Real Analysis

This is a mix of notes from MIT 18.100A Real Analysis (https://ocw.mit.edu/courses/18-100a-r
eal-analysis-fall-2020/), MIT 18.S5190 Introduction To Metric Spaces (https://ocw.mit.edu/co
urses/18-s190-introduction-to-metric-spaces-january-iap-2023/) and MIT 18.101 Analysis II
(https://ocw.mit.edu/courses/18-101-analysis-ii-fall-2005/pages/lecture-notes/)), covering
the basic topics in real analysis. I previously took MATH320 Real Variables I from UBC, which covers first
five chapters in Principles of Mathematical Analysis by Walter Rudin, but didn’t do well in it. This set of
notes is mostly a review for that course with generalization on R".

1 Basic Set Theory

1.1 Definitions

Definition: 1.1: Set

A set is a collection of objects called elements or numbers.

Definition: 1.2: Empty Set

The empty set is the set with no elements, denoted by 0.

Notation:
e a €S (ais an element in 5)

e a ¢ S (aisnot an element in S)

= (implies)

e & (if and only if)

Definition: 1.3: Subset

1. Aset Aisasubset of B, AC Bifac A=a€ B
2. Two sets are equal, A=B,if AC Band BC A
3. Ais a proper subset of B, AC Bif AC Band A# B

Set building notation: {x € A: P(x)} or {z : P(z)}, where P(x) means x satisfies property P.
Example:

1. N={1,2,3,...}: natural numbers

2. Z=10,1,—1,2,-2,...}: integers

3. Q= {% cm,n € Z,n # O}: rational numbers
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4. R: real numbers
5. {2m —1:m € N}: odd numbers
6. NCZCQCR

Definition: 1.4: Set Operations

The union of A, B is the set AUB={x:2x € Aorz e B}

The intersection of A, B is the set ANB={x:x € A and z € B}

The set difference of A w.r.t. Bistheset A\ B={z:2¢€ A and z ¢ B}
The compliment of A is the set A = A® = {z: 2 ¢ A}

A and B are disjoint if ANB =10

s 899 =

Theorem: 1.1: De Morgan’s Law

| '
\

If A, B,C are sets, then
1. (BuO)Y =BYncC
. (Bn0o)Y=BCuUcC”®
A\ (BUC)=(A\B)Nn(A\C)
A\ (BNC)=(A\B)U A\ O)

= W N

Proof. For the first rule only. Let B, C be sets. To show that (BUC)¢ = B¢ NCY, we need to prove that
(BUC) c BnC% and B¢ nC® c (BUC)©

1. Let z € (BUC)®. Thenz ¢ BUC =z ¢ Bandz ¢ C =z € B“NCC. Thus (BUC)® c B¢NC°.

2. Let € BNCY Thenz € B¢ andz € C’ =2 ¢ Bandr ¢ C = ¢ BUC = x € (BUC)“.
Thus B N C¢ c (BU ).

By 1. and 2. (BUC)® = B¢ nC°.

O

1.2 Induction

Consider the natural number set N = {1,2,3,...}. It has ordering 1 <2 <3 < ---

Axiom: 1.1: Well Ordering Property of N

If SC Nand S # (. then S has a least element. i.e. 3z € S, s.t. x <y for all y € S.

Theorem: 1.2: Induction

Let P(n) be a statement depending on n € N. Assume:

1. (Base case) P(1) is true.

2. (Inductive step) If P(m) is true, then P(m + 1) is true.
Then P(n) is true for all n € N.

Proof. Let S ={n € N: P(n) is not true}. We want to show that S = (). We will show this by contradic-
tion.

Suppose S # (), by well ordering principle, S has a least element z € S.
Since P(1) is true as base case, 1 ¢ S, and x # 1. In particular z > 1.

Since x is the least element of S and x — 1 < z, then # — 1 ¢ S. Thus, P(x — 1) is true by definition of S.



By the inductive step, P(x) is true from P(x — 1) is true = = ¢ S.
We show that = € S and = ¢ S, which is a contradiction. Thus S = (). O

Using induction, we want to prove Vn € N, P(n) is true. We do 2 things:

1. Prove P(1)
2. Prove if P(m) is true, then P(m + 1) is true

1_Cn+1

Example: For allc# 1, Vn € N, 1 +c+ - + " = 5=

Proof. 1) Base case: 1+ ¢! = 1= <! Since 11 2 _ (A=d(te) _ 14 .

l—c 7 1—c
2) Inductive step: Assume 1 +c+--- 4™ = %, we want to prove it holds for n = m + 1.
+1 1 m—+1 +1 1— m+1+ m—+1_ .m-+2 11— m—+2
1 + C+ + Cm 1C E _|_ m C C C — C
Thus, it holds for n = m + 1. By induction, it holds for all n 6 N 0l

Example: If ¢ > —1, then Vn € N, (1 +¢)" > 1+ nc.

Proof. 1) Base case: (1+¢)l=1+1-¢
2) Inductive step: Assume (1 +¢)™ > 1+ mc
Then (1+¢)™™ = (14+¢)(1+¢)™ > (14+¢)(1+me) = 1+ (m+1)c+mc? > 14+ (m+1)csince me?> >0 O

Note: There are multiple ways to write the induction proof. This is just the way shown by the prof
of 18.100A. I personally like to separate the induction hypothesis (the assumption for m) from inductive
step.

1.3 Cantor’s Theory of Cardinality

Q: When do two sets A and B have the same size?
A: When the elements of the two sets can be paired off.

Definition: 1.5: Functions

If A, B are sets, a function f : A — B is a mapping that assigns to each x € A a unique element

f(z) € B.

Definition: 1.6: Image/Preimage

Let f:A— B
1. Image: If C' C A, define f(C)={ye B:3x € Cst. y=f(z)} ={f(z): 2z € C}
2. Preimage: If D C B, define f~}(D) = {z € A: f(x) € D}

Definition: 1.7: Injection/Surjection/Bijection

Let f: A— B
1. f isinjective or 1-1 if f(z1) = f(x2) = x1 = z2 or equivalently 1 # zo = f(z1) # f(x2)
2. f is surjectvie or onto if f(A) = B
3. f is bijective if f is injective and surjective




Definition: 1.8: Composition and Inverse

Let f:A—B,g: B—C
1. gof:A— C isdefined by (go f)(z) = g(f(z))
2. If f is bijective, then define the inverse function f~!: B — A by: if y € B, then f~(y) € A
is the unique element in A s.t. f(f~'(y)) =y

Definition: 1.9: Cardinality

Two sets A and B have the same cardinality if there exists a bijective function f: A — B

Notation:
1. If A, B have the same cardinality, we write |A| = |B|
2. If |A| ={1,2,...,n}, we write |A| = n (A is finite)
3. If 3 injective function f: A — B, we write |A| < B
4. If |A| < |BJ, and |A| # | B|, we write |A| < |B]|
Theorem: 1.3: Cantor-Schroder-Bernstein

If |A] < |B| and |B| < |A|, then |4| = |B].

Definition: 1.10: Countable

If |A| = |NJ, then A is countably infinite.
If A is finite or countably infinite, A is countable. Otherwise, A is uncountable.

Theorem: 1.4: Symmetry of Cardinality

If |A| = |B|, then | B| = |4

Proof. Suppose |A| = |B|, then there exists a bijective function f: A — B.
Then f~!: B — A is a bijection, so |B| = |A| O

Theorem: 1.5: Transitivity of Cardinality

If |A| = |B| and |B| = |C/, then |A| = |C]

Proof. Suppose |A| = |B| and |B| = |C/|, then there exists bijective functions f: A — B and g : B — C.
Let h: A — C be the function h(z) = (go f)(z). We want to show that h is bijective.

Injective: If h(x1) = h(x2), then g(f(z1)) = g(f(x2)). Since g is injective, then f(z1) = f(x2). Similarly,
sice f is injective, x1 = o

Surjective: Let z € C. Since g is surjective, 3b € B s.t. g(y) = z. Since f is surjective, Jz € A s.t.
f(z) = y. Thus, h(z) = g(f(z)) = g(y) = ». O

Example: [{2n:n € N}| = |N| and |{2n — 1:n € N}| = |N|



Proof. let f: N — {2n : n € N} be the function f(n) =2n,n € N.
Injective: Suppose f(n1) = f(ng2), then 2ny = 2ny = ny = ny
Surjective: Let m € {2k : k € N}. Then In € N s.t. m = 2n. Then f(n) = 2n = m. O

Example: |Z| = |N|

1,n=0
Proof. Define f:Z — Nby f(n) =< 2n,n>0 , f(n) is bijective. O
—2n+1,n<0

Example: |{¢g € Q:q > 0} = |N|

Remark 1. Every q € Q, ¢ > 0 can be written as g = 2_1911 :::qpﬁﬂ where rj, s;, € N, Vj, k, q; # pr.
Proof. The function f:{g€e Q:q >0} = N f(q) = p?” . ‘p?\’;l\’qfsl_l e qﬁjM_l is bijective. O

Example: |Q| = |N|

Proof. |{g€Q:q >0} =|{r € Q:r <0}, since f(¢) = —¢ is a bijection between the two sets.

= {reQ:r <0} =IN|.

Then there exist bijections f: {¢€Q:¢ >0} > Nandg: {reQ:r <0} - N.
0, =0

Define h: Q — Z by h(z) = ¢ f(z),z >0 . h(z) is a bijection, so |Q| = |Z| = |N|. O
g(z),z <0

Definition: 1.11: Power Set

If A is a set, we define the power set of A by P(A) ={B: B C A}

Examples:
1. A=0,P(A) = {0}
2. A= {1}, P(4) = {0.{1}}
3. A={1,2}, P(4) ={0, {1}, {2}, {1,2}}

Theorem: 1.6: Size of Power Sets

IN| < [P(N)| < [P(P(N))] < -+~

Remark 2. Informally, there are an infinity of infinite sets

Proof. Let A be a set. Injective: Define f : A — P(A) by f(z) = {z}. Then f(z) = f(y) = {z} = {y} =
x=y. So fis 1-1. i.e. |A] <P(A).

We now show that |A| # |P(A)| by contradiction.

Assume |A| = |P(A)|. Then there exists a bijective function g : A — P(A).
Define a subset BC Aby B={x € A:x ¢ g(z)}, B € P(A).

Since g is surjective (as a bijective function), 3b € A s.t. g(b) = B



Case 1: b€ g(b) = B, then b € B = b ¢ g(b) by definition of B. Contradiction.
Case 2: b ¢ g(B), then b ¢ B = b € g(b). Contradiction.
This gives that b € g(b) < b ¢ g(b). Contradiction. Thus |A| # |P(A)] O

Side Note: Continuum hypothesis: Does there exist A such that |[N| < |A] < |P(N)|?

There is no set whose cardinality is strictly between that of the integers and the real numbers. Any subset
of the real numbers is finite, is countably infinite, or has the same cardinality as the real numbers.



2 Real Numbers

Theorem: 2.1: Existence of Real Numbers

There exists a unique ordered field containing Q with the least upperbound property, which we
denote by R.

2.1 Ordered Sets and Rational Numbers
Definition: 2.1: Ordered Set

An ordered set is a set S with a relation < s.t.
1. Ve,y € S, eitherz =y, zc<yory<cz
2. ifx<yandy < z, then x < 2

Example:

1. Z is ordered, m < nifn—m e N

2. Qisordered, g <rif ImneNst. r—g¢g=2

n

3. Dictionary ordering of Q x Q, where A x B = {(a,b) : a € A,b € B}. We say (a,b) < (¢q,r) if a < g
or (a=qandb<r).

Non Example: S = P(N) is not ordered with the relation A < B if A C B.

The second property can be satisfied: if A C B and B C C, then A C C. i.e. if A < B and B < C, then
A<C.

However, {0} # {1}, but neither {0} < {1} or {1} < {0} holds. The first property is not satisfied.

Definition: 2.2: Supremum and Infimum

Let S be an ordered set, and £ C S
1. If b € S s.t. Ve € B, © < b, then we say that E is bounded above and b is an upper bound of
E
2. If db € S s.t. Vo € E, b < z, then we say that E is bounded below and b is an lower bound of
E
3. We call by € S the least upper bound of E if
e by is an upper bound of £
e if b is any upper bound for E, then by < b
We call by the supremum of E, and write by = sup £
4. We call by € S the greatest lower bound of E if
e by is an lower bound of F
e if b is any lower bound for E, then b < by
We call by the infimum of E, and write by = inf £

Example:
1. S=7Z, F={-1,0,2}, UBs= {2,3,4,5,...},supE =2, LBs={..., =3, -2, -1}, inf E = —1
2. 5=Q,E={qeQ:0<g<1},supE=1,infE=0
3.5 =Q,E={¢gecQ:0<qg<1},supE=1¢E, infE=0¢F



Definition: 2.3: Least Upperbound Property

An ordered set S has the least upperbound property if every 2 C S, which is nonempty and bounded
above, has a supremum in S.

Example:
1. S = {0} has the least upperbound property

2. S = {0,1} has the least upperbound property. When F = {0}, supE = 0 € S. When E = {1},
supE=1€¢S. When E={0,1},supE=1€S.

3. S ={-1,-2,-3,—4,...} has the least upperbound property. If E C S, E nonempty, then —E =
{—z: 2z € E} C N. By well ordering property of N, 3m € —E st. m< —zforallz € E. = —-m e E
and Vz € E, x < —m. Thus, supE = —m

4. 7 has the least upperbound property
Claim 1. Q does not have the least upper bound property.
If E={qcQ:q>0and ¢*> < 2}, then sup E DNE in Q.

Theorem: 2.2:

Ifr€Qand z=sup{g€ Q:q>0and¢? <2}, then x > 1 and 22 =2

Proof. Let E={q€ Q:q>0and ¢*> <2} and suppose z € Q s.t. z =supE.
Since 1 € K and x = sup F, then = > 1

We then prove z? > 2 by contradiction.

Assume 22. Define h = min {%, 2(2#7121)} <1

Then h > 0, we show that x + h € E.

(r+h)? =22+ 20h+h? < 22 +2zh+h, since h < 1 = 22+ (2z+1)h < 1:2+(2x+1)2(22;i21) = x2+% <
2 4+2—-22=2

Thus (x +h)? <2, 2+ h € E.

However, « 4+ h > x. This contradicts to the condition that x = sup E. Thus 22 > 2

We now show 22 = 2. Since 22 > 2, we have either 22 = 2 or 22 > 2. We show that 22 > 2 cannot hold by
contradiction.

Assume 22 > 2. Define h = % Note that since z2 > 2, then 0 < h, and z — h < z.
(r—h)2=a?-2eh+h?>=2>— (22 -2)+h?>=2+h>>2 iec 2<(z—h)?

Let g € E,i.e. ¢>0and ¢®> <2 Thenq? <2< (x—h)% Then0 < (z—h)?—¢>=0< (z—h—q)(x—h+q)
=0<(@—h—q) (52 +q)

Since ¢ > 0 and 1221'2 >0, x;;'z 4+ ¢ > 0, and thus 0 < x — h — ¢, which implies ¢ < z — h.

Thus, Vg € E, g < x — h, x — h is an upper bound for £

Since x = sup E, x < z — h by defintion. This means that h < 0, which contradicts to the fact that A > 0.
Thus 22 = 2. O

Theorem: 2.3:

The set £ = {q€ Q:q >0 and ¢> < 2} is bounded above and has no supremum in Q




Proof. Let g€ E. Then ¢? <2<4=0<4—¢>=0<(2—¢q)(2+q). Since ¢ > 0, 2+ ¢ > 0, we must
have 2 — ¢ >0, i.e. ¢ < 2.
Thus Vg € F, ¢ < 2. E is bounded above and 2 is an upper bound for F.

We now show sup £ DNE by contradiction.

Assume sup F exists in Q. Call it z = sup E.

By Theorem , z>1and 22 =2.

Thus 3m,n € Ns.t. m >n and x = 7% > 1. This also means that 3n € N s.t. nz € N.
Let S = {k € N: kx € N}. S is nonempty since n € S.

By the well ordering principle of N. S has a least element kg € S. Define k1 = kox — ko € Z.
22 = 2 implies that x < 2. Then k; = ko(z—1) < ko(2—1) = ko. Thus k1 € N (z > 1, s0 k1 = ko(z—1) > 0)
and ki < ko.

Then {L‘kl = {L‘(k()(.%' — 1)) = .I‘Zk() — xkg = 2/€0 — xko = ko + (k‘o - .T}ko) = k() - kl eN
Thus k1 € S and k1 < kg. ko is not the least element in S. Contradiction. Thus sup £ DNE. O

This also concludes the proof that Q doesn’t have the least upper bound property.

2.2 Fields and Ordered Fields

Definition: 2.4: Field

A set F'is a field if it has two operations + and - s.t

Al) Ifz,y€ F,thenx+y € F

A2) (Commutativity) Ve, y € F,x +y=y+ =

3) (Associativity) Vz,y,z € F, (z+y)+z=x+ (y+ 2)
4) There exists an element 0 € F's.t. Ve € F, 0+ 2z ==
5) Ve e F,3—xz e Fst. z+(—z)=0

1) If z,y € F,thenz-y e F

2) (Commutativity) Ve,y € F, x -y =1y -

3) (Associativity) Vz,y,z € F, (zy)z = x(yz)

4) There exists an element 1 € F s.t. Vac eF,l.z=x
5) Ve € F\ {0}, 3z e Fst.z-271 =1

SEEEEEEEE

Example: Zy = {0,1} with 1 +1 =0, Z3 = {0,1,2} and Q are fields.
7Z is a commutative ring, but not a field.

Theorem: 2.4:
If F is a field, then Vz € F, 0z = 0.

Proof. fx € F,0=0-2+ (-0 -2) = (0+0)x + (—0z) = 0z + 0z + (—0x) = Oz 0

Similarly, we can show that —z = (—1)x.



Definition: 2.5: Ordered Field

An ordered field is a field F', which is also an ordered set s.t.
1. Ve,y,ze Fiife <y, thenx+z<y+=x
2. If x > 0 and y > 0, then xy > 0.

If z >0 (z >0), we say x is positive (non-negative).

Example: Q is an ordered field. Zy = {0, 1} is not an ordered field.

Proof. If < is an order on Zy, then either 0 <1 or 1 <0
IfO<1,thenl1+0=1,141=0=14+1<1+0, so it doesn’t satisfy the first property.
If1<0,thenl14+0=1,141=0=1+0<1+41, so it doesn’t satisfy the first property. O

Generally, there is no finite ordered field.

Theorem: 2.5: Properties of Ordered Fields

If F is an ordered field, then

l. 2>0=-z<0andz<0=—2>0
If x>0 andy < z, then zy < zz
If x <0andy < z, then xy > zz
If x # 0, then 270
1f0<x<y,then0<§<%
If 0 < z <y, then 22 < ¢?
Ifz<yand z <w,thenzx+ 2z <y+w

Se B s 89

Proof. 1) If 0 < z, then —2 4+ 0 < —x + 2 = —z < 0 (LHS by Al in Definition RHS by A5)

Theorem: 2.6: Supremum and Infimum in Ordered Fields

Let F be an ordered field with the least upperbound property. If A C F, A # () and bounded below,
then inf F' exists in F'.

Proof. Suppose F is an ordered field with the least upperbound property. Let A C F, A # () be bounded
below.

Then db € F s.t. b < a, YVa € A. Thus —a < —b, —b is an upper bound for —A.

Since F' has the least upperbound property, there exists z € F s.t. = sup(—A).

Then Va € A, —a < x, which implies Va € A, —x < a. —x is a lower bound for A.

We now show that if y is a lower bound for A, then y < —=zx

Let y be a lower bound for A. Then —y is an upper bound for —A.

Since z = sup(—A), z <y =y < —x.

Thus inf A exists and inf A = —sup(—A). O

10



2.3 Real Numbers

Theorem: 2.7: Existence of Real Numbers

There exists a unique (up to isomorphism) ordered field containing Q with the least upperbound
property, which we denote by R.

Theorem: 2.8:

There exists a unique » € R s.t. » > 0 and 72 = 2

Proof. Similar to the proof in rationals. Let F = {x € R: z > 0 and 2? < 2}. Then F is bounded above.
By the least upper bound property sup F exists in R.
Label r = sup E. The same proof in Q shows r > 1, r? = 2.

We now prove 7 is unique. Suppose 7 € R, with # > 0 and 72 = 2.
Then 0 =72 —r? = (F + r)(F — 7).
Since both 7 > 0 and r > 0, then 7 + 7 > 0 and we must have 7 —r =0, i.e. 7 =71.

O

In general, if z € R, > 0, then xw exists in R for all n € N.

Fact: If zr,y e Rand x <y, then Ir e Rs.t. x <r <y (eg. r= xzﬁ) Same holds for Q.

Theorem: 2.9: Archimedian Property and Density of Q

1. (Archimedian Property) If z,y € R and > 0, then In € N s.t. nz >y
2. (Density of Q) If z,y € R x < gy, then Ir € Q, s.t. z <7 < y.

Proof. 1. Suppose z,y € R, x > 0. We want to show that n > ¥ for some n.
Assume Vn € N, n < % Then N C R is bounded above.
By the least upper bound property of R, N has a supremum a € R. Since a = supN, then a — 1 is
not an upper bound for N.
This implies that there exists m € Ns.t. a —1 < m, then a < m+ 1. a is not an upper bound for N,
thus a cannot be the supremum. Contradiction. Thus n > %

2. Suppose z,y € R, x < y. Then there are three cases
(a) z <0 <y. This is simple, just choose r =0 € Q

(b) 0 <z <y. Then y —x > 0. By 1., there exists n € N s.t. n(y —x) > 1. Then nz + 1 < ny.
Again, by 1., 3l € Ns.t. I > nzx (choose y = nz, x =1, n=1). Thus, S={k € N: k > na} # 0.
By well ordering property of natural numbers, S has a least element m.
Since m € S is the least element of S, m — 1 ¢ S. Since nz < m by definition of S, and
m—1<nx, m<nr+1.

Then nz <m <nx+1<ny. r<T <y Sor="¢€Q is the choice.

m
n
(¢) <y <0. Then 0 < —y < —z. By case (b), Fr="€Qst. —y<7< —x. Thenz < -7 < y.

O

n
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Theorem: 2.10: Supremum in R

Assume S C R is nonempty and bounded above. Then x = sup S if and only if
1. z is an upper bound for S
2.Ve>0,dye Sst.z—e<y<cz

Remark 3. Similarly, x = inf S if and only if
1. z is a lower bound for S
2.Ve>0,dye Sst. z<y<z+e
Example: sup {1 — % 'n € N} =1
Proof. Since 1 — % < 1 for all n € N, 1 is an upper bound for {1 — % in e N}.

Let € > 0. Then by Archimedian Property, there exists n € N s.t. ne > 1, i.e. % <eand —e < —%
Then1-e<1-1 <1 Thussup{l—1:neN}=1 O

Definition: 2.6:

Forz e R, ACR. Definex+A={r+a:a€ A} and zA = {za:a € A}.

Theorem: 2.11: Supremum with Constant Addition and Multiplication

1. If z € R and A is bounded above, then x + A is bounded above and sup(x + A) = x +sup A
2. If x € R, x > 0 and A is bounded above, then zA is bounded above and sup(zA) = zsup A

Proof. 1. Suppose x € R and A is bounded above. Then sup A exists in R.
Then Va € A, a <sup A, thusVa € A, x +a <z +supA. z+ sup A is an upper bound for x + A.
Let € > 0. Then dy € A s.t. supA —e < y < sup A.
Then Jy € As.t. x+supA—e < z+y < x+sup A. i.e. Iz € v+ A, s.t. (z+supA)—e < z < z+sup A.
Thus sup(z + A) =z +sup A

2. x € R and A is bounded above. Then sup A exists in R.
Then Va € A, a < sup A, thus Va € A, xa < xsup A. zsup A is an upper bound for zA.
Let € > 0. Then Jy € As.t. sup A — £ <y <supA.
Then Jy € As.t. xsup A — a7 <zy <xsupA. ie Jz€xA st vsupAd—e<z<xsupA.
Thus sup(zA) = xsup 4

Theorem: 2.12: Bounded Sets

If A,B C R with A bounded above, B bounded below and Vz € A, Vy € B, x < y. Then
sup A = inf B.

Proof. Let y € B. Then Vo € A, x < y. i.e. y is an upper bound for A. Thus, sup A < y.
This is true for all y € B. Thus sup 4 is a lower bound for B. sup A < inf B. O
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2.4 Absolute Values

Definition: 2.7: Absolute Value

z,if >0
—x,ifx <0

Theorem: 2.13: Properties of Absolute Values

Ve eR, |z|>0and |[z|=0<2=0
Ve e R, |z|=|— |

Vz,y € R, |zy| = |=||y|

Vz € R, |2?| = |z|?

Ifz,y €R, then x| <y —y<z<y
Ve e R,z < |z|

If z € R, define the absolute value to be |z| = {

S e 9=

Proof. 1. If x >0, then |z| =2 > 0. If x <0, then |z| = —x > 0.
(=) If x =0, then |z| =0
(<) Suppose |z| =0, thenif x >0, z = |z| =0. If <0, then —x = || =0, x =0. Thus x =0

2. If x >0, then —x < 0. Thus | —z| = —(—2) =2z = |z|. f x <0, then —x >0, | —z| = —z = |z|.
Thus | — z| = |z|.

3. If x > 0 and y > 0, then xy > 0, |zy| = zy = |z|ly|]. WLOG, if x > 0 and y < 0, then zy < 0,
2yl = —zy = 2(~y) = |z|ly|]. f z < 0and y <O, then —2 > 0 and —y > 0. [zy| = |(-2)(-y)| =
| = || =yl = |=llyl.

4. Take y =z in 3.

5. (=) suppose |z| <y. If £ >0, then —y <0<z =|z| <y. Ifz <0, then —x > 0 and |z| = —z < y,
—y< -z <y Thus -y <z <y
(<) Suppose —y < x < y. If x > 0, then |z| =< y. If x <0, then —y < x and —x < y. Thus,
2] <.

6. Let y = || in 5. We get —|z| < x < |z

O

Theorem: 2.14: Triangle Inequality

Ve,y €R, |z +y| < |z + |y

Proof. If z,y € R, x +y < [a| +[y| and (=) + (=y) <[ —2[+ [ —y| = [z[ + |y
Multiply -1 on both sides, —(|z| + |y|) < —((—z) + (—y)).

Thus —(|z[ +[y]) S 2 +y < [z] + |y

Then |z +y| < |z] + |y|. O

Remark 4. (Reversed Triangle Inequality) Vz,y € R, ||| — |y|| < |z — y]

2.5 Decimal Representation and Uncountability of Reals

Typically, we think of Q in decimal representation. If z € Q, z = dg 10X +dg 11051+ . .4 dy+d_11071 +
R d_MIO*M, where {dj —M <j < K} c0,1,...,9. And we write x = dgdg_1--- .d_1d_o---

13



Example: 1-10+1-10°+1-107! =11.1 = 1.

Definition: 2.8: Decimal Representation of Real Numbers

Let € (0,1] and let d_; € {0,1,...,9} for j € N. We say x is represented by digits {d_; : j € N}
and write x = 0.d_1d_5--- if x = sup{d_110~' +--- +d_,107" : n € N}

Example: 0.250 = sup{%, % + %, % + % 4 %} — %,

1. For every set of digits {d—; : j € N} with d_; € {0,1,...,9}, there exists a unique = € (0, 1] s.t.
x=0.d_1d_s--- (Note: 3 =0.5=0.499---)

2. For every x € (0,1], there exist unique digits {d—_; : j € N} st. o = 0.d_jd—»--- and
0.d_1d_9---<x<0d_1d_9---+107"

Theorem: 2.16: Cantor’s Theorem

(0, 1] is uncountable

Proof. We prove by contradiction.

Assume (0, 1]] = |N], i.e. (0, 1] is countable.
Then 3z : N — (0, 1] a bijection.

For each n, write z(n) = O.d(_nl)d(_nz) e

The idea is that we can write the z(n) in a matrix form and look at the diagonal elements

o (1) =0,d" |d"yd  zd, - -

o (2) =0.d%,|d*, |d>5d%, - -

o 2(3)=0.d% | d>5|d3, -

o 2(4) = 0.d* ;d2ydtqdt, |-

1,if d¥) £ 1
Lete_j =< ' ) 7
2,if d7; =1
By 1 of Theorem there exists a unique y € (0,1] s.t. y = 0.e_je_g---
Since all e_js are either 1 or 2, they are certainly non zero. Then Vn € N, O.e_je_2---e_, < y <
0.e_1e_9---e_p,+107"

Thus y = 0.e_1e_2 - - - e_p, is the unique decimal representation from 2 of Theorem [2.15]

. 1,if d™ £1 .

Since x is surjective (as a bijection), Im € N s.t. y = z(m). Then d(_wz =e_ ;= {2’ ?f d(}:')b 7 ) # d(_nz
, 1 —-m —

This is a contradition. Thus |[N| < [(0, 1]|, (0,1] is uncountable. O
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Corollary 1. R is uncountable
Proof. Find a bijection from (0, 1] to R, e.g. tangent function and |[N| < |(0,1]| < |R| O

2.6 Complex Field

This is from UBC MATH320 and Rudin Principles of Mathematical Anlysis. The most important part of
this subsection is the Cauchy-Schwarz Inequality.

Definition: 2.9: Complex Field

The underlying set C = {(a,b) : a,b € R} = R%. Let z = (a,b), y = (c,d). Define 0 = (0,0),
1 = (1,0). Define addition (z 4+ y) = (a + ¢,b + d) and multiplication zy = (ac — bd, ad + bc). We
write * = a + bi, Rex = a, Imx = b.

Definition: 2.10: Conjugate

In C, the conjugate of x = a + bi is £ = a — bi, with the following properties:
l.2+y=2+7y

U W N
8
|
|8|
I
)
-~
had
8
8

Definition: 2.11: Norm of Complex Numbers

Define |z| = v/zZ to be the norm of x € C

Remark 5. R is a subfield of C

Theorem: 2.17: Properties of Norms in C

Let z,y € C, then

1. |z| > 0 with equality if and only if z = 0
2 Jo| = |s

3. |zy| = |=l[y]

4. |Rezx| < |z| and |[Imz| < |z|

5. |z +y| <o+ |yl

Theorem: 2.18: Cauchy-Schwarz Inequality

Let a1, ..., an, b1, ...,b, € C, then | >0, a;b;? < P |aj]? > e b;]?. Equality is true if and only
if one of the following holds:

1. da € Cs.t. a; = aby, for all j.

2. 38 € Cs.t. bj = Baj, for all j.

In vector form, |(a,b)|? < (a,a)(b,b) or |(a,b)| = ||a||||b].



3 Sequences and Series

3.1 Sequences and Limits

Definition: 3.1: Sequence

A sequence of real numbers is a function z : N — R. We denote x(n) by z,, and the sequence by

{zn}22, or {z,} or z1, 2, ...

Example:

e 1,1,1,... is the sequence z(n) = 1 for all n.

11

e {1} is the sequence 1, 3, 3o

e {(—1)"} is the sequence —1,1,—1,1, ...

Definition: 3.2: Bounded Sequence

A sequence {z,} is bounded if 3B > 0 s.t. Vn € N, |z, | < B. Otherwise, {z,} is unbounded.

Remark 6. A sequence {x,} is unbounded if VB > 0, 3n € N s.t. |z,| > B
e {1} and {1} are bounded
e {(—1)"} is bounded by B =1

e {n} is unbounded.

Proof. Let B > 0, by Archimedian Property, In € N s.t. n > B. Thus {n} is unbounded. O

Definition: 3.3: Convergent Sequence

A sequence {z,} converges to x € R if Ve > 0, IM € N s.t. Vn > M, |z, — x| < e. If a sequence
converges, we say it is convergent. Otherwise, it is divergent.

Definition: 3.4: Divergence

A sequence {z,,} does not converge to z € R if 3¢9 > 0, s.t. VM € N, In > M s.t. |z, — x| > €.

Theorem: 3.1:

Let z,y € R. If Ve > 0, |z — y| < ¢, then z = y.

Proof. Assume x # y. Then |z — y| > 0.
Takeezlm%y' > 0, we get |z —y| < L;y‘
= @ < 0. Contradiction.

O

Theorem: 3.2: Uniqueness of Limit

If {x,,} converges to = and y, then z = y.
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Proof. Suppose {x,} converges to x and y.

Let € > 0. Since {z,} converges to x, AM1 € N, s.t. Vn > My, |z, — 2| < §

Similarly, since {x,} converges to y, IM> € N, s.t. Vn > Mo, |z, —y| < §

Take M = max My, My. Then Vn > M, |z, — x| < § and |z, —y| < §

By triangle inequality, |z — y| = [(z — 2n) + (xn —y)| < |2p — 2| + |20 —y| < §+ § =€ Thus . =y by
Theorem [3.1] O

Definition: 3.5: Limit

If {x,} converges to =, we call z the limit of {z,} and write x = li_>m Ty, OF T, — .
n oo

Example:

e r, =1,Vn, nli_)Iroloxn =1.

Proof. Let € > 0. Choose M = 1. Thenifn> M, |z, —1|=|1-1]=0<ce¢ O
1
e lim —=0.
n—oo n

Proof. Let € > 0. Choose M € N, s.t. ﬁ < € (exists by Archimedian Property). Then if n > M,
|z, —1|=]1-1=0<e.

Then if n > M, %—O‘: L

SM<€ O

General technique to prove lim x, = x
n—oo
Proof. Let € > 0. Choose M € N, s.t. M has some property relevant to e.
Then if n > M, after some calculation, |z, — x| < €
How to find M? We start with |z, — 2| < -+ < something involving M < € O

1
Example: lm ——— =
n—oo n? + 30n + 1

1
1 1 1 1 1
(We want to find M s.t. 55— < e Note that 5—=5—7 < 0 <o IS <e e <6
X~
n2+1>0

Proof. Let € > 0. Choose M € N s.t. ﬁ < €. Then for all n > M, n2+310n+1 -0 n2+310n+1 < % < % <
ﬁ <e€ O
Example: {(—1)"} does not converge.
Proof. Let x € R. We want to show {(—1)"} does not converge x.
Let g =1, M € N. Then 2 = |[(—1)™ — (=1)MH| < |(-1D)M — 2| + |(=1)M*! — 2|.
Thus, either [(—=1)M — x| > 1 or [(-1)MF! —z| > 1 O

Theorem: 3.3: Bounded Sequence

If {z,} is convergent, then {x,} is bounded.
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Proof. Suppose x,, — x. Then IM € N s.t. Y¥n > M, |z, — x| < 1.

Then Vn > M, |z,| = |t —x + x| < |zy — 2| + |2] < 14 |2].

Define B = |z1| + |x2| + -+ + |xp—1| + (1 + |z]) (or max of these values).

Then Vn € N, |z,| < B. O

Definition: 3.6: Monotone Sequnece

A sequence {z,} is monotone increasing if Vn € N, x,, < x,,41. A sequence is monotone decreasing if
Vn €N, z, > x,41. If {z,,} is monotone increasing or monotone decreasing, then {z,} is monotone
or monotonic.

Theorem: 3.4: Convergent Monotone Sequence

A monotonic sequence is convergent if and only if it is bounded.

Proof. Convergent = bounded is proved. We consider the other direction only.

Suppose {z,} is a monotone increasing sequence and bounded. Then {z,, : n € R} C R is bounded above
and below.

Let x = sup{z,, : n € N}. Claim h_)m Ty = T.

n o0
Let € > 0. Then since « — € is not an upper bound for {z,, : n € N}, IMy € Ns.t. v —e < zp, < .
Choose M = My. ThenVn > M,z —e<zpy, <axp <z =>2—€< 2, <T+E

The proof for monotone decreasing sequence is similar. O

Remark 7. If {z,} is bounded and monotone increasing, then h_)m zy, = sup{x, : n € N}. If {z,} is
n—oo

bounded and monotone decreasing, then li_>m xyn, = inf{x, : n € N}.
n—0o0

Theorem: 3.5: Geometric Sequence

1. If c€ (0,1), then lim ¢" =0

n—00

2. If ¢ > 1, then {¢"} is unbounded

Proof. 1. Claim ¥n € N, 0 < "t < ¢”. We can prove this by induction
Base case: since 0 < ¢ < 1, and 0 < ¢ < ¢ (multiply by ¢).
Inductive step: suppose 0 < ¢"*! < ¢. Then 0 < ¢"*2 < ¢**1. Thus {c"} is monotone decreasing and
bounded. 0 < |¢"| = ¢™ < ¢. By Theorem [3.4] {¢"} has a limit L.

We now want to show L = 0.

Let € > 0. Then IM € Ns.t. ¥Yn > M, [ — L] < U52° [ s the limit of {c} and 152 > 0,

Thus (1 —¢)|L| = |L — ¢L| = |L — M+1 4 MH1 — ¢L| < |L — M+ 4 oM — [ < U590 4 clce
1

0391 — ¢)e.

Since U9 <1 for ¢ € (0,1), |L| < e. Thus [L| =0 = L =0,
2. We want to show VB > 0, In € N, ¢ > B.

Recall that (1 + :r:)” >1+nz. Thusc"= (14 (c—1))" >

1+n(c—1
Let n € Nst. n> 2. Then " = (1+ (c—1))" >n(c—1) > %<
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Definition: 3.7: Subsequence

Let {z,} be a sequence and let {ny} be a sequence of natural numbers s.t. n; < ng < n3z < ---
(strictly increasing). Then the sequence {xy, }7° is called a subsequence of {z,}.

ez, =1,2345,..

— Ty, = 1,3,5,7,... is a subsequence with nj = 2k — 1

— Tp, = 2,4,6,8, ... is a subsequence with nj = 2k

— Ty, = 2,3,5,7,... is a subsequence with n; = kthprime

— xpn, = 1,1,1,1,... is not a subsequence, because n; = 1 for all k

— Tp, = 1,1,3,3,5, ... is not a subsequence
oz, =(—-1)"

- -1

,—1,—1,... is a subsequence with n; = 2k — 1

— 1,1,1,... is a subsequence with ny = 2k

Theorem: 3.6: Convergent Subsequence

If {z,,} converges to x, and {z,, } is a subsequence of {x,}, then klim TGy, = G5
—00

Proof. Since 1 <nj; <ng <ng<---,thenVk e N, np > k
Let € > 0. Since x, — x, My € N s.t. Vn > My, |z, — z| < e.
Choose M = My. If k> M, np > k> M = My. Then |z, —x| <e€ O]

3.2 Facts about Limits

Theorem: 3.7:

lim z, =z < lim |z, —2z|=0

Proof. From definition and |z,, — z| = ||z, — x| — 0] O

Theorem: 3.8: Squeeze Theorem

Let {an}, {bn}, and {x,} be sequences s.t. Vn € N, a,, < z,, < b, and lim a, = ILm b, = z. Then

n— o0
{z,} converges and T}Lngo Ty, = 0

Proof. Let € > 0. Since b, — x, IMy € N s.t. Vn > My, |by, — x| < e = b, <x + €
Similarly, since a,, — x, IMy € N s.t. Vn > My, |a, —z| < e =z —€ < a,
Take M = max(My, My), then Vn > M, x — e < ap, < x, < b, < x+e€. Thus |z, — 2| <e O

2
Example: lim 2n7 =
n—soon®+n-+1
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n2

Proof. m

2
__n
n24+n+1 n24n+1| = n24n

_1‘:

n+1 ‘< ntl — 1g0<

By Squeeze Theorem lim — 1| =0 and by Theorem [3.7, lim LR 0l

n—00 n2+n+1

-
3
4
8
3w
+
3 N
+
=

How do limits interact with order in R?

Theorem: 3.9: Order Property of Limits

1. If {x,,} and {y,} are convergent sequences and Vn € N, z,, < y,,, then lim z,, < lim y,
n—oo n—0o0

2. If {x,} is a convergent sequence and Vn € N, a <z, <b, then a < lim z, <b
n—oo

Remark 8. Yn, xp < yn 7% hm Ty < hm Yn. We can have lim z, = lim y,
n—oo n—r0o0

Example: z, =0, y, = 1 , T, < yp for all n, and lim z, = hm Yn =0
n—oo — 00

Proof. 1. Suppose x, — = and y,, — y, we want to show x < y.
Assume y < z.
Since y, = y, IMy € N s.t. Vn > Mo, |y, —y| < 52, 50 yn < Lgy =>yp <z —
Similarly, since x,, — x, IM; € N s.t. Vn > My, |z, —:r] < Fosox—w, < F s> -F <,
Let n = My + My, n > My and n > M-, then y, < z — =2 < ,. Contradictions.

2. Follows 1

How does limits interact with algebraic operations?

Theorem: 3.10: Algebraic Operations of Limits

Suppose lim z, =z and lim y, = y. Then
n—o0 n—oo
1. lim (xp +yn) =x+y
n—oo
2. Ve e R, lim cx, = cx
n—o0
3. lim (znpyn) = 2y
n—0o0
4 x

. IfVn, y, # 0 and y # 0, then lim m_ Y

Proof. 1. Let € > 0. Since z,, — x, IMy € N s.t. Vn > My, |z, — 2| < §
Similarly, since y, — y, AM1 € N s.t. Vn > My, [y, —y| < §.
Choose M = Mo+ My, if n > M, [(xp +yn) — (@ +y)| < |2p — 2| +|yn —y| < S+ 5 =€

2. Let € > 0. Since x,, =z, IM € Ns.t. Vn > M, |z, — z| < |C|+1

Then |cx,, — cx| = |¢||zn — x| < ‘clﬁlle <€

3. Since Y, = y, {yn} is bounded. i.e. 3B > 0s.t. Vn € N, |y,| < B.

Then |znyn — 2y| = |[Tnyn — 2Yn + 2yn — 2y| = [(Tn — 2)yn + (Yn — Y)2| < |20 — 2|[Yn| + Y0 — yllz] <
|zy, — x| B + |y, — y||z|, which converges to 0. By sequeeze theorem, |z, vy, —zy| — 0 and z,y, — zy.
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4. We prove that ﬁ — %, and the result directly follows 3.
Claim 3b > 0 s.t. Vn € N, |y,| > b.
Since y, = y and y # 0, IM € Ns.t. Vn > M, |y, —y| < %.
Then Vn > M, |y‘ = ’y —YUn +yn| < |y_yn| + |yn‘ < |12JJ + ‘yn| So % < |yn‘
Let b = inf{|y1|, ..., lypr—1], M} > 0 (infimum of a finite set always exists). Then Vn € N, |y,| > b.

L1 gyl o1y,
Then 0 < ‘yn ol = Tt S b‘y||yn y|. By squeeze theorem,

L 1V 50 and thus, - — 1.
Yn Y Yn Yy

O

Theorem: 3.11: Limits of Square Roots

If Vn, 2, > 0, and lim z, = z, then lim /z, = /7.

Proof. Case 1: x = 0. Let € > 0. Since z,, — 0. IMy € N s.t. Vn > My, |z, — 0| = |z,| = 7 < €%
Choose M = My. Then Vn > M, |\/Z,, — 0| = |\/Zn| = \/Tn < Ve =€

Case 2: z > 0. Then |\/z, — x| = ’(\/:cn - ﬁ)ﬁig = J%”jrf/‘% < %|xn — z|. Since |z, — x| — 0,

by squeeze theorem |/, — /x| — 0. O

Theorem: 3.12: Limits of Absolute Values

If {z,} is a convergent sequence and lim z,, = z. Then {|z,|} is convergent and lim |z,| = |z|

Remark 9. The converse is not true. Consider =, = (—1)". |z,| = 1, and thus |z,| — 1. But {z,} does
not converge.

Proof. This directly follows the reverse triangle inequality, 0 < ||z,| — |z|| < |z, — z|. By squeeze theorem.
|zn| — |2|. O

Theorem: 3.13: Binomial Theorem

n

VneN, z,yeR, (x+y)" =) (Z) 2" FyF, where (f) = k!(ﬁk)!'
k=0

Theorem: 3.14: Some Special Sequences

1
1. If p >0, then lim — =0

n—oo NP

2. If p> 0, then lim p% =1
n—o0

3. lim nn =1
n—oo

Proof. 1. Let € > 0. Choose M € Ns.t. M > ——. Then if n > M,

51/17'

2. Three cases:
(a) p=1: clear

(b) p>1: [p/m =1 =p"/" =1, p=[14 (/" = 1)]" > 1 +n(p"/™ — 1) (since (1 +z)™ > 1 +nz for
x>-1)=0 <pl/m—-1< p=1 By squeeze theorem, p'/” — 1 — 0 and p'/* — 1

n




(¢) p < 1: Take the reciprocal. lim p /™ = lim o> 1= (7> —1
n—00 n—00 (l) /n P
P

then lim,,_, o pl/" =1

n
3. Let:ﬁn:nl/”—lzo. We want to show x,, — 0. Then n = (1 + x,)" Z<> 22<>$2=

(n-1) -

nn—1) 4

2 m

Then, Vn>1,0< z, < 1/%. By squeeze theorem, x,, — 0, and lim nw = 1.
n—oo

3.3 Limsup, Liminf, and Bolzano-Weierstrass

Does every bounded sequence have a convergent subsequence?

Definition: 3.8: limsup and liminf

Let {z,} be a bounded sequence.

limsup z,, = hm (sup{xk k>n})

n—oo

liminf z,, = lim (inf{zy : £ > n})

n—00 n—oo

Theorem: 3.15: Infimum and Supremum of Subsets in R

If AABCR, A,B+#0,s.t. A, B are bounded and A C B, then inf B < inf A < sup A < sup B.

Proof. The middle inequality is obvious, we consider inf B < inf A and sup A < sup B only.
Since sup B is an upper bound for B, and A C B, then sup B is an upper bound for A. Thus sup A < sup B.
Similar argument goes for inf B < inf A O

Theorem: 3.16: Existence of limsup and liminf

Let {z,} be a bounded sequence, and let a,, = sup{xy : k > n}, b, = inf{zy : k > n}. Then
1. {a,} is monotone decreasing and bounded. {b,} is monotone increasing and bounded. Thus

lim a, and lim b, exist.
n—o0 n—oo

2. liminf z,, < limsup z,,

Proof. 1. Since {zp : k>n+1} C{zr: k> n}, any1 =sup{zp : k> n+1} <sup{zx:k>n}=a,
by Theorem [3.15, and similarly b,41 > b,
Since {x,} is bounded, 3B > 0, s.t. Vn € N, —B < z,, < B. Then —B < inf{zy : k > n} < sup{zy :
kE>n} < B. Thus —B < b, < a, < B. And |b,| < B, |a,| < B. {an} and {b,} are monotone and

bounded. Thus lim a, and lim b, exist.
n—oo n—oo

2. Since —B < b, < a, < B, we have liminfz,, = lim b, < hm a, = limsup z, by Theorem

n—o0 —00
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Example: =, = (-1)", {(-1)¥: k >n} = {-1,1}.
sup{(—=1)*: k > n} =1, limsupz, = 1. inf{(=1)* : k > n} = 1, liminfz,, = —1.

Example: z,, = % {% tk > n} = {%,L L }

n+1’ n427
1
sup{% k> n} = %, lim sup z,, :nh—goloﬁ = 0. inf{% k> n} =0, liminf z, :nli_{r;oO =0

Theorem: 3.17: Convergent Subsequence to liminf and limsup

Let {x,} be a bounded sequence. There exist subsequences {x,,} and {z,} s.t. klim By, =
—00

limsup z,, and lim z,,, = liminfx,.
k—o00

Proof. Let a, = sup{xg : k > n}, Ing > 1st. a1 — 1 < zp, < aq by Theorem since a; = sup{xy :
k> 1}.
Since an,+1 =sup{xg : k >ni; + 1}, Ing >ny +1>ng s.t. ap,41 — % < Tpy < Ayt
Continuing in this manner, we obtain a sequence of natural numbers ny < ns < ng < --- s.t. Vk € N,
Oy _1+1 — % < Zny < Qny_y+1-
Sinceng <ng<ng<---,n+1<ng+1<n3+1<---. And {an,_,+1} is a subsequence of {a,}.
{an} converges and {a,, ,+1} is a subsequence of {a,}. Thus by Theorem klggo Anp 41 = nh_)ﬂ(go Gy, =
lim sup x,. By squeeze theorem, klim Tp, = limsup z,.

oo

.. N 1
Similarly for liminf, we can have a,, ,+1 < Tp, < apy_, 41+ 7- O

Theorem: 3.18: Bolzano-Welierstrass

Every bounded sequence has a convergent subsequence.

Proof. Directly follows Theorem by choosing the subsequence to be a,, = sup{zy : k > n}. O

Theorem: 3.19:

{z,} converges < limsup x,, = liminf z,,.
If {x,} converges, then limsup z,, = li_)m z, = liminf z,,
mn o

Proof. (<) Suppose L = limsup z,, = liminf z,,. Since Vn, inf{z : k > n} < z, < sup{zy : k > n}. By

squeeze theorem, x,, — L.

(=) Let L = lim x,. By Theorem [3.17, there exists subsequence {zy, } s.t. lim z,, = limsupz, =
n—00 k—o0

L = limsup z,,.
Similarly, there exists subsequence {zy,, } s.t. klim Ty, = liminfz, = L = liminf z,. O
—00

3.4 Cauchy Sequences

Definition: 3.9: Cauchy Sequence

A sequence {z,} is Cauchy if Ve > 0, 3IM € N s.t. for alln > M and k > M, |z, — x| < €.

Remark 10. The negation: {z,} is not Cauchy if Je¢ > 0 s.t. VM € N, I3n > M and k > M s.t.
|a7n - xk| > €.
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Example: z,, = % is Cauchy.

1

Thenifn> M, k> M, | -7

|
\
IN

Example: z,, = (—1)" is not Cauchy.

Proof. Let ¢g = 2. Let M € N. Choose n = M and k = M +1. Then |[(—1)" — (=1)F| = [1—-(=1)|=2. O

Theorem: 3.20:
If {xy,} is Cauchy, then {z,} is bounded.

Proof. Since {z,} is Cauchy, 3M € N s.t. for alln > M and k > M, |z, — x| < 1.

Then Vn > M, |z, — xp| < 1. |xn| = |2n — 2y + 20| < |2 — 2| + 2] < 14 |2s].

i.e. Yn > M, x| < |xp|+ 1.

Let B = max{]xl\, ey ‘.%']M_l‘, ‘.%'M‘ + 1}

Then Vn > M, |z,| < |zpm|+ 1< Bandfor1l <n<M,|z,| <B. O

Theorem: 3.21:

If {z,} is Cauchy and there exists subsequence {x,, } converging to z, then {z,} converges to x.

Proof. Let € > 0. Since {z,} is Cauchy, My € N s.t. ¥n > Mg and m > My, |zp, — Tp| < §.
Since there exists a subsequence {x,, } convergint to x, IM; € N s.t. Vk > My, |z, — x| < §.
Choose M = My + M;. Since ng > k for all £ € N, then na; > M > My and nps > M.

Ifn>M, |, — 2| =Ty — Tny, + Tny, — 2| < |Tp — Trgy| |20y, —2[ < 5+ 5 =€ O

Theorem: 3.22:

{zy} is Cauchy < {x,} is convergent.

Proof. (=) If {x,} is Cauchy, then by Theorem {zn} is bounded. Then {z,} has a convergent
subsequence by Theorem Thus {z,} is convergent by Theorem [3.21]

(<) If {z,} is convergent.
Let € > 0. Since z, — x, IMp € N, s.t. Vn > Mo, |z, — 2| < §.
Choose M = My. Then if n > M and k > M, |z, — Zpm| < |20 — 2|+ [2m —2| < §+ 5 =€ -

Remark 11. If we only work in rationals, then convergence = Cauchy, but Cauchy # convergence. The
equivalence is satisified in a complete metric space and R is complete.

Example: Take {z,} s.t. z, € Q and z, — V2 in R. {z,} is Cauchy, but does not converge in Q.
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3.5 Series

Definition: 3.10: Series

(o.¢]
Given {z,}, the symbol Z Ty Or Y Ty is the series associated to {x,}. We say )z, converges if

n=1

(0]
the sequence {sm = Z Tp=x1+ -+ mm} (Partial sums) converges.
n=1 m=1
If s = li_>m Sm, then we write s = )z, and treat )z, as a real number.
n (0.)

Remark 12. The series doesn’t necessarily have to start at n = 1.

o0

Example: Z
n=0

o
1 1 1 1 1
P . = —_ 1 — . e —_ —_ —_ “ .. —_— —_— :1_
roof. sm nEO n+1 E §n+1 <+2+ +m> <2+ +m+m+1>

1

m-+1
Then lim s, = 1. O

n—oo

m converges.

o
Example: Z(—l)” does not converge.
n=0

—1, if m is odd
Proof. sy =(=1)+1+ -+ (-1)" = { RO Thus s, does not converge. O

0, if m is even

o (e.e]
1
If 1, th " d (=
|r] <1, then Zr converges an Zr e

n=0 n=0

i — pmtl 1

Proof. sy = Zr" = If|r] <1, then lim ™ =0 and lim s,, = O
o 1—17r n—00 n—00 1—17r

Theorem: 3.24:

(0.9}
Let {z,,} be a sequence and let m € N. Then Z Ty, CONVerges < Z Zp CONVErges.
n=1 n=M

M—1 M—1
Proof. The partial sums satisfy that Ym € N, Z T, = Z Ty + Z ZTp,. Since Z T, is a finite number.
n=1 n=M n=1 n=1
m m
Z Ty converges if and only if Z Ty CONVerges O

n=1 n=M
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Definition: 3.11: Cauchy Series

> @y, is Cauchy if {s,, = > 1" @, } -, is Cauchy.

Theorem: 3.25:

> xy, is Cauchy < > x, is convergent.

O

Proof. Directly follows Theorem

Theorem: 3.26: Partial Sum of Cauchy Series

> ap is Cauchy < Ve > 0, IM € Nsit. Vi >m > M,

Proof. (=) Suppose Y x, is Cauchy. Then {s,,} is Cauchy. Let ¢ > 0, My € N, s.t. ¥Ym > My and

[ > My, ]sm—sl| < €.
l

>

n=m-+1

Choose M = My. If | >m > M. =|s; — sm| <.

l

>

n=m+1

(<) Follows directly from = |51 —sm| < e O

Theorem: 3.27:

If > x, converges, then lim z, = 0.
n—oo

If lim x, # 0, then ) x,, does not converge.
n—oQ

Proof. Since Y x, converges, then _ x, is Cauchy by Theorem
l

Then by Theorem |3.26| Let € > 0, dMy € N, s.t. VI > m > My, Z Tn| < €.
n=m-+1
m
Choose M = My + 1. Then it m > M, |z,,| = an <e O
n=m

Theorem: 3.28:

(0.@)
If |r| > 1, then Z r™ does not converge.

n=0

Proof. If |r| > 1, then lim 7" does not exist, > 7™ does not converge. O
n—oo

Remark 13. lim z, =0 # > x, converges.
n—oo
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Theorem: 3.29: Harmonic Series

[e.e]
_ 1
The series g — does not converge.
n

n=0

my,
1
Proof. We show that there exists a subsequence of partial sums s,,, = E — that is unbounded.
' n

n=1

ol
1
Let | € N. Consider sy = g —.
n

n=1

As | — 00, {sy} is unbounded. Thus 3_ L does not converge. O

Theorem: 3.30: Algebraic Operations on Series

Let « € R. > x, and )y, are convergent series. Then Y (ax, + y,) converges and Y (axp + yn) =

ad Tn+ > Yn.

m m m
Proof. The partial sums satisfy Z(awn +yn) =« Z Ty + Z Yn by linearity.
n=1 n=1 n=1
m m m
By Theorem |3.10 W}gnoo Z:l(omcn +yn) = an%gnoo z:l T, + W}gnoo Z:l Yn = Q Z Tn + Zyn. O
n= n= n—=

Theorem: 3.31:

o0

if vn € N, 2, > 0, then Z T, converges < {Sm,m = > "4 Tn}o_, is bounded.

n=1

m+1 m

Proof. We have Vm € N, s,,41 = E Ty = E Tn 4+ Tmt+l = Sm + Tm+1 = Sm, since Tpy41 > 0.
n=1 n=1

Thus {s,} is monotone increasing. By Theorem [3.4] {s,,} converges < {s,,} bounded. O
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Definition: 3.12: Absolute Convergence

> x, converges absolutely if Y |z,| converges.

Theorem: 3.32: Series Triangle Inequality

m m
If m > 2, and z1, ..., 2, € R, then Zﬁm < Z |zn|. (When m = 2, this gives the usual triangle
n=1 n=1

inequality |z1 + 22| < |z1] + |22])

Proof. Base case: m = 2. Triangle inequality.
Inductive step: Suppose it holds for m = [.

I+1 l l
> o > e
n=1 n=1

l +1
i) < 3 feal + 2l = 3 . O
n=1 n=1

<

T+ T4
1

n=

Theorem: 3.33:

If > x, converges absolutely, then >z, converges.

l

Proof. We will show that > z,, is Cauchy. i.e. Ve >0, IM € Ns.t. VI >m > M, Z Tp| < €.
n=m-1
Let € > 0. Since ) |z, | converges, then > |z,| is Cauchy.
1 1
Thus 3My € Ns.t. VI >m > M, Z |z || = Z |zn| < e
n=m-+1 n=m+1
1 1
Choose M = My, if I > m > M, then Z Tyl < Z |z < € by Theorem [3.32 O
n=m-+1 n=m-+1

Remark 14. > x, converges # > x,, converges absolutely.
Example: ) # converges, but Z% does not converge.

3.5.1 Convergence Tests

Theorem: 3.34: Comparison Test

Suppose Vn € N, 0 < z,, < y,. Then
1. If >y, converges, then ) x,, converges.
2. If > @, diverges, then »_ y,, diverges.

m oo
Proof. 1. If Y yy, converges, then {Z yn} is bounded.

n=1 m=1

mo
Therefore, 4B > 0 s.t. dmg € N, Z yn < B (We can drop the absolute value here because y,, > 0).

n=1
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Then Vm € N, an < Zyn < B by Theorem {Z xn} is bounded and thus >z,
m=1

n=1 n=1
converges.

m o0 mo
2. If Y x, diverges, then {an} is unbounded. VB > 0, 3mg € N s.t. Zmn > B.

n=1 m=1 n=1

mo m S
Since y,, > x, > 0, choose m = my, Z Yn = Z x, > B. {Z yn} is unbounded and thus )y,

n=1 n=1 n=1

diverges.

Theorem: 3.35: p-series

(0.9}
1
For p € R, Z - converges < p > 1.

n=1

Proof. (=) Suppose Y. -5 converges.
Assume p < 1. Then % > % for all n. Since E% diverges. % diverges by comparison test.

(<) Suppose p > 1.

We h (Ll 1 !
€ have Sor = "‘74‘ 3p+4p + -+ m"‘%

2!
1
ey > L

=1 n*21*1+1

<1+Z Z 2l1+

I=1 n=21— 1+1

<1+ Z Z 14y 2 i

=1 n=21— 1+1 =1
1

=1+ 1_9-(1)

Let m € N. Since?m>m,sm§52m§1+?l<pfl).

Thus {s,,,} is bounded and 3 % converges. O

converges.

o0
1
Example: 3 —
TP 2 2 020n

Proof. ———— % Since Z converges, »

o +2020 converges by comparison test. O

1
n242020n
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Theorem: 3.36: Ratio Test

Suppose z, #0Vn € Nand L = lim M exists. Then

n—oo |z
1. If L > 1, > x, diverges
2. If L <1, x, converges absolutely

Remark 15. No info for L=1. x, =1, Vn € N, L =1, but ) _ 1 diverges;
2

Ty = # L = lim =1, but > x,, converges.

- Ym -
oo (n+ 1)2 noeo (14 1/n)2
Proof. 1. Suppose L > 1. Since ‘ﬁ;’;izll' — L, then My € N s.t. Vn > M, % > 1. Thus Vn > My,
|Tnt1] > |20
Then we have |zag| < |2ap+1] < |Zap+2| < -+ Thus |z,] 4 0 as n — co. Otherwise x,, = 0, Vn.

|Zn

2. Suppose L < 1. Let L < o < 1. Then since ‘xﬁ:'ﬂ — L < a. dMy € N s.t. Vn > My, \:Tﬂﬂ < a.
Thus Vn > My, |zp4+1] < oz,
Then we have Vn > My + 1 |2,| < alzn_1] < a?|zn_o] < - <o Moz, .
Let m € N, m > My. Then

m My m
D lzal =3 lwal+ 3 ol
n=1 n=1 n=>Mp+1
My m
<D ol +leagaa] Y ol
n=1 n=Mop+1
My mf(J\/]0+1)
=D lwal + l2agga| Y a”
n=1 n=0
My 1
<D lwal + el T—o
n=1

Thus } |z,| converges.

O
o0 :L‘n
Example: Vx € R, Z — converges absolutely.
n!
n=0
R e ) ) || .
Proof. L = lim — = lim = 0 < 1. Thus converges asbolutely by ratio test. O
n—00 (n + 1)' |:L‘|” n—oon + 1

Theorem: 3.37: Root Test

1
Let > x, be a series and suppose L = lim |z, |~ exists. Then
n—0o0

1. If L>1, ) =, diverges
2. f L <1, x, converges absolutely

Proof. 1. Suppose L > 1. Since |:1:n\% — L > 1, dMy € N s.t. Vn > My, ]a;n]% > 1. Then Vn > My,
|xn| > 1, 2 /A 0. >z, diverges.
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2. Suppose L < 1. Let L < a < 1. Since ]xn]% — L < a. 3My € Ns.t. Vn > My, \xn\% < a. Thus
Vn > My, |z,| < ™.

Then Vm € N,
m My m
Do leal =D e+ Y o
n=1 n=1 n=Mop+1
Mo
<

Theorem: 3.38: Alternating Series

Let {z,} be a monotone decreasing sequence converging to 0 (therefore Vn € N, z, > 0). Then
[e.e]

Z(—l)"in converges.

n=1

Proof. We firstly show that the subsequence {so;}7° | converges.
2k

For k € N, sg, = Z(—l)nl"n =—x1+22— 23+ -+ a9 = (T2 — 1) + (24 —x3) + -+ (vop — Top—1) >
n=1

(v2 — 1) + (24 — 23) + - + (op — Top—1) + (Tory2 — Topy1) (Note: xopio — wopy1 <0)

Then sg, < sy(j41)- Thus {sg;} is monotone decreasing.

AlsoVEk € N, so), = —x1+ (va—23) +- -+ (Tog—2 — Tog—1) + Top > —x1+ X9k > —x1 because Top_o > Tog—_1.

Thus Vk € N, —z1 < s < s9, {s9x} is bounded and monotone. By Theorem {s9} converges.

Let L = lim s9.
k—o0

We show that n%gnoo Sm = L.

Let € > 0. Since s9p, — L, My € N s.t. Yk > My, |82k — L| < %

Since x, — 0, IM; € N s.t. Vn > My, |z,| < §.

Choose M = max{2My + 1, M1}. Let m > M.

If m is even, then 2 > &L > Afy, then |s,, — L| = |som — L| < 5 < e by the convergence of {sg}.

If m is odd. Let k = mT_l € N. m =2k + 1. Then m > M means that 2k + 1 > 2My + 1. Thus k > M.
Also m > M. Then sy, — L| = [sy—1 + (1)@ — L| =[S0k, — Ty — L] < |s2p — L| + 2| < §+ 5§ =€
Then if m > M, |spy, — L| < ¢ O
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4 Continuous Functions

4.1 Limits of Functions
Definition: 4.1: Cluster Point

Let S C R, z € R. We say z is a cluster point of S if V§ >0, (x —d,x+ ) NS\ {z} # 0 or V§ > 0,
Jye Sst. 0<|z—y| <.

Remark 16. The negation: z is not a cluster point of S if V6 > 0, (x — §,z + )N S\ {z} # 0.

Examples:
1. § = {%:nEN}. 0 is a cluster point of S. Let § > 0. Choose n € N s.t. 0 < % < 4. Then
Le(=6,6)n S\ {0} #0.

2. S =(0,1). The set of cluster points is [0, 1].
3. § = Q. The set of cluster points is R.

4. S = {0} has no cluster points. If 2 > 0, then z is not a cluster point of S. Choose §y = §. Then
(x— 60,2+ 00) = (%,35). 0¢ (£,2) and (z — g,z + Jo) NS\ {z} = 0.

5. In general, any finite set has no cluster point.

6. S = Z has no cluster point.

Theorem: 4.1: Cluster Points and Sequences

Let S C R. Then z is a cluster point of S < 3 sequence {x,} of lements of S\ {z} s.t. x, — x.

Definition: 4.2: Limit of Functions

Let S C R and let ¢ be a cluster point of S. Let f: S — R, we say f(x) converges to L as x — c if
Ve>0,30 >0st. z€Sand0< |z —¢c| < = |f(zx) — L| <e.

i.e. If x is near ¢ but not at ¢, then f(x) is near L.
Notation: f(z) — L as x — c or lim f(z) = L.
Tr—cC

Theorem: 4.2: Uniqueness of Limit of Functions

Let ¢ be a cluster point of S C R and let f: S — R. If f(x) — L; and f(x) — Lo as x — ¢, then
Ly = Lo.

Proof. We want to show that Ve > 0, |L; — Lo| < €.

Let € > 0. Since f(x) — L1 as & — ¢, then 301 > 0s.t. 0 <[z —c| < = |f(z) — L1| < §.
Similarly, since f(x) — Lo as © — ¢, then 353 > 0s.t. 0 < |z —c| <2 = |f(z) — Lo2| < 5.
Take § = min{dy,d2}. Since ¢ is a cluster point of S, 3z € S st. 0 < |z —¢| < §. Then |L; — Lo| =
L1 = f(@) + f(z) = Lo| < [f(z) = Lol + [f(2z) = Lo| < 5+ 5 =€ 0

Example: lim(az +b) =ac+b
r—C

Proof. Let € > 0. Choose § = 5. If 0 < |z — ¢| < 4, then |f(x) — (ac +b)| = |(ax + b) — (ac + b)| =

=l
\a(x—c)\:]aHx—c]<|alﬁ:e. O
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Example: ligl vV =+/c

Hm%L%6>O(Emwéze%iHO<M—d<5¢MnU@}qﬁM:WE—¢a:(¢7—¢a£i£ =

z—c ) 5 &/e _
Vorve| SVERES Ve T e € -
Examples f(z) = { "l f(0) = 2 £ 1(0)
xample: f(z) = . lim f(z) =
p 2,x#0 z—0
Proof. Let € > 0. Choose § =1. Then 0 < |z| <d = 2 #0, |[f(z) —2|=]2—-2|=0<e. O

Theorem: 4.3:

Let S C R, ¢ a cluster point of S and let f : S — R. Then lim f(z) = L < V sequnce {z,,} in S\ {c}
Tr—cC
s.t. & — ¢. We have f(z,) — L.

Proof. (=) Suppose lim f(z) = L. Let {z,} be a sequence of elements in S\ {c} s.t. x,, = c as n — oo.
Tr—cC

We want to show that f(z,) — L as n — oo.
Let € > 0. Since f(x) — L, 30 > 0s.t. if 0 < |z —¢| <, then |f(z) — L| < e. Since z,, — ¢, then IMy € N
s.t. Vn > My, 0 < |zp, —c| <d = |f(zn) — L| <e.
(<) Suppose V sequence {z,,} in S\ {¢} s.t. =, — ¢, we have f(z,) — L.
Assume lim f(x) # L.
Tr—C
Then Jep > 0s.t. V6 >0, Jzs.t. 0< |z —¢| < and |f(x) — L| > €.
Since z, — ¢ ¥n € N, 3z, s.t. 0 < |2, — | < L and |f(z,) — L| > .
However, by definition f(z,) — L, we get 0 = lim |f(x,) — L| > ¢o > 0. Contradiction. O
n—o0

Remark 17. The negation: ligl f(z) # L & V sequnce {z,} in S\ {c} s.t. =, — ¢. We have either

lim f(z,)# L or lim f(x,) does not exist.

Example: Ve € R, lim 22 = ¢2.
T—cC

Proof. Let {x,} be a sequence s.t. x,, — ¢ as n — co. By product rule in Theorem r2 — 2. Thus
by Theorem lim 2% = 2. O

Tr—cC

Example:

1
1. imxsin— =0
z—0 x

o1 .
2. lim sin — does not exist
z—0 X

Proof. 1. Suppose x, — 0, we want to show z,, sin% — 0. 0 < |z sin -] < |zy|sin é\ < |zp,], since

1
| sin x%] < 1. By squeeze theorem, x,, sin i — 0. Thus by Theorem lim z sin — = 0.

z—0 T

33



1
2. We want to show that Jz,, — 0 s.t. lim sin — DNE.
n— oo T,

Let z,, = ﬁ Note for all n, |z, | < m < 2. Thus z, — 0, but {sin i} = {sin (2n;1)7r}

1
{(=1)"*1}. The sequence does not converge. Thus lim sin — DNE.
n—o00 Ty

Theorem: 4.4: Order Property of Limits of Functions

Let S C R, ¢ a cluster point of S and suppose f: S - Rand g: S — R. If ligl f(z) and ligl g(x)
exist and Vo € S, f(x) < g(x), then liin flz) < ligl g(z).

Proof. Let L1 = lim f(z), Ly = lim g(x). Let {x,} be a sequence in S\ {c} s.t. z, — c.
Tr—cC Tr—cC

Then Vn € N, f(zy,) < g(x,). Since f(z,) — L1 and g(z,,) — L2 by Theorem then L; = lim f(x) <
Tr—cC
ilig; g(z) = Ly by Theorem O

We also have the following analogs for limits of functions:

Theorem: 4.5: Squeeze Theorem for Limits of Functions

Let S C R and let ¢ be a cluster point of S. Suppose f: S - R, g: S —>Rand h:S — R s.t.
f(z) < g(x) < h(x) for all z € S\ {c}. If lil)n fz) = 111_31 h(z), then liLn g(x) = liin f(z) = liin h(z)

Theorem: 4.6: Algebraic Operations of Limits of Functions

Let S C R and let ¢ be a cluster point of S. Suppose f: S — Rand g: S — R s.t. liLn f(x) and
liin g(z) exist. Then
L lim (f(2) + g(2)) = lim f(2) & lim g(z)

2. lim(f(x)g(x)) = lim f(z) lim g(z)

3. If lim g(x) # 0 and g(z) # 0 for all x € S'\ {c}, then lim f(z) _ limg e f(z)

z—>c z—c g(x) lim, . g(z)

Theorem: 4.7: Absolute Values of Limits of Functions

Let S € R and let ¢ be a cluster point of S. Suppose f : S — R s.t. liin f(x) exists. Then
xX (&)
lim [f(2)] = [ lim ().

Definition: 4.3: Left and Right Limits of Functions

Let S C R and suppose c¢ is a cluster point of (—oo,c) N S.
1. Left Limit: We say f(z) > Lasz — ¢ ifVe > 0,30 >0st. c—d <z <c=|f(z) - L| <e
We write lim f(x) = L.

Tr—Cc

2. Right Limit: Wesay f(z) > Lasx — ¢Tif Ve > 0,3 > 0s.t. c<z <c+d = |f(z)—L| <e.
We write lim f(z) = L.

T—ct
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Example: The Heaviside function f(z) =

1,z >0
lim f(z) = lim 0=0 and hm f(z)= lim 1=
z—0~ z—0~ z—0t+

Theorem: 4.8:

Let SCR, f:S— R. c¢is a cluster point of (—oo0,¢) NS and (¢,00) N'S. Then
lim f(zr) =L < lim f(x)= lim+ flz) =
T—Cc T—C

Tr—cC

Proof. (=) By definition.
(<) Assume hm f(z) = lim+ flz) =
—C
Let € > 0. Slnce lim f(x)=L,then 351 >0st. c—d <x<c= |f(zx)—L|<e.
T—Cc

Similarly, since hm+ f(z) =L, then 362 > 0st. c<x <c+dy = |f(x) — L| <e.
T—C
Take § = min{dy,d2}. Thenfor c—6 <c—d <z <c+d <c+dy,x #c,ie. 0<|x—c| <6, |f(z)—L| <e.

Thus li{}n f(x)=L. O
4.2 Continuous Functions

The continuity of a function studies how a function behaves near a point compared to the function at the
point.

Definition: 4.4: Continuity

Let S C R, ¢ € S. We say f is continuous at ¢ if Ve > 0, 30 > 0s.t. Vo € S, |[x —¢|] < § =

[f(z) = flo)] <e

Remark 18. The negation: f is not continuous at ¢ if Je¢ > 0 s.t. Vo > 0, Jr s.t. |z — ¢ < § and
|f(z) = f(e)] = eo.
If f is continuous at every ¢ € S, we say f is continuous. If f is not continuous, we say f is discontinu-

ous.

Example: f(x) = ax + b is continuous.

Proof. Let c € R. Let € > 0. Choose 0§ =

+lal®
If |2 — ¢ <, then |f(x) — f(c)| = |a(x — o)| = |al|lz — | < |ald = {2 < e. O
lL,e=0 . . .
Example: f(x)= is discontinuous at z = 0.
2,2 #0

Proof. Choose €9 = 1. Let 6 > 0. Choose x = g. Then |z —§| = g <dand |f(z)— f(0)]=2—-1=12> €.

So f is not continuous. O
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Theorem: 4.9: Conditions of Continuity

Suppose SCR,ce S, f: S —R
1. If ¢ is not a cluster point of S, then f is continuous at ¢
2. Suppose c¢ is a cluster point of S. Then f is continuous at ¢ < lim f(x) = f(c)
Tr—cC

3. f is continuous at ¢ < V sequence {z,} of elements of S s.t. x, — ¢, we have f(x,) — f(c).

Remark 19. The negation of 3: f is discontinuous at ¢ < 3 sequence {x,} s.t. x, — ¢ and {f(z,)} does
not converge to f(c).

Proof. 1. Let € > 0. Since ¢ is not a cluster point of S, then 309 > 0 s.t. (¢ — do,c+ dp) NS\ {c} = 0.
Thus, (¢ —dp,c+dp) NS = {c}. Choose § = dy. If z € S, |z —¢| <9, then z = ¢, and |f(z) — f(c)| =
[f(e) = flo)|=0<e

2. Suppose c is a cluster point of S.

(=) Suppose f is continuouse at ¢. Let € > 0, 35p > 0s.t. 0 < |z —¢| < dg = |f(x) — f(c)| < €. Then
choose L = f(c¢), § =dp. 0 < |z —¢| <0 = |f(z) — L| = |f(z) — f(c)| <e. Thus, liin f(x) = f(eo).

(<) Suppose liin f(x)=f(c). Let e >0. g >0st. if x € S,0< |z —c| <dp = |f(x) — f(c)] <e
Choose 0 = dp. Suppose |z —c| < d. If x = ¢, then [f(z) — f(c)| = |f(c) — f(c)] =0 < e If x # ¢,
then 0 < |x — ¢| < d = dp. Thus |f(z) — f(c)| < e. f is continuous.

3. (=) Suppose f is continuous at c¢. Let {z,} be a sequence in S s.t. z,, — ¢. We want to show that
lim f(2) = f(c).
Let € > 0. Since f is continuous at ¢, 30 > 0s.t. |z —c| <d = |f(x) — f(c)| <€
Since x, — ¢, IMy € N, Vn > My, |z, — c| < 0.
Choose M = My. Then if n > M, |z, —¢| <6 = |f(zn) — f(c)| <e.

(<) Suppose V sequence {z,} of elements of S s.t. x,, — ¢, we have f(x,) — f(c).
Assume that f is not continuous at c. i.e. Jeg > 0s.t. V6 > 0,3z € S, |[zr—c| < Jand |f(x)—f(c)| > €o.
Then 3z; € S s.t. |21 — ¢ < 1 and |f(z1) — f(¢)| > €0 and Vn € N, 3z, € S s.t, |7, — ¢| < L and

|f(xn) - f(C)| > €.

Then 0 < |z, —c| < L. By squeeze theorem, z,, — ¢. Then f(z,,) — f(c). 0= nh—>Holo |f(zn)—f(c)| > e

Contradition. Thus f must be continuous at c.

From the definition of sin and cos via unit circle, we have Vx € R:
1. sin?z 4 cos?z =1
2. |sinz| <1, |cosz| <1
3. |sinz| < |z|
Angle Formula:
1. sin(a+b) =sinacosb + cosasinb

2. sina —sinb = QSin“T_bcosaT‘H’

36



Theorem: 4.10: Continuity of Sine and Cosine

f(z) =sinz and g(z) = cosx are continuous.

Proof. 1. sinz. Let c € R, € > 0. Choose 6 = ¢

Then |z —¢| < § = |sinz — sinc| = [2sin %€ cos T5¢| < 2|sin %5¢| < 2'5[:2;6‘ <d=¢

2. cosz. Let ¢ € R, {z,} be a sequence s.t. x,, — ¢. We want to show that cosx,, — cosc
Vz € R, we have cosx = sin (x + g) If z, — ¢, then x,, + § — ¢+ § by Theorem Since sinx
is continuous, then sin (z + %) — sin (¢ + Z) by Theorem ﬁ Thus cos(zy,) — cosc.

O

Theorem: 4.11: Dirichlet Function

1,z €eQ
0,z¢Q

. Then f is discontinuous at every ¢ € R.

Let f(z) = {

Proof. Let ¢ € R.
Case 1: ¢ € Q. For every n € N, 3z, € Q% s.t. ¢ <z, < c+ % (Density of irrational numbers)
By squeeze theorem, z, — ¢. But lim f(z,) = lim 0=0# 1= f(c¢).

n—o0 n—oo

Case 2: ¢ € QY. Forevery n € N, 3z, € Qs.t. c <z, <c+ % by Theorem .
By squeeze theorem, x,, — ¢. But li_>m fxn) = li_>m 1=1#0= f(c). O
n [o.¢] n o

Theorem: 4.12: Algebraic Operations of Continuous Functions

Suppose SCR,ce S, f: S —Rand g: S — R. If f and g are continuous at ¢, then
1. f + g is continuous at ¢
2. fg is continuous at ¢
3. If g(z) # 0 for all z € S, then 5 is continuous at ¢

Theorem: 4.13: Composition of Continuous Functions

Suppose A, B C Rand c€ A. Let f: A — R and g : B — R. If g is continuous at ¢ and f is
continuous at g(c) € A, then f o g is continuous at c.

Proof. Let {x,} be a sequence in B s.t. z, — ¢. Since x,, — c and g is continuous at ¢, then by Theorem

g(xn) = g(c).
Since g(xy) — g(c) and f is continuous at g(c), then f(g(z,)) — f(g(c)). i.e. nli_)rgofog(xn) = fog(ec) O

Example: Vn € N, f(z) = 2" is continuous.

Proof. Base case: n =1, f(x) = x is continuous as shown by f(z) = az + b.

Inductive step: suppose 2™ is continuous. Then 2™ +! = z-2™*! is the product of two continuous functions,
then by Theorem ™+ is continuous. O

Example: Vn € N, ag, ..., a, € R, the function f(z) = ap,2™ + a,_12" "1 +--- + ag is continuous.
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Proof. By previous example + addition property in Theorem O

Example: f(x) = is continuous.

1
3+(sinz)4

Proof. By Theorem (sinx)* is continuous. Then by Theorem , 3+ (sinz)? is continuous, and thus

m is continuous since 3 + (sinx)* # 0, Va. O

4.3 Extreme and Intermediate Value Theorems

If f:[a,b] — R is continuous, then it is well-behaved. i.e. f([a,b]) = [c,d].

Definition: 4.5: Bounded Functions

f:S — Ris bounded if 3B > 0s.t. Yz € S, |f(z)| < B.

Remark 20. The negation: f:S — R is unbounded if VB > 0, 3z s.t. |f(z)| > B.

Example: f:[0,1] = R, f(x) =3z + 1. f is bounded.

Proof. |f(z)| =13z + 1| <3|z +1<3+1=4 O
0,z=0 .

Example: f:[0,1] = R, f(z) =<, . f is unbounded.
5,1’#0

Proof. Let B> 0,z € Rst. 0 <z < 4, then |f(z)| =1 > B. O

Theorem: 4.14:

If f:[a,b] — R is continuous, then f is bounded.

Proof. Assume f : [a,b] — R and f is not bounded.
Then Vn € N, 3z, € [a,b] s.t. |f(zy)| > n. Then {z,} is bounded. By Theorem there exists a
subsequence {zp, }; and z € [a,b] s.t. z,, — .
Since Yk € N, a < z,,, <b, then by squeeze theorem, a < klim Tn, < b, t.e. a<x<b
—00

Since f is continuous and z,, — z, f(x) = klim f(zn, ). Thus, by Theorem |f(x)| = klim | f(zn,)|-

— 00 —00
Then {|f(xn, )|} is bounded and since ng < |f(zy, )|, then {ny} is bounded. Contradiction.

Definition: 4.6: Min/Max of Functions

LEt f: S — R, f achieves an absolute min at ¢ € S if Vx € S, f(c) < f(x). f achieves an absolute
max at d € S'if Ve € S, f(x) < f(d).

Theorem: 4.15: Extreme Value Theorem

Let f : [a,b] — R. If f is continuous, then f achieves an absolute min and absolute max on [a, b].

Remark 21. 3c,d € [a,b] s.t. f([a,b]) C [f(c), f(d)]
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Proof. If f : [a,b] — R is continuous, then f is bounded by Theore Then the set £ = {f(z) : x €
[a,b]} is bounded above.
Let L = sup E (exists by least upper bound property of R). Then 3 sequence {f(xy)} s.t. f(x,) — L by
Theorem [4.3]
By Theorem [3.18] there exists subsequence {zy, }r of {z,} and d € [a, ] s.t. klim Ty, = d.
—00

Then since f is continuous at d, f(d) = klim f(zn,) = L.

—00
Since f(xn) — L and {f(zn,)}x is a subsequence of {f(xy)}. Then Va € [a,b], f(x) < f(d).

Thus f achieves an absolute max. The proof for absolute min is similar. O

Note if f: (a,b) — R continuous, f does not necessarily achieve an absolute min or max. e.g. f(z) =

E — ﬁ is continuous on (0, 1), but has no absolute max or min.

Theorem: 4.16: Bisection Method

Let f : [a,b] — R be continuous. If f(a) < 0 and f(b) > 0, then 3¢ € (a,bd) s.t. f(c) =

Remark 22. If f : [a,b] — R is not continuous, this theorem is not necessarily true. e.g. f(z) =

{x e on [0,2]. Ac€[0,2] s.t. f(c) =0 even though f(0) <0, f(0) >0

Proof. We first define two sequences {a,} and {b,}. Let a; = a, by = b. For n € N and knowing ay, by, we
define an+1 and b,41 as follows:

1. If f (%) >0, then a,+1 = ap, and by = %

2. If f (22dba) <0, then any1 = 225 and byiq = by,
Then, the following are true:

l.VneN, a<ay, <any1 <bpr1 <b, <0

2. VneN, bpy1 — apyo = IWT”‘”

3. VYneN, f(ap) >0 and f(by) <0

By 1, {an} and {b,} are bounded monotone sequences. Thus, {a,} and {b,} converges. i.e. Jc,d € [a,b]
s.t. ap, — c and b, — d.

By 2, by — an = 3(bp—1 — an-1) =+ = 5o (b1 — a1) = 31 (b— a)

Thusd—c—hmb an—hm W(b—a):()

By 3 and Contlnulty, fle) = nh—%lo f(an) <0, and f(c) = f(d) = nh_)rglo f(by) > 0.

Thus f(c) = f(d) =0 O

Theorem: 4.17: Bolzano’s Intermediate Value Theorem (IVT)

Let f : [a,b] — R be continuous.
o If f(a) <y < f(b), then Jc € (a,b) s.t. f(c)
o If f(b) <y < f(a), then Jc € (a,b) s.t. f(c)

Y
Y

Proof. Suppose f(a) < f(b) and y € (f(a), f(b)). Let g : [a,b] = R, g(z) = f(x) —y. g is continuous by
Theorem [4.12

Also, g(a) = f(a) —y <0, g(b) = f(b) —y > 0. By Theorem Jde € (a,b) s.t. g(c) =0. ie. f(c) =
The other case is similar, by choosing g(x) =y — f(z). O
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Theorem: 4.18:

Suppose f : [a,b] — R. If f achieves an absolute min at ¢ and absolute max at d, then f([a,b]) =
[£(c), £(d)]

Proof. Apply IVT to f : [¢,d] = R, [f(c), f(d)] C [f([e,d]) C [f(la,b]) C [f(c), f(d)]
Thus f([a,b]) = [f(c), f(d)]. _

Theorem: 4.19:

If f(x) is a polynomial of odd degree, then f(x) has at least one real root.

4.4 Uniform Continuity

Definition: 4.7: Continuous Functions

f:S — Riscontinuous if Ve € S, Ve > 0,30 = d(e,¢) > 0s.t. Ve € S, |z—c| <d=|f(z)—f(c)| <e

Example: f(z) =1 is continuous on (0, 1).

Proof. Let c € (0,1), € > 0. Choose § = min{§, 26} Suppose z € (0,1), |z —¢| < 4.

Then |c| = |c—x+x|<\c—x|+\x|<5+|x\< +|x\ So § <.

Then |f(z) — f(o) = |1 -1 =9 <& <2 <235 — ¢ O

rc — c?

2—6

Definition: 4.8: Uniform Continuity

Let SCR, f:S — R. Wesay f is uniformly continuous on S if Ve > 0, 30 = §(¢) > 0s.t. Vz,c € S,
|z —c| < d = |f(x)— flc)] <e.

Remark 23. The negation: f : S — R is not uniformly continuous if de¢g > 0 s.t. Vd > 0, Jz,c € S s.t.
|z —c| < §, but |f(x) — f(c)| > €.

Example: f:[0,1] = R, f(z) = 22 is unifornmly continuous.

Proof. Let € > 0. Choose § = §. Suppose z,c € [0,1] and |z — ¢| < 0.
Then |22 — 2| = |z + ¢||x — ¢| < (|z| + |c|)|x — ¢| < 20 = e. O

Example: f:(0,1) = R, f(z) =  is not unifornmly continuous.

Proof. Choose ¢g = 2. Let § > 0. Choose ¢ = min{&,%}, r=5
Then|x—c|:%§%<5and’%—%‘:’%—%’:%2226. O

Example: f:R — R, f(z) = 22 is not unifornmly continuous.

Proof. Choose ¢g = 1. Let § > 0. Choose ¢ = %. T = c+%
Then |z — ¢/ =§ <dand [22 — 2| =|z+ ||z —c| = (3 +
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Theorem: 4.20:

Let f : [a,b] — R. Then f is continuous on [a,b] < f is uniformly continuous on |[a, b].

Remark 24. In general f uniformly continuous = f continuous, but f continuous # f uniformly continuous.

Proof. (=) Suppose f is continuous on |[a, b].
Assume that f is not uniformly continuous on |[a, b].
Then Jey > 0 s.t. V6 > 0, Iz, ¢ € [a,b] s.t. |z —¢| < and |[f(z) — f(c)| > €.

Then by Theorem Vn € N, Jx,, ¢y € [a,b] s.t. |z, —cp] < % and |f(zn) — f(en)| > €o.
By Theorem [3.18] there exists sequence {zy, }r of {z,} and x € [a,b] s.t. klim Tp, = .
—00

Since {cp, }r is bounded between a and b. By Theorem 3.18, there exists subsequence {anj }j of {¢n, } and

cé€la,b] s.t. lim ¢, =c.
Jj—o0 J

In summary, the sequences {$nkj }; and {anj }; are subsequences of {z,} and {c,}. And 3z, c € [a,b] s.t.

Cr, — ¢ and Ty, — .

k; J

Now 0 < |z, —cp, | < % < 1 Thus by squeeze theorem, z = c.
J J j
Since f is continuous at ¢, 0 = [f(c) — f(¢)| = lim \f(xnkj) - f(cnkj)] > €9 > 0.
j—00

Contradiction. Thus f is uniformly continuous.

(<) Suppose f is uniformly continuous on [a, b].

Let € > 0. Since f is uniformly continuous on [a,b], 369 > 0 s.t. Vz,c € S, |r — ¢| < dp we have

[f(z) = flo)] <e.

Then Ve € S. Choose § = dg s.t. Vo € S, |x — ¢| < d, we have |f(z) — f(c)| < e. Thus f is continuous.

41



5 Derivatives

5.1 Derivative

Definition: 5.1: Differetiability and Derivative

Let I be an interval, f: I — R, c € I. We say f is differentiable at ¢ if lim M exists. We

T—C T —cC

write f'(c) = lim fz) = #9) f(c)
T—C T —cC
If f is differentiable at every point of I, we write the derivative f’ or %.
Remark 25. L = liLn @) = fle) < VY sequence {x,} with z,, # ¢ and x,, — ¢, we have
T—=c T —cC
L = lim M
n—00 Ip —C

Example: Let o € R, n € NU{0}. Then f(z) = ax™ is differentiable and f'(¢) = nac™ !, Ve € R.

Proof. We compute:

n—1 n—1 n—1
(.%' - C) § :mn—l—jcj _ § :xn—jcj - § :xn—l—lcl+1
j=0 §=0 1=0
n—1 n
= E "I — E " (Let j=141)
§=0 j=1
— :L,nfocO e — e
n—1 n—1
ooz — ac” . i 4 _ _
Then f/(c) = lim =alim Y 2" =a E = anc"L O
T—=c T —cC T—C
j=0 7=0

Theorem: 5.1:

If f:1 — R is differentiable at ¢ € I, then f is continuous at ¢, i.e. lim f(z) = f(c).

Tr—cC

Proof. We compute i!mc f(x) = lim M

T—C T —cC

(x—c)+ f(c) = f'(c) -0+ f(c) = f(o). O
Remark 26. The converse is false. f is continuous at ¢ # f is differentiable at c.

Example: f(x) = |z|. f is continuous but not differentiable at ¢ =0

Proof. We find {z,} s.t. x, # 0 Vn, z, — 0, and {%} diverges.

Let z,, = D" Then Vn, x, # 0 and z,, — 0.

n
(=n"

We compute {Z=/(0) _ ’(ffw‘ = (—1)". Thus {W} diverges. O

xn—0
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If f:R — R is continuous, there still may not exist ¢ € R s.t. f is differentiable at c. (Weierstrass)

Goal: Construct a continuous function f : R — R which is no where differentiable

Theorem: 5.2:

1. Vz,y € R, |cosz — cosy| < |z — y|
2. VceR, VK eN, Jye (c+ &,c+ 3?”) s.t. |cos Ke—cos Ky| > 1

Proof. 1. We have shown that |sinz — siny| < |z — y| for Theorem Then |cosz — cosy| =
[sin(z + §) —sin(y + )| < |z —yl.

2. The function g(z) = cos Kz is 2% periodic. Thus g((c + &, c+ 3Z)) D [-1,1] \ {—cos K¢}

If cos K¢ > 0, we choose y € (c+ &, c+ }—’T) s.t. cos Ky = —1
If cos Kc < 0, we choose y € (c+ f,c+ ) s.t. cos Ky =1

Theorem: 5.3:

Va,b,c € R, [a+b+c| > |a|] —|b] — |¢|

Proof. Apply Triangle Inequality twice:

la|=la+b+c—(b+c)| <|la+b+c|+|b+c| <|a+b+c[+ |b +|c]

Thus |a+ b+ ¢| > |a| — |b] — |c]. O
Theorem: 5.4:
o
160*
1. Vz € R, the series Z 00847163: is absolutely convergent.
k=0
o
160~
2. Let f: R =R be f(z) = Z (3()847]63:. Then f is bounded and continuous
k=0
s 160F s 160"
Proof. 1. ‘305411%% < }4%‘ By comparison test, Z 00547kx is convergent, thus Zcoilikx is
absolutely convergent.
2. Let x € R. Then
m k m k m k m
. cos 160"z . cos 160"z ) cos 160" x . _r 4
k=0 k=0 k=0 k=0

Let ¢ € R, {z,} be a sequence s.t. x, — ¢. We want to show |f(z,) — f(c)] — 0.
Equivalently, we show limsup,, |f(z,) — f(c)| = 0.
Claim: Ve > 0, limsup,, |f(z,) — f(c)| < €
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[ee]
Let e > 0. Let My € Nst. Y 47%< % Then

k=Mop+1
Mo
limsup | f(z,) — f(c)| = limsup Z 4—k[cos 160"z, — cos 160"¢|

1
+ Z S lcos 160*z,, — cos 160%(]

k=Mop+1
My 1 o) 1
< lim sup Z E[cos 160z, — cos 160%¢]| + lim sup Z E[COS 160"z, — cos 160%¢|
" k=0 " |k=Mo+1

X 1 1

< lim 51D Z 1 | cos 1607z, — cos 160%¢| 4 lim sup Z 4—,{\ cos 160%z,,| + | cos 160¥¢|
k=0 k=My+1
Mo )

< lim sup Z |160k:cn —160%¢| + hmnsup Z 0 (By Theorem [5.2)

k=Moy+1

My
< lim sup [240’“] |z, —c|+e<easz, —c
" k=0

Thus limsup,, |f(x,) — f(c)] =0 and f is bounded and continuous.

Theorem: 5.5: Weierstrass’s Example

The function f(z) = Z C()sll# is no where differentiable.
k=0

Proof. Let ¢ € R. We will find a sequence x,, s.t. x,, # ¢, £, — ¢ and {%} is unbounded.
Vn € N, there exists x,, s.t.

(a) Teom < Tn — c<lg%

(b) |cos160™z,, — cos 160™c| > 1

By (a), Vn, z,, # ¢ and by squeeze theorem x,, — c. Let fi(x) = % then f(z) = > 722, fu(x)

Goal: find a lower bound on ’f(a:: G

—C

. If the lower bound is unbounded, then the value is unbounded.

o0

() = £l = fulrn) - kz filwa) = F@)+ 3 ean) — fule)

a, k=n+1

b"/
Then |f(zyn) — f(¢)| = |an + bn + cn| > |an| — |bn| — |en] by Theorem.

By (b), |an| = 47" cos 160" x,, — cos 160™c| > 47"

n—1 n—1 n—1
bl = > (fr(zn) = fol@))| < > 1filmn) = file)] = Y 47| cos 160Fx, — cos160%c| < Y 40"z, — ¢f <
k=0 = k=0 k=0
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3m e~ . 3w don—1 4m 1
40% = —47
o - = e <13 <13

k=0
oo [e.e] o0 [e.e] - 2 Y
lenl = | Y Uilen) = file))| < D ful@a) = fil@l < Y Iful@a)l +1ful0)] <2 Y 47% = 34
k=n+1 k=n+1 k=n+1 k=n+1
Then [f(2n) — (6)] > [an] — [bal — len] > 477 — 477+ — 2470 = Ly
Since Lo = 12, then [ L2200 > 1y > e
Thus { w } is unbounded. f(z) is no where differentiable. O

Theorem: 5.6: Algebraic Operations of Derivatives

Let f: I —>R,g:1 =R, cei If fand g are differentiable at ¢, then:

1. (Linearity) Va € R, aof + g : I — R is differentiable at ¢ and (af + g)'(c) = af’'(c) + ¢'(¢)
2. (Product Rule) fg: I — R is differentiable at ¢ and (fg)'(c) = f'(¢)g(c) + f(c)d'(¢)
3.

(Quotient Rule) if g(x) # 0, Vx € I, then 5 : I — R is differentiable at ¢ and (5) (¢) =

I()g()—F(c)g'(c)
(9(0))?

=af'(c) +4'(c)

Proof. 1. lim @/ ¥9@ =@/ +9)(0) _ ;[ f(@) = /() +g(x)g(6)]

r—c r —cC r—c Tr —cC Tr —cC

2. Since g is differentiable at ¢, g is continuous at c. i.e. lim g(x) = g(c).
r—cC

Then lim Z@9@ =9 _ o @ =IO oy o) 9@) =90y _ w10y + £(0)/(0)

T—C xr—C T—c xr —C r —cC

3. Consider % first. Since g(x) # 0, ﬁ is well-defined and continuous.
1

_ /
9@ 9@ _ iy 9(e) — g(x) S (c) Then apply Product Rule.

g
zoe w—c  avegl@)gle)z—c)  g(0?

Theorem: 5.7: Chain Rule

Let I, I be intervals, g : I1y — I5, f : Is — R and suppose g is differentiable at ¢, f is differentiable
at g(c). Then fog:I; — R is differentiable at ¢ and (f o g)'(¢) = f'(g(c))d’(¢).

Proof. Let h(z) = f(g(x)), d = g(c). We want to show h'(c) = f'(d)g'(c).
f)—=f(d) (z)=g(c)

Define u(y) = yy*d v #d and v(z) = St
fi(d),y=d g'(c)z=c

Then f(y) — f(d) = u(y)(y — d), g(x) — g(c) = v(z)(z —¢)

Note: u(y) is continuous at d, v(z) is continuous at c.

lim u(y) = lim fy) = /1(d) = f'(d) = u(d), and lim v(x) = lim 9(@) = 9(c) =g'(c) = v(c)

y—d y—=d y—d T roc T —c
Then A(z) — he) = F(g(x)) — £(5()) = u(g())(g(x) — 9()) = ulg())o(x)(x — ).
tim ML 2RO ) WOV ))10) = wfayote) = f(o(e))a' (0
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5.2 Mean Value Theorem
Definition: 5.2: Relative Min/Max

Let SCR, f: S —R. fhasarelativemaxatce Sif 36 > 0s.t. Vo € S, |[z—c| < = f(z) < f(e).
f has a relative min at c€ Sif 30 > 0s.t. Vr € S, [z — | < = f(z) > f(c).

Theorem: 5.8:

If f:[a,b] — R has a relative min or max at ¢ € (a,b) and f is differentiable at ¢, then f/(c) = 0.

Proof. Suppose f has a relative max at ¢ € (a,b). Then 3§ > 0 s.t.
1. (¢—=9d,c¢+6) C (a,b) (definition of open sets)
2. Vx € (c—0,c+9), f(z) < f(c) (relative max)

Let 2, = ¢ — % € (c—9,c¢) Vn. Then x,, — c. so f'(c) = liﬁ\m J(@n) = J¢) >0
n—oo Iy —cC
Let x,, = ¢+ % € (¢,c+6) V¥n. Then z,, — c. so f'(c) = ILm f(za) = /() <0
n—00 Ty —C
Thus f’(¢) = 0. The same proof applies to relative min O

Theorem: 5.9: Rolle’s Theorem

Let f : [a,b] — R be continuous, differentiable on (a,b). If f(a) = f(b) = 0, then 3¢ € (a,b) s.t
f'(e) =0.

Remark 27. Absolute max is a relative max. Absolute min is a relative min.

Proof. Since f is continuous on [a, b], f achieves a relative max at ¢; € [a, b] and a relative min at ¢y € [a, b].
If f(e1) >0, then ¢; € (a,b), f'(c1) =0. Set ¢ = ¢;.

If f(c2) <O, then c2 € (a,b), f'(c2) =0. Set ¢ = co.

If f(c1) <0< f(c2). By definition, f(c1) > f(c2). Then f(c1) = f(c2) =0, and Vx € [a,b], f(c2) < f(x)
f(e1) = f(c2). Thus Va € [a,b], f(x) = f(c2). i.e. fis constant. Set ¢ = %L,

CIA

Theorem: 5.10: Mean Value Theorem

Let f : [a,b] — R be continuous, differentiable on (a,b). Then Je¢ € (a,b) s.t. f(b) — f(a) =
f'(©)(b—a).

Proof. Define g : [a,b] — R by g(x) = f(x) — f(b) + W(b — )

Then g is continuous on [a, b] and differentiable on (a,b).

9(a) = f(a) — S (0) + T 0 —a) = 0. 9(0) = () — F(0) + LEZHA 0 —b) = 0

By Theorem , Je € (a,b) s.t. 0=¢'(c) = f'(c) — %.

Thus f(b) — f(a) = f'(c)(b— a). -
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Theorem: 5.11:

Let f : I — R be differentiable. Then
1. fis increasing (x <y = f(z) < f(y)) & Ve el, f(x) >0
2. fis decreasing (x <y = f(z) > f(y)) & Ve el, f'(x) <0

Proof. We only prove the increasing case.

(<) Suppose f'(z) > 0,Vx € I. Let a,b € I with a < b. Then f is continuous on [a, b] C I and differentiable
on (a,b).

Then by Theorem e € (a,b) s.t. f(b) — f(a) = f'(c)(b—a) >0, f(a) < f(b).

(=) Suppose f is increasing and ¢ € I. Let {x,} be a sequence in I s.t. x, — ¢ and either (a) Vn,z, < ¢
or (b) Vn,x, > c¢. Such a sequence always exists since I is an interval.

In case (a), Vn, f(x,) — f(c) <0 since f is increasing = Vn, % >0= f'(¢)>0

In case (b), Vn, f(z,) — f(c) >0 = Vn, % >0= f'(c) >0.

Thus f'(c) > 0.

For the second part of theorem, f is decreasing < —f is increasing < —f/(z) > 0, Vz € I. O

Theorem: 5.12:

Let f: I — R be differentiable. Then f is constant < f/(x) =0, Vz € i.

Proof. f is constant < f is increasing and decreasing < Va € I, f'(z) > 0 and f'(z) < 0 & Vo € I,

fl(z)=0. O

5.3 Taylor’s Theorem

Remark 28. Taylor’s theorem is essentially the Mean Value Theorem for higher order derivatives.

Definition: 5.3: n-times Differentiable

We say f: I — R is n-times differentiable on J C I if f/, f”, ..., f™ exist at every point in J, where
the n-th derivative is denoted as (.

Theorem: 5.13: Taylor’s Theorem

Suppose f : [a,b] — R is continuous and has n continuous derivatives on [a,b] s.t. ("1 exists on
(a,b). Given xg, z € [a,b], there exists ¢ € (zg,x) s.t.

f(n+1)(c)

m(fﬂ - l‘o)nﬂ,

£(@) = 3 2P ao)(w — mo)* +
k=0

1
where P,(z) = Z Ef(k) (z0)(z — x0)* is the n-th order Taylor polynomial for f at zg, Rn(z) =
k=0 "

(n+1) . g
IO (x — x9)" ! is the n-th order remainder.

(n+1)!

Note: R, (x) doesn’t need to be small.
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1
~1 0
Example: f(x) = g ’x0> . f is differentiable as many times as we want, but f(")(0) = 0, ¥n. Then
y L =

P,(z) =0, f(x) = Ry(x).

Proof. Let xg # x. Let My o, = ) =Pala) o, f(x) = Po(x) + My zo (v — 0)" L.

T

Goal: show Jc € (a,b) s.t. My, = %

For 0 < k <n, f(z9) = p¥ (m0). Let g(s) = f(8) — Pu(8) — My (s —20)" 1. g(s) is n+ 1 differentiable
in s.

g(zo) = f(x0) — Pu(z0) = 0 and g(x) = f(x) — Po(z) — My zo(z — z0)"+! = 0.

By Theorem Jz1 between zp and x s.t. ¢'(x1) = 0.

Also ¢'(zo) = f'(x0) — P, (x0) = 0, so Jx2 between zp and z1 (thus between z¢ and x) s.t. ¢”(x2) =0
Continuing in this way, for 0 < k < n, 3z, between zo and z s.t. g(¥ (zx) = 0.

Since g™ (z0) = f™ (o) — PT(Ln)(a:O) — My 2o (n+ 1) (xg — 20) = F) (z0) — PT(Ln) (zo) =0 and g™ (z,) =0
By Theorem applied to g™, there exists ¢ between z and zg s.t. g™+ (¢) = 0.

(n+1) (¢
Then f("1(c) = 0 = My 4y (n +1)! = 0. Thus M, 4, = L7,

(n+1) (¢ "
Thus f(z) = P,(x) + f(n+1)(! ) (x — zo)" ! O

Theorem: 5.14: Second Derivative Test

Suppose f : (a,b) — R has two continuous derivatives on (a,b). If o € (a,b) s.t. f'(z9) = 0 and
" (zg) > 0, then f has a strict relative min at zg. ée. 30 > 0 s.t. Vo, 0 < |z — 29| < § =

f(x) > f(zo)-

Proof. Since f” is continuous, clLrgO 1"(c) = f"(xo) > 0. Then 35y > 0 s.t. VO < |c — zo| < &9, f"(c) > 0.
Choose § = dp. Let 0 < |x — z9] < 6 = dp. Then by Theorem de between = and zg s.t. f(z) =
S (o) + (o) (& = o) + F52 (& = 20)”.

Since f'(xg) =0, f(z) = f(xo) + @(m —0)% > f(w0). Since x # xo, f"(c) > 0. O
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6 Riemann Integration

6.1 The Riemann Integrals
Notation: C([a,b]) = {f : [a,b] — R : f is continuous}.

Definition: 6.1: Tagged Partition

A partition of [a,b] is a finite set = {a = z9 < 21 < 22 < -+ < z, = b}. The norm of a
partition ||z|| = max{z1 — xo,...,2n — 2n—_1}. A tag for a partition z is a finite set { = {&1,...,&n}
st g <& <a1 <& < wp < oo <&y < @y The pair (z, ) is a tagged partition.

Example: z = {1,3,2,3}, £ = {3, %, 2}. Then ||z| = max{3 — 1,2 - 3,3 -2} = 1.

Definition: 6.2: Riemann Sum

Let f € C([a,b]), (z, §) is a tagged partition. The Riemann Sum of f corresponding to (z,§) is the

number S¢(z,§) = Zf &) (TK — Tp—1)-

Definition: 6.3: Modulus of Continuity

For f € C([a,b]), n > 0, we define the modulus of continuity w¢(n) = sup{|f(z) — f(y)| : [z —y| < n}.
Vz,y, |f(@) = )] < wr(lz —yl). I g <o, then wy(m) < wp(ne).

Example: f(r) = az +b. Then |f(z) = f(y)| = |allz —yl|. Soif [z —y[ <n, then |f(z) — f(y)| < [aln.
Thus wy(n) = |aln.

Theorem: 6.1:
Vf e C(a,b)), lir%wf(n) =0. t.e. Ve > 0,30 >0s.t. Vn, 0<n <6, we(n) <e
n—

Proof. Let € > 0. Since f € C([a,b]), f is uniformly continuous by Theorem i.e. A9 > 0 s.t. Va,y,
oyl <80 = 1(2) — J()| < .

Chooose § = dg. Suppose n < 0 = do. If |z —y| < n < do, then |f(z) — f(y)| < §. Then § is an upper
bound for the set {|f(x) — f(y)| : |z — y| < n}.

Thus wy () = sup{|f(@) = f(y)]  |e =yl < m} < § <€ Thus limwy(n) = 0. -

Theorem: 6.2:

If (z,€) and (2/,¢') are tagged partitions of [a,b] s.t. =z C 2/. ie 2’ is a refinement of z and
f € C([a,b]), then |Sy(z, &) — Sy(z', &) < wy(llzlD (b - a).

Proof. For k=1,..,n,let y® = {z_ =a) <af,, < - <al, =ax}, n'™ ={¢,,....&,} be a partition
of [zr_1,xk].

Then (2',¢) = Uzzl(ﬁ,ﬂ) Thus S¢(2',€) ZS’f L L
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Then

£ (&) (= mpm1) = Spu® ™)) = (&) D @) —af) = D FE)E)—afy)
J=l+1 g=l+1
= > (f(&) - FE) ) — ) y)
Jj=l+1
< ) If(&) — FEDI] — 2y
j=l+1
< Y wellak — zp—1]) (2 — 2f_;) (by Definition [6.3)
j=l+1

=w(Jzr — 2p—1])(k — Th—1)

Then

S (2, &) = Sp(a’, &) < D 1) (wr — zr-1) = Spy™, ™))
k=1

n
< wa(]a:k — xp_1|)(zk — xp—1) (By previous calculation)

k=1

<> wpllzl) (wx — zx—1)
k=1

=wy(llzl)(b—a)

Theorem: 6.3:

If (z,&) and (2/,£) are any tagged partitions and f € C([a,b]), then

|Sp(x,§) = Sp(a, &) < lwy(llzll) +wr(2'N](b - a)

Proof. Define 2" = zUgz’ amd {" = £UE'. Then z C 2/ and 2 C 2”. So 2" is a refinement of both z and 2’
Then by Theorem

1S5(z,€) = Sy, )] < 1Sp(x,§) = Sy, )| +18p(", £") = Sy (2!, €
< wr(llzlD (0 = a) + wr(llz' [N (b - a)

O

Theorem: 6.4: Riemann Integral

Let f € C([a,b]). Then there exists unique number fab f(z)dz with the following property:

b
V sequences of partitions {(z("), €M)}, s.t. lgn ||| = 0. We have ILm Sf(ﬂ,&) = / f(z)dz.

We denote / ) = / " -
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Proof. Let {(y™, CT))}T, be a sequence of tagged partitions of [a, b} s.t. Hy )|| = 0.

We claim that {S;(y", (™)}, converges. We prove that {S;(y™, (")}, is Cauchy.

Let € > 0. ByTheorem L 36> 0s.t. VO < <6, wr(n )<2(b oy

Since ||y'") M| = 0, IMy € R s.t. Vr > My, lly'™) (M| < 6 and thus Vr > Mo, wf(Hy "D
Choose M = M.

Then ¥, ¥ > M = Mo, |55 €| < Loy (1) + s (I N0 — 0) < (35 + zy ) (- ) = .
Thus {S¢(y (7, 7’") }r is Cauchy and thus converges.
Let I = lim Sy( ) ¢y,

<2b a)’

Let {(z("),£M)}, be any sequence of tagged partitions with hm ™| = o.
Claim: hm S’f( (r) &) =1.

We have by triangle inequality that
1S5, €0) — 11 < 185, €0) = 5y, ¢ + 18557, <) ~ 1]
< fwr (™) +wr(ly™ D] = a) =S¢y, (")) = I| (By Theorem [6.3)

Since wys converges to 0 and [ = ll)m Sty "), ¢, by squeeze theorem, li_>m |S¢(x DMy — 1] =0.
Thus lim Sf(ﬁ,f()):[ O
r—00 —

Theorem: 6.5: Linearity of Riemann Integral

If f,g € C([a,b]) and « € R, then ff(af+g) zafff—i-ffg.

Proof. Let {(:r(”") 5 N}, be a sequence of tagged positions with ||z | — 0.
Then Saf+g( E(T ) = an(a;(T) f(r)) + Sg(ﬂ7 ﬁ)
AST—)O@faOéf-I-g zafaerffg- -

Theorem: 6.6: Additivity of Riemann Integrals

If feC([a,b]) and a < ¢ < b, then f;f:f:f—kfcbf.

Proof. Let {(y™), 7™}, be a sequence of tagged partitions of [a, c] s.t. Hy )|| — 0,

and {(z(", 7)}7« be a sequence of tagged partitions of [c,b] s.t. ||z — 0.

Define z(") =y U 2" £ =5y (_f "). Then {(z™)
Note Hx H = max(Hy ”H H (r H) —0asr— oo.

(r 7") b
ThenbyTheorem Stz ), € —>faf, SfL —>f [, Sy C _>fc f
Since Sf( 5(”) Sty (r ),T](T))‘f—Sf(&aQ))WG have faf_faf+fc [ =

¢)}, is a sequence of tagged partitions of [a, b].
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Theorem: 6.7: Order Property of Riemann Integrals

S 5 = @)
1. If Vo € [a,b], f(z) < g(), then [*f < [*g
2. Triangle Inequality: |f;f| < ff | f|

Proof. 1. Let {(z("), €M)}, be a sequence of tagged partitions of [a, ] s.t. [|z(")|| — 0.
Then Vr,

As r — oo, we have f;fgffg

2. +f < |f] = [P+f < [P1f] = By Theorem [6.5) £ [*f < [PIfl = = [P1f1 < [°F < [P1f] =
[P r< Lo
O

Remark 29. If f € C([a,b]) and f > 0, then f;f > 0.

Theorem: 6.8:

Then S1(z", M) =3 @) 2y =2 a2’ =b—a

=00

b
Thus / 1= lim S;(z", ")y =b—a. O

Theorem: 6.9: Bounds of Riemann Integrals

If f € C(la,b)), my = inf{f(z) : € [a,0]}. My =sup{f(z):z € [a,b]}, then ms(b—a) < [* <
M;¢(b—a).

Proof. Since my < f(x) < My, Va € [a,b], then f; my < f;f < f; M/ by Theorem .
Thus mf(b—a)gfabeMf(b—a) O

Remark 30. 1. fj f=0

2. Ifb<a, [[f=—['Ff
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b
Proof. 1 is consistent with lim/ f=0.

b—a J,

2 is consistent with Theorem and 0= faa f= f;f + fba f. O]

6.2 Fundamental Theorem of Calculus

Theorem: 6.10: Fundamental Theorem of Calculus

Let f € C([a,b]). Then
1. If F : [a,b] — Ris differentiable and F’ = f, then faljf =F(b)—F(a). i.e [

2. The function G(z) = [ f : [a,b] — R is differentiable on [a, b] and

Proof. 1. Let {z(M}, be a sequence of points with [|z")| — 0
By Theorem510 V], g“ e (2" “) st. F(al) — Fa)) = el @l —2).

Ti—1 T ) J J—1
}jf i =2 Fiw) (e71) = Flayy) = Flag)) = F () = F(a)
Thus )) = F(b) — F(a).
2. let ¢ € [a, ], we want to show hin f /- f / = f(c)
Let € > 0. Since f is continuous at c, E|50 > Ost. [t—c[<0=[f(t)— flc)] <5§.

Choose § = .
Suppose c <z < c+ 6. If t € [e, 2], ]t—c|—t—c<a:—c<5f50,then

x_c</f dt—/f dt) /f Ddi— f
H/f x_L/Idt\

/ﬁﬂw F(o)t

1 x

IA

|f(t) — f(c)|dt (By Theorem [6.7))

1 T e e 1 €
< /c 5 (x —¢) 5 <€

Similar proofs can be applied to the other case.
Thus 0 < |z —¢| < § = Al e f f ! — fle)| <e

6.3 Integration Techniques

Theorem: 6.11: Integration By Parts

Suppose f, g € C([a,b]) are continuously differentiable, i.e. f’,¢" € C([a,b]). Then

b b
/fw—f@aw—ﬂmmm—/fy
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Proof. Since (fg)' = f’g — fg' by Theorem [5.6]
Then by Theorem

b

a

b
/ Fa+td = / (f9)' = F(B)g(b) — F(a)g(a)

Theorem: 6.12: Change of Variable

Let ¢ : [a,b] = [e, d] be continuously differentiable s.t. ¢’ > 0 on [a,b], ¢(a) = ¢ and ¢(b) = d. Then,

/ " Fudu = / ’ F(o(a))6 (z)de

Proof. Let F : [a,b] — R s.t. F' = f (always exists by Theorem [6.10). Then [F(¢())] = F'(¢(z))¢'(z) =

f(é(x))¢'(x) by Theorem
Thus

b b d d
/ F(6(@)¢ (x)da = / [F($(x))dz = F($(b)) — F(6(a)) — F(d) ~ F(c) = / F(u)du = / f(u)du

O
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7 Sequence of Functions

7.1 Motivation
infty
Fourier Series: Suppose f : [—m, 7] — R is 27 periodic. Can f(z) = Z [an sin nx + by, cosnx] i.e. Can

n=0
a series of sine and cosine function converge to f7

m
Analogs: suppose & = (21, ...,2my) € R™, ¥ = Z anén, where e, is the n-th orthonormal basis vector.

I
-

n
m m
To compute a,, we compute & - €] = E anen - € = g andp1 = ap. i.€. ap = T - e;.
n=1

n=1
s T X
Back to functions. f(z)sinlzdr = Z [an, sin nx sin lx + by, cos na sin lz|dx.
-m T n=0
T o0
If we can switch the limit process / and Z, we get
- n=0

P o
cosnz sin lzdr = E pTOp = TQy

n=0

f(z)sinlzdr = Z an/ sinnz sin lzdx + bn/
- n=0 -

—T

Similarly, we get wb; = f(z) coslxdz.

Definition: 7.1: Fourier Coefficients

1 s
If f:[-m n] = R is continuous and 27-periodic, the numbers a,, = / f(x)sinnxdz and b, =
™

—Tr
1 s
— f(x) cosnxdz are the Fourier coeffcients of f.
™ —T

Theorem: 7.1: Riemann Lebesgue Lemma

If f:[a,b] — R is continuously differentiable, then lim a, = lim b, =0

Proof. We will show b, — 0, as a,, is similar.

by, = /Tr cosnz f(z)dr = /7r (—% sinnx)' f(x)dx

= %[sin nrf(n) —sinn(—7n)f(—m)] — ib/ sinnz f'(x)dz (By IBP)

—T

——i/ sinnz f'(z)dz

—TT
Then

1 ™
0<1|bs| < '/ sinnax f'(z)dz
n

—Tr

<o [ @l

n —T

1 ™
< / | sinnz|| f'(z)|dz (By Theorem [6.7)
n

—Tr
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1 0 ™
n/ |f/(x)|dx — 0 as n — oo since / |f/(z)|dz < .

—T

Thus b, — 0 by squeeze theorem. O

7.2 Pointwise and Uniform Convergence

Definition: 7.2: Power Series

(e.o]

A power series about g is a series of the form g aj(z — xo)’
J=0

Theorem: 7.2: Convergence of Power Series

1
7 R >0,
oo, R=0

absolutely if |z — zo| < p and diverges if |z — xo| > p. p is called the radius of convergence.

Suppose R = lim \aj|1/j exists and define p = Then Y aj(z — xg)’ converges
J—00

Proof.

o 4 <1, |z— <
lim Jaj(z — 20 19 = |o — o] lim |as 19 = | — o R{ < DTN <P
Jj—o0 j—00 > 1, |z — 0| > p
The Theorem then follows the Root Test (Theorem [3.37)). =

oo
If the power series converges absolutely, we then define f : (zg — p,zo + p) — R by f(x) = Zaj(:c —
j=0

.Z‘())j.

- 1
Example: ij =1 for x € (—=1,1) \ {0}

=0 B
[ee]

Example: Let a; = %, zg = 0. Then E 7:1:j = €” has radius of convergence p = co.
. L5
j=0

mn
Let f(z) = nh_)rrolo fn(x), where f,(x) = Zaj(w —x0)!, Vx € (w9 — p,zo + p). We have the following
§=0

questions:
1. Is f continuous?

2. If 1, then is f differentiable? and does f' = lim f}?

n—0o0

n—o0

b b
3. If 1), does/ f= lim fn?
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Definition: 7.3: Pointwise Convergence

For n € N, let f,, : S — R and let f : S — R. We say {f,} converges pointwise to f, if Vo € S,

i.e. for each point z, the sequence f,(x) converges to f(z).

Example: f(z) = 1, fu(z) = Za:j, then Vz € (—1,1) \ {0}, nlgrolo fu(z) = f(x)
5=0

Example: f,(z)=2a", z € [0,1]
Ifx=1, li_>m fulz) =1.
If z € (0,1], then li_>m fo(z) = lim 2™ =0.

Thus Vz € [0,1], lim_ fo(x) = f(z) = {

4n’z,x € [0, 5]

Example: Let f, : [0,1] = R, fu(2) = { 4n —4n’z,x € [, 1] . Then Va € [0,1], fu(z) — 0
0,z € [+,1]

Proof. If x =0, then lim f,(0) = lim 0 =0
Suppose z € (0, 1], we want to show li_>m fu(x) =0
n o

Let M € Ns.t. 57 <. Then {f,(z) = {f1(®), ..., far—1(2), fur(x) = 0,0,...}}. fa(x) =0, Yn > M. Thus
fu(z) — 0. O

Definition: 7.4: Uniform Convergence

For n e N let f, : S — R and f:S — R. Then we say {f,} converges uniformly to f(z) if Ve > 0,
dM e Nst. Vn> M, Vx €S, |fu(z) — f(z)] <e
i.e. For any point x € S, the approximated value f,(z) is always within € distance from f(z)

Remark 31. The negation: f, does not converge uniformly to f (f, /# f uniformly) on S if J¢y > 0 s.t.
VM eN,In> M, 3z € S st. |fu(z) — f(x)] > €.

Theorem: 7.3:

Iff,:S—R, f:5—Rand f, — f uniformly on S, then f, — f pointwise on S.

Proof. Let ¢ € S. We want to show lim f,(c) = f(c).
n—oo

Let € > 0, since f,, — f uniformly, 3My € N s.t. Vn > My, Vo € S, |fo(x) — f(2)| < €.
Choose M = My, v = c¢. Then Vn > M, |f,(c) — f(c)| < e. Thus li_}rn fn(e) = f(o). O
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Theorem: T7.4:

1. YO <b< 1, f, — f uniformly on [0, b]
2. fn # f uniformly on [0, 1].

. Then

Proof. 1. Let b€ [0,1). Then b — 0. Let € > 0, IM € Ns.t. Vn > M, b" < e.
Then Vn > M, Vx € [0,0], |fo(z) — f(z)] = |2 — 0| =2" <b" <€

2. Choose ¢y = i. Let M € N.
Choose n = M, x = (%)I/M
|fu(@) = f(z)] = § > e

< 1. Then f(z) =0, but fa(z) = ((i)l/M>M =1

O
An’z,x € [0, 5]
Example: f,(z) = ¢ 4n — 4n’z,z € [5-,1] . fu(x) — 0 pointwise, but f,, # 0 uniformly on [0, 1]
0,2 € [%, 1]
Proof. Choose ¢y = 1. let M € N.
Choose n =M, z = 557. Then |far(z) — 0| = far (557) = 2M > 1 = €. O
7.3 Interchange of Limits
Example:
lim | lim =liml1l=1
k—oo |[n—oo n/k + 1 k—oco
: n/k :
lim = lim 0=0

lim

n—00 L—mo n/k + 1] n—00

We cannot interchange the limit in this case.
We have the following questions:

1. Suppose f, : S = R, f: S — R and f, — f (pointwise or uniformly), and f, is continuous Vn.
Then is f continuous? i.e. Suppose x € S and I sequence {xp} s.t. xp — =z, then can we do

li = lim i n = lim li n =1l n(x) = ?
dim ) = lim lim fo(z) = lim lim fo(e) = lim fo(@) = f(2)

2. Suppose f, : [a,b] — R is differentiable Vn. f : [a,b0] = R and f, — f, f} — g. Is f differentiable
and is g = f'?

b b
3. Suppose f, € C([a,b]), f € C([a,b]) and f,, — f. Does nh_{rgo/ fn :/ f?

The answer is yes if we have uniform convergence and no if we only have pointwise convergence.

0,z €10,1)

. ) Vn, fn € C([0,1]), fn — f pointwise, but
7x =

Example: f,(z) = z" on [0,1]. f(z) = {
f ¢ c(o,1]).
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n 0, 0,1 L.
Example: f,(zx) = Z- on [0,1]. Then f, — f =0, f, = g(z) = {1 ve [1 ) pointwise, but
7'58 =
g# 1
An’z,x € [0, 5]
Example: f,(z) = { 4n —4n’z,z € [+, 1] . fu(z) — f = 0 pointwise. Vn, fol fo = 3i2n =1, but

0,z € [1,1]

Jo fa Ao [y F=0.

Theorem: 7.5:

Suppose f, : S = R, f: S — R, f, continuous Vn and f, — f uniformly on S. Then f is continous.

Proof. Let c € S, e > 0. Since f,, — f uniformly, 3M € Ns.t. Vn > M, Vy € S, |fu(y) — f(y)| < §.
Since far : S — R is continous, 30 > 0 s.t. V|z —c| < = |far(z) — fu(c)] < §.
Then V|x — ¢| < §, using triangle inequality:

@) = SO < 1f (@) = far@)] + [ fare) = Far (@] +1far(e) = SOl < 5 + g+ 5 =¢

Theorem: 7.6:

b b
Suppose f, € C([a,b]), f: [a,b] - R and f, — f uniformly. Then li_>m / In :/ I

Proof. Let € > 0. Since f, — f uniformly, 3M € N s.t. Vn > M, Vx € [a,b], | fu(z) — f(2)] < ;5.
Then Vn > M, by Theorem

[ [ =|[w-n]< [1-n< [ 75 =50-0=

Theorem: 7.7:

Suppose fy : [a,b] — R is continuously differentiable Vn. f,g : [a,b] — R. f, — f pointwise on [a, b]
and f/ — g uniformly on [a,b]. Then f is continuously differentiable and g = f’.

Proof. Let x € [a,b]. Then by Theorem and Theorem
Fule) = ule) = [ £ 5(@) = £(@) = Jim [ful) ~ fula)) = im [ £ = [ g

Then f(z) = f(a)+ [ g, f is differentiable and f" = ([ g)’ O
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Theorem: 7.8: Weierstrass M-test

Let f; : S — R and suppose I{M;} s.t.

a) Vo € S, |fj(z)] < M;

b) Z Mj < o0

j=1

Then -

1. Vx € S, Z fj(z) converges absolutely

j=1
2. Let f(z) = ij(x). Then Z f;j — f uniformly on S as n — oo.
j=1 Jj=1

Proof. 1 follows directly from a), b) and comparison test (Theorem [3.34)).

00 00 N
Let € > 0. Since ) M; converges, 3N € N s.t. Z M; = ZMj — ZMj <.
j=N+1 =1 j=1

Then¥n > N, Vo € S, |f(x) = D> fi@)| =1 X f@I< Y 1@< Y M< Y, Mj<e O
j=1

j=n+1 j=n+1 j=n+1 j=N+1

Example: f;(z) = 0s160’z o ¢ R Then

43
L |fj(x)] <477

oo
2. E 477 converges
i=1

oo
Thus Z fj(x) converges uniformly on R.
j=1

7.4 Power Series

Theorem: 7.9: Uniform Convergence of Power Series

0 =1
Let Z a;j(z—x0)’ be a power series with radius of convergence p = <1im ]ajll/j> € (0,00]. Then
=0
! o0
Vr € [0, p), Z aj(z — xp)’ converges uniformly on [zg — 7,z + r].
j=0

Proof. Let r € [0, p). Then Vj € NU{0}, Va € [xg — r,z0 + 7], |a;j(z — z0)’| < |aj||z — 2ol < |aj|r.

i11/5 i Lp<oo
We have lim Haj]rj]l/J =7 lim ’ajyl/J _ )P <1
J—00 J—00 07 p =00
o0
Thus Z la;|r’! converges.
7=0
e .
By Theorem , Z aj(x — xp)’ converges uniformly on [zg — 7, z9 + r]. 0
=0
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Theorem: 7.10: Differentiation and Integration of Power Series

o
Let Z a;j(x — x0)? be a power series with radius of convergence p € (0,00]. Then
=0

o0 o d & -
1. Ve € (xo — p,x0 + p), Zaj(a: — x9)’ is differentiable at ¢ and %Zaj(l’—l‘oy =

- 3=0 50 T=c
d .
> o5 — 20))
j=1 40 r=c
b 4 o b '
2. Va,bwithzg—p<a<b<z+p, / Zaj(:c —xo)dx = Z/ aj(z — x0)’ de.
a =0 j=07a
Proof. Claim: Z %aj(:r —x0) = Z aj+1(j + 1)(x — z0)? has radius of convergence p.
Jj=0 3=0
. 1 1 IR
tim Jay1(j+ DY = Tim laga 775G+ D7) 7 = Jim Jaga]7#1] 7 = (7)) = p7!
j—00 j—00 J—00
oo
Thus, the radius of convergence of Z aj+1(3 + 1) (@ — zo) is p—fl = p. O
j=0
Remark 32. Vx € (zo — p,x0 + p), s Zaj(:c —x9)) = Z ?aj(az —x0)?, Vk=1,2,...
=0 =0

Theorem: 7.11:

)
1. Vne N, Vz € [-1,1], Qn(z) > 0
2. vneN, [1, Qu(z)dr =1
3. V6 € (0,1), @, — 0 uniformly on {z: 9§ < |z| < 1}

Remark 33. @Q,, is like a delta function as n — oo

Proof. 1, 2 are immediate, we prove 3 only.

Firstly, we estimate c,,.

Let g(z) = (1 — 2%)" — (1 — na?), x € [0,1]. Then g(0) = 0, ¢'(z) = 2nx(1 — (1 — %"~ 1) > 0 on [0, 1].
Thus g(z) > 0 on [0,1]. e (1 —2%)" >1— na?

1 1 1
— = / (1—2®)"de = 2/ (1 — 2?)"dz (even function)
0

Cp, -1

1
> Z/ﬁ(l — 2?)"dz (By Theorem
0

/0 " (1 = na?)dz

>

Vv
-

2
4
3

2
5
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Thus ¢, < /n.
Let § € (0,1). Note that /(1 — 62" = 0 as n — oo (lim [vn(1 — 62)™Y™ = lim [p'/"Y/2(1 - §2) =

n—00 n—00
1-6%<1)

Let € > 0. Then 3M € Ns.t. Vn > M, v/n(1 —6%)" < e. Then Vn > M, Vx s.t. § < |z| < 1, we have
Qn(z) = cn(1 —2?)" < /(1 — 62" < ¢
Thus Qp(z) — 0 uniformly. O

Theorem: 7.12: Weierstrass Approximation Theorem

If f € C([0,1]), then 3 sequence of polynomials {P,(z)} s.t. P, — f uniformly on [0, 1].

Remark 34. We only consider the case f(0) = 0, f(1) = 0. If we prove this case, Vf € C([0,1]), 3{P,} s.t.
Py — f(x) = f(0) — 2[f(1) — f(0)] uniformly.

Then P,(x) + z[f(1) — f(0)] + f(0) = f(z) uniformly and LHS is still a polynomial.

Proof. Suppose f € C([0,1]), f(0) =0, f(1) = 0. Extend f by 0 outside [0,1]. Then f € C(R).
Define

r) = / F(OQu(t — x)dt = / Fen(l — (z — 0)?)dt

/ f(t)en Z (7;) (z — t)¥dt (Binomial theorem on (1 — (z — t)*)")
7=0

n 2 .
/ f(t)en <7;) (—=1)7 <2]j> (—t)*2%~*dt (Binomial theorem on (z — t)?/)
=0

Jj=

1-z
Note P, ( / F@&)Qn(t — x)dt = / f(z+t)Qn(t)dt by change of variable (t =t — x).

—X

Since f(x +t) =0 for t ¢ [—z,1 — x|, we have P,(z) = /l_x flz+)Qn(t)dt = /_11 flz+t)Qn(t)dt

—X

Since @, (t) is approximately (¢ f flz+6)Qn(t)dt — f_ll flx+t)dt)dt = f(z+0) = f(x)

We now prove P, — f uniformly on [0, 1].

Let € > 0. Since f € C([0,1]), f is uniformly continuous by Theorem [1.20} thus 3§ > 0 s.t. Vz,y, [z —y| < 4,
)~ fw)l < &

Since f € C([0,1]), Je¢ > 0 s.t. |f(x)] < cfor all z € [0,1]. Then |f(z +1t) — f(x)| < 2c for z,z +t € [0, 1]
by triangle inequality.

Since /n(1 —6*)" — 0, then IM € N s.t. Vn > M, /n(1 — )" < &.
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Thus, Vn > M, Vz € [0,1],

1
Pa(a) — f(z)| = \ [ st oQutei— siz)

‘/ flx+1) z)]Qn(t )dt’ (Because / Qn(z)dr =1)
/ |f(z+1t) — f(z)|Qn(t)dt (By Theorem [6.7 and that Q,(t) > 0)

/ |f(x+1t) x)|Qn(t )dt+/ |f(x+1t) — f(x)|Qn(t)dt (By Theorem

<|z|<1

< / SQult)+ /5 AT

1)
< E/ Qn(t) —l—/ 2cc, (1 — 6%)"dt
2= §<e<1

1
< % + 2¢v/n(1 — 52)”/ dt
-1

= g +dev/n(1 — 82"

<€+€_
9Ty~ ¢

Thus P, — f uniformly on [0, 1]. O
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8 Metric Spaces

8.1 Introduction

Definition: 8.1: Euclidean Distance

Given z,y € R, the Euclidean distance is

n 1/2
2 — yllrn = (Z | — yi!2>
i=1

With the following properties:
1. Symmetric: ||z —y|| = ||y — z||
2. Positive definite: ||z —y[| >0 and |z —y|| =0 2=y
3. Triangle inequality: ||z — 2| < ||z — y|| + |ly — ||

Definition: 8.2: Metric Space

A metric space is a set X with function d : X x X — [0, 00) with the following properties:
1. Symmetric: d(z,y) = d(y, z)
2. Positive definite: d(z,y) > 0 and d(z,y
3. Triangle inequality: d(z,z) < d(z,y) +

)=0&s =y
d(y, z)

Example: dR" x R" — [0,00), doo(x,y) = max |z; — ;| is a metric on R™.

1<i<n
Proof. Symmetric: doo(x,y) = ax |zi —vi| = Jmax lyi — xi] = doo(y, x)

Positive: because all terms in the sum is positive

If deo(z,y) = 0, then Vi, |z; — y;| = 0, by definition of absolute values, thus x = y. If z = y, then

Vi, |x; — yi| = 0, thus doo(x,y) =0

Triangle inequality: let z,y,z € R", doo(x,y) = max |z; — yi|, doo(z,2) = max |z; — 2|, deo(y,2) =
1<i<n 1<i<n

1<i<
Since the dimension is finite, 3j s.t. doo(z,2) = |z; — 25| < |xj — y;| + |y; — 25| < maxi<i<n |25 — yi| +
maxi<i<n |[Yi — 2i| < doo(,y) + doo(y, 2). 0

n l/p
dp(,y) = <Z |z — yz’\p)

i=1

Lz#y
0,z =y

Example: dx(z,y) = { is a metric.

Proof. The tricky part is the triangle inequality. We consider the following three cases:

l.a#y y#z 24y dz,z)=1<2=d(z,y) +d(y,z)
2. x=y#zdx,z2)=1<1=d(z,y)+d(y,z)
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3. x=y=zdx,z) =0<0=dxy) = dy,2)

O

T — , T,y colinear .
Example: z,y € R?. Then d(z,y) = {’ Ylle2, 7y is a metric.

|lz|| + ||y]|, otherwise

Definition: 8.4: Convergent Sequence

Let {z,} be a sequence in a metric space (X,d) and let z € X. {x,} converges to z if Ve > 0,
N € Ns.t. Vn > N, d(zn,z) < €.

Definition: 8.5: Cauchy Sequence

Let {z,} be a sequence in a metric space (X, d). {z,} is Cauchy if Ve > 0, IN € N s.t. Vn,m > N,
d(zp, Tm) < €.

Definition: 8.6: Open Sets

A set AC X is open if Ya € A, Je > 0 s.t. Be(a) = B(a,e) ={y € X : d(z,y) < e} C A.

Example: (0,1) is open in R.

Definition: 8.7: Continuous Functions

Let (X,dx) and (Y,dy) be metric spaces, f : X — Y. f is continuous if Ve > 0, 30 > 0 s.t.
dx(z,y) <4 = dy(f(z), f(y)) <e

Definition: 8.8: Set of Countinuous Functions

We define C°([a, b]) to be the set of continuous functions on [a, b].

Example: f,g € C%[a,b]), d(f,g) = sup |f(x) — g(x)| is a metric.
z€[a,b]

Proof. Symmetric: d(f,g) = sup |f(z) - g(x)| = sup |g(z) - f(2)| = d(g,d)

z€[a,b] z€[a,b]
Positive: if f = g, then f(z) = g(z), Vz. Thus d(f,g) =0
Ifd(f,g) =0, then f(z) — g(xz) =0, Vz, thus f = g.
Triangle inequality: Let f,g,h € C%([a,b]). d(f,h) = sup |f(z)— h(x)| = |f(y) — h(y)| for some y € [a, b]

z€la,b]
by Theorem [4.150 Thus d(f,h) = |f(y) — h(y)| < |[f(y) — 9| + |g(y) — h(y)| < sel[lpb] |f(z) — g(z)| +
sup lg(o) ~Ra)| = df,9) + dlg, ) | 0

Definition: 8.9: Set of k-differentiable Functions

We define C*([a,b]) to be the set of continuous functions on [a,b] s.t. the first k& derivatives of f
exists and are continuous.
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Example: For C!([a, b]), we can define the metric dea (f, g) = sup |f(x)—g(x)|+ sup |f'(z)—¢ ()|
z€[a,b] z€[a,b]

Remark 35. The same can be applied to any C*([a,b]) for finite ks. The first term sup |f — g| must be
presented to ensure positive definite.

Definition: 8.10:

We define C*°([a, b]) as the set of infinitely differentiable functions. The metric is

S k de i )
do=(f,9) = 202 1+dew(f,9)

Example: the map — : C'([a, b]) — C°([a,b]) is continuous as a function between metric spaces.

dz

Proof. Let f,g € C'([a,b]), e > 0. We want to show 35 > 0 s.t. dea(f,g) < e = deo(f',g') < e.
der(f.9) = sup |f(z) — g(z)[ + sup |f'(z) — g'(2)]

x€[a,b] z€[a,b]
deo(f,g) = Sl[lpb} |f(x) —g(x)|
z€la,
Let § = ¢, then dea(f,9) <6 = deo(f',g') = sup |f'(z) —¢'(x)| < der(f,9) <d =€ O

z€[a,b]

Definition: 8.11: LP metrics

1 1/p
For 1 <p < oo, I)(f,9) = </ |f — g|p> defines a metric on C?([0,1]) called the LP metric.
0

Example: The map I; : C°([0,1]) x C°([0,1]) — [0,0) s.t. I1(f,9) / |f — g| is a metric.

Proof. Symmetric: 11(f,g) = [y |f =91 = Jy lg = f| = Li(g, f)

Positive: If f = g, then |f — g| =0, thus I;(f,g) = 0. If f # 9, then I (f, g) # 0 by continuity of f and g.
Triangle inequality: fo lf —h| < fo lf —gl+ g — h|) fo lf — gl + fo lg — h| (By Theorem 6.7 and
Theorem O

Definition: 8.12: Geodesics

For spheres S = {x € R" : ||z|| = 1}. We define a metric on the ball as the shortest line segment
between two points on the sphere, which we call geodesics.

8.2 General Theory

Theorem: 8.1: Uniqueness of Limits

Let {z,} be a sequence. Suppose x,, — z, then z is unique.

Proof. Assume Jy # x € X s.t. z, — y.
Let € > 0. Since z, — x, N1 € Ns.t. Vn > Ny, d(z,,2) < §.
Similarly, for y, 3Nz € N s.t. Vn > Ny, d(zn,y) < §.
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Take N = max(Ny, Na), then Vn > N, d(z,y) < d(xp, z) +d(zn,y) < §+ § =€
Thus x = y. O

Theorem: 8.2:

Let {z,,} be a sequence, z,, — x, y € X. Then d(z,,y) — d(z,y).

Proof. Let ¢ > 0. Since z, — =z, AN € N st. Vn € N, d(zp,z) < e. Then Vn > N d(z,,y)
d(zp, ) +d(z,y) < d(z,y) + €.

On the other hand d(z,y) = d(x, ) + d(zp,y), so d(xn,y)
Thus d(z,y) — € < d(xn,y) < d(z,y) + €. i.e. d(xn,y) — d(

A

= d(‘/B)y) - d(.In,I‘) > d(]},y) — €.
x,9). O
Theorem: 8.3:

Let {z,,}, {yn} be sequences.
1. Suppose z, — x, yp — y, then d(zp, y,) — d(x,y)
2. Suppose {x,}, {yn} are Cauchy, then d(x,,y,) converges.

Theorem: 8.4:

Convergent sequences are Cauchy.

Proof. Let {x,} be a sequence.
Let € > 0. Suppose z, — x, In € N s.t. Vn >
Let m > N, d(xm, xn) < d(xpm,x) + d(xpn, )

)

[\elfe} 2

Definition: 8.13: Cauchy Complete Space

A space is Cauchy complete < all Cauchy sequences are convergent in the space.

Example: C°([0,1]) is Cauchy complete.

Definition: 8.14: Bounded Sequence and Sets

{zy,} is bounded by B > 0 if Ip € X s.t. ¥n € N, d(z,,p) < B
A set A C X is bounded by B > 0 if 9p € X s.t. Va € A, d(a,p) < B.

Theorem: 8.5:

If z,, — z, then {z,,} is bounded.

Proof. Let e =1 > 0.
Since x,, = x, AN € Ns.t. Vn > N, d(xp,z) < e = 1.
Let B = max{d(x1,z),...,d(xny_1,2),1}. Then d(z,,z) < B. O

Theorem: 8.6:

Let z,, = «, and {zy, } a subsequence of {z,}, then {x,, } is convergent.
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Proof. Let € > 0. We want to show that 3N € N s.t. Vng > N, d(zy,,2) < §.
For m > N, d(xp,,x) < d(zn,,Tm) + d(zm,z) < € by Thereom [8.4 and triangle inequality. O

Theorem: 8.7: Topological Properties of Open Sets

Let X be a metric space and A; be open sets in X. Then
1. ) and X are open in X
2. U2, A; is open in X (infinite union of open sets is open)
3. Ni—;A4; is open in X (finite intersetion of open sets is open)

Proof. 1. (0 is open sice Be(x) C () has no element. For X. Vo € X, we can pick € > 0 s.t. Be(z) C X.
2. Pickx € U2, A;, then 3A; € {A;}s.t. v € A;. Since A isopen, 3¢ > 0s.t. Be(z) C A; C x € U2 | A;.

3. Pick x € NiL; A;, then = € A;, Vi. Thus Je; > 0 s.t. B, (z) C A;.
Choose € = min{¢;} > 0. € always exists because the intersection is finite. Bc(z) C B, (z) C A;, Vi.
Thus Be(z) C Nij—; 4;.

O

Definition: 8.15: Closed Sets

A C X is closed in X if A = X \ A is open in X.

Note: Closed sets can be open as well.
Example: In R, §¢ =R, so 0 is closed, but (} is open at the same time as shown in Theorem 8.7

Definition: 8.16: Limit Points

Suppose A C X. xp € X is a limit point of A if Ve > 0, B¢(x¢) contains infinitely many points in X.

Definition: 8.17: Connected Metric Space

A metric space X is disconnected if U7, Uy that are disjoint, non-empty and open s.t. X = Uy U Us.
A metric space X is connected if it is not disconnected.

Note: A metric space X is connected < The only sets that are both open and closed are ) and X.

Example: X = (0,1) U (1,2) with usual metric on R is disconnected. (0,1) is both open and closed in

Theorem: 8.8: Generalized De Morgan’s Law
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Theorem: 8.9: Topological Properties of Closed Sets

Let X be a metric space and A; be closed sets in X. Then
1. # and X are closed in X
2. U A; is closed in X (finite union of closed sets is closed)
3. N2, 4; is open in X (infinite intersetion of closed sets is closed)

Theorem: 8.10:

Given x € X, € > 0. The ball B.(z) is open.

Proof. Choose y € Be(x). Notice d(z,y) < e by definition.
Let r =€ — d(z,y). Then B,.(y) C Bc(z).
Let z € Bs(y), d(z, z) < d(z,y) +d(y, z) < d(z,y) +r <e€ O

Remark 36. Any open set U C X can be written as a union of open balls.

Example: Suppose z € X. Then {z} is closed.

Proof. Consider {2}¢ = X\ {z}. Let y € X\ {x}. We want to show that {x}“ is closed. i.c. B(y) C {2}¢.

Choose € = @ Suppose € Be(y). Then d(z,y) < e = @. Contradiction. O

Theorem: 8.11:

Let {z,} be a sequence in R, x,, = = < Ve > 0, all but finitely many x; are in (z — €,z + €).

Proof. (=) Suppose x,, — . Let € > 0. Then IN € N s.t. Vn € N, d(zp,x) < €. i.e. 2, € (x — €, + €).
Then all but finitely many ({x1,...,xny_1}) are in (z — €,z + €).

(<) Suppose Ve > 0, all but finitely many z are in (x — €,z + €).

Let € = % Choose x,,, € (x — =,z + %) Then Ve > 0, we can choose M large enough s.t. Vn,, > M,
% <e Then z,, € (x— 2,2+ 1) C (z—ez+e¢). Thus |z,, — 2| <e O

m?

Theorem: 8.12:

f: X =Y is continuous at ¢ € X < if x,, = ¢, then f(z,) — f(c).

Proof. (=) Suppose f is continuous at ¢ and x,, — ¢. Let € > 0, s.t. dx(z,¢) < = dy(f(zn), f(c)) <e.
Since z, — C, 3N s.t. Vn > N, dx(xn,c) < 6. Therefore, dy (f(xy), f(c)) < €. Thus f(z,) — f(c).

(<) Suppose f is not continuous at c. Let € > 0. Then Vn € N, 3z, s.t. dx(zn,c) < I, but
dy (f(zy), f(c)) > €. Then z, — ¢, but f(x,) A f(c). O

Definition: 8.18: Neighborhood

Given a metric space (X, d). A neighborhood of a point y is an open set U C X s.t. y € U.

Theorem: 8.13: Open Mapping

Let (X, dx) and (Y, dy) be metric spaces. A function f: X — Y is continuous at ¢ € X < for every
neighborhood U of f(c) in Y, the set f~1(U) is an open neighborhood of ¢ in X.
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Proof. (=) Since U is an open neighborhood of f(c), 3¢ > 0 s.t. B4, (f(c)) C U.

Since f is continuous, 36 > 0 s.t. dx(z,c) < 0 = dy(f(z), f(c)) < e. Thus f(Bs(c)) C Be(f(c)). Then
Bs(e) < [ (Bf(0))) € f1(D).

(<) Let € > 0. Consider Bc(f(c)), f~1(B(f(c))) is an open neighborhood of c.

35 > 0 s.t. Bs(c) C f~YB(f(c))), since f~H(B(f(c))) is open. Then f(Bs(c)) C Be(f(c)). O

8.3 Compact Sets

In this section, we consider compact sets in R™.

Definition: 8.19: Vector Space

A vector space V over a field F' is a set with addition (+ : V' x V' — V) and scalar multiplication
(-: F x V — V) with properties:

Commutativity: u+v =v 4+ u for u,v € V

Associativity: v+ (v +w) = (u 4+ v) + w for u,v,w € V

Identity of addition: 30 € V st. v4+0=v, Vo € V

Inverse of addition: Yo € V, I—v eV st. v+ (—v) =0

Identity of multiplication: 1v = v, Yv € V

Compatibility: a(bv) = (ab)v for a,b € F,v eV

Distributivity: a(u + v) = au + av, (a + b)v = av + bv for a,b € F, u,v € V.

Definition: 8.20: Norm

A norm on a vector space V over Ris amap | - || : V — [0,00) with the following properties:
1. Positive Definite: ||v|| > 0 Vv and ||jv|| =0 v =10
2. Homogeneity: ||Av|| = |A|||v|| for A € R
3. Triangle Inequality: ||v + w]|| < ||v]| + |Jw]]

RN .

A vector space with a norm on it (V)| - ||) is defined as a normed space.
Example: For C°([0,1]), define || - || : C°([0,1]) — [0, 00) with | f|| = sup |f(z)].
z€[0,1]

1. Positive for sure. ||f||=0= sup |f(z)| & f(z) =0,Vz
z€(0,1]

2. [[Afll = sup [Af(z)] = sup [A|f(z)] = [A] sup [f(z)]=[A|[f]l
z€[0,1] z€[0,1 z€[0,1

3. |+ gl < If1 + 19l < sup|fl+suplgl = [|f]| + [lgll for all w. Thus |[f +g[ = sup[f +g| < [IF] + llg]-
Example: L'-norm. || - | ;1 : C°([0,1]) — [0, 00) with || f]|;1 = fol ||

Note: ||f| 1 is always finite on [0,1], but LY(R) = {f : f|f| < oo} is finite if f = 0 outside of some
interval [~n,n]. Note this is not if and only if. e=% € L.

Definition: 8.21: Support

Consider a function f on R. The support of the function is the closure of {z : f(z) # 0} = f~1({0}°),
i.e. {z: f(z) # 0}, where {z : f(x) # 0} is open and the closure is defined as the smallest closed set
that contains the open set.
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Definition: 8.22: Compact Support

A function f € C°(R) has compact support if f = 0 outside of some interval [—n, n].

Theorem: 8.14:

Let A be a finite set of metric space (X, d). Then
1. Every sequence in A has a convergent subsequence
2. A is closed and bounded
3. Given any function f: A — R, f achieves max and min on A and f is bounded.

Proof. 1. Let {z;} be a sequence in A. 3x; € A s.t. z; appearing infinitely many times as A is finite,
but {z;} has infinitely many terms. x,, = x; is a convergent subsequence.

2. A set of a single point is closed. A as a finite union of closed set is closed by Theorem [8.9
Fix p € A. Define B = max{d(p,z;) : z; € A} < oo, since max over finite set is well-defined. Thus A
is bounded.

3. f: A — R has a max and min since f(A) is a finite set in R

Definition: 8.23: Cover

|

A cover of a set A is a collection of sets {U;}; s.t. A C UU;. An open cover is a cover where all U;s
are open.

Definition: 8.24: Compact Set

Let (X,d) be a metric space. A C X is compact or topologically compact if every open cover of
A has a finite subcover. A C X is sequentially compact if every sequence of A has a convergent
subsequence.

For A a compact subset of X, we write A € X.

Example: R C R is not compact.
Proof. 1. Choose {z,} s.t. x, = n. =z, diverges and every subseqeunce of x, diverges, thus R is not
sequentially compact.

2. Consider the open cover Upen(—n,n) D N. Suppose Iny s.t. UL, (—ng,ni) O R. We know that
ny & U, (=ng,ng). Thus not compact.

O

Example: (0, 1] is not compact

Proof. 1. Choose x,, = % zn — 0, z,, — 0 ¢ (0,1]. Thus it is not sequentially compact.

2. Consider open cover U2, (1,2) 5 (0, 1]. If we choose a finite subcover Uznzl(i, 2]. Then i € (0,1]

is not covered. Not compact.

O

Example: [0, 1] is compact.
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Proof. 1. Consider {z,} C [0,1]. Theorem tells us that there must exist a convergent subsequence

2. Let [0,1] C U2, U; open cover. ¢ =sup{0 < ¢ < 1: 0, ] has finite sub-cover} exists.
Suppose ¢/ < 1. Notice ¢ € UY_,U;, is open. Then Je > 0 s.t. Be(¢') C U; for some i. Then there is
an element ¢ + § > ¢, but ¢ + 4§ € U;. Thus [0,¢' 4 §] is covered by finitely many open sets from
the cover, which is a contradiction. Thus ¢ = 1.

O

Remark 37. [a,b] is compact in R. [a,b] X [c,d] is compact in R%. In R”, the Cartesian products of closed
intervals is compact.

Theorem: 8.15:

Compact sets in (X, d) are closed and bounded.

Proof. Let A € X.

Bounded: Fix p € X and consider A C UX,B;(p). Since A is compact, A C UM B;(p) = Bu(p) is
bounded.

Closed: we show that X \ A is open.

Let p € X \ A. Consider Vg € A. Define V, = B (p, d(g’q)>, W,=B (q, @) balls around p, ¢ that don’t
intersect.

A C UyeaW,,. Since A is compact, 3 a subcover s.t. A c UM, W,, = UM, B (qi, @).

ﬂi]\ilB (p, @) does not interset A. Also p € ﬂivzle <p, %). Thus X \ A is open. A is closed. O

Theorem: 8.16:
If F c K € X is closed, then F' € X.

Proof. F closed < F€ open. Let V; be an open cover of F. K C Uz, U; U FC.

UL, U; U FC covers X, because U, U; covers F.

Since K is compact, we can get a finite subcover ' C K C Ui]\i1Ui U Fe.

Thus F' C UZMle‘, F'is compact in X. O

Theorem: 8.17: Heine-Borel

Let A C R™, A is compact < A is closed and bounded

Proof. In Theorem we prove the = direction.
(<) Let A C R be closed and bounded. Then A C [-n,n], A is compact by Theorem O

Note: If a metric space has closed and bounded = compact, we say the space has Heine-Borel prop-
erty.

Theorem: 8.18: Bolzano-Weierstrass 2

Let K be a subset of R™. K is sequentially compact < K is closed and bounded.
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Proof. (<) Let {z,,} be sequence in K. Then {z,} is bounded as K is bounded. By Theorem there
exists a convergent subsequence of {z,}. Since K is closed, 3z € K s.t. x,, — x. Therefore every sequence
in K has a convergent subsequence in K. K is sequentially compact.

(=) Let K C R be sequentially compact. Let {x,} be a sequence in K s.t. x, — = € R. Then every
subsequence of {x,} converges to x. Therefore z € K. K contains all limit points thus is closed.

Suppose K is unbounded, I{z,} in K s.t. |z,| — co. Every subseqeunce of {z,} is unbounded. {z,} has
no convergent subseqeunce. Contradiction to the fact that K is sequentially compact. O

8.4 Compact Metric Spaces

Lemma: 8.1: Lebesgue Number Lemma

Let (X, d) be a sequentially compact metric space and {U;} be an open cover of X. Then 3r > 0 s.t.
Vo € X, B,(x) C U; for some i.

Proof. Assume towards a contradiction that Vr > 0, 3z € X s.t. B,(x) ¢ U;.

For each r = %, choose z, s.t. By(zy) ¢ Uj.

Since (X,d) is sequentially compact, then there exists a subsequence z,, — x € U,;, for some ip, then
drg > 0 s.t. BTO(QZ) C Uy

Choose N sufficiently large s.t. % < % and d(zn, ) < 2.

Consider B% (xn), Yy € B%(azn), d(z,y) <d(zy,z)+d(zN,y) < 3 + 5 =10

Thus Bi (zp,) C By, (z) C U;,. Contradiction. O
N

Definition: 8.25: Totally Bounded

A metric space (X, d) is totally bounded if Ve > 0, Jy1, ..., yr s.t. X C UleBe(yi).

Theorem: 8.19:

If a metric space X is sequentially compact, then X is totally bounded.

Proof. Assume X is sequentially compact, but not totally bounded. i.e. de > 0 s.t. there do no exist
finitely many e-balls that covers X. Then it takes infinitely many e-balls to cover X.

Let 1 € X, 2 € X \ Be(z1),...,zp, € X\ U?:_llBe(xi). Thus d(x;,x;) > €. Then there are no Cauchy
subsequences for {z;}. Contradiction to X being a sequentially compact metric space. O

Theorem: 8.20:

A metric space X is topologically compact < X is sequentially compact.

Proof. (<) If X is sequentially compact. Let {U;} be an open cover of X. Then by Lemma dr >0
s.t. there exist finitely many y1, ...,y s.t. X¢ C U B.(yi) C U‘I;le’L'j'

(=) Suppose X is topologically compact. Assume X is not sequentially compact. i.e. 3 sequence {x,}
with no convergent subseqeunce. Then

1. None of the x; can appear infinitely many times, otherwise x,, — x;
2. Jep, > 0s.t. B, (xj) = {x;}, otherwise, we get a convergent subsequence as well.

Let Up = X \ {X; :i=1,...,00}, Up is open. X C Uy UU3, B, (z;).
Every finite subscover omits infinitely many points. Thus there is no finite subcover. O
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Theorem: 8.21:

Let X,Y be metric spaces, f : X — Y continuous. Given K € X, f(K) C Y is compact.

Proof. Let {U;} be an open cover of f(K) C Y. Then {f~1(U;)} is an open cover of K. Since K is compact
in X, we have a finite subcover {f~(U;)}™,. Then {U;}, is an open cover of f(K). O

Corollary 2. Let X be a metric space, K € X. Then if f : X — R is continuous, f achieves a min and a
max on K.

Proof. f(K) C R is compact, thus closed and bounded by Theorem We must have the max and

min. O

Corollary 3. Given a compact metric space X, every continuous function f: X — R is bounded.

Proof. f(K) C R is compact, thus bounded by Theorem O

Theorem: 8.22: Cantor’s Intersection Theorem

If K1 D K9 D --- is a decreasing sequence of non-empty sequentially compact subsets of R™, then
Ni>1K; # 0.

Proof. Let x; € K;, Vi. x; exists since K; is non-empty. Notice x; € Ki, since K1 D K; for ¢ > 1. Then
Vi, 3 a convergent subsequence x,, — a € Ki. Further {z,}>2, is a sequence in Kp, thus it contains a
convergent subsequence converging to a € Ks. Iterative argument shows that a € N;>1K;. O

Definition: 8.26: Finite Intersection Property

A collection of closed sets {C;}; has the finite intersection property if every finite subcollection has
a non-empty intersection.

Theorem: 8.23:

Given a metric space (X, d), the followings are equivalent:
1. X is compact
2. X is sequentially compact
3. X is Cauchy Complete (Definition and totally bounded (Definition
4. Every collection of closed subsets of X with the finite intersection property has a non-empty
intersection.

8.5 Complete Metric Spaces

8.5.1 The Banach Fixed Point Theorem
Definition: 8.27: Lipschitz

Let (X,dx) and (Y, dy) be metric spaces. A function f : X — Y is Lipschitz or k-Lipschitz if 3k € R
sit. dy (f(z), f(y)) < kdx(z,y), Vx,y € X.

Remark 38. If a function f is Lipschitz, then f is continuous. This is called Lipschitz continuous. In fact
Lipschitz = uniform continuous.
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Proof. Let € > 0 and choose § = ¢, dy (f(z), f(y)) < kdx(z,y) < ké = . O

Definition: 8.28: Uniform Continuous

Let (X,dx) and (Y, dy) be metric spaces. A function f: X — Y is uniformly continuous if Ve > 0,
36 > 0s.t. dx(z,y) < d=dy(f(x), fly)) <e.

Theorem: 8.24:

Suppose f: X — Y is continuous and X is compact. Then f is uniformly continuous.

Proof. Let € > 0. Since f is continuous, Ve € X, exists . s.t. dx(x,c) < 6. = dy(f(z), f(c)) < 5.

Since X is compact, the balls Bj,(c) convers X. By Lemma 30 > 0 st. Vo € X, dec € X s.t.
Bs(z) C Bs,(c), then dx(z,y) < d = y € By, (c).

Then dx (z,y) < 6 = dy(f(z), f(y)) < dy(f(2), f(c)) +dy(f(y), f(c)) < 5+ 5 =¢ O

Theorem: 8.25:

Let f :[a,b] X [¢,d] — R be continous, then g(y) = f; f(z,y)dz is continous.

Proof. Let {y,} be a seqeunce in [¢,d] s.t. y, — y, we want to show g(y,) — g(y) as by Theorem
b

lim g(y,) = lim / f(z,yn)dx. Since f is uniformly continous, we can interchange the limits, and get
n—oo n—oo a

b b
lim g(yn) =/ Jlim f(z, yn)dz =/ f(z,y)dz = g(y). O

n—oo

Definition: 8.29: Contraction

A function f : X — X is a contraction if it is k-Lipschitz for 0 < k < 1. 7e. 30 < k < 1 s.t.
d(f(z), f(y) < kd(z,y).

Definition: 8.30: Fixed Point

f: X — X,z € X is a fixed point for fif f(z) =

Theorem: 8.26: Banach Fixed Point Theorem /Contraction Mapping Theorem

Let (X, d) be a non-empty Cauchy complete metric space and f : X — X be a contraction. Then f
has a unique fixed point.

Remark 39. This theorem also tells us how to find the fixed point.

Proof. Pick arbitrary xg € X. Define z,,41 = f(z,). Then the seqence will be xg, f(zo), f(f(x0)), ...
Note d(xjy1,x;) = d(f(x;), f(xi—1)) < kd(x;, zi—1), since f is a contraction.
Then d(z;41,2;) < k'd(z1,70) by iteration

m—n—1

kEMd(xy,x
By triangle inequality d(xy,, ) Z d(ziy1,1;) Z kid(z1, o) = k"d(z1, 7o) Z K< 1k 0).

Since 0 < k < 1 as a contraction, k” —> 0, then d(xy,, xn) — 0. Therefore {z,} is Cauchy
Exsistence of fixed point (limit point): Since X is Cauchy complete and {z,} is Cauchy, 3z € X s.t. z,, — =
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and z = le flxn) = f( le xn) = f(x) by definition of {xz,}.

Uniqueness: Let y € X s.t. y = f(y). d(z,y) = d(f(x), f(y)) < kd(z,y) by Definition and [8.27]
Then (1 — k)d(z,y) <0 = d(z,y) =0, i.e. x=1y. O

Example: Let A € R, f,g € C°%[a,b]), k € C%a,b] x [a,b]). Consider the operator T' : C°([a,b]) —
C%a, b)) s.t

b
T(f)() = g(a) + X [ bwg)f(a)da
For which X is T" a contraction?

Proof.

d(T(f1)(z), T(f2)(x)) = sup (by Theorem [6.5))

z€la,b]
< |A| sup / |k(x,y)||f1(z) — fo(x)|dz (by Theorem [6.7)
z€[a,b]
<Al sup [fi(x) ~ fole)| sup / k(. y)|da
z€[a,b] z€[a,b]

< |A|d(f1, f2) sup / |k(x,y)|dx

z€[a,b]

Since k is continuous on a compact set, |k| is bounded, |k| < ¢, and Sup / |k(z,y)|dx < ¢(b—a). Thus
z€a,b]
dT(f1)(@), T(f2)(z)) < [Md(f1, f2)e(b— a)
Therefore, if [A| < - b b=a)" T is a contraction on a complete metric space.
Also by Theorem , there exists a unique f € C%([a,b]) s.t. T(f)(z) = g(x) + /\fab k(x,y)f(z)dz. O

Remark 40. If g € C([a, b)), then f € C1([a,b]).

8.5.2 Completion of Metric Spaces

Example: R is a completion of QQ in the following ways
1. Dedekind cuts (Rudin Chl Appendix)
2. Least upper bound property (Definition

3. Equivalence classes of Cauchy sequences (we say {an} ~ {b,} if |ap, — by| — 0)

Definition: 8.31: Equivalent Cauchy Sequences

Two Cauchy sequences in a metric space are equivalent if |a, — b,| — 0. The equivalent sequences
have the following properties:
1. Reflexivity: {a,} ~ {an} or equivalently, |a, —a,| =0
2. Symmetry: {an} ~ {bp} < {bp} ~ {an}
3. Transitivity: {a,} ~ {b,} and {b,} ~ {cn} = {an} ~ {en}. (d(an,cn) < d(an,bn)+d(by,cn) <
e for large n)

Note: We have the same equivalence classes notion on metric spaces.
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Lemma: 8.2:

The set Coo(M) = {f : M — R : f continuous and bounded} is a metric space with metric
doo(f,9) = sup [f(m) — g(m)]
meM

Theorem: 8.27: Completion

Let (M,d) be a metric space. Then there exists a unique metric space M s.t.
. MCM
2. dyy =dp
3. M is Cauchy Complete
4. The closure of M is M

Proof. Fix m’ € M and define g,,(p ) m) —d(p,m’). gm(p) is continuous by Theorem

d(my,ma) = sup |gm, (p) — gm, (p)| = (le,gmz) thus g is isometric (distance preserving) and bijective.
pEM

Thus M C Coo(M). Let M be the closure of M in Cu(M). B

Since M is a closed subset of a Cauchy complete metric space, M is Cauchy complete. O

Example: The completion of Normed spaces is the Banach space. The completion of inner product space
is the Hilbert space.

Many functions are not Riemann integrable. Consider C2(R) (compactly supported functions on R that
are continuous) Vfe CLR fR |f(z)|dz < oo.

With I1(f,g9) = g |f — gl (C’C( ), 1) = LYR) ={f: [|f] < oo} is the Lebesgue integrable functions.
For I,(f,g9) = (fg |f — gI")/P, we can define LP(R) = (C&(R),I,) = {f : [|f|P < co}. LP(R) is com-
plete.

8.6 Relevant Topics

Definition: 8.32: Topology

A topology T on a set X is a collection of subsets of X s.t.
1. § and X are in T
2. For T, CT,UXT; €T
3. For ; CT, M T, €T

A topological space is a set X with T.

Definition: 8.33: open-close-topological-space

set A C X is open if A € T and closed if X \ A€ T.

Note: The topology on a metric space is unions of e-balls.

Definition: 8.34: Metrizable

A topological space X is metrizable if there exists a metric d on X s.t. the topology on X is the
topology induced by d.
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Definition: 8.35: Neighborhoods and Continuous Functions

Let (X, 7x) and (Y, Ty) be topological spaces. Then
1. A neighborhood U of a point x € X is an open set U € Tx s.t. x € U.
2. {zp} in X converges to z € X if for every neighborhood U of x, IN s.t. Vn > N, z, € U
3. f: X — Y is continuous if for each open set V € Tx, f~1(V) € Tx

Definition: 8.36: Normed Space

Let (X,]| - ||) be a normed space and {z,} be a sequence in X. Let d be the metric induced by the
norm. Then

l. zp, > x < Ve>0,3IN s.t. Vo > N, d(zp,x) = ||z, — 2| <€

2. {z,} is Cauchy & Ve > 0, IN s.t. Vn,m > N, d(xp, Tm) = ||Tn — || < €

3. Aset Aisopenin X if Vo € A, Je > 0s.t. B(x) ={ye X :d(z,y)=|lz—y||<e} C A

Definition: 8.37: Banach Space

A Banach space is a normed space that is Cauchy complete w.r.t. the norm

Example: R", C" and C°([a, b]) are Banach spaces. The space
Coo(X) ={f: X — C: f continuous and bounded}

is a Banach space w.r.t. the uniform norm on metric spaces.

Definition: 8.38: Functional

Let (V.|| - ||) be a normed space. A functional is a bounded linear map f : V — K, where K =R or
C.

Example: The set of functionals T are Cauchy complete under operator norm ||Tpp|| = sup |Tz| and
z€V,||z||=1
is a Banach space.

Definition: 8.39: Inner Product Space

An inner product space is a vector space X with an inner product (-,-) : X x X — R s.t.
1. Symmetry: (z,y) = (y, x)
2. Linearity: (az + by, z) = a(z, z) + b{y, 2)
3. Positive definite: if 2 # 0, then (z,z) > 0. (z,2)"/? induces a norm |z|.

Definition: 8.40: Hilbert Space

A Hilbert space is a Cauchy complete inner product space.

8.7 Additional Definitions

These are some definitions and theorems covered in MIT 18.101, which are not covered in 18.190

Definition: 8.41: Interior

The interior of A is the set Int(A) = (A€)C. x € Int(A) < e > 0 s.t. Be(x) C A. Int(A) is open.
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Definition: 8.42: Exterior

The exterior of A is the set Ext(A) = (Int(A))°.

Definition: 8.43: Boundary

The boundary of A is Bd(A) = X \ (Int(A) U Ext(A))

Note: X = Int(A4) UExt(A) UBd(A) for any A C X.

Theorem: 8.28:

Let (X,dx) and (Y,dy) be metric spaces, f : X — Y be continuous. If X is connected, then f(X)
is connected.

Proof. Assume that X is connected, but f(X) is disconnected. f(X) = Uy U Us, where Uy N Uy = ) by
Definition [B.17
Then X = f~1(Uy) U f~1(Us) is disjoint union of open sets, since f is continuous. Contradition. O]

Theorem: 8.29: Intermediate Value Theorem

Let (X, d) be connected, f : X — R be continuous. If a,b € f(X), and r € (a,b), then r € f(X).

Proof. Assume that r ¢ f(X), then we can define A = (—o0,7), B = (r,00) s.t. X = f~1(A)U f~Y(B) as
disjoint union of open sets. Contradiction. O
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9 Derivatives in Higher Dimensions

9.1 Differentiation in Higher Dimensions

Definition: 9.1: Directional Derivative

Let U C R™ be an open set, f: U — R™ continuous at a € U, u € R™. The directional derivative of

t —
f in the direction of u at a is D, f(a) = %in(l) flat ? f(a)-
—

For the standard basis vectors ey, ..., e, of R”, we denote the directional derivatives by D;f(a) =

D.f(a) = 51 (@)

Definition: 9.2: Differentiable Functions in R"

Let U C R™ be an open set, f : U — R™ continuous at a € U. f is differentiable at a if there exists a

h) — — Bh
linear map B : R™ — R™ s.t. Yh € R™\{0}, }llir% fla+h) ]h{(a) =0. i.e. f(a+h)—f(a)~ Bh
H

for small A.

0 =0 =0
1 or 2 is not differentiable at (z1,z2) = (0,0).

Example: f(r1,22) = {1 otherwise

Proof. %(O) = 91(0) = 0, but not differentiable along other directions at (0,0). O

T Oxo

zu2
T_Zi_yéla(way) 7& (O¢O)

is not differentiable at (x,y) = (0,0).
0,r=y=0

Example: f(z,y) = {

Proof. Let u= (h, k).

. f(tw) = FO) .. f(tuw) B3hk? 1 0,h=0
lim ——————= = lim =lim—-——-——-={,
t—0 ¢ t—0 ¢ t—0 t2h2 + t4k4 ¢ Eh#0

, except that f(0,0) = 0. Thus not
differentiable. O

|
N[ =

Theorem: 9.1:

If f is differentiable at a, then for every u, the directional derivative of f in the direction of u at a
exists.

(a+tu)—f(a)—Btu

Proof. Let t € R, h = tu. If f is differentiable at a, then ! —0ast— 0 for u#0.

J(a+ tu) ~ f(a) - Btu tfm+m0—ﬂ@—3w__1<ﬂmwm—fw>

= = — —Bu) —=+0ast—0
|tul |[tul t lu| t

qo flattu)=f(a)

i — Bu as t — 0. Also, B is unique, so the directional derivative exists. O
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Definition: 9.3: Derivative

The derivative of f at a is Df(a) = B. Df : R — R™ is linear.

Theorem: 9.2:

If f is differentiable at a, then f is continuous at a.

Proof. Tf f is differentiable, Vh € R™\ {0}, Lt HO=ZBR 0 Thus, f(a+h) — f(a) ~ Bh— 0 as h — 0.

Choose h (in place of §) s.t. Bh <, f is continuous by Definition O
We now define some short hand notation for matrices and the Jacobian matrix.

n
Remark 41. Let L : R®™ — R™ be a linear map and a € R". a = Zajej = (a,...,ayn). The point La € R™
j=1
can be written as La = ) a;Le;. We can decompose L = (L1, ..., Ly,), where L; : R® — R are linear.
Le; = (Liej, ..., Lime;). Let Lie; = l;j, They form a matrix [l;;] € R™*"

Remark 42. Let U C R™, f; : R™ — R™, fy : R® — R™2 be differentiable. Let m = mq + mo. Then
R™ x R™ = R™. Construct f : R® — R™ by f = (f1, f2). The derivative of f at a is Df(a) =
(D f1(a), Dfa(a)).

Definition: 9.4: Jacobian Matrix

Let f: U = R™, f = (f1,..., fm), where f; : U = R. f(z) = (fi(x),..., fm(x)). Then Df(a)e; =
(Dfi(a)ej, ..., Dfm(a)e;) = (%(a), ey %J;T;L (a)). The derivative (Df)(a) can be represented by a

m X n matrix

Theorem: 9.3:

Suppose all of the partial derivatives 37’2 in the Jacobian matrix exist at all points € u and all of

the partial derivatives are continuous at z = a, then f is differentiable at a.

Proof. We consider n = 2, m = 1 cause. Let f: U — R where U C R?, so f = f(x1,22).
Consider a = (aj,a2) € U, h € R\ {0} s.t. a+ h € U.

fla+h)— f(a) = fla1 + h1,a2 + ha) — f(a1,a2)
= f(ar + h1,a2 + ha) — f(a1,a2 + ha) + f(a1,a2 + ho) — f(a1, a2)

0 0
= 81{1(01,0,2 + hg)hl + 852((11,(12)}12 for some c; € (al,al + h1),02 S (ag,ag + hg).

By Theorem
Let ¢ = (c1,a2 + ha), d = (a1, d2).

We want to show f(a-i—h)—f'(];zl)—Df(a)h — 0 as h — 0, where Df(a) = | 2L(a), ﬁ(a)].
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f(a+h) — fla) — Df(a)h] = 1(?() - aajl(a)) i+ (5’;( )= oL @)t
af of
8:r1 ‘ | 2 (9.1‘ ( ) ‘

(By Triangle 1nequahty

Note [h] 2 max(|h], |ha]), so [HER=LA=DI@R| < | 2L () — 2L (a)| +

0 0
2(d) - 2|~ 0asc—a,

d— a.

(a+h)*f(}:b)*Df( )h

)—>0 O

Definition: 9.5:

Let U C R", f: U — R. Define f € C1(U) if 8%, i =1,...,n exist and are continuous at every point
zel.

Similarly, we define f € C* if 2L € C*=Y(U),i=1,..,n

feC>®)if f € CFU) for any k > 1.

Theorem: 9.4: Interchanging Partial Derivative

o0 0 o 0

6xi 871'] - 87.%']8%1 - 8.%‘28.%]

Proof. Take a € U C R?, a = (a1,az), h = (h1,hs) € R?2\ {0} s.t. a+h € U.
Define A(h) = f(a1+h1,az+ha) — f(a1, a2 +h2) — f(a1 +h1,a2) + fa1, a2), #(s) = f(ai+h1,s) = f(a1, s).
Note that A(h) = ¢(az + ha) — ¢(az) = ¢'(c2)ha for ca € (a2, az + h2) by Theorem

A(h) = <8$f2(a1 + h1,c2) — 552(@1702)> ha

- ((;; (552(01,@)) hl) hy for ¢1 € (a1,a1 + h) (By Theorem [5.10))

o of
= ———(c)hih
8%1 axg(c) 1
By symmetry, we get A(h) = aima—f(d)hlhg
Thus 821 aaaf;(c) 82288;;(61). Ash—0,c—aandd— a, %%(a):%aa—f( ) for any a € U. O

9.2 Chain Rule

Theorem: 9.5: Multivariable Chain Rule

Let U,V C R® be open, f: U = V, g:V — RF. Choose a € U and b = f(a) € V. Define
gof:U — RFst. gof(x) = g(f(x)). If fis differentiable at a and g is differentiable at b, then
g o f is differentiable at a and (Dg o f)(a) = (Dg)(b) o Df(a).

Proof. Let h € R"\ {0} s.t. a+h e U.

Let A(h) = f(a+h) — f(a). F(h) = Lethl=f=DI@h _ SQ-BJ@k
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Since f is differentiable at a, F'(h) — 0 as h — 0 by Definition [0.2]

Firstly, we show taht A|§LT) = F(h)+ D"c i(:‘l)h is bounded.

of
o1, (a)].

We can write Df(a )h—Zth(a) Ehlax( a)
Then |Df(a ’Zh (a)] < Z |7 'axl a | < mlh||Df(a)| by triangle inequality and |hi| < |A].
The sum is converted to multlplication of m because the terms are independent of 7.

Thus # < F(h) +m|h||Df(a)| is bounded, since all values on the RHS are finite.

Define |D f(a)| = sup

Now consider g: V — R¥ at b= f(a) € V. Let k ¢ R*\ {0} s.t. b+ k €V,

Define G(k) = 4CH=9Q=DIOL Then g(b+ k) — g(b) = Dg(b)k + [k|G (k).

gofla+h)—go fla)=g(fla+h)) —g(f(a)) = g(b+A(h)) —g(b)
= Dg(b)A(h) +[A(h)|G(A(R)) (Let k= A(h))
= Dyg(b) o Df(a)h + [h|Dg(b)F(h) + |A(h)|G(A(h))
)+

(Substitute in A(h) = |h|F(h) + Df(a)h)
Then £2Hett)=gel (D@D — Dg(b) F(h) + ST G(A(R) = 0 as h = 0. O

Theorem: 9.6:

ff:U—-VCR"isC"andg:V - RPis C", thengo f: U — RP is C".

Proof. Consider r = 1, by Theorem Dgo f(x) = Dg(f(z)) o Df(z) = [agz Df(x )} g € CH so % is

continuous. Also, Df(z) = [gj:ﬂ is continuous. Thus Dg o f(x) is continuous. go f is C'. Then we can
prove by induction on 7. O

Theorem: 9.7: Multivariable Mean Value Theorem

Let U C R* be open, f : U — Rand f € C'. Fora € U, h € R* st. a+ h € U, we have
fla+h) — f(a) = Df(c)h, where c is a point on the line segment a + th, t € [0, 1].

Proof. Define ¢ : [0,1] = R, ¢(t) = f(a + th).
Then Theorem and Theorem [9.5implies ¢(1) — ¢(0) = ¢'(c) = Df(c)h for c € {a+th,t € [0,1]} O

9.3 Inverse Function Theorem

Definition: 9.6: Euclidean and Supremum Ball

The Euclidean ball is Bs(a) = {z € R" : ||z — a|]| < 6}. The supremum ball is Rs(a) = {z € R" :
|z — a] < §}. The supremum ball is a rectangular region and Bjs(a) C Rs(a).

Notation: If ¢ = 0, we simply write By and Rs.

Definition: 9.7: Convex Set

UcCR"isconvex if a,be U = (1—-t)a+thbe U forall t € [0,1].
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Definition: 9.8: Diffeomorphism

Let U and V be open sets in R” and f: U — V a C" map. The map f is a C" diffeomorphism if it
is bijective and f~!':V — U is also C".

Let U C R™ be open and f : U — R¥ be C!. Assume U is convex. If |Df(a)| < c for all a € U, then
Va,y € U, |f(z) = f(y)] < nefe —yl.

Proof. Let x,y € U, since U is convex, we can apply Theorem to a point d on the line joining x to y in
U.
For each component f;,

) = i)l = |32 G )

<S|gw

|z; — y;| (By Triangle inequaltiy)
J
< Zc]g;j —y;| since |Df(a)| < c
J
< nelz —y|

O

This is true for all 4, thus |f(z) — f(y)| < nc|z — y|.

Let U € R™ be open and f : U — R be C!'. Suppose f achieves min at b € U. Then %(b) =0 for
1=1,...,mn

Proof. We can reduce to one dimension in each direction.
Let b = (b1,...,bn), &(t) = f(b1,....bi_1,t,bi11,...,bn). ¢(t) is C' near b; and has a min at b;, then
SLv)=o. O

Theorem: 9.8: Inverse Function Theorem

Let U,V C R” be open, and f : U — V be C'. Suppose g = f~! : V — U is also C!. i.e.
g(f(z)) = x. Then

Dg(b) o Df(a) = 1, Dg(b) = (Df(a))™"

Remark 43. To prove the theorem, we consider a local diffeomorphism. If Df(a) : U C R® — R" is
bijective, then there exists a neighborhood U; of a in U and a neighborhood V of f(a) in R" s.t. f(U;) C V
is a C" diffeomorphism of Uj.

Proof. We want to show f is a locally diffeomorphism at a, so we need to show that f is bijective and f~!

is C".

Firstly, we show that f is bijective:
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1. (Injective) Assume for simplicity a =0, f(a) =0 and Df(0) = I.
Define g : U — R"™ by g(z) = = — f(z), Dg(0) = I — Df(0) = 0, i.e. 3§ > 0 s.t. Vo € Rs(0)
Dg(z)| < €.
By Lemma [9.1] Ve > 0, 36 > 0 s.t. Vz,y € Rs5(0), |g(z) — g(y)| < n|Dg(z)||z — y| < €|z — y|.
Take z,y € Rs(0).
[z —yl = |z —f(2)+ f(2) = fY) + Fy) =yl = l9(x) —9(y) + F(z) = f ()] < lg(2) —g(m)[+]f(z) = f(y)]
= Jo—gl < da -yl + [£@) - F@)] = (1 - o — 9] < (@) — £(3)
Choose § s.t. € > 3. |f(z) — f(y)| = 3|z — y|. Thus Vo #y, f(z) # f(y). [ is injective.

2. (Surjective) Since Df(0) = I, det [%(0)} = 1, we can choose ¢ s.t. Vo € R, det [%(O)} >
Let y € Bsy.
Consider h : Rs — R with h(z) = || f(z) — y||?>. Since Rs is compact, h has a minimum at ¢ € Rs by
Corollary of Theorem We now want to show that ¢ € Int(Rs).
Consider the boundary points, z € Rs s.t. |z| =4, |f(z) — f(0)] = |f(x)] > g
Then || f(x)|| > g and || f(x) —y| > g, since y € Bs/4. Then h(z) > (6/4)%.
h(0) = || f(0) — y||*> = |jyl|* < (6/4)%. Then h(0) < h(z), Vo € Bd(Rs). Thus ¢ cannot be in the
boundary, and ¢ € Ry.

By Lemma 887}‘](1') =0,Vj=1,...,n.
, = 5 Oh = of;
Since h(x) = 3 (fi(e) ~ )% () =23 (e) 1) D2 (o).
i=1 i i=1 L
However, det [gj:; (0)] > 1540, we must have f;(c) —y; = 0. i.e. Vy € Bsy, 3c € Rs s.t. f(c) = v,
so f is surjective.

D=

Thus f: Uy = Rs — V = By, is bijective.

Then, we show that f~! : V — Uj is continuous: Let a,b € V. Define 2 = f~(a), y = f~(b). Then

a=f(z) and b= f(y), |a—b] = |f(z) = f(y)| > 5lz —y]
Thus |a —b| > 5|~ (a) — f~1(b)|, so f~! is continuous on V = B .

We show that f=!:V — Uj is differentiable at 0 and Df~1(0) = I.
Let k € R\ {0} s.t. £k — 0. We want to show [0k =f7O=DF Ok _, ¢ 55 k — 0.

|&]
Note f~1(0) = 0, this simplifies to £ ’1‘%?—@
Define h = f~1(k) s.t. f(h) =k and |k| = |k — 0] > %’f—l(k) — fY0)| = %W

Thus {-0=k < h=f()

Kl = %[l -
Note that h7|£|(h) = f(h)ff(?})LFDf(O)h. Since f is differentiable, h7|£|(h) = f(h)*f(?[ier(O)h — 0.
By squeeze theorem, f71(0+k)_f7|;?0)_Df71(0)k —0as k— 0. Thus f~! is differentiable.

Now we have shown that there exists a neighborhood Uy = R of 0 in U and a neighborhood V' = Bs /4 in
R" s.t. f:U; — V is bijective, f~! : V — Uy is continuous and f~! is differentiable at 0.

We can shift f from 0 to any arbitrary point a € U by defining U' =U —a={x —a:x € U}.

Define f1 : U’ — R by fi(z) = f(x +a) —bs.t. f1(0) =0 and Df1(0) = Df(a).

Let A= Df1(0) = Df(a). A is invertible.

Define fo : U’ — R" by fo = A7 f1 s.t. f2(0) = 0 and D f(0) = I. Thus the results around 0 also hold for
fa.

Because f; = Ao f5, the results also apply to fi.

Finally, f(x) = fi(x — a) + b, thus the theorem holds for f.
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We have now shown that f: U — V is bijective for any U, V.

Let ce U, Df(c) = {gf (C)} = Jg(c).

Since D f(c) is bijective, det {afl( )} # 0.

fect = 89]:? continuous on U. If det [8f1 (c )} # 0, then det J¢(c) # 0 for ¢ — a.
J

We can shrink U s.t. det Jy(c) #0 Ve e U.

Then Ve € U, f~! is differentiable at f(c).

Let g= f~!st. gof =1 Supposep € U and q = f(p). Then by chain rule, Dg(q) o Df(p) = 1 and
Dg(q) = Df(p)~1, Jo(a) = J¢(p) 1

r.e. Yr €'V, [agl( )} [gﬁ; (m)}_

Also g € C! since f € C'. And we can show by induction that g € C¥ if f € C*. O
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