ gln(F) : Tr(x) = 0} is a subalgebra of gln(F).
Note: Since Tr(xy) = Tr(yx), then Tr([x, y]) = 0 for all x, y ∈ gln(F).

Example: bn(F) =upper triangular matrices, nn(F) =strictly upper triangular matrices,
span {l−1, l0, l1} ⊂Witt are examples of subalgebra.

Definition: 5.9: Ideal

A Lie subalgebra I ⊂ L is an ideal if ∀x ∈ L, i ∈ I, [i, x] ∈ I, or equivalently, [I, L] ⊂ I.

Example: sl2(F) ⊂ gl2(F) is an ideal.

Proof. Take i =
(
a b
c −a

)
∈ sl2(F), x =

(
x y
z w

)
∈ gl2(F).

[i, x] = ix− xi =

(
ax+ bz ·

· cy − aw

)
−
(
ax+ cy ·

· cy − bz

)
=

(
bz − cy ·

· cy − bz

)
Tr([i, x]) = 0, so [i, x] ∈ sl2(F).

Example: b2(F) ⊂ gl2(F) is not an ideal.

Proof. Take
(
1 0
0 0

)
∈ b2(F), x =

(
0 0
1 1

)
∈ gl2(F).[(

1 0
0 0

)
,

(
0 0
1 1

)]
=

(
0 0
−1 0

)
/∈ b2(F).

Definition: 5.10: Center

Given a Lie algrebra L, its center is Z(L) = {z ∈ L : [x, z] = 0, ∀x ∈ L}

Theorem: 5.6:

Z(L) ⊂ L is an ideal.
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Proof. (i)Vector subspace: Suppose a, b ∈ F, z, w ∈ Z(L).
Take x ∈ L, [x, az + bw] = a[x, z] + b[x,w] = 0. az + bw ∈ Z(L).

(ii) Absorption: take z ∈ Z(L), x, y ∈ L, [y, [x, z]] = [y, 0] = 0, so [x, z] ∈ Z(L).

Definition: 5.11: Quotient Lie Algebra

Given a Lie algebra with ideal I ⊂ L, the quotient Lie algebra is the quotient vector space L/I =
{x+ I : x ∈ L} with [x+ I, y + I] = [x, y] + I.

Theorem: 5.7:

Suppose I ⊂ L is a subalgebra, then L/I is a Lie algebra ⇔ I is an ideal.

Proof. (⇐) Suppose I is an ideal, we want to show that L/I is a Lie algebra
Alternating: [x+ I, x+ I] = [x, x] + I = 0 + I.
Jacobi: [x+ I, [y + I, z + I]] + · · · = [x, [y, z]] · · ·+ I = 0 + I.
Well-defined: Suppose x+ I = x′ + I, y + I = y′ + I, i.e. x− x′ = i1 ∈ I, y − y′ = i2 ∈ I.
[x+I, y+I] = [x, y]+I = [x′+i1, y

′+i2]+I = [x′, y′]+[i1, y
′]+[x′, i2]+[i1, i2]+I = [x′, y′]+I = [x′+I, y′+I].

(⇒) Suppose x ∈ L, i ∈ I, [x, i] + I = [x+ I, i+ I] = [x+ I, 0 + I] = [x, 0] + I = 0 + I, so [x, i] ∈ I.

Theorem: 5.8:

Suppose that I, J ⊂ L are ideals. Then so are
1. I ∩ J
2. I + J = {i+ j : i ∈ I, j ∈ J}
3. [I, J ] = span {[i, j] : i ∈ I, j ∈ J}

Proof. 1. Suppose k ∈ I ∩ J , x ∈ L. Then k ∈ I and k ∈ J . By deifnition, [x, k] ∈ I and [x, k] ∈ J .
Thus [x, k] ∈ I ∩ J , so I ∩ J is an ideal.

2. Suppose i+ j ∈ I + J , x ∈ L, [x, i+ j] = [x, i] + [x, j] ∈ I + J

3. Suppose y ∈ [I, J ], then y = a1[i1, j1] + a2[i2, j2] + · · ·+ an[in, jn].
By Jacobi, [x, [ik, jk]] = − [jk, [x, ik]]− [ik, [x, jk]] ∈ [I, J ]. Then [x, y] ∈ [I, J ] by linearity.

Definition: 5.12: Commutator Subalgebra

Given a Lie algebra L, its commutator/derived subalgebra is L′ = [L,L] = span {[x, y] : x, y ∈ L}.

Example: Find the commutator algebra of gl2(C) and sl2(C).

Proof. For gl2(C), the basis are e =
(
0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
, i =

(
1 0
0 1

)
.

[h, e] = 2e, [h, f ] = −2f , [e, f ] = h, so e, f, h ∈ gl2(C)′.
sl2(C) = span {e, f, h} ⊂ gl2(C)′.
Note: [h, h] = [e, e] = [f, f ] = [i, x] = 0, so i /∈ gl2(C)′.
sl2(C) = gl2(C)′ i.e. commutator subalgebra of gl2(C) is sl2(C). Also sl2(C)′ = sl2(C).
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5.3 Homomorphism, Isomorphism and Classification

Definition: 5.13: Lie Algebra Homomorphism and Isomorphism

Given Lie algebras L1 and L2, a linear transformation ϕ : L1 → L2 is a Lie algebra homomorphism
if ∀x, y ∈ L1, we have ϕ([x, y]) = [ϕ(x), ϕ(y)]. If ϕ is bijective, then it is a Lie algebra isomorphism.
Kerϕ = {x ∈ L1 : ϕ(x) = 0}. Imϕ = {y ∈ L2 : y = ϕ(x) for some x ∈ L1}.

Theorem: 5.9: First Isomorphism Theorem

Suppose ϕ : L1 → L2 is a Lie algebra homomorphism, then
1. Kerϕ ⊂ L1 is an ideal
2. Imϕ ⊂ L2 is a subalgebra
3. L1/Kerϕ ∼= Imϕ

Proof. 1. Suppose x ∈ Kerϕ, y ∈ L1, ϕ([x, y]) = [ϕ(x), ϕ(y)] = [0, ϕ(y)] = 0, so [x, y] ∈ Kerϕ.

2. Suppose y1, y2 ∈ Imϕ, then ∃x1, x2 ∈ L s.t. ϕ(x1) = y1 and ϕ(x2) = y2
Then [y1, y2] = [ϕ(x1), ϕ(x2)] = ϕ([x1, x2]) ∈ Imϕ

3. Define ψ : L1/Kerϕ→ Imϕ s.t. ψ(x+ Kerϕ) = ϕ(x)
Well-defined: suppose x1+Kerϕ = x2+Kerϕ, then x1−x2 ∈ Kerϕ, ϕ(x1−x2) = 0. Since ϕ is linear,
ϕ(x1)− ϕ(x2) = 0. Thus ψ(x1 + Kerϕ) = ϕ(x1) = ϕ(x2) = ψ(x2 + Kerϕ).
Homomorphism: ψ([x + Kerϕ, y + Kerϕ]) = ψ([x, y] + Kerϕ) = ϕ([x, y]) = [ϕ(x), ϕ(y)] = [ψ(x +
Kerϕ), ψ(y + Kerϕ)].
Injective: Suppose ψ(x+ Kerϕ) = ψ(y + Kerϕ), then ϕ(x) = ϕ(y) by definition.
ϕ(x− y) = ϕ(x)− ϕ(y) = 0, so x− y ∈ Kerϕ, x+ Kerϕ = y + Kerϕ.
Surjective: Suppose y ∈ Imϕ, i.e. y = ϕ(x) for x ∈ L1, then ψ(x+ Kerϕ) = ϕ(x) = y.

Example: ϕ : gl2(C) → sl2(C) s.t. ϕ
(
a b
c d

)
=

(
1
2(a− d) b

c 1
2(d− a)

)

Proof. Let A =

(
a b
c d

)
, B =

(
x y
w z

)
.

[ϕ(A), ϕ(B)] = ϕ(A)ϕ(B)− ϕ(B)ϕ(A)

=

(
1
2(a− d) b

c 1
2(d− a)

)(
1
2(x− w) b

c 1
2(w − x)

)
−
(

1
2(x− w) b

c 1
2(w − x)

)(
1
2(a− d) b

c 1
2(d− a)

)
=

(
bz − cy ·

· cy − bz

)
= ϕ([A,B])

If A ∈ Kerϕ, then ϕ(A) = 0, so b = c = 0, a = d.

Kerϕ =

{(
a 0
0 a

)
: a ∈ C

}
∼= C.

Thus gl2(C)/C ∼= sl2(C).
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Example: π : gl2(C) → C s.t. π
(
a b
c d

)
= a+ d.

Kerπ = sl2(C), so gl2(C)/sl2(C) ∼= C.

Note: gl2(C) ∼= sl2(C)⊕ C = span {e, f, h} ⊕ span {i}.

Theorem: 5.10:

Suppose Π1 : L1 ⊕ L2 → L1, Π2 : L1 ⊕ L2 → L2 s.t. Π1(x, y) = x, Π2(x, y) = y.
Then KerΠ1 = {0} ⊕ L2

∼= L2, L1 ⊕ L2/L2
∼= L1. KerΠ2 = L1 ⊕ {0} ∼= L1, L1 ⊕ L2/L1

∼= L2.

Theorem: 5.11: Second Isomorphism Theorem

If I and J are ideals of L, then (I + J)/J ∼= I/(I ∩ J).

Proof. Consider ϕ : I + J → I/(I ∩ J), ϕ(i+ j) = i+ I ∩ J .
i+ j ∈ Kerϕ ⇔ ϕ(i+ j) = 0 + I ∩ J ⇔ i+ I ∩ J = 0 + I ∩ J ⇔ i ∈ I ∩ J ⇔ i ∈ J ⇔ i+ j ∈ J .
So Kerϕ = J . By Theorem 5.9, (I + J)/J ∼= I/(I ∩ J).

Theorem: 5.12: Third Isomorphism Theorem

If I and J are ideals of L, and I ⊂ J , then (L/I)/(J/I) ∼= L/J .

Proof. Consider ψ : L/I → L/J s.t. ψ(x+ I) = x+ J .
Well-defined: suppose x+ I = y + I, then x− y ∈ I ⊂ J , so ψ(x+ I) = x+ J = y + J = ψ(y + I).
Homomorphism: ψ([x+ I, y + I]) = ψ([x, y] + I) = [x, y] + J = [x+ J, y + J ] = [ψ(x+ I), ψ(y + I)].
Kernel: x+ I ∈ Kerψ ⇔ x+ J = 0 + J ⇔ x ∈ J ⇔ x+ I ∈ J/I ⇔ Kerψ = J/I.
Thus (L/I)/(J/I) ∼= L/J by Theorem 5.9.

5.3.1 Classification

Definition: 5.14: Adjoint

For v ∈ L, define adv : L→ L s.t. adv(w) = [v, w].

1-Dimension: L = span {v}.
If x, y ∈ L, then x = av, y = bv, [x, y] = [av, bv] = ab[v, v] = 0.
All 1D Lie algebra are abelian.

2-Dimension non-abelian: Let L = span {v, w}.
If x, y ∈ L, then x = av + bw, y = cv + dw for a, b, c, d ∈ F.
[x, y] = [av + bw, cv + dw] = ac[v, v] + ad[v, w] + bc[w, v] + bd[w,w] = (ad− bc)[v, w]
Note [x, y] ∈ L′, so L′ = span {[v, w]}.
Set x = [v, w], extend to a basis {x, y} of L.
[x, y] = ax. Choose y s.t. [x, y] = x.
There is a single 2D non-abelian Lie-algebra up to isomorphism. We can find a basis {x, y} s.4. [x, y] =
x.

3-Dimension non-abelian: Consider L′ = span {[x, y] : x, y ∈ L}.

1. dimL′ = 0 ⇔ L is abelian.

56



2. When dimL′ = 1:

(a) L′ ⊂ Z(L):
Since L is non-abelian, we can find x, y ∈ L s.t. [x, y] ̸= 0.
Define z = [x, y], then L′ = span {z}, [L, z] = {0}
Claim: {x, y, z} forms a basis for L

Proof. Suppose a, b, c ∈ F s.t. ax+ by + cz = 0
0 = [0, y] = [ax+ by + cz, y] = a[x, y] + b[y, y] + c[z, y] = az, so a = 0
0 = [x, 0] = [x, ax+ by + cz] = a[x, x] + b[x, y] + c[x, z] = bz, so b = 0
Combining the above with ax+ by + cz = 0, we get cz = 0 ⇒ c = 0.

Example: Heisenberg Lie algebra: L = span {a−1, a0, a1}, s.t. [a1, a−1] = a0, a0 ∈ Z(L)
More generally, Heisenberg Lie algebra is Lie algebra with a−n, ..., a−2, a−1, a0, a1, a2, ..., an where
[ak, al] = kδk+l,0a0.

(b) L′ ̸⊂ Z(L)
Take L′ = span {x}, note x /∈ Z(L).
∃y ∈ L s.t. [x, y] ̸= 0, also [x, y] ∈ L′ = span {x}.
Thus [x, y] = x by rescaling.
Now set L̃ = span {x, y} ⊂ L is a subalgebra, and is a 2D non-abelian Lie algebra.
Extend {x, y} to {x, y, z} a basis of L.
Note: [x,w] ∈ L′ so [x,w] = ax, [y, w] ∈ L′, so [y, w] = bx for a, b ∈ F.
Set z = αx+ βy + γw, [x, z] = (β + αγ)x, [y, z] = (γb− α)x.
Choose γ = 1, β = −a, α = b, then [x, z] = [y, z] = 0, so z ∈ Z(L).
L = L̃⊕ Z(L) is a direct sum of a 2D non-abelian Lie algebra with a 1D abelian Lie algebra.

3. When dimL′ = 2.
Claim: L′ is abelian.

Proof. Take {y, z} =basis of L′, extend to {x, y, z} basis of L.
Since y ∈ L′, then y = [y1, y2] for y1, y2 ∈ L.

ady(w) = [y, w] = [[y1, y2], w]

= − [[w, y1], y2]− [[y2, w], y1] (By Jacobi)
= − [y2, [y1, w]] + [y1, [y2, w]] (Alternating)
= ady1ady2(w)− ady2ady1(w)
= [ady1 , ady2 ] (w)

Thus ady = [ady1 , ady2 ] and Tr(ady) = Tr ([ady1 , ady2 ]) = 0.

If [y, z] = ay + bz, then ady =
(
0 a
0 b

)
. Since Tr(ady) = 0, b = 0, so [y, z] = ay.

Thus L′ is abelian and [y, z] = 0.

Note also L′ = span {[x, y], [x, z], [y, z]}. So we get two basis for L′. B1 = {y, z}, B2 = {[x, y], [x, z]}
adx : L′ → L′ changes basis from B1 to B2, adx is an isomorphism.
The final structure is determined by adx.

(a) We can choose x ∈ L s.t. adx is diagonal.

Let Lb = span {x, y, z} s.t. [x, y] = y, [x, z] = bz, adx =

(
1 0
0 b

)
Let LB = span {X,Y, Z}, [X,Y ] = Y , [X,Z] = BZ.
Suppose ϕ : Lb → LB is a Lie algebra isomorphism.
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
ϕ(x) = a1X + a2Y + a3Z

ϕ(y) = c1X + c2Y + c3Z

ϕ(z) = d1X + d2Y + d3Z

. We look at the system

{
ϕ(y) = ϕ([x, y]) = [ϕ(x), ϕ(y)]

bϕ(z) = [ϕ(x), ϕ(z)]
. This

gives B = b or B = 1
b .

(b) adx is not diagonalizable, it can be chosen s.t. adx =

(
λ 1
0 λ

)
.

[x, y] = λy, [x, z] = y + λz, so [x, y] = y, [x, z] = y + z with rescaling.

4. dimL′ = 3
Claim: ∃h ∈ L s.t. adh : L→ L has a non-zero eigen value.

Proof. Take 0 ̸= x ∈ L. If adx has a non-zero eigen value, then done, set h = x
Otherwise, all eigenvalues of adx are 0. Extend {x, y, z} a basis of L
L = L′ = span {[x, y], [x, z], [y, z]}

The Jordan Canonical form of adx is

0 1 0
0 0 1
0 0 0

 over C.

Choose x, y, z s.t. [x, y] = x, [x, z] = y, then [y, x] = ady(x) = −x. Set y = h.
Let corresponding eigenvector be e, [h, e] = ae, a ̸= 0
Rescale s.t. [h, e] = 2e. Also note that [h, h] = 0h, [h, f ] = −2f , so eigenvalues of h are 0, 2,−2.
Also h ∈ L′, so Tr(adh) = 0.
[h, [e, f ]] = −[f, [h, e]]− [e, [f, h]] = −[f, 2e]− [e, 2f ] = 0, so [e, f ] = h by scaling.
Thus dimL′ = 3 ⇔ L′ ∼= sl2(C).

5.3.2 Solvable and Nilpotent Algebras

Theorem: 5.13:

Given a Lie algebra L and an ideal I ⊂ L, L/I is abelian ⇔ L′ ⊂ I.

Proof. (⇒) Suppose L/I is abelian.
Take z ∈ L′, z = a1[x1, y1] + · · ·+ an[xn, yn] with xi, yi ∈ L.
z + I = a1[x1, y1] + · · ·+ an[xn, yn] + I = a1[x1 + I, y1 + I] + · · ·+ an[xn + I, yn + I] = 0 + I, so z ∈ I and
L′ ⊂ I.

(⇐) Suppose L′ ⊂ I, take x+ I, y + I ∈ L/I. Note [x, y] ∈ L′ ⊂ I.
Then [x, y] + I = 0 + I, [x+ I, y + I] = 0 + I, so L/I is abelian.

Definition: 5.15: Solvable Lie Algebra

For n ∈ N, inductively define L(1) = L′, L(n+1) = [L(n), L(n)] = (L(n))′ and get a string of ideals
· · · ⊂ L(n) ⊂ L(n−1) ⊂ · · · ⊂ L(2) ⊂ L(1) ⊂ L. L is solvable if there is N ∈ N s.t. L(N) = 0.

Example: L = gl2(F) =
{(

a b
c d

)
: a, b, c, d ∈ F

}
.

L′ = sl2(F), L(2) = sl2(F)′ = sl2(F). So L(n) = sl2(F) for n ≥ 2.
Thus gl2(F) and sl2(F) are not solvable.
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Example: L =

{(
a b
0 c

)
: a, b, c ∈ F

}
.

[(
a b
0 c

)
,

(
x y
0 z

)]
=

(
a b
0 c

)(
x y
0 z

)
−
(
x y
0 z

)(
a b
0 c

)
=

(
ax ay + bz
0 cz

)
−
(
ax bx+ cy
0 cz

)
=

(
0 1
0 0

)

L(1) =

{(
0 a
0 0

)
: a ∈ F

}
.[(

0 a
0 0

)
,

(
0 x
0 0

)]
=

(
0 a
0 0

)(
0 x
0 0

)
−
(
0 x
0 0

)(
0 a
0 0

)
= 0

Therefore L(2) = 0 and L is solvable.

Theorem: 5.14:

Suppose L is a Lie algebra with ideals I0, ..., IN s.t.
1. 0 = IN ⊂ IN−1 ⊂ · · · I2 ⊂ I1 ⊂ I0 = L
2. For all 0 ≤ n ≤ N , In−1/In is abelian

then L is solvable.

Proof. By Theorem 5.13, L/I1 is abelian, then L′ ⊂ I1. Similarly, since I1/I2 is abelian, then I ′1 ⊂ I2, thus
L(2) ⊂ I ′1 ⊂ I2.
I2/I3 is abelian, then I ′2 ⊂ I3, L(3) ⊂ I

(2)
1 ⊂ I ′2 ⊂ I3.

Inductively, ∀0 ≤ n ≤ N , we have L(n) ⊂ In, L(N) ⊂ IN = 0, so L(N) = 0, L is solvable.

Theorem: 5.15:

Suppose L is a Lie algebra and K is a subalgebra. Then L solvable ⇒ K solvable.

Proof. K ′ = [K,K] ⊂ [L,L] = L′, so K(n) ⊂ L(n).
Find N ∈ N s.t. L(N) = 0, then K(N) ⊂ L(N) = 0, so K(N) = 0, K is solvable.

Theorem: 5.16:

Suppose L is a Lie algebra and I ⊂ L is an ideal. Then I and L/I are solvable ⇒ L solvable.

Proof. Claim: (L/I)(n) = (L(n) + I)/I for all n ∈ N.
Base case: when n = 0, (L+ I)/I ∼= L/(L ∩ I) = L/I by Theorem 5.11 and I ⊂ L.
IH: Suppose for some k ≥ 0, we have (L/I)(k) = (L(k) + I)/I.
Consider (L/I)(k+1) =

(
(L/I)(k)

)′
=
((
L(k) + I

)
/I
)′
= (L(k+1) + I ′ + I)/I = (L(k+1) + I)/I.

Take M,N ∈ N s.t. I(M) = 0, (L/I)(N) = 0, then 0 = (L/I)(N) = (L(N) + I)/I.
So (L(N)+I) ⊂ I, and thus L(N) ⊂ I. L(M+N) =

{
L(N)

}(M) ⊂ I(M) = 0, so L(M+N) = 0, L is solvable.

Theorem: 5.17:

Suppose L is a Lie algebra and I, J ⊂ L are ideals. Then I, J solvable ⇒ I + J solvable.
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Proof. Take M,N ∈ N s.t. I(M) = J (N) = 0. By Theorem 5.11 (I + J/J)(M) ∼= (I/I ∩ J)(M) = (I(M) + I ∩
J)/I ∩ J = I ∩ J/I ∩ J = 0
(I + J)/J and J are solvable, so I + J is solvable by Theorem 5.16

Definition: 5.16: Radical of Lie Algebra

The radical of L, rad(L) is the unique solvable ideal of L containing all solvable ideals of L.

Theorem: 5.18:

Given a finite dimensional Lie algebra L, there is a unique solvable ideal containing any solvable
ideal of L.

Proof. Consider C = {I ⊂ L : I is a solvable ideal}. Take R ∈ C s.t. dim I ≤ dimR for all I ∈ C.
Note ∀I ∈ C, we have R ⊂ R+ I and R+ I ∈ C
Then dimR ≤ dim(R+ I) ≤ dimR. So dim(R+ I) = dimR, I ⊂ R.
Any other R′ will be s.t. R′ ⊂ R and R ⊂ R′, so R = R′, it is unique.

Definition: 5.17: Simple Lie Algebra

We say a non-abelian Lie algebra L is simple if it has non-trivial ideals. A Lie algebra L is semisimple
if radL = 0 ⇔ it has no non-trivial solvable ideals.

Theorem: 5.19:

If L is a Lie algebra, then L/radL is semisimple

Proof. Ideals of L/radL are of the form I/radL where radL ⊂ I.
Suppose I/radL is solvable, then together with radL is solvable, using Theorem 5.16, we have I is solvable.
Then radL ⊂ I ⊂ radL, I = radL, so I/radL = 0, L/radL is semisimple.

Definition: 5.18: Nilpotent Lie Algebra

Given a Lie algebra L, inductively define L1 = L′, Ln+1 = [L,Ln]. L is nilpotent if LN = 0 for some
N ∈ N.

Theorem: 5.20:

Suppose L is a Lie algebra, then L/Z(L) is nilpotent ⇒ L is nilpotent.

Proof. Claim: (L/Z(L))n = (Ln + Z(L))/Z(L).
If L/Z(L) is nilpotent, then we have N ∈ N s.t. 0 = (L/Z(L))N = (LN + Z(L))/Z(L).
So LN ⊂ Z(L), LN+1 = [L,LN ] ⊂ [L,Z(L)] = 0.

Theorem: 5.21:

Every nilpotent Lie algebra is solvable, but not every solvable Lie algebra is nilpotent.
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Definition: 5.19: gl(V ) Nilpotent Element

Given a vector space V , gl(V ) = {x : V → V : x is linear}. If x ∈ gl(V ), x ̸= 0 is nilpotent if xN = 0
for some N ∈ N.

Example:
(
0 a
0 0

)2

=

(
0 0
0 0

)
, so

(
0 a
0 0

)
is nilpotent.

Example:

0 a b
0 0 c
0 0 0

2

=

0 0 ac
0 0 0
0 0 0

,

0 a b
0 0 c
0 0 0

3

= 0 so

0 a b
0 0 c
0 0 0

 is nilpotent.

Definition: 5.20: Adjoing Operation on gl(V )

Given any x ∈ gl(V ), x : V → V , adx : gl(V ) → gl(V ) is defined as adx(y) = [x, y] = xy − yx.

Theorem: 5.22:

If x ∈ gl(V ) is nilpotent, then adx : gl(V ) → gl(V ) is nilpotent.

Proof. Suppose y ∈ gl(V ).
adx(y) = xy − yx.
(adx)2(y) = [x, xy − yx] = x2y − 2xyx+ yx2

(adx)3(y) = [x, x2y − 2xyx+ yx2] = x3y − 3x2yx+ 3xyx2 − yx3

In general (adx)ny =
n∑
k=0

(−1)k
(
n

k

)
xn−kyxk.

Suppose xN = 0 for N ∈ N, then

(adxy)2Ny =
2N∑
k=0

(−1)k
(
2N

k

)
x2N−kyxk

= xN

(
N−1∑
k=0

(−1)k
(
2N

k

)
xN−kyxk

)
+

(
2N∑
k=N

(−1)k
(
2N

k

)
x2N−kyxk−N

)
xN = 0

5.4 More Theorems

5.4.1 Invariance Lemma

Definition: 5.21: Eigen Transformation

Let H ⊂ L ⊂ gl(V ) be subalgebra and λ : H → F be a linear transformation (λ ∈ H∗ dual space).
Define Vλ = {v ∈ V : h(v) = λ(h)v,∀h ∈ H}, v is an eigenvector of every element of H.

Theorem: 5.23:

Vλ ⊂ V is a subspace

Proof. Suppose v, w ∈ Vλ, α, β ∈ F. Take h ∈ H.
h(αv + βw) = αh(v) + βh(w) = αλ(h)v + βλ(h)w = λ(h)[αv + βw], so αv + βw ∈ Vλ.
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Definition: 5.22: Weight

λ ∈ H∗ is a weight if Vλ ̸= 0

Example: H =


r s t
0 w v
0 0 w

 : r, s, t, u, v, w ∈ F

 ⊂ gl3(F) = gl(F3).r s t
0 u v
0 0 w

1
0
0

 = r

1
0
0

, so e ∈ F3 is an eigenvector for all h ∈ H.

Define λ ∈ H∗ by λ

r s t
0 u v
0 0 w

 = r, Vλ =


a0
0

 : a ∈ F

 = span {e}.

Example: H =


a 0 0
0 b 0
0 0 c

 : a+ b+ c = 0

 ⊂ sl3(F) ⊂ gl(F3).

H = span {h1, h2}, where h1 =

1 0 0
0 −1 0
0 0 0

, h2 =

0 0 0
0 1 0
0 0 −1

.

e1 is an eigenvector for h1 with value 1, h2 with value 0.
e2 is an eigenvector for h1 with value -1, h2 with value 1.
e3 is an eigenvector for h1 with value 0, h2 with value -1.
Define λ1 : H → F by λ1(h1) = 1, λ1(h2) = 0 and Vλ1 = span {e1}.

Lemma: 5.1: Invariance Lemma

Suppose that L ⊂ gl(V ) is over a field of char = 0, dim(V ) < ∞. I ⊂ L is an ideal and λ ∈ I∗ is a
weight. Then Vλ is an L-invariant subspace.

Proof. We want to show that if v ∈ Vλ, x ∈ L, then xv ∈ Vλ.
Suppose v ∈ Vλ, x ∈ L. Take h ∈ I.
h(xv) = (hx)v = (xh+ [h, x])v = xh(v) + [h, x]v = λ(h)xv + λ([h, x])v, since h ∈ I, [h, x] ∈ I.
Then xv ∈ Vλ if λ[h, x] = 0.

Consider W = span
{
v, xv, x2v, ..., xnv

}
, BW = {v, xv, ..., xnv} is a basis for W .

Suppose y ∈ I, we claim [y]BW
=

λ(y) ∗ ∗

0
. . . ∗

0 0 λ(y)


Base case: left most column, y(v) = λ(y)v + 0 · xv + 0 · xv + · · ·+ 0 · xnv.
IH: Suppose y(xkv) = α0v + α1xv + · · ·+ αk−1x

k−1v + λ(v)xkv
Consider y(xk+1v) = yx(xkv) = (xy− [x, y])(xkv) = α0xv+ α1x

2v+ · · ·+ αk−1x
kv+ λ(v)xk+1v− [x, y]xk.

Since [x, y] ∈ I, by I.H. [x, y]xkv = β0v + β1xv + · · ·+ βk−1x
k−1v + λ([x, y])xkv.

Then y(xk+1v) = γ0v + γ1xv + · · · γkxkv + λ(v)xk+1v
Thus, W is x-invarint by construction and h-invariant for h ∈ I.
Set y = [h, x], y ∈ I. Tr(y) = (n+ 1)λ(y), then Tr(y) = Tr([h, x]) = 0. Thus (n+ 1)λ(y) = 0, λ(y) = 0
Then λ[h, x] = 0. Thus we have Vλ is an L-invariant subspace.
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5.4.2 Engel’s Theorem

Lemma: 5.2:

Let V be an n-dim vector space and x : V → V be a nilpotent linear map. Then ∃ a basis B of V
s.t. [x]B is strictly upper triangular.

Proof. Since x is nilpotent, there exists N ∈ N s.t. xN = 0. For v ̸= 0, v ∈ V , we have xN (v) = 0
Let m ∈ N be minimum s.t. xm(v) = 0 and w = xm−1(v) ̸= 0.
w ̸= 0 and x(w) = 0, so w ∈ ker(x) = Nul(x) ̸= {0}
Base case: n = 1, v = span {w}, [x] = 0 is strictly upper triangular.
IH: suppose the statement is true for any k-dim vector space.
IS: Let dim(V ) = k + 1, set W = span {w} ⊂ V , then dim(V/W ) = k + 1− 1 = k
With x : V → V , Π : V → V/W , define x̄ = Π ◦ x s.t. x̄(v +W ) = x(v) +W
Apply IH to V/W , B̄ = {v1 +W, ..., vk +W}, where [x̄]B̄ is upper triangular.
i.e. ∀1 ≤ j ≤ k, x̄(vj +W ) = α1v1 + · · ·+ αj−1vj−1 +W .
Set B = {w, v1, ..., vk}, x(vj) = α0w + α1v1 + · · ·αj−1vj−1, so [x]B is strictly upper triangular.

Lemma: 5.3:

Suppose V ̸= 0 and L ⊂ gl(V ) is s.t. every x ∈ L is nilpotent. Then ∃v ̸= 0 ∈ V s.t. x(v) = 0 for
all x ∈ L, or equivalently,

⋂
x∈L

Nul(x) ̸= 0.

Proof. Base case: dimL = 1, L = span {x}. Find v ∈ V , x(v) = 0 but v ̸= 0.
IS: Suppose the statement is true for all Lie algebras of dimension up to k.
Suppose dimL = k + 1
Claim: there is an ideal I ⊂ L s.t. dim I = k.

Proof. Let A ⫋ L be a subalgebra of max dimension. dim(A) < dim(L).
Consider the quotient vector space L/A and ād : A → gl(L/A) s.t. ād(a) = ada i.e. ¯ada(x + A) =
[a, x] +A.ād is a Lie algebra homomorphism

[āda, ādb](x+A) = (ādaādb − ādbāda)(x+A)

= āda([b, x] +A)− ādb([a, x] +A)

= [a, [b, x]]− [b, [a, x]] +A

= [[a, b], x] +A = ād[a,b](x+A)

Ã = Im(ād) ⊂ gl(L/A) is a Lie subalgebra.
Then dim(Ã) ≤ dim(A) < dim(L) = k + 1.
Since x is nilpotent ∀x ∈ L, then ∀a ∈ A, a is nilpotent. āda is nilpotent, and Ã satisfies IH.
Then ∃y +A ∈ L/A s.t. y ̸= 0, but āda(y +A) = 0 ∀a ∈ A.
Then ∀a ∈ A, [a, y] +A = 0 +A, so [a, y] ∈ A ∀a ∈ A. A is an ideal with dimA = k.

A ⫋ A⊕ span {y} ⊂ L, then L = A⊕ span {y}
Apply IH to A. u ̸= 0 ∈ V s.t. a(u) = 0 for all a ∈ A. W =

⋂
a∈A

Nul(A) ̸= 0.

So y|W ∈ gl(W ), and there exists w ̸= 0 ∈W s.t. y(w) = 0
Take x ∈ L, x = a+ αy, a ∈ A, α ∈ F, x(w) = a(w) + αy(w) = 0.
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Theorem: 5.24: Engel’s Theorem

1. Suppose L ⊂ gl(V ) is a Lie algebra s.t. every x ∈ L viewed as a linear transformation x : V → V
is nilpotent. Then there is a basis of V , B s.t. ∀x ∈ L, [x]B is strictly upper triangular.

2. Suppose L is a Lie algebra, L is nilpotent ⇔ ∀x ∈ L, adx is nilpotent.

Proof. 1. Base case: n = 1 is Lemma 5.2.
IS: suppose for all Lie algerbas of dim ≤ k, the statement holds.
Suppose dim(L) = k + 1
By Lemma 5.3, ∃u ̸= 0 ∈ V s.t. x(u) = 0, ∀x ∈ L. Set U = span {u}.
∀x ∈ L, consider x : V → V and Π : V → V/U , x̄(v + U) = x(v) + U .
dim(V/U) = k, so B̄ = {v1 + U, ..., vk + U} forms the basis. Define L̄ = {x̄ : x ∈ L}. ∀x̄ ∈ L̄, [x̄]B̄ is
strictly upper-triangular.
x̄(v + U) = x(v) + U . Set B = {u, v1, ..., vk}. Since ∀x, x(u) = 0, [x]B is strictly upper-triangular.

2. (⇒) Suppose L is nilpotent, then ∃N ∈ N s.t. LN = 0
Take x, y ∈ L, [x, [x, [x, ..., [x, y]]...]] ∈ LN = 0. i.e. (adx)N−1(y) = 0, so (adx)N−1 = 0

(⇐) Suppose adx is nilpotent ∀x ∈ L.
Consider ad : L→ gl(V ) s.t. ad(x) = adx. ad is a Lie algebra homomorphism.
Let L̃ = Im(ad). Apply previous part, [adx]B is strictly upper triangular.
By iteratively commuting strictly upper triangular matrices, we get a zero matrx.

Theorem: 5.25:

Suppose L is a Lie algebra over C, then L is nilpotent ⇔ Every 2-dim Lie subalgebra is nilpotent.

5.4.3 Lie’s Theorem

Lemma: 5.4:

Suppose V ∼= Cn and x : V → V is linear (x ∈ gl(V )), then there exists a basis B of V s.t. [x]B is
upper triangular.

Proof. First show that x has an eigenvector.
Take any v ̸= 0 ∈ V . Consider

{
v, xv, x2v, ..., xnv

}
⊂ V , which is linearly dependent.

Take 1 ≤ m ≤ n to be min s.t. {x, xv, ..., xmv} is linearly dependent.
Find α0, α1, ..., αm ∈ C s.t. α0v + α1xv + · · ·αmxmv = 0 where αm ̸= 0.
Factorize the equation: αm(x− λ0I)(x− λ1I) · · · (x− λmI)v = 0
Take k to be min s.t. w = (x− λk+1I) · · · (x− λmI)v ̸= 0
Now (x− λkI)w = 0, xw = λkw, w is an eigenvector of x with eigenvalue λ = λk.

Induction on n:
Base n = 1: x acts a scalar multiplication
IH: Suppose the statement holds for all vector spaces of dim k and that V ∼= Ck+1

IS: Let w ∈ V be an eigenvector of x with value λ, xw = λw.
Consider x : V → V , Π : V → V/Cw, x̄ = Π ◦ x s.t. x̄(v + Cw) = x(v) + Cw.
Note: dim(V/Cw) = k + 1− 1 = k. Apply IH to V/Cw, construct B̄ = {v1 + Cw, ..., vk + Cw}.
Set B = {w, v1, ..., vk}, x(vj) = β0w + β1v1 + · · · + βjvj , because x̄(vj + Cw) = β1v1 + · · · + βjvj + Cw.
Thus [x]B is upper triangular.
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Lemma: 5.5:

Suppose V ∼= Cn and L ⊂ gl(V ) is solvable. Then there is a v ∈ V that is an eigenvector ∀x ∈ L.

Proof. Induction on dimL.
Base n = 1 nothing to do.
IH: suppose the statement holds for all Lie algebra of dim k.
IS: when dimL = k + 1. If L is solvable, then L(N) = {0} for some N .
Then L′ ⫋ L, otherwise, L(n) = L for all n.
Take a subspace A ⫋ L s.t. dimA = k, L′ ⊂ A and L = A⊕ Cz.
Take x ∈ L, a ∈ A, [x, a] ∈ [L,L] = L′ ⊂ A, so A is an ideal.
dimA = k, A is solvable, by IH, ∃w ∈ V s.t. w is an eigenvector for all a ∈ A.
Let λ : A→ C be the corresponding weights aw = λ(a)w.
Consider Vλ = {v ∈ V : a(v) = λ(a)v,∀a ∈ A}, w ̸= 0 ∈ Vλ, then Vλ ̸= 0.
Apply Lemma 5.1 to Vλ ⊂ V , Vλ is L-invariant, then ∀x ∈ L, x(v) ∈ Vλ for all v ∈ Vλ.
Consider z|Vλ : Vλ → Vλ, z|Vλ ∈ gl(Vλ).
∃v ∈ Vλ s.t. z(v) = µv for µ ∈ C.
Claim: v is an eigenvector for all x ∈ L.
If x ∈ L, then x = a+ αz for a ∈ A, α ∈ C.
x(v) = a(v) + αz(v) + λ(a)v + αµv + (λ(a) + αµ)v.

Theorem: 5.26: Lie’s Theorem

Let V ∼= Cn and L ⊂ gl(V ) be a solvable Lie algebra. Then there is a basis of V , B s.t. [x]B =
upper triangular for all x ∈ L.

Proof. Induction on dimV : Suppose the statement holds for all vector spaces of dimV .
When dimV = k + 1. Find v ∈ V s.t. v is an eigenvector for all x ∈ L.
Then x(v) = λ(x)v for λ : V → C, λ ∈ V ∗.
Consider x̄ : V → V/Cw s.t. x̄(v + Cw) = x(v) + Cw.
L̃ = {x̄ : x ∈ L} ⊂ gl(V/Cw). Define B̄ = {v1 + Cw, ..., vk + Cw} s.t. [x̄]B̄ is upper triangular.
Then B = {w, v1, ..., vk}, [x]B is upper triangular.

Theorem: 5.27:

Let L be a Lie algebra over C, L solvable ⇔ L′ is nilpotent.

5.5 Representation and Modules

Definition: 5.23: Representation

Suppose that L is a Lie algebra over F. A representation of L is a pair (ϕ, V ), where V is a vector
space over F, and ϕ : L → gl(V ) is a Lie algebra homomorphism. If ϕ is injective, we say this
representation is faithful.

Example: Any matrix Lie algebra is a faithful representation of the underlying abstract Lie algebra.

Example: Given any Lie algebra L, the adjoint representation is (ad, L), where adx ∈ gl(L) is defined as
adx(y) = [x, y].
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Note: dim(gl(L)) = (dim(L))2

Example: Adjoint representation of sl2. Let h→

1
0
0

, e→

0
1
0

, f →

0
0
1

 be the basis

adh(h) = [h, h] = 0, adh(e) = [h, e] = 2e, adh(f) = [h, f ] = −2f , adh =

0 0 0
0 2 0
0 0 −2


ade(h) = [e, h] = −2e, ade(e) = 0, ade(f) = [e, f ] = h, ade =

 0 0 1
−2 0 0
0 0 0


adf (h) = [f, h] = 2f , adf (e) = [f, e] = −h, adf (f) = 0, ade =

0 −1 0
0 0 0
2 0 0


Example: Heisenberg Lie algebra (Fock Representation)
ĥ = span ({an : n ∈ Z} ∪ {k}), [am, an] = mδm+n,0k, k ∈ Z(ĥ). V = C[x1, x2, ...] (vector field of polynomi-
als over C).
Let ϕ : ĥ→ gl(C[x1, x2, ...]) s.t.

• ϕ(a0) =multiplication by λ ∈ C

• ϕ(an) = n ∂
∂xn

, n > 0

• ϕ(a−n) = xn, n > 0

• ϕ(k) =multiplication by 1

When m,n > 0,

• [ϕ(am), ϕ(an)] =
[
m ∂
∂xm

, n ∂
∂xn

]
= mn

(
∂2

∂xm∂xn
− ∂2

∂xn∂xm

)
= 0

• [ϕ(am), ϕ(a−n)] =
[
m ∂
∂xm

, xn

]
= m ∂

∂xm
xn −mxn

∂
∂xm

=

{
mϕ(k),m = n

0, else

Definition: 5.24: Module

Given a Lie algebra L over a field F, an L-module is a vector space V over F with a map L×V → V ,
(x, v) 7→ x · v with

1. (αx+ βy) · v = α(x · v) + β(y · v)
2. x · (αv + βw) = α(x · v) + β(x · w)
3. [x, y] · v = x · (y · v) + y · (x · v)

i.e. This is a linear transformation.

Theorem: 5.28:

The notions of a Lie algebra representation and a Lie algebra module are equivalent.

Proof. Suppose (ϕ, V ) is a Lie algebra representation.
Define x · v = ϕ(x)v s.t. ϕ(x) ∈ gl(V ).

1. (αx+ βy) · v = ϕ(αx+ βy)v = (αϕ(x) + βϕ(y))v = αϕ(x)v + βϕ(y)v = x · (y · v) + y · (x · v)

2. x · (αv + βw) = ϕ(x)(αv + βw) = αϕ(x)v + βϕ(x)v = α(x · v) + β(x · w)
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3. [x, y] · v = ϕ([x, y])v = [ϕ(x), ϕ(y)]v = (ϕ(x)ϕ(y)− ϕ(y)ϕ(x))v = x · (y · v)− y · (x · v)

Suppose we have V an L-module, then we can define ϕ by ϕ(x)v = x · v and work in reverse.

Definition: 5.25: Submodule

Suppose V is an L-module and W ⊂ V is a vector subspace. We say W is a submodule if for all
w ∈W and x ∈ L, x ·w ∈W . In this case V/W is a quotient module with x · (v +W ) = x · v +W .

Proof. This is well-defined. Suppose v1 +W = v2 +W , then ∃w = v1 − v2 ∈W .
x · (v1 +W ) = x · v1 +W = x · (v2 + w) +W = x · v2 + x · w +W = x · v2 +W , since x · w ∈W .

Example: L =


a1 a2 a3

0 a4 a5
0 0 a6

 : ai ∈ C

, V = C3.

U =


b0
0

 : b ∈ C

,

a1 a2 a3
0 a4 a5
0 0 a6

b0
0

 =

a1b0
0

 ∈ U , U is a submodule.

W =


bc
0

 : b, c ∈ C

,

a1 a2 a3
0 a4 a5
0 0 a6

bc
0

 =

a1b+ a2c
a4c
0

 ∈W , W is a submodule.

Theorem: 5.29:

Suppose L is a module over itself via x · y = [x, y]. Then I ⊂ L is a submodule ⇔ I is an ideal.

Definition: 5.26: Irreducible L-Module

Suppose L is a Lie algebra and V is an L-module. We say that V is irreducible (simple) if V ̸= {0}
and it deos not contian any proper submodule.

Example: ĥ = span ({an : n ∈ Z} ∪ {k}), [am, an] = mδm+n,0k, k ∈ Z(ĥ). V = C[x1, x2, ...]

Proof. Suppose W ⊂ V is a submodule and p(x) ̸= 0 ∈W
Define < on monomials xm1xm2 · · ·xml

by lexigraphical order.
Take the largest monomial xm1 · · ·xml

from p(x).
am1 · · · aml

p(x) = ∂l

∂xm1 ···∂xml
p = coefficient of xm1 · · ·xml

in p(x), then 1 ∈W .
xn1 · · ·xnk

= a−n1 · · · a−nk
1 ∈W , so V =W .

Definition: 5.27: L-module Homomorphism

Let V,W be L-modules. A linear map θ : V → W is an L-module homomorphism if for all x ∈ L
and v ∈ V , we have θ(x · v) = x · θ(v)
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Theorem: 5.30: L-module Isomorphism Theorems

Let θ : V →W be an L-module homomorphism. Then
1. First Isomorphism: Kerθ ⊂ V is a submodule, Imθ ⊂W is a submodule, V/Kerθ ∼= ℑθ
2. Second Isomorphism: U,W ⊂ V submodules. Then U + W and U ∩ W are submodules,

(U +W )/W ∼= U/(U ∩W )
3. Third Isomorphism: If U ⊂W , then (V/U)/(W/U) ∼= V/W

Proof. Proof for first isomorphism theorem:
Suppose x ∈ L and v ∈ Kerθ, then θ(x · v) = x · θ(v) = x · 0 = 0, so Kerθ ⊂ V is a submodule.
Suppose x ∈ L and w ∈ Imθ, then there exists v ∈ V s.t. θ(v) = w.
x · w = x · θ(v) = θ(x · v) ∈ Imθ, so Imθ is a submodule.
Define θ̂ : V/Kerθ → Imθ s.t. θ̂(v + Kerθ) = θ(v).
Then θ̂(x · (v + Kerθ)) = θ̂(x · v + Kerθ) = θ(x · v) = x · θ(v) = x · θ̂(v + Kerθ).

5.5.1 Schur’s Lemma

Lemma: 5.6: Schur’s Lemma

Let L be a complex Lie algebra and V is a finite dimensional simple L-module where θ : V → V is
an L-module homomorphism. Then θ = λIdv for some λ ∈ C.

Proof. Take λ ∈ C to be an eigenvalue of θ. Let v ∈ V be the corresponding eigenvector, θ(v) = λv.
This is equivalent to v ∈ Nul(θ − λIdv), so {0} ≠ Nul(θ − λIdv) ⊂ is a submodule.
Nul(θ − λIdv) = V , so ∀u ∈ V , θ(u) = λu, θ = λIdv.

Theorem: 5.31:

Suppose L is an abelian complex Lie algebra and V is a simple finite dim module, then dim(V ) = 1.

Proof. For x ∈ L, define θx : V → V by θx(v) = x · v.
y · θx(v) = y · (x · v) = x · (y · v)− [x, y] · v = x · (y · v) = θx(y · v) (since L is abelian).
Thus θx is an L-module homomorphism.
By Lemma 5.6, ∃λx ∈ C s.t. θx = λxIdv.
i.e. ∀x ∈ L, x · v = θx(v) = λxv.
Thus, span {v} ⊂ V is a submodule.
By simplicity of V , V = span {v}, so dim(V ) = 1.

Definition: 5.28: Indecomposable and Completely Reducible L-modules

An L-module V is indecomposable if there are no nontrivial submodules U,W ⊂ V s.t. V = U ⊕W .
V is completely reducible if there are simple Uk ⊂ V s.t. V = U1 ⊕ · · · ⊕ Un.

Fact: Irreducible ⇒ Indecomposable, but Indecomposable ̸⇒ Irreducible.

Example: L =


a1 a2 a3

0 a4 a5
0 0 a6

 : ai ∈ C

, V = C3. V is indecomposable but not irreducible.
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Proof. Suppose W ⊂ V is a submodule, take

xy
z

 ̸= 0 ∈W .a1 a2 a3
0 a4 a5
0 0 a6

xy
z

 =

a1x+ a2y + a3z
a4y + a5z

a6z

 ∈W , for all ai ∈ C.

In particular,

x0
0

 ,

0
y
0

 ,

0
0
z

 ∈W .

Also if z ̸= 0, then

0
0
1

 ∈W .

0 0 1
0 0 0
0 0 0

0
0
1

 =

1
0
0

 ∈W .

Similarly,

0
1
0

 ∈W . Thus, V =W (all 3 basis vectors of V are in W )

So we must have z = 0, W1 =


 x

y
0 : x, y ∈ C

 and W1 =


x0
0

 : x ∈ C

 are proper submodules of

V .
{0} ⊂W2 ⊂W1 ⊂ V , V is not irreducible.
However, V ̸=W1 ⊕W2, so V is indecomposable.

Theorem: 5.32:

Suppose L is a complex Lie algebra and V is a finite dimension module. Then for all z ∈ Z(L), there
is a λz ∈ C s.t. z · v = λzv for all v ∈ V .

Theorem: 5.33:

Suppose V is a 1D L-module. For all x ∈ L′, x · v = 0 for all v ∈ V .

5.5.2 Modules of Special Lie Algebra

Recall sl2(C) = span {e, f, h}, where [h, e] = 2e, [h, f ] = −2f , [e, f ] = h.
Classify all simple, finite dimensional sl2(C)-modules.
Define for d ≥ 0, Vd ⊂ C[x, y], Vd = span

{
xd, xd−1y, ..., yd

}
, with sl2(C) actions:

1. e · p(x, y) = x∂p∂y

2. f · p(x, y) = y ∂p∂x

3. h · p(x, y) = x ∂p∂x − y ∂p∂y

Example:

1. e · xayb = bxa+1yb−1

2. f · xayb = axa−1yb+1

3. h · xayb = x ∂
∂x(x

ayb)− y ∂
∂y (x

ayb) = (a− b)xayb (xayb is an eigenvector of h with eigenvalue a− b)

Claim: This action makes Vd an sl2(C)-module, for all d ≥ 0
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Proof. Linearity quickly follows since partial derivatives are linear transformations on Vd.
We require:

1. [h, e]p(x, y) = h · (e · p(x, y))− e · (h · p(x, y))

2. [e, f ]p(x, y) = e · (f · p(x, y))− f · (e · p(x, y))

3. [h, f ]p(x, y) = h · (f · p(x, y))− f · (h · p(x, y))

We only check the first here, the other two are similar.

h · (e · p(x, y))− e · (h · p(x, y)) = h ·
(
x
∂p

∂y

)
− e ·

(
x
∂p

∂x
− y

∂p

∂y

)
= x

∂

∂x

(
x
∂p

∂y

)
− y

∂

∂y

(
x
∂p

∂y

)
− x

∂

∂y

(
x
∂p

∂x
− y

∂p

∂y

)
= x

∂p

∂y
+ x2

∂2p

∂x∂y
− xy

∂2p

∂y2
− x2

∂2p

∂x∂y
+ x

∂p

∂y
+ xy

∂2p

∂y2

= 2x
∂p

∂y

= 2e · p(x, y) = [h, e]p(x, y)

Theorem: 5.34:

For all d ≥ 0, Vd is a simple sl2(C)-module.

Proof. Suppose W ̸= 0 ⊂ Vd is a submodule and take p(x, y) = a0y
d + a1xy

d−1 + · · ·+ adx
d ∈W .

Pick 0 ≤ k ≤ d to be minimal s.t. ak ̸= 0, then p(x, y) = akx
kyd−k+ degree < d− k of y.

ed−kp(x, y) = ak

(
x ∂
∂y

)d−k
xkyd−k + 0 = ak(d− k)!xd, so xd ∈W .

Note f · xd = dxd−1y ∈W , so xd−1y ∈W .
fnxd = d(d− 1) · · · (d− n+ 1)xd−nyn ∈W , so xd−ny ∈W .
Therefore, Vd =W .

Lemma: 5.7:

Suppose that V is an sl2(C)-module and v ∈ V s.t. h · v = λv, then h · (en · v) = (λ + 2n)en · v,
h · (fn · v) = (λ− 2n)fn · v or en · v = 0, fn · v = 0.

Proof. Base case: suppose e · v ̸= 0, h · (e · v) = e · (h · v) + [h, e]v = λ(e · v) + 2e · v = (λ+ 2)e · v
IH: If ek+1 · v ̸= 0 and h · (ek · v) = (λ+ 2k)(ek · v)
IS: Then h · (ek+1 · v) = h · (e · (ek · v)) = (λ+ 2(k + 1))ek+1 · v.

Lemma: 5.8:

Let V be a finite dimensional sl2(C)-module. Then there is an h-eigenvector w ∈ V s.t. e · w = 0
and u ∈ V s.t. f · u = 0

Proof. Take v ∈ V s.t. h · v = λv.
Consider v, e · v, e2 · v, ....
By Lemma 5.7, h · (en · v) = (λ+ 2n)(en · v).
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So they are all h-eigenvectors with different eigenvalues. They are linearly independent.
Then ∃m ∈ N s.t. em · v ̸= 0, but em+1 · v = 0.
Set w = em · v, then h · w = (λ+ 2m)w, e · w = 0.

Theorem: 5.35:

If V is a finite dimensional, simple sl2(C)-module, then there is d ≥ 0 s.t. V ∼= Vd.

Proof. By Lemma 5.8, ∃w ∈ V s.t. h · w = λw, e · w = 0.
Consider w, f · w, ..., fd · w ̸= 0, but fd+1 · w = 0.
Define W = span

{
w, f · w, ..., fd · w

}
. We show that W ⊂ V is a submodule:

f · (fn · w) = fn+1 · w, so ∀u ∈W , f · u ∈W .
By Lemma 5.7, h · (fn · w) = (λ− 2n)fn · w, so ∀u ∈W , h · u ∈W .
Note e·w = 0 and e·(f ·w) = f ·(e·w)+h·w = λw ∈W , e·(f2 ·w) = f ·(e·f ·w)+h·(f ·w) = 2(λ−1)(f ·w).
Inductively, e · (fn · w) = n(λ− n− 1)(fn−1 · w), then for all u ∈W , e · u ∈W .
Thus W is a submodule.

We now show that λ = d.
Since h · (fn · w) = (λ− 2n)(fn · w), [h]B = diag(λ, λ− 2, ..., λ− 2d). Then Tr(h) = (d+ 1)(λ− d).
Since [e, f ] = h, Tr(h) = Tr([e, f ]) = 0, (d+ 1)(λ− d) = 0 gives λ = d.

Define θ : V → Vd s.t. θ(fn · w) = (d− n− 1)!xd−nyn

θ(h · (fn ·w)) = θ((d− 2n)(fn ·w)) = (d− 2n)(d− n− 1)!xd−nyn = (d− n− 1)h · (xd−nyn) = h · θ(fn ·w).
Therefore, θ(h · v) = h · θ(v) for all v ∈ V .
θ(f · (fn · w)) = θ(fn+1 · w) = (d− n)!xd−n−1yn+1 = (d− n− 1)!f · (xd−nyn) = f · θ(fn · w).
θ(e·(fn ·w)) = n(d−n+1)θ(fn−1 ·w) = n(d−n+1)(d−n)!xd−n+1yn−1 = (d−n+1)!e·xd−nyn = e·θ(fn ·w).
Then ∀a ∈ sl2(C), v ∈ V , θ(a · v) = a · θ(v), V ∼= Vd since θ is bijection.

Summary:
All finite dimensional sl2(C) submodule are isomorphic to Vd = span

{
xayb : a, b ≥ 0, a+ b = d

}
. e·p(x, y) =

x∂p∂y , f · p(x, y) = y ∂p∂x , h · p(x, y) = x ∂p∂x − y ∂p∂y .

Theorem: 5.36: Weyl’s Theorem

Finite dimensional representations of semi-simple complex Lie algebras are completely reducible.

Example: sl2(C) acting on C2: e =
(
0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
.

e ·
(
1
0

)
=

(
0
0

)
, e ·

(
0
1

)
=

(
1
0

)
, e2 ·

(
a
b

)
=

(
0
0

)
f ·
(
1
0

)
=

(
0
1

)
, f ·

(
0
1

)
=

(
1
0

)
h ·
(
1
0

)
=

(
1
0

)
, h ·

(
0
1

)
=

(
0
1

)
, so v1 =

(
1
0

)
and v−1 =

(
0
1

)
are eigenvectors of h

C2 ∼= V1 s.t. v1 7→ x, v−1 7→ y.

Vd is generated by xd with d ∈ Z≥0, xd is a heighest weight vector, weight(xd) = 2d.

vd = xd → f · vd = xd−1y → f2vd = xd−2y → · · · → fdvd = yd → 0
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If d /∈ Z≥0, λ ∈ C \ Z≥0. Let M(λ) be the highest weight vector.
M(−1) : v−1 = x−1 → f · v−1 = x−2y → f2v−1 = x−3y2 → · · · , x−1 is the highest weight vector.
M(λ) : vλ = xλ → f · vλ = xλ−1y → f2vλ = vλ−2y → · · · .

Definition: 5.29: Heighest/Lowest Weight Module

Highest weight module, M(λ) = span {fn · vλ : n ≥, hvλ = λvλ}, is an infinite dimensional module
generated by xλ, λ /∈ Z≥0.
Similarly a lowest weight module is M−(λ) = span {en · vλ : n ≥ 0, h · vλ = λvλ}, λ /∈ Z≥0.

Let V be a finite dimensional sl2(C) module and consider Ω = ef + fe+ 1
2h

2. Ω ∈ U(sl2(C)) the universal
enveloping algebra, θ : V → V , θ(v) = Ω · v.

Claim: θ is an L-module homomorphism.

Proof. Use [xy, z] = xyz − zxy + (−xzy + xzy) = x(yz − zy) + (xz − xz)y = x[y, z] + [x, z]y.
[Ω, e] = [ef, e] + [fe, e] + 1

2 [h
2, e] = 0. Similarly, [Ω, f ] = [Ω, h] = 0.

If [Ω, x] = 0, then θ(x · v) = Ω · (x · v) = x · Ω · v = x · θ(v).
If V = Vd, then by Lemma 5.6, Ω acts as a constant (scalar multiplication of identity map).

Ω · xd =
(
x
∂

∂y

)(
y
∂

∂x

)
xd +

(
y
∂

∂x

)(
x
∂

∂y

)
xd +

1

2

(
x
∂

∂x
− y

∂

∂y

)2

xd

= dx
∂

∂y
(xd−1y) +

1

2

(
x
∂

∂x
− y

∂

∂y

)
dxd

= dxd +
1

2
d2xd

=
1

2
d(d+ 2)xd

So θ = 1
2d(d+ 2)Idv.
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