Algebra

This is mainly from introductory level Youtube Video by Michael Penn https://www.youtube.com/watch?
v=c6ibedrthFM&list=PL22w63XsKjqxaZ-vbN4AprggFk(XgkNoP&index=9.

1 Introduction

Definition: 1.1: Relation

A relation on a set A is a subset R C A x A. Write (z,y) € R as xRy, (z,y) ¢ R as x Ry.

Example: A =any set, R is equality. (z,y) € R< x =y, R={(a,a) :a € A}
If A={1,2,3}, R={(1,1),(2,2),(3,3)}

Example: A ={1,2,3}, R is less than or equal.
Then R = {(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)}

Example: A =N, R is divides. (m,n) € R < m|n, i.e. 3d € N s.t. n = md.
Then (1,n) € R, since 1|n for any n, (2,10) € R, since 2|10.

Definition: 1.2: Equivalence Relation

A relation R C A x A is an equivalence relation if it has the following properties
1. Reflexivity: (a,a) € R, Va € A
2. Symmetry: (a,b) € R = (b,a) € R
3. Transitivity: (a,b) € R and (b,¢) € R = (a,c) € R

Example: R is equality. (a,b) € R < a = b is an equivalence relation.
Example: R is nothing. Va,b € A, (a,b) € R. R = A x A is an equivalence relation.

Example: A = C*(R) (all differentiable functions on R). fRg < f’ = g = is an equivalence relation.

Definition: 1.3: Equivalence Class

Given an equivalence relation R C Ax A. The equivalence classof a € Ais[a] ={b € A : (a,b) € R}.

Example: R is equality. [a] ={b€ A:a=0b} ={a}
Example: R is nothing. [a] ={b€ A:(a,b) c R=Ax A} =A

Example: A=C!(R). [fl={gcA:f=¢g}={geA:(f—g) =0}={f+c:ceR]}.


https://www.youtube.com/watch?v=c6i6edrthFM&list=PL22w63XsKjqxaZ-v5N4AprggFkQXgkNoP&index=9
https://www.youtube.com/watch?v=c6i6edrthFM&list=PL22w63XsKjqxaZ-v5N4AprggFkQXgkNoP&index=9

Definition: 1.4: Power Set

Given a set A. P(A) = {B: B C A} is the power set of A.

Definition: 1.5: Partition

PcC 77 (A) is a partition of A if

1L |Jx=4

XeP
2. f X #Y,then XNY =1

Example: A ={1,2,3,4,5,6}, P = {{1},{2,3,4},{5,6}} is a partition.

Example: A =7, P = {{3k},{3k + 1}, {3k + 2}} is a partition.

Theorem: 1.1:

There is a one-to-one correspondence between partitions of A and equivalence relations on A.

Proof. 1. Suppose P is a partition of A. Define a relation R C A x A s.t. (a,b) € R<a,be X € P.
We need to check that R is an equivalence relation.

Reflexivity: (a,a) € R, because a € X for some X € P, since U X=Aanda€ A
XeP

Symmetry: Suppose (a,b) € R, then a,b € X € P. This is the same as b,a € X € P, thus (b,a) € R

Transitivity: Suppose (a,b) € R and (b,c) € R, thena,b€ X € Pand b,c€eY € P. Bt XNY =0
if X#Y thus X =Y. a,ce X € P,so (a,c) € R

2. Suppose R C A x A is an equivalence relation. Let P = {[a] : a € A}
Suppose a € A, (a,a) € R. a € [a] = U [a] = A C U [a] and by definition U [a] C A, thus
laleP [aleP [aleP
A= JM
[a]leP

Take a,b € A. Consider [a] N [b]. Suppose x € [a] N [b]. Then z € [a] and x € [b]. Then (a,z) € R
and (b, x) € R. By transitivity (a,b) € R, [a] = [b]

O

Definition: 1.6: Binary Operation

Given a set S, a binary operation on S ia a function % : S x S — S, write *(a,b) = a xb. The
following properties may or may not hold.

1. Associativity: a* (bxc) = (a*b) xc

2. Commutativity: a xb=0bx*a

Example: (N, +), + is associative and commutative.
Example: (Z,+), + is associative and commutative, with identity and inverse.

Example: M, (R) = {A € R"™"}, % is matrix multiplication. Then * is associative, but not commutative.
If % is the commutator |-, -], A*B = [A, B] = AB—BA, then x is neither associative nor commutative.



2 Groups

Definition: 2.1: Groups

A group is a set G together with a binary operation * s.t.
1. Closure: If a,b € G, then axb € G
2. Identity: de € G s.t. Va € G, axe=a=¢€exa
3. Inverse: 3o~ € Gst. axal=alxa=e

4. Associative: Va,b,c € G, ax (bxc) = (a*b) xc

Example: (Z,+), (Q,+), (R,+), (C,+) are groups under addition.

Example: ({£1},-), (Q%,-) where Q* = Q\ {0}, GL(n,R) = {A € R™*" : det(A) # 0} are groups are
groups under multiplication.

Definition: 2.2: Integer Modulo n Groups

Let Z,, be the set of all equivalence classes mod n. Z, = {[0], [1], ..., [n—1]}. Define [z]+[y] = [z+y].
Then (Zy,+) forms a group with identity [0].

Example: (Zg,+) is a group, but (Zg, ) where - : [z][y] — [zy] is not a group, because 2,3,4 do not have
an inverse.

Definition: 2.3: Group of Units

Given n € N, the group of units U,, = {[m], : gcd(m,n) = 1} with operation [z][y] = [zy]. U, is a
group.

Proof. 1. Closure: Suppose ged(z,n) = ged(y,n) = 1, then ged(zy,n) = 1. So [z], [y] € U,, = [zy] € Up.
2. Identity: [1] € U, since ged(1,n) = 1 for any n.
3. Inverse: If [a] € U, then gcd(a,n) = 1. Thus 3z, y € Z s.t. ar+ny = 1 and ged(z,n) = 1. [a][z] = 1.

4. Associativity: From associativity of multiplication in Z

Example: Us = {1,5}.
Example: Us = {1,2,3,4,5}

Definition: 2.4: Dihedral Groups

D,, = {rigid motions of regular n-gons}

n—1

_ . 2m .
={e,r,...,r" s, 81, ., 8" 1}, where r = rotation by—, s = reflection through a vertex
n

2

=(r,s:r"=s"=e,rs= sr”’l) in generator representation

Example: n = 3, Ds is the rigid motion on equilateral triangles. r =rotation counter clockwise by 2%

r2 =rotation by %T. r3 = e, s =reflection through a vertex



For an n-gon, we can rotate by 22—’“ for 0 < k < n —1, with a total of n rotations, and n total reflections
through n vertices.
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Example: n =6, rsr*sr Spdgr3

risr 9 op3 3 o3 3

= sr = srlsr® = sr°sr® = e, since sr° is a reflection.

Theorem: 2.1:

rks=sr"Fforalll<k<n-—1.

Proof. Base case: rs = sr™~! by definition.
Induction Hypothesis: Suppose r¥s = sr"=*

. Base case _1IH _ _ _ _
Induction Step: rftls = phpg "= phgpn—1 = gpn—kpn—1 _ g2n—(k+1) — gpn—(k+1) O

Definition: 2.5: Permutation Group

Given a set X, define Sx = {f : X — X : f a bijection}. Sx forms a group with operation given by
composition of functions. Sx is called the permutation group of X.
If X ={1,2,...,n}, we write Sx = S,,.

Proof. 1. Closure: Vf,g € Sx, fog: X — X is a bijection, fog € Sx
2. Associativity: Vf,g,h € Sx, fo(goh)(z) = f(g(h(z))) = fo(goh)(x)
3. Identity: id : X — X, id(z) = «. Then ido f = f for f € Sx
4. Inverse: Given a function f: X — X, f is a bijection < f has an inverse. Thus Vf € Sy, f~! € Sx
O

Example: n = 3, S3 has 6 elements, and in cycle notation, we write S5 = {1, (12), (13), (23), (123), (132)},
where (123)(2) = 3, (123)(3) = 1, (132)(3) = 2.

Example: Composing cycles

1. (1352)(243) = (13)(245). 1 is sent to 1 by (243), then to 3 by (1352). We then look at 3, 3 is sent to
2 by (243), then sent to 1 by (1352)

2. (2974)(164) = (162974)
(1325)~1 = (1523) (just write in reverse order)

Theorem: 2.2: Basic Properties of Groups

Given a group G,
1. The identity is unique
2. Inverses are unique
3. Va,b € G, (ab)~! =b"la!
4. If ab = ac, then b = c¢. Similarly, if ba = ca, then b = ¢

. L. eg is identity e1 is identity
Proof. 1. Suppose eq, ea € G are both identities, e; = e1e9 = €9

2. Suppose a € G with inverses b and c. i.e. ab = e = ba, ac = e = ba.

Then b = be “="“ b(ac) assoclativity (ba)c M= ee=c



3. (ab)(b~ta™t) = a(bb~ )a! = aa"! = e and (ab)(ab)~! = e. Thus (ab)~! = b~1a~!, since inverses are

unique.

4. ab = ac, then a=1(ab) = a~'(ac). By associativity, b = c.

Definition: 2.6: Abelian Group

A group G is abelian, if it is commutative. i.e. Va,b € G, ab = ba.

Definition: 2.7: Order of a Group

G has order n if |G| = n. i.e. G has n elements. n can be infinite.

Definition: 2.8: Order of an Element

g € G has order m if m is the smallest natural number s.t. ¢ = e. Write |g| = ord(g) = n.

2.1 Subgroups

Definition: 2.9: Subgroups

Given a group G, a subset H C G is a subgroup if H is a group. Write H < G.

Example: Suppose H < Z under addition, H # {0}.

Let n € H be the smallest positive number, m € H be any other element. We can write m = ng + r,
0<r<n.r=m-n—---—né€ H, thusr =0.

i.e. any element m € H is a multiple of n € H, the smallest positive element.

Thus we can write H = nZ = {nk : kZ}. i.e. The subgroups of Z must be of the form nZ < Z.

Example: G any group, {e} < G, G < G are the trivial subgroups.

Example: C* = {a + bi : a,b € R not both zero}, Q% < R* < C*. S' < CX, where S1 = {2 € C: |z| =
1}

Example: SL(n,R) < GL(n,R), where SL(n,R) = {A € R"*" det A =1}

Theorem: 2.3: Subgroup Test

Suppose G is a group. H C G non-empty. Then H < G & Vo, y € H, xy ' € H

Proof. (=) Suppose H < (. Let x,y € H. Then y~! € H, since H is a group. By closure property,
-1
zy - € H.

(«=) Suppose Vr,y € H, xy~! € H.
1. Identity: Set y = x, then zy~' = 22~ ! =, since z € G, G is a group. Thus e € H.
2. Inverse: Suppose a € H. Let x =e,y=a€ H. 2y ' =ea ' =a"' € H.
3. Closure: Suppose a,b€ H,thenb ' c H. Let x =a,y=b"1. zy ' =a(b") )" =abc H

Thus H < G. O



Definition: 2.10: Centralizer

Let H < G. The centralizer of H is
C(H)={9€G:gh=hg,Vhe H}

C(H) < G

Proof. Suppose z,y € C(H), we want to show xy~! € C(H).

Notice that gh = hg for all h € H. Left and right multiply by ¢~', we get g 'ghg™" = g 'hgg~'. Thus
hg=t =g 'h.

ativi —1_,-1 -
Let h € H, (my‘l)h associtlwty ZC(y_lh) hg =9 h I‘hy_l gh;hg h(CEy_l)

Thus 2yt € C(H), C(H) <G O

Definition: 2.11: Conjugate Subgroup

Let H < G. The conjugate subgroup is g 'Hg = {g"'hg: h € H} < G.

Proof. Suppose € g 'Hg and y € g~'Hg. Then x = g thg, y = g_lizg for h, heH.
Then y~! = giliflg. ry ! = gilhggfliflg = gilhiflg cg 'Hg. O

Definition: 2.12: Center

Given a group G, the center of G is Z(G) = {g € G : gx = zg,Yz € G}. Z(G) < G.
ie. g€ Z(G) & gr=xg,Vz € G < 2gz ! =g, Vz € G

Proof. Let z,y € Z(G). Then grg~ ! =z, Vz € G, and gyg~ ' =y,Vy € G

Then zy ' = gzg~ ' (gyg™') ™' = gzg gyt~ = g(zy~)g~", Thus zy~! € Z(G).
By Theorem 2.3} Z(G) < G. O

Example: Find the center of Dy = (r,s: 7% = 52 = e, rs = s13)

3 1

Proof. If x € Z(Dy), then rx = zr and sz = xs, thus z = r°zr and z = s~ 'xs = sxs

Suppose z is a rotation, z = r*, 0 < k < 3.
Then r3ar = r3rkr = k4 = rFpt = 1% = 2 so0 any rotation commutes with z.
By Theorem |2.1 .
sxs = srks 0 2 557“4_1‘C =4k = g = k. Then r?¥ = ¢, 2k =0 mod 4, k is even.

Thus = = r° or 2.

Suppose z is a reflection, z = sr¥, 0 < k < 3.

L By The;rem 21| k42

Then r3zr = r3srFr +2 2

srrfr = srht2 = ¢ = 2. Then 712 = r, r? = e. Impossible.

In summary: if z is a reflection, it cannot be in the center. Only rotations in Z(D,) are e and r2.

Thus Z(Dy) = {e,r?} = (r?). O



2.2 Types of Groups
2.2.1 Cyclic Groups

Definition: 2.13: Cyclic Subgroups

Given any group G and element a € G, the cyclic subgroup of G generated by a is (a) = {a" : n € Z}.

Proof. Suppose z,y € (a). Then x = a™, y = a"™ for m,n € Z
Then zy~! = a™(a")"! = a™a™" = a™ " € {(a), since m —n € Z.

Thus (a) < G by Theorem O

Theorem: 2.4:

(a) is the smallest subgroup of G containing a.

Proof. We want to show that for any H < G with a € H, (a) C H.
Suppose H < G with a € H, then o' € H, Vn € Z, because subgroups are closed under the operation.

Thus (@) C H and (a) < H.

O

Example: (Z,+), (5) ={dn:ne€Z} =5Z<Z
Example: Zs, (4) = {0,4,8} < Zj2, (5) ={0,5,10,3,8,1,6,11,4,9,2,7} = Z19

Example: Us = {1,3,5,7}, (3) = {1,3}, (5) = {1,5}, (7) = {1,7}

Figure 1: Lattice Diagram for Ug
U,
0 6 o
~_  _—
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Example: Dy = {e,r,r% 13 s, 57,512 sr3}, (r) = {e,r,r%, 73}, (r?) = {e,r?}, (s) = {e,s}, (s,7) =

{e, sr}

Example: S5 = all bijections of {1,2,3,4,5}. ((123)) = {1, (123),(132)}

Definition: 2.14: Cyclic Groups

A group G is a cyclic group if G = (g) = {¢" : n € Z} for some g € G.

Theorem: 2.5:

Every cyclic group is abelian

Proof. Suppose G = (g). Take x,y € G.x = ¢",y = g" for m,n € Z.
Then, zy = g™g" = g™ = g"¢g™ = yx. Thus the cyclic group is abelian.

O



Example: Cyclic groups: Z = (1) ={n-1:n € Z}. Z, = (1).

Us ={1,5} = (5). Ug ={1,2,4,5,7,8} = (2)

All non-abelian groups are not cyclic.

Zs x Zs = {(0,0),(1,0),(0,1),(1,1)} is abelian, but not cyclic. ((1,0)) = {(1,0),(0,0)}, ((0,1)) =
{(07 1)7 (07 O)}7 <(17 1)> = {(17 1)7 (07 0)}

Theorem: 2.6:

Every subgroup of a cyclic group is cyclic.

Proof. Suppose G = (g), H < G = (g).

Let S={aeN:g*e€ H} C N, so it has a minimal element m € S, ¢" € H.

Take ¢g" € H. Perform division algorithm with m andn. n=mq+r,0<r <m — 1.

g" = g™t = (¢g™)4g". Then g" = ¢"(¢g™) 9 € H. This means that 7 = 0. Otherwise, m is not the
minimal.

Thus, g" = (¢9™)%" = (¢™)? € (g™).

Then H C (¢g™).

Since g™ € H, (¢™) < H by Theorem [2.4) Thus H = (g") O

Suppose G = {g) with |G| = n or equivalently |g| = n. Then ¢* = e < n|k

Proof. (<) Suppose n|k, then k =nd for d € N. gF = g™ = (¢")¢ =e? =¢

(=) Suppose g* = e. Perform division with n and k. k=ng+r, 0 <r <n —1.
Then e = gF = g™t = (¢")1g" = elg” = g". Thus r = 0, k = nq, nlk. O

Theorem: 2.7: Element Order in Cyclic Group

Let G = (g) with |G| = |g| = n. If z = ¢g¥, then |z| = IR

Proof. Let m = |z|. By Definition ™ = (¢*)™ = e. Thus ¢*" = e. By Lemma n|lkm, or
equivalently k

n _ m
ged(n,k) = ged(n,k)”

But gcd?n,k) and gcdé“n’k) are relevantly prime. Thus ﬁw\m
n n k
Notice xecdnkF) = (gk)gcd<n B = (g")ednR) = e.
By Lemma 2.1} m)| gcd(n -
Thus m = [

gcd(n,k)
Corollary 1. If G = (g) with |G| = n|g|, then G = (¢") < ged(m,n) = 1.

Corollary 2. Z, = (m) < gcd(m,n) = 1.

Example: Zg = (1) = =
For p prime, Z, = (m), Vm € [1,p — 1].



2.2.2 Alternating Groups

Definition: 2.15: k-cycle and Transposition

A k-cycle is a permutation (ajas...ax), a; € {1,...,n}. A 2-cycle is known as a transposition.

Theorem: 2.8:

Any k-cycle can be written as a product of transpositions.

O

Proof. (ajag...ax—1ar) = (a1a2)(aza3)...(ax—1a1).

Remark 1. The composition is not unique. e.g. (123) = (12)(13) = (12)(23)(23)(13)

If m,...,7, € S, are transpositions with 7 --- 7, = 1, then r is even.

Proof. Note r = 1 is impossible. So we assume r > 2.

Induction Hypothesis: Assume that for & < r if 7, ..., 7 € S,, are transpositions with 71 --- 7, = 1, then
k is even.

(ab)(ab) = (1)
bc)(ab) = b
Induction Step: We can write the final two transpositions 7,_17. = (be)(ab) = (ac)(be)
(cd)(ab) = (ab)(cd)
(ac)(ab) = (ab)(bc)
Using this we can move the last appearance of a to the left. Suppose a appears in 7., we can move it left
until
1. The resulting final appearance of a is (ab’) and it encounters its inverse. 7, 7, = (1). Then

Ty Tp=T]Th_y = (1). 7 — 2 is even by IH, thus r is even.

2. The first occurrence of a moves all the way to the left, (1) =7 -7, = (ab)'75--- 7). Then 75--- 7]
fixes a, and (1) =71 -7 = (ab)'75 - - - 7/ sends a to b, contradiction that (1) is identity.

Thus we only have the first case, and » must be even. O

Theorem: 2.9:

If 74 -7 and 7] - - - 7, are transpositions s.t. 71 -+« 7y, = 71 -+ - 75, then m =n mod 2.

Proof. Note V7 = (ab), 72 =1, thus 7! = 7.
Then right multiply both sides of the given equation by (7] ---7.)71, we get 71 - 7 (7h) "L 7 = (1).
Thus (m+n) =0 mod 2, i.e. m =n mod 2. O

Definition: 2.16: Even/0Odd Cycles

o € Sy, is said to be even/odd if it can be written as a product of an even/odd number of transposi-
tions. (aj...a) is even if k is odd, odd if k is even, because (aj...ax) = (aiag) - - - (ax_1ax) contains
k — 1 transpositions.




Definition: 2.17: Alternating Group

Define the alternating group A, = {0 € S,, : 0 is even}. A, < S,

Proof. Suppose p,0 € Ay,. Then u =717, 0 =74 74, for k,m € N. Then o=t =7 ---7].

po~t = 1 mop7h -+ -7 has a total of 2(k + m) transpositions. Thus puo~! € A,. By Theorem
Ay, <5, O

Theorem: 2.10:

Proof. Sp \ Ap, = {odd permutations}. Then S, is the disjoint union of A,, and S, \ 4.
Consider ¢ : A,, = S, \ 4y, s.t. ¢(0) = (12)0. We want to show that ¢ is a bijection.
1. Injective: ¢(o1) = ¢(02), (12)0 = (12)0, then o1 = 09

2. Surjective: Let p € S, \ Ay, Then =71+ 19p1 = (12)(12)71 - - - Tog—1
Note that (12)7 -+ - 951 € A,, as a even permutation, ¢((12)71 -+ Top_1) = T1 - Tog—1 = M-

Thus ¢ is bijective. |An| = [Sn \ An|. n! = [Su| = [An| + S5 \ An| = 2|A,|. Then [4,| =2 O

Example: Show that Ajg has an element of order 15.

Proof. Let o = (123)(45678) € A1p. (123) has order 3, (45678) has order 5. Then |o| = lem(3,5) = 15. O

2.2.3 Quaternion Group

Definition: 2.18: Quaternion Group

The Quaternion Group is Qg = {£1, i, +5,+j} with the following operations:
e id=1

[ J

e 1=k, j1=—k

o jk=1i,kj=—i

ki=j,ik=—j

Note: ¢ — j — k — ¢ gives the positive orientation.

Cyclic subgroups of Qg are (—1) = {1,—1}, (i) = (—=i) = {1,4,—1,—i}, (j) = (—j) = {1,7,—1,—35},
(k) = (—k) ={1,k,—1,—k}.

Figure 2: Lattice Diagram for Qg
Qs
/ : \

(@) - % P (k)
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2.3 Cosets and Lagrange’s Theorem

Definition: 2.19: Cosets

Suppose G is a group and H < G. Then the left coset of H in G with representative g € G is
gH = {gh : h € H}. The right coset of H in G with representative g € G is Hg = {hg: h € H}.
Note: Cosets are not necessarily subgroups.

Example: 47 < Z

The coset with 0is 0+ 4Z = {0+ 4n : n € Z} = 4Z.

The coset with 1is 1 +4Z={1+4n:neZ}={...,—3,1,5,9...}.
The coset with 2is 24+4Z ={2+4n:n e Z} ={...,—2,2,6,10...}.
The coset with 3is 3+4Z={3+4n:neZ}={...,—1,3,7,11...}.
7 =AZU(1+4Z) U (2 + 4Z) U (3 + 4Z).

Example: (2) ={0,2,4,6} < Zg

0+ (2) ={0,2,4,6} =2+ (2) =4+ (2) = 6
14+(2) ={1,3,5,7}=3+(2)=5+(2) =7
Zg = (2) U (1 +(2)).

Example: (i) = {1,i,—1,—i} < Qg = {&1, +i, £j, +k}
i(i) = {i, =1, —i,1} = (i), j (1) = {j, =k, —J, k}
Qs = (1) U (4(2)).

Example: (5) = {1,5} < Uz ={1,5,7,11}

7(5) = {7,11}
Uiz = (5) U (7(5)).

Example: H = {e,r2,s,s72} < Dy = {e,r,r? 13, sr,sr2, sr3}
eH =r*H = sH = (sr®)H = H, vrH = {r,r3,rs,rsr?} = {r,r3,sr3, sr} (By Theorem [2.1)
Dy = HU (rH).

Example: ((12)) = {(1), (12)} < S5 = {(1), (12), (13), (23), (123), (132)}
(123)((12)) = {(123), (13)}, (132)((12)) = {(132), (23)}
S5 = ((12)) U ((123)((12))) U ((182)((12)})

Lemma: 2.3: Coset Partition

Distinct left cosets of H in G partition G.

Proof. Suppose x € g1tH NgoH. Then x = g1h = goh/ for h,h' € H.

Then g1 = goh'h™! € goH. Thus g1h” = go(Wh™*h") € goH, so g1H C goH.

Similarly, we get goH C g1H. Thus g¢1H = goH. So different cosets are disjoint. i.e. g1H = goH or
g HNgH= 0.

Suppose g € G, then g = ge € gH. Thus any element g € G must live in some coset. i.e. Distinct left
cosets of H in G partition G. O

|H| = |gH]| for any g € G.
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Proof. Consider ¢ : H — gH s.t. ¢(h) = gh

Injective: suppose ¢(h) = ¢(h'), then gh = gh’, meaning that h = h'.

Surjective: let x € gH. By Deﬁnitionm x =ghfor he H. ¢(h) = gh = x.

Thus ¢ is bijective, |H| = |gH]|. O

Theorem: 2.11: Lagrange’s Theorem

Let G be a finite group with H < G. Then |G| = |H|[G : H], where [G : H| is the number of cosets
of H in G. Thus |H|||G|. |G : H] is also called the index of H in G.

Proof. Suppose |G| =n and g1 H, ..., g H is a complete list of left cosets of H in G.
By Lemma G=gHUgHU---UgH with g;H Ng;H = () for i # j.

% k
Then |G| = 3 |g:H| ™ "2 BIS™ 15| = k|H|. k= [G: H] € Z. Thus |G| = |H|[G : H] and |H|||G]. O
i=1 i=1
Corollary 3. If G is a finite group, Then
1. Vg€ H, |g]||G]|
2. If |G| = p a prime, then the only subgroups are G and {e}
3. If |G| =p, G is cyclic.

Proof. 1. Since (g) C G by Theorem [2.4] and |g| = |(g)| which divides |G| by Theorem [2.11]
2. A prime number can only be divided by 1 and itself
3. Choose g # e € G, {e} # (g9) < G, then (g) = G by previous.
O

Lemma: 2.5: Coset Equality

Let GG be a group, H < G and g1, g2 € G. Then the following are equivalent:
g1 H =g H

Hgl_1 = ng_l

g1H C goH

91 € g2 H

9i'g2 € H

. J

SRR N -

Proof. (1 = 2) Suppose g1H = goH.

Let z € Hgl_l, then x = hgl_1 for some h € H.

t P =gh™' € g1H = goH, thus 71 = goh for some h € H, then z = (z1)~! = iflggl € Hgy'.
Thus Hgfl C Hg;l.

Similarly, we can show that Hg;l C Hgl_l. Thus Hgl_1 = Hg2_1.

(2 = 3) Suppose Hg;! = Hgy '

Let z € g1 H, then x = ¢g1h for some h € H.

7l = fflgl_1 € Hgl_1 = Hg2_1. Thus v~ = ﬁg;l for some h € H. Then z = (x~H™1 = ggifl € goH.
Thus g1 H C goH.

12



(3 = 4) Suppose g1H C goH.
Then Vo € g1H, x € goH.
g1 =g1e € g1H so g1 € goH.

(4 = 5) Suppose g1 € g2 H.
Then g1 = goh for some h € H, then 92_191 = h. Thus gl_lgg =hleH.

(5 = 1) Suppose g; ‘g2 € H.
Then gflgg = h for some h € H. go = g1h € g1 H. By Lemma , g1H = goH. O

2.4 Group Isomorphism

Definition: 2.20: Isomorphism

Two groups (G, -) and (H, o) are isomorphic if there is a bijection ¢ : G — H s.t. ¢(zy) = ¢(x)od(y),
for all z,y € G. ¢ is called an isomorphism. Write G = H.

Example: Show that (Za,+) = {{£1},-}.

Proof. Let ¢ : Zo — {1} s.t. ¢(0) =1, ¢(1) = —1.

$(0+0) = ¢(0) =1 =1-1= ¢(0)¢(0)

H(0+1) = 6(1) = —1 = 1(~1) = H(0)6(1)

(1 +0) is by commutativity of Abelian groups. ¢(1+1) = ¢(0) =1 = (—-1)(—1) = ¢(1)é(1)

Thus Zg = {£1} O

Example: Show that (R, +) = (R*, )

Proof. Let ¢ : R — R s.t. ¢(x) =€

Injective: ¢(z) = p(y) = e* =€V =z =1y

Surjective: Let y € RT, Iny € R. Set = Iny, ¢(z) = ¥ = y.

P(z +y) =" = e’ = ¢(2)o(y) O

Example: Show that Us = Uqg.

Proof. Us ={1,2,3,4} = (3), U1 = {1,3,7,9} = (7) (Any generator works.)
Let ¢ : Us — Upg s.t. ¢(3F) =7F ie. ¢(1) =1, ¢(3) =7, p(4) =9, $(2) = 3
B3) = 63 = THH = 77 = p(3)6(3) 0

Theorem: 2.12: Properties of Isomorphism

Let ¢ : G — H be an isomorphism. Then

¢~': H — G is an isomorphism

Gl = |H]

If G is abelian, then so is H

If G is cyclic, then so is H

If G has a subgroup of order n, then so does H

s =

Proof. 1. ¢ is bijective, so ¢! exists.
Suppose u,v € H, Jz,y € G s.t. ¢(x)
¢~ (uv) = ¢~ (d(x)d(y)) = ¢~ (d(ay)



2. By definition of bijections

3. Suppose G is abelian.
Let u,v € H, u= ¢(x), v =9¢(y), z,y € G

w = ¢(2)d(y) = dlay) L g(yz) = d(y)o(x) = vu
Thus H is abelian.

4. Suppose G is cyclic. G = (g).
Let u € H. u = ¢(x) for some z € G = (g). Then x = ¢g" for some n € Z.

Then u = ¢(g") = (¢(9))" € (¢(9))
Thus H < (¢(g)) < H, H = (¢(g)) is cyclic.

5. Suppose K < G with |K|=n
Consider ¢(K) C H with |¢(K)| = n.
Let z,y € ¢(K). Then = = ¢(k1), y = d(k2) for some ki, ko € K. kik;' € K, because K is a
subgroup
zy = ¢(k1)o(k

2) 7 = <Z>(/€1k2 ) € ¢(K)
By Theorem 2.3 ¢(K) < H

2.4.1 Classification of Cyclic Groups

Theorem: 2.13: Infinite Cyclic Groups

If G = (g) with |G| = oo, then G = Z.

Proof. Consider ¢ : Z — G s.t. ¢p(n) =

p(m+n) = g™ = gmg" = ¢(m)¢p(n)

Injective: suppose ¢p(m) = ¢(n) with m > n. Then ¢ = ¢" = ¢
If m = n, then done, ¢ is injective.

If m > n, then let k =m —n > 0. (g) = {e,g,...,g* '} is finite, because g* = e.

mTn = e.

Surjective: suppose x € G = (g), © = ¢" for some n € Z, then ¢(n) = x. O

Theorem: 2.14: Finite Cyclic Groups

Suppose G = (g) with |G| =n. Then G = Z,,.

Proof. Consider ¢ : Z,, - G with ¢(m) = g™ for0 <m <n—1

Suppose m = m’ mod n, then m —m’ = kn for some integer k. ¢(m —m') = p(kn) = g™ ™ = (¢")F =e.
Thus g™ = g™, ¢(m) = ¢(m’). So the map ¢ is well-defined.

Suppose I,m € Z,. Then ¢(1 +m) = g™ = g'g™ = ¢(1)d(m)

Surjective: Suppose z € G = (g). x = ¢ for 0 < m <n — 1, then ¢(m) = ¢g" = x.

Injective: Suppose I,m € Zy,. (1) = ¢(m) means | =m, g~ =e.

If 1 #m, then l —m e {1,...,n — 1}, |g| = [{(g)| < n, which is a contradiction. Thus [ =m

Thus ¢ is bijective and G = Z,, O

Remark 2. In summary:
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1. All infinite cyclic groups are isomorphic to Z

2. All finite cyclic groups are isomorphic to Z,, for some n

2.4.2 Cayley’s Theorem

Theorem: 2.15: Cayley’s Theorem

Every group is isomorphic to a permutation group.

Proof. For g € G, define \y : G — G s.t. N\g(x) = gz

We firstly show that ), is a bijection, i.e. Ag € S,

Injective: A\g(z) = A\g(y) => g =gy ==y

Surjective: Suppose y € G, g7y € G, N\j(g7y) =gy =y
Thus ), is a bijection and a permutation on G.

Let H = {)\;: g € G}. We show that H is a group.

1. Associativity: is from associativity of function composition.

2. Closure: because Vg,h € G, gh € G, then for all A\g, \, € H, (Ag o \p)(z) = ghx = Agp(x), and thus
)\g oA, = )\gh €H

3. Identity: (AgoXe)(z) = gex = gx = A\g(x), thus Ago A\e = Ay. A¢ is the identity
4. Inverses: (AgoAj-1)(x) = g9 'o =z =ex = Ae(x). Thus Ago A1 = Ae. A1 = (Ag) 1
Now we show that G = H

Consider ¢ : G — H, ¢(g9) = A\g

¢(gh) = Agn. Thus ¢(gh)(x) = Agn(x) = ghx = (Ag 0 An)(x) = ¢(9)(x)d(h)(2). So ¢(gh) = ¢(g)¢(h).
Injective: Suppose ¢(g) = ¢(h). i.e. Ay = Ap, then A\g(z) = A\y(2), Vo = go = ha,Vo = g=h
Surjective: from definition of ¢.

Thus G = H O
Corollary 4. If |G| = n, then there is a subgroup H C S, s.t. G = H.
Example: Find a subgroup H < S5 s.t. Zs = H.

Proof. Consider Sz, = all permutation {0,1,2} — {0,1,2}. Sz, = Ss.

Define ¢ : Zs — H = {\; : g € Z3}.

o @ Zg — Z3z s.t. Ao(x) = 0+ . This is the identity (0).

A1 :Zs — Zs s.t. Ai(x) =1+ 2. This is the 3-cycle (012).

Ao 1 Zs — Z3 s.t. Aa(x) = 2+ x. This is the 3-cycle (021).

Thus H = {(0), (012), (021)} < S3 and Z3 = H. O

2.5 Group Products and Quotients

Definition: 2.21: External Direct Product

Given groups G1,Gs. Their external direct product is G1 X G5. The respective group operations are
componentwise.

Example: Zs x Z = {m € Zs,n € Z}.
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Example: R* x Z3s = {(x,m) : z € R*,m € Z3} with (z,n) * (y,m) = (zy,n + m)

Theorem: 2.16: Property of External Direct Product

Let (z,y) € G1 x Gy with |z| =r, |y| = s, then |(z,y)| = lem(r, s).

Proof. Set | =lem(r, s), then | = ra = sb for some a,b € N.
(z,)! = (2',9") = ("), (1°)°) = (e, €5) = (ex, e2). Thus |(z,y)||!

Set I = |(x,y)|, then (x,y) = (e1,e2) = (2! v yl/) = (e1,€e2), O 2 = ey, Y =es. r|l" and s|l’.
Thus | = lem(r, $)|l' = |(z,y)|
Then |(z,y)| = lem(r, s) O

Theorem: 2.17:

Lo X Ly = Loy = ged(m,n) =1

Proof. (=) Suppose Zy, X Zy = Zpp. Assume d = ged(m,n) > 1

Take (a,b) € Zpy X Zy. Then if we sum (a,b) " times, we have (a,b) + --- + (a,b) = ("f*a, "b) =
(m(%)a.n(%b)) = (0.0)

But this shows that [(a,b)||"* and thus |(a,b)| < mn for any (a,b) € Zy, X Zy,.

Thus Z,, X Zy, is not cyclic. Contradiction.

Therefore ged(m,n) = 1.

(<) Suppose ged(m,n) =1, |1| = m in Zy, |1| = n in Zy,.
Then |(1,1)| = lem(m,n) = mn by Theorem [2.16]
Thus Z, X Zn = ((1,1)) has order mn. Z,, X Zyp, = Zmyn by Theorem m O

Definition: 2.22: Internal Direct Product

Suppose G is a group with H, K < G s.t.
1. G=HK ={hk:he H k€ K}
2. HNK = {e}
3. hk=kh,Vhe H ke K
Then G is the internal direct product of H and K.

Theorem: 2.18: Isomorphism of Direct Products

If G is the internal direct product of H and K, then G = H x K.

Proof. We want to find a bijective map ¢ : G — H x K, that satisfy the isomorphism property (Defini-
tion [2.20)).

Let ¢ : G — H x K. Take g € G, write g = hk, ¢(g) = (h, k).

We firstly show that ¢ is well defined.

Suppose g = hk = W'k’ then »'~'h = K'k='. h’~'h € H and k'k~! € K. Then both sides in H N K = {e}.
h='h=e= h="H. Similarly, k = k.

byproperty3

Let g,9' € G, g = hk, ¢’ = W'k'. ¢(g9') = d(hkh'k')
?(9)9(g).

O(hh'KE') = (Wi, kK') = (h, k)(W,K') =
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Injective: ¢(g) = ¢(¢'), g = hk, ¢ = W'k, then (h,k) = (W/,K'), Thus M = h, k' =k, g=¢ .
Surjective: Take (h,k) € H x K. Let hk € G, ¢(hk) = (h, k),

O

Example: Find groups that are isomorphic to Uyjo = {1,5,7,11}.
Note (5) = {1,5} < Ujo, and (7) = {1,7} < Uj2, 5-7=11 mod 12.

By Theorem [2.18]
Then Ui = B)(7) = (5) x (7) = Zy x Zs.

Example: Find groups that are isomorphic to Dg = (r, s : r6 = 42 = e,rs = 3745> (r3s _ sr3)
H = <r3> >~ 79, K = <57T3> - {6’r2’r475’8r2’87,4} ~ Ds.

7 3 4 By Theorem [2:1§]
Note that r =r’ =r° . r* Dg = HK, Thus Dg & Hx K =279 x 73

Definition: 2.23: Normal Subgroup

Given a group G, we say N < G is normal if gN = Ng,V¥g € G. Equivalently, gNg~' = N,Vg €
Gegng e NVge G,neN.
Write N < G.

| r
\

Theorem: 2.19:

Every subgroup of an abelian group is normal.

Proof. Let G be an abelian group, H < G.
Take h € H, g € G. ghg™! abelian g9 'h=he H. Thus H < G.

O

Example: Find the normal subgroups of D3 = (r,s) = {e,r, 72, s, sr, sr?}

We only need to consider the generator subgroups of (r) and (s).

For (r) = {e,r,r%}. s(r) = {s, sr,sr%}, {r)s = {s,7s = sr%,r%s = sr}, thus (r) < Ds

For (s) = {e,s}, r(s) = {r,rs} = {r,sr?}, (s)r = {r,sr} # r(s). Thus (s) is not a normal subgroup of
3.

)

Definition: 2.24: Left Cosets

For any subgroup H < G, denote the set of left cosets G/H = {gH : g € G}. By Theorem [2.11]

G/H| =[G : H] = {5].

Theorem: 2.20: Quotient Groups

If N <G, then G/N forms a group known as the quotient group with (zN)(yN) = (xy)N.

Proof. Suppose N 9 G. Let x1,z2,y1,y2 € G s.t. ©1N = 29N (.%'1.1‘2_1 € N) and y1 N = yo N (y1y2_1 €N).
Then

(@1N)(y1N) = (z1y1)N

= (z191y; “y2) N (since y; 'ya € N)

= (z1y2)N = N(x1y2) (By Definition
= N (2w '21y2) (since zq2;' € N)
= N(z2y2) = (w2y2) N
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Thus (z1N)(y1N) = (x2N)(y2n). The operation is well defined.
Check that G/N is indeed a group:
. Identity: eN = N, (zN)(eN) = (ze)N = N

—_

2. Inverse: (xN)~! = 27'N (Only when N is normal)
3. Associative: ((zN)(yN))zN = zyzN = (zN)((yN)(2N)) (Only when N is normal)
4. Closed since G is closed.

Thus G/N is a group. O]

Example: Find the quotient group of D3 = {e,r,72, s, sr, sr2} by (r) = {e,r,r?}.
Note that s(r) = (r)s, (r) < Ds

By Theorem [2.11} |D3/(r)| = [Ds : (r)] ||<Dr§| =2.

D3/ (r) = {{r),s(r)} = Zy. ({r) =0, s(r) = 1)

Example: Find the quotient groups of Qs = {£1, +i, +j, +k} = (i, j).

Firstly, we consider (i) = {1,4,—1,—i} Note that j(i) = (i)j = {4, —k, —j, k}. Thus (i) < Qs

Qs/ (i) = {(i),5{i)} = Zy. The quotient groups by (j) and (k) are similar.

Then, we consider (—1) = {1,—1} < Qs

Qs/(—1) = {(=1),i(—=1),j(—1),k(—1)} = Zy X Za, because each of the non-identity element has order 2.
(1) — (0,0), (1) — (1,0), 5(1) — (0,1), k(1) — (1,1).

Theorem: 2.21:

Z(G) QG. If G/Z(G) is cyclic, then G is abelian.

Proof. Firstly, we show that Z(G) < G

Let g € G, gZ(G) = {ga : x € Z(G)} B PR 0 e Z2(6)) = 2(G)g
Thus by Definition Z(G) <G.

Assume G/Z(G) = (zZ(G)). By Theorem 2.3, G = U " Z(Q).
n=0
Take a,b € G, a = 2"Z(G) = 2"y, b = 2™ Z(G) = 2™z for some m,n € Z, m,n >0, y,z € Z(G).

By Definition [2.12]
ab = z"yzrmz Y = axMyzy = VT zy = a2 zy = 2™ za™y = ba.

Thus G is abelian. O

2.6 Group Homomorphism

Definition: 2.25: Group Homomorphism

Suppose G and H are groups. A map ¢ : G — H is called a homomorphism if ¢(xy) = ¢(z)p(y) for
all z,y € G.

Example: ¢ : Z — G s.t. ¢(n) = ¢g". G any group. g € G fixed. Then ¢ is a homomorphism.
p(m+n) = gmt" =g"g" = d(m

S
S

Example: ¢ : GL2(R) — R*, ¢(A) = det A is a homomorphism. ¢(AB) = det(AB) = det Adet B =
P(A)o(B).
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Example: ¢: R — S' = {2 € C: |z| = 1}. () = ¢ is a homomorphism. ¢(z + y) = ¢! @HY) = e =
o()o(y).

Theorem: 2.22: Properties of Homomorphism

Let ¢ : G1 — G35 be a homomorphism. Then
1. ¢(e1) =e2
2. Vo € G, ¢a~) = (¢(z))"!
3. If H1 S Gl, then ¢(H1) S G2
4. If Hy < G4, then qb_l(Hg) < G;. If Hy <4 Go, then ¢_1(H2) <Gy

Proof. 1. Let x € G1, eqx = x. Since ¢ is a homomorphism, ¢(e1z) = ¢(x) = ¢(e1)p(x). Then
dler) = p(z)(¢(x)) ! = e2

2. ep =axx L ey By 1. dle1) = p(zx™) = p(x)p(x™1). Thus ¢(z~!) = (¢(x))~?

3. L?t x),y € Hjy, then By Theorem zy~t € Hy. ¢(x) € ¢(Hy), ¢(y) € ¢(Hy), (¢(y))~ = d(y~!) €
S(Hy).
Then () (6(3))~" = (ey™") € S(HL). Thus p(Hy) < Go.

o(H
4. Suppose Hy < G. Let x,y € ¢~ 1 (Ha), ( ) #(y) € Ha. Then ¢(z)(¢(y)) ™! = ¢(xy™1) € Hy
=y~ ! € ¢ (Hy). By Theorem. 2.3, o1 (H) < Gy.

Suppose Hy < Gy. Take n € ¢~ 1(Hs), qﬁ(n) € Hy, v € Gy. d(ana™t) = ¢(z)d(n)p(x)~! € Hy
because Hy < (3.
Thus znz~! € ¢~ (Hy), ¢~ (Ha) < Gi.

O

Remark 3. Hi < G1 # ¢(H1) < Ga. e.g. ¢ :Z — Dy,. ¢p(m) = s™. Z < Z, but ¢(Z) = (s) is not normal
in D,.

If ¢ : G — H is a homomorphism, then |¢(z)|||z|, Vz € G.

Proof. Suppose ¢ : G — H is a homomorphism.

Take z € Gst. |z =n < o0. 2" =eq € G, (¢(2))" = ¢p(a") = ¢(eq) = ey € H

Let m = |¢(x)|. Perform division algorithm n =mq+r, 0 <r <m. n—mq=r.

(p(x))" = ¢d(z)"[p(x)™] % = eg. Thus r =0 and m|n. O

p—
1
3
|
=
&
3
I
o
I

Ly, = (1), then [z™] = [(z™)| =

_n
ged(mn)°

Proof. Follows Theorem [2.7] O

Example: Find all homomorphism ¢ : Zoy — Z13

Proof. We find the map of the generator ¢(1).
By Lemma [2.6] |¢(1)|||1] = 24. Thus |¢(1)] € {1,2,3,4,6,8,12}
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In Zys, we want to find m s.t. [m| = ;g is in {1,2,3,4,6,8,12}.
1] = [5] = [7] = [11] = [13] = |17] = 18

|2| = 4] = |8] = |10] = |14] = |16] = 9, not possible

3] = |15| = 6, ¢(1) = 3 and #(1) = 15

6] = |12| = 3, ¢(1) = 6 and $(1) = 12

9] =2, #(1) = 9.

¢(1) = 0 mapping the identity is also a homomorphism. O

Definition: 2.26: Kernel

Given ¢G1 — G2 a homomorphism, the kernel of ¢ is Ker(¢) = {z € G1 : ¢(z) = ea} = ¢ (e2).

Example: ¢ : Z — Zs, ¢(n) = [n]. Then Ker(¢) ={n € Z: ¢(n) = [0]} = 5Z.

Example: ¢ : R — C*, ¢(z) = e*™*. Then Ker(¢) = {x € R: ™ =1} = Z.

Theorem: 2.23:

For a homomorphism ¢ : G; — G2, Ker(¢) < Gy.

Proof. Firstly, we show that Ker(¢) < G.

Let 2,y € Ker(¢), d(zy~') = d(x)d(y) ™' = eze5 ' = ea. Thus xy~! € Ker(¢). By Theorem Ker(¢) <
Gi.

Let 2 € G, n € Ker(6), dana~1) = ¢(@)p(n)o(x) ! = (z)ezd(a) ! = p(a)o(w) ! = es.
Thus znz~! € Ker(¢), Ker(¢) < Gj. O

Theorem: 2.24: Inverse Homomorphism

¥ : G — G defined by ¢(x) = ! is a homomorphism < G is abelian.

Proof. (<) Suppose G is abelian.
Let z,y € G, zy = yx
Y(xy) = (xy) L =y ta! abelian w7y~ =4p(2)(y). Thus 1 is a homomorphism.

(=) Suppose ¢ (z) = 2! is a homomorphism.
Let z,y € G. Y(zy) =(@)Y(y) = (zy) ' =2y =y ot =27y = 2y = yr. G is abelian. [
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2.7 Isomorphism Theorems for Groups

2.7.1 First Isomorphism Theorem

Theorem: 2.25: First Isomorphism Theorem

If : G — H is a homomorphism and 7 : G — G/Ker(¢), then there exists a unique isomorphism
Y G/Ker(¢) = Im(¢p) < H s.t. Y = ¢.

G Im(¢) < H
I
G /Ker(¢)

Proof. Let ¢ : G/Ker(¢) — H s.t. P(zKer(¢)) = o(z) € Im(¢) < H.

Well defined: Suppose xKer(¢) = yKer(¢), thus zy~! € Ker(¢). o(zy~!) = ¢(2)¢(y)~t = e. Thus
Y(zKer()) = ¢(z) = ¢(y) = ¢ (yKer(¢))

Homomorphism:
¥ ((zKer(¢))(yKer(¢))) ¥ (zyKer (o)) P(zy) = o(x)o(y) = P (xKer(d)v (yKer(¢))

Injective: Suppose zKer(¢) € Ker(¢), then ¢(zKer(¢)) = e = ¢(z). Thus x € Ker(¢), zKer(¢p) =
eKer(¢) = Ker(¢). Thus Ker(¢)) = {Ker(¢)}. Kernal is trivial and ¢ is injective.

Definition 2201 Definition of v

Surjective: suppose y € Im(¢), there exists x € G s.t. ¢(z) = y, then Y(xKer(d)) = ¢(z) =y
Thus ¢ : G/Ker(¢) — H is an isomorphism.
Note that 7(z) = xKer(¢). Then ¢ (xKer(¢)) = 1 (m(z)) = ¢(z). Thus Y7 = ¢.

Suppose 9 : G/Ker(¢) — H s.t. ¢y = ¢. Take vKer(¢) € G/Ker(¢). Then (xKer(¢)) = o (m(z))
¢(x) = p(r(x)) = Y (zKer(¢)). -

Definition: 2.27: Group of Automorphisms and Inner Automorphisms

Let G be a group.

The automorphism group of G is Aut(G) = {¢: G — G : ¢ is an isomorphism}.
The inner automorphism group of G is Inn(G) = {I,: G — G : I,(z) = gzg'}.
Aut(G) forms a group with function composition and Inn(G) < Aut(G).

Proof. For Aut(G), the identity is id : G — G s.t. id(g) = g.

Inverse: if ¢ : G — G is an isomorphism, then ¢! : G — G is also a well-defined isomorphism. ¢ € Aut(G)
& ¢l e Aut(G).

Associativity follows associativity of function compositions.

Closure: composition of automorphisms is still an automorphism.

Show that Inn(G) < Aut(G):
Let I, I, € Inn(G). Note Iy o I,-1(g9) = y(y 'gy)y ' =g, s0 (I,)"! = L.

Lo (Iy)"H(g) = Lo o L1 (9) = 2y~ gy)a~" = (wy_Dg(ya™") = (zy~ glay™") ™" = Loy-1(9)
Thus I, o (I,)~' = I,,-1 € Inn(G). By Theorem , Inn(G) < Aut(G). O
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Theorem: 2.26:
G/Z(G) = Inn(G)

Proof. Define ¢ : G — Inn(G) < Aut(G). ¢(g) = I, where I;(z) = grg~!.
Homomorphism: Let z € G, ¢(gh)(z) = Iyn(z) = ghx(gh)™' = g(hah™Y)g™! = I,(I}(z)) = I, o Iy (z).
Surjectivity is obvious by definition of the function.

Consider the kernel. Ker(¢) = {g € G : ¢(g9) = I, = id}. I,(x) = grg~! = x, Vo € G & gx = zg which
follows Definition 2.121

By Theorem [2.25 G/Z(G) = Inn(G). O

Example: ¢ : Z — Z,, s.t. ¢(m) =[m|={k € Z:k=m mod n}
Surjective: YO < m <n —1, ¢(m) = [m]

Homomorphism: ¢(m1 + ma) = [m1 + ma] = [m1] + [m2] = ¢(m1) + ¢(m2)
Ker(¢p) ={m € Z: [m] =[0]} =nZ

By Theorem Z/nZ = L,

Example: ¢ : Zy — Za s.t. ¢p([m]s) = [m]2
Well Defined: Suppose [m1]s = [ma]4, then [m; — ma]s = [0]4 = m1 —ma2 =0 mod 4 =0 mod 2. Then,
[m1 — malz = [0]2. ¢(ma) = [mu]2 =

Homomorphism: ¢([m]s + [m2]s) =

Surjective: ¢([0]4) = [0]z, ¢([1]a) = [1]2

Ker(¢) = {[mls : ¢(Imls) = [ml2 = [0]2} = {[0l, [2]a} = 224 = Zs.

By Theorem Z4/QZ4 = Z4/ZQ = ZQ.

[ma]a = ¢(m2).
d([m1 +mala) = [m1 + mala = [ma]2 + [ma]2 = ¢([m1]a) + ¢([mala).

Example: ¢ : Zg — Zq5.
1:[0]15
3 : [5]15,[10]15
5: [3]15, [6]15, (915, [12]15
15 : all other elements

The order of elements of Z5

If gf)([ ]6) = [ ] Then Ker( ) = ZG I’I’)’L( ) {[ ]15}. Z6/Z6 & {[0]15} S 215
If ¢([1)6) = [5]15. Then ¢([0]s) = ¢([3]6) = [0]15, ¢([L]s) = ¢([4]6) = [5]15, ¢([2]6) = ¢([5]6) = [10]15
Ker(¢) = {[0s, [3]6} = ([3)6) = Za.

I> (?) {[0]15, [5]15, [10]15} = ([5]15) = Z3

(¢
By Theoremu Zs| 7o = Zg/{[3] [5]15) = Zs.

Example: D, = ( 7,5

o(r") = np(r) = 0, ¢(s?) = ¢(e) =
1=¢(s) + ¢(r) = ¢(sr) = ¢p(sr" 1) (

Ker(¢) = (1), ¢(r*) = kp(r) = 0, (s1%) = ¢(s) + k(1) =

Example: ¢ : D, — Z, s.t. ¢(r) =1, ¢(s) =0.
¢(rs) = d(r) +d(s) =1+0=1, ¢(sr""") = ¢(s) + (n — 1)g(r) =n — 1

Note rs = s~ ! but ¢(rs) # ¢(sr"!) unless n = 2, so ¢ is not a homomorphism in general.

Y, ¢: Dy — Zyst. ¢(r) =0, ¢(s) = 1.
s)=1+1

1, and D, /(r) = Zy by Theorem m

Example: ¢ : Do, — Zsy s.t. ¢(r) =1, ¢(s) =
0 o D) e By = 0] = 0, a1 = ${r) + (5) = Brs) = Slsr1) = 6) + (2m — 1)) =
2n—1 mod 2 =1

22



Ker(¢) = {e,7%*,5r?*} for 0 < k < n — 1, Ker(¢) = (s,72) = D,,.
By Theorem D2n/<8a T2> = D2n/Dn = Z2.

23456), ¢(s) = (16)(25)(34)
= ((16)(25)(34))% = (16)*(25)*(34)* = e = ¢(e)
6)3)( 5)(4) = (26)(35)

Example ¢ : Dg — Sg s.t. o(r) = (
¢(r%) = (123456)° = (1) = ¢(e), ¢(s°) =
¢(rs) = (123456)(16)(25)(34) = (1)(2
d(sr°) = (16)(25)(34)(123456)° = (16)(25)(34)(165432) = (26)(35)

Then I'm(¢) = ((123456), (16)(25)(34))

Note that |r| = 6 = [(123456)|, ¢(r") # e for n = 1,2,3,4,5. Thus Ker(¢) = {e}.

\/.-\

Remark 4. We can similarly construct homomorphism ¢ : D, — S,

0,0 is even

1,0 is odd
It is easy to check that ¢ is homomorphism by Definition [2.16
Ker(¢) = {0 € S,, : 0 even} = A,.
By Theorem Sn/An 2 Zs.

Example: ¢ : S, — Zo, ¢(0) =

Example: ¢ : GLy(R) — R* s.t. ¢(A) = det(A).
$(AB) = det(AB) = det(A) det(B) = ¢(A)p(B).

Ker(¢) = {A € GLy(R) : ¢(A) = det(A) = 1} = SLy(R).
By Theorem GL3(R)/SLy(R) = R*.

Example: Define gla(R) = {4 € R?*?}, sl5(R) = {A € glo(R) : Tr(A4) = 0}.

Define ¢ : gla(R) — R s.t. ¢(A) = Tr(A). ¢(A+ B) = Tr(A+ B) = Tr(A) + Te(B) = ¢(A) + 6(B).

Ker(¢) = {4 € gla(R) : Tr(A) = 0} = sla(R).
By Theorem [2.25] gls(R)/slo(R) = R.

Example: ¢ : glo(R) — sla(R), ¢ [CCL Z] = [a ; I d f a}

(] of 3[4 B 5 oo
By Theorem gla(R)/R = sla(R).
Example: Homomorphisms for Z, R, C
1. ¢:7Z — RX
(a) o(1) =1, ¢(n) = 1" = 1, Ker(¢) = Z, Im(¢) = 1, Z/Z = {1} <R~
(b) ¢(1) = —1, ¢(n) = (—=1)". Ker(¢) =27, /27 = {+1} < R*
(c) (1) =a, ¢(n) =a™, a € R*\ {£1}. Ker(¢p) ={0}, Z= {£a" : n € Z}
.0 R—=RE, ¢(x) = 2% Ker(o) = {0}. Im(¢) =R, R=RE
.9 Z—C, ¢(n)=1". Im(¢) ={1,i,—1,—i}. Ker(¢) ={n€Z:i" =1} =4Z. Z/AZ = (i).

w N

2mim

4. 67— C*. ¢m)=e "
C*, where w,, = e

. Ker(¢) ={m:e » } =nZ Z/nZ = {1,wy, ... '} = (w,) 2 Z,

<

5. ¢:Z — C, ¢p(n) = (20)". Ker(¢p) ={0}. Im(¢p) ={(2))" :ne€Z} <C*. Z={(2))" : n € Z}.
6. ¢ : R — CX, ¢(x) = ¥ Im(¢) = {z € C* : |z| = 1} = SL. Ker(¢) = {x € R: 2™ =1} = Z.
R/Z = St
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Example: ¢ : Qg — Za x Zz s.t. ¢(£1) = (0,0), ¢(£i) = (1,0), ¢(£j) = (0,1), ¢(£k) = (1,1).
Ker(@) = {£1} = (~1). Qs/(—1) = Zy X Z.

Example: Ups = {1,2,4,7,8,11,13,14}. (2) = {1,2,4,8} = (7) = {1,7.4,13} = Zy, (4) = {1,4} = Z,.
Urs = (2)(11)

Define ¢ : Z x Z — Uy s.t. ¢(m,n) = 27117, Ker(¢) = 47 x 2Z. Thus (Z x Z)/(4Z x 2Z) = Ups =
Z4 X ZQ.

2.7.2 Second Isomorphism Theorem

Theorem: 2.27: Second Isomorphism Theorem

Let H < G and N < G, then
1. HN <G
2. HNN <H, N <HN
3. H(HNN)= HN/N

Proof. 1. Let z,y € HN, i.e. x = hiny, y = hong for hy,he € H, n1,no € N
Since N < G, gN = Ng Vg € G, then gn = n’g for some n,n’ € N.
_ _ — —1 Definition
Ty 1 — (hlnl)(hgng) 1= hl(n1n2 1)h21 ¢ t:O 223
Thus xy~t € HN. HN < G by Theorem

2. HN N < H can be shown in 3. We show N < HN here.
Let ne N,z =hn'forhe H,n' € N
:Fnzrfl = h(n'nn'~Hh=! = hah~?! for A = n'nn’~! € N. Thus znz~! = hih~! € N, because h € G,
he N and N <G.
3. Define ¢ : H — HN/N s.t. ¢(h) = hN.
By Definition 20
oay) = wyN PR N (V) = o(2)6(y)

Surjective: Suppose tN € HN/N, i.e. x € HN, then x = hn where h € H, n € N.

hihy i for some 7 € N.

Injective: Note N = (hn)N = hN, ¢(h) = hN = N, thus ¢ is injective.

Ker(¢) = {h € H : ¢(h) = eN = N}. Note if h € Ker(¢), then ¢(h) = hN. Thus h € N =
he HNN. i.e. Ker(¢) C HNN.

Suppose © € HN N, then x € H and z € N. Then N = N. Thus ¢(z) = N = N, z € Ker(¢).
Then HN N C Ker(¢). Thus Ker(¢) = HN N.

By Theorem [2.25, H/(HNN) = HN/N.
Since Ker(¢) = HN N, by Theorem [2.23) HNN < H. O

Example: Let G =7Z, H=mZ, N =nZ. H+ N =mZ+nZ = {mx +ny : z,y € Z} = ged(m,n)Z.
HNN={a€Z:a=mzand a =ny} =lem(m,n)Z.

Let d = ged(m,n), I = lem(m,n)

By Theorem mZJlZ = dZ/nZ.

Consider ¢ : dZ — Zy, 4, p(dz) = [x]. Ker(¢) = {dv € dZ : ¢(dr) = 0} = {dx € dZ : [v] = 0} = nZ
Then by Theorem dZ/nZL = Ly g

Thus Z,,1q = dZ/nZ = mZL[/IL = Zy )y,

lem)m,
Then % = |Zn/d‘ = |Zl/m‘ = % = ng(T;L’LJL) _ 7)ITI’LTL ICm(mu n) = ngTTZ,TL)'
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2.7.3 Third Isomorphism Theorem

Theorem: 2.28: Third Isomorphism Theorem

Let N < H < G, then (G/N)/(H/N) = G/H

Proof. Define ¢ : G/N — G/H s.t. ¢(gN) = gH.

Well defined: suppose gN = ¢’N, then g(¢')~' € N < H. Thus g(¢')"! € H. By Lemma2.5, gH = ¢'H.
Therefore, ¢(gN) = ¢(g'N).

Homomorphism: ¢((gN)(g'N)) = ¢(99'N) = g¢'H = (9H)(¢'H) = ¢(gN)p(g'N)
Surjective: Let gH € G/H. Then gN € G/N since N < H. Then ¢(gN) = gH.

Let gN € Ker(¢) = {gN € G/N : ¢(9gN) =gH = H}. Then g € H, gN € H/N. Thus Ker(¢) C H/N
Let hN € H/N. Then hN € G/N, since h € G. ¢(hN) = hH = H. Thus hN € Ker(¢). H/N C Ker(¢)
Thus H/N = Ker(¢). By Theorem [2.25 (G/N)/(H/N) = G/H. O

Example: Let G =7, H=mZ, N =mnZ, N <H 4G

By Theorem
Zm = Z/mZ=G/H = (G/N)/(H/N) = (Z/mnZ)/(mZ/mnZ) = Lyn/(m)

Consider ¢ : mZ — Zpp, ¢(mz) = [mzx]. Im(¢p) = (Im]) < Zmn. Ker(¢) = mnZ.
By Theorem mZ/mnZ = (Im]) < Zpmp.

Theorem: 2.29:

Zn/<m> = chd(m,n)

Proof. We want to show (m) = (gcd(m,n)).
Let d = ged(m,n)

(<) d|m, so m = dk for some k € N, (m) = {mx :z € Z} = {dkx : v € Z} < (d)

(>) By extended Euclidean algorithm, write d = ma + nb for a,b € Z. Inside Z,, d = ma for a € Z,
(d) = (m). O
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3 Rings

Definition: 3.1: Ring

A set R together with operations (+, ) is called a ring if
1. (R,+) is an abelian group with identity 0.
2. (ab)c = a(bc), Va,b,c € R
3. a(b+c¢) =ab+ac
4. (a+b)c=ac+be

Remark 5. In the context of rings, identity, inverses, and commutativity specifically refer to the ones for
multiplication. We don’t necessarily need identity, inverses or commutativity for a ring.

Example: Z: identiy=1, commutative, £1 are the only integers with inverses.
Example: 27Z: no identiy, commutative, no inverses.

Example: Z,: identity=1, commutative, m~! € Z,, exists < gcd(m,n) = 1.
Example: R™ ": identity=1I,, not commutative, A~! exists < det(A4) # 0.

Example: Z[z] = {ap + a1z + - - an2™ : n > 0,a; € Z}, identity=1, commutative, only +1 have in-
verses.

Definition: 3.2: Zero Divisors

If a,b #0 € R and ab = 0, then a and b are the zero divisors of R.

Definition: 3.3: Unit

a € Ris a unit if 3b € R s.t. ab = 1g.

Example: Zj5. Units: 1,5,7,11 (they are not zero divisors). Zero divisors: 2,3,4,6,8,9,10

Theorem: 3.1: Units and Zero Divisors of Z,

m € Zy is a unit < ged(m,n) =1
m € Zy, is a zero divisor < ged(m,n) # 1

Proof. Units:

(=) Suppose m € Zj, is a unit, then 3z € Z,, s.t. mz =1< max =1 mod n & n|(mx —1),so Jy € Z s.t.
mx —ny = 1. Thus ged(m, n)|1, ged(m,n) = 1.

(<) Suppose ged(m,n) = 1, then Jz,y € Z, mx +ny = 1, mz — 1 = —ny, so njmx — 1, mz =1 mod n,
then mx =1 € Z,.

Zero divisors:

(=) Suppose that m € Z,, is a zero divisor. Assume ged(m,n) =1

Then m is a unit by previous statement, Ja # 0 € Z,, with ma = 0 € Z,, i.e. n|ma.

ged(m,n) =1 = 3x,y € Zs.t. mz+ny =1. = (ma)z + (na)y = a. Since n|ma, then n|(ma)x + n(ay),
thus nja. a =0 mod n, a =0 € Z,. Contradiction. Thus ged(m,n) # 1.

(<) Suppose m = 0 € Z,, with gcd(m,n) =d # 1. Then Ja € Z with 1 <a <n and ad =n. (If a =1,
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d = n = m, similar for a = n.)
Find z,y € Z with ma + ny = d, amz + any = ad = n. By commutativity of Z,, (ax)m =n(l —ay) =0
mod n. Thus (az)m = 0 € Z,,. m is zero divisor. O

Theorem: 3.2: Units and Zero Divisors of R%*2

A € R?*? is a unit < det A # 0
A € R?%2 ig a zero divisor < det A =0

Proof. The first statement follows the invertibility of matrices.

Consider the second statement:

(=) Suppose A € R?*2 is a zero divisor A # 0 and 3B # 0 s.t. AB = 0.

Assume det A # 0, A has an inverse A~!, then A~'AB = A=10 = 0. Then B = 0. Contradiction. Thus A
does not have an inverse, det A = 0

(<) Suppose A # 0, but det A = 0. Then Fv # 0 € Nul(A). Let B = (v v) # 0. AB = A(v v) =
(Av Av) = (00) = 0. A is a zero divisor. O

Theorem: 3.3:

If a € R is a unit, then it is not a zero divisor.
If a € R is a zero divisor, then it is not a unit.

Proof. Suppose a € R is a unit and b € R with ab =0. b = (a"'a)b=a"tab = a"10 = 0. Thus b has to be
0, and a is not a zero divisor.
The second statement is true by contrapositive. O

Lemma: 3.1: Identities with -1

Proof. (=1)2+(=1) = (=1)(=1)+ (=1)1 = (=1)(=1+1) = (=1)0 = 0. Thus (—1)? and (—1) are additive
inverse. By uniqueness of inverses, (—1)% = 1.

a+(-l)a=1la+(-1)a=(1-1)a=0. And a+a(-1) =a(l) +a(-1) =a(l — 1) = 0. O

Theorem: 3.4:

If R is a ring with 1, v € R is a unit, then so is —u.

Proof. Take u=! € Rs.t. uvu=! =1. (—u)(—u~!) = u(-1)(=1)u"? By LemmaBll | -1y,
Thus (—u)™! = —u™! O

Definition: 3.4: Nilpotent

x € R is nilpotent if 2™ = 0 for some m € N.

Example: In Z4, 22 =4 =0, 2 is a nilpotent element.
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Theorem: 3.5: Properties of Nilpotents

If x is nilpotent, then
1. x =0 or z is a zero divisor.
2. If R is a ring with 1, 1 + z € R is a unit.

Proof. 1. Suppose z # 0. Let € N s.t. 2™ = 0 and m = 0 is the smallest, then 2™ = z(2™ 1) = 0,
but z # 0 and ™! # 0. Both are zero divisors by Definition

2. Let m € Ns.t. 2™ = 0 and m is minimum. Then 1 =1+ 2™ = (14+2)(1 — 2z + -+ (=1)" " Lam1)
Therefore (1+x) "' = (1 -2+ -+ (=1)™ 1™ 1) exists in R. By Deﬁnition 1+ x is a unit.

O

3.1 Types of Rings

Definition: 3.5: Ring with 1

If R has a multiplication identity 1 € R, then R is a ring with 1.

Example: R™*" f:R — R, Z,.

Definition: 3.6: Commutative Ring

If ab = ba, Va,b € R, then R is a commutative ring.

Example: nZ, 2Z[x] = {a17 + a22® + - - - + ana"}, Zy,.

Definition: 3.7: Integral Domain

If R is commutative with 1 and ab= 0= a =0 or b = 0, then R is an integral domain.

Remark 6. R is an integral domain if it is a commutative ring with 1 and has no zero divisors.

Example: Z, Z|x].

Definition: 3.8: Division Ring

If a~! exists for all a # 0 € R, then R is a division ring.

Example: Quaternion Ring H = {a + bi +cj +dk : a,b,c,d € R,i%? = j2 = k? = —1}.

Definition: 3.9: Field

A commutative division ring is a field.

Example: Z,, Q, R, C.

Theorem: 3.6: Classification of 7Z,

If n is comoposite, then Z,, is a commutative ring with 1 and not an integral domain.
If p is a prime, then Z, is a finite field.
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Integral Domains Division Rings

\/

Fields Restrictive

Proof. Note: Z,, is definitely a commutative ring with 1.

If n is composite, then n = ab with 1 < a,b<n. a #0 € Z,, b # 0 € Z,, but ab =0 € Z,, thus Z, is not
integral domain.

Zy is integral domain: Suppose a,b € Z,, with ab =0 € Z,. ab =0 mod p, then p|ab. Since p is a prime,
then pla or p|b. Thus a =0 € Z, or b =0 € Z,,.

Zy is a field (check inverse): Let a # 0 € Z,. Then ged(a,p) =1 = Jr,y € Zst. ax+py =1, ax =1
mod p,a t=2x¢ L. O

Theorem: 3.7: Quaternion Ring

H={a+bi+cj+dk:a,b,cdcR,i?=j2=k%=—1} is a division ring.

Proof. 1t is easy to see that 14 (0i +bj + Ok) € H is the identity. We want to find the inverse.
Consider (a + bi +cj +dk)~! = a—bi—cj—dk

AT T T
Then (a-+bi+cj+dk)(a+bitcj+dk) ™ = rprarg (atbitcj+dk)(a—bi—cj—dk) = arpiarg @+
b2 + 2+ d*+ (ab— ab + cd — cd)i + (—bd + bd + ac — ac)j + (ad — ad + be — be)k) = 1. O

Theorem: 3.8:

Let R be a commutative ring with 1. Then R is an integral domain < Va # 0 € R, with ab = ac,
then b = c.

Proof. (=) Suppose R is an integral domain, and a # 0 € R , ab = ac

Associativity

Subtract both sides by ac, ab — ac =0 = a(b—c¢) = 0. Since a # 0 and R is an integral domain,
we have b —c =0, i.e. b=rc.

(<) Suppose a #0 € R and b € R s.t. ab=0. We want to show that b =0
ab=0=a-0ie a(b—0)=0. Since a #0, b=0. Thus R is an integral domain. O

Theorem: 3.9: Finite Integral Domain

Every finite integral domain is a field.

Proof. Consider R* = {r € R:r # 0} = R\ {0}. Define A\, : R* — R*, a # 0 s.t. A\y(b) = ab.
Injective: Suppose Ay (b) = Ay(c), i.e. ab = ac. Since R is an integral domain, by Theorem b=c.
Note: Injection on finite sets = Bijective = Surjective.
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Then 1 € R* = 3b € R* s.t. \y(b) = ab=1, b=a"!. Every non-zero element has an inverse, then it is a
field. O

Definition: 3.10: Boolean Ring

R is a boolean ring if a®> = a for all a € R.

Theorem: 3.10:

All Boolean Rings are commutative.

Proof. Let z,y € R.

(z+y)=@+y)? =2+ + oy +yz
=z +y+ 2y + yz (By Definition [3.10))

O

Thus zy + yz =0, 2y = —yz = ay = (zy)? = (—yz)? = (-1)*(yz)* = yz

Example: Given X a non-empty set, P(X) is a boolean ring with + = U, - =nN.

Theorem: 3.11: Gaussian Integers

The Gaussian integers Z[i] = {a + bi : a,b € Z} is an integral domain.

Proof. Let z = a+ bi,w = c+ di € Z[i]. Suppose zw = 0.

0= (a+bi)(c+di) = (a—bi)(a+bi)(c+di)(c— di) = (a® + b>)(c® + d?)

We need a? +b%> =0 or ¢ +d? = 0.

Since Z is an integral domain, then a®> + 5> =0 = a = 0 and b = 0. Similarly, ¢2 +d?> =0 = ¢ =0 and
d = 0. Thus, z = 0 or w = 0. By Definition Z]i] is an integral domain. O

Definition: 3.11: Characteristic of a Ring

The least n € Ns.t. Vr € R, nr = (r+---+r) = 0 is the charactersitic of R. Write char(R) = n. If
no such n exists, then char(R) = 0.

Example: char(Z) = char(Q) = char(R) = char(C) = char(Z[z]) = 0

Theorem: 3.12: Characteristic of Z,

char(Z,) =n

Proof. For all a € Zy,, na =0 € Zy, thus char(Z,) <n
Suppose char(Z,) =m, m=m-1=0¢€ Z,. m=0 mod n, n|m. Thus char(Z,) =m #n
Thus char(Zy,) = n. O

Lemma: 3.2: Characteristic of Ring with 1

Let R be a ring with 1. If n € N is the least number s.t. n-1 =0, then char(R) =n

Proof. n-r=(r+---4+r)=r-14+---4r-1=r(l4+-+1)=rn=r-0=0. [
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Example: 2Z¢ = {0,2,4}. char(2Z¢) = 3.

Theorem: 3.13: Characteristic of Integral Domains

If R is an integral domain, then char(R) is prime or char(R) = 0.

Proof. Use the contrapositive. If char(R) = n is composite, then R is not an integral domain.
Suppose n = char(R) with n = ab (a,b>1). 0 =n-1= (ab)1 = (al)(b1). By Lemma[3.2] otherwise n = a
or n =>5. Then al # 0 and b1 # 0. Thus R is not an integral domain. O

Theorem: 3.14: Characteristic of Prime Commutative Ring with 1

Suppose R is a commutative ring with 1 with char(R) = p a prime, then Va,b € R, (a+b)P = aP 4+ bP.

p p—1
. . p kpp—k p kpp—k
Proof. By binomial theorem, (a + b)? = kzo <l<:> Ra WP =P 4 Z: (kz) Ra WP + P, where (7). =
(I+---4+1).
|\
(2) times in R
For ke [l,p—1], (}) = (p_%!k! = p(p_l)"'g_kﬂ) is a multiple of p. Thus (Z)R = 0g. O

3.2 Ring Homomorphism

Definition: 3.12: Ring Homomorphism and Isomorphism

Let R,S be rings. ¢ : R — S is a ring homomorphism if Va,b € R, ¢(a + b) = ¢(a) + ¢(b) and
¢(ab) = ¢(a)B(b).

If ¢ is bijective, then ¢ is an ismorphism.

Ker(¢) = {a € R: ¢(a) = 0s}.

Example: ¢ : Z — Z, s.t. ¢(m) = [m].
Homomorphism: Let mq, mg € Z, ¢(m1 + mz) = ¢(mq) + ¢(ms) from Group Homomorphism.

d(mims) = [mimz] = [ma][ma] = ¢(m1)p(ma).

Ker(¢) = nZ from group homomorphism.

Example: ¢: C — R**?2 s.t. ¢(a + bi) = [Z _ab} |

Homomorphism: ¢((a + bi) + (c + di)) = ¢((a+c) + (b+ d)i) = {Zi; _ab;d] = [Z _ab] + [2 _Cd] =
d(a + bi) + (c + di)

d((a+bi)(c+di)) = ¢((ac—bd)+(ad+be)i) = [
Ker(¢) = {a+bi: ¢(a+bi) =0} ={0}.

Thus ¢ is injective. C = Im(¢) = { [Z _ab} ta,b € R} C R%x2

ac—bd —ad— be a —b|lle —d . .
ad + be ac—bd} - [b a} [d c} = Pla+bi)p(c+di)

Example: ¢: Q[z] » Rs.t. ¢ p(x)) p(V2).
B(® +22 —3) = (VI + (V22— 3=2v2— 1. Im(d) = QW) = Q(v3) = {a+ b3 : a,b € Q) is a field.
Homomorphism: Let p(x), ¢(z) € [ . ¢(p(z) + q(z)) = p(vV2) + a(v2) = 8(p(2)) + ¢(q(2))
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p(\/i) (V2) = 6(p(2))¢(q())
) € Q[x] : p(v/2) = 0}. If p(z) € Ker(¢), then v/2 is a root of p(z).

p(a) = (z — V2)q(x) over Rz]
= (z G(x) over Q[x]

Thus Ker(¢) = {(2? — 2)f(2) : f(x) € Qla]} = (2? — 2)Qla].

Example: ¢ : R[z] — C s.t. qS( (x)) = f(i).

dat + 2% —322 +2) =it +i3 - 3i2+2=6—1, Im(¢) = {a+bi:a,bc R}
Homomorphism: ¢(f(x) +g(z)) = f(i) + (i) = ¢(f(x)) + é(g9(x))
o(f(x)g(x)) = f(i)g(i) = o(f(x))d(g(x))

Ker(phi) = {f(z) € R[z] : f(i) = 0}

f(@) = (x —i)g(z) € Cla]
= (2% 4 1)h(z) € R[z]

Thus Ker(¢) = (2% + 1)R[z].

Theorem: 3.15: Identities under Ring Homomorphism

If p: R — S is a ring homomorphism, then

1. ¢(0) =
2. f 1 € R, 1g € S and ¢ is onto, then ¢(1g) = 1g

Proof. $(0) = ¢(0+0) = ¢(0) + ¢(0), thus ¢(0) =
Take a € R s.t. ¢(a) = 1s. ¢(1r) = d(1r)ls = ¢(1r)$(a) = ¢(1ra) = é(a) = 1s. O

Example: 27 = 37 as groups, but not rings.

Proof. As groups, ¢ : Z — nZ s.t. ¢(m) = mn is a homomorphism with Ker(¢) = {0} and surjective.
27, =2 7. = 3.

As rings, suppose ¢ : 2Z — 37 is a homomorphism.

#(2) € 3Z, thus ¢(2) = 3n for n € Z. ¢(4) = ¢(2+ 2) = ¢(2) + ¢(2) = 6n.

But ¢(4) = ¢(2-2) = ¢(2)¢(2) = In?. 6n = 9In? gives n = % ¢ 7. Contradiction, so there is no ring
homomorphism 27 — 3Z. O

Example: Q[v/2] = Q[v/3] as group but not as fields.

Proof. As groups, define ¢ : Q[v/2] — Q[vV/3] as ¢(a + bv/2) = a + b\/3. ¢ is a well-defined homomorphism
under addtion.

Suppose ¢ : Q[v2] — Q[v/3] is a field isomorphism. ¢(v/2) = a + by/3 for some a,b € Q.
Then ¢(2) = ¢(V2v2) = ¢(V2)p(V2) = (a +bv/3)* = (a® + 30°) + 2abV/3.

Also ¢(2) = d(1 + 1) = 6(1) + (1) Y TrezmBIy ) _ o
So we need (a? + 3b?) + 2aby/3 = 2. This gives a = 0,b = i\/g or a = +£v/2,b = 0. Both are not in Q.
Thus there is no field homomorphism Q[v/2] — Q[v/3]. O
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Example: Find ring homomorphisms ¢ : Z x Z — 7Z, where for Z x Z, both addition and multiplication
are component-wise.

Proof. Note that Z x Z has 2 generators (1,0) and (0, 1).

Suppose ¢(1,0) = m and ¢(0,1) = n. Then ¢(0,0) = ¢((1,0)(0,1)) =mn=0=m=0or n=0.

¢(a,b) = ¢(a(1,0) +6(0,1)) = ap(1,0) + bp(0,1) = am + bn

Case 1: m =0, ¢(a,b) = bn, then Ker(¢) =Z x {0}, Im(Z) = nZ.

Case 2: n =0, ¢(a,b) = am, then Ker(¢) = {0} x Z, Im(Z) = mZ. O

Example: Let ¢ : R?*?2 — R, which of ¢(A) = Aj1, ¢(A) = det(A), ¢(A) = Tr(A) makes ¢ a ring

homomorphism?

_la b Ty
Proof. LetA—[C d]’B_[z w}

)= A1, 9(A+B) =a+z = ¢(A) + ¢(B), thus a group homomorphism, but ¢(AB) = ax + bz # ax =
)#(B), thus not a ring homomorphism.

d(A) = det(A), ¢(AB) = det(AB) = det Adet B = ¢(A)¢p(B), thus a group homomorphism, but ¢(A +
B) = (a+x)(d+w)—(b+y)(c+2) # (ad—bc)+ (zw—yz) = ¢(A) + ¢(B), thus not a ring homomorphism.

A) =Tr(A), 9(A+B) =a+d+z+w = ¢(A) + ¢(B), thus a group homomorphism, but ¢(AB) =
ar + bz + cy + dw # (a + d)(x + w) = ¢(A)p(B), thus not a ring homomorphism. O

-

3.3 Ideal

Definition: 3.13: Subring

Let R be a ring, a subring S of R is S C R that satisfies ring properties.

Theorem: 3.16: Subring Test

Let R be a ring, S C R is a subring if Va,b€ S, a —b € S and ab € S.

Definition: 3.14: Cosets of Rings

Let R be a ring and S C R be a subring. The cosets of r € Risr+ S ={r+s:s¢€ S}.

Note S, R are abelian, thus S < R. (R/S,+), where R/S = {r + S : r € R}, is an abelian group.

For (R/S,+) to be a ring, we need (a + S)(b+ S) =ab+ S for all a,b € R. i.e. For all s,s' € S, we need
(a+s)(b+5") =ab+as’ + sb+ss’ € ab+ S. Therefore, we need as’+sb€ S = as’ € Sand sbe S.

Definition: 3.15: Ideal

Let I C R be a subring.
1. I is a right ideal if Vr € R, i € I, ir € I. (absorbs multiplication from right)
2. Iis aleft ideal if Vr € R, i € I, ri € I. (absorbs multiplication from left)
3. I is an ideal if it is a right ideal and a left ideal.

Theorem: 3.17: Quotient Ring

If I C Ris an ideal, then R/I = {r +1 :r € R} is a ring.




Proof. R/I is an abelian group because R, I are abelian groups and I < R.

We now show that the multiplication is well defined. Let a,a’,b,0' € Rwitha+1=a'+1and b+1 =b'+1.
a—a €landb—"V el.

Then (a — a’)b € I by Definition [3.15| ab—ab' € I = ab+1 =a'b+ 1

Similarly, a’(b—b) €I = db—db €I = db+1=db +1. Thus (a+1)(b+1)=ab+1=db+1=
(a + D) +1). O

Definition: 3.16: Principal Ideal

Suppose R is a commutative ring with 1 and a € R, then the principal ideal of R generated by a is
(a) ={ra:r € R} = Ra Comnutative {ar : r € R}.

Proof. We show that (a) C R is indeed an ideal for any a.
Suppose i € (a) and r € R, then by Definition 1 = ar’ for some r’ € R.
Note ir = (ar)r’ = a(rr’) € (a). O

Example: In Z: (3) = {3n: n € Z} = 3Z is the principal ideal generated by 3.

Example: In Zj5, (2) = {2n : n € Z} = {0,2,4,6,8,10,12,14,1,3,5,7,9,11,13} = Z;5 is the ideal
generated by a unit 2. (5) = {bn:n € Z;5} = {0,5,10}

Theorem: 3.18:

(a) =R < a € R is a unit.

Proof. (=) Suppose a € R with (a) = R, then 1 € (a). Thus, exists 7 € R s.t. ar = 1. By Definition [3.3la
is a unit.

(<) Suppose a € R is a unit, there exists r € R s.t. ar = 1. Then 1 € (a). For b € R, b =b(1) € (a) Thus
R C (a), and R = (a). O

Theorem: 3.19: Principal Ideals of Z

Every ideal of Z is a principal ideal.

Proof. Suppose I C Z is an ideal, and take n € I to be the smallest non-negative element. (Note, if n =0,
then I = {0} is the trivial ideal.)

We show that I = (n).

Firstly, (n) C I by definition.

Suppose m € I, use division algorithm with m and n. m = nqg+r where 0 <r <n. r =m — nq € I since
m € I,n e, and ng € I. Thus r =0, m = ng, m € (n). Therefore I C (n) and I = (n). O

Theorem: 3.20:

Let ¢ : R — S be a ring homomorphism, then Ker(¢) is an ideal.

Proof. let a,b € Ker(¢).
¢(a—0b) =¢p(a) — p(b) =0—0=0, then a — b € Ker(¢).
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é(ab) = d(a)p(b) = 0-0 = 0, ab € Ker(g).
Thus Ker(¢) is a subring by Theorem [3.16]

Suppose a € Ker(¢), r € R.

¢(ar) = ¢(a)p(r) = ¢(a)0 = 0. ¢(ra) = ¢(r)¢(a) = 0¢(a) = 0
Thus ar, ra € Ker(¢), and Ker(¢) is an ideal by Definition O

Theorem: 3.21:

Let ¢ : R — S be a homomorphism. If J C S is an ideal, then ¢~!(J) ={a € R: ¢(a) € J} C R is
an ideal.

Proof. Suppose a,b € ¢~1(J), then ¢(a) € J, ¢(b) € J.

d(a —b) = ¢(a) — ¢(b) € J, because J is a subring, then a — b € ¢~ 1(J)
¢(ab) = ¢(a)¢(b) € J, thus ab = ¢~ (¢(a)p(b)) € ¢~ (J)

By Theorem ¢~1(J) is a subring of R.

Let a € ¢ 1(J), r € R. ¢(ar) = ¢(a)p(r) € J, since J is an ideal. ar € ¢~(J). Similarly ¢(ra) =

é(r)p(a) € J. ra € ¢p~1(J).
Thus ¢~ 1(J) is an ideal. O

Definition: 3.17: Prime Ideal

An ideal P C R is a prime ideal if ab € P < a € P or b € P. (This is the generalization of prime
numbers.)

Definition: 3.18: Maximal Ideal

An ideal M C R is a maximal ideal if for any ideal I/ C R with M C I C R, we have I = M or
I=R.

Theorem: 3.22:

If R is a commutative ring with 1. Then P C R is a prime ideal < R/P is an integral domain.

Proof. (=) Suppose P is a prime ideal and (a + P)(b+ P) =0+ P € R/P. Then ab+ P = 0+ P and thus
ab € P by Definition [3.15
Since P is prime ideal, a € P or b € P, thena+ P =0+ P or b+ P =0+ P. Thus R/P is an integral
domain by Definition [3.7

(<) Suppose that R/P is an integral domain and ab € P. We want to show that a € P or b € P.
Since ab € P, ab+ P =0+ P € R/P, thus (a+ P)(b+ P) = 0+ P. This gives either a4+ P =0+ P or
b+ P =0+ P. Therefore, a € Por b€ P. P C R is a prime ideal. O

Theorem: 3.23:

If R is a commutative ring with 1. Then M C R is a maximal ideal <& R/M is a field.

Proof. (=) Suppose M C R is a maximal ideal and a + M € R/M with a ¢ M.
Consider (0 + M) C (a+ M) C R/M. Note (a+ M) =1/M, where M C I C R. a € I and a ¢ M means
M#T.

35



Then I = R because M is maximal. Then (a+ M) = R/M, 1+ M € (a+ M). Then there exists b € R s.t.
(a+M)(b+ M) = (1+ M). Inverse exsists, R/M is a field.

(<) Suppose R/M is a field. Take I C R, M C I C R. We want to show that I = R.

Since M C I, there exists a € I s.t. a ¢ M, then M C (a, M) C I C R,sincea+ M #0+ M € R/M.
Then there exists b € R s.t. (a+ M)(b+ M) =1+ M, so inverse of a + M exists. 1+ M € (a, M) C I.
Thus I = R by Theorem [3.1§] since the unit is in 1. O

Example: Which are ideals in Z[z]?
1. I ={p(x):p(x) =2q(x)+ 2k, k € Z,q(x) € Z[z]}, polynomials with even constant terms.
2. I ={p(z):p(x) =2%q(x) + 2kx +1,k,l € Z,q(x) € Z]x]}, polynomials with even coefficients for z.
3. 1= {p(x) € Zla) : (0) = 0}

Proof. 1. Let p1(x) = zqi(x) + 2k1 € I, pa(x) = xq2(x) + 2k2 € I. Then pi(x) — pa(x) = 2(q1 — ¢2) +

Q(kl — kg) el

pip2 = (zq1 + 2k1)(wqe + 2k2) = 22qiqe + 22(k1q2 + k2q1) + 4k1ko € I. Thus I is a subring by
Theorem [3.16]

Take f(z) = zg(x) +1 € Z[z] with | € Z, then p(x) f(x) = 22qg + 22kg + lxq + 2kl € I. Thus I is an
ideal.

2. Let p1(z) = 22q1(x) + 2k12 + 11 € I, po(x) = 22qo(x) + 2kox + I3 € I. Then py(x) — po(x) € I
pip2 = (22q1 +2k12+11) (22qe + 2kox +10) = 22 (22q1q2 +11qo + loqy +4k1ke) +2(k1lo +koly) + 1110 € 1.
Thus I is a subring by Theorem
Take f(z) = 229 + mx +n € Z[z] with [ € Z, then p(x) f(x) = 2?(22gq + ng + mg + 2km) + (Im +
2kn)x + In ¢ I, since Ilm + 2kn is not even when [ = m = 1. Thus I is not an ideal.

3. Let p(x),q(x) € I. Then p'(0) = ¢'(0) = 0. (p — q)'le=0 = p'(0) = ¢'(0) = 0. (pqg)'|a=0 = p'(0)q(0) +
p(0)¢’(0) = 0 Thus [ is a subring by Theorem
Take f(z) € Z[z] with | € Z, then (fp)’'|z=0 = f'(0)p(0) + f(0)p'(0) = f'(0)p(0) # 0. Thus [ is not

an ideal.

For the third case, if we have I = {p(x) € Z[z] : p'(0) = 0,p(0) = 0}. Then I is an ideal. O

Theorem: 3.24: Smallest Enclosing Ideal

Let I,J C R be ideals. I + J is the smallest ideal containing [ and J.

Proof. I+J={i+j:iel,jeJ}. Leta,bel,J, thena=1i+j,b=14+j fori,i €I, j j €J.
Thenb—a=("—i)+( —j)el+J,ab=(i+ )i +j) =i +ij + jj’ + ji'. Since ii’ +ij’ € I and
ji' + jj" € J by Definition [3.15] Then ab € I + J. I + J is a subring by Theorem [3.16}

Letael,z€ Rha=i+jforiel, jeJ. ax = (i+j)xr =ix+jr € [+ J,since ix € I, jx € J.
za=zxi+xj€el+J. Sincet €l =i4+0=1+J,0&€ J,then I C I+ J. Similarly, J C I+ J.

Suppose K C R an ideal s.t. I C K and J C K.
Letael+J,a=i+jforiel,jeJ. Thenie Kand j€ K,thusae K. I+ J C K. O
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3.4 Isomorphism Theorems for Rings

Theorem: 3.25: First Isomorphism Theorem for Rings

Let ¢ : R — S be a ring homomorphism. Then there is a unique ismorphism v : R/Ker(¢) — Im(¢)
s.t. Y(r + Ker(¢)) = Im(o).

R ¢ Im(p) C S
|
R/Ker(6)

Proof. Define ¢ : R/Ker(¢) — Im(¢) s.t. ¢(r + Ker(¢)) = ¢(r)
Well-defined: Suppose that r 4+ Ker(¢) = ' 4+ Ker(¢), then r — ' € Ker(¢).
B+ Kex(6)) = 6(r) = 6(r) + 0 = 6(r) + 604"~ r) = plr +1" = 1) = 6(r) = w(s' + Ker(9)

Ring Homomorphism: ¢ (a + Ker(¢) + b + Ker(¢)) = ¥(a + b + Ker(¢)) = é(a + b) = é(a) + ¢(b) =
P(a+ Ker(¢)) + 9 (b + Ker(¢))
P((a+ Ker(¢)) (b + Ker(¢))) = ¢(ab + Ker(¢)) = ¢(ab) = ¢(a)p(b) = ¢ (a + Ker(¢))y (b + Ker(¢))

Injective: Suppose r+Ker(¢) € Ker(¢), 1(r+Ker(¢)) = 0 = ¢(r). Thusr € Ker(¢), r+Ker(¢) = 0+Ker(¢).
Ker(1) = {0+ Ker(¢)}, v is injective.

Surjective: Suppose ¢(r) € Im(¢), then ¢(r + Ker(¢)) = ¢(r)

Uniqueness: Suppose 1 (r + Ker(¢)) = ¢(r) = ¥(r + Ker(¢)). Thus ¢ = 1. O
a b 9%2 0 = . .
Example: R = A a,b,c e Ry C R**“. Show that I = 0 ol® € R} is an ideal for R and
R/T =R xR.
_la b |z

Proof. Let A = [O c]’ B = [0 z}
Then A— B = [a 6 v lc): Z] € Rand AB = [agc ay + bz} € R. Therefore, R is a ring by Theorem [3.16

|0 10y
Let[l—|:0 0:|,IQ—|:0 0

0 z—y 0 zy

Then I — Iy = [ ] €l and I1I, = [ ] € I. Therefore, I is a subring of R by Theorem |3.16|

0 0 0 0
To show that I is an ideal of R. Consider AIl; and I A.

a bl |0 =z 0 zc 0 x| |la b 0 =zc
Ah_[o c} {0 0]_[0 0}61’11‘4_[0 0] [0 c]_[O 0]61

Consider ¢ : R >R x R s.t. ¢ [g i] = (a,c).

Then ¢(A+ B) = (a+x,c+ 2) = (a,¢) + (x,2) = ¢(A) + ¢(B), and ¢(AB) = (az,cz) = (a,c¢)(x,2) =
?(A)p(B). Thus ¢ is a ring homomorphism.

Ker(¢) ={A € R: ¢(A) = (a,c) = (0,0)}, so we need a = ¢ = 0. Ker(¢) = I, and I is an ideal. Thus by
Theorem [3.25 R/I = R x R. O
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Example: Z[i] = {a +bi : a,b € Z}, (3) = 3Z[i] = {3a + 3bi : a,b € Z}. Show that 3Z[i] C Z[i] is a

maximal ideal.

Proof. Let ¢ : Z[i] — Z3[i] s.t. ¢(a+ bi) = [a + bi]s = [a]3 + [b]3i. ¢ is a homomorphism.
Ker(¢) = {a + bi : ¢(a + bi) = [a]s + [b]si = [0]3 + [0]3¢}. Thus @ =0 mod 3 and b =0 mod 3. a = 3m,
b = 3n for some m,n € Z. Then, a + bi € 3Z[i] = (3). By Theorem Zi]/(3) = Zs]i].

Note: Zsli] = {0,1,2,4,2i,1 + 4,1 4+ 24,2 4+ 4,2 + 2i} is a field since inverses exist for all elements. Thus
(3) C Z]i] is maximal by Theorem O

Theorem: 3.26: Second Isomorphism Theorem for Rings

Let I C R be a subring and J C R be an ideal. Then
1. INJ C I is an ideal
2. I/InJ)y=({I+J)/J

Proof. 1. Suppose a € I NJ and b € I, we want to show that ab€ I'NJ and ba € I N J.
NoteaeINJ meansa €l and I € J,be J C R. Then ab € J since J C R is an ideal. ab € I since
I C Ris asubring. Thusabe INJ.
Similarly, we have ba € I N J, thus I N J C I is an ideal.

2. Define ¢p: I — (I +J)/J st. ¢(a) =a+J
Homomorphism: ¢(a+b) = (a+b)+J=(a+J)+ (b+ J) = ¢(a)+ ¢(b)
¢(ab) =ab+J = (a+ J)(b+ J) = ¢(a)p(b)

Surjective: Let a+ J st. a€ I+ J, (thena+J € (I +J)/J)ie. a=i+jforiel, je J. Then
a+J=i+j+J =i+ J. Therefore, 3i € I s.t. ¢(i) =1+ J = a+ J, thus surjective.

Find kernel: Suppose a € INJ, i.e. a € [ anda € J. ¢(a) =a+J 70+ J. Thus a € Ker(¢) =

InJ cC Ker(¢).

Suppose a € Ker(¢) C I, then a € I, and ¢(a) =a+J =0+ J. Thena € J, thusa € INJ. So
Ker(¢) C INJ.

Therefore, Ker(¢p) =INJ, I/(INJ)=(I+J)/J by Theorem [3.25

O

3.5 Polynomial Rings

Definition: 3.19: Polynomial Rings

Suppose R is a commutative ring with 1, p(z) = ap + a1z + - - - + a,a]' with a; € R is a polynomial
over R with indeterminate x

1. ay # 0 is called the leading coefficient of p(x)

2. deg(p(z)) =n

3. If a,, = 1, then p(z) is monic

4. The set of all polynomials is denoted R[x]

Theorem: 3.27:

R[z] is a commutative ring with 1.




Proof. Let p(x) = ap + a1x + -+ - apx™, q(x) = by + byz + - - - bz™.
k

pqg=co+ci1r+ -+ cpanr™ ™", where ¢ = Z ap_1b;.
=0

k k
A A . . t I=k—1
qp =¢Cp +Cc1x + -+ Cm+n£(}m+n, where C = Z albk,l - Z al/bk_l/ = Ck-
. . . . . l:0 l/:()
Thus gp = pq, multiplication is commutative. O

Theorem: 3.28:

If R is an integral domain, then so is R[z].

Proof. Contrapositive: if R[z] is not is integral domain, then R is not an integral domain.

Let p(z) = ap + a1z + - - - apx™, q(x) = by + bz + - - - bppa™, with ay, # 0, by, # 0.

Suppose R[z] is not an integral domain, then we have p(z) # 0, ¢(x) # 0, but p(z)g(x) = 0, i.e. apby, =
coeff nim (pg) = 0.

Then Jan, b € R s.t. ap # 0, by, # 0, but a,b, = 0. We have a zero divisor, thus R is not an integral
domain. O

Remark 7. 1. If K is a field, K[z] is not a field. p(z) = = does not have an inverse.

— X

o o0 (0.9}
. . 1
2. If K is a field K[[m]]:{goanx”:anER} is a field. 1 = Eom”, so (1 —x) gomnzl. And
n= n= n=
we can show that every element has an inverse.

M
3. If K is a field, K[z, 27 '] = { Z anx" :a, € R} (Laurent polynomials) is not a field.

3.5.1 Division Algorithm

Theorem: 3.29: Division Algorithm for Polynomials

Let K be a field and f(z), g(x) € K[z]. Then there are unique g(x),r(x) s.t. f(z) = g(z)q(x)+r(x),
where 0 < deg(r(z)) < deg(g(z))

Proof. Let f(x),g(x) be polynomials s.t. deg(f(xz)) = n, deg(g(z)) = m. Assume m < n, otherwise,
f(z) = 0g(x) + r(x) a trivial case.

We do induction on n =m + k.

Base Case: k=0, m =n, f(x) = apz™ + -+ ag, g(x) = byz™ + -+ + by, an # 0,b, # 0.

Then f(z) = $2.9(x)+ | f(@) = $29(2)]. r(@) = f(@) = §29(2) = (@n-1 = §2bp-1) @4+, deg(r(2)) < n
Induction Hypothesis: Assume for all p(z) with degree < n, we can do the division algorithm.
Induction Step: Consider f(z) = f(z) — 22" "g(z) = (anz™ + ) — 22" " (bpa™ + ---) =
<an - %bm) "+ Gp1 2"+ 4 G = Gpo1@p—1 + -+ - + Go has degree < n.

Apply IH to f(z) and g(z), f = g4 + r with 0 < deg(?) < m.

fla)=f+f2ammg = gg+7 + f2a""g =g (d + 1?7’193”"”) + 7.

Let ¢ = ¢+ 22"~ ™, r =7, then f = gq+r where 0 < deg(r) < m.
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Uniqueness: Suppose f = gq1 + 11 = ggqz2 + r2, 0 < degr; < degg

Then 0 = g(q1 — q2) + (r1 —72), 72 — 11 = g(q1 — q2), deg(rz2 — 1) < deg(g) < deg(g(q1 — g2)).
Thus, r1 = 79, and g1 = ¢2. The factorization is unique. O

Definition: 3.20: GCD of Polynomials

Let K be a field, d(x) € K|x] is the ged of f(x),g(x) € Klz] if d(z)|f(z) and d(z)|g(x) and if
d(z)|f(z) and d(z)|g(x), then d(z)|d(z). If ged(f,g) = 1, then f and g are relatively prime.

Theorem: 3.30: Bezout’s Identity

If d(x) = ged(f, g), then Ja(x),b(z) € K[z] s.t. a(z)f(z) + b(z)g(z) = d(x)

Proof. Consider the set S = {p(z)f(x) + q(x)g(z) : p(x), ¢(x) € K[z]}.

Suppose u(z),v(z) € S, both monic with the smallest degree, then u(z) = 2" + ap_12" ' + --- + ao,
v(x) = 2" + bp_12™" L + - + by. Note u(z) —v(x) € S, u(x) —v(z) = (@n-1—bp—1)x" L+ + (ap — bo),
deg(u —v) < n —1 < deg(u) = n, thus u(z) —v(x) = 0, u = v. i.e. There is a unique polynomial in S
which is monic with the smallest degree.

Let d(z) = a(z)f(x) + b(x)g(x) € S be the monic polynomial with min degree. We show that d(z)|f(x)
and d(z)|g(x).

Use Theorem [3.29]on f and g, f(z) = d(z)q(z) + r(z), 0 < deg(r) < deg(d).

r(x) = f(z) —d(x)q(z) = f(z) = (a(x) f () + b(x)g(x))q(z) = (1 —a(z)q(x)) f(x) - b(x)q(x)g(x) € S. Thus
r(x) =0, d(z)|f(x). Similarly d(z)|g(x).

Suppose d(z) € K[z] s.t. d(z)|f(z) and d(z)|g(z). The

. n f(z) = d(z)u(z) and g(z) = d(z)v(z).
Thus d(z) = a(z)u(z)d(x) + b(x)v(z)d(z) = (a(z)u(z) + b

(2)o(2))d(2). d(z)|d(z) O

Example: Find a(z) and b(z) s.t. a(x)f(x) + b(z)g(x) = ged(f(z), g(x)), where f(z) = z* — 223 — 32 — 2,
g(z) = 23 +42? + 4z + 1

In Qz], f(z) = (z — 4)g(x) + (102% + 122 + 2), g(z) = (Fz + =) (1022 + 122+ 2) + H(z + 1)

Note that (z + 1)[(1022 + 12z + 2), so (z + 1)|g(z) and (x + 1)|f(z) is the gcd.

x+1_§g( )—25<1033—|—275>(10x2+12x+2)
= a0~ 23 (g + 35) (@) - (o~ D)
522 3z 3 7
(22—11—11)9<>+ — g 1) 1@
Thus a(z) (%—%—%,b(m):—%x—%
In Zo[z], f(x) = a* + =z, g(a) = 2° + 1, f(z) = zg().

) (
Thus g(z)|f(z), ged(f, 9) = g = 2* + 1.

In Zq1[z], we start with f(z) = (x — 4)g(x) + (1022 + 122 + 2). Reduce in Z11, we get f(z) = (v —4)g(x) +
(—22 +2+2)

Note g(x) = (—2% + 2 + 2)(—z — 5). Thus ged(f,g) = —2? + 2 +2

2+ +2= f(z)— (x—4)g(2)
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3.5.2 Irreducible Polynomials

Definition: 3.21: Irreducible Polynomials

We say a non constant polynomial f(x) € K][xz] is irreducible if it cannot be written as f(z) =
g(x)h(z) with deg(g), deg(h) < deg(f).

Theorem: 3.31:

p(z) € K[z] is irreducible & K[z]/(p(z)) is a field. (p(z)) is the principal ideal generated by p(z).

Proof. (=) Suppose p(z) € K|z] is irreducible. Consider an ideal I C Klz], where (p(z)) € I C K|[z].
Take f(z) € I'\ (p(x)). p(z) is irreducible and f(x) is not a multiple of p(x), otherwise f(z) € (p(x)). Thus
ged(f,p) = 1.

By Theorem Jda(z),b(x) € Klz] s.t. a(z)f(x) + b(x)p(x) =1

Note f(z) € I, p(z) € I. By Definition [3.15] 1 € I. By Theorem [3.18] I = K[z]. Thus (p(z)) is maximal
by Definition And by Theorem K[z]/(p(z)) is a field.

(<) Suppose K[z]/(p(z)) is a field, then (p(z)) is a maximal ideal by Theorem

Suppose p(z) = f(x)g(x), then p(x) € (f(x)), (p(z)) C (f(z)) C Klz].
Case 1: (p(x)) = (f(x)), then f(z) = p(x)h(x), deg(f) = deg(p), p(z) = const f(z). p(x) is irreducible.
Case 2: (f(z ))) = Klz]. Then f(x) is a unit in K[z]. f(x) = « is a constant. deg(f) = 0. Thus

deg(g) = deg(p). p is irreducible. O

Example: Show that C is a field.

Proof. ¢ : R[zx] — C s.t. ¢(f(z)) = f(i) is a homomorphlsm with Ker(¢) = (22 + 1). 22 + 1 is irreducible
in R[z]. Thus R[z]/(z% 4 1) 2 C is a field by Theorem and [3.31] O

Example: Show that Q(v/2) is a field.

Proof. ¢ : Q[z] — Q(v/2) s.t. ¢(f(x)) = f(/2) is a homomorphism, Ker(¢) = (22 —2). 2% —2 is irreducible
in Q[x]. Thus Q[z]/(z% — 2) = Q(v/2) is a field. O

Example: Show that Z[z]/(z? + z + 1) is a field.

O

Proof. x* + x + 1 is irreducible in Zs[z]. The field has order 22 = 4.

Let p(z) € Q[z], then p(x) = Z(ap + a1 + - - - + anx™) with ged(r,s) = 1, ged({a;}) = 1.

Proof. Let p(x) = %g + %:Jc +- 4 g—z:c” for b;,c; € Z, p(x) € Q[z].

We can write p(x) = ;= (do + diz + - - - dpz"), where d; = C72b;.

Let d = ged(do, ..., dy), then dy = day, d,, = da,, with ged(ag, ...,an) =1

p(x) = 1Cn (dao +dayz +---+da,2™) = - dcn (a0 +arz+---+a,2™) = L(ag+ a1z +- - - a,2™) by reducing

€0

the fractions. O
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Lemma: 3.4: Gauss Lemma

Let p(x) € Z[x] be monic that factors p(z) = «a(z)5(z) € Qx| with deg(a),de (6) < deg(p).
Then Ja(z),b(x) € Z[z] s.t. a(z),b(x) are monic with deg(a) = deg(w), deg(b) = deg() and
p(z) = a(z)b(x).

Proof. Suppose p(z) = a(z)p(z), a(x), B(x) € Q[z]. By Lemma a(z) = F(ao+---+amz™). Similarly,
Blz) = F(ag+ -+ anz™).

Let ai(x) = (ap + -+ + apmz™), f1(z) = (ap + - - + apz™), ¢ = cic2, d = didy. Then p(x) = a(x)f(z) =
toan(x)pi(z) = Goa(z)Bi(x). Thus car(z)Bi(x) = dp(x).

] 1 p(x) is monic

Case 1: d=1. ay(x)p1(z) € Z]x coeffyminp(x) = camby,

Ife=1,am=0,=1, a(z) = ai(z), b(x ) Bi(x), or ap, = b, = —1, a(x) = —a1(z), b(x) = —p1(x).

If c = -1, am =1, by, = -1, a(z) = a1(x), b(z) = —fi(x), or apy = —1, by, = 1, a(z) = —ay(x),
b(x) = Bi().

Case 2: d # 1. Pick a prime s.t. p|d and p fe. Take a; with p fa;, by with p /{’bk

Set &(x) = ai(x) mod Zp[z], B(z) = Bi(z) mod Z plz]. Then a(x ) # 0 and B(z) # 0.

a(z)B(x) = ar(z)B1(x) mod Zy[z] = 4p(z) mod Zplz] =0 mod Z,[z] since p|d.

Contradiction, because Zp[z] is an integral domain. Thus d # 1 is not possible. O

Theorem: 3.32: Einstein’s Criterion

Let p be a prime and f(z) = ag + - -+ + apz™ € Z[z]. If pla; for i € {0,...,n — 1}, but p fa, and
p? fag, then f(z) is irreducible over Q[z].

Proof. Assume f(z) =ao+ a1z +---apz™ = (bo+ -+ byx")(co+ - - + csx).
p? fag with ag = boco means p fbg or p fecg. WLOG, we assume p [bg, but plco.
p fa, with a, = b.cs means p fb, and p fecs.

Let m be the minimal integer s.t. p fc,, and consider a,, = bocm, + biay—1 + -+ + byecg. Then
not divisible by p divisible by p

p fam.

By the constraints (the minimal integer s.t. p fa,, should be n), a,, = a,, thus m = n.

deg(co + - -+ + csx®) = deg(f(x)). Thus there is no factorization. f(z) is irreducible. O

Example: 32° + 2525 — 2022 + 152 — 10 is irreducible with p = 5.

Example: 52% + 1422 — Tz + 7 is irreducible with p = 7.

3.6 Integral Domains

Theorem: 3.33:

Every ideal in K[x] is a principal ideal. KJz] is a PID (Principal Ideal Domain).

Proof. Suppose I C K|[z] is an ideal. Take p(x) € I s.t. p(x) is monic, and deg(p(z)) is minimal over all
polynomials of positive degree. (p(z)) C I.

Let f(z) € I. Do division algorithm with f(x) and p(x), f(z) = p(x)q(z) + r(z) with 0 < deg(r) < deg(p).
Thus deg(r) = 0, because p(x) is minimal degree.

Case 1: r(z) =0, f(x) € (p(x)), I C (p(z)). Then (p(z)) = I. I is principal ideal.

Case 2: « #0 € K. Then (p(x)) = (o) = K[z] = I. I is a principal ideal. O
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Example: Z[z] is not a PID.

Proof. We find an ideal I that is not principal.

Let I = (z,2) = {anz" + ap_12" * + -+ a1z + 2a9 : a; € Z}.

Suppose p(x) € Z[z] with (p(z)) = I = (x,2), then 2 € (p(x)), 2 = p(x) f(x) for some f(x) € Z[x].

Then deg(p) = deg(f) = 0. p(z) =1 or p(z) = 2. But p(x) # 1, otherwise (p(z)) = (1) = Zlx].

Thus p(x) = 2, I = (2), but « ¢ I, since x is not necessarily a multiple of 2. Contradiction. Thus [ is not
principal. O

3.6.1 Field of Fractions

We can think of Q as a set of symbols 7, a,b € Z, b # 0, where ; = § < ad = be.

Theorem: 3.34: Field of Fractions

Let D be any integral domain. S = {(a,b) : a,b € D,b# 0}. ~C S x S s.t. (a,b) ~ (¢,d) < ad = bc
is an equivalence relation. The equivalence classes are [a,b] = {(¢,d) € S : (a,b) ~ (¢,d)}. Define
Fp ={[a,b] : a,b € D,b# 0}.

Fp is a field (the field of fraction of D). It is the unique smallest field s.t. D can be embedded in
Fp.

Proof. Firstly, we show that ~ is an equivalence relation.
1. Reflexivity: (a,b) ~ (b,a), because ab = ab
2. Symmetry: If (a,b) ~ (¢,d), then ad = be, be = ad = (¢,d) ~ (a,b)

3. Transitivity: If (a,b) ~ (¢,d) and (c,d) ~ (e, f), then ad = bc and c¢f = de. Then adcf = bede,
af =be, (a,b) ~ (e, f).

Now we show that Fp is a field.

We define the addtion [a, b] + [c,d] = [ad + be, bd]. We check that the addition is well-defined:
Suppose [a,b] = [a,b], [¢,d] = [¢,d]. i.e. ab= ab, cd = éd.

[a,b] + [c, d] = [ad + be, bd], [a,b] + [¢,d] = [ad + bé, bd).

(ad + be)(bd) = adbd + bebd = abdd + cdbb Equivalenceofla,bl=(é.b)
well-defined.

We define the multiplication [a, b][c,d] = [ac,bd]. It is also easy to check that the multiplication is well
defined.

Fp is abelian, additive identity is [0, d|, invserse of [a, b] is [—a, b]. Multiplication is associative, distributive,
commutative and identity is [a, a], with inverse of [a, b] being [b, a] for a # 0.

abdd + édbb = bd(ad + éb). Thus addition is

Now we show that we can embed D in Fp.

Consider I : D — Fp s.t. I(a) = [a,1].

Homomorphism: I(a,b) = [a+b,1] = [a,1] + [b,1] = I(a) + I(b)

I(ab) = [ab,1] = [a, 1][b,1] = I(a)I(b)

Injective: Suppose a € Ker([), i.e. I(a) =0. Then [a,1] =[0,1] = a = 0. Thus Ker(/) = 0.
Thus I is an injective ring homomorphism.

We now show that Fp is the smallest such field.

Suppose JK a field s.t. D is embedded in K. i.e. 3¢ : D — K an injective field homomorphism. We want
tofind v : Fp — K s.t. p=1ol.

Set ¥([a, b]) = ¢(a)p(b)~L. With a,b € D, ¢(a), #(b) € K.

43



Homomorphism:

((a, b+ [e, ) = ([ad-+be, bd]) = dad-+b)d(bd) " = ($a)$(d)+o(B)H(c))o(8) ' 3(d) ™! = pla)p(v)~ +
He)o(d) ™ = ([a, B]) + w([e, d]).

¥([a,b]le,d]) = Y (lac,bd]) = p(ac)p(bd) ! = d(a)(b) " d(c)p(d) " = ¥([a, b])e([c, d])

Injective: Suppose [a,b] € Ker(¢). 1¥([a,b]) = ¢(a)p(b)~! = 0, but ¢(b)~! # 0. Thus ¢(a) =0. a = 0.
Ker(¢) = {[0,b]} = {[0, 1]} is trivial. v is injective field homomorphism.

Now we show that ¢ = o I, 1o I(a) = ([a,1]) = ¢(a)p(1)~! = ¢(a). Thus ¢ = o I. O

Definition: 3.22: Irreducibles and Primes

Let R be a commutative ring with 1, D be an integral domain. Let a,b € R.
albif 3c € R s.t. b=ac

a and b are associates if there exists a unit u s.t. a = ub

. A non-unit p € D is irreducible if when p = ab, a or b is a unit

. pis prime if plab = p|a or p|b

il

Example: R = (22,92, zy) C Q[z,y].
Note: R = Q[z,y]?? is Q[x,y] under the group action of Zs. Zs(z) = —x, Zs(y) = —y.
22,92, xy are irreducible in R, but xy is not prime. zy|z?y?, but zy fr and zy fy.

Definition: 3.23: Z[i\/3] and Norm

Consider the ring Z[iv/3] = {a+bi\/3 : a,b € Z}. We can associate a norm function N : Z[iv/3] — N
s.t. N(a + biv/3) = a® 4 3b* with the following properties:

Nz)=0z=0

N(zy) = N(z)N(y)

w is a unit & N(u) =1

If N(x) is a prime, x is irreducible.

= 80 =

Proof. We show that N(x) is a well-defined norm function.

1. (=) Let x = a + biv/3. If N(x) =0, a® 4+ 3b*> = 0. Since a® > 0,0 > 0, we have a = b =0, z = 0.
(<) trivial.

2. Let x = a4+ bivV3, y = c + div3. xy = (ac — 3bd) + (ad + be)i/3.
N(zy) = (ac — 3bd)? + 3(ad + bc)? = (a® + 3b%)(c? + 3d?) = N(z)N(y)

3. (=) Suppose u is a unit. Ju~t € Z[iv3] s.t. vut =1. N(uu™t) =1 Py N(u)N(u™t).

But N(u), N(u™!) € N, then N(u) = N(u)"t =1
(<) Suppose N(u) =1, u = a + biv/3. N(u) = a® +3b%. If b> > 0, N(u) > 1. Thus b*> =0, b =0,
and a® =1, a = £1. u = £1, both are units.

4. Suppose x = yz. Then N(x) = N(y)N(z). If N(x) is prime. WLOG, N(y) =1, N(z) = N(2), y is a
unit, z is irreducible.

We now show that (1 + iv/3) is irreducible but not a prime in Z[iv/3].

Suppose 14 iv/3 = zy, N(z)N(y) = N(1 +iV3) = 4.

Case 1: z or y is a unit, then 1 + /3 is irreducible.

Case 2:  and y are not unit, then N(z) = N(y) = 2, but a® + 3b? = 2 has no solution in natural numbers.
Contradiction. This case is impossible.
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(1+iV3)(1—iV3) =4=2-2
Thus (1 +4v3)[4 = (14 4v/3)|2-2, but (1 +iv/3) /2, thus it is not a prime. O

3.6.2 Unique Factorization Domain

Definition: 3.24: Unique Factorization Domain

An integral domain D is a unique factorization domain (UFD) if
1. Every non-zero non-unit element can be written as the product of irreducibles.
2. Ifa=py---pr = q1-qs with p;, ¢; irreducible, then r = s and Jo € S, with p; = ¢;)ui, u; a
unit. i.e. p; and ¢, (;) are associates.

Example: Z is a UFD by the fundamental theorem of arithmetic.
30=2-3-5=2(—3)(—5), but (—=3) = (—1)3, where (—1) is a unit. {2,3,5} is the same as {2, -3, -5} up
to a unit.

Example: Z[i], K[z] are UFD.

Example: Z[i/3] is not a UFD.

Consider 4 =2 -2 = (14 14v/3)(1 — iv/3).

For Z[i/3] to be a UFD, we need 2 = (1 + 4v/3)u, where u is a unit.

Let u = a+biv3 € Z[iv3]. u™' = 473 € Z[iv/3].

We need a#ﬁ €Z, b=0, 5= % = Z, then a = £1. u = =1, which is impossible, because 2 #

1+14v/3.

Example: Z[/5] is not a UFD.
Consider 4 = 2-2 = (1 ++/5)(—1+/5).

We need 2 = u(1+/5). Let u = a+bv5. 2= (1+5)(a+bV5) = a+ 5b+ (a+b)V/5. {

oo

Definition: 3.25: Primitive and Content

Let D be an integral domain, F' be a field of fraction. Let p(x) = anz™ + - -ag € D[x]. Define the
content of p(x) to be cont(p(x)) = ged(ag, ..., an).
p(z) is primitive if cont(p(z)) = 1.

1. If f(z),g(z) € D[z] are primitive, then so is f(z)g(x)

2. cont(fg) = cont(f)cont(g) A A
3. Suppose p(z) € Dla] with p(z) = £(2)g(x) € F(z), then 3f(z),3(x) € Dle] st. p = f9

a-+5b=2
a+b=0

N[ =

,a,b ¢ 7.

N[

Corollary 5. p(z) is irreducible in D[x] < p(x) is irreducible in F[zx].

Theorem: 3.35:
D is a UFD < D[z] is a UFD.
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3.6.3 Principal Ideal Domain

Definition: 3.26: Principal Ideal Domain

An integral domain is called a principal ideal domain (PID) if every ideal is principal.

Example: Z, K|z] are PIDs.

Lemma: 3.6: Properties of PID

Let D be a PID with a,b € D, then
1. alb < (b) C (a)
2. a and b are associates < (a) = (b)
3. aisaunit & (a) =D

Proof. 1. (=) Suppose al|b, then b = ar for r € D. Suppose z € (b), then x = by for y € D. Then
x = ary € (a). Thus (b) C (a)
(<) Suppose (b) C (a), then b € (a), b = ar for some r € D, thus alb.

)
2. (=) Suppose a, b are associates, by Definition there exists unit u € D s.t. a = ub. thus bla. By
, {a) C (b). Also au™! = b, u~! is a unit, then alb, (b) C (a). Therefore (a) = (b).

1
(<) Suppose (a) = (b). Then (a) C (b) = alb, b = az; (b) C (a) = bla, a = yb. Therefore
a =yax = axy. 1 = zy, T is a unit. a and b are associates.

=) Suppose a is a unit, a~! exists. Take x € D and * = -1 = za~'a € {a). D C (a) C D, thus

(
(a) =D
(

<) Suppose D = (a). In particular 1 € (a). Then 3b € D s.t. ab =1, a is a unit.

Theorem: 3.36:

Let D be a PID and 0 # (p) C D, then (p) is a maximal ideal < p is irreducible.

Proof. (=) Suppose (p) is a maximal ideal and p = ab.

Then alp. By Lemma (p) C (a) C D.

By Definition [3.18] either (p) = (a) or (a) = D.

If (p) = (a), then p and a are associates by Lemma b is a unit.
If (a) = D, then a is a unit.

Thus p is irreducible by Definition [3.22]

(<) Suppose p is irreducible.

Consider a € D with (p) C (a) C D By Lemma B9 alp = p = ab for some b € D.

But p is irreducible, then a is a unit or b is a unit.

If @ is a unit, (a) = D

If b is a unit, p and a are associates, (p) = (a).

By Definition .18} (p) is maximial. O

Corollary 6. Let D be a PID. If p € D is irreducible, then it is prime. In general primeCirreducible.
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Proof. Suppose p is irreducible and p|ab.

Then ab = pr for some r € D. By Theorem ab € (p)

Then (p) is a prime ideal by Definition [3.17] This means that a € (p), pla or b € (p), plb.

By Definition [3:22] p is a prime. O

Definition: 3.27: Accending Chain Condition (Noetherian Ring)

A ring satisfies the accending chain condition if for every set of ideals {Ij};-‘;l st. 1 Cc Iy C -,
there exists NV € N s.t. I, > Iy for all n > N. These rings are called Noetherian Rings.

Every PID satisfies Accending Chain Condition.

Proof. Let D be a PID, and {I;}72, be a set of ideals s.t Iy C I C ---.

(o]
Let I = U I;. We show that I is an ideal.
j=1
Subring: Suppose a,b € I, 3k, I s.t. a € Iy, b € Ij. a,b € Lyaxq k). Then a —b,ab € Lya ) C 1. Thus [ is
a subring by Theorem [3.16]
Ideal: Suppose a € I and r € D, then a € I for some k, ra € I, C I, I is then an ideal.

o0
By Definition |3.26] every ideal is principal. Thus I = (a) for some a € D. a € [ = U I;. Thus a € Iy for
j=1

some N € N.
Therefore I = (a) C Iy C Iny1 C -+ C 1. Then Iy = Iy =---=1. O

Theorem: 3.37:
Every PID is a UFD.

Proof. We show that factorization is possible and is unique in PIDs.
Let D be a PID.

Factorization: Suppose a € D is a non-zero non-unit element.

We can write @ = a;b; where a; is not an unit. We can iteratively factor ay and write ap = ag4+1bg+1,
where ag41 is not a unit.

Then we form a divisibility chain aqla, azl|aq,..., agr1]|ag. Thus {(a) C (a1) C --- C {ax) C -+ by Defini-
tion

By Lemma[3.7] 3N s.t. {(an) = (an41) =+ = (ap) for all n > N.

By Lemma |3.6, ax and a, are associates for all n > N. Thus ay = pu for p irreducible and u unit.

Then a = pyx; for some irreducible p;. Iterate on xy = prir1TE1 where pgq irreducible.

(1) C -+ C (xn) = (¥n41). xn is irreducible. Set zxy = py+1. Then a = py---pyi1 where p; are
irreducible.

Uniqueness: Suppose a = p1---p, = q1 - - - ¢s. We show taht r = s and p; = u;q;.

Assume 7 < s. pila = pi|qi - - gs, then pi|g; for some j. Reorder s.t. pi|gi. g1 = uip1 s.t. wy is a unit,
since ¢ is irreducible.

Then p1(p2 - - - pr) = p1(uaqa - - - qs). Iterate and we get ug - - - urqr41 - - - gs = 1. This means that g4 ---¢s =
1, which is a contradiction. O
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3.6.4 Euclidean Domain

Definition: 3.28: Euclidean Domain

An integral domain D is known as a Euclidean domain if 3N : D — N (norm function) s.t.
1. If 0 # a,b € D, then N(a) < N(ab)
2. If a,b € D with b # 0, there exists ¢,7 € D s.t. a = bg+ r with r =0 or N(r) < N(b)

Example: Z with N(m) = |m|, K[z] with N(f(z)) = deg(f) are Euclidean domains.
Example: Show that the Gaussian Integers Z[i| = {a + bi : a,b € Z} is a Euclidean domain.

Proof. Define N(a) = aa = |af?. If a = a + bi, N(a) = a® + b?
We show that the two properties in Definition [3.28] are satisfied.
Let 0 # a, 8 € Z[i]. N(aB) = apaB = aaBB = N(a)N(B) > N(a), since N(x) > 1 for any = # 0 € Z[5].

Let o, 3 € Z[i] with 8 # 0. Write a = a + bi, 8 = ¢+ di. Then g~} = 031632

c—di 1 (
2+d> 2+ d?

aBt = (a+bi) (ac 4+ bd) + (bc — ad)i)

. 1 1
= (q1 +71) + (g2 + r2)i, where — B <ry,rg < 57(11,(]2 € Z

= (q1 + qoi) + (r1 + 720)

Let v = q1 + qoi € Z[i]. o = By + B(r1 + r2i). Since «, B, € Z[i], then p = S(r1 + r2i) € Z[i] (Rings are
closed under addition and multiplication)

N(p) = BB(r1 +r20)(r1 — 720) = N(B)(r] + 73) = 3 N(B) < N(B)
Thus Z[i] is a Euclidean domain. O

Theorem: 3.38:

If D is a Euclidean domain, then it is a PID.

Proof. Let I C D be an ideal. We want to show that I = (a), i.e. I is principal.

Take b € I s.t. N(b) is minimal among all elements from I, (b) C I.

Take a € I, find ¢, r with a = bg + r where r = 0 or N(r) < N(b).

Note that N(r) < N(b) is not possible, otherwise N (b) is not minimal.

Therefore r =a—bg=0€ 1. a=bg € (b). I C (b). Therefore I = (b). I is principal. O
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3.6.5 Summary of Integral Domains
Commutative Ring with 1 D Integral domain 2 UFD D PID D Euclidean Domain 2D Field.
Example:
1. Commutative Ring with 1: Zq3, 3-4 = 0 € Z1o, thus not an Integral domain
2. Z[iV5]: 6 =2-3 = (1 —1iv/5)(1 +i/5), factorization is not unique, thus not a UFD
3. Zlx]: (x,2) is not principal. Q[z,y], (z,y) not principal. Thus not PID.
4. Z[3(1+14v/19)] is a PID but not Euclidean domain
5. Z, K[z] are Euclidean domain, but not fields
6. Q, R, Fp, Z, are fields.
In commutative ring with 1, we always have prime=-irreducible.
Starting from UFD, we have prime<irreducible.

Note: in field, there is no irreducible or prime. Every element is a unit.
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4 Fields

Consider Zg[z]/(2? + 2 + 1), 22 + 2 + 1 is irreducible in Zs[x]. Zolx]/(2® + x + 1) is a field.
Define Zy(a) = {a + ba : a,b € Zy,a? = a + 1}, where « is the root of 22 +z + 1.

Zo(a) ={0,1,r,cx + 1}. char(Za(ar)) = 2, i.e. Vo € Za(a), z+ 2 =0

Sometimes, we write Za(a) = Fp2 = Fy. It is a finite field of order 4.

Facts: Every finite field is of order p” for some prime p and charactersitic of p. There is only one finite field
up to isomorphism of any given order, Fjr. To construct Fjr, we find an irreducible degree r polynomial

f(x) € Zy[x], then Fyr = Zp[z]/(f(x)).
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5 Lie Algebra

5.1 Basic Definitions
Definition: 5.1: Lie Algebra

Let F be a field (e.g. C,R). A Lie algebra L is a vector space together with a bilinear map known
as the Lie bracket [-,-] : L x L — L s.t. for all x,y,z € L:

e Alternating: [z,z] =0

e Jacobi Identity: [z, [y, z]] + [7, [z, y]] + [y, [z, 2]] = O

If char(F) # 2 (i.e. 1+1#0), then [z,2] =0 < [y, z] = —[z,y], Vz,y € L.
Proof. (=) [y,2] " E M [y, 0] — [o +yox o] 2 2] - 2, a] — [1,9] — [y.2] - [v.9] = ~ (2]
(<) [x,2] = =[x, 2] = [z,2] + [z,2] =0, so [x,z] = 0. O

Definition: 5.2: gl (F)

gl (F) = {F™*} all n x n matrices with entries in F is a Lie algebra. [A, B] = AB— BA (commutator).

Proof. Alternating: [A, A] = A% — A2 =0.
Jacobi identity: [A,[B,C]] +[C,[A, B]] + [B,[C,A]] = [A,BC — CB] + [C,AB — BA] + [B,CA — AC]
= ABC—-ACB—-BCA+CBA+CAB-CBA—-ABC+BAC+BCA+BCA-BAC—-CAB+ACB =0 O

Definition: 5.3: sly(C)

oly(C) = {(Z Z) L 0} — {2 € gl,(C) : Tr(z) = 0}

. 0 1 0 0 1 0
Alternatively, slo(C) = span{e, f, h}, where e = <0 0) Jf = (1 O) yh = <0 _1>

Proof. Since sla(C) C gly(C), we only need to check the span set is closed under the bracket.
e ) (R T M I

’ 0 -1)\0 0 0 0/\0 -1 00 0 0 00
Similarly [h, f] = =2f, [e, f] = h.

Definition: 5.4: Derivation

Given an algebra A, a linear map D : A — A is a derivation if D(ab) = aD(b) + D(a)b.

Theorem: 5.2:
Der(A) ={D: A — A: D is a derivation} is a Lie algebra with [D1, Da] = D1 Dy — D2D;.




Proof. We need to check that if Dy, Dy € Der(A), then [Dy, D3] € Der(A).

(D1, Do(ab) = Di(Ds(ab)) — Da(Di(ab)) = Dy(aDa(b) + Da(a)b) — Da(aDy(b) + Dy (a)b)
— aDyDy(b) + D1(a)Da(b) + D1Da(a)b + Do(a) Dy ()
— aD3D1(b) — D2(a)D1(b) — Di(a)D2(b) — D2Di(a)b
= a(D1D2 — .DQDl)( ) + (DlDQ — Dng)( )b
= a[D1, D2|(b) — [D1, D2](a)b

Definition: 5.5: Witt Lie Algebra

Witt = Der (C [2,27!]) =span{l, : n € Z}, I, = —z”“d%. (Derivation on Laurent polynomials)

d d
_ m+1 n+1
[l In] [ & dz’ & dz]

d d d d
— ,m+l = n+l1 2 )\ _nt+1 2 m+1 %
: dz <z dz> © oz <z dz>

d d? d d?
_ .m+1 n n+1 n+1 m m+1
=z <(n +1)z - +z d22> — 2z <(m +1)z - +z d,22>

m+n)+1 i
dz

= —(m — n)z( = (m — n)lm+n

Definition: 5.6: Cross Product

a b1 azbs — azbo
R3 with cross product | as | x [ b2 | = | asbi — a1bs | is a Lie algebra.
as b3 arby — agby

Note: u x (v X w) = (u-w)v — (u-V)w

Definition: 5.7: Lie Group

Lie group G is a group that is a smooth manifold. Lie algebra can be written as tangent space to
Lie group at identity. i.e. g = T.(G) =tangent space at the identity (corresponding Lie algebra).

Example: SLy(C) = {4 € C**?:det A =1}, v: R — SLy(C) s.t. v(0) = <(1) (1)>

Take v(t) = (i((g Zg;), a(t)d(t) — b(t)c(t) = 1 Vt by definition of SLy.
With the identity v(0), we have a(0) = d(0) = 1,b(0) = ¢(0) = 0.
4 (ad—bc) = d'd+ad —bc—bd = 0. Att =0, a’(0)+d'(0) = 0 (trace zero), /(0) = <CCL,((8; d’(8)> € slp(C)

(tangent space at identity)

Theorem: 5.3:

A Lie algebra is abelian if [z,y] = 0,Vx,y. Every one dimensional Lie algebra is abelian.
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Theorem: 5.4:

Let E;; =matrix with all zeros except a 1 in Ei, j]. [Eij, Ex] = 06 Ey — 6uEk;-

Theorem: 5.5: Sympletic Group and Sympletic Algebra

The Sympletic group is SP4(C) = {A € C**: ATJA =J} where J = < OI 13) sp4(C) =
—1I

{zeC™ . JX — XTJ =0}

5.2 Subalgebra, Ideals, Quotients

Definition: 5.8: Subalgebra

Given a Lie algebra L and a vector subspace K C L, K is a Lie subalgebra if for all z,y € K,
[z,y] € K.

Example: sl,(F) = {x € gl,(F) : Tr(z) = 0} is a subalgebra of gl,,(F).
Note: Since Tr(zy) = Tr(yz), then Tr([z,y]) = 0 for all z,y € gl (F).

Example: b, (F) =upper triangular matrices, n,(F) =strictly upper triangular matrices,
span {l_1,lo,l1} CWitt are examples of subalgebra.

Definition: 5.9: Ideal

A Lie subalgebra I C L is an ideal if Vz € L,i € I, [i,z] € I, or equivalently, [I, L] C I.

Example: sly(F) C gly(F) is an ideal.
. fa b _(x oy
Proof. Take i = (c —a) € sly(F), x = (z w> € gly(IF).

. . . ax + bz . ax + cy . bz — cy .
[i,x] =iz —2xi = — =
. cy — aw . cy — bz . cy — bz

Tr([i,z]) = 0, so [i,x] € sla(F). O
Example: by (IF) C gl (F) is not an ideal.
1 0 0 0
Proof. Take (0 O> € by(F), z = 1 1> € gly(F).
O

1 0 0 0 0 0
6 0)-( D] -5 9 enem

Given a Lie algrebra L, its center is Z(L) ={z € L: [z,2] =0,Vz € L}

Theorem: 5.6:

Z(L) C L is an ideal.




Proof. (i)Vector subspace: Suppose a,b € F, z,w € Z(L).
Take x € L, [x,az + bw] = a[z, z] + blz,w] = 0. az 4+ bw € Z(L).

(ii) Absorption: take z € Z(L),x,y € L, [y, [z,z]] = [y,0] =0, so [z, 2] € Z(L). O

Definition: 5.11: Quotient Lie Algebra

Given a Lie algebra with ideal I C L, the quotient Lie algebra is the quotient vector space L/I =
{z+TI1:xel}with[z+I,y+1]=]z,y]+1I

Theorem: 5.7:

Suppose I C L is a subalgebra, then L/ is a Lie algebra < I is an ideal.

Proof. (<) Suppose I is an ideal, we want to show that L/I is a Lie algebra

Alternating: [+ [,z +I] = [z,z]+1 =0+ 1.

Jacobi: [z +I,[ly+1,z+1]|+ - =z, [y, 2]]---+1=0+1.

Well-defined: Suppose x + I =2'+ I, y+I1 =y +1,ie. x—a' =i1€l,y—1y =iy €I

(2L y+1] = [z,y]+1 = [/ +in, o' +io] +1 = [y [+ [in, o]+ 2 o]+ i, do]+1 = [,/ )+ 1 = [/ + 1,y +1].

(=) Suppose z € Lyi € I, [x,i|+ =[x+ 1,i+I]=[z+I1,0+I]=[z,00+]=0+1,so0 [z,i] €I O

Theorem: 5.8:

Suppose that I, J C L are ideals. Then so are
1. InJ
2. I+J={i+j:iel,jeJ}
3. [I,J] =span{[i,j]:i€1,j € J}

Proof. 1. Suppose k € INJ, x € L. Then k € I and k € J. By deifnition, [z,k] € I and [z, k] € J.
Thus [z,k] € INJ,so INJ is an ideal.

2. Suppose i +je€l+J,x €L, [x,i+j]=[x,i]+ [z, 5] el +JT

3. Suppose y € [I,J], then y = ay[i1, j1] + azliz, j2] + - - + anlin, jn]-
By Jacobi, [z, [ik, jk]] = — [k [%, ik]] — [ik, [z, jk]] € [I,J]. Then [z,y] € [, J] by linearity.

Definition: 5.12: Commutator Subalgebra

Given a Lie algebra L, its commutator/derived subalgebra is L' = [L, L] = span{[z,y] : x,y € L}.

Example: Find the commutator algebra of gly(C) and sla(C).

. 01 0 0 1 0 . 10
Proof. Forng((C),thebaswaree—(O O)’f_<1 0>,h—<0 _1>,z—<0 1).

[h,e] =2e, [h, f] = =2f, [e, f] = h, so e, f,h € gly(C)".

slo(C) = span{e, f,h} C gly(C)".

Note: [h,h] = [e,e] = [f, f] = [i,x] =0, so i ¢ gl,(C)'.

slo(C) = gly(C)’ i.e. commutator subalgebra of gly(C) is sla(C). Also sla(C) = sly(C). O
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5.3 Homomorphism, Isomorphism and Classification

Definition: 5.13: Lie Algebra Homomorphism and Isomorphism

Given Lie algebras L1 and Lo, a linear transformation ¢ : Ly — Lo is a Lie algebra homomorphism
if Ve, y € L1, we have ¢([z,y]) = [¢(z), #(y)]. If ¢ is bijective, then it is a Lie algebra isomorphism.
Kerp ={z € L1 : ¢(x) =0}. Im¢p = {y € Lo : y = ¢(x) for some x € L;}.

Theorem: 5.9: First Isomorphism Theorem

Suppose ¢ : L1 — Lo is a Lie algebra homomorphism, then
1. Kergp C L; is an ideal
2. Im¢ C Lo is a subalgebra
3. Li/Ker¢ = Img

Proof. 1. Suppose z € Kere, y € L1, ¢([z,y]) = [¢p(x), d(y)] = [0, ¢(y)] = 0, so [z, y] € Kerg.

2. Suppose y1,y2 € Im¢, then Jx1, 9 € L s.t. (1) = y1 and ¢(x2) = yo
Then [y1,y2] = [¢(21), d(22)] = ¢([x1, 22]) € Img

3. Define ¢ : L1 /Ker¢ — Im¢ s.t. ¥(z + Kerg) = ¢(x)
Well-defined: suppose x1 + Ker¢ = z9 + Kerg, then 21 — x9 € Kerg, ¢(r1 —x2) = 0. Since ¢ is linear,
d(x1) — p(x2) = 0. Thus P(z1 + Kerg) = ¢(x1) = ¢(x2) = (2 + Kere).
Homomorphism: 1 ([z 4+ Ker¢,y + Kerg]) = ¢([z,y] + Kerg) = é([z,y]) = [#(z),o(y)] = [¥(z +
Ker¢), ¥ (y + Kerg)].
Injective: Suppose ¥ (z + Kerg) = 1(y + Kerg), then ¢(x) = ¢(y) by definition.
d(x —y) =d(x) — d(y) =0, so z —y € Kerg, = + Kerp = y + Kerg.
Surjective: Suppose y € Im¢, i.e. y = ¢(x) for x € Ly, then (z + Kerg) = ¢(z) = y.

O
Example: ¢ : gl,(C) — sly(C) s.t. ¢ <‘CL Z) = (5(“6_ 9) %(db_ a)>
Proof. Let A = (“ Z) B= <Z Z)
[9(A), (B)] = ¢(A)p(B) — ¢(B)9(A)
(77 ) (T )
() (T )
_ <bz - bZ) — #((4, B))
If A € Kerg, then ¢p(A) =0, 50 b=c =0, a = d.
Kerg — {<g 2) :aEC} ~ C,
Thus gly(C)/C = sly(C). O
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Example: 7:gl,(C) - Cs.t. « <CCL Z) =a+d.

Kerm = sly(C), so gly(C)/sla(C) = C.

Note: gly(C) = sly(C) @ C = span{e, f,h} @ span {i}.

Theorem: 5.10:

Suppose Il : L1 ® Lo — Ly, Ily : L1 @ Ly — Lo s.t. H1($,y) =z, Hg(x,y) =Y.
Then Kerlly = {0} D Lo= Lo, L1 P LQ/LQ = [,. Kerlls = L1 & {0} =14, L1 Lz/Ll = Lo.

Theorem: 5.11: Second Isomorphism Theorem

If I and J are ideals of L, then (I + J)/J = 1/(INJ).

Proof. Consider ¢ : [ +J = I/(INJ), ¢(i+j) =i+ INJ.
i+jeKerp & o(i+j)=0+INJei+INJ=0+INJesiclnJsicl sitjel.
So Ker¢ = J. By Theorem [5.9] (I +J)/J = I/(INJ).

O

Theorem: 5.12: Third Isomorphism Theorem

If I and J are ideals of L, and I C J, then (L/I)/(J/I) = L/J.

Proof. Consider ¢ : L/T — L/J s.t. Y(x+1)=z+J.

Well-defined: suppose x + I =y + I, thenz—yel C J,sop(z+1)=x+J=y+J=9vy+I).
Homomorphism: ¢([z + [,y + I]) = ([z,y] + 1) = [z,y]| + T =[x+ Sy + J] = [Y(x + I),¥(y + I)].
Kernel: s+l €eKerp @ o+ J=0+J szveJor+1e ]/l < Kerp=J/1.

Thus (L/1)/(J/I) = L/J by Theorem [5.9] O

5.3.1 Classification

Definition: 5.14: Adjoint

For v € L, define ad, : L — L s.t. ad,(w) = [v,w].

1-Dimension: L = span {v}.
If x,y € L, then x = av, y = bv, [z,y] = [av, bv] = abv,v] = 0.
All 1D Lie algebra are abelian.

2-Dimension non-abelian: Let L = span {v, w}.

If 2,y € L, then x = av + bw, y = cv + dw for a,b,c,d € F.

[,y] = [av + bw, cv + dw] = aclv, v] + ad[v, w]| + be[w, v] + bd[w, w] = (ad — be)[v, w]

Note [z,y] € L', so L' = span {[v, w]}.

Set = = [v, w], extend to a basis {z,y} of L.

[x,y] = ax. Choose y s.t. [z,y] = .

There is a single 2D non-abelian Lie-algebra up to isomorphism. We can find a basis {z,y} s4. [z,y] =
x.

3-Dimension non-abelian: Consider L' = span{[z,y] : z,y € L}.

1. dim L' = 0 & L is abelian.
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2. When dim L' = 1:

(a) L' Cc Z(L):
Since L is non-abelian, we can find z,y € L s.t. [z,y] # 0.
Define z = [z,y], then L' = span{z}, [L, z] = {0}
Claim: {z,y, 2} forms a basis for L

Proof. Suppose a,b,c € Fs.t. ar +by+cz=0
0=10,y] = [az + by + cz,y] = alz,y] + bly,y| + c[z,y] = az, s0o a =0
0= [z,0] = [z,ax + by + cz] = a[z,z] + bz, y] + c[z,2] = bz, 50 b =10
Combining the above with ax + by + cz =0, we get cz =0=¢c = 0. O
Example: Heisenberg Lie algebra: L = span{a_1,ag,a1}, s.t. [a1,a_1] = ag, ag € Z(L)
More generally, Heisenberg Lie algebra is Lie algebra with a_,,, ...,a_s,a_1, ag, a1, aa, ..., a, where
[ak, ai] = kdg41,0a0.
(b) L' ¢ Z(L)
Take L' = span{z}, note x ¢ Z(L).
Jy € L s.t. [x,y] #0, also [z,y] € L’ = span{z}.
Thus [z, y] = x by rescaling.
Now set L = span {z,y} C L is a subalgebra, and is a 2D non-abelian Lie algebra.
Extend {x,y} to {z,y, 2} a basis of L.
Note: [z,w] € L' so [x,w] = az, [y,w] € L', so [y, w] = bz for a,b € F.
Set z = ax + By + yw, [z,2] = (B + ay)z, [y, 2] = (b — a)z.
Choose v =1, f = —a, a = b, then [z,2] = [y,2] =0, so z € Z(L).
L=L® Z(L) is a direct sum of a 2D non-abelian Lie algebra with a 1D abelian Lie algebra.

3. When dim L' = 2.
Claim: L’ is abelian.

Proof. Take {y, z} =basis of L', extend to {z,y, 2z} basis of L.
Since y € L', then y = [y1, y2] for y1,y2 € L.

ady(w) = [y, w] = [[y1, y2], w]

= [[w,y1], 2] — [[y2, w], 1] (By Jacobi)
= [y2, [y1, w]] + [y1, [y2, w]] (Alternating)
= ady, ady, (w) — ady,ady, (w)

= [ady,, ady,] (w)
Thus ad, = [ady,, ad,,] and Tr(ad,) = Tr ([ady, , ady,]) = 0.
If [y, z] = ay + bz, then ad <8 a> Since Tr(ady) =0, b= 0, so [y, 2] = ay.
Thus L’ is abelian and [y, z] = 0.

O

Note also L' = span{[z, y], [a:, 2], [y, 2]}. So we get two basis for L'. By = {y, 2}, By = {[z, 9], [z, 2]}
ad, : L' — L’ changes basis from B; to B, ad,; is an isomorphism.
The final structure is determined by ad,.

(a) We can choose x € L s.t. ad, is diagonal.
Let Ly = span{x,y, z} s.t. [x,y] = v, [z, 2] = bz, ad, = <1 0)

0 b
Let Lp =span{X,Y,Z}, [X,Y]| =Y, [X,Z] = BZ.
Suppose ¢ : Ly, — Lp is a Lie algebra isomorphism.
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¢($) =X +aY +a3”Z

o(y) =1 X + Y +c3Z . We look at the system {f(

(;5(2) = le + d2Y + ng (b
givesB:borB:%.

0 A
[x,y] = Ay, [z, 2] =y + Az, s0 [x,y] =y, [z, 2] =y + z with rescaling.
4. dimL' =3
Claim: dh € L s.t. adp : L — L has a non-zero eigen value.

(b) ad, is not diagonalizable, it can be chosen s.t. ad, = (/\ 1).

Proof. Take 0 # x € L. If ad, has a non-zero eigen value, then done, set h = z
Otherwise, all eigenvalues of ad, are 0. Extend {x,y, z} a basis of L
L=1 = span{[a:,y], [Iv Z]’ [ya Z]}
010
The Jordan Canonical form of ad, is |0 0 1| over C.
0 00
Choose z,y,z s.t. [z,y] =z, [z, 2] =y, then [y,z] = ady(z) = —x. Set y = h.
Let corresponding eigenvector be e, [h,e] = ae, a # 0
Rescale s.t. [h,e] = 2e. Also note that [h, h] = Oh, [h, f] = —2f, so eigenvalues of h are 0,2, —2.
Also h € L', so Tr(ady) = 0.
[h7 [67 f]] = _[f7 [h7 6]] B [67 [fa h]] = _[f7 26] - [67 2f] =0, so [67 f] =h by Scahng-
Thus dim L' = 3 & L' sl (C). O

5.3.2 Solvable and Nilpotent Algebras

Theorem: 5.13:

Given a Lie algebra L and an ideal I C L, L/I is abelian < L' C 1.

Proof. (=) Suppose L/I is abelian.

Take z € L, z = a1z, y1] + - - + an[®n, yn] With z;,y; € L.

2+ 1 =aifr, ]+ Fap@n,yn] + I =arfzr + Ly + I+ Fapen + L,yn + 1) =0+ 1,50 2 € I and
L' clI

(<) Suppose L' C I, take x + I,y + I € L/I. Note [z,y] € L' C I.
Then [z,y]+ I =0+1, [z +I,y+ 1] =0+1I,s0 L/I is abelian. O

Definition: 5.15: Solvable Lie Algebra

For n € N, inductively define LV = I/, L) = [L™) L] = (L) and get a string of ideals
LW LD ... c L® c LM ¢ L. L is solvable if there is N € Ns.t. L) =0.

Example: L = gl,(F) = {(Z Z) ta,b,c,d e IF}.

L' =sly(F), L&) = sly(F) = sly(F). So L™ = sly(F) for n > 2.
Thus gly(F) and sly(F) are not solvable.
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Example: L = {(g i’) cabce IF}.
G2 @66 )-GD6 )
=06 )

L1 = <8 a) :aGF}.

(696656566~

Therefore L(?) = 0 and L is solvable.

Theorem: 5.14:

Suppose L is a Lie algebra with ideals Iy, ..., Iy s.t.
1. 0=IyCIy1C---LbclhCcly=1L
2. For all0 <n < N, I,,_1/I, is abelian

then L is solvable.

Proof. By Theoremu L/I; is abelian, then L’ C I;. Similarly, since I1/I5 is abelian, then I] C I, thus
L® I Cb.

I5/Is is abelian, then I} C Is, L&) c I\? ¢ I, C I,

Inductively, V0 < n < N, we have L™ c I,,, LN) ¢ Iy =0, so L&) =0, L is solvable. O

Theorem: 5.15:

Suppose L is a Lie algebra and K is a subalgebra. Then L solvable = K solvable.

Proof. K'=[K,K] C[L,L] =1L, so K™ c L™,
Find N e Ns.t. L) =0 , then K(N)CL(N)—O SO K(N)—O K is solvable. O

Theorem: 5.16:

Suppose L is a Lie algebra and I C L is an ideal. Then [ and L/I are solvable = L solvable.

Proof. Claim: (L/I)™ = (L™ 4 I)/I for all n € N.

Base case: when n =0, (L+1)/I = L/(LNI)=L/I by Theorem[5.11]and I C L.

IH: Suppose for some k > 0, we have (L/1)*) = (L*) +-1)/1I.

Consider (L/I)#+1) ((L/I)“f ) = ((L® +1) /1) = (L<k+1> +I'+1)/I = (L% 4 1)/1.

Take M,N € Ns.t. I =0, (L/T)™) =0, then 0 = (L/I) = (LW + 1)/TI.

So (LW) 4-1) C I, and thus L(N) C I LIM+N) — ={L N)} c IM) =0, so LM+N) =0, L is solvable. [

Theorem: 5.17:

Suppose L is a Lie algebra and I,J C L are ideals. Then [, J solvable = [ + J solvable.
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Proof. Take M, N € Ns.t. I = JN) =0, By Theorem [5.11] (I 4 J/J)) = (1/1 0 J)M) = (10D 4 [y
NN =InJ/INJ =0
(I+J)/J and J are solvable, so I + J is solvable by Theorem [5.16|

O

Definition: 5.16: Radical of Lie Algebra

The radical of L, rad(L) is the unique solvable ideal of L containing all solvable ideals of L.

Theorem: 5.18:

Given a finite dimensional Lie algebra L, there is a unique solvable ideal containing any solvable
ideal of L.

\ y

Proof. Consider C'= {I C L: I is a solvable ideal}. Take R € C s.t. dimI < dim R for all I € C.
Note VI € C', we have RC R+ Iand R+1€C

Then dim R < dim(R + I) < dim R. So dim(R + I) = dimR, I C R.

Any other R’ will be s.t. R € R and R C R, so R = R/, it is unique.

O

Definition: 5.17: Simple Lie Algebra

We say a non-abelian Lie algebra L is simple if it has non-trivial ideals. A Lie algebra L is semisimple
if radL = 0 < it has no non-trivial solvable ideals.

Theorem: 5.19:

If L is a Lie algebra, then L/radL is semisimple

Proof. Ideals of L/radL are of the form I/radL where radL C I.
Suppose I /radL is solvable, then together with radL is solvable, using Theorem we have [ is solvable.
Then radL C I C radL, I =radL, so I/radL = 0, L/radL is semisimple. O

Definition: 5.18: Nilpotent Lie Algebra

Given a Lie algebra L, inductively define L' = L/, L"*! = [L, L"]. L is nilpotent if LY = 0 for some
N e N.

Theorem: 5.20:

Suppose L is a Lie algebra, then L/Z (L) is nilpotent = L is nilpotent.

Proof. Claim: (L/Z (L))" = (L™ + Z(L))/Z(L).
If L/Z(L) is nilpotent, then we have N € N s.t. 0= (L/Z(L))N = (LN + Z(L))/Z(L).
So LN c Z(L), LNt = [L,LN] C [L, Z(L)] = 0.

O

Theorem: 5.21:

Every nilpotent Lie algebra is solvable, but not every solvable Lie algebra is nilpotent.
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Definition: 5.19: gl(V) Nilpotent Element

Given a vector space V, gl(V) = {2z : V — V : 2 is linear}. If 2 € gl(V),  # 0 is nilpotent if 27V = 0
for some N € N.

2
0 a 00 0 a). .
Example: (0 0) = <O O>’ SO (O 0) is nilpotent.

2 3

0 a b 00 0
Example: |0 0 ¢] =10 0 0], 10
0 0O 00 O 0

o O QR

b 0 b
c|] =0s0 (0 ¢ | is nilpotent.
0 0 0

o O Qe

Definition: 5.20: Adjoing Operation on gl(V)

Given any z € gl(V), x: V =V, adg : gl(V) — gl(V) is defined as ad(y) = [z,y] = 2y — yz.

Theorem: 5.22:

If x € gl(V) is nilpotent, then ad, : gl(V') — gl(V') is nilpotent.

Proof. Suppose y € gl(V).

ad(y) = zy — yx.

(ady)*(y) = [z, 2y — ya] = 2%y — 2xyx + ya?

(ad.)3(y) = [z, 2%y — 2zyx + y2?] = 23y — 32%yx + 3xyz? — ya?
n

In general (ad,)"y = ;0(_1)/% <Z> g Ry gk,
Suppose zV =0 for N € N, then

2N

(aday)*Ny = (~1)F (2,]:) a?Nhy
k=0
N-1 2N
_ N <Z(_1)k (2]iv>xN—kyxk> n <Z(_1)k<2]iv)x2N—ky$k—N) AN =0
k=0 k=N

5.4 More Theorems

5.4.1 Invariance Lemma

Definition: 5.21: Eigen Transformation

Let H C L C gl(V) be subalgebra and A : H — F be a linear transformation (A € H* dual space).
Define V), = {v € V : h(v) = A(h)v,Vh € H}, v is an eigenvector of every element of H.

Theorem: 5.23:

V) C V is a subspace

Proof. Suppose v,w € V), a, 8 € F. Take h € H.
h(av + pw) = ah(v) + h(w) = ai(h)v + BA(h)w = A(h)[av + Sfw], so av + fw € V). O

61



Definition: 5.22: Weight

A€ H* is a weight if V), #0

r s i
Example: H = 0 w v|:rstuv,welF ) Cgly(F)=gl(F?).
0 w
r s t 1 1
0 v v 0] =r O),soeelﬁ‘3 is an eigenvector for all h € H.
0 0 w 0 0
r s a
Define A€ H* by A |0 w v | =7, V)= 0] :aelF ) =span{e}.
0 0 w 0
a 0 0
Example: H = 0 b 0]:at+b+c=0, Csl3(F) C gl(F?).
0 0 ¢
1 0 O 00 O
H =span{hy, ho}, where hy = [0 —1 0], ho=]0 1 O
0 0 O 00 —1

e1 is an eigenvector for hy with value 1, ho with value 0.
eo is an eigenvector for h; with value -1, he with value 1.
e3 is an eigenvector for hy with value 0, ho with value -1.
Define A; : H — F by A1(h1) =1, A1(he2) = 0 and V), = span {e;}.

Lemma: 5.1: Invariance Lemma

Suppose that L C gl(V') is over a field of char = 0, dim(V) < co. I C L is an ideal and A\ € I* is a
weight. Then V) is an L-invariant subspace.

Proof. We want to show that if v € V), x € L, then zv € V).

Suppose v € V), x € L. Take h € I.

h(zv) = (hz)v = (zh + [h, z])v = xh(v) + [h, x]v = A(h)xzv + A([h, x])v, since h € I, [h,x] € 1.
Then zv € V) if A[h,z] = 0.

Consider W = span {’U,SU’U,Z’QU, ...,a:”v}, Bw = {v,zv,...,2™v} is a basis for W.
AMy) = *

Suppose y € I, we claim [y|p,, =

w *

0 "

0 0 Aly)
Base case: left most column, y(v) = A(y)v+0-zv+0 -2 +---4+0-2™0.

IH: Suppose y(zFv) = agv + arav + - - + ap_128 1o + A(v)zFv

Consider y(z*+1v) = yz(zFv) = (zy — [2,9]) (2"v) = apzv + 02?0 + - - - + ap_12Fv + A(v)2F o — [z, y]zF.
Since [z,y] € I, by LH. [z,y]z*v = Bov + Brzv + - - - + Br_12¥ 2o + \([z, y])2Fv.

Then y(zF 1) = yov + y120 + - - - paFv + A(v)2F o

Thus, W is z-invarint by construction and h-invariant for h € I.

Set y = [h,x], y € I. Tr(y) = (n+ 1)A(y), then Tr(y) = Tr([h,z]) = 0. Thus (n + 1)A(y) =0, A(y) =0
Then A[h, z] = 0. Thus we have V) is an L-invariant subspace. O
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5.4.2 Engel’s Theorem

Let V' be an n-dim vector space and x : V' — V be a nilpotent linear map. Then 3 a basis B of V
s.t. [z]p is strictly upper triangular.

Proof. Since z is nilpotent, there exists N € N s.t. 2V = 0. For v # 0, v € V, we have 2V (v) = 0

Let m € N be minimum s.t. 2 (v) = 0 and w = 2™ (v) # 0.

w # 0 and x(w) = 0, so w € ker(z) = Nul(z) # {0}

Base case: n =1, v = span{w}, [z] = 0 is strictly upper triangular.

IH: suppose the statement is true for any k-dim vector space.

IS: Let dim(V) = k4 1, set W =span{w} C V, then dim(V/W)=k+1-1=k%

Withz:V -V, I1: V - V/W, define z =Hoz s.t. z(v+ W) =xz(v)+ W

Apply IH to V/W, B = {v1 + W,...,vp + W}, where [T]5 is upper triangular.

re. V1 <j <k, ZZ‘(U]' + W) =a1v; + -+ aj—1v-1 + Ww.

Set B = {w,v1, ..., 0%}, (vj) = apw + aqv1 + - - aj_1vj_1, so [z]p is strictly upper triangular. O

Suppose V' # 0 and L C gl(V) is s.t. every « € L is nilpotent. Then Jv # 0 € V s.t. x(v) = 0 for

all x € L, or equivalently, n Nul(x) # 0.
zel

Proof. Base case: dimL =1, L = span{z}. Find v € V, 2(v) = 0 but v # 0.
IS: Suppose the statement is true for all Lie algebras of dimension up to k.
Suppose dim L = k + 1

Claim: there is an ideal I C L s.t. dim I = k.

Proof. Let A L be a subalgebra of max dimension. dim(A) < dim(L). B
Consider the quotient vector space L/A and ad : A — gl(L/A) sit. ad(a) = ad, i.e. adg(z + A) =
[a,z] + A.ad is a Lie algebra homomorphism

[ada, ady](x + A) = (adsad, — adyad,)(z + A)
ady([b, 2] + A) — ady([a, ] + A)
[a, [b, x]] — [b, [a, x]] + A

= [[a,b],z] + A = aa[a7b] (x+ A)

A =Tm(ad) C gl(L/A) is a Lie subalgebra.

Then dim(A) < dim(A) < dim(L) = k + 1.

Since x is nilpotent Va € L, then Ya € A, a is nilpotent. ad, is nilpotent, and A satisfies TH.
Then Jy+ A€ L/Ast. y#0, but ad,(y + A) = 0 Va € A.

Then Va € A, [a,y] + A=0+ A, so [a,y] € AVa € A. Ais an ideal with dim A = k. O

AG A®span{y} C L, then L = A @ span {y}

Apply [Hto A. u#0€ V sit. a(u) =0forallac A. W = ﬂ Nul(A4) # 0.

acA
So ylw € gl(W), and there exists w # 0 € W s.t. y(w) =0

Takez € L, x =a+ay,a € A, a € F, z(w) = a(w) + ay(w) = 0. O
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Theorem: 5.24: Engel’s Theorem

1. Suppose L C gl(V) is a Lie algebra s.t. every € L viewed as a linear transformationz : V. — V
is nilpotent. Then there is a basis of V', B s.t. Vz € L, [z]p is strictly upper triangular.
2. Suppose L is a Lie algebra, L is nilpotent < Vz € L, ad, is nilpotent.

Proof. 1. Base case: n =1 is Lemma
IS: suppose for all Lie algerbas of dim < k, the statement holds.
Suppose dim(L) =k + 1
By Lemma5.3} Ju#0 € V s.t. z(u) =0, Vo € L. Set U = span {u}.
Vz € L, consider x : V —Vand I1: V - V/U, 2(v+U) = z(v) + U.
dim(V/U) =k, so B = {vy; + U, ..., v + U} forms the basis. Define L = {z :z € L}. VZ € L, []5 is
strictly upper-triangular.
Z(v+U)=xz(v)+U. Set B ={u,v1,...,v;}. Since Vz,z(u) = 0, [x]p is strictly upper-triangular.

2. (=) Suppose L is nilpotent, then IN € Ns.t. LY =0
Take x,y € L, [z, [z, [z, ..., [z,y]]..]] € LV = 0. i.e. (ady)V " (y) =0, so (ad,)V "1 =0

(<) Suppose ad,, is nilpotent Vx € L.

Consider ad : L — gl(V) s.t. ad(z) = ad,. ad is a Lie algebra homomorphism.
Let L = Im(ad). Apply previous part, [ad,]p is strictly upper triangular.

By iteratively commuting strictly upper triangular matrices, we get a zero matrx.

Theorem: 5.25:

Suppose L is a Lie algebra over C, then L is nilpotent < Every 2-dim Lie subalgebra is nilpotent.

5.4.3 Lie’s Theorem

Suppose V = C™ and z : V — V is linear (z € gl(V)), then there exists a basis B of V s.t. [z]p is
upper triangular.

Proof. First show that x has an eigenvector.

Take any v # 0 € V. Consider {v, v, 2%, ..., x”v} C V, which is linearly dependent.
Take 1 < m < n to be min s.t. {x,zv,...,2™v} is linearly dependent.

Find ag, aq, ..., am € C s.t. agv + ajzv + - - - apx™wv = 0 where au,, # 0.

Factorize the equation: au,(z — Aol)(z — A1)+ (x — A l)v =0

Take k to be min s.t. w = (z — Agg1) -+ (& — A l)v # 0

Now (x — Apl)w = 0, zw = Apw, w is an eigenvector of x with eigenvalue A = \j.

Induction on n:

Base n = 1: x acts a scalar multiplication

[H: Suppose the statement holds for all vector spaces of dim k and that V = Ck+!

IS: Let w € V be an eigenvector of x with value A, zw = Aw.

Consider z: V -V, I1: V —» V/Cw, z =M ox s.t. Z(v+ Cw) = z(v) + Cw.

Note: dim(V/Cw) =k +1—1= k. Apply IH to V/Cw, construct B = {v; + Cw, ..., v + Cw}.

Set B = {w,v1,...,v}, x(vj) = Bow + frvr + - - - + Bjv;, because z(v; + Cw) = frv1 + - - - + Bjv; + Cw.
Thus [z]p is upper triangular. O]
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Suppose V' = C™ and L C gl(V) is solvable. Then there is a v € V' that is an eigenvector Vo € L.

Proof. Induction on dim L.

Base n = 1 nothing to do.

IH: suppose the statement holds for all Lie algebra of dim k.

IS: when dim L = k + 1. If L is solvable, then L) = {0} for some N.

Then L' & L, otherwise, L™ = L for all n.

Take a subspace A G L s.t. dimA =4k, L' C Aand L = A® Cz.

Take z € L,a € A, [x,a] € [L,L] =L C A, so A is an ideal.

dim A = k, A is solvable, by IH, Jw € V s.t. w is an eigenvector for all a € A.

Let A : A — C be the corresponding weights aw = A(a)w.

Consider V) = {v e V : a(v) = ANa)v,Va € A}, w # 0 € V), then V) # 0.

Apply Lemma to V), € V, V) is L-invariant, then Vz € L, z(v) € V) for all v € V).
Consider Z|V>\ VA — Vi, Z‘VA S gl(V)\).

Jv € V) s.t. z(v) = po for p € C.

Claim: v is an eigenvector for all x € L.

Ifxrel,thenxz=a+ azforae€ A, a €C.

z(v) = a(v) + az(v) + AMa)v + apv + (A(a) + ap)v. O

Theorem: 5.26: Lie’s Theorem

Let V= C" and L C gl(V) be a solvable Lie algebra. Then there is a basis of V, B s.t. [z]p =
upper triangular for all x € L.

Proof. Induction on dim V: Suppose the statement holds for all vector spaces of dim V.

When dimV =k 4+ 1. Find v € V s.t. v is an eigenvector for all x € L.

Then z(v) = A(z)v for A\: V — C, A € V*.

Consider z : V — V/Cw s.t. Z(v + Cw) = x(v) + Cw.

L={z:x €L} Cgl(V/Cw). Define B = {v; + Cw, ..., v + Cw} s.t. [Z]5 is upper triangular.

Then B = {w,vy,..., v}, [x] g is upper triangular. O

Theorem: 5.27:

Let L be a Lie algebra over C, L solvable < L' is nilpotent.

5.5 Representation and Modules

Definition: 5.23: Representation

Suppose that L is a Lie algebra over F. A representation of L is a pair (¢, V'), where V is a vector
space over F, and ¢ : L — gl(V) is a Lie algebra homomorphism. If ¢ is injective, we say this
representation is faithful.

Example: Any matrix Lie algebra is a faithful representation of the underlying abstract Lie algebra.

Example: Given any Lie algebra L, the adjoint representation is (ad, L), where ad, € gl(L) is defined as
adx(y) = [x,y]
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Note: dim(gl(L)) = (dim(L))?

1 0
Example: Adjoint representation of slo. Let h — |0 ], e— | 1], f — 0) be the basis
0
2
0

0 0
0
0
)

0
adp(h) = [h,h] =0, adp(e) = [h, €] = 2e, adp(f) = [h, f] = —2f, adp, = (0
0

01
ade(h) = [e,h] = —2e, ad.(e) =0, adc(f) = le, f] = h, ade = —2 0 0)
0 0

0
0 -1 0
0 O O)
2 0 0
Example: Heisenberg Lie algebra (Fock Representation)
h = span ({an, : n € Z} U{k}), [am, an] = MOpminok, k € Z(h). V = Clz1,22,...] (vector field of polynomi-
als over C).
Let ¢ : h — gl(Clzy, x2,...]) s.t.

adf(h):[fvh}ZQfa adf(e):[fve]:_hv adf(f):(), ade = (

e ¢(ap) =multiplication by A € C
o dlan) = n%, n>0

o pla_y) =xp,n>0

e ¢(k) =multiplication by 1

When m,n > 0,

o [0(am), dan)) = [mals, nol| = mn (5205 - 58—) =0
¢(k), m =
o [Blam), (an)] = [mgle an] = mlen — man 5t = {g”‘ Ao =

Definition: 5.24: Module

Given a Lie algebra L over a field F, an L-module is a vector space V over F with amap L xV — V|
(z,v) — x - v with

L (ax 4 By) -v=afz-v) + By - v)

2. - (av+ pw) = afz-v) + Bz - w)

3. [wyl-v=x-(y-v)+y (z-v)
i.e. This is a linear transformation.

Theorem: 5.28:

The notions of a Lie algebra representation and a Lie algebra module are equivalent.

Proof. Suppose (¢, V) is a Lie algebra representation.
Define x - v = ¢(z)v s.t. ¢(z) € gl(V).

1. (az+ By) - v = dlaz + By)v = (ad(@) + Bo(y))v = ad(@)v + Bo(y)v =z - (y-v) +y - (- v)
2. - (av+ fw) = (z)(av + fuw) = a(w) + Bo(a)v = a(z - v) + Bz - w)
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3. [z, y] - v = d([z,y])v = [d(z), p(y)]v = (¢(2)p(y) — d(y)d(z))v =2 (y-v) =y (T 0)

Suppose we have V' an L-module, then we can define ¢ by ¢(z)v = x - v and work in reverse. O

Definition: 5.25: Submodule

Suppose V is an L-module and W C V is a vector subspace. We say W is a submodule if for all
weWandz € L, z-w € W. In this case V/W is a quotient module with z - (v+ W) =z - v+ W.

Proof. This is well-defined. Suppose v1 + W = vy + W, then Jw = vy — v € W.

z-(n+W)=z-vn+W=z-(t+w)+W=zx-vn+z-w+W=z-vo+ W, sincez-weW. a
a1 as ag
Example: L = 0 a4y as|:a;,€Cy, V=C3
0 0 Qg
b ay ag as b (Ilb
U= 0] :6€6C,,10 ag4 as 0] = 0 € U, U is a submodule.
0 0 0 ag 0 0
b a; ag as a1b+a26
W = c|:b,ceCyp, | 0 ay a5 a4c € W, W is a submodule.
0 0 o0

Theorem: 5.29:

Suppose L is a module over itself via z - y = [z,y]. Then I C L is a submodule < I is an ideal.

Definition: 5.26: Irreducible L-Module

Suppose L is a Lie algebra and V is an L-module. We say that V' is irreducible (simple) if V' # {0}
and it deos not contian any proper submodule.

Example: h = span ({a, : n € Z} U{k}), [am, an] = MOm4n0k, k € Z(h). V = Clz1, z,...]

Proof. Suppose W C V is a submodule and p(z) #0 € W

Define < on monomials ,, Ty, - - - Ty, by lexigraphical order.

Take the largest monomial x,, - - - Ty, from p(z).

Amy =+ A, p(x) = ﬁlaxmlp = coefficient of x,, - - -z, in p(z), then 1 € W.

Tpy " Tpy = Oy~ G_p, 1 €W, 0V =W,

O

Definition: 5.27: L-module Homomorphism

Let V,W be L-modules. A linear map 6 : V — W is an L-module homomorphism if for all x € L
and v € V, we have f(z - v) = x - (v)
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Theorem: 5.30: L-module Isomorphism Theorems

Let 6 : V — W be an L-module homomorphism. Then
1. First Isomorphism: Kerf C V is a submodule, Imf C W is a submodule, V/Kerf = 36
2. Second Isomorphism: U,W C V submodules. Then U + W and U N W are submodules,
U+W)/W=U/(UNW)
3. Third Isomorphism: If U ¢ W, then (V/U)/(W/U) = V/W

Proof. Proof for first isomorphism theorem:

Suppose z € L and v € Kerf), then 0(z -v) =z -0(v) =z -0 =0, so Kerf C V is a submodule.

Suppose x € L and w € Imf, then there exists v € V s.t. 8(v) = w.

x-w=ux-0(v)=0(x-v)€Imb, soImf is a submodule.

Define 6 : V/Kerf — Im# s.t. (v + Kerf) = 6(v).

Then 0(z - (v + Kerf)) = 0(z - v + Ker) = 0(z - v) = z - 0(v) = z - O(v + Kerb). O

5.5.1 Schur’s Lemma

Lemma: 5.6: Schur’s Lemma

Let L be a complex Lie algebra and V is a finite dimensional simple L-module where 6 : V' — V is
an [-module homomorphism. Then 6 = Ald,, for some A € C.

Proof. Take \ € C to be an eigenvalue of §. Let v € V be the corresponding eigenvector, 6(v) = Av.
This is equivalent to v € Nul(f — Ad,), so {0} # Nul(f — AId,) C is a submodule.
Nul(§ — A\ld,) =V, s0o Vu € V, O(u) = Au, 0 = Ald,. O

Theorem: 5.31:

Suppose L is an abelian complex Lie algebra and V' is a simple finite dim module, then dim(V) = 1.

Proof. For x € L, define 0, : V — V by 0,(v) =z - v.
y-0(v)=y-(z-v)=x-(y-v)—[z,y-v=o-(y-v) =0,(y-v) (since L is abelian).

Thus 6, is an L-module homomorphism.

By Lemma [5.6] 3\, € C s.t. 0, = A\ 1d,.

i.e. Yr € L, - v =04(v) = \gv.

Thus, span {v} C V is a submodule.

By simplicity of V, V = span{v}, so dim(V) = 1. O

Definition: 5.28: Indecomposable and Completely Reducible L-modules

An L-module V is indecomposable if there are no nontrivial submodules U, W C Vst. V=U®W.
V' is completely reducible if there are simple U, C V s.t. V=U1 & --- ® U,.

Fact: Irreducible = Indecomposable, but Indecomposable #- Irreducible.

ay; ag as
Example: L = 0 a4 as|:a;,€C},V =C> V is indecomposable but not irreducible.
0 0 ag
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x
Proof. Suppose W C V is a submodule, take |y | #0€ W.

z
ai az as T a1x + a2y + azz
0 ag4 as y | = asy + asz e W, for all a; € C.
0 0 uag z agz
x 0 0
In particular, [0 |,y ],[0]| € W.
0 0 z
0 0 01 0 1
Alsoif z# 0, then |0 e W. [0 0 O 0)]=10]ew
1 0 00 1 0
0
Similarly, [ 1 | € W. Thus, V =W (all 3 basis vectors of V are in W)
0
x x
So we must have z = 0, W = Y and Wy = 0] :x € C } are proper submodules of
0:z,yeC 0

{0} Cc We C W; C V, V is not irreducible.
However, V' # W1 & Wa, so V is indecomposable. O

Theorem: 5.32:

Suppose L is a complex Lie algebra and V' is a finite dimension module. Then for all z € Z(L), there
isaX, €Cst. z-v=MNvforalvelV.

Theorem: 5.33:

Suppose V is a 1D L-module. For all z € L', z -v =0 for all v € V.

5.5.2 Modules of Special Lie Algebra
Recall slo(C) = span{e, f, h}, where [h,e] = 2e, [h, f] = —=2f, [e, f] = h.

Classify all simple, finite dimensional sly(C)-modules.
Define for d > 0, V4 C Clz, y], Vg = span {xd, 41y, ...,yd}, with sla(C) actions:

0
2. fplx,y) = vya;
0 0,
3. h-pz,y) =xg8 —ygh
Example:
1. e- xayb — b.’L’a+1yb_1
2. f . :L.ayb — axaflberl
3. h-atyb = x%(xayb) - ya%(x“yb) = (a — b)xz%y® (x%" is an eigenvector of h with eigenvalue a — b)

Claim: This action makes V; an sly(C)-module, for all d > 0



Proof. Linearity quickly follows since partial derivatives are linear transformations on Vj.
We require:

L [h,elp(z,y) = h-(e-p(z,y)) —e- (h-p(z,y))
[67 f]p(w,y) =e€- (f ’p(xvy)) - f : (6 'p(xay))
[h, flp(z,y) = h - (f -p(x,y) = f- (h-p(z,y))

We only check the first here, the other two are similar.

h-(e-p(z,y) —e- (h-plz,y) =h- <x8p> _e'< - 319)

2.
3.

y Y ow yay
L0 (Y 0 (L on) 0 (on oy
- oz oy y@y dy oy \ Ox y@y
_ Op 5 0%p 9%p 5 0%p Op 0%p
m@y e Oxdy xy(?gﬂ v Oxdy J””ay +$y6y2
op
2$87y

=2e-p(z,y) = [h,e]p(x,y)

Theorem: 5.34:

For all d > 0, V; is a simple sla(C)-module.

Proof. Suppose W # 0 C Vy is a submodule and take p(z,y) = apy® + ajzy® + - + agz? € W.
Pick 0 < k < d to be minimal s.t. a; # 0, then p(z,y) = arzy?=*+ degree < d — k of y.
d—k
e Fp(z,y) = ay (:va%) xFyd=F £ 0 = ap(d — k)!z?, so z? € W.
Note f- 2% = da? 1y € W, so 2% 1y € W.
frat=d(d—1)---(d—n+1)ad"y" € W, s0 29"y € W,
Therefore, Vg = W. O

Suppose that V' is an sly(C)-module and v € V s.t. h-v = Av, then h - (e"-v) = (A + 2n)e" - v,
h'(fn‘v):()‘_Qn)fn'voren'U:()) fn’U:O

Proof. Base case: suppose e-v # 0, h-(e-v)=e-(h-v)+[heJlv=ANe-v)+2e-v=(A+2)e-v
IH: If f*1 v £ 0 and h- (¥ -v) = (A 4 2k)(eF - v)
IS: Then h- (e**1-v) =h-(e- (¥ -v)) = (A +2(k + 1))eF*! - v. O

Let V be a finite dimensional sla(C)-module. Then there is an h-eigenvector w € V s.t. e-w =0
andueVst f-u=0

Proof. Takev € V s.t. h-v = .
Consider v,e-v,e? - v, ....

By Lemma 5.7} h- (e" - v) = (A + 2n)(e" - v).
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So they are all h-eigenvectors with different eigenvalues. They are linearly independent.
Then Im € Ns.t. €™ -v #0, but e™!.v = 0.
Set w=¢€"-v, then h-w = (A+2m)w, e-w = 0. O

Theorem: 5.35:

If V is a finite dimensional, simple slp(C)-module, then there is d > 0 s.t. V = V.

Proof. By Lemma5.8, 3w € V s.t. h-w = Aw, e-w = 0.

Consider w, f - w, ..., f¢-w # 0, but f¢1.w=0.

Define W = span {w,f cw, .., f- w}. We show that W C V is a submodule:

f-(f"w) = ow sovue W, frueW.

By Lemma 5.7 h- (f*-w) = (A —2n)f" - w,soVu e W, h-ue W.

Note e-w =0 and e-(f-w) = f-(e-w)+h-w=AIw € W, e-(f?-w) = f-(e-f-w)+h-(f-w) =2A=1)(f -w).
Inductively, e - (f*-w) =n(A—n—1)(f*' - w), then forall u € W, e-u € W.

Thus W is a submodule.

We now show that A = d.
Since h - (f™-w) = (A —2n)(f" , [h]p = diag(A, A — 2,...; A — 2d). Then Tr(h) = (d + 1)(A — d).
Since e, f] = h, Tr(h) = Tr([e, f]) =0, (d4+1)(A—d) =0 gives A =d.

Define 6 : V — Vg s.t. 0(f" - w) = (d —n — 1)lz?"y"

O(h-(f-w)) = 0((d—2n)(f" w)) = (d—2n)(d—n— Dz?"y" = (d—n—1)h- (z¥y") = h-0(f" - w).
Therefore, O(h -v) = h-0(v) for all v € V.

O(f - (f* - w)) = 0(f* - w) = ( —”)'fﬂd Pyttt =(d—n - 1If- ( Sy = f - 9(f"' w).

O(e-(f*-w)) = n(d—n+1)0(f*tw) = n(d—n+1)(d—n)lz?"lyn=l = (d—n+1)le- 24 y" = e-0(f" w).

Then Va € slx(C), v e V, 8(a-v) =a-6(v), V = V; since 6 is bijection. O

Summary:

AH finite dimensional sla(C) submodule are isomorphic to V; = span {a;“yb ra,b>0,a+b= d}. ep(z,y) =
Op

xaya fp(z, y)—yazv h-p(z, y)—fvaz _yay

Theorem: 5.36: Weyl’s Theorem

Finite dimensional representations of semi-simple complex Lie algebras are completely reducible.

Example: sly(C) acting on C2: e — ( é) fe <(1) 8)) b <(1] _UJ

(o) =)= ()= () ()= )

7o) = () (1) = (o)

h- (é) = (é) h- ((1’) = (2) s0 v = (é) and v_y = (?) are eigenvectors of h

C?2V;st. v =, v — .

Vy is generated by z? with d € Z>0, 2¢ is a heighest weight vector, weight(z?) = 24.

d—1 d—2

vg=a"= frog=a2""y = fPog=aTy = = flug=y' >0
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Ifd¢ Zsp, e C \ Z>o. Let M()\) be the highest weight vector.
M(-1):v =2t = f-v =02y — fPo_; =2 3y?> — ---, 27! is the highest weight vector.
M) vy =2 = oy =2 "y = f2u, =0

Definition: 5.29: Heighest /Lowest Weight Module

Highest weight module, M(A) = span{f™ - vy : n >, hvy = vy}, is an infinite dimensional module
generated by 2, \ ¢ Z>o.
Similarly a lowest weight module is M~ (\) =span{e™ - vy : n > 0,h- vy = Avp}, A & Z>o.

Let V be a finite dimensional sly(C) module and consider Q = ef + fe + £h%. Q € U(sly(C)) the universal
enveloping algebra, 0 : V — V, §(v) = Q- v.

Claim: 6 is an L-module homomorphism.

Proof. Use [xy, z] = xyz — zzy + (—xzy + x2y) = x(yz — 2y) + (vz — z2)y = z[y, 2] + [z, 2]y.
[Q,e] = [ef,e] + [fe,e] + 3[h% €] = 0. Similarly, [Q, f] = [, h] = 0.

If [ 2] =0, then O(z-v) =Q-(x-v)=2-Q-v=2a0-0(v).
If V = Vg, then by Lemma , Q acts as a constant (scalar multiplication of identity map).

d(fy( y) + ;(: yaay)dxd

1
= daz? + §d2xd

1
= Sd(d+ 2)z4

So 6 = %d(d + 2)Id,. O
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