
Real Analysis

This is a mix of notes from MIT 18.100A Real Analysis (https://ocw.mit.edu/courses/18-100a-r
eal-analysis-fall-2020/), MIT 18.S190 Introduction To Metric Spaces (https://ocw.mit.edu/co
urses/18-s190-introduction-to-metric-spaces-january-iap-2023/) and MIT 18.101 Analysis II
(https://ocw.mit.edu/courses/18-101-analysis-ii-fall-2005/pages/lecture-notes/), covering
the basic topics in real analysis. I previously took MATH320 Real Variables I from UBC, which covers first
five chapters in Principles of Mathematical Analysis by Walter Rudin, but didn’t do well in it. This set of
notes is mostly a review for that course with generalization on Rn.

1 Basic Set Theory

1.1 Definitions

Definition: 1.1: Set

A set is a collection of objects called elements or numbers.

Definition: 1.2: Empty Set

The empty set is the set with no elements, denoted by ∅.

Notation:

• a ∈ S (a is an element in S)

• a /∈ S (a is not an element in S)

• ⇒ (implies)

• ⇔ (if and only if)

Definition: 1.3: Subset

1. A set A is a subset of B, A ⊂ B if a ∈ A ⇒ a ∈ B
2. Two sets are equal, A = B, if A ⊂ B and B ⊂ A
3. A is a proper subset of B, A ⊊ B if A ⊂ B and A ̸= B

Set building notation: {x ∈ A : P (x)} or {x : P (x)}, where P (x) means x satisfies property P .

Example:

1. N = {1, 2, 3, ...}: natural numbers

2. Z = {0, 1,−1, 2,−2, ...}: integers

3. Q =
{
m
n : m,n ∈ Z, n ̸= 0

}
: rational numbers
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4. R: real numbers

5. {2m− 1 : m ∈ N}: odd numbers

6. N ⊂ Z ⊂ Q ⊂ R

Definition: 1.4: Set Operations

1. The union of A,B is the set A ∪B = {x : x ∈ A or x ∈ B}
2. The intersection of A,B is the set A ∩B = {x : x ∈ A and x ∈ B}
3. The set difference of A w.r.t. B is the set A \B = {x : x ∈ A and x /∈ B}
4. The compliment of A is the set Ā = AC = {x : x /∈ A}
5. A and B are disjoint if A ∩B = ∅

Theorem: 1.1: De Morgan’s Law

If A,B,C are sets, then
1. (B ∪ C)C = BC ∩ CC

2. (B ∩ C)C = BC ∪ CC

3. A \ (B ∪ C) = (A \B) ∩ (A \ C)
4. A \ (B ∩ C) = (A \B) ∪ (A \ C)

Proof. For the first rule only. Let B,C be sets. To show that (B ∪C)C = BC ∩CC , we need to prove that
(B ∪ C)C ⊂ BC ∩ CC and BC ∩ CC ⊂ (B ∪ C)C

1. Let x ∈ (B∪C)C . Then x /∈ B∪C ⇒ x /∈ B and x /∈ C ⇒ x ∈ BC ∩CC . Thus (B∪C)C ⊂ BC ∩CC .

2. Let x ∈ BC ∩ CC . Then x ∈ BC and x ∈ CC ⇒ x /∈ B and x /∈ C ⇒ x /∈ B ∪ C ⇒ x ∈ (B ∪ C)C .
Thus BC ∩ CC ⊂ (B ∪ C)C .

By 1. and 2. (B ∪ C)C = BC ∩ CC .

1.2 Induction

Consider the natural number set N = {1, 2, 3, ...}. It has ordering 1 < 2 < 3 < · · ·

Axiom: 1.1: Well Ordering Property of N

If S ⊂ N and S ̸= ∅. then S has a least element. i.e. ∃x ∈ S, s.t. x ≤ y for all y ∈ S.

Theorem: 1.2: Induction

Let P (n) be a statement depending on n ∈ N. Assume:
1. (Base case) P (1) is true.
2. (Inductive step) If P (m) is true, then P (m+ 1) is true.

Then P (n) is true for all n ∈ N.

Proof. Let S = {n ∈ N : P (n) is not true}. We want to show that S = ∅. We will show this by contradic-
tion.

Suppose S ̸= ∅, by well ordering principle, S has a least element x ∈ S.

Since P (1) is true as base case, 1 /∈ S, and x ̸= 1. In particular x > 1.

Since x is the least element of S and x− 1 < x, then x− 1 /∈ S. Thus, P (x− 1) is true by definition of S.
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By the inductive step, P (x) is true from P (x− 1) is true ⇒ x /∈ S.

We show that x ∈ S and x /∈ S, which is a contradiction. Thus S = ∅.

Using induction, we want to prove ∀n ∈ N, P (n) is true. We do 2 things:

1. Prove P (1)

2. Prove if P (m) is true, then P (m+ 1) is true

Example: For all c ̸= 1, ∀n ∈ N, 1 + c+ · · ·+ cn = 1−cn+1

1−c .

Proof. 1) Base case: 1 + c1 = 1−c1+1

1−c , since 1−c2

1−c = (1−c)(1+c)
1−c = 1 + c

2) Inductive step: Assume 1 + c+ · · ·+ cm = 1−cm+1

1−c , we want to prove it holds for n = m+ 1.
1 + c+ · · ·+ cm+1 = 1−cm+1

1−c + cm+1 = 1−cm+1+cm+1−cm+2

1−c = 1−cm+2

1−c
Thus, it holds for n = m+ 1. By induction, it holds for all n ∈ N.

Example: If c ≥ −1, then ∀n ∈ N, (1 + c)n ≥ 1 + nc.

Proof. 1) Base case: (1 + c)1 = 1 + 1 · c
2) Inductive step: Assume (1 + c)m ≥ 1 +mc
Then (1+ c)m+1 = (1+ c)(1+ c)m ≥ (1+ c)(1+mc) = 1+(m+1)c+mc2 ≥ 1+(m+1)c since mc2 ≥ 0

Note: There are multiple ways to write the induction proof. This is just the way shown by the prof
of 18.100A. I personally like to separate the induction hypothesis (the assumption for m) from inductive
step.

1.3 Cantor’s Theory of Cardinality

Q: When do two sets A and B have the same size?
A: When the elements of the two sets can be paired off.

Definition: 1.5: Functions

If A,B are sets, a function f : A → B is a mapping that assigns to each x ∈ A a unique element
f(x) ∈ B.

Definition: 1.6: Image/Preimage

Let f : A → B
1. Image: If C ⊂ A, define f(C) = {y ∈ B : ∃x ∈ C s.t. y = f(x)} = {f(x) : x ∈ C}
2. Preimage: If D ⊂ B, define f−1(D) = {x ∈ A : f(x) ∈ D}

Definition: 1.7: Injection/Surjection/Bijection

Let f : A → B
1. f is injective or 1-1 if f(x1) = f(x2) ⇒ x1 = x2 or equivalently x1 ̸= x2 ⇒ f(x1) ̸= f(x2)
2. f is surjectvie or onto if f(A) = B
3. f is bijective if f is injective and surjective
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Definition: 1.8: Composition and Inverse

Let f : A → B, g : B → C
1. g ◦ f : A → C is defined by (g ◦ f)(x) = g(f(x))
2. If f is bijective, then define the inverse function f−1 : B → A by: if y ∈ B, then f−1(y) ∈ A

is the unique element in A s.t. f(f−1(y)) = y

Definition: 1.9: Cardinality

Two sets A and B have the same cardinality if there exists a bijective function f : A → B

Notation:

1. If A,B have the same cardinality, we write |A| = |B|

2. If |A| = {1, 2, ..., n}, we write |A| = n (A is finite)

3. If ∃ injective function f : A → B, we write |A| ≤ B

4. If |A| ≤ |B|, and |A| ≠ |B|, we write |A| < |B|

Theorem: 1.3: Cantor-Schroder-Bernstein

If |A| ≤ |B| and |B| ≤ |A|, then |A| = |B|.

Definition: 1.10: Countable

If |A| = |N|, then A is countably infinite.
If A is finite or countably infinite, A is countable. Otherwise, A is uncountable.

Theorem: 1.4: Symmetry of Cardinality

If |A| = |B|, then |B| = |A|

Proof. Suppose |A| = |B|, then there exists a bijective function f : A → B.
Then f−1 : B → A is a bijection, so |B| = |A|

Theorem: 1.5: Transitivity of Cardinality

If |A| = |B| and |B| = |C|, then |A| = |C|

Proof. Suppose |A| = |B| and |B| = |C|, then there exists bijective functions f : A → B and g : B → C.
Let h : A → C be the function h(x) = (g ◦ f)(x). We want to show that h is bijective.
Injective: If h(x1) = h(x2), then g(f(x1)) = g(f(x2)). Since g is injective, then f(x1) = f(x2). Similarly,
sice f is injective, x1 = x2
Surjective: Let z ∈ C. Since g is surjective, ∃b ∈ B s.t. g(y) = z. Since f is surjective, ∃x ∈ A s.t.
f(x) = y. Thus, h(x) = g(f(x)) = g(y) = z.

Example: |{2n : n ∈ N}| = |N| and |{2n− 1 : n ∈ N}| = |N|
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Proof. let f : N → {2n : n ∈ N} be the function f(n) = 2n, n ∈ N.
Injective: Suppose f(n1) = f(n2), then 2n1 = 2n2 ⇒ n1 = n2

Surjective: Let m ∈ {2k : k ∈ N}. Then ∃n ∈ N s.t. m = 2n. Then f(n) = 2n = m.

Example: |Z| = |N|

Proof. Define f : Z → N by f(n) =


1, n = 0

2n, n > 0

−2n+ 1, n < 0

, f(n) is bijective.

Example: |{q ∈ Q : q > 0}| = |N|

Remark 1. Every q ∈ Q, q > 0 can be written as q =
p
r1
1 ···prNN

q
s1
1 ···qsMM

, where rj , sk ∈ N, ∀j, k, qj ̸= pk.

Proof. The function f : {q ∈ Q : q > 0} → N f(q) = p2r11 · · · p2rNN q2s1−1
1 · · · q2sM−1

M is bijective.

Example: |Q| = |N|

Proof. |{q ∈ Q : q > 0}| = |{r ∈ Q : r < 0}|, since f(q) = −q is a bijection between the two sets.
⇒ |{r ∈ Q : r < 0}| = |N|.
Then there exist bijections f : {q ∈ Q : q > 0} → N and g : {r ∈ Q : r < 0} → N.

Define h : Q → Z by h(x) =


0, x = 0

f(x), x > 0

g(x), x < 0

. h(x) is a bijection, so |Q| = |Z| = |N|.

Definition: 1.11: Power Set

If A is a set, we define the power set of A by P(A) = {B : B ⊂ A}

Examples:

1. A = ∅, P(A) = {∅}

2. A = {1}, P(A) = {∅, {1}}

3. A = {1, 2}, P(A) = {∅, {1}, {2}, {1, 2}}

Theorem: 1.6: Size of Power Sets

|N| < |P(N)| < |P(P(N))| < · · ·

Remark 2. Informally, there are an infinity of infinite sets

Proof. Let A be a set. Injective: Define f : A → P(A) by f(x) = {x}. Then f(x) = f(y) ⇒ {x} = {y} ⇒
x = y. So f is 1-1. i.e. |A| ≤ P(A).

We now show that |A| ≠ |P(A)| by contradiction.
Assume |A| = |P(A)|. Then there exists a bijective function g : A → P(A).
Define a subset B ⊂ A by B = {x ∈ A : x /∈ g(x)}, B ∈ P(A).
Since g is surjective (as a bijective function), ∃b ∈ A s.t. g(b) = B
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Case 1: b ∈ g(b) = B, then b ∈ B ⇒ b /∈ g(b) by definition of B. Contradiction.
Case 2: b /∈ g(B), then b /∈ B ⇒ b ∈ g(b). Contradiction.
This gives that b ∈ g(b) ⇔ b /∈ g(b). Contradiction. Thus |A| ≠ |P(A)|

Side Note: Continuum hypothesis: Does there exist A such that |N| < |A| < |P(N)|?

There is no set whose cardinality is strictly between that of the integers and the real numbers. Any subset
of the real numbers is finite, is countably infinite, or has the same cardinality as the real numbers.
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2 Real Numbers

Theorem: 2.1: Existence of Real Numbers

There exists a unique ordered field containing Q with the least upperbound property, which we
denote by R.

2.1 Ordered Sets and Rational Numbers

Definition: 2.1: Ordered Set

An ordered set is a set S with a relation < s.t.
1. ∀x, y ∈ S, either x = y, x < y or y < x
2. if x < y and y < z, then x < z

Example:

1. Z is ordered, m < n if n−m ∈ N

2. Q is ordered, q < r if ∃m,n ∈ N s.t. r − q = m
n

3. Dictionary ordering of Q×Q, where A× B = {(a, b) : a ∈ A, b ∈ B}. We say (a, b) < (q, r) if a < q
or (a = q and b < r).

Non Example: S = P(N) is not ordered with the relation A < B if A ⊂ B.
The second property can be satisfied: if A ⊂ B and B ⊂ C, then A ⊂ C. i.e. if A < B and B < C, then
A < C.
However, {0} ≠ {1}, but neither {0} < {1} or {1} < {0} holds. The first property is not satisfied.

Definition: 2.2: Supremum and Infimum

Let S be an ordered set, and E ⊂ S
1. If ∃b ∈ S s.t. ∀x ∈ E, x ≤ b, then we say that E is bounded above and b is an upper bound of

E
2. If ∃b ∈ S s.t. ∀x ∈ E, b ≤ x, then we say that E is bounded below and b is an lower bound of

E
3. We call b0 ∈ S the least upper bound of E if

• b0 is an upper bound of E
• if b is any upper bound for E, then b0 ≤ b

We call b0 the supremum of E, and write b0 = supE
4. We call b0 ∈ S the greatest lower bound of E if

• b0 is an lower bound of E
• if b is any lower bound for E, then b ≤ b0

We call b0 the infimum of E, and write b0 = inf E

Example:

1. S = Z, E = {−1, 0, 2}, UBs= {2, 3, 4, 5, ...}, supE = 2, LBs= {...,−3,−2,−1}, inf E = −1

2. S = Q, E = {q ∈ Q : 0 ≤ q ≤ 1}, supE = 1, inf E = 0

3. S = Q, E = {q ∈ Q : 0 < q < 1}, supE = 1 /∈ E, inf E = 0 /∈ E
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Definition: 2.3: Least Upperbound Property

An ordered set S has the least upperbound property if every E ⊂ S, which is nonempty and bounded
above, has a supremum in S.

Example:

1. S = {0} has the least upperbound property

2. S = {0, 1} has the least upperbound property. When E = {0}, supE = 0 ∈ S. When E = {1},
supE = 1 ∈ S. When E = {0, 1}, supE = 1 ∈ S.

3. S = {−1,−2,−3,−4, ...} has the least upperbound property. If E ⊂ S, E nonempty, then −E =
{−x : x ∈ E} ⊂ N. By well ordering property of N, ∃m ∈ −E s.t. m ≤ −x for all x ∈ E. ⇒ −m ∈ E
and ∀x ∈ E, x ≤ −m. Thus, supE = −m

4. Z has the least upperbound property

Claim 1. Q does not have the least upper bound property.

If E = {q ∈ Q : q > 0 and q2 < 2}, then supE DNE in Q.

Theorem: 2.2:

If x ∈ Q and x = sup{q ∈ Q : q > 0 and q2 < 2}, then x ≥ 1 and x2 = 2

Proof. Let E = {q ∈ Q : q > 0 and q2 < 2} and suppose x ∈ Q s.t. x = supE.
Since 1 ∈ E and x = supE, then x ≥ 1

We then prove x2 ≥ 2 by contradiction.
Assume x2. Define h = min

{
1
2 ,

2−x2

2(2x+1)

}
< 1

Then h > 0, we show that x+ h ∈ E.
(x+h)2 = x2+2xh+h2 < x2+2xh+h, since h < 1 = x2+(2x+1)h ≤ x2+(2x+1) 2−x2

2(2x+1) = x2+ 2−x2

2 <

x2 + 2− x2 = 2
Thus (x+ h)2 < 2, x+ h ∈ E.
However, x+ h > x. This contradicts to the condition that x = supE. Thus x2 ≥ 2.

We now show x2 = 2. Since x2 ≥ 2, we have either x2 = 2 or x2 > 2. We show that x2 > 2 cannot hold by
contradiction.
Assume x2 > 2. Define h = x2−2

2x . Note that since x2 > 2, then 0 < h, and x− h < x.
(x− h)2 = x2 − 2xh+ h2 = x2 − (x2 − 2) + h2 = 2 + h2 > 2, i.e. 2 < (x− h)2

Let q ∈ E, i.e. q > 0 and q2 < 2. Then q2 < 2 < (x−h)2. Then 0 < (x−h)2−q2 ⇒ 0 < (x−h−q)(x−h+q)

⇒ 0 < (x− h− q)
(
x2+2
2x + q

)
Since q > 0 and x2+2

2x > 0, x2+2
2x + q > 0, and thus 0 < x− h− q, which implies q < x− h.

Thus, ∀q ∈ E, q < x− h, x− h is an upper bound for E

Since x = supE, x ≤ x− h by defintion. This means that h ≤ 0, which contradicts to the fact that h > 0.
Thus x2 = 2.

Theorem: 2.3:

The set E = {q ∈ Q : q > 0 and q2 < 2} is bounded above and has no supremum in Q
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Proof. Let q ∈ E. Then q2 < 2 < 4 ⇒ 0 < 4 − q2 ⇒ 0 < (2 − q)(2 + q). Since q > 0, 2 + q > 0, we must
have 2− q > 0, i.e. q < 2.
Thus ∀q ∈ E, q < 2. E is bounded above and 2 is an upper bound for E.

We now show supE DNE by contradiction.
Assume supE exists in Q. Call it x = supE.
By Theorem 2.2, x > 1 and x2 = 2.
Thus ∃m,n ∈ N s.t. m > n and x = m

n > 1. This also means that ∃n ∈ N s.t. nx ∈ N.
Let S = {k ∈ N : kx ∈ N}. S is nonempty since n ∈ S.

By the well ordering principle of N. S has a least element k0 ∈ S. Define k1 = k0x− k0 ∈ Z.
x2 = 2 implies that x < 2. Then k1 = k0(x−1) < k0(2−1) = k0. Thus k1 ∈ N (x ≥ 1, so k1 = k0(x−1) ≥ 0)
and k1 < k0.

Then xk1 = x(k0(x− 1)) = x2k0 − xk0 = 2k0 − xk0 = k0 + (k0 − xk0) = k0 − k1 ∈ N
Thus k1 ∈ S and k1 < k0. k0 is not the least element in S. Contradiction. Thus supE DNE.

This also concludes the proof that Q doesn’t have the least upper bound property.

2.2 Fields and Ordered Fields

Definition: 2.4: Field

A set F is a field if it has two operations + and · s.t.
A1) If x, y ∈ F , then x+ y ∈ F
A2) (Commutativity) ∀x, y ∈ F , x+ y = y + x
A3) (Associativity) ∀x, y, z ∈ F , (x+ y) + z = x+ (y + z)
A4) There exists an element 0 ∈ F s.t. ∀x ∈ F , 0 + x = x
A5) ∀x ∈ F , ∃ − x ∈ F s.t. x+ (−x) = 0
M1) If x, y ∈ F , then x · y ∈ F
M2) (Commutativity) ∀x, y ∈ F , x · y = y · x
M3) (Associativity) ∀x, y, z ∈ F , (xy)z = x(yz)
M4) There exists an element 1 ∈ F s.t. ∀x ∈ F , 1 · x = x
M5) ∀x ∈ F \ {0}, ∃x−1 ∈ F s.t. x · x−1 = 1

Example: Z2 = {0, 1} with 1 + 1 = 0, Z3 = {0, 1, 2} and Q are fields.
Z is a commutative ring, but not a field.

Theorem: 2.4:

If F is a field, then ∀x ∈ F , 0x = 0.

Proof. If x ∈ F , 0 = 0 · x+ (−0 · x) = (0 + 0)x+ (−0x) = 0x+ 0x+ (−0x) = 0x

Similarly, we can show that −x = (−1)x.
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Definition: 2.5: Ordered Field

An ordered field is a field F , which is also an ordered set s.t.
1. ∀x, y, z ∈ F , if x < y, then x+ z < y + x
2. If x > 0 and y > 0, then xy > 0.

If x > 0 (x ≥ 0), we say x is positive (non-negative).

Example: Q is an ordered field. Z2 = {0, 1} is not an ordered field.

Proof. If < is an order on Z2, then either 0 < 1 or 1 < 0
If 0 < 1, then 1 + 0 = 1, 1 + 1 = 0 ⇒ 1 + 1 < 1 + 0, so it doesn’t satisfy the first property.
If 1 < 0, then 1 + 0 = 1, 1 + 1 = 0 ⇒ 1 + 0 < 1 + 1, so it doesn’t satisfy the first property.

Generally, there is no finite ordered field.

Theorem: 2.5: Properties of Ordered Fields

If F is an ordered field, then
1. x > 0 ⇒ −x < 0 and x < 0 ⇒ −x > 0
2. If x > 0 and y < z, then xy < xz
3. If x < 0 and y < z, then xy > xz
4. If x ̸= 0, then x>0
5. If 0 < x < y, then 0 < 1

y < 1
x

6. If 0 < x < y, then x2 < y2

7. If x ≤ y and z ≤ w, then x+ z ≤ y + w

Proof. 1) If 0 < x, then −x+ 0 < −x+ x ⇒ −x < 0 (LHS by A1 in Definition 2.4, RHS by A5)

Theorem: 2.6: Supremum and Infimum in Ordered Fields

Let F be an ordered field with the least upperbound property. If A ⊂ F , A ̸= ∅ and bounded below,
then inf F exists in F .

Proof. Suppose F is an ordered field with the least upperbound property. Let A ⊂ F , A ̸= ∅ be bounded
below.
Then ∃b ∈ F s.t. b ≤ a, ∀a ∈ A. Thus −a ≤ −b, −b is an upper bound for −A.
Since F has the least upperbound property, there exists x ∈ F s.t. x = sup(−A).
Then ∀a ∈ A, −a ≤ x, which implies ∀a ∈ A, −x ≤ a. −x is a lower bound for A.

We now show that if y is a lower bound for A, then y ≤ −x
Let y be a lower bound for A. Then −y is an upper bound for −A.
Since x = sup(−A), x ≤ y ⇒ y ≤ −x.
Thus inf A exists and inf A = − sup(−A).
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2.3 Real Numbers

Theorem: 2.7: Existence of Real Numbers

There exists a unique (up to isomorphism) ordered field containing Q with the least upperbound
property, which we denote by R.

Theorem: 2.8:

There exists a unique r ∈ R s.t. r > 0 and r2 = 2

Proof. Similar to the proof in rationals. Let E = {x ∈ R : x > 0 and x2 < 2}. Then E is bounded above.
By the least upper bound property supE exists in R.
Label r = supE. The same proof in Q shows r ≥ 1, r2 = 2.

We now prove r is unique. Suppose r̃ ∈ R, with r̃ > 0 and r̃2 = 2.
Then 0 = r̃2 − r2 = (r̃ + r)(r̃ − r).
Since both r̃ > 0 and r > 0, then r̃ + r > 0 and we must have r̃ − r = 0, i.e. r̃ = r.

In general, if x ∈ R, x > 0, then x
1
n exists in R for all n ∈ N.

Fact: If x, y ∈ R and x < y, then ∃r ∈ R s.t. x < r < y (e.g. r = x+y
2 ). Same holds for Q.

Theorem: 2.9: Archimedian Property and Density of Q

1. (Archimedian Property) If x, y ∈ R and x > 0, then ∃n ∈ N s.t. nx > y
2. (Density of Q) If x, y ∈ R x < y, then ∃r ∈ Q, s.t. x < r < y.

Proof. 1. Suppose x, y ∈ R, x > 0. We want to show that n > y
x for some n.

Assume ∀n ∈ N, n ≤ y
x . Then N ⊂ R is bounded above.

By the least upper bound property of R, N has a supremum a ∈ R. Since a = supN, then a − 1 is
not an upper bound for N.
This implies that there exists m ∈ N s.t. a− 1 < m, then a < m+ 1. a is not an upper bound for N,
thus a cannot be the supremum. Contradiction. Thus n > y

x .

2. Suppose x, y ∈ R, x < y. Then there are three cases

(a) x < 0 < y. This is simple, just choose r = 0 ∈ Q

(b) 0 ≤ x < y. Then y − x > 0. By 1., there exists n ∈ N s.t. n(y − x) > 1. Then nx+ 1 < ny.
Again, by 1., ∃l ∈ N s.t. l > nx (choose y = nx, x = 1, n = l). Thus, S = {k ∈ N : k > nx} ≠ ∅.
By well ordering property of natural numbers, S has a least element m.
Since m ∈ S is the least element of S, m − 1 /∈ S. Since nx < m by definition of S, and
m− 1 ≤ nx, m ≤ nx+ 1.
Then nx < m ≤ nx+ 1 < ny. x < m

n < y. So r = m
n ∈ Q is the choice.

(c) x < y ≤ 0. Then 0 ≤ −y < −x. By case (b), ∃r̃ = m
n ∈ Q s.t. −y < r̃ < −x. Then x < −r̃ < y.
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Theorem: 2.10: Supremum in R

Assume S ⊂ R is nonempty and bounded above. Then x = supS if and only if
1. x is an upper bound for S
2. ∀ϵ > 0, ∃y ∈ S s.t. x− ϵ < y ≤ x

Remark 3. Similarly, x = inf S if and only if

1. x is a lower bound for S

2. ∀ϵ > 0, ∃y ∈ S s.t. x ≤ y < x+ ϵ

Example: sup
{
1− 1

n : n ∈ N
}
= 1

Proof. Since 1− 1
n < 1 for all n ∈ N, 1 is an upper bound for

{
1− 1

n : n ∈ N
}
.

Let ϵ > 0. Then by Archimedian Property, there exists n ∈ N s.t. nϵ > 1, i.e. 1
n < ϵ and −ϵ < − 1

n
Then 1− ϵ < 1− 1

n < 1. Thus sup
{
1− 1

n : n ∈ N
}
= 1.

Definition: 2.6:

For x ∈ R, A ⊂ R. Define x+A = {x+ a : a ∈ A} and xA = {xa : a ∈ A}.

Theorem: 2.11: Supremum with Constant Addition and Multiplication

1. If x ∈ R and A is bounded above, then x+A is bounded above and sup(x+A) = x+ supA
2. If x ∈ R, x > 0 and A is bounded above, then xA is bounded above and sup(xA) = x supA

Proof. 1. Suppose x ∈ R and A is bounded above. Then supA exists in R.
Then ∀a ∈ A, a ≤ supA, thus ∀a ∈ A, x+ a ≤ x+ supA. x+ supA is an upper bound for x+A.
Let ϵ > 0. Then ∃y ∈ A s.t. supA− ϵ < y ≤ supA.
Then ∃y ∈ A s.t. x+supA−ϵ < x+y ≤ x+supA. i.e. ∃z ∈ x+A, s.t. (x+supA)−ϵ < z ≤ x+supA.
Thus sup(x+A) = x+ supA

2. x ∈ R and A is bounded above. Then supA exists in R.
Then ∀a ∈ A, a ≤ supA, thus ∀a ∈ A, xa ≤ x supA. x supA is an upper bound for xA.
Let ϵ > 0. Then ∃y ∈ A s.t. supA− ϵ

x < y ≤ supA.
Then ∃y ∈ A s.t. x supA− x ϵ

x < xy ≤ x supA. i.e. ∃z ∈ xA, s.t. x supA− ϵ < z ≤ x supA.
Thus sup(xA) = x supA

Theorem: 2.12: Bounded Sets

If A,B ⊂ R with A bounded above, B bounded below and ∀x ∈ A, ∀y ∈ B, x ≤ y. Then
supA = inf B.

Proof. Let y ∈ B. Then ∀x ∈ A, x ≤ y. i.e. y is an upper bound for A. Thus, supA ≤ y.
This is true for all y ∈ B. Thus supA is a lower bound for B. supA ≤ inf B.

12



2.4 Absolute Values

Definition: 2.7: Absolute Value

If x ∈ R, define the absolute value to be |x| =

{
x, if x ≥ 0

−x, if x ≤ 0

Theorem: 2.13: Properties of Absolute Values

1. ∀x ∈ R, |x| ≥ 0 and |x| = 0 ⇔ x = 0
2. ∀x ∈ R, |x| = | − x|
3. ∀x, y ∈ R, |xy| = |x||y|
4. ∀x ∈ R, |x2| = |x|2
5. If x, y ∈ R, then |x| ≤ y ⇔ −y ≤ x ≤ y
6. ∀x ∈ R, x ≤ |x|

Proof. 1. If x ≥ 0, then |x| = x ≥ 0. If x ≤ 0, then |x| = −x ≥ 0.
(⇒) If x = 0, then |x| = 0
(⇐) Suppose |x| = 0, then if x ≥ 0, x = |x| = 0. If x ≤ 0, then −x = |x| = 0, x = 0. Thus x = 0

2. If x ≥ 0, then −x ≤ 0. Thus | − x| = −(−x) = x = |x|. If x ≤ 0, then −x ≥ 0, | − x| = −x = |x|.
Thus | − x| = |x|.

3. If x ≥ 0 and y ≥ 0, then xy ≥ 0, |xy| = xy = |x||y|. WLOG, if x ≥ 0 and y ≤ 0, then xy ≤ 0,
|xy| = −xy = x(−y) = |x||y|. If x ≤ 0 and y ≤ 0, then −x ≥ 0 and −y ≥ 0. |xy| = |(−x)(−y)| =
| − x|| − y| = |x||y|.

4. Take y = x in 3.

5. (⇒) suppose |x| ≤ y. If x ≥ 0, then −y ≤ 0 ≤ x = |x| ≤ y. If x ≤ 0, then −x ≥ 0 and |x| = −x ≤ y,
−y ≤ −x ≤ y. Thus −y ≤ x ≤ y
(⇐) Suppose −y ≤ x ≤ y. If x ≥ 0, then |x| =≤ y. If x ≤ 0, then −y ≤ x and −x ≤ y. Thus,
|x| ≤ y.

6. Let y = |x| in 5. We get −|x| ≤ x ≤ |x|

Theorem: 2.14: Triangle Inequality

∀x, y ∈ R, |x+ y| ≤ |x|+ |y|

Proof. If x, y ∈ R, x+ y ≤ |x|+ |y| and (−x) + (−y) ≤ | − x|+ | − y| = |x|+ |y|.
Multiply -1 on both sides, −(|x|+ |y|) ≤ −((−x) + (−y)).
Thus −(|x|+ |y|) ≤ x+ y ≤ |x|+ |y|
Then |x+ y| ≤ |x|+ |y|.

Remark 4. (Reversed Triangle Inequality) ∀x, y ∈ R, ||x| − |y|| ≤ |x− y|

2.5 Decimal Representation and Uncountability of Reals

Typically, we think of Q in decimal representation. If x ∈ Q, x = dK10K+dK−110
K−1+· · ·+d0+d−110

−1+
· · ·+ d−M10−M , where {dj : −M ≤ j ≤ K} ⊂ 0, 1, ..., 9. And we write x = dKdK−1 · · · .d−1d−2 · · ·

13



Example: 1 · 10 + 1 · 100 + 1 · 10−1 = 11.1 = 111
10 .

Definition: 2.8: Decimal Representation of Real Numbers

Let x ∈ (0, 1] and let d−j ∈ {0, 1, ..., 9} for j ∈ N. We say x is represented by digits {d−j : j ∈ N}
and write x = 0.d−1d−2 · · · if x = sup{d−110

−1 + · · ·+ d−n10
−n : n ∈ N}

Example: 0.250 = sup
{

2
10 ,

2
10 + 5

100 ,
2
10 + 5

100 + 0
1000

}
= 1

4 .

Theorem: 2.15: Uniqueness of Decimal Representation

1. For every set of digits {d−j : j ∈ N} with d−j ∈ {0, 1, ..., 9}, there exists a unique x ∈ (0, 1] s.t.
x = 0.d−1d−2 · · · (Note: 1

2 = 0.5 = 0.499 · · · )
2. For every x ∈ (0, 1], there exist unique digits {d−j : j ∈ N} s.t. x = 0.d−1d−2 · · · and

0.d−1d−2 · · · < x ≤ 0.d−1d−2 · · ·+ 10−n

Theorem: 2.16: Cantor’s Theorem

(0, 1] is uncountable

Proof. We prove by contradiction.
Assume |(0, 1]| = |N|, i.e. (0, 1] is countable.
Then ∃x : N → (0, 1] a bijection.

For each n, write x(n) = 0.d
(n)
−1d

(n)
−2 · · ·

The idea is that we can write the x(n) in a matrix form and look at the diagonal elements

• x(1) = 0. d1−1 d1−2d
1
−3d

1
−4 · · ·

• x(2) = 0.d2−1 d2−2 d2−3d
2
−4 · · ·

• x(3) = 0.d3−1d
3
−2 d3−3 d3−4 · · ·

• x(4) = 0.d4−1d
4
−2d

4
−3 d4−4 · · ·

...

Let e−j =

{
1, if d(j)−j ̸= 1

2, if d(j)−j = 1

By 1 of Theorem 2.15, there exists a unique y ∈ (0, 1] s.t. y = 0.e−1e−2 · · ·

Since all e−js are either 1 or 2, they are certainly non zero. Then ∀n ∈ N, 0.e−1e−2 · · · e−n < y ≤
0.e−1e−2 · · · e−n + 10−n

Thus y = 0.e−1e−2 · · · e−n is the unique decimal representation from 2 of Theorem 2.15.

Since x is surjective (as a bijection), ∃m ∈ N s.t. y = x(m). Then d
(m)
−m = e−m =

{
1, if d(m)

−m ̸= 1

2, if d(m)
−m = 1

̸= d
(m)
−m

This is a contradition. Thus |N| < |(0, 1]|, (0, 1] is uncountable.
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Corollary 1. R is uncountable

Proof. Find a bijection from (0, 1] to R, e.g. tangent function and |N| < |(0, 1]| ≤ |R|

2.6 Complex Field

This is from UBC MATH320 and Rudin Principles of Mathematical Anlysis. The most important part of
this subsection is the Cauchy-Schwarz Inequality.

Definition: 2.9: Complex Field

The underlying set C = {(a, b) : a, b ∈ R} = R2. Let x = (a, b), y = (c, d). Define 0 = (0, 0),
1 = (1, 0). Define addition (x + y) = (a + c, b + d) and multiplication xy = (ac − bd, ad + bc). We
write x = a+ bi, Rex = a, Imx = b.

Definition: 2.10: Conjugate

In C, the conjugate of x = a+ bi is x̄ = a− bi, with the following properties:
1. x+ y = x̄+ ȳ
2. xy = x̄ȳ
3. x+ x̄ = 2Rex
4. x− x̄ = 2iImx
5. xx̄ = a2 + b2

Definition: 2.11: Norm of Complex Numbers

Define |x| =
√
xx̄ to be the norm of x ∈ C

Remark 5. R is a subfield of C

Theorem: 2.17: Properties of Norms in C

Let x, y ∈ C, then
1. |x| ≥ 0 with equality if and only if x = 0
2. |x̄| = |x|
3. |xy| = |x||y|
4. |Rex| ≤ |x| and |Imx| ≤ |x|
5. |x+ y| ≤ |x|+ |y|

Theorem: 2.18: Cauchy-Schwarz Inequality

Let a1, ..., an, b1, ..., bn ∈ C, then |
∑n

j=1 ajbj |2 ≤
∑n

j=1 |aj |2
∑n

j=1 |bj |2. Equality is true if and only
if one of the following holds:

1. ∃α ∈ C s.t. aj = αbj , for all j.
2. ∃β ∈ C s.t. bj = βaj , for all j.

In vector form, |⟨a, b⟩|2 ≤ ⟨a, a⟩⟨b, b⟩ or |⟨a, b⟩| = ∥a∥∥b∥.
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3 Sequences and Series

3.1 Sequences and Limits

Definition: 3.1: Sequence

A sequence of real numbers is a function x : N → R. We denote x(n) by xn and the sequence by
{xn}∞n=1 or {xn} or x1, x2, ...

Example:

• 1, 1, 1, ... is the sequence x(n) = 1 for all n.

•
{

1
n

}
is the sequence 1, 12 ,

1
3 , ...

• {(−1)n} is the sequence −1, 1,−1, 1, ...

Definition: 3.2: Bounded Sequence

A sequence {xn} is bounded if ∃B ≥ 0 s.t. ∀n ∈ N, |xn| ≤ B. Otherwise, {xn} is unbounded.

Remark 6. A sequence {xn} is unbounded if ∀B ≥ 0, ∃n ∈ N s.t. |xn| > B

• {1} and
{

1
n

}
are bounded

• {(−1)n} is bounded by B = 1

• {n} is unbounded.

Proof. Let B ≥ 0, by Archimedian Property, ∃n ∈ N s.t. n ≥ B. Thus {n} is unbounded.

Definition: 3.3: Convergent Sequence

A sequence {xn} converges to x ∈ R if ∀ϵ > 0, ∃M ∈ N s.t. ∀n ≥ M , |xn − x| < ϵ. If a sequence
converges, we say it is convergent. Otherwise, it is divergent.

Definition: 3.4: Divergence

A sequence {xn} does not converge to x ∈ R if ∃ϵ0 > 0, s.t. ∀M ∈ N, ∃n ≥ M s.t. |xn − x| ≥ ϵ0.

Theorem: 3.1:

Let x, y ∈ R. If ∀ϵ > 0, |x− y| < ϵ, then x = y.

Proof. Assume x ̸= y. Then |x− y| > 0.
Take ϵ = |x−y|

2 > 0, we get |x− y| < |x−y|
2

⇒ |x−y|
2 < 0. Contradiction.

Theorem: 3.2: Uniqueness of Limit

If {xn} converges to x and y, then x = y.
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Proof. Suppose {xn} converges to x and y.
Let ϵ > 0. Since {xn} converges to x, ∃M1 ∈ N, s.t. ∀n ≥ M1, |xn − x| < ϵ

2
Similarly, since {xn} converges to y, ∃M2 ∈ N, s.t. ∀n ≥ M2, |xn − y| < ϵ

2
Take M = maxM1,M2. Then ∀n ≥ M , |xn − x| < ϵ

2 and |xn − y| < ϵ
2

By triangle inequality, |x − y| = |(x − xn) + (xn − y)| ≤ |xn − x| + |xn − y| < ϵ
2 + ϵ

2 = ϵ. Thus x = y by
Theorem 3.1

Definition: 3.5: Limit

If {xn} converges to x, we call x the limit of {xn} and write x = lim
n→∞

xn or xn → x.

Example:

• xn = 1,∀n, lim
n→∞

xn = 1.

Proof. Let ϵ > 0. Choose M = 1. Then if n ≥ M , |xn − 1| = |1− 1| = 0 < ϵ

• lim
n→∞

1

n
= 0.

Proof. Let ϵ > 0. Choose M ∈ N, s.t. 1
M < ϵ (exists by Archimedian Property). Then if n ≥ M ,

|xn − 1| = |1− 1| = 0 < ϵ.
Then if n ≥ M ,

∣∣ 1
n − 0

∣∣ = 1
n ≤ 1

M < ϵ

General technique to prove lim
n→∞

xn = x

Proof. Let ϵ > 0. Choose M ∈ N, s.t. M has some property relevant to ϵ.
Then if n ≥ M , after some calculation, |xn − x| < ϵ
How to find M? We start with |xn − x| ≤ · · · ≤ something involving M < ϵ

Example: lim
n→∞

1

n2 + 30n+ 1
= 0

(We want to find M s.t. 1
n2+30n+1

< ϵ. Note that 1
n2+30n+1

≤ 1

30︸︷︷︸
n2+1>0

≤ 1
n . If 1

n < ϵ, 1
n2+30n+1

< ϵ)

Proof. Let ϵ > 0. Choose M ∈ N s.t. 1
M < ϵ. Then for all n ≥ M ,

∣∣∣ 1
n2+30n+1

− 0
∣∣∣ = 1

n2+30n+1
≤ 1

30 ≤ 1
n ≤

1
M < ϵ

Example: {(−1)n} does not converge.

Proof. Let x ∈ R. We want to show {(−1)n} does not converge x.
Let ϵ0 = 1, M ∈ N. Then 2 = |(−1)M − (−1)M+1| ≤ |(−1)M − x|+ |(−1)M+1 − x|.

Thus, either |(−1)M − x| ≥ 1 or |(−1)M+1 − x| ≥ 1

Theorem: 3.3: Bounded Sequence

If {xn} is convergent, then {xn} is bounded.
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Proof. Suppose xn → x. Then ∃M ∈ N s.t. ∀n ≥ M , |xn − x| < 1.
Then ∀n ≥ M , |xn| = |xn − x+ x| ≤ |xn − x|+ |x| ≤ 1 + |x|.
Define B = |x1|+ |x2|+ · · ·+ |xM−1|+ (1 + |x|) (or max of these values).
Then ∀n ∈ N, |xn| ≤ B.

Definition: 3.6: Monotone Sequnece

A sequence {xn} is monotone increasing if ∀n ∈ N, xn ≤ xn+1. A sequence is monotone decreasing if
∀n ∈ N, xn ≥ xn+1. If {xn} is monotone increasing or monotone decreasing, then {xn} is monotone
or monotonic.

Theorem: 3.4: Convergent Monotone Sequence

A monotonic sequence is convergent if and only if it is bounded.

Proof. Convergent ⇒ bounded is proved. We consider the other direction only.

Suppose {xn} is a monotone increasing sequence and bounded. Then {xn : n ∈ R} ⊂ R is bounded above
and below.

Let x = sup{xn : n ∈ N}. Claim lim
n→∞

xn = x.
Let ϵ > 0. Then since x− ϵ is not an upper bound for {xn : n ∈ N}, ∃M0 ∈ N s.t. x− ϵ < xM0 ≤ x.
Choose M = M0. Then ∀n ≥ M , x− ϵ < xM0 ≤ xn ≤ x ⇒ x− ϵ < xn < x+ ϵ.

The proof for monotone decreasing sequence is similar.

Remark 7. If {xn} is bounded and monotone increasing, then lim
n→∞

xn = sup{xn : n ∈ N}. If {xn} is
bounded and monotone decreasing, then lim

n→∞
xn = inf{xn : n ∈ N}.

Theorem: 3.5: Geometric Sequence

1. If c ∈ (0, 1), then lim
n→∞

cn = 0

2. If c > 1, then {cn} is unbounded

Proof. 1. Claim ∀n ∈ N, 0 < cn+1 < cn. We can prove this by induction
Base case: since 0 < c < 1, and 0 < c2 < c (multiply by c).
Inductive step: suppose 0 < cn+1 < c. Then 0 < cn+2 < cn+1. Thus {cn} is monotone decreasing and
bounded. 0 < |cn| = cn < c. By Theorem 3.4, {cn} has a limit L.

We now want to show L = 0.
Let ϵ > 0. Then ∃M ∈ N s.t. ∀n ≥ M , |cn − L| < (1−c)ϵ

2 , L is the limit of {cn} and (1−c)ϵ
2 > 0.

Thus (1− c)|L| = |L− cL| = |L− cM+1 + cM+1 − cL| ≤ |L− cM+1|+ c|cM − L| < (1−c)ϵ
2 + c(1−c)ϵ

2 =
(1+c)

2 (1− c)ϵ.
Since (1+c)

2 < 1 for c ∈ (0, 1), |L| < ϵ. Thus |L| = 0 ⇒ L = 0.

2. We want to show ∀B ≥ 0, ∃n ∈ N, cn > B.
Recall that (1 + x)n ≥ 1 + nx. Thus cn = (1 + (c− 1))n ≥ 1 + n(c− 1) ≥ n(c− 1)
Let n ∈ N s.t. n > B

c−1 . Then cn = (1 + (c− 1))n ≥ n(c− 1) > B
c−1(c− 1) = B
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Definition: 3.7: Subsequence

Let {xn} be a sequence and let {nk} be a sequence of natural numbers s.t. n1 < n2 < n3 < · · ·
(strictly increasing). Then the sequence {xnk

}∞k=1 is called a subsequence of {xn}.

• xn = 1, 2, 3, 4, 5, ...

– xnk
= 1, 3, 5, 7, ... is a subsequence with nk = 2k − 1

– xnk
= 2, 4, 6, 8, ... is a subsequence with nk = 2k

– xnk
= 2, 3, 5, 7, ... is a subsequence with nk = kthprime

– xnk
= 1, 1, 1, 1, ... is not a subsequence, because nk = 1 for all k

– xnk
= 1, 1, 3, 3, 5, ... is not a subsequence

• xn = (−1)n

– −1,−1,−1, ... is a subsequence with nk = 2k − 1

– 1, 1, 1, ... is a subsequence with nk = 2k

Theorem: 3.6: Convergent Subsequence

If {xn} converges to x, and {xnk
} is a subsequence of {xn}, then lim

k→∞
xnk

= x

Proof. Since 1 ≤ n1 < n2 < n3 < · · · , then ∀k ∈ N, nk ≥ k
Let ϵ > 0. Since xn → x, ∃M0 ∈ N s.t. ∀n ≥ M0, |xn − x| < ϵ.
Choose M = M0. If k ≥ M , nk ≥ k ≥ M = M0. Then |xnk

− x| < ϵ

3.2 Facts about Limits

Theorem: 3.7:

lim
n→∞

xn = x ⇔ lim
n→∞

|xn − x| = 0

Proof. From definition and |xn − x| = ||xn − x| − 0|

Theorem: 3.8: Squeeze Theorem

Let {an}, {bn}, and {xn} be sequences s.t. ∀n ∈ N, an ≤ xn ≤ bn and lim
n→∞

an = lim
n→∞

bn = x. Then
{xn} converges and lim

n→∞
xn = x

Proof. Let ϵ > 0. Since bn → x, ∃M0 ∈ N s.t. ∀n ≥ M0, |bn − x| < ϵ ⇒ bn < x+ ϵ
Similarly, since an → x, ∃M0 ∈ N s.t. ∀n ≥ M0, |an − x| < ϵ ⇒ x− ϵ < an
Take M = max(M0,M1), then ∀n ≥ M , x− ϵ < an ≤ xn ≤ bn < x+ ϵ. Thus |xn − x| < ϵ

Example: lim
n→∞

n2

n2 + n+ 1
= 1
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Proof.
∣∣∣ n2

n2+n+1
− 1
∣∣∣ = ∣∣∣ n+1

n2+n+1

∣∣∣ ≤ n+1
n2+n

= 1
n , so 0 ≤

∣∣∣ n2

n2+n+1
− 1
∣∣∣ ≤ 1

n .

By Squeeze Theorem lim
n→∞

∣∣∣∣ n2

n2 + n+ 1
− 1

∣∣∣∣ = 0 and by Theorem 3.7, lim
n→∞

n2

n2 + n+ 1
= 1.

How do limits interact with order in R?

Theorem: 3.9: Order Property of Limits

1. If {xn} and {yn} are convergent sequences and ∀n ∈ N, xn ≤ yn, then lim
n→∞

xn ≤ lim
n→∞

yn

2. If {xn} is a convergent sequence and ∀n ∈ N, a ≤ xn ≤ b, then a ≤ lim
n→∞

xn ≤ b

Remark 8. ∀n, xn < yn ̸⇒ lim
n→∞

xn < lim
n→∞

yn. We can have lim
n→∞

xn = lim
n→∞

yn

Example: xn = 0, yn = 1
n , xn < yn for all n, and lim

n→∞
xn = lim

n→∞
yn = 0

Proof. 1. Suppose xn → x and yn → y, we want to show x ≤ y.
Assume y < x.
Since yn → y, ∃M0 ∈ N s.t. ∀n ≥ M0, |yn − y| < x−y

2 , so yn < x+y
2 ⇒ yn < x− x−y

2
Similarly, since xn → x, ∃M1 ∈ N s.t. ∀n ≥ M1, |xn − x| < x−y

2 , so x− xn < x−y
2 ⇒ x− x−y

2 < xn
Let n = M0 +M1, n ≥ M0 and n ≥ M1, then yn < x− x−y

2 < xn. Contradictions.

2. Follows 1

How does limits interact with algebraic operations?

Theorem: 3.10: Algebraic Operations of Limits

Suppose lim
n→∞

xn = x and lim
n→∞

yn = y. Then
1. lim

n→∞
(xn + yn) = x+ y

2. ∀c ∈ R, lim
n→∞

cxn = cx

3. lim
n→∞

(xnyn) = xy

4. If ∀n, yn ̸= 0 and y ̸= 0, then lim
n→∞

xn
yn

=
x

y

Proof. 1. Let ϵ > 0. Since xn → x, ∃M0 ∈ N s.t. ∀n ≥ M0, |xn − x| < ϵ
2 .

Similarly, since yn → y, ∃M1 ∈ N s.t. ∀n ≥ M1, |yn − y| < ϵ
2 .

Choose M = M0 +M1, if n ≥ M , |(xn + yn)− (x+ y)| ≤ |xn − x|+ |yn − y| < ϵ
2 + ϵ

2 = ϵ

2. Let ϵ > 0. Since xn → x, ∃M ∈ N s.t. ∀n ≥ M , |xn − x| < ϵ
|c|+1 .

Then |cxn − cx| = |c||xn − x| < |c|
|c|+1ϵ < ϵ

3. Since yn → y, {yn} is bounded. i.e. ∃B ≥ 0 s.t. ∀n ∈ N, |yn| ≤ B.
Then |xnyn − xy| = |xnyn − xyn + xyn − xy| = |(xn − x)yn + (yn − y)x| ≤ |xn − x||yn|+ |yn − y||x| ≤
|xn − x|B+ |yn − y||x|, which converges to 0. By sequeeze theorem, |xnyn − xy| → 0 and xnyn → xy.
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4. We prove that 1
yn

→ 1
y , and the result directly follows 3.

Claim ∃b > 0 s.t. ∀n ∈ N, |yn| ≥ b.
Since yn → y and y ̸= 0, ∃M ∈ N s.t. ∀n ≥ M , |yn − y| < y

2 .
Then ∀n ≥ M , |y| = |y − yn + yn| ≤ |y − yn|+ |yn| < |y|

2 + |yn|. So y
2 < |yn|.

Let b = inf{|y1|, ..., |yM−1|, |y|2 } > 0 (infimum of a finite set always exists). Then ∀n ∈ N, |yn| ≥ b.

Then 0 ≤
∣∣∣ 1
yn

− 1
y

∣∣∣ = |yn−y|
|yn||y| ≤

1
b|y| |yn − y|. By squeeze theorem,

∣∣∣ 1
yn

− 1
y

∣∣∣→ 0, and thus, 1
yn

→ 1
y .

Theorem: 3.11: Limits of Square Roots

If ∀n, xn ≥ 0, and lim
n→∞

xn = x, then lim
n→∞

√
xn =

√
x.

Proof. Case 1: x = 0. Let ϵ > 0. Since xn → 0. ∃M0 ∈ N s.t. ∀n ≥ M0, |xn − 0| = |xn| = xn < ϵ2.
Choose M = M0. Then ∀n ≥ M , |√xn − 0| = |√xn| =

√
xn <

√
ϵ2 = ϵ

Case 2: x > 0. Then |√xn −
√
x| =

∣∣∣(√xn −
√
x)

√
xn+

√
x√

xn+
√
x

∣∣∣ = |xn−x|√
xn+

√
x
< 1√

x
|xn − x|. Since |xn − x| → 0,

by squeeze theorem |√xn −
√
x| → 0.

Theorem: 3.12: Limits of Absolute Values

If {xn} is a convergent sequence and lim
n→∞

xn = x. Then {|xn|} is convergent and lim
n→∞

|xn| = |x|

Remark 9. The converse is not true. Consider xn = (−1)n. |xn| = 1, and thus |xn| → 1. But {xn} does
not converge.

Proof. This directly follows the reverse triangle inequality, 0 ≤ ||xn| − |x|| ≤ |xn − x|. By squeeze theorem.
|xn| → |x|.

Theorem: 3.13: Binomial Theorem

∀n ∈ N, x, y ∈ R, (x+ y)n =

n∑
k=0

(
n

k

)
xn−kyk, where

(
n
k

)
= n!

k!(n−k)! .

Theorem: 3.14: Some Special Sequences

1. If p > 0, then lim
n→∞

1

np
= 0

2. If p > 0, then lim
n→∞

p
1
n = 1

3. lim
n→∞

n
1
n = 1

Proof. 1. Let ϵ > 0. Choose M ∈ N s.t. M > 1
ϵ1/p

. Then if n ≥ M ,
∣∣ 1
np − 0

∣∣ = 1
np ≤ 1

Mp < ϵ

2. Three cases:

(a) p = 1: clear

(b) p > 1: |p1/n − 1| = p1/n − 1, p = [1 + (p1/n − 1)]n ≥ 1 + n(p1/n − 1) (since (1 + x)n ≥ 1 + nx for
x ≥ −1) ⇒ 0 ≤ p1/n − 1 ≤ p−1

n . By squeeze theorem, p1/n − 1 → 0 and p1/n → 1
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(c) p < 1: Take the reciprocal. lim
n→∞

p1/n = lim
n→∞

1(
1
p

)1/n . 1
p > 1 →

(
1
p

)1/n
→ 1

then limn→∞ p1/n = 1

3. Let xn = n1/n − 1 ≥ 0. We want to show xn → 0. Then n = (1 + xn)
n =

n∑
k=0

(
n

k

)
xkn ≥

(
n

2

)
x2n =

n(n− 1)

2
x2n

Then, ∀n > 1, 0 ≤ xn ≤
√

2
n−1 . By squeeze theorem, xn → 0, and lim

n→∞
n

1
n = 1.

3.3 Limsup, Liminf, and Bolzano-Weierstrass

Does every bounded sequence have a convergent subsequence?

Definition: 3.8: limsup and liminf

Let {xn} be a bounded sequence.

lim sup
n→∞

xn = lim
n→∞

(sup{xk : k ≥ n})

lim inf
n→∞

xn = lim
n→∞

(inf{xk : k ≥ n})

Theorem: 3.15: Infimum and Supremum of Subsets in R

If A,B ⊂ R, A,B ̸= ∅, s.t. A,B are bounded and A ⊂ B, then inf B ≤ inf A ≤ supA ≤ supB.

Proof. The middle inequality is obvious, we consider inf B ≤ inf A and supA ≤ supB only.
Since supB is an upper bound for B, and A ⊂ B, then supB is an upper bound for A. Thus supA ≤ supB.
Similar argument goes for inf B ≤ inf A

Theorem: 3.16: Existence of limsup and liminf

Let {xn} be a bounded sequence, and let an = sup{xk : k ≥ n}, bn = inf{xk : k ≥ n}. Then
1. {an} is monotone decreasing and bounded. {bn} is monotone increasing and bounded. Thus

lim
n→∞

an and lim
n→∞

bn exist.
2. lim inf xn ≤ lim supxn

Proof. 1. Since {xk : k ≥ n + 1} ⊂ {xk : k ≥ n}, an+1 = sup{xk : k ≥ n + 1} ≤ sup{xk : k ≥ n} = an
by Theorem 3.15, and similarly bn+1 ≥ bn
Since {xn} is bounded, ∃B ≥ 0, s.t. ∀n ∈ N, −B ≤ xn ≤ B. Then −B ≤ inf{xk : k ≥ n} ≤ sup{xk :
k ≥ n} ≤ B. Thus −B ≤ bn ≤ an ≤ B. And |bn| ≤ B, |an| ≤ B. {an} and {bn} are monotone and
bounded. Thus lim

n→∞
an and lim

n→∞
bn exist.

2. Since −B ≤ bn ≤ an ≤ B, we have lim inf xn = lim
n→∞

bn ≤ lim
n→∞

an = lim supxn by Theorem 3.9
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Example: xn = (−1)n, {(−1)k : k ≥ n} = {−1, 1}.
sup{(−1)k : k ≥ n} = 1, lim supxn = 1. inf{(−1)k : k ≥ n} = −1, lim inf xn = −1.

Example: xn = 1
n .
{
1
k : k ≥ n

}
=
{

1
n ,

1
n+1 ,

1
n+2 , ...

}
.

sup
{
1
k : k ≥ n

}
= 1

n , lim supxn = lim
n→∞

1

n
= 0. inf

{
1
k : k ≥ n

}
= 0, lim inf xn = lim

n→∞
0 = 0

Theorem: 3.17: Convergent Subsequence to liminf and limsup

Let {xn} be a bounded sequence. There exist subsequences {xnk
} and {xmk

} s.t. lim
k→∞

xnk
=

lim supxn and lim
k→∞

xmk
= lim inf xn.

Proof. Let an = sup{xk : k ≥ n}, ∃n1 ≥ 1 s.t. a1 − 1 < xn1 ≤ a1 by Theorem 2.10, since a1 = sup{xk :
k ≥ 1}.
Since an1+1 = sup{xk : k ≥ n1 + 1}, ∃n2 ≥ n1 + 1 > n1 s.t. an1+1 − 1

2 < xn2 ≤ an1+1.
Continuing in this manner, we obtain a sequence of natural numbers n1 < n2 < n3 < · · · s.t. ∀k ∈ N,
ank−1+1 − 1

k < xnk
≤ ank−1+1.

Since n1 < n2 < n3 < · · · , n1 + 1 < n2 + 1 < n3 + 1 < · · · . And {ank−1+1} is a subsequence of {an}.
{an} converges and {ank−1+1} is a subsequence of {an}. Thus by Theorem 3.6, lim

k→∞
ank−1+1 = lim

n→∞
an =

lim supxn. By squeeze theorem, lim
k→∞

xnk
= lim supxn.

Similarly for liminf, we can have ank−1+1 ≤ xnk
< ank−1+1 +

1
k .

Theorem: 3.18: Bolzano-Weierstrass

Every bounded sequence has a convergent subsequence.

Proof. Directly follows Theorem 3.17, by choosing the subsequence to be an = sup{xk : k ≥ n}.

Theorem: 3.19:

{xn} converges ⇔ lim supxn = lim inf xn.
If {xn} converges, then lim supxn = lim

n→∞
xn = lim inf xn

Proof. (⇐) Suppose L = lim supxn = lim inf xn. Since ∀n, inf{xk : k ≥ n} ≤ xn ≤ sup{xk : k ≥ n}. By
squeeze theorem, xn → L.
(⇒) Let L = lim

n→∞
xn. By Theorem 3.17, there exists subsequence {xnk

} s.t. lim
k→∞

xnk
= lim supxn ⇒

L = lim supxn.
Similarly, there exists subsequence {xmk

} s.t. lim
k→∞

xmk
= lim inf xn ⇒ L = lim inf xn.

3.4 Cauchy Sequences

Definition: 3.9: Cauchy Sequence

A sequence {xn} is Cauchy if ∀ϵ > 0, ∃M ∈ N s.t. for all n ≥ M and k ≥ M , |xn − xk| < ϵ.

Remark 10. The negation: {xn} is not Cauchy if ∃ϵ0 > 0 s.t. ∀M ∈ N, ∃n ≥ M and k ≥ M s.t.
|xn − xk| ≥ ϵ0.

23



Example: xn = 1
n is Cauchy.

Proof. Let ϵ > 0. Choose M ∈ N s.t. 1
M < ϵ

2 .
Then if n ≥ M , k ≥ M ,

∣∣ 1
n − 1

k

∣∣ ≤ 1
n + 1

k ≤ 2
M < ϵ.

Example: xn = (−1)n is not Cauchy.

Proof. Let ϵ0 = 2. Let M ∈ N. Choose n = M and k = M +1. Then |(−1)n− (−1)k| = |1− (−1)| = 2.

Theorem: 3.20:

If {xn} is Cauchy, then {xn} is bounded.

Proof. Since {xn} is Cauchy, ∃M ∈ N s.t. for all n ≥ M and k ≥ M , |xn − xk| < 1.
Then ∀n ≥ M , |xn − xM | < 1. |xn| = |xn − xM + xM | ≤ |xn − xM |+ |xM | < 1 + |xM |.
i.e. ∀n ≥ M , |xn| ≤ |xM |+ 1.
Let B = max{|x1|, ..., |xM−1|, |xM |+ 1}.
Then ∀n ≥ M , |xn| ≤ |xM |+ 1 ≤ B and for 1 ≤ n ≤ M , |xn| ≤ B.

Theorem: 3.21:

If {xn} is Cauchy and there exists subsequence {xnk
} converging to x, then {xn} converges to x.

Proof. Let ϵ > 0. Since {xn} is Cauchy, ∃M0 ∈ N s.t. ∀n ≥ M0 and m ≥ M0, |xn − xm| < ϵ
2 .

Since there exists a subsequence {xnk
} convergint to x, ∃M1 ∈ N s.t. ∀k ≥ M1, |xnk

− x| < ϵ
2 .

Choose M = M0 +M1. Since nk ≥ k for all k ∈ N, then nM ≥ M ≥ M0 and nM ≥ M1.

If n ≥ M , |xn − x| = |xn − xnM + xnM − x| ≤ |xn − xnM |+ |xnM − x| < ϵ
2 + ϵ

2 = ϵ.

Theorem: 3.22:

{xn} is Cauchy ⇔ {xn} is convergent.

Proof. (⇒) If {xn} is Cauchy, then by Theorem 3.20, {xn} is bounded. Then {xn} has a convergent
subsequence by Theorem 3.18. Thus {xn} is convergent by Theorem 3.21.

(⇐) If {xn} is convergent.
Let ϵ > 0. Since xn → x, ∃M0 ∈ N, s.t. ∀n ≥ M0, |xn − x| < ϵ

2 .
Choose M = M0. Then if n ≥ M and k ≥ M , |xn − xm| ≤ |xn − x|+ |xm − x| < ϵ

2 + ϵ
2 = ϵ

Remark 11. If we only work in rationals, then convergence ⇒ Cauchy, but Cauchy ̸⇒ convergence. The
equivalence is satisified in a complete metric space and R is complete.

Example: Take {xn} s.t. xn ∈ Q and xn →
√
2 in R. {xn} is Cauchy, but does not converge in Q.
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3.5 Series

Definition: 3.10: Series

Given {xn}, the symbol
∞∑
n=1

xn or
∑

xn is the series associated to {xn}. We say
∑

xn converges if

the sequence

{
sm =

m∑
n=1

xn = x1 + · · ·+ xm

}∞

m=1

(Partial sums) converges.

If s = lim
n→∞

sm, then we write s =
∑

xn and treat
∑

xn as a real number.

Remark 12. The series doesn’t necessarily have to start at n = 1.

Example:
∞∑
n=0

1

n(n+ 1)
converges.

Proof. sm =

∞∑
n=0

1

n(n+ 1)
=

∞∑
n=0

1

n
−

∞∑
n=0

1

n+ 1
=

(
1 +

1

2
+ · · ·+ 1

m

)
−
(
1

2
+ · · ·+ 1

m
+

1

m+ 1

)
= 1 −

1

m+ 1
.

Then lim
n→∞

sm = 1.

Example:
∞∑
n=0

(−1)n does not converge.

Proof. sm = (−1) + 1 + · · ·+ (−1)m =

{
−1, if m is odd
0, if m is even

Thus sm does not converge.

Theorem: 3.23: Geometric Series

If |r| < 1, then
∞∑
n=0

rn converges and
∞∑
n=0

rn =
1

1− r

Proof. sm =

m∑
n=0

rn =
1− rm+1

1− r
. If |r| < 1, then lim

n→∞
rm = 0 and lim

n→∞
sm =

1

1− r

Theorem: 3.24:

Let {xn} be a sequence and let m ∈ N. Then
∞∑
n=1

xn converges ⇔
∞∑

n=M

xn converges.

Proof. The partial sums satisfy that ∀m ∈ N,
m∑

n=1

xn =

m∑
n=M

xn +

M−1∑
n=1

xn. Since
M−1∑
n=1

xn is a finite number.

m∑
n=1

xn converges if and only if
m∑

n=M

xn converges
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Definition: 3.11: Cauchy Series∑
xn is Cauchy if {sm =

∑m
n=1 xn}

∞
m=1 is Cauchy.

Theorem: 3.25:∑
xn is Cauchy ⇔

∑
xn is convergent.

Proof. Directly follows Theorem 3.22.

Theorem: 3.26: Partial Sum of Cauchy Series

∑
xn is Cauchy ⇔ ∀ϵ > 0, ∃M ∈ N s.t. ∀l > m ≥ M ,

∣∣∣∣∣
l∑

n=m+1

xn

∣∣∣∣∣ < ϵ.

Proof. (⇒) Suppose
∑

xn is Cauchy. Then {sm} is Cauchy. Let ϵ > 0, ∃M0 ∈ N, s.t. ∀m ≥ M0 and
l ≥ M0, |sm − sl| < ϵ.

Choose M = M0. If l > m ≥ M .

∣∣∣∣∣
l∑

n=m+1

xn

∣∣∣∣∣ = |sl − sm| < ϵ.

(⇐) Follows directly from

∣∣∣∣∣
l∑

n=m+1

xn

∣∣∣∣∣ = |sl − sm| < ϵ.

Theorem: 3.27:

If
∑

xn converges, then lim
n→∞

xn = 0.
If lim

n→∞
xn ̸= 0, then

∑
xn does not converge.

Proof. Since
∑

xn converges, then
∑

xn is Cauchy by Theorem 3.25.

Then by Theorem 3.26. Let ϵ > 0, ∃M0 ∈ N, s.t. ∀l > m ≥ M0,

∣∣∣∣∣
l∑

n=m+1

xn

∣∣∣∣∣ < ϵ.

Choose M = M0 + 1. Then if m ≥ M , |xm| =

∣∣∣∣∣
m∑

n=m

xn

∣∣∣∣∣ < ϵ

Theorem: 3.28:

If |r| > 1, then
∞∑
n=0

rn does not converge.

Proof. If |r| > 1, then lim
n→∞

rn does not exist,
∑

rn does not converge.

Remark 13. lim
n→∞

xn = 0 ̸⇒
∑

xn converges.
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Theorem: 3.29: Harmonic Series

The series
∞∑
n=0

1

n
does not converge.

Proof. We show that there exists a subsequence of partial sums smk
=

mk∑
n=1

1

n
that is unbounded.

Let l ∈ N. Consider s2l =
2l∑

n=1

1

n
.

s2l = 1 +
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+ · · ·+ 1

8

)
+ · · ·+

(
1

2l−1 + 1
+ · · ·+ 1

2l

)

= 1 +

l∑
λ=1

2λ∑
n=2λ−1+1

1

n

≥ 1 +
l∑

λ=1

2λ∑
n=2λ−1+1

1

2λ

= 1 +

l∑
lambda=1

1

2
= 1 +

l

2

As l → ∞, {s2l} is unbounded. Thus
∑ 1

n does not converge.

Theorem: 3.30: Algebraic Operations on Series

Let α ∈ R.
∑

xn and
∑

yn are convergent series. Then
∑

(αxn+ yn) converges and
∑

(αxn+ yn) =
α
∑

xn +
∑

yn.

Proof. The partial sums satisfy
m∑

n=1

(αxn + yn) = α
m∑

n=1

xn +
m∑

n=1

yn by linearity.

By Theorem 3.10, lim
m→∞

m∑
n=1

(αxn + yn) = α lim
m→∞

m∑
n=1

xn + lim
m→∞

m∑
n=1

yn = α
∑

xn +
∑

yn.

Theorem: 3.31:

if ∀n ∈ N, xn ≥ 0, then
∞∑
n=1

xn converges ⇔ {sm =
∑m

n=1 xn}
∞
m=1 is bounded.

Proof. We have ∀m ∈ N, sm+1 =
m+1∑
n=1

xn =
m∑

n=1

xn + xm+1 = sm + xm+1 ≥ sm, since xm+1 ≥ 0.

Thus {sm} is monotone increasing. By Theorem 3.4, {sm} converges ⇔ {sm} bounded.
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Definition: 3.12: Absolute Convergence∑
xn converges absolutely if

∑
|xn| converges.

Theorem: 3.32: Series Triangle Inequality

If m ≥ 2, and x1, ..., xm ∈ R, then

∣∣∣∣∣
m∑

n=1

xm

∣∣∣∣∣ ≤
m∑

n=1

|xn|. (When m = 2, this gives the usual triangle

inequality |x1 + x2| ≤ |x1|+ |x2|)

Proof. Base case: m = 2. Triangle inequality.
Inductive step: Suppose it holds for m = l.∣∣∣∣∣
l+1∑
n=1

xn

∣∣∣∣∣ =
∣∣∣∣∣

l∑
n=1

xn + xl+1

∣∣∣∣∣ ≤
∣∣∣∣∣

l∑
n=1

xn

∣∣∣∣∣ |xl+1| ≤
l∑

n=1

|xn|+ |xl+1| =
l+1∑
n=1

|xn|.

Theorem: 3.33:

If
∑

xn converges absolutely, then
∑

xn converges.

Proof. We will show that
∑

xn is Cauchy. i.e. ∀ϵ > 0, ∃M ∈ N s.t. ∀l > m ≥ M ,

∣∣∣∣∣
l∑

n=m+1

xn

∣∣∣∣∣ < ϵ.

Let ϵ > 0. Since
∑

|xn| converges, then
∑

|xn| is Cauchy.

Thus ∃M0 ∈ N s.t. ∀l > m ≥ M ,

∣∣∣∣∣
l∑

n=m+1

|xn|

∣∣∣∣∣ =
l∑

n=m+1

|xn| < ϵ.

Choose M = M0, if l > m ≥ M , then

∣∣∣∣∣
l∑

n=m+1

xn

∣∣∣∣∣ <
l∑

n=m+1

|xn| < ϵ by Theorem 3.32.

Remark 14.
∑

xn converges ̸⇒
∑

xn converges absolutely.

Example:
∑ (−1)n

n converges, but
∑ 1

n does not converge.

3.5.1 Convergence Tests

Theorem: 3.34: Comparison Test

Suppose ∀n ∈ N, 0 ≤ xn ≤ yn. Then
1. If

∑
yn converges, then

∑
xn converges.

2. If
∑

xn diverges, then
∑

yn diverges.

Proof. 1. If
∑

yn converges, then

{
m∑

n=1

yn

}∞

m=1

is bounded.

Therefore, ∃B ≥ 0 s.t. ∃m0 ∈ N,
m0∑
n=1

yn ≤ B (We can drop the absolute value here because yn ≥ 0).
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Then ∀m ∈ N,
m∑

n=1

xn ≤
m∑

n=1

yn ≤ B by Theorem 3.9.

{
m∑

n=1

xn

}∞

m=1

is bounded and thus
∑

xn

converges.

2. If
∑

xn diverges, then

{
m∑

n=1

xn

}∞

m=1

is unbounded. ∀B ≥ 0, ∃m0 ∈ N s.t.
m0∑
n=1

xn > B.

Since yn ≥ xn ≥ 0, choose m = m0,
m0∑
n=1

yn ≥
m0∑
n=1

xn > B.

{
m∑

n=1

yn

}∞

m=1

is unbounded and thus
∑

yn

diverges.

Theorem: 3.35: p-series

For p ∈ R,
∞∑
n=1

1

np
converges ⇔ p > 1.

Proof. (⇒) Suppose
∑ 1

np converges.
Assume p ≤ 1. Then 1

np ≥ 1
n for all n. Since

∑ 1
n diverges.

∑ 1
np diverges by comparison test.

(⇐) Suppose p > 1.

We have s2k = 1 +
1

2p
+

(
1

3p
+

1

4p

)
+ · · ·+

(
1

(2k−1 + 1)p
+

1

2kp

)

= 1 +

k∑
l=1

2l∑
n=2l−1+1

1

np

≤ 1 +

k∑
l=1

2l∑
n=2l−1+1

1

(2l−1 + 1)p

≤ 1 +

k∑
l=1

2l∑
n=2l−1+1

1

2p(l−1)
= 1 +

k∑
l=1

2−(p−1)(l−1)

= 1 +
1

1− 2−(p−1)

Let m ∈ N. Since 2m > m, sm ≤ s2m ≤ 1 + 1
1−2−(p−1) .

Thus {sm} is bounded and
∑ 1

np converges.

Example:
∞∑
n=1

1

n2 + 2020n
converges.

Proof. 1
n2+2020n

≤ 1
n2 . Since

∑ 1
n2 converges,

∑ 1
n2+2020n

converges by comparison test.
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Theorem: 3.36: Ratio Test

Suppose xn ̸= 0 ∀n ∈ N and L = lim
n→∞

|xn+1|
|xn|

exists. Then

1. If L > 1,
∑

xn diverges
2. If L < 1,

∑
xn converges absolutely

Remark 15. No info for L = 1. xn = 1, ∀n ∈ N, L = 1, but
∑

1 diverges;

xn = 1
n2 . L = lim

n→∞

n2

(n+ 1)2
= lim

n→∞

1

(1 + 1/n)2
= 1, but

∑
xn converges.

Proof. 1. Suppose L > 1. Since |xn+1|
|xn| → L, then ∃M0 ∈ N s.t. ∀n ≥ M0,

|xn+1|
|xn| ≥ 1. Thus ∀n ≥ M0,

|xn+1| ≥ |xn|
Then we have |xM0 | ≤ |xM0+1| ≤ |xM0+2| ≤ · · · . Thus |xn| ̸→ 0 as n → ∞. Otherwise xn = 0, ∀n.

2. Suppose L < 1. Let L < α < 1. Then since |xn+1|
|xn| → L < α. ∃M0 ∈ N s.t. ∀n ≥ M0,

|xn+1|
|xn| ≤ α.

Thus ∀n ≥ M0, |xn+1| ≤ α|xn|
Then we have ∀n ≥ M0 + 1 |xn| ≤ α|xn−1| ≤ α2|xn−2| ≤ · · · ≤ αn−M0 |xM0 |.
Let m ∈ N, m ≥ M0. Then

m∑
n=1

|xn| =
M0∑
n=1

|xn|+
m∑

n=M0+1

|xn|

≤
M0∑
n=1

|xn|+ |xM0+1|
m∑

n=M0+1

αl−(M0+1)

=

M0∑
n=1

|xn|+ |xM0+1|
m−(M0+1)∑

n=0

αn

≤
M0∑
n=1

|xn|+ |xM0+1|
1

1− α

Thus
∑

|xn| converges.

Example: ∀x ∈ R,
∞∑
n=0

xn

n!
converges absolutely.

Proof. L = lim
n→∞

|xn+1|
(n+ 1)!

n!

|x|n
= lim

n→∞

|x|
n+ 1

= 0 < 1. Thus converges asbolutely by ratio test.

Theorem: 3.37: Root Test

Let
∑

xn be a series and suppose L = lim
n→∞

|xn|
1
n exists. Then

1. If L > 1,
∑

xn diverges
2. If L < 1,

∑
xn converges absolutely

Proof. 1. Suppose L > 1. Since |xn|
1
n → L > 1, ∃M0 ∈ N s.t. ∀n ≥ M0, |xn|

1
n > 1. Then ∀n ≥ M0,

|xn| > 1, xn ̸→ 0.
∑

xn diverges.
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2. Suppose L < 1. Let L < α < 1. Since |xn|
1
n → L < α. ∃M0 ∈ N s.t. ∀n ≥ M0, |xn|

1
n < α. Thus

∀n ≥ M0, |xn| < αn.
Then ∀m ∈ N,

m∑
n=1

|xn| =
M0∑
n=1

|xn|+
m∑

n=M0+1

αn

≤
M0∑
n=1

|xn|+
1

1− α

Theorem: 3.38: Alternating Series

Let {xn} be a monotone decreasing sequence converging to 0 (therefore ∀n ∈ N, xn ≥ 0). Then
∞∑
n=1

(−1)nxn converges.

Proof. We firstly show that the subsequence {s2k}∞k=1 converges.

For k ∈ N, s2k =
2k∑
n=1

(−1)nxn = −x1 + x2 − x3 + · · ·+ x2k = (x2 − x1) + (x4 − x3) + · · ·+ (x2k − x2k−1) ≥

(x2 − x1) + (x4 − x3) + · · ·+ (x2k − x2k−1) + (x2k+2 − x2k+1) (Note: x2k+2 − x2k+1 ≤ 0)
Then s2k ≤ s2(k+1). Thus {s2k} is monotone decreasing.
Also ∀k ∈ N, s2k = −x1+(x2−x3)+ · · ·+(x2k−2−x2k−1)+x2k ≥ −x1+x2k ≥ −x1 because x2k−2 ≥ x2k−1.
Thus ∀k ∈ N, −x1 ≤ s2k ≤ s2, {s2k} is bounded and monotone. By Theorem 3.4, {s2k} converges.

Let L = lim
k→∞

s2k.

We show that lim
m→∞

sm = L.
Let ϵ > 0. Since s2k → L, ∃M0 ∈ N s.t. ∀k ≥ M0, |s2k − L| < ϵ

2 .
Since xn → 0, ∃M1 ∈ N s.t. ∀n ≥ M1, |xn| < ϵ

2 .
Choose M = max{2M0 + 1,M1}. Let m ≥ M .
If m is even, then m

2 ≥ M
2 ≥ M0, then |sm − L| = |s2m

2
− L| < ϵ

2 < ϵ by the convergence of {s2k}.
If m is odd. Let k = m−1

2 ∈ N. m = 2k + 1. Then m ≥ M means that 2k + 1 ≥ 2M0 + 1. Thus k ≥ M0.
Also m ≥ M1. Then |sm − L| = |sm−1 + (−1)mxm − L| = |s2k − xm − L| ≤ |s2k − L|+ |xm| < ϵ

2 + ϵ
2 = ϵ.

Then if m ≥ M , |sm − L| < ϵ
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4 Continuous Functions

4.1 Limits of Functions

Definition: 4.1: Cluster Point

Let S ⊂ R, x ∈ R. We say x is a cluster point of S if ∀δ > 0, (x− δ, x+ δ) ∩ S \ {x} ≠ ∅ or ∀δ > 0,
∃y ∈ S s.t. 0 < |x− y| < δ.

Remark 16. The negation: x is not a cluster point of S if ∀δ > 0, (x− δ, x+ δ) ∩ S \ {x} ≠ ∅.

Examples:

1. S =
{

1
n : n ∈ N

}
. 0 is a cluster point of S. Let δ > 0. Choose n ∈ N s.t. 0 < 1

n < δ. Then
1
n ∈ (−δ, δ) ∩ S \ {0} ≠ ∅.

2. S = (0, 1). The set of cluster points is [0, 1].

3. S = Q. The set of cluster points is R.

4. S = {0} has no cluster points. If x > 0, then x is not a cluster point of S. Choose δ0 = x
2 . Then

(x− δ0, x+ δ0) = (x2 ,
3x
2 ). 0 /∈ (x2 ,

3x
2 ) and (x− δ0, x+ δ0) ∩ S \ {x} = ∅.

5. In general, any finite set has no cluster point.

6. S = Z has no cluster point.

Theorem: 4.1: Cluster Points and Sequences

Let S ⊂ R. Then x is a cluster point of S ⇔ ∃ sequence {xn} of lements of S \ {x} s.t. xn → x.

Definition: 4.2: Limit of Functions

Let S ⊂ R and let c be a cluster point of S. Let f : S → R, we say f(x) converges to L as x → c if
∀ϵ > 0, ∃δ > 0 s.t. x ∈ S and 0 < |x− c| < δ ⇒ |f(x)− L| < ϵ.

i.e. If x is near c but not at c, then f(x) is near L.
Notation: f(x) → L as x → c or lim

x→c
f(x) = L.

Theorem: 4.2: Uniqueness of Limit of Functions

Let c be a cluster point of S ⊂ R and let f : S → R. If f(x) → L1 and f(x) → L2 as x → c, then
L1 = L2.

Proof. We want to show that ∀ϵ > 0, |L1 − L2| < ϵ.

Let ϵ > 0. Since f(x) → L1 as x → c, then ∃δ1 > 0 s.t. 0 < |x− c| < δ1 ⇒ |f(x)− L1| < ϵ
2 .

Similarly, since f(x) → L2 as x → c, then ∃δ2 > 0 s.t. 0 < |x− c| < δ2 ⇒ |f(x)− L2| < ϵ
2 .

Take δ = min{δ1, δ2}. Since c is a cluster point of S, ∃x ∈ S s.t. 0 < |x − c| < δ. Then |L1 − L2| =
|L1 − f(x) + f(x)− L2| ≤ |f(x)− L1|+ |f(x)− L2| < ϵ

2 + ϵ
2 = ϵ.

Example: lim
x→c

(ax+ b) = ac+ b

Proof. Let ϵ > 0. Choose δ = ϵ
|a| . If 0 < |x − c| < δ, then |f(x) − (ac + b)| = |(ax + b) − (ac + b)| =

|a(x− c)| = |a||x− c| < |a| ϵ
|a| = ϵ.
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Example: lim
x→c

√
x =

√
c

Proof. Let ϵ > 0. Choose δ = ϵ
√
c. If 0 < |x−c| < δ, then |f(x)−

√
c| = |

√
x−

√
c| =

∣∣∣(√x−
√
c)

√
x+

√
c√

x+
√
c

∣∣∣ =∣∣∣ x−c√
x+

√
c

∣∣∣ < δ√
x+

√
c
≤ δ√

c
= ϵ

√
c√
c
= ϵ

Example: f(x) =

{
1, x = 0

2, x ̸= 0
. lim
x→0

f(x) = 2 ̸= f(0)

Proof. Let ϵ > 0. Choose δ = 1. Then 0 < |x| < δ ⇒ x ̸= 0, |f(x)− 2| = |2− 2| = 0 < ϵ.

Theorem: 4.3:

Let S ⊂ R, c a cluster point of S and let f : S → R. Then lim
x→c

f(x) = L ⇔ ∀ sequnce {xn} in S \{c}
s.t. xn → c. We have f(xn) → L.

Proof. (⇒) Suppose lim
x→c

f(x) = L. Let {xn} be a sequence of elements in S \ {c} s.t. xn → c as n → ∞.
We want to show that f(xn) → L as n → ∞.
Let ϵ > 0. Since f(x) → L, ∃δ > 0 s.t. if 0 < |x− c| < δ, then |f(x)−L| < ϵ. Since xn → c, then ∃M0 ∈ N
s.t. ∀n ≥ M0, 0 < |xn − c| < δ ⇒ |f(xn)− L| < ϵ.

(⇐) Suppose ∀ sequence {xn} in S \ {c} s.t. xn → c, we have f(xn) → L.
Assume lim

x→c
f(x) ̸= L.

Then ∃ϵ0 > 0 s.t. ∀δ > 0, ∃x s.t. 0 < |x− c| < δ and |f(x)− L| ≥ ϵ0.
Since xn → c ∀n ∈ N, ∃xn s.t. 0 < |xn − c| < 1

n and |f(xn)− L| ≥ ϵ0.
However, by definition f(xn) → L, we get 0 = lim

n→∞
|f(xn)− L| ≥ ϵ0 > 0. Contradiction.

Remark 17. The negation: lim
x→c

f(x) ̸= L ⇔ ∀ sequnce {xn} in S \ {c} s.t. xn → c. We have either
lim
n→∞

f(xn) ̸= L or lim
n→∞

f(xn) does not exist.

Example: ∀c ∈ R, lim
x→c

x2 = c2.

Proof. Let {xn} be a sequence s.t. xn → c as n → ∞. By product rule in Theorem 3.10, x2n → c2. Thus
by Theorem 4.3, lim

x→c
x2 = c2.

Example:

1. lim
x→0

x sin
1

x
= 0

2. lim
x→0

sin
1

x
does not exist

Proof. 1. Suppose xn → 0, we want to show xn sin
1
xn

→ 0. 0 ≤ |xn sin 1
xn

| ≤ |xn|| sin 1
xn

| ≤ |xn|, since

| sin 1
xn

| ≤ 1. By squeeze theorem, xn sin 1
xn

→ 0. Thus by Theorem 4.3, lim
x→0

x sin
1

x
= 0.
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2. We want to show that ∃xn → 0 s.t. lim
n→∞

sin
1

xn
DNE.

Let xn = 2
(2n−1)π . Note for all n, |xn| ≤ 2

[n+(n−1)]π ≤ 2
nπ . Thus xn → 0, but {sin 1

xn
} = {sin (2n−1)π

2 } =

{(−1)n+1}. The sequence does not converge. Thus lim
n→∞

sin
1

xn
DNE.

Theorem: 4.4: Order Property of Limits of Functions

Let S ⊂ R, c a cluster point of S and suppose f : S → R and g : S → R. If lim
x→c

f(x) and lim
x→c

g(x)

exist and ∀x ∈ S, f(x) ≤ g(x), then lim
x→c

f(x) ≤ lim
x→c

g(x).

Proof. Let L1 = lim
x→c

f(x), L2 = lim
x→c

g(x). Let {xn} be a sequence in S \ {c} s.t. xn → c.
Then ∀n ∈ N, f(xn) ≤ g(xn). Since f(xn) → L1 and g(xn) → L2 by Theorem 4.3, then L1 = lim

x→c
f(x) ≤

lim
x→c

g(x) = L2 by Theorem 3.9.

We also have the following analogs for limits of functions:

Theorem: 4.5: Squeeze Theorem for Limits of Functions

Let S ⊂ R and let c be a cluster point of S. Suppose f : S → R, g : S → R and h : S → R s.t.
f(x) ≤ g(x) ≤ h(x) for all x ∈ S \ {c}. If lim

x→c
f(x) = lim

x→c
h(x), then lim

x→c
g(x) = lim

x→c
f(x) = lim

x→c
h(x)

Theorem: 4.6: Algebraic Operations of Limits of Functions

Let S ⊂ R and let c be a cluster point of S. Suppose f : S → R and g : S → R s.t. lim
x→c

f(x) and
lim
x→c

g(x) exist. Then
1. lim

x→c
(f(x)± g(x)) = lim

x→c
f(x)± lim

x→c
g(x)

2. lim
x→c

(f(x)g(x)) = lim
x→c

f(x) lim
x→c

g(x)

3. If lim
x→c

g(x) ̸= 0 and g(x) ̸= 0 for all x ∈ S \ {c}, then lim
x→c

f(x)

g(x)
=

limx→c f(x)

limx→c g(x)

Theorem: 4.7: Absolute Values of Limits of Functions

Let S ⊂ R and let c be a cluster point of S. Suppose f : S → R s.t. lim
x→c

f(x) exists. Then
lim
x→c

|f(x)| = | lim
x→c

f(x)|.

Definition: 4.3: Left and Right Limits of Functions

Let S ⊂ R and suppose c is a cluster point of (−∞, c) ∩ S.
1. Left Limit: We say f(x) → L as x → c− if ∀ϵ > 0, ∃δ > 0 s.t. c− δ < x < c ⇒ |f(x)−L| < ϵ.

We write lim
x→c−

f(x) = L.

2. Right Limit: We say f(x) → L as x → c+ if ∀ϵ > 0, ∃δ > 0 s.t. c < x < c+δ ⇒ |f(x)−L| < ϵ.
We write lim

x→c+
f(x) = L.

34



Example: The Heaviside function f(x) =

{
0, x ≤ 0

1, x > 0
.

lim
x→0−

f(x) = lim
x→0−

0 = 0 and lim
x→0+

f(x) = lim
x→0+

1 = 1.

Theorem: 4.8:

Let S ⊂ R, f : S → R. c is a cluster point of (−∞, c) ∩ S and (c,∞) ∩ S. Then
lim
x→c

f(x) = L ⇔ lim
x→c−

f(x) = lim
x→c+

f(x) = L

Proof. (⇒) By definition.

(⇐) Assume lim
x→c−

f(x) = lim
x→c+

f(x) = L

Let ϵ > 0. Since lim
x→c−

f(x) = L, then ∃δ1 > 0 s.t. c− δ1 < x < c ⇒ |f(x)− L| < ϵ.

Similarly, since lim
x→c+

f(x) = L, then ∃δ2 > 0 s.t. c < x < c+ δ2 ⇒ |f(x)− L| < ϵ.

Take δ = min{δ1, δ2}. Then for c−δ1 ≤ c−δ < x < c+δ ≤ c+δ2, x ̸= c, i.e. 0 < |x−c| < δ, |f(x)−L| < ϵ.
Thus lim

x→c
f(x) = L.

4.2 Continuous Functions

The continuity of a function studies how a function behaves near a point compared to the function at the
point.

Definition: 4.4: Continuity

Let S ⊂ R, c ∈ S. We say f is continuous at c if ∀ϵ > 0, ∃δ > 0 s.t. ∀x ∈ S, |x − c| < δ ⇒
|f(x)− f(c)| < ϵ.

Remark 18. The negation: f is not continuous at c if ∃ϵ0 > 0 s.t. ∀δ > 0, ∃x s.t. |x − c| < δ and
|f(x)− f(c)| ≥ ϵ0.

If f is continuous at every c ∈ S, we say f is continuous. If f is not continuous, we say f is discontinu-
ous.

Example: f(x) = ax+ b is continuous.

Proof. Let c ∈ R. Let ϵ > 0. Choose δ = ϵ
1+|a| .

If |x− c| < δ, then |f(x)− f(c)| = |a(x− c)| = |a||x− c| < |a|δ = |a|ϵ
1+|a| < ϵ.

Example: f(x) =

{
1, x = 0

2, x ̸= 0
is discontinuous at x = 0.

Proof. Choose ϵ0 = 1. Let δ > 0. Choose x = δ
2 . Then |x− δ| = δ

2 < δ and |f(x)− f(0)| = 2− 1 = 1 ≥ ϵ0.
So f is not continuous.
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Theorem: 4.9: Conditions of Continuity

Suppose S ⊂ R, c ∈ S, f : S → R
1. If c is not a cluster point of S, then f is continuous at c
2. Suppose c is a cluster point of S. Then f is continuous at c ⇔ lim

x→c
f(x) = f(c)

3. f is continuous at c ⇔ ∀ sequence {xn} of elements of S s.t. xn → c, we have f(xn) → f(c).

Remark 19. The negation of 3: f is discontinuous at c ⇔ ∃ sequence {xn} s.t. xn → c and {f(xn)} does
not converge to f(c).

Proof. 1. Let ϵ > 0. Since c is not a cluster point of S, then ∃δ0 > 0 s.t. (c− δ0, c+ δ0) ∩ S \ {c} = ∅.
Thus, (c− δ0, c+ δ0)∩ S = {c}. Choose δ = δ0. If x ∈ S, |x− c| < δ, then x = c, and |f(x)− f(c)| =
|f(c)− f(c)| = 0 < ϵ.

2. Suppose c is a cluster point of S.

(⇒) Suppose f is continuouse at c. Let ϵ > 0, ∃δ0 > 0 s.t. 0 < |x− c| < δ0 ⇒ |f(x)−f(c)| < ϵ. Then
choose L = f(c), δ = δ0. 0 < |x− c| < δ ⇒ |f(x)− L| = |f(x)− f(c)| < ϵ. Thus, lim

x→c
f(x) = f(c).

(⇐) Suppose lim
x→c

f(x) = f(c). Let ϵ > 0. ∃δ0 > 0 s.t. if x ∈ S, 0 < |x− c| < δ0 ⇒ |f(x)− f(c)| < ϵ.
Choose δ = δ0. Suppose |x − c| < δ. If x = c, then |f(x) − f(c)| = |f(c) − f(c)| = 0 < ϵ. If x ̸= c,
then 0 < |x− c| < δ = δ0. Thus |f(x)− f(c)| < ϵ. f is continuous.

3. (⇒) Suppose f is continuous at c. Let {xn} be a sequence in S s.t. xn → c. We want to show that
lim
x→c

f(x) = f(c).
Let ϵ > 0. Since f is continuous at c, ∃δ > 0 s.t. |x− c| < δ ⇒ |f(x)− f(c)| < ϵ
Since xn → c, ∃M0 ∈ N, ∀n ≥ M0, |xn − c| < δ.
Choose M = M0. Then if n ≥ M , |xn − c| < δ ⇒ |f(xn)− f(c)| < ϵ.

(⇐) Suppose ∀ sequence {xn} of elements of S s.t. xn → c, we have f(xn) → f(c).
Assume that f is not continuous at c. i.e. ∃ϵ0 > 0 s.t. ∀δ > 0, ∃x ∈ S, |x−c| < δ and |f(x)−f(c)| ≥ ϵ0.
Then ∃x1 ∈ S s.t. |x1 − c| < 1 and |f(x1) − f(c)| ≥ ϵ0 and ∀n ∈ N, ∃xn ∈ S s.t, |xn − c| < 1

n and
|f(xn)− f(c)| ≥ ϵ0.
Then 0 ≤ |xn−c| < 1

n . By squeeze theorem, xn → c. Then f(xn) → f(c). 0 = lim
n→∞

|f(xn)−f(c)| ≥ ϵ.
Contradition. Thus f must be continuous at c.

From the definition of sin and cos via unit circle, we have ∀x ∈ R:

1. sin2 x+ cos2 x = 1

2. | sinx| ≤ 1, | cosx| ≤ 1

3. | sinx| ≤ |x|

Angle Formula:

1. sin(a+ b) = sin a cos b+ cos a sin b

2. sin a− sin b = 2 sin a−b
2 cos a+b

2
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Theorem: 4.10: Continuity of Sine and Cosine

f(x) = sinx and g(x) = cosx are continuous.

Proof. 1. sinx. Let c ∈ R, ϵ > 0. Choose δ = ϵ
Then |x− c| < δ ⇒ | sinx− sin c| = |2 sin x−c

2 cos x−c
2 | ≤ 2| sin x−c

2 | ≤ 2 |x−c|
2 < δ = ϵ

2. cosx. Let c ∈ R, {xn} be a sequence s.t. xn → c. We want to show that cosxn → cos c
∀x ∈ R, we have cosx = sin

(
x+ π

2

)
. If xn → c, then xn + π

2 → c+ π
2 by Theorem 3.10. Since sinx

is continuous, then sin
(
x+ π

2

)
→ sin

(
c+ π

2

)
by Theorem 4.9. Thus cos(xn) → cos c.

Theorem: 4.11: Dirichlet Function

Let f(x) =

{
1, x ∈ Q
0, x /∈ Q

. Then f is discontinuous at every c ∈ R.

Proof. Let c ∈ R.

Case 1: c ∈ Q. For every n ∈ N, ∃xn ∈ QC s.t. c < xn < c+ 1
n (Density of irrational numbers)

By squeeze theorem, xn → c. But lim
n→∞

f(xn) = lim
n→∞

0 = 0 ̸= 1 = f(c).

Case 2: c ∈ QC . For every n ∈ N, ∃xn ∈ Q s.t. c < xn < c+ 1
n by Theorem 2.9.

By squeeze theorem, xn → c. But lim
n→∞

f(xn) = lim
n→∞

1 = 1 ̸= 0 = f(c).

Theorem: 4.12: Algebraic Operations of Continuous Functions

Suppose S ⊂ R, c ∈ S, f : S → R and g : S → R. If f and g are continuous at c, then
1. f + g is continuous at c
2. fg is continuous at c
3. If g(x) ̸= 0 for all x ∈ S, then f

g is continuous at c

Theorem: 4.13: Composition of Continuous Functions

Suppose A,B ⊂ R and c ∈ A. Let f : A → R and g : B → R. If g is continuous at c and f is
continuous at g(c) ∈ A, then f ◦ g is continuous at c.

Proof. Let {xn} be a sequence in B s.t. xn → c. Since xn → c and g is continuous at c, then by Theorem 4.9,
g(xn) → g(c).
Since g(xn) → g(c) and f is continuous at g(c), then f(g(xn)) → f(g(c)). i.e. lim

n→∞
f ◦ g(xn) = f ◦ g(c)

Example: ∀n ∈ N, f(x) = xn is continuous.

Proof. Base case: n = 1, f(x) = x is continuous as shown by f(x) = ax+ b.
Inductive step: suppose xm is continuous. Then xm+1 = x·xm+1 is the product of two continuous functions,
then by Theorem 4.6, xm+1 is continuous.

Example: ∀n ∈ N, a0, ..., an ∈ R, the function f(x) = anx
n + an−1x

n−1 + · · ·+ a0 is continuous.

37



Proof. By previous example + addition property in Theorem 4.6.

Example: f(x) = 1
3+(sinx)4

is continuous.

Proof. By Theorem 4.13, (sinx)4 is continuous. Then by Theorem 4.6, 3 + (sinx)4 is continuous, and thus
1

3+(sinx)4
is continuous since 3 + (sinx)4 ̸= 0, ∀x.

4.3 Extreme and Intermediate Value Theorems

If f : [a, b] → R is continuous, then it is well-behaved. i.e. f([a, b]) = [c, d].

Definition: 4.5: Bounded Functions

f : S → R is bounded if ∃B ≥ 0 s.t. ∀x ∈ S, |f(x)| ≤ B.

Remark 20. The negation: f : S → R is unbounded if ∀B ≥ 0, ∃x s.t. |f(x)| > B.

Example: f : [0, 1] → R, f(x) = 3x+ 1. f is bounded.

Proof. |f(x)| = |3x+ 1| ≤ 3|x|+ 1 ≤ 3 + 1 = 4

Example: f : [0, 1] → R, f(x) =

{
0, x = 0
1
x , x ̸= 0

. f is unbounded.

Proof. Let B ≥ 0, x ∈ R s.t. 0 < x < 1
B , then |f(x)| = 1

x > B.

Theorem: 4.14:

If f : [a, b] → R is continuous, then f is bounded.

Proof. Assume f : [a, b] → R and f is not bounded.
Then ∀n ∈ N, ∃xn ∈ [a, b] s.t. |f(xn)| ≥ n. Then {xn} is bounded. By Theorem 3.18, there exists a
subsequence {xnk

}k and x ∈ [a, b] s.t. xnk
→ x.

Since ∀k ∈ N, a ≤ xnk
≤ b, then by squeeze theorem, a ≤ lim

k→∞
xnk

≤ b, i.e. a ≤ x ≤ b.

Since f is continuous and xnk
→ x, f(x) = lim

k→∞
f(xnk

). Thus, by Theorem 4.7, |f(x)| = lim
k→∞

|f(xnk
)|.

Then {|f(xnk
)|}k is bounded and since nk ≤ |f(xnk

)|, then {nk} is bounded. Contradiction.

Definition: 4.6: Min/Max of Functions

LEt f : S → R, f achieves an absolute min at c ∈ S if ∀x ∈ S, f(c) ≤ f(x). f achieves an absolute
max at d ∈ S if ∀x ∈ S, f(x) ≤ f(d).

Theorem: 4.15: Extreme Value Theorem

Let f : [a, b] → R. If f is continuous, then f achieves an absolute min and absolute max on [a, b].

Remark 21. ∃c, d ∈ [a, b] s.t. f([a, b]) ⊂ [f(c), f(d)]
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Proof. If f : [a, b] → R is continuous, then f is bounded by Theorem4.14. Then the set E = {f(x) : x ∈
[a, b]} is bounded above.
Let L = supE (exists by least upper bound property of R). Then ∃ sequence {f(xn)} s.t. f(xn) → L by
Theorem 4.3.
By Theorem 3.18, there exists subsequence {xnk

}k of {xn} and d ∈ [a, b] s.t. lim
k→∞

xnk
= d.

Then since f is continuous at d, f(d) = lim
k→∞

f(xnk
) = L.

Since f(xn) → L and {f(xnk
)}k is a subsequence of {f(xn)}. Then ∀x ∈ [a, b], f(x) ≤ f(d).

Thus f achieves an absolute max. The proof for absolute min is similar.

Note: if f : (a, b) → R continuous, f does not necessarily achieve an absolute min or max. e.g. f(x) =
1
x − 1

1−x is continuous on (0, 1), but has no absolute max or min.

Theorem: 4.16: Bisection Method

Let f : [a, b] → R be continuous. If f(a) < 0 and f(b) > 0, then ∃c ∈ (a, b) s.t. f(c) = 0

Remark 22. If f : [a, b] → R is not continuous, this theorem is not necessarily true. e.g. f(x) ={
x− 1, x ̸= 1
1
2 , x = 1

on [0, 2]. ̸ ∃c ∈ [0, 2] s.t. f(c) = 0 even though f(0) < 0, f(0) > 0.

Proof. We first define two sequences {an} and {bn}. Let a1 = a, b1 = b. For n ∈ N and knowing an, bn, we
define an+1 and bn+1 as follows:

1. If f
(
an+bn

2

)
≥ 0, then an+1 = an and bn+1 =

an+bn
2

2. If f
(
an+bn

2

)
< 0, then an+1 =

an+bn
2 and bn+1 = bn

Then, the following are true:

1. ∀n ∈ N, a ≤ an ≤ an+1 ≤ bn+1 ≤ bn ≤ b

2. ∀n ∈ N, bn+1 − an+2 =
bn−an

2

3. ∀n ∈ N, f(an) ≥ 0 and f(bn) < 0

By 1, {an} and {bn} are bounded monotone sequences. Thus, {an} and {bn} converges. i.e. ∃c, d ∈ [a, b]
s.t. an → c and bn → d.
By 2, bn − an = 1

2(bn−1 − an−1) = · · · = 1
2n−1 (b1 − a1) =

1
2n−1 (b− a)

Thus d− c = lim
n→∞

bn − an = lim
n→∞

1

2n−1
(b− a) = 0

By 3 and continuity, f(c) = lim
n→∞

f(an) ≤ 0, and f(c) = f(d) = lim
n→∞

f(bn) ≥ 0.
Thus f(c) = f(d) = 0

Theorem: 4.17: Bolzano’s Intermediate Value Theorem (IVT)

Let f : [a, b] → R be continuous.
• If f(a) < y < f(b), then ∃c ∈ (a, b) s.t. f(c) = y
• If f(b) < y < f(a), then ∃c ∈ (a, b) s.t. f(c) = y

Proof. Suppose f(a) < f(b) and y ∈ (f(a), f(b)). Let g : [a, b] → R, g(x) = f(x) − y. g is continuous by
Theorem 4.12.
Also, g(a) = f(a)− y < 0, g(b) = f(b)− y > 0. By Theorem 4.16, ∃c ∈ (a, b) s.t. g(c) = 0. i.e. f(c) = y.
The other case is similar, by choosing g(x) = y − f(x).
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Theorem: 4.18:

Suppose f : [a, b] → R. If f achieves an absolute min at c and absolute max at d, then f([a, b]) =
[f(c), f(d)]

Proof. Apply IVT to f : [c, d] → R, [f(c), f(d)] ⊂ f([c, d]) ⊂ f([a, b]) ⊂ [f(c), f(d)]
Thus f([a, b]) = [f(c), f(d)].

Theorem: 4.19:

If f(x) is a polynomial of odd degree, then f(x) has at least one real root.

4.4 Uniform Continuity

Definition: 4.7: Continuous Functions

f : S → R is continuous if ∀c ∈ S, ∀ϵ > 0, ∃δ = δ(ϵ, c) > 0 s.t. ∀x ∈ S, |x−c| < δ ⇒ |f(x)−f(c)| < ϵ.

Example: f(x) = 1
x is continuous on (0, 1).

Proof. Let c ∈ (0, 1), ϵ > 0. Choose δ = min{ c
2 ,

c2

2 ϵ}. Suppose x ∈ (0, 1), |x− c| < δ.
Then |c| = |c− x+ x| ≤ |c− x|+ |x| < δ + |x| ≤ c

2 + |x|. So c
2 < x.

Then |f(x)− f(c)| = | 1x − 1
c | =

|x−c|
xc < δ

xc ≤ 2δ
c2

≤ 2 c2

2
ϵ

c2
= ϵ.

Definition: 4.8: Uniform Continuity

Let S ⊂ R, f : S → R. We say f is uniformly continuous on S if ∀ϵ > 0, ∃δ = δ(ϵ) > 0 s.t. ∀x, c ∈ S,
|x− c| < δ ⇒ |f(x)− f(c)| < ϵ.

Remark 23. The negation: f : S → R is not uniformly continuous if ∃ϵ0 > 0 s.t. ∀δ > 0, ∃x, c ∈ S s.t.
|x− c| < δ, but |f(x)− f(c)| ≥ ϵ0.

Example: f : [0, 1] → R, f(x) = x2 is unifornmly continuous.

Proof. Let ϵ > 0. Choose δ = ϵ
2 . Suppose x, c ∈ [0, 1] and |x− c| < δ.

Then |x2 − c2| = |x+ c||x− c| ≤ (|x|+ |c|)|x− c| < 2δ = ϵ.

Example: f : (0, 1) → R, f(x) = 1
x is not unifornmly continuous.

Proof. Choose ϵ0 = 2. Let δ > 0. Choose c = min{δ, 12}, x = c
2

Then |x− c| = c
2 ≤ δ

2 < δ and
∣∣ 1
x − 1

c

∣∣ = ∣∣2c − 1
c

∣∣ = 1
c ≥ 2 = ϵ.

Example: f : R → R, f(x) = x2 is not unifornmly continuous.

Proof. Choose ϵ0 = 1. Let δ > 0. Choose c = 1
δ . x = c+ δ

2 = 1
δ +

δ
2 .

Then |x− c| = δ
2 < δ and |x2 − c2| = |x+ c||x− c| = (2δ +

δ
2)

δ
2 = 1 + δ2

4 ≥ 1 = ϵ0.
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Theorem: 4.20:

Let f : [a, b] → R. Then f is continuous on [a, b] ⇔ f is uniformly continuous on [a, b].

Remark 24. In general f uniformly continuous ⇒ f continuous, but f continuous ̸⇒ f uniformly continuous.

Proof. (⇒) Suppose f is continuous on [a, b].
Assume that f is not uniformly continuous on [a, b].
Then ∃ϵ0 > 0 s.t. ∀δ > 0, ∃x, c ∈ [a, b] s.t. |x− c| < δ and |f(x)− f(c)| ≥ ϵ0.
Then by Theorem 4.9, ∀n ∈ N, ∃xn, cn ∈ [a, b] s.t. |xn − cn| < 1

n and |f(xn)− f(cn)| ≥ ϵ0.
By Theorem 3.18, there exists sequence {xnk

}k of {xn} and x ∈ [a, b] s.t. lim
k→∞

xnk
= x.

Since {cnk
}k is bounded between a and b. By Theorem 3.18, there exists subsequence {cnkj

}j of {cnk
} and

c ∈ [a, b] s.t. lim
j→∞

cnkj
= c.

In summary, the sequences {xnkj
}j and {cnkj

}j are subsequences of {xn} and {cn}. And ∃x, c ∈ [a, b] s.t.
cnkj

→ c and xnkj
→ x.

Now 0 ≤ |xnkj
− cnkj

| ≤ 1
nkj

≤ 1
j . Thus by squeeze theorem, x = c.

Since f is continuous at c, 0 = |f(c)− f(c)| = lim
j→∞

|f(xnkj
)− f(cnkj

)| ≥ ϵ0 > 0.

Contradiction. Thus f is uniformly continuous.

(⇐) Suppose f is uniformly continuous on [a, b].
Let ϵ > 0. Since f is uniformly continuous on [a, b], ∃δ0 > 0 s.t. ∀x, c ∈ S, |x − c| < δ0 we have
|f(x)− f(c)| < ϵ.
Then ∀c ∈ S. Choose δ = δ0 s.t. ∀x ∈ S, |x− c| < δ, we have |f(x)− f(c)| < ϵ. Thus f is continuous.
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5 Derivatives

5.1 Derivative

Definition: 5.1: Differetiability and Derivative

Let I be an interval, f : I → R, c ∈ I. We say f is differentiable at c if lim
x→c

f(x)− f(c)

x− c
exists. We

write f ′(c) = lim
x→c

f(x)− f(c)

x− c
.

If f is differentiable at every point of I, we write the derivative f ′ or df
dx .

Remark 25. L = lim
x→c

f(x)− f(c)

x− c
⇔ ∀ sequence {xn} with xn ̸= c and xn → c, we have

L = lim
n→∞

f(xn)− f(c)

xn − c
.

Example: Let α ∈ R, n ∈ N ∪ {0}. Then f(x) = αxn is differentiable and f ′(c) = nαcn−1, ∀c ∈ R.

Proof. We compute:

(x− c)
n−1∑
j=0

xn−1−jcj =
n−1∑
j=0

xn−jcj −
n−1∑
l=0

xn−1−lcl+1

=

n−1∑
j=0

xn−jcj −
n∑

j=1

xn−jcj (Let j = l + 1)

= xn−0c0 − xn−ncn = xncn

Then f ′(c) = lim
x→c

αxn − αcn

x− c
= α lim

x→c

n−1∑
j=0

xn−1−jcj = α
n−1∑
j=0

cn−1 = αncn−1.

Theorem: 5.1:

If f : I → R is differentiable at c ∈ I, then f is continuous at c, i.e. lim
x→c

f(x) = f(c).

Proof. We compute lim
x→c

f(x) = lim
x→c

f(x)− f(c)

x− c
(x− c) + f(c) = f ′(c) · 0 + f(c) = f(c).

Remark 26. The converse is false. f is continuous at c ̸⇒ f is differentiable at c.

Example: f(x) = |x|. f is continuous but not differentiable at c = 0

Proof. We find {xn} s.t. xn ̸= 0 ∀n, xn → 0, and
{

f(xn)−f(0)
xn−0

}
diverges.

Let xn = (−1)n

n . Then ∀n, xn ̸= 0 and xn → 0.

We compute f(xn)−f(0)
xn−0 =

∣∣∣ (−1)n

n

∣∣∣
(−1)n

n

= (−1)n. Thus
{

f(xn)−f(0)
xn−0

}
diverges.
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If f : R → R is continuous, there still may not exist c ∈ R s.t. f is differentiable at c. (Weierstrass)

Goal: Construct a continuous function f : R → R which is no where differentiable

Theorem: 5.2:

1. ∀x, y ∈ R, | cosx− cos y| ≤ |x− y|
2. ∀c ∈ R, ∀K ∈ N, ∃y ∈ (c+ π

K , c+ 3π
K ) s.t. | cosKc− cosKy| ≥ 1

Proof. 1. We have shown that | sinx − sin y| ≤ |x − y| for Theorem 4.10. Then | cosx − cos y| =
| sin(x+ π

2 )− sin(y + π
2 )| ≤ |x− y|.

2. The function g(x) = cosKx is 2π
K periodic. Thus g((c+ π

K , c+ 3π
K )) ⊃ [−1, 1] \ {− cosKc}

If cosKc ≥ 0, we choose y ∈ (c+ π
K , c+ 3π

K ) s.t. cosKy = −1
If cosKc < 0, we choose y ∈ (c+ π

K , c+ 3π
K ) s.t. cosKy = 1

Theorem: 5.3:

∀a, b, c ∈ R, |a+ b+ c| ≥ |a| − |b| − |c|

Proof. Apply Triangle Inequality twice:

|a| = |a+ b+ c− (b+ c)| ≤ |a+ b+ c|+ |b+ c| ≤ |a+ b+ c|+ |b|+ |c|

Thus |a+ b+ c| ≥ |a| − |b| − |c|.

Theorem: 5.4:

1. ∀x ∈ R, the series
∞∑
k=0

cos 160kx

4k
is absolutely convergent.

2. Let f : R → R be f(x) =

∞∑
k=0

cos 160kx

4k
. Then f is bounded and continuous

Proof. 1.
∣∣∣ cos 160kx4k

∣∣∣ ≤ ∣∣ 1
4k

∣∣. By comparison test,
∑∣∣∣∣cos 160kx4k

∣∣∣∣ is convergent, thus
∑ cos 160kx

4k
is

absolutely convergent.

2. Let x ∈ R. Then

|f(x)| =

∣∣∣∣∣ limm→∞

m∑
k=0

cos 160kx

4k

∣∣∣∣∣ = lim
m→∞

∣∣∣∣∣
m∑
k=0

cos 160kx

4k

∣∣∣∣∣ ≤ lim
m→∞

m∑
k=0

∣∣∣∣cos 160kx4k

∣∣∣∣ ≤ lim
m→∞

m∑
k=0

4−k =
4

3

Let c ∈ R, {xn} be a sequence s.t. xn → c. We want to show |f(xn)− f(c)| → 0.
Equivalently, we show lim supn |f(xn)− f(c)| = 0.
Claim: ∀ϵ > 0, lim supn |f(xn)− f(c)| < ϵ

43



Let ϵ > 0. Let M0 ∈ N s.t.
∞∑

k=M0+1

4−k <
ϵ

2
. Then

lim sup
n

|f(xn)− f(c)| = lim sup
n

∣∣∣∣∣
M0∑
k=0

1

4k
[cos 160kxn − cos 160kc]

+

∞∑
k=M0+1

1

4k
[cos 160kxn − cos 160kc]

∣∣∣∣∣∣
≤ lim sup

n

∣∣∣∣∣
M0∑
k=0

1

4k
[cos 160kxn − cos 160kc]

∣∣∣∣∣+ lim sup
n

∣∣∣∣∣∣
∞∑

k=M0+1

1

4k
[cos 160kxn − cos 160kc]

∣∣∣∣∣∣
≤ lim sup

n

M0∑
k=0

1

4k
| cos 160kxn − cos 160kc|+ lim sup

n

∞∑
k=M0+1

1

4k
| cos 160kxn|+ | cos 160kc|

≤ lim sup
n

M0∑
k=0

1

4k
|160kxn − 160kc|+ lim sup

n

∞∑
k=M0+1

2

4k
(By Theorem 5.2)

< lim sup
n

[
M0∑
k=0

40k

]
|xn − c|+ ϵ < ϵ as xn → c

Thus lim supn |f(xn)− f(c)| = 0 and f is bounded and continuous.

Theorem: 5.5: Weierstrass’s Example

The function f(x) =
∞∑
k=0

cos 160kx

4k
is no where differentiable.

Proof. Let c ∈ R. We will find a sequence xn s.t. xn ̸= c, xn → c and
{

f(xn)−f(c)
xn−c

}
is unbounded.

∀n ∈ N, there exists xn s.t.

(a) π
160n < xn − c < 3π

160n

(b) | cos 160nxn − cos 160nc| ≥ 1

By (a), ∀n, xn ̸= c and by squeeze theorem xn → c. Let fk(x) =
cos 160kx

4k
, then f(x) =

∑∞
k=0 fk(x)

Goal: find a lower bound on
∣∣∣f(xn)−f(c)

xn−c

∣∣∣. If the lower bound is unbounded, then the value is unbounded.

|f(xn)− f(c)| = fn(xn)− fn(c)︸ ︷︷ ︸
an

+

n−1∑
k=0

(fk(xn)− fk(c))︸ ︷︷ ︸
bn

+

∞∑
k=n+1

(fk(xn)− fk(c))︸ ︷︷ ︸
cn

Then |f(xn)− f(c)| = |an + bn + cn| ≥ |an| − |bn| − |cn| by Theorem 5.3.

By (b), |an| = 4−n| cos 160nxn − cos 160nc| ≥ 4−n

|bn| =

∣∣∣∣∣
n−1∑
k=0

(fk(xn)− fk(c))

∣∣∣∣∣ ≤
n−1∑
k=0

|fk(xn) − fk(c)| =
n−1∑
k=0

4−k| cos 160kxn − cos 160kc| ≤
n−1∑
k=0

40k|xn − c| <
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3π

160n

n−1∑
k=0

40k =
3π

160n
40n − 1

39
<

4−nπ

13
<

1

13
4−n+1

|cn| =

∣∣∣∣∣
∞∑

k=n+1

(fk(xn)− fk(c))

∣∣∣∣∣ ≤
∞∑

k=n+1

|fk(xn)− fk(c)| ≤
∞∑

k=n+1

|fk(xn)|+ |fk(c)| ≤ 2
∞∑

k=n+1

4−k =
2

3
4−n

Then |f(xn)− f(c)| ≥ |an| − |bn| − |cn| ≥ 4−n − 1
134

−n+1 − 2
34

−n = 1
394

−n

Since 1
|xn−c| =

160n

3π , then
∣∣∣f(xn)−f(c)

xn−c

∣∣∣ ≥ 1
|xn−c|4

−n 1
39 ≥ 40n

117π

Thus
{∣∣∣f(xn)−f(c)

xn−c

∣∣∣} is unbounded. f(x) is no where differentiable.

Theorem: 5.6: Algebraic Operations of Derivatives

Let f : I → R, g : I → R, c ∈ i. If f and g are differentiable at c, then:
1. (Linearity) ∀α ∈ R, αf + g : I → R is differentiable at c and (αf + g)′(c) = αf ′(c) + g′(c)
2. (Product Rule) fg : I → R is differentiable at c and (fg)′(c) = f ′(c)g(c) + f(c)g′(c)

3. (Quotient Rule) if g(x) ̸= 0, ∀x ∈ I, then f
g : I → R is differentiable at c and

(
f
g

)′
(c) =

f ′(c)g(c)−f(c)g′(c)
(g(c))2

Proof. 1. lim
x→c

(αf + g)(x)− (αf + g)(c)

x− c
= lim

x→c

[
α
f(x)− f(c)

x− c
+

g(x)− g(c)

x− c

]
= αf ′(c) + g′(c)

2. Since g is differentiable at c, g is continuous at c. i.e. lim
x→c

g(x) = g(c).

Then lim
x→c

f(x)g(x)− f(c)g(c)

x− c
= lim

x→c

f(x)− f(c)

x− c
g(x) + f(c)

g(x)− g(c)

x− c
) = f ′(c)g(c) + f(c)g′(c)

3. Consider 1
g(x) first. Since g(x) ̸= 0, 1

g(x) is well-defined and continuous.

lim
x→c

1
g(x) −

1
g(c)

x− c
= lim

x→c

g(c)− g(x)

g(x)g(c)(x− c)
= − g′(c)

g(c)2
. Then apply Product Rule.

Theorem: 5.7: Chain Rule

Let I1, I2 be intervals, g : I1 → I2, f : I2 → R and suppose g is differentiable at c, f is differentiable
at g(c). Then f ◦ g : I1 → R is differentiable at c and (f ◦ g)′(c) = f ′(g(c))g′(c).

Proof. Let h(x) = f(g(x)), d = g(c). We want to show h′(c) = f ′(d)g′(c).

Define u(y) =

{
f(y)−f(d)

y−d , y ̸= d

f ′(d), y = d
and v(x) =

{
g(x)−g(c)

x−c , x ̸= c

g′(c), x = c

Then f(y)− f(d) = u(y)(y − d), g(x)− g(c) = v(x)(x− c)
Note: u(y) is continuous at d, v(x) is continuous at c.

lim
y→d

u(y) = lim
y→d

f(y)− f(d)

y − d
= f ′(d) = u(d), and lim

x→c
v(x) = lim

x→c

g(x)− g(c)

x− c
= g′(c) = v(c)

Then h(x)− h(c) = f(g(x))− f(g(c)) = u(g(x))(g(x)− g(c)) = u(g(x))v(x)(x− c).

lim
x→c

h(x)− h(c)

x− c
= lim

x→c

u(g(x))v(x)(x− c)

x− c
u(g(c))v(c) = u(d)v(c) = f ′(g(c))g′(c)
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5.2 Mean Value Theorem

Definition: 5.2: Relative Min/Max

Let S ⊂ R, f : S → R. f has a relative max at c ∈ S if ∃δ > 0 s.t. ∀x ∈ S, |x−c| < δ ⇒ f(x) ≤ f(c).
f has a relative min at c ∈ S if ∃δ > 0 s.t. ∀x ∈ S, |x− c| < δ ⇒ f(x) ≥ f(c).

Theorem: 5.8:

If f : [a, b] → R has a relative min or max at c ∈ (a, b) and f is differentiable at c, then f ′(c) = 0.

Proof. Suppose f has a relative max at c ∈ (a, b). Then ∃δ > 0 s.t.

1. (c− δ, c+ δ) ⊂ (a, b) (definition of open sets)

2. ∀x ∈ (c− δ, c+ δ), f(x) ≤ f(c) (relative max)

Let xn = c− δ
2n ∈ (c− δ, c) ∀n. Then xn → c. so f ′(c) = lim

n→∞

f(xn)− f(c)

xn − c
≥ 0.

Let xn = c+ δ
2n ∈ (c, c+ δ) ∀n. Then xn → c. so f ′(c) = lim

n→∞

f(xn)− f(c)

xn − c
≤ 0.

Thus f ′(c) = 0. The same proof applies to relative min

Theorem: 5.9: Rolle’s Theorem

Let f : [a, b] → R be continuous, differentiable on (a, b). If f(a) = f(b) = 0, then ∃c ∈ (a, b) s.t.
f ′(c) = 0.

Remark 27. Absolute max is a relative max. Absolute min is a relative min.

Proof. Since f is continuous on [a, b], f achieves a relative max at c1 ∈ [a, b] and a relative min at c2 ∈ [a, b].
If f(c1) > 0, then c1 ∈ (a, b), f ′(c1) = 0. Set c = c1.
If f(c2) < 0, then c2 ∈ (a, b), f ′(c2) = 0. Set c = c2.
If f(c1) ≤ 0 ≤ f(c2). By definition, f(c1) ≥ f(c2). Then f(c1) = f(c2) = 0, and ∀x ∈ [a, b], f(c2) ≤ f(x) ≤
f(c1) = f(c2). Thus ∀x ∈ [a, b], f(x) = f(c2). i.e. f is constant. Set c = a+b

2 .

Theorem: 5.10: Mean Value Theorem

Let f : [a, b] → R be continuous, differentiable on (a, b). Then ∃c ∈ (a, b) s.t. f(b) − f(a) =
f ′(c)(b− a).

Proof. Define g : [a, b] → R by g(x) = f(x)− f(b) + f(b)−f(a)
b−a (b− x)

Then g is continuous on [a, b] and differentiable on (a, b).
g(a) = f(a)− f(b) + f(b)−f(a)

b−a (b− a) = 0, g(b) = f(b)− f(b) + f(b)−f(a)
b−a (b− b) = 0

By Theorem 5.9, ∃c ∈ (a, b) s.t. 0 = g′(c) = f ′(c)− f(b)−f(a)
b−a .

Thus f(b)− f(a) = f ′(c)(b− a).
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Theorem: 5.11:

Let f : I → R be differentiable. Then
1. f is increasing (x < y ⇒ f(x) ≤ f(y)) ⇔ ∀x ∈ I, f ′(x) ≥ 0
2. f is decreasing (x < y ⇒ f(x) ≥ f(y)) ⇔ ∀x ∈ I, f ′(x) ≤ 0

Proof. We only prove the increasing case.
(⇐) Suppose f ′(x) ≥ 0, ∀x ∈ I. Let a, b ∈ I with a < b. Then f is continuous on [a, b] ⊂ I and differentiable
on (a, b).
Then by Theorem 5.10, ∃c ∈ (a, b) s.t. f(b)− f(a) = f ′(c)(b− a) ≥ 0, f(a) ≤ f(b).
(⇒) Suppose f is increasing and c ∈ I. Let {xn} be a sequence in I s.t. xn → c and either (a) ∀n, xn < c
or (b) ∀n, xn > c. Such a sequence always exists since I is an interval.
In case (a), ∀n, f(xn)− f(c) ≤ 0 since f is increasing ⇒ ∀n, f(xn)−f(c)

xn−c ≥ 0 ⇒ f ′(c) ≥ 0

In case (b), ∀n, f(xn)− f(c) ≥ 0 ⇒ ∀n, f(xn)−f(c)
xn−c ≥ 0 ⇒ f ′(c) ≥ 0.

Thus f ′(c) ≥ 0.

For the second part of theorem, f is decreasing ⇔ −f is increasing ⇔ −f ′(x) ≥ 0, ∀x ∈ I.

Theorem: 5.12:

Let f : I → R be differentiable. Then f is constant ⇔ f ′(x) = 0, ∀x ∈ i.

Proof. f is constant ⇔ f is increasing and decreasing ⇔ ∀x ∈ I, f ′(x) ≥ 0 and f ′(x) ≤ 0 ⇔ ∀x ∈ I,
f ′(x) = 0.

5.3 Taylor’s Theorem

Remark 28. Taylor’s theorem is essentially the Mean Value Theorem for higher order derivatives.

Definition: 5.3: n-times Differentiable

We say f : I → R is n-times differentiable on J ⊂ I if f ′, f ′′, ..., f (n) exist at every point in J , where
the n-th derivative is denoted as f (n).

Theorem: 5.13: Taylor’s Theorem

Suppose f : [a, b] → R is continuous and has n continuous derivatives on [a, b] s.t. f (n+1) exists on
(a, b). Given x0, x ∈ [a, b], there exists c ∈ (x0, x) s.t.

f(x) =

n∑
k=0

1

k!
f (k)(x0)(x− x0)

k +
f (n+1)(c)

(n+ 1)!
(x− x0)

n+1,

where Pn(x) =

n∑
k=0

1

k!
f (k)(x0)(x − x0)

k is the n-th order Taylor polynomial for f at x0, Rn(x) =

f (n+1)(c)
(n+1)! (x− x0)

n+1 is the n-th order remainder.

Note: Rn(x) doesn’t need to be small.
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Example: f(x) =

{
e−

1
x , x > 0

0, x = 0
. f is differentiable as many times as we want, but f (n)(0) = 0, ∀n. Then

Pn(x) = 0, f(x) = Rn(x).

Proof. Let x0 ̸= x. Let Mx,x0 = f(x)−Pn(x)
(x−x0)n+1 , so f(x) = Pn(x) +Mx,x0(x− x0)

n+1.

Goal: show ∃c ∈ (a, b) s.t. Mx,x0 = f (n+1)(c)
(n+1)! .

For 0 ≤ k ≤ n, f (k)(x0) = P
(k)
n (x0). Let g(s) = f(s)−Pn(s)−Mx,x0(s−x0)

n+1. g(s) is n+1 differentiable
in s.
g(x0) = f(x0)− Pn(x0) = 0 and g(x) = f(x)− Pn(x)−Mx,x0(x− x0)

n+1 = 0.
By Theorem 5.10, ∃x1 between x0 and x s.t. g′(x1) = 0.
Also g′(x0) = f ′(x0)− P ′

n(x0) = 0, so ∃x2 between x0 and x1 (thus between x0 and x) s.t. g′′(x2) = 0
Continuing in this way, for 0 ≤ k ≤ n, ∃xk between x0 and x s.t. g(k)(xk) = 0.
Since g(n)(x0) = f (n)(x0)− P

(n)
n (x0)−Mx,x0(n+ 1)!(x0 − x0) = f (n)(x0)− P

(n)
n (x0) = 0 and g(n)(xn) = 0

By Theorem 5.10 applied to g(n), there exists c between x and x0 s.t. g(n+1)(c) = 0.
Then f (n+1)(c)− 0−Mx,x0(n+ 1)! = 0. Thus Mx,x0 = f (n+1)(c)

(n+1)! .

Thus f(x) = Pn(x) +
f (n+1)(c)
(n+1)! (x− x0)

n+1

Theorem: 5.14: Second Derivative Test

Suppose f : (a, b) → R has two continuous derivatives on (a, b). If x0 ∈ (a, b) s.t. f ′(x0) = 0 and
f ′′(x0) > 0, then f has a strict relative min at x0. i.e. ∃δ > 0 s.t. ∀x, 0 < |x − x0| < δ ⇒
f(x) > f(x0).

Proof. Since f ′′ is continuous, lim
c→x0

f ′′(c) = f ′′(x0) > 0. Then ∃δ0 > 0 s.t. ∀0 < |c− x0| < δ0, f ′′(c) > 0.

Choose δ = δ0. Let 0 < |x − x0| < δ = δ0. Then by Theorem 5.13, ∃c between x and x0 s.t. f(x) =

f(x0) + f ′(x0)(x− x0) +
f ′′(c)
2 (x− x0)

2.
Since f ′(x0) = 0, f(x) = f(x0) +

f ′′(c)
2 (x− x0)

2 > f(x0). Since x ̸= x0, f ′′(c) > 0.
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6 Riemann Integration

6.1 The Riemann Integrals

Notation: C([a, b]) = {f : [a, b] → R : f is continuous}.

Definition: 6.1: Tagged Partition

A partition of [a, b] is a finite set x = {a = x0 < x1 < x2 < · · · < xn = b}. The norm of a
partition ∥x∥ = max{x1 − x0, ..., xn − xn−1}. A tag for a partition x is a finite set ξ = {ξ1, ..., ξn}
s.t. x0 ≤ ξ1 ≤ x1 ≤ ξ2 ≤ x2 ≤ · · · ≤ ξn ≤ xn. The pair (x, ξ) is a tagged partition.

Example: x = {1, 32 , 2, 3}, ξ = {5
4 ,

7
4 ,

5
2}. Then ∥x∥ = max{3

2 − 1, 2− 3
2 , 3− 2} = 1.

Definition: 6.2: Riemann Sum

Let f ∈ C([a, b]), (x, ξ) is a tagged partition. The Riemann Sum of f corresponding to (x, ξ) is the

number Sf (x, ξ) =

n∑
k=1

f(ξk)(xk − xk−1).

Definition: 6.3: Modulus of Continuity

For f ∈ C([a, b]), η > 0, we define the modulus of continuity ωf (η) = sup{|f(x)−f(y)| : |x−y| ≤ η}.
∀x, y, |f(x)− f(y)| ≤ ωf (|x− y|). If η1 ≤ η2, then ωf (η1) ≤ ωf (η2).

Example: f(x) = ax + b. Then |f(x) − f(y)| = |a||x − y|. So if |x − y| ≤ η, then |f(x) − f(y)| ≤ |a|η.
Thus ωf (η) = |a|η.

Theorem: 6.1:

∀f ∈ C([a, b]), lim
η→0

ωf (η) = 0. i.e. ∀ϵ > 0, ∃δ > 0 s.t. ∀η, 0 < η < δ, ωf (η) < ϵ.

Proof. Let ϵ > 0. Since f ∈ C([a, b]), f is uniformly continuous by Theorem 4.20. i.e. ∃δ0 > 0 s.t. ∀x, y,
|x− y| < δ0 ⇒ |f(x)− f(y)| < ϵ

2 .
Chooose δ = δ0. Suppose η < δ = δ0. If |x − y| ≤ η < δ0, then |f(x) − f(y)| < ϵ

2 . Then ϵ
2 is an upper

bound for the set {|f(x)− f(y)| : |x− y| ≤ η}.
Thus ωf (η) = sup{|f(x)− f(y)| : |x− y| ≤ η} ≤ ϵ

2 < ϵ. Thus lim
η→0

ωf (η) = 0.

Theorem: 6.2:

If (x, ξ) and (x′, ξ′) are tagged partitions of [a, b] s.t. x ⊂ x′. i.e. x′ is a refinement of x and
f ∈ C([a, b]), then |Sf (x, ξ)− Sf (x

′, ξ′)| ≤ ωf (∥x∥)(b− a).

Proof. For k = 1, ..., n, let y(k) = {xk−1 = x′l < x′l+1 < · · · < x′m = xk}, η(k) = {ξ′l+1, ..., ξ
′
m} be a partition

of [xk−1, xk].

Then (x′, ξ′) = ∪n
k=1(y

(k), η(k)). Thus Sf (x
′, ξ′) =

n∑
k=1

Sf (y
(k), η(k)).
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Then

|f(ξk)(xk − xk−1)− Sf (y
(k), η(k))| =

∣∣∣∣∣∣f(ξk)
m∑

j=l+1

(x′j − x′j−1)−
m∑

j=l+1

f(ξ′j)(x
′
j − x′j−1)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
m∑

j=l+1

(f(ξk)− f(ξ′j))(x
′
j − x′j−1)

∣∣∣∣∣∣
≤

m∑
j=l+1

|f(ξk)− f(ξ′j)|(x′j − x′j−1)

≤
m∑

j=l+1

ωf (|xk − xk−1|)(x′j − x′j−1) (by Definition 6.3)

= ωf (|xk − xk−1|)(xk − xk−1)

Then

|Sf (x, ξ)− Sf (x
′, ξ′)| ≤

n∑
k=1

|f(ξk)(xk − xk−1)− Sf (y
(k), η(k))|

≤
n∑

k=1

ωf (|xk − xk−1|)(xk − xk−1) (By previous calculation)

≤
n∑

k=1

ωf (∥x∥)(xk − xk−1)

= ωf (∥x∥)(b− a)

Theorem: 6.3:

If (x, ξ) and (x′, ξ′) are any tagged partitions and f ∈ C([a, b]), then

|Sf (x, ξ)− Sf (x
′, ξ′)| ≤ [ωf (∥x∥) + ωf (∥x′∥)](b− a)

Proof. Define x′′ = x∪x′ amd ξ′′ = ξ ∪ ξ′. Then x ⊂ x′ and x ⊂ x′′. So x′′ is a refinement of both x and x′

Then by Theorem 6.2,

|Sf (x, ξ)− Sf (x
′, ξ′)| ≤ |Sf (x, ξ)− Sf (x

′′, ξ′′)|+ |Sf (x
′′, ξ′′)− Sf (x

′, ξ′)|
≤ ωf (∥x∥)(b− a) + ωf (∥x′∥)(b− a)

Theorem: 6.4: Riemann Integral

Let f ∈ C([a, b]). Then there exists unique number
∫ b
a f(x)dx with the following property:

∀ sequences of partitions {(x(r), ξ(r))}r s.t. lim
r→∞

∥x(r)∥ = 0. We have lim
r→∞

Sf (x
(r), ξ(r)) =

∫ b

a
f(x)dx.

We denote
∫ b

a
f(x)dx =

∫ b

a
f .
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Proof. Let {(y(r), ζ(r))}r be a sequence of tagged partitions of [a, b] s.t. ∥y(r)∥ → 0.

We claim that {Sf (y
(r), ζ(r))}r converges. We prove that {Sf (y

(r), ζ(r))}r is Cauchy.

Let ϵ > 0. By Theorem 6.1, ∃δ > 0 s.t. ∀0 < η < δ, ωf (η) <
ϵ

2(b−a) .
Since ∥y(r)∥ → 0, ∃M0 ∈ R s.t. ∀r ≥ M0, ∥y(r)∥ < δ and thus ∀r ≥ M0, ωf (∥y(r)∥) < ϵ

2(b−a) .
Choose M = M0.
Then ∀r, r′ ≥ M = M0, |Sf (y

(r), ζ(r))| ≤ [ωf (∥y(r)∥) + ωf (∥y(r
′)∥)](b− a) <

(
ϵ

2(b−a) +
ϵ

2(b−a)

)
(b− a) = ϵ.

Thus {Sf (y
(r), ζ(r))}r is Cauchy and thus converges.

Let I = lim
r→∞

Sf (y
(r), ζ(r)).

Let {(x(r), ξ(r))}r be any sequence of tagged partitions with lim
r→∞

∥x(r)∥ = 0.

Claim: lim
r→∞

Sf (x
(r), ξ(r)) = I.

We have by triangle inequality that

|Sf (x
(r), ξ(r))− I| ≤ |Sf (x

(r), ξ(r))− Sf (y
(r), ζ(r))|+ |Sf (y

(r), ζ(r))− I|

≤ [ωf (∥x(r)∥) + ωf (∥y(r)∥)](b− a)− |Sf (y
(r), ζ(r))− I| (By Theorem 6.3)

Since ωf s converges to 0 and I = lim
r→∞

Sf (y
(r), ζ(r)), by squeeze theorem, lim

r→∞
|Sf (x

(r), ξ(r))− I| = 0.

Thus lim
r→∞

Sf (x
(r), ξ(r)) = I.

Theorem: 6.5: Linearity of Riemann Integral

If f, g ∈ C([a, b]) and α ∈ R, then
∫ b
a (αf + g) = α

∫ b
a f +

∫ b
a g.

Proof. Let {(x(r), ξ(r))}r be a sequence of tagged positions with ∥x(r)∥ → 0.
Then Sαf+g(x

(r), ξ(r)) = αSf (x
(r), ξ(r)) + Sg(x

(r), ξ(r))

As r → ∞,
∫ b
a (αf + g) = α

∫ b
a f +

∫ b
a g.

Theorem: 6.6: Additivity of Riemann Integrals

If f ∈ C([a, b]) and a < c < b, then
∫ b
a f =

∫ c
a f +

∫ b
c f .

Proof. Let {(y(r), η(r))}r be a sequence of tagged partitions of [a, c] s.t. ∥y(r)∥ → 0,
and {(z(r), ζ(r))}r be a sequence of tagged partitions of [c, b] s.t. ∥z(r)∥ → 0.

Define x(r) = y(r) ∪ z(r), ξ(r) = η(r) ∪ ζ(r). Then {(x(r), ξ(r))}r is a sequence of tagged partitions of [a, b].
Note ∥x(r)∥ = max(∥y(r)∥, ∥z(r)∥) → 0 as r → ∞.
Then by Theorem 6.4, Sf (x

(r), ξ(r)) →
∫ b
a f , Sf (y

(r), η(r)) →
∫ c
a f , Sf (z

(r), ζ(r)) →
∫ b
c f .

Since Sf (x
(r), ξ(r)) = Sf (y

(r), η(r)) + Sf (z
(r), ζ(r)), we have

∫ b
a f =

∫ c
a f +

∫ b
c f .

51



Theorem: 6.7: Order Property of Riemann Integrals

Suppose f, g ∈ C([a, b])

1. If ∀x ∈ [a, b], f(x) ≤ g(x), then
∫ b
a f ≤

∫ b
a g

2. Triangle Inequality: |
∫ b
a f | ≤

∫ b
a |f |

Proof. 1. Let {(x(r), ξ(r))}r be a sequence of tagged partitions of [a, b] s.t. ∥x(r)∥ → 0.
Then ∀r,

Sf (x
(r), ξ(r)) =

n(r)∑
j=1

f(ξ
(r)
j )(x

(n)
j − x

(n)
j−1)

≤
n(r)∑
j=1

g(ξ
(r)
j )(x

(n)
j − x

(n)
j−1) = Sg(x

(r), ξ(r))

As r → ∞, we have
∫ b
a f ≤

∫ b
a g

2. ±f ≤ |f | ⇒
∫ b
a ±f ≤

∫ b
a |f | ⇒ (By Theorem 6.5) ±

∫ b
a f ≤

∫ b
a |f | ⇒ −

∫ b
a |f | ≤

∫ b
a f ≤

∫ b
a |f | ⇒

|
∫ b
a f | ≤

∫ b
a |f |

Remark 29. If f ∈ C([a, b]) and f > 0, then
∫ b
a f > 0.

Theorem: 6.8:∫ b

a
1 = b− a

Proof. Let {(x(r), ξ(r))}r s.t. ∥x(r)∥ → 0.

Then S1(x
(r), ξ(r)) =

n(r)∑
j=1

(x
(r)
j − x

(r)
j−1) = x(r)n − x

(r)
0 = b− a

Thus
∫ b

a
1 = lim

r→∞
S1(x

(r), ξ(r)) = b− a.

Theorem: 6.9: Bounds of Riemann Integrals

If f ∈ C([a, b]), mf = inf{f(x) : x ∈ [a, b]}. Mf = sup{f(x) : x ∈ [a, b]}, then mf (b − a) ≤
∫ b
a ≤

Mf (b− a).

Proof. Since mf ≤ f(x) ≤ Mf , ∀x ∈ [a, b], then
∫ b
a mf ≤

∫ b
a f ≤

∫ b
a Mf by Theorem 6.7.

Thus mf (b− a) ≤
∫ b
a f ≤ Mf (b− a)

Remark 30. 1.
∫ a
a f = 0

2. If b < a,
∫ b
a f = −

∫ a
b f
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Proof. 1 is consistent with lim
b→a

∫ b

a
f = 0.

2 is consistent with Theorem 6.6 and 0 =
∫ a
a f =

∫ b
a f +

∫ a
b f .

6.2 Fundamental Theorem of Calculus

Theorem: 6.10: Fundamental Theorem of Calculus

Let f ∈ C([a, b]). Then
1. If F : [a, b] → R is differentiable and F ′ = f , then

∫ b
a f = F (b)−F (a). i.e.

∫ b
a F ′ = F (b)−F (a)

2. The function G(x) =
∫ x
a f : [a, b] → R is differentiable on [a, b] and

{
G′ = f

G(a) = 0

Proof. 1. Let {x(r)}r be a sequence of points with ∥x(r)∥ → 0

By Theorem 5.10, ∀j, ∃ξ(r)j ∈ (x
(r)
j−1, x

(r)
j ) s.t. F (x

(r)
j )− F (x

(r)
j−1) = f(ξ

(r)
j )(x

(r)
j − x

(r)
j−1).

Sf (x
(r), ξ(r)) =

n(r)∑
j=1

f(ξ
(r)
j )(x

(r)
j − x

(r)
j−1) =

n(r)∑
j=1

F (xrj)− F (x
(r)
j−1) = F (x

(r)
n(r))− F (x

(r)
0 ) = F (b)− F (a)

Thus
∫ b

a
f = lim

r→∞
Sf (x

(r), ξ(r)) = F (b)− F (a).

2. let c ∈ [a, b], we want to show lim
x→c

∫ x
a f −

∫ c
a f

x− c
= f(c)

Let ϵ > 0. Since f is continuous at c, ∃δ0 > 0 s.t. |t− c| < δ ⇒ |f(t)− f(c)| < ϵ
2 .

Choose δ = δ0.
Suppose c < x < c+ δ. If t ∈ [c, x], |t− c| = t− c ≤ x− c < δ = δ0, then∣∣∣∣ 1

x− c

(∫ x

a
f(t)dt−

∫ c

a
f(t)dt

)
− f(c)

∣∣∣∣ = ∣∣∣∣ 1

x− c

∫ x

c
f(t)dt− f(c)

∣∣∣∣
=

∣∣∣∣ 1

x− c

∫ x

c
f(t)dt− f(c)

x− c

∫ x

c
dt

∣∣∣∣
=

1

x− c

∣∣∣∣∫ x

c
[f(t)− f(c)]dt

∣∣∣∣
≤ 1

x− c

∫ x

c
|f(t)− f(c)|dt (By Theorem 6.7)

≤ 1

x− c

∫ x

c

ϵ

2
dt =

ϵ

2

1

x− c
(x− c) =

ϵ

2
< ϵ

Similar proofs can be applied to the other case.
Thus 0 < |x− c| < δ ⇒

∣∣∣∫ x
a f−

∫ c
a f

x−c − f(c)
∣∣∣ < ϵ

6.3 Integration Techniques

Theorem: 6.11: Integration By Parts

Suppose f, g ∈ C([a, b]) are continuously differentiable, i.e. f ′, g′ ∈ C([a, b]). Then∫ b

a
f ′g = f(b)g(b)− f(a)g(a)−

∫ b

a
fg′
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Proof. Since (fg)′ = f ′g − fg′ by Theorem 5.6.
Then by Theorem 6.10,∫ b

a
f ′g + fg′ =

∫ b

a
(fg)′ = f(b)g(b)− f(a)g(a)

Theorem: 6.12: Change of Variable

Let ϕ : [a, b] → [c, d] be continuously differentiable s.t. ϕ′ > 0 on [a, b], ϕ(a) = c and ϕ(b) = d. Then,∫ d

c
f(u)du =

∫ b

a
f(ϕ(x))ϕ′(x)dx

Proof. Let F : [a, b] → R s.t. F ′ = f (always exists by Theorem 6.10). Then [F (ϕ(x))]′ = F ′(ϕ(x))ϕ′(x) =
f(ϕ(x))ϕ′(x) by Theorem 5.7.
Thus∫ b

a
f(ϕ(x))ϕ′(x)dx =

∫ b

a
[F (ϕ(x))]′dx = F (ϕ(b))−F (ϕ(a))−F (d)−F (c) =

∫ d

c
F ′(u)du =

∫ d

c
f(u)du
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7 Sequence of Functions

7.1 Motivation

Fourier Series: Suppose f : [−π, π] → R is 2π periodic. Can f(x) =

infty∑
n=0

[an sinnx + bn cosnx] i.e. Can

a series of sine and cosine function converge to f?

Analogs: suppose x⃗ = (x1, ..., xm) ∈ Rm, x⃗ =

m∑
n=1

anen, where en is the n-th orthonormal basis vector.

To compute an, we compute x⃗ · e⃗l =
m∑

n=1

anen · el =
m∑

n=1

anδnl = al. i.e. al = x · el.

Back to functions.
∫ π

−π
f(x) sin lxdx =

∫ π

−π

∞∑
n=0

[an sinnx sin lx+ bn cosnx sin lx]dx.

If we can switch the limit process
∫ π

−π
and

∞∑
n=0

, we get

∫ π

−π
f(x) sin lxdx =

∞∑
n=0

an

∫ π

−π
sinnx sin lxdx+ bn

∫ π

−π
cosnx sin lxdx =

∞∑
n=0

anπδnl = πal

Similarly, we get πbl =

∫ π

−π
f(x) cos lxdx.

Definition: 7.1: Fourier Coefficients

If f : [−π, π] → R is continuous and 2π-periodic, the numbers an =
1

π

∫ π

−π
f(x) sinnxdx and bn =

1

π

∫ π

−π
f(x) cosnxdx are the Fourier coeffcients of f .

Theorem: 7.1: Riemann Lebesgue Lemma

If f : [a, b] → R is continuously differentiable, then lim
n→∞

an = lim
n→∞

bn = 0

Proof. We will show bn → 0, as an is similar.

bn =

∫ π

−π
cosnxf(x)dx =

∫ π

−π
(− 1

n
sinnx)′f(x)dx

=
1

n
[sinnπf(π)− sinn(−π)f(−π)]− 1

n

∫ π

−π
sinnxf ′(x)dx (By IBP)

= − 1

n

∫ π

−π
sinnxf ′(x)dx

Then

0 ≤ |bn| ≤
∣∣∣∣ 1n
∫ π

−π
sinnxf ′(x)dx

∣∣∣∣ ≤ 1

n

∫ π

−π
| sinnx||f ′(x)|dx (By Theorem 6.7)

≤ 1

n

∫ π

−π
|f ′(x)|dx
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1

n

∫ π

−π
|f ′(x)|dx → 0 as n → ∞ since

∫ π

−π
|f ′(x)|dx < ∞.

Thus bn → 0 by squeeze theorem.

7.2 Pointwise and Uniform Convergence

Definition: 7.2: Power Series

A power series about x0 is a series of the form
∞∑
j=0

aj(x− x0)
j

Theorem: 7.2: Convergence of Power Series

Suppose R = lim
j→∞

|aj |1/j exists and define ρ =

{
1
R , R > 0,

∞, R = 0
. Then

∑
aj(x − x0)

j converges

absolutely if |x− x0| < ρ and diverges if |x− x0| > ρ. ρ is called the radius of convergence.

Proof.

lim
j→∞

|aj(x− x0)
j |1/j = |x− x0| lim

j→∞
|aj |1/j = |x− x0|R

{
< 1, |x− x0| < ρ

> 1, |x− x0| > ρ

The Theorem then follows the Root Test (Theorem 3.37).

If the power series converges absolutely, we then define f : (x0 − ρ, x0 + ρ) → R by f(x) =

∞∑
j=0

aj(x −

x0)
j .

Example:
∞∑
j=0

xj =
1

1− x
for x ∈ (−1, 1) \ {0}

Example: Let aj =
1
j! , x0 = 0. Then

∞∑
j=0

1

j!
xj = ex has radius of convergence ρ = ∞.

Let f(x) = lim
n→∞

fn(x), where fn(x) =
mn∑
j=0

aj(x − x0)
j , ∀x ∈ (x0 − ρ, x0 + ρ). We have the following

questions:

1. Is f continuous?

2. If 1, then is f differentiable? and does f ′ = lim
n→∞

f ′
n?

3. If 1), does
∫ b

a
f = lim

n→∞

∫ b

a
fn?
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Definition: 7.3: Pointwise Convergence

For n ∈ N, let fn : S → R and let f : S → R. We say {fn} converges pointwise to f , if ∀x ∈ S,
lim
n→∞

fn(x) = f(x).
i.e. for each point x, the sequence fn(x) converges to f(x).

Example: f(x) = 1
1−x , fn(x) =

n∑
j=0

xj , then ∀x ∈ (−1, 1) \ {0}, lim
n→∞

fn(x) = f(x)

Example: fn(x) = xn, x ∈ [0, 1]
If x = 1, lim

n→∞
fn(x) = 1.

If x ∈ (0, 1], then lim
n→∞

fn(x) = lim
n→∞

xn = 0.

Thus ∀x ∈ [0, 1], lim
n→∞

fn(x) = f(x) =

{
0, x ∈ [0, 1)

1, x = 1

Example: Let fn : [0, 1] → R, fn(x) =


4n2x, x ∈ [0, 1

2n ]

4n− 4n2x, x ∈ [ 1
2n ,

1
n ]

0, x ∈ [ 1n , 1]

. Then ∀x ∈ [0, 1], fn(x) → 0

Proof. If x = 0, then lim
n→∞

fn(0) = lim
n→∞

0 = 0

Suppose x ∈ (0, 1], we want to show lim
n→∞

fn(x) = 0

Let M ∈ N s.t. 1
M < x. Then {fn(x) = {f1(x), ..., fM−1(x), fM (x) = 0, 0, ...}}. fn(x) = 0, ∀n ≥ M . Thus

fn(x) → 0.

Definition: 7.4: Uniform Convergence

For n ∈ N, let fn : S → R and f : S → R. Then we say {fn} converges uniformly to f(x) if ∀ϵ > 0,
∃M ∈ N s.t. ∀n ≥ M , ∀x ∈ S, |fn(x)− f(x)| < ϵ.
i.e. For any point x ∈ S, the approximated value fn(x) is always within ϵ distance from f(x)

Remark 31. The negation: fn does not converge uniformly to f (fn ̸→ f uniformly) on S if ∃ϵ0 > 0 s.t.
∀M ∈ N, ∃n ≥ M , ∃x ∈ S s.t. |fn(x)− f(x)| ≥ ϵ0.

Theorem: 7.3:

If fn : S → R, f : S → R and fn → f uniformly on S, then fn → f pointwise on S.

Proof. Let c ∈ S. We want to show lim
n→∞

fn(c) = f(c).
Let ϵ > 0, since fn → f uniformly, ∃M0 ∈ N s.t. ∀n ≥ M0, ∀x ∈ S, |fn(x)− f(x)| < ϵ.
Choose M = M0, x = c. Then ∀n ≥ M , |fn(c)− f(c)| < ϵ. Thus lim

n→∞
fn(c) = f(c).
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Theorem: 7.4:

Let fn(x) = xn, f(x) =

{
0, x ∈ [0, 1)

1, x = 1
. Then

1. ∀0 ≤ b < 1, fn → f uniformly on [0, b]
2. fn ̸→ f uniformly on [0, 1].

Proof. 1. Let b ∈ [0, 1). Then bn → 0. Let ϵ > 0, ∃M ∈ N s.t. ∀n ≥ M , bn < ϵ.
Then ∀n ≥ M , ∀x ∈ [0, b], |fn(x)− f(x)| = |xn − 0| = xn ≤ bn < ϵ

2. Choose ϵ0 =
1
4 . Let M ∈ N.

Choose n = M , x =
(
1
4

)1/M
< 1. Then f(x) = 0, but fM (x) =

((
1
4

)1/M)M
= 1

4 .

|fM (x)− f(x)| = 1
4 ≥ ϵ0.

Example: fn(x) =


4n2x, x ∈ [0, 1

2n ]

4n− 4n2x, x ∈ [ 1
2n ,

1
n ]

0, x ∈ [ 1n , 1]

. fn(x) → 0 pointwise, but fn ̸→ 0 uniformly on [0, 1]

Proof. Choose ϵ0 = 1. let M ∈ N.
Choose n = M , x = 1

2M . Then |fM (x)− 0| = fM
(

1
2M

)
= 2M ≥ 1 = ϵ0.

7.3 Interchange of Limits

Example:

lim
k→∞

[
lim
n→∞

n/k

n/k + 1

]
= lim

k→∞
1 = 1

lim
n→∞

[
lim
k→∞

n/k

n/k + 1

]
= lim

n→∞
0 = 0

We cannot interchange the limit in this case.

We have the following questions:

1. Suppose fn : S → R, f : S → R and fn → f (pointwise or uniformly), and fn is continuous ∀n.
Then is f continuous? i.e. Suppose x ∈ S and ∃ sequence {xk} s.t. xk → x, then can we do
lim
k→∞

f(xk) = lim
k→∞

lim
n→∞

fn(xk) = lim
n→∞

lim
k→∞

fn(xk) = lim
n→∞

fn(x) = f(x)?

2. Suppose fn : [a, b] → R is differentiable ∀n. f : [a, b] → R and fn → f , f ′
n → g. Is f differentiable

and is g = f ′?

3. Suppose fn ∈ C([a, b]), f ∈ C([a, b]) and fn → f . Does lim
n→∞

∫ b

a
fn =

∫ b

a
f?

The answer is yes if we have uniform convergence and no if we only have pointwise convergence.

Example: fn(x) = xn on [0, 1]. f(x) =

{
0, x ∈ [0, 1)

1, x = 1
. ∀n, fn ∈ C([0, 1]), fn → f pointwise, but

f ̸∈ C([0, 1]).
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Example: fn(x) = xn

n on [0, 1]. Then fn → f = 0, f ′
n → g(x) =

{
0, x ∈ [0, 1)

1, x = 1
pointwise, but

g ̸= f ′.

Example: fn(x) =


4n2x, x ∈ [0, 1

2n ]

4n− 4n2x, x ∈ [ 1
2n ,

1
n ]

0, x ∈ [ 1n , 1]

. fn(x) → f = 0 pointwise. ∀n,
∫ 1
0 fn = 1

2
1
n2n = 1, but

∫ 1
0 fn ̸→

∫ 1
0 f = 0.

Theorem: 7.5:

Suppose fn : S → R, f : S → R, fn continuous ∀n and fn → f uniformly on S. Then f is continous.

Proof. Let c ∈ S, ϵ > 0. Since fn → f uniformly, ∃M ∈ N s.t. ∀n ≥ M , ∀y ∈ S, |fM (y)− f(y)| < ϵ
3 .

Since fM : S → R is continous, ∃δ > 0 s.t. ∀|x− c| < δ ⇒ |fM (x)− fM (c)| < ϵ
3 .

Then ∀|x− c| < δ, using triangle inequality:

|f(x)− f(c)| ≤ |f(x)− fM (x)|+ |fM (x)− fM (c)|+ |fM (c)− f(c)| < ϵ

3
+

ϵ

3
+

ϵ

3
= ϵ

Theorem: 7.6:

Suppose fn ∈ C([a, b]), f : [a, b] → R and fn → f uniformly. Then lim
n→∞

∫ b

a
fn =

∫ b

a
f .

Proof. Let ϵ > 0. Since fn → f uniformly, ∃M ∈ N s.t. ∀n ≥ M , ∀x ∈ [a, b], |fn(x)− f(x)| < ϵ
b−a .

Then ∀n ≥ M , by Theorem 6.7,∣∣∣∣∫ b

a
fn −

∫ b

a
f

∣∣∣∣ = ∣∣∣∣∫ b

a
(fn − f)

∣∣∣∣ ≤ ∫ b

a
|fn − f | <

∫ b

a

ϵ

b− a
=

ϵ

b− a
(b− a) = ϵ

Theorem: 7.7:

Suppose fn : [a, b] → R is continuously differentiable ∀n. f, g : [a, b] → R. fn → f pointwise on [a, b]
and f ′

n → g uniformly on [a, b]. Then f is continuously differentiable and g = f ′.

Proof. Let x ∈ [a, b]. Then by Theorem 6.10 and Theorem 7.6,

fn(x)− fn(a) =

∫ x

a
f ′
n ⇒ f(x)− f(a) = lim

n→∞
[fn(x)− fn(a)] = lim

n→∞

∫ x

a
f ′
n =

∫ x

a
g

Then f(x) = f(a) +
∫ x
a g, f is differentiable and f ′ = (

∫ x
a g)′
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Theorem: 7.8: Weierstrass M-test

Let fj : S → R and suppose ∃{Mj} s.t.
a) ∀x ∈ S, |fj(x)| ≤ Mj

b)
∞∑
j=1

Mj < ∞

Then

1. ∀x ∈ S,
∞∑
j=1

fj(x) converges absolutely

2. Let f(x) =
∞∑
j=1

fj(x). Then
n∑

j=1

fj → f uniformly on S as n → ∞.

Proof. 1 follows directly from a), b) and comparison test (Theorem 3.34).

Let ϵ > 0. Since
∑

Mj converges, ∃N ∈ N s.t.
∞∑

j=N+1

Mj =
∞∑
j=1

Mj −
N∑
j=1

Mj < ϵ.

Then ∀n ≥ N , ∀x ∈ S,

∣∣∣∣∣∣f(x)−
n∑

j=1

fj(x)

∣∣∣∣∣∣ = ∥
∞∑

j=n+1

fj(x)∥ ≤
∞∑

j=n+1

|fj(x)| ≤
∞∑

j=n+1

Mj ≤
∞∑

j=N+1

Mj < ϵ

Example: fj(x) =
cos 160jx

4j
, x ∈ R. Then

1. |fj(x)| ≤ 4−j

2.
∞∑
j=1

4−j converges

Thus
∞∑
j=1

fj(x) converges uniformly on R.

7.4 Power Series

Theorem: 7.9: Uniform Convergence of Power Series

Let
∞∑
j=0

aj(x−x0)
j be a power series with radius of convergence ρ =

(
lim
j→∞

|aj |1/j
)−1

∈ (0,∞]. Then

∀r ∈ [0, ρ),
∞∑
j=0

aj(x− x0)
j converges uniformly on [x0 − r, x0 + r].

Proof. Let r ∈ [0, ρ). Then ∀j ∈ N ∪ {0}, ∀x ∈ [x0 − r, x0 + r], |aj(x− x0)
j | ≤ |aj ||x− x0|j ≤ |aj |rj .

We have lim
j→∞

[|aj |rj ]1/j = r lim
j→∞

|aj |1/j =

{
r
ρ , ρ < ∞
0, ρ = ∞

< 1.

Thus
∞∑
j=0

|aj |rj converges.

By Theorem 7.8,
∞∑
j=0

aj(x− x0)
j converges uniformly on [x0 − r, x0 + r].
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Theorem: 7.10: Differentiation and Integration of Power Series

Let
∞∑
j=0

aj(x− x0)
j be a power series with radius of convergence ρ ∈ (0,∞]. Then

1. ∀c ∈ (x0 − ρ, x0 + ρ),
∞∑
j=0

aj(x − x0)
j is differentiable at c and

d

dx

∞∑
j=0

aj(x− x0)
j

∣∣∣∣∣∣
x=c

=

∞∑
j=1

d

dx
(aj(x− x0)

j)

∣∣∣∣
x=c

2. ∀a, b with x0 − ρ < a < b < x+ ρ,
∫ b

a

∞∑
j=0

aj(x− x0)
jdx =

∞∑
j=0

∫ b

a
aj(x− x0)

jdx.

Proof. Claim:
∞∑
j=0

d

dx
aj(x− x0)

j =

∞∑
j=0

aj+1(j + 1)(x− x0)
j has radius of convergence ρ.

lim
j→∞

|aj+1(j + 1)|1/j = lim
j→∞

[
|aj+1|

1
j+1 (j + 1)

1
j+1

] j+1
j

= lim
j→∞

[
|aj+1|

1
j+1

] j+1
j

= (ρ−1)1 = ρ−1

Thus, the radius of convergence of
∞∑
j=0

aj+1(j + 1)(x− x0)
j is 1

ρ−1 = ρ.

Remark 32. ∀x ∈ (x0 − ρ, x0 + ρ),
dk

dxk

∞∑
j=0

aj(x− x0)
j =

∞∑
j=0

dk

dxk
aj(x− x0)

j , ∀k = 1, 2, ...

Theorem: 7.11:

∀n ∈ N, define cn = (
∫ 1
−1(1− x2)ndx)−1 > 0, Qn(x) = cn(1− x2)n. Then

1. ∀n ∈ N, ∀x ∈ [−1, 1], Qn(x) ≥ 0
2. ∀n ∈ N,

∫ 1
−1Qn(x)dx = 1

3. ∀δ ∈ (0, 1), Qn → 0 uniformly on {x : δ ≤ |x| ≤ 1}

Remark 33. Qn is like a delta function as n → ∞

Proof. 1, 2 are immediate, we prove 3 only.
Firstly, we estimate cn.
Let g(x) = (1 − x2)n − (1 − nx2), x ∈ [0, 1]. Then g(0) = 0, g′(x) = 2nx(1 − (1 − x2)n−1) ≥ 0 on [0, 1].
Thus g(x) ≥ 0 on [0, 1]. i.e. (1− x2)n ≥ 1− nx2.

1

cn
=

∫ 1

−1
(1− x2)ndx = 2

∫ 1

0
(1− x2)ndx (even function)

≥ 2

∫ 1√
n

0
(1− x2)ndx (By Theorem 6.6)

≥ 2

∫ 1√
n

0
(1− nx2)dx

=
4

3

1√
n
>

1√
n
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Thus cn <
√
n.

Let δ ∈ (0, 1). Note that
√
n(1 − δ2)n → 0 as n → ∞ ( lim

n→∞
[
√
n(1 − δ2)n]1/n = lim

n→∞
[n1/n]1/2(1 − δ2) =

1− δ2 < 1)

Let ϵ > 0. Then ∃M ∈ N s.t. ∀n ≥ M ,
√
n(1 − δ2)n < ϵ. Then ∀n ≥ M , ∀x s.t. δ ≤ |x| ≤ 1, we have

Qn(x) = cn(1− x2)n ≤
√
n(1− δ2)n < ϵ.

Thus Qn(x) → 0 uniformly.

Theorem: 7.12: Weierstrass Approximation Theorem

If f ∈ C([0, 1]), then ∃ sequence of polynomials {Pn(x)} s.t. Pn → f uniformly on [0, 1].

Remark 34. We only consider the case f(0) = 0, f(1) = 0. If we prove this case, ∀f̃ ∈ C([0, 1]), ∃{Pn} s.t.
Pn → f̃(x)− f̃(0)− x[f̃(1)− f̃(0)] uniformly.
Then Pn(x) + x[f̃(1)− f̃(0)] + f̃(0) → f̃(x) uniformly and LHS is still a polynomial.

Proof. Suppose f ∈ C([0, 1]), f(0) = 0, f(1) = 0. Extend f by 0 outside [0, 1]. Then f ∈ C(R).
Define

Pn(x) =

∫ 1

0
f(t)Qn(t− x)dt =

∫ 1

0
f(t)cn(1− (x− t)2)ndt

=

∫ 1

0
f(t)cn

n∑
j=0

(
n

j

)
(−1)j(x− t)2jdt (Binomial theorem on (1− (x− t)2)n)

=

∫ 1

0
f(t)cn

n∑
j=0

2j∑
k=0

(
n

j

)
(−1)j

(
2j

k

)
(−t)kx2j−kdt (Binomial theorem on (x− t)2j)

Note Pn(x) =

∫ 1

0
f(t)Qn(t− x)dt =

∫ 1−x

−x
f(x+ t)Qn(t)dt by change of variable (t = t− x).

Since f(x+ t) = 0 for t /∈ [−x, 1− x], we have Pn(x) =

∫ 1−x

−x
f(x+ t)Qn(t)dt =

∫ 1

−1
f(x+ t)Qn(t)dt

Since Qn(t) is approximately δ(t),
∫ 1
−1 f(x+ t)Qn(t)dt →

∫ 1
−1 f(x+ t)δ(t)dt = f(x+ 0) = f(x)

We now prove Pn → f uniformly on [0, 1].
Let ϵ > 0. Since f ∈ C([0, 1]), f is uniformly continuous by Theorem 4.20, thus ∃δ > 0 s.t. ∀z, y, |z−y| < δ,
|f(z)− f(y)| < ϵ

2 .
Since f ∈ C([0, 1]), ∃c > 0 s.t. |f(x)| ≤ c for all x ∈ [0, 1]. Then |f(x+ t)− f(x)| ≤ 2c for x, x+ t ∈ [0, 1]
by triangle inequality.
Since

√
n(1− δ2)n → 0, then ∃M ∈ N s.t. ∀n ≥ M ,

√
n(1− δ2)n < ϵ

8C .
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Thus, ∀n ≥ M , ∀x ∈ [0, 1],

|Pn(x)− f(x)| =
∣∣∣∣∫ 1

−1
f(x+ t)Qn(t)dt− f(x)

∣∣∣∣
=

∣∣∣∣∫ 1

−1
[f(x+ t)− f(x)]Qn(t)dt

∣∣∣∣ (Because
∫ 1

−1
Qn(x)dx = 1)

≤
∫ 1

−1
|f(x+ t)− f(x)|Qn(t)dt (By Theorem 6.7 and that Qn(t) ≥ 0)

=

∫ δ

−δ
|f(x+ t)− f(x)|Qn(t)dt+

∫
δ≤|x|≤1

|f(x+ t)− f(x)|Qn(t)dt (By Theorem 6.6)

<

∫ δ

−δ

ϵ

2
Qn(t) +

∫
δ≤|x|≤1

2cQn(t)dt

<
ϵ

2

∫ δ

−δ
Qn(t) +

∫
δ≤|x|≤1

2ccn(1− δ2)ndt

<
ϵ

2
+ 2c

√
n(1− δ2)n

∫ 1

−1
dt

=
ϵ

2
+ 4c

√
n(1− δ2)n

<
ϵ

2
+

ϵ

2
= ϵ

Thus Pn → f uniformly on [0, 1].
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8 Metric Spaces

8.1 Introduction

Definition: 8.1: Euclidean Distance

Given x, y ∈ R, the Euclidean distance is

∥x− y∥Rn =

(
n∑

i=1

|xi − yi|2
)1/2

With the following properties:
1. Symmetric: ∥x− y∥ = ∥y − x∥
2. Positive definite: ∥x− y∥ ≥ 0 and ∥x− y∥ = 0 ⇔ x = y
3. Triangle inequality: ∥x− z∥ ≤ ∥x− y∥+ ∥y − z∥

Definition: 8.2: Metric Space

A metric space is a set X with function d : X ×X → [0,∞) with the following properties:
1. Symmetric: d(x, y) = d(y, x)
2. Positive definite: d(x, y) ≥ 0 and d(x, y) = 0 ⇔ x = y
3. Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z)

Example: d∞Rn × Rn → [0,∞), d∞(x, y) = max
1≤i≤n

|xi − yi| is a metric on Rn.

Proof. Symmetric: d∞(x, y) = max
1≤i≤n

|xi − yi| = max
1≤i≤n

|yi − xi| = d∞(y, x)

Positive: because all terms in the sum is positive
If d∞(x, y) = 0, then ∀i, |xi − yi| = 0, by definition of absolute values, thus x = y. If x = y, then
∀i, |xi − yi| = 0, thus d∞(x, y) = 0
Triangle inequality: let x, y, z ∈ Rn, d∞(x, y) = max

1≤i≤n
|xi − yi|, d∞(x, z) = max

1≤i≤n
|xi − zi|, d∞(y, z) =

max
1≤i≤n

|yi − zi|.

Since the dimension is finite, ∃j s.t. d∞(x, z) = |xj − zj | ≤ |xj − yj | + |yj − zj | ≤ max1≤i≤n |xi − yi| +
max1≤i≤n |yi − zi| ≤ d∞(x, y) + d∞(y, z).

Definition: 8.3: lp metrics

For 1 ≤ p < ∞, the lp metrics are defined as:

dp(x, y) =

(
n∑

i=1

|xi − yi|p
)1/p

Example: dX(x, y) =

{
1, x ̸= y

0, x = y
is a metric.

Proof. The tricky part is the triangle inequality. We consider the following three cases:

1. x ̸= y, y ̸= z, z ̸= y: d(x, z) = 1 ≤ 2 = d(x, y) + d(y, z)

2. x = y ̸= z, d(x, z) = 1 ≤ 1 = d(x, y) + d(y, z)
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3. x = y = z, d(x, z) = 0 ≤ 0 = d(x, y) = d(y, z)

Example: x, y ∈ R2. Then d(x, y) =

{
∥x− y∥R2 , x, y colinear
∥x∥+ ∥y∥, otherwise

is a metric.

Definition: 8.4: Convergent Sequence

Let {xn} be a sequence in a metric space (X, d) and let x ∈ X. {xn} converges to x if ∀ϵ > 0,
∃N ∈ N s.t. ∀n ≥ N , d(xn, x) < ϵ.

Definition: 8.5: Cauchy Sequence

Let {xn} be a sequence in a metric space (X, d). {xn} is Cauchy if ∀ϵ > 0, ∃N ∈ N s.t. ∀n,m ≥ N ,
d(xn, xm) < ϵ.

Definition: 8.6: Open Sets

A set A ⊂ X is open if ∀a ∈ A, ∃ϵ > 0 s.t. Bϵ(a) = B(a, ϵ) = {y ∈ X : d(x, y) < ϵ} ⊂ A.

Example: (0, 1) is open in R.

Definition: 8.7: Continuous Functions

Let (X, dX) and (Y, dY ) be metric spaces, f : X → Y . f is continuous if ∀ϵ > 0, ∃δ > 0 s.t.
dX(x, y) < δ ⇒ dY (f(x), f(y)) < ϵ.

Definition: 8.8: Set of Countinuous Functions

We define C0([a, b]) to be the set of continuous functions on [a, b].

Example: f, g ∈ C0([a, b]), d(f, g) = sup
x∈[a,b]

|f(x)− g(x)| is a metric.

Proof. Symmetric: d(f, g) = sup
x∈[a,b]

|f(x)− g(x)| = sup
x∈[a,b]

|g(x)− f(x)| = d(g, d)

Positive: if f = g, then f(x) = g(x), ∀x. Thus d(f, g) = 0
If d(f, g) = 0, then f(x)− g(x) = 0, ∀x, thus f = g.
Triangle inequality: Let f, g, h ∈ C0([a, b]). d(f, h) = sup

x∈[a,b]
|f(x)− h(x)| = |f(y)− h(y)| for some y ∈ [a, b]

by Theorem 4.15. Thus d(f, h) = |f(y) − h(y)| ≤ |f(y) − g(y)| + |g(y) − h(y)| ≤ sup
x∈[a,b]

|f(x) − g(x)| +

sup
x∈[a,b]

|g(x)− h(x)| = d(f, g) + d(g, h).

Definition: 8.9: Set of k-differentiable Functions

We define Ck([a, b]) to be the set of continuous functions on [a, b] s.t. the first k derivatives of f
exists and are continuous.
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Example: For C1([a, b]), we can define the metric dC1(f, g) = sup
x∈[a,b]

|f(x)−g(x)|+ sup
x∈[a,b]

|f ′(x)−g′(x)|

Remark 35. The same can be applied to any Ck([a, b]) for finite ks. The first term sup |f − g| must be
presented to ensure positive definite.

Definition: 8.10:

We define C∞([a, b]) as the set of infinitely differentiable functions. The metric is

dC∞(f, g) =

∞∑
k=0

2−k dCk(f, g)

1 + dCk(f, g)

Example: the map
d

dx
: C1([a, b]) → C0([a, b]) is continuous as a function between metric spaces.

Proof. Let f, g ∈ C1([a, b]), ϵ > 0. We want to show ∃δ > 0 s.t. dC1(f, g) < ϵ ⇒ dC0(f ′, g′) < ϵ.
dC1(f, g) = sup

x∈[a,b]
|f(x)− g(x)|+ sup

x∈[a,b]
|f ′(x)− g′(x)|

dC0(f, g) = sup
x∈[a,b]

|f(x)− g(x)|

Let δ = ϵ, then dC1(f, g) < δ ⇒ dC0(f ′, g′) = sup
x∈[a,b]

|f ′(x)− g′(x)| ≤ dC1(f, g) < δ = ϵ.

Definition: 8.11: Lp metrics

For 1 ≤ p < ∞, Ip(f, g) =
(∫ 1

0
|f − g|p

)1/p

defines a metric on C0([0, 1]) called the Lp metric.

Example: The map I1 : C
0([0, 1])× C0([0, 1]) → [0,∞) s.t. I1(f, g) =

∫ 1

0
|f − g| is a metric.

Proof. Symmetric: I1(f, g) =
∫ 1
0 |f − g| =

∫ 1
0 |g − f | = I1(g, f)

Positive: If f = g, then |f − g| = 0, thus I1(f, g) = 0. If f ̸= g, then I1(f, g) ̸= 0 by continuity of f and g.
Triangle inequality:

∫ 1
0 |f − h| ≤

∫ 1
0 (|f − g| + |g − h|) =

∫ 1
0 |f − g| +

∫ 1
0 |g − h| (By Theorem 6.7 and

Theorem 6.6)

Definition: 8.12: Geodesics

For spheres S = {x ∈ Rn : ∥x∥ = 1}. We define a metric on the ball as the shortest line segment
between two points on the sphere, which we call geodesics.

8.2 General Theory

Theorem: 8.1: Uniqueness of Limits

Let {xn} be a sequence. Suppose xn → x, then x is unique.

Proof. Assume ∃y ̸= x ∈ X s.t. xn → y.
Let ϵ > 0. Since xn → x, ∃N1 ∈ N s.t. ∀n ≥ N1, d(xn, x) < ϵ

2 .
Similarly, for y, ∃N2 ∈ N s.t. ∀n ≥ N2, d(xn, y) < ϵ

2 .
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Take N = max(N1, N2), then ∀n ≥ N , d(x, y) ≤ d(xn, x) + d(xn, y) <
ϵ
2 + ϵ

2 = ϵ.
Thus x = y.

Theorem: 8.2:

Let {xn} be a sequence, xn → x, y ∈ X. Then d(xn, y) → d(x, y).

Proof. Let ϵ > 0. Since xn → x, ∃N ∈ N s.t. ∀n ∈ N, d(xn, x) < ϵ. Then ∀n ≥ N d(xn, y) ≤
d(xn, x) + d(x, y) < d(x, y) + ϵ.
On the other hand d(x, y) = d(x, xn) + d(xn, y), so d(xn, y) = d(x, y)− d(xn, x) > d(x, y)− ϵ.
Thus d(x, y)− ϵ < d(xn, y) < d(x, y) + ϵ. i.e. d(xn, y) → d(x, y).

Theorem: 8.3:

Let {xn}, {yn} be sequences.
1. Suppose xn → x, yn → y, then d(xn, yn) → d(x, y)
2. Suppose {xn}, {yn} are Cauchy, then d(xn, yn) converges.

Theorem: 8.4:

Convergent sequences are Cauchy.

Proof. Let {xn} be a sequence.
Let ϵ > 0. Suppose xn → x, ∃n ∈ N s.t. ∀n ≥ N , d(xn, x) < ϵ

2 .
Let m ≥ N , d(xm, xn) ≤ d(xm, x) + d(xn, x) <

ϵ
2 + ϵ

2 = ϵ.

Definition: 8.13: Cauchy Complete Space

A space is Cauchy complete ⇔ all Cauchy sequences are convergent in the space.

Example: C0([0, 1]) is Cauchy complete.

Definition: 8.14: Bounded Sequence and Sets

{xn} is bounded by B > 0 if ∃p ∈ X s.t. ∀n ∈ N, d(xn, p) < B
A set A ⊂ X is bounded by B > 0 if ∃p ∈ X s.t. ∀a ∈ A, d(a, p) < B.

Theorem: 8.5:

If xn → x, then {xn} is bounded.

Proof. Let ϵ = 1 > 0.
Since xn → x, ∃N ∈ N s.t. ∀n ≥ N , d(xn, x) < ϵ = 1.
Let B = max{d(x1, x), ..., d(xN−1, x), 1}. Then d(xn, x) < B.

Theorem: 8.6:

Let xn → x, and {xnk
} a subsequence of {xn}, then {xnk

} is convergent.
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Proof. Let ϵ > 0. We want to show that ∃N ∈ N s.t. ∀nk ≥ N , d(xnk
, x) < ϵ

2 .

For m ≥ N , d(xnk
, x) ≤ d(xnk

, xm) + d(xm, x) < ϵ by Thereom 8.4 and triangle inequality.

Theorem: 8.7: Topological Properties of Open Sets

Let X be a metric space and Ai be open sets in X. Then
1. ∅ and X are open in X
2. ∪∞

i=1Ai is open in X (infinite union of open sets is open)
3. ∩n

i=1Ai is open in X (finite intersetion of open sets is open)

Proof. 1. ∅ is open sice Bϵ(x) ⊂ ∅ has no element. For X. ∀x ∈ X, we can pick ϵ > 0 s.t. Bϵ(x) ⊂ X.

2. Pick x ∈ ∪∞
i=1Ai, then ∃Aj ∈ {Ai} s.t. x ∈ Aj . Since Aj is open, ∃ϵ > 0 s.t. Bϵ(x) ⊂ Aj ⊂ x ∈ ∪∞

i=1Ai.

3. Pick x ∈ ∩n
i=1Ai, then x ∈ Ai, ∀i. Thus ∃ϵi > 0 s.t. Bϵi(x) ⊂ Ai.

Choose ϵ = min{ϵi} > 0. ϵ always exists because the intersection is finite. Bϵ(x) ⊂ Bϵi(x) ⊂ Ai, ∀i.
Thus Bϵ(x) ⊂ ∩n

i=1Ai.

Definition: 8.15: Closed Sets

A ⊂ X is closed in X if AC = X \A is open in X.

Note: Closed sets can be open as well.
Example: In R, ∅C = R, so ∅ is closed, but ∅ is open at the same time as shown in Theorem 8.7.

Definition: 8.16: Limit Points

Suppose A ⊂ X. x0 ∈ X is a limit point of A if ∀ϵ > 0, Bϵ(x0) contains infinitely many points in X.

Definition: 8.17: Connected Metric Space

A metric space X is disconnected if ∃U1, U2 that are disjoint, non-empty and open s.t. X = U1∪U2.
A metric space X is connected if it is not disconnected.

Note: A metric space X is connected ⇔ The only sets that are both open and closed are ∅ and X.

Example: X = (0, 1) ∪ (1, 2) with usual metric on R is disconnected. (0, 1) is both open and closed in
X.

Theorem: 8.8: Generalized De Morgan’s Law

1. (∪i∈IUi)
C = ∩i∈IU

C
i

2. (∩i∈IUi)
C = ∪i∈IU

C
i
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Theorem: 8.9: Topological Properties of Closed Sets

Let X be a metric space and Ai be closed sets in X. Then
1. ∅ and X are closed in X
2. ∪n

i=1Ai is closed in X (finite union of closed sets is closed)
3. ∩∞

i=1Ai is open in X (infinite intersetion of closed sets is closed)

Theorem: 8.10:

Given x ∈ X, ϵ > 0. The ball Bϵ(x) is open.

Proof. Choose y ∈ Bϵ(x). Notice d(x, y) < ϵ by definition.
Let r = ϵ− d(x, y). Then Br(y) ⊂ Bϵ(x).
Let z ∈ Bδ(y), d(x, z) ≤ d(x, y) + d(y, z) < d(x, y) + r < ϵ

Remark 36. Any open set U ⊂ X can be written as a union of open balls.

Example: Suppose x ∈ X. Then {x} is closed.

Proof. Consider {x}C = X \{x}. Let y ∈ X \{x}. We want to show that {x}C is closed. i.e. Bϵ(y) ⊂ {x}C .
Choose ϵ = d(x,y)

2 . Suppose x ∈ Bϵ(y). Then d(x, y) < ϵ = d(x,y)
2 . Contradiction.

Theorem: 8.11:

Let {xn} be a sequence in R, xn → x ⇔ ∀ϵ > 0, all but finitely many xi are in (x− ϵ, x+ ϵ).

Proof. (⇒) Suppose xn → x. Let ϵ > 0. Then ∃N ∈ N s.t. ∀n ∈ N, d(xn, x) < ϵ. i.e. xn ∈ (x− ϵ, x+ ϵ).
Then all but finitely many ({x1, ..., xN−1}) are in (x− ϵ, x+ ϵ).
(⇐) Suppose ∀ϵ > 0, all but finitely many x are in (x− ϵ, x+ ϵ).
Let ϵ = 1

m . Choose xnm ∈ (x − 1
m , x + 1

m). Then ∀ϵ > 0, we can choose M large enough s.t. ∀nm ≥ M ,
1
nm

< ϵ. Then xnm ∈ (x− 1
m , x+ 1

m) ⊂ (x− ϵ, x+ ϵ). Thus |xnm − x| < ϵ.

Theorem: 8.12:

f : X → Y is continuous at c ∈ X ⇔ if xn → c, then f(xn) → f(c).

Proof. (⇒) Suppose f is continuous at c and xn → c. Let ϵ > 0, s.t. dX(x, c) < δ ⇒ dY (f(xn), f(c)) < ϵ.
Since xn → C, ∃N s.t. ∀n ≥ N , dX(xn, c) < δ. Therefore, dY (f(xn), f(c)) < ϵ. Thus f(xn) → f(c).
(⇐) Suppose f is not continuous at c. Let ϵ > 0. Then ∀n ∈ N, ∃xn s.t. dX(xn, c) < 1

n , but
dY (f(xn), f(c)) ≥ ϵ. Then xn → c, but f(xn) ̸→ f(c).

Definition: 8.18: Neighborhood

Given a metric space (X, d). A neighborhood of a point y is an open set U ⊂ X s.t. y ∈ U .

Theorem: 8.13: Open Mapping

Let (X, dX) and (Y, dY ) be metric spaces. A function f : X → Y is continuous at c ∈ X ⇔ for every
neighborhood U of f(c) in Y , the set f−1(U) is an open neighborhood of c in X.
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Proof. (⇒) Since U is an open neighborhood of f(c), ∃ϵ > 0 s.t. Bϵ,dY (f(c)) ⊂ U .
Since f is continuous, ∃δ > 0 s.t. dX(x, c) < δ ⇒ dY (f(x), f(c)) < ϵ. Thus f(Bδ(c)) ⊂ Bϵ(f(c)). Then
Bδ(c) ⊂ f−1(Bϵ(f(c))) ⊂ f−1(U).
(⇐) Let ϵ > 0. Consider Bϵ(f(c)), f−1(Bϵ(f(c))) is an open neighborhood of c.
∃δ > 0 s.t. Bδ(c) ⊂ f−1(Bϵ(f(c))), since f−1(Bϵ(f(c))) is open. Then f(Bδ(c)) ⊂ Bϵ(f(c)).

8.3 Compact Sets

In this section, we consider compact sets in Rn.

Definition: 8.19: Vector Space

A vector space V over a field F is a set with addition (+ : V × V → V ) and scalar multiplication
(· : F × V → V ) with properties:

1. Commutativity: u+ v = v + u for u, v ∈ V
2. Associativity: u+ (v + w) = (u+ v) + w for u, v, w ∈ V
3. Identity of addition: ∃0 ∈ V s.t. v + 0 = v, ∀v ∈ V
4. Inverse of addition: ∀v ∈ V , ∃ − v ∈ V s.t. v + (−v) = 0
5. Identity of multiplication: 1v = v, ∀v ∈ V
6. Compatibility: a(bv) = (ab)v for a, b ∈ F , v ∈ V
7. Distributivity: a(u+ v) = au+ av, (a+ b)v = av + bv for a, b ∈ F , u, v ∈ V .

Definition: 8.20: Norm

A norm on a vector space V over R is a map ∥ · ∥ : V → [0,∞) with the following properties:
1. Positive Definite: ∥v∥ ≥ 0 ∀v and ∥v∥ = 0 ⇔ v = 0
2. Homogeneity: ∥λv∥ = |λ|∥v∥ for λ ∈ R
3. Triangle Inequality: ∥v + w∥ ≤ ∥v∥+ ∥w∥

A vector space with a norm on it (V, ∥ · ∥) is defined as a normed space.

Example: For C0([0, 1]), define ∥ · ∥ : C0([0, 1]) → [0,∞) with ∥f∥ = sup
x∈[0,1]

|f(x)|.

1. Positive for sure. ∥f∥ = 0 = sup
x∈[0,1]

|f(x)| ⇔ f(x) = 0, ∀x

2. ∥λf∥ = sup
x∈[0,1]

|λf(x)| = sup
x∈[0,1]

|λ||f(x)| = |λ| sup
x∈[0,1]

|f(x)| = |λ|∥f∥

3. |f + g| ≤ |f |+ |g| ≤ sup |f |+ sup |g| = ∥f∥+ ∥g∥ for all x. Thus ∥f + g∥ = sup |f + g| ≤ ∥f∥+ ∥g∥.

Example: L1-norm. ∥ · ∥L1 : C0([0, 1]) → [0,∞) with ∥f∥L1 =
∫ 1
0 |f |.

Note: ∥f∥L1 is always finite on [0, 1], but L1(R) = {f : f∞
−∞|f | < ∞} is finite if f = 0 outside of some

interval [−n, n]. Note this is not if and only if. e−x ∈ L1.

Definition: 8.21: Support

Consider a function f on R. The support of the function is the closure of {x : f(x) ̸= 0} = f−1({0}C),
i.e. {x : f(x) ̸= 0}, where {x : f(x) ̸= 0} is open and the closure is defined as the smallest closed set
that contains the open set.
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Definition: 8.22: Compact Support

A function f ∈ C0(R) has compact support if f = 0 outside of some interval [−n, n].

Theorem: 8.14:

Let A be a finite set of metric space (X, d). Then
1. Every sequence in A has a convergent subsequence
2. A is closed and bounded
3. Given any function f : A → R, f achieves max and min on A and f is bounded.

Proof. 1. Let {xi} be a sequence in A. ∃xj ∈ A s.t. xj appearing infinitely many times as A is finite,
but {xj} has infinitely many terms. xnk

= xj is a convergent subsequence.

2. A set of a single point is closed. A as a finite union of closed set is closed by Theorem 8.9.
Fix p ∈ A. Define B = max{d(p, xi) : xi ∈ A} < ∞, since max over finite set is well-defined. Thus A
is bounded.

3. f : A → R has a max and min since f(A) is a finite set in R

Definition: 8.23: Cover

A cover of a set A is a collection of sets {Ui}i s.t. A ⊂ ∪Ui. An open cover is a cover where all Uis
are open.

Definition: 8.24: Compact Set

Let (X, d) be a metric space. A ⊂ X is compact or topologically compact if every open cover of
A has a finite subcover. A ⊂ X is sequentially compact if every sequence of A has a convergent
subsequence.
For A a compact subset of X, we write A ⋐ X.

Example: R ⊂ R is not compact.

Proof. 1. Choose {xn} s.t. xn = n. xn diverges and every subseqeunce of xn diverges, thus R is not
sequentially compact.

2. Consider the open cover ∪n∈N(−n, n) ⊃ N. Suppose ∃nk s.t. ∪m
k=1(−nk, nk) ⊃ R. We know that

nk ̸∈ ∪m
k=1(−nk, nk). Thus not compact.

Example: (0, 1] is not compact

Proof. 1. Choose xn = 1
n . xn → 0, xnk

→ 0 ̸∈ (0, 1]. Thus it is not sequentially compact.

2. Consider open cover ∪∞
n=1(

1
n , 2) ⊃ (0, 1]. If we choose a finite subcover ∪m

k=1(
1
nk
, 2]. Then 1

2nk
∈ (0, 1]

is not covered. Not compact.

Example: [0, 1] is compact.
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Proof. 1. Consider {xn} ⊂ [0, 1]. Theorem 3.18 tells us that there must exist a convergent subsequence

2. Let [0, 1] ⊂ ∪∞
i=1Ui open cover. c′ = sup{0 ≤ c < 1 : [0, c] has finite sub-cover} exists.

Suppose c′ < 1. Notice c′ ∈ ∪N
k=1Uik is open. Then ∃ϵ > 0 s.t. Bϵ(c

′) ⊂ Ui for some i. Then there is
an element c′ + ϵ

2 > c, but c′ + + ϵ
2 ∈ Ui. Thus [0, c′ + ϵ

2 ] is covered by finitely many open sets from
the cover, which is a contradiction. Thus c′ = 1.

Remark 37. [a, b] is compact in R. [a, b]× [c, d] is compact in R2. In Rn, the Cartesian products of closed
intervals is compact.

Theorem: 8.15:

Compact sets in (X, d) are closed and bounded.

Proof. Let A ⋐ X.
Bounded: Fix p ∈ X and consider A ⊂ ∪∞

i=1Bi(p). Since A is compact, A ⊂ ∪M
i=1Bi(p) = BM (p) is

bounded.
Closed: we show that X \A is open.
Let p ∈ X \A. Consider ∀q ∈ A. Define Vq = B

(
p, d(p,q)2

)
, Wq = B

(
q, d(p,q)2

)
balls around p, q that don’t

intersect.
A ⊂ ∪q∈AWq. Since A is compact, ∃ a subcover s.t. A ⊂ ∪M

i=1Wqi = ∪M
i=1B

(
qi,

d(p,qi)
2

)
.

∩M
i=1B

(
p, d(p,qi)2

)
does not interset A. Also p ∈ ∩M

i=1B
(
p, d(p,qi)2

)
. Thus X \A is open. A is closed.

Theorem: 8.16:

If F ⊂ K ⋐ X is closed, then F ⋐ X.

Proof. F closed ⇔ FC open. Let Vi be an open cover of F . K ⊂ ∪∞
i=1Ui ∪ FC .

∪∞
i=1Ui ∪ FC covers X, because ∪∞

i=1Ui covers F .
Since K is compact, we can get a finite subcover F ⊂ K ⊂ ∪M

i=1Ui ∪ F c.
Thus F ⊂ ∪M

i=1Ui, F is compact in X.

Theorem: 8.17: Heine-Borel

Let A ⊂ Rn, A is compact ⇔ A is closed and bounded

Proof. In Theorem 8.15, we prove the ⇒ direction.
(⇐) Let A ⊂ R be closed and bounded. Then A ⊂ [−n, n], A is compact by Theorem 8.16.

Note: If a metric space has closed and bounded ⇒ compact, we say the space has Heine-Borel prop-
erty.

Theorem: 8.18: Bolzano-Weierstrass 2

Let K be a subset of Rn. K is sequentially compact ⇔ K is closed and bounded.
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Proof. (⇐) Let {xn} be sequence in K. Then {xn} is bounded as K is bounded. By Theorem 3.18, there
exists a convergent subsequence of {xn}. Since K is closed, ∃x ∈ K s.t. xn → x. Therefore every sequence
in K has a convergent subsequence in K. K is sequentially compact.
(⇒) Let K ⊂ R be sequentially compact. Let {xn} be a sequence in K s.t. xn → x ∈ R. Then every
subsequence of {xn} converges to x. Therefore x ∈ K. K contains all limit points thus is closed.
Suppose K is unbounded, ∃{xn} in K s.t. |xn| → ∞. Every subseqeunce of {xn} is unbounded. {xn} has
no convergent subseqeunce. Contradiction to the fact that K is sequentially compact.

8.4 Compact Metric Spaces

Lemma: 8.1: Lebesgue Number Lemma

Let (X, d) be a sequentially compact metric space and {Ui} be an open cover of X. Then ∃r > 0 s.t.
∀x ∈ X, Br(x) ⊂ Ui for some i.

Proof. Assume towards a contradiction that ∀r > 0, ∃x ∈ X s.t. Br(x) ̸⊂ Ui.
For each r = 1

n , choose xn s.t. Br(xn) ̸⊂ Ui.
Since (X, d) is sequentially compact, then there exists a subsequence xnk

→ x ∈ Ui0 for some i0, then
∃r0 > 0 s.t. Br0(x) ⊂ Ui0 .
Choose N sufficiently large s.t. 1

N < r0
2 and d(xN , x) < r0

2 .
Consider B 1

N
(xn), ∀y ∈ B 1

N
(xn), d(x, y) ≤ d(xN , x) + d(xN , y) < r0

2 + r0
2 = r0

Thus B 1
N
(xn) ⊂ Br0(x) ⊂ Ui0 . Contradiction.

Definition: 8.25: Totally Bounded

A metric space (X, d) is totally bounded if ∀ϵ > 0, ∃y1, ..., yk s.t. X ⊂ ∪k
i=1Bϵ(yi).

Theorem: 8.19:

If a metric space X is sequentially compact, then X is totally bounded.

Proof. Assume X is sequentially compact, but not totally bounded. i.e. ∃ϵ > 0 s.t. there do no exist
finitely many ϵ-balls that covers X. Then it takes infinitely many ϵ-balls to cover X.
Let x1 ∈ X, x2 ∈ X \ Bϵ(x1),...,xn ∈ X \ ∪n−1

i=1 Bϵ(xi). Thus d(xi, xj) > ϵ. Then there are no Cauchy
subsequences for {xi}. Contradiction to X being a sequentially compact metric space.

Theorem: 8.20:

A metric space X is topologically compact ⇔ X is sequentially compact.

Proof. (⇐) If X is sequentially compact. Let {Ui} be an open cover of X. Then by Lemma 8.1, ∃r > 0
s.t. there exist finitely many y1, ..., yk s.t. XC ⊂ ∪k

i=1Br(yi) ⊂ ∪k
j=1Uij .

(⇒) Suppose X is topologically compact. Assume X is not sequentially compact. i.e. ∃ sequence {xn}
with no convergent subseqeunce. Then

1. None of the xi can appear infinitely many times, otherwise xnk
→ xi

2. ∃ϵn > 0 s.t. Bϵn(xj) = {xj}, otherwise, we get a convergent subsequence as well.

Let U0 = X \ {Xi : i = 1, ...,∞}, U0 is open. X ⊂ U0 ∪ ∪∞
j=1Bϵn(xj).

Every finite subscover omits infinitely many points. Thus there is no finite subcover.
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Theorem: 8.21:

Let X,Y be metric spaces, f : X → Y continuous. Given K ⋐ X, f(K) ⊂ Y is compact.

Proof. Let {Ui} be an open cover of f(K) ⊂ Y . Then {f−1(Ui)} is an open cover of K. Since K is compact
in X, we have a finite subcover {f−1(Ui)}mi=1. Then {Ui}mi=1 is an open cover of f(K).

Corollary 2. Let X be a metric space, K ⋐ X. Then if f : X → R is continuous, f achieves a min and a
max on K.

Proof. f(K) ⊂ R is compact, thus closed and bounded by Theorem 8.17. We must have the max and
min.

Corollary 3. Given a compact metric space X, every continuous function f : X → R is bounded.

Proof. f(K) ⊂ R is compact, thus bounded by Theorem 8.17.

Theorem: 8.22: Cantor’s Intersection Theorem

If K1 ⊃ K2 ⊃ · · · is a decreasing sequence of non-empty sequentially compact subsets of Rn, then
∩i≥1Ki ̸= ∅.

Proof. Let xi ∈ Ki, ∀i. xi exists since Ki is non-empty. Notice xi ∈ K1, since K1 ⊃ Ki for i ≥ 1. Then
∀i, ∃ a convergent subsequence xnk

→ a ∈ K1. Further {xn}∞n=2 is a sequence in K2, thus it contains a
convergent subsequence converging to a ∈ K2. Iterative argument shows that a ∈ ∩i≥1Ki.

Definition: 8.26: Finite Intersection Property

A collection of closed sets {Ci}i has the finite intersection property if every finite subcollection has
a non-empty intersection.

Theorem: 8.23:

Given a metric space (X, d), the followings are equivalent:
1. X is compact
2. X is sequentially compact
3. X is Cauchy Complete (Definition 8.13) and totally bounded (Definition 8.25)
4. Every collection of closed subsets of X with the finite intersection property has a non-empty

intersection.

8.5 Complete Metric Spaces

8.5.1 The Banach Fixed Point Theorem

Definition: 8.27: Lipschitz

Let (X, dX) and (Y, dY ) be metric spaces. A function f : X → Y is Lipschitz or k-Lipschitz if ∃k ∈ R
s.t. dY (f(x), f(y)) ≤ kdX(x, y), ∀x, y ∈ X.

Remark 38. If a function f is Lipschitz, then f is continuous. This is called Lipschitz continuous. In fact
Lipschitz ⇒ uniform continuous.

74



Proof. Let ϵ > 0 and choose δ = ϵ
k , dY (f(x), f(y)) ≤ kdX(x, y) < kδ = ϵ.

Definition: 8.28: Uniform Continuous

Let (X, dX) and (Y, dY ) be metric spaces. A function f : X → Y is uniformly continuous if ∀ϵ > 0,
∃δ > 0 s.t. dX(x, y) < δ ⇒ dY (f(x), f(y)) < ϵ.

Theorem: 8.24:

Suppose f : X → Y is continuous and X is compact. Then f is uniformly continuous.

Proof. Let ϵ > 0. Since f is continuous, ∀c ∈ X, exists δc s.t. dX(x, c) < δc ⇒ dY (f(x), f(c)) <
ϵ
2 .

Since X is compact, the balls Bδc(c) convers X. By Lemma 8.1, ∃δ > 0 s.t. ∀x ∈ X, ∃c ∈ X s.t.
Bδ(x) ⊂ Bδc(c), then dX(x, y) < δ ⇒ y ∈ Bδc(c).
Then dX(x, y) < δ ⇒ dY (f(x), f(y)) ≤ dY (f(x), f(c)) + dY (f(y), f(c)) <

ϵ
2 + ϵ

2 = ϵ.

Theorem: 8.25:

Let f : [a, b]× [c, d] → R be continous, then g(y) =
∫ b
a f(x, y)dx is continous.

Proof. Let {yn} be a seqeunce in [c, d] s.t. yn → y, we want to show g(yn) → g(y) as by Theorem 8.12.

lim
n→∞

g(yn) = lim
n→∞

∫ b

a
f(x, yn)dx. Since f is uniformly continous, we can interchange the limits, and get

lim
n→∞

g(yn) =

∫ b

a
lim
n→∞

f(x, yn)dx =

∫ b

a
f(x, y)dx = g(y).

Definition: 8.29: Contraction

A function f : X → X is a contraction if it is k-Lipschitz for 0 ≤ k < 1. i.e. ∃0 ≤ k < 1 s.t.
d(f(x), f(y)) ≤ kd(x, y).

Definition: 8.30: Fixed Point

f : X → X, x ∈ X is a fixed point for f if f(x) = x.

Theorem: 8.26: Banach Fixed Point Theorem/Contraction Mapping Theorem

Let (X, d) be a non-empty Cauchy complete metric space and f : X → X be a contraction. Then f
has a unique fixed point.

Remark 39. This theorem also tells us how to find the fixed point.

Proof. Pick arbitrary x0 ∈ X. Define xn+1 = f(xn). Then the seqence will be x0, f(x0), f(f(x0)), ...
Note d(xi+1, xi) = d(f(xi), f(xi−1)) ≤ kd(xi, xi−1), since f is a contraction.
Then d(xi+1, xi) ≤ kid(x1, x0) by iteration.

By triangle inequality d(xn, xm) ≤
m−1∑
i=n

d(xi+1, xi) ≤
m−1∑
i=n

kid(x1, x0) = knd(x1, x0)

m−n−1∑
i=0

ki ≤ knd(x1, x0)

1− k
.

Since 0 ≤ k < 1 as a contraction, kn → 0, then d(xm, xn) → 0. Therefore {xn} is Cauchy.
Exsistence of fixed point (limit point): Since X is Cauchy complete and {xn} is Cauchy, ∃x ∈ X s.t. xn → x
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and x = lim
n→∞

f(xn) = f( lim
n→∞

xn) = f(x) by definition of {xn}.
Uniqueness: Let y ∈ X s.t. y = f(y). d(x, y) = d(f(x), f(y)) ≤ kd(x, y) by Definition 8.30 and 8.27.
Then (1− k)d(x, y) ≤ 0 ⇒ d(x, y) = 0, i.e. x = y.

Example: Let λ ∈ R, f, g ∈ C0([a, b]), k ∈ C0([a, b] × [a, b]). Consider the operator T : C0([a, b]) →
C0([a, b]) s.t.

T (f)(x) = g(x) + λ

∫ b

a
k(x, y)f(x)dx

For which λ is T a contraction?

Proof.

d(T (f1)(x), T (f2)(x)) = sup
x∈[a,b]

∣∣∣∣λ ∫ b

a
k(x, y)(f1(x)− f2(y))dx

∣∣∣∣ (by Theorem 6.5)

≤ |λ| sup
x∈[a,b]

∫ b

a
|k(x, y)||f1(x)− f2(x)|dx (by Theorem 6.7)

≤ |λ| sup
x∈[a,b]

|f1(x)− f2(x)| sup
x∈[a,b]

∫ b

a
|k(x, y)|dx

≤ |λ|d(f1, f2) sup
x∈[a,b]

∫ b

a
|k(x, y)|dx

Since k is continuous on a compact set, |k| is bounded, |k| < c, and sup
x∈[a,b]

∫ b

a
|k(x, y)|dx ≤ c(b− a). Thus

d(T (f1)(x), T (f2)(x)) ≤ |λ|d(f1, f2)c(b− a)
Therefore, if |λ| < 1

c(b−a) . T is a contraction on a complete metric space.

Also by Theorem 8.26, there exists a unique f ∈ C0([a, b]) s.t. T (f)(x) = g(x) + λ
∫ b
a k(x, y)f(x)dx.

Remark 40. If g ∈ C1([a, b]), then f ∈ C1([a, b]).

8.5.2 Completion of Metric Spaces

Example: R is a completion of Q in the following ways

1. Dedekind cuts (Rudin Ch1 Appendix)

2. Least upper bound property (Definition 2.3)

3. Equivalence classes of Cauchy sequences (we say {an} ∼ {bn} if |an − bn| → 0)

Definition: 8.31: Equivalent Cauchy Sequences

Two Cauchy sequences in a metric space are equivalent if |an − bn| → 0. The equivalent sequences
have the following properties:

1. Reflexivity: {an} ∼ {an} or equivalently, |an − an| = 0
2. Symmetry: {an} ∼ {bn} ⇔ {bn} ∼ {an}
3. Transitivity: {an} ∼ {bn} and {bn} ∼ {cn} ⇒ {an} ∼ {cn}. (d(an, cn) ≤ d(an, bn)+d(bn, cn) <

ϵ for large n)

Note: We have the same equivalence classes notion on metric spaces.
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Lemma: 8.2:

The set C∞(M) = {f : M → R : f continuous and bounded} is a metric space with metric
d∞(f, g) = sup

m∈M
|f(m)− g(m)|

Theorem: 8.27: Completion

Let (M,d) be a metric space. Then there exists a unique metric space M̄ s.t.
1. M ⊂ M̄
2. dM̄ = dM
3. M̄ is Cauchy Complete
4. The closure of M is M̄

Proof. Fix m′ ∈ M and define gm(p) = d(p,m)− d(p,m′). gm(p) is continuous by Theorem 8.3.
d(m1,m2) = sup

p∈M
|gm1(p)− gm2(p)| = d∞(gm1 , gm2), thus g is isometric (distance preserving) and bijective.

Thus M ⊂ C∞(M). Let M̄ be the closure of M in C∞(M).
Since M̄ is a closed subset of a Cauchy complete metric space, M̄ is Cauchy complete.

Example: The completion of Normed spaces is the Banach space. The completion of inner product space
is the Hilbert space.
Many functions are not Riemann integrable. Consider C0

C(R) (compactly supported functions on R that
are continuous). ∀f ∈ C0

C(R),
∫
R |f(x)|dx < ∞.

With I1(f, g) =
∫
R |f − g|, (C0

C(R), I1) = L1(R) = {f :
∫
|f | < ∞} is the Lebesgue integrable functions.

For Ip(f, g) = (
∫
R |f − g|p)1/p, we can define Lp(R) = (C0

C(R), Ip) = {f :
∫
|f |p < ∞}. Lp(R) is com-

plete.

8.6 Relevant Topics

Definition: 8.32: Topology

A topology T on a set X is a collection of subsets of X s.t.
1. ∅ and X are in T
2. For Ti ⊂ T , ∪∞

i=1Ti ∈ T
3. For Ti ⊂ T , ∩n

i=1Ti ∈ T
A topological space is a set X with T .

Definition: 8.33: open-close-topological-space

set A ⊂ X is open if A ∈ T and closed if X \A ∈ T .

Note: The topology on a metric space is unions of ϵ-balls.

Definition: 8.34: Metrizable

A topological space X is metrizable if there exists a metric d on X s.t. the topology on X is the
topology induced by d.
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Definition: 8.35: Neighborhoods and Continuous Functions

Let (X, TX) and (Y, TY ) be topological spaces. Then
1. A neighborhood U of a point x ∈ X is an open set U ∈ TX s.t. x ∈ U .
2. {xn} in X converges to x ∈ X if for every neighborhood U of x, ∃N s.t. ∀n ≥ N , xn ∈ U
3. f : X → Y is continuous if for each open set V ∈ TX , f−1(V ) ∈ TX

Definition: 8.36: Normed Space

Let (X, ∥ · ∥) be a normed space and {xn} be a sequence in X. Let d be the metric induced by the
norm. Then

1. xn → x ⇔ ∀ϵ > 0, ∃N s.t. ∀n ≥ N , d(xn, x) = ∥xn − x∥ < ϵ
2. {xn} is Cauchy ⇔ ∀ϵ > 0, ∃N s.t. ∀n,m ≥ N , d(xn, xm) = ∥xn − xm∥ < ϵ
3. A set A is open in X if ∀x ∈ A, ∃ϵ > 0 s.t. Bϵ(x) = {y ∈ X : d(x, y) = ∥x− y∥ < ϵ} ⊂ A

Definition: 8.37: Banach Space

A Banach space is a normed space that is Cauchy complete w.r.t. the norm

Example: Rn, Cn and C0([a, b]) are Banach spaces. The space

C∞(X) = {f : X → C : f continuous and bounded}

is a Banach space w.r.t. the uniform norm on metric spaces.

Definition: 8.38: Functional

Let (V, ∥ · ∥) be a normed space. A functional is a bounded linear map f : V → K, where K = R or
C.

Example: The set of functionals T are Cauchy complete under operator norm ∥Top∥ = sup
x∈V,∥x∥=1

|Tx| and

is a Banach space.

Definition: 8.39: Inner Product Space

An inner product space is a vector space X with an inner product ⟨·, ·⟩ : X ×X → R s.t.
1. Symmetry: ⟨x, y⟩ = ⟨y, x⟩
2. Linearity: ⟨ax+ by, z⟩ = a⟨x, z⟩+ b⟨y, z⟩
3. Positive definite: if x ̸= 0, then ⟨x, x⟩ > 0. ⟨x, x⟩1/2 induces a norm ∥x∥.

Definition: 8.40: Hilbert Space

A Hilbert space is a Cauchy complete inner product space.

8.7 Additional Definitions

These are some definitions and theorems covered in MIT 18.101, which are not covered in 18.190

Definition: 8.41: Interior

The interior of A is the set Int(A) = (AC)C . x ∈ Int(A) ⇔ ∃ϵ > 0 s.t. Bϵ(x) ⊂ A. Int(A) is open.
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Definition: 8.42: Exterior

The exterior of A is the set Ext(A) = (Int(A))C .

Definition: 8.43: Boundary

The boundary of A is Bd(A) = X \ (Int(A) ∪ Ext(A))

Note: X = Int(A) ∪ Ext(A) ∪ Bd(A) for any A ⊂ X.

Theorem: 8.28:

Let (X, dX) and (Y, dY ) be metric spaces, f : X → Y be continuous. If X is connected, then f(X)
is connected.

Proof. Assume that X is connected, but f(X) is disconnected. f(X) = U1 ∪ U2, where U1 ∩ U2 = ∅ by
Definition 8.17.
Then X = f−1(U1) ∪ f−1(U2) is disjoint union of open sets, since f is continuous. Contradition.

Theorem: 8.29: Intermediate Value Theorem

Let (X, d) be connected, f : X → R be continuous. If a, b ∈ f(X), and r ∈ (a, b), then r ∈ f(X).

Proof. Assume that r /∈ f(X), then we can define A = (−∞, r), B = (r,∞) s.t. X = f−1(A) ∪ f−1(B) as
disjoint union of open sets. Contradiction.

79



9 Derivatives in Higher Dimensions

9.1 Differentiation in Higher Dimensions

Definition: 9.1: Directional Derivative

Let U ⊂ Rn be an open set, f : U → Rm continuous at a ∈ U , u ∈ Rn. The directional derivative of

f in the direction of u at a is Duf(a) = lim
t→0

f(a+ tu)− f(a)

t
.

For the standard basis vectors e1, ..., en of Rn, we denote the directional derivatives by Dif(a) =

Deif(a) =
∂

∂xi
f(a).

Definition: 9.2: Differentiable Functions in Rn

Let U ⊂ Rn be an open set, f : U → Rm continuous at a ∈ U . f is differentiable at a if there exists a

linear map B : Rn → Rm s.t. ∀h ∈ Rn\{0}, lim
h→0

f(a+ h)− f(a)−Bh

|h|
= 0. i.e. f(a+h)−f(a) ≈ Bh

for small h.

Example: f(x1, x2) =

{
0, x1 = 0 or x2 = 0

1, otherwise
is not differentiable at (x1, x2) = (0, 0).

Proof. ∂f
∂x1

(0) = ∂f
∂x2

(0) = 0, but not differentiable along other directions at (0, 0).

Example: f(x, y) =

{
xy2

x2+y4
, (x, y) ̸= (0, 0)

0, x = y = 0
is not differentiable at (x, y) = (0, 0).

Proof. Let u = (h, k).

lim
t→0

f(tu)− f(0)

t
= lim

t→0

f(tu)

t
= lim

t→0

t3hk2

t2h2 + t4k4
1

t
=

{
0, h = 0
k2

h , h ̸= 0

The function is a non-zero constant along (t2, t), f(t2, t) = t4

2t4
= 1

2 , except that f(0, 0) = 0. Thus not
differentiable.

Theorem: 9.1:

If f is differentiable at a, then for every u, the directional derivative of f in the direction of u at a
exists.

Proof. Let t ∈ R, h = tu. If f is differentiable at a, then f(a+tu)−f(a)−Btu
|tu| → 0 as t → 0 for u ̸= 0.

f(a+ tu)− f(a)−Btu

|tu|
=

t

|tu|
f(a+ tu)− f(a)−Btu

t
=

1

|u|

(
f(a+ tu)− f(a)

t
−Bu

)
→ 0 as t → 0

So f(a+tu)−f(a)
t → Bu as t → 0. Also, B is unique, so the directional derivative exists.
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Definition: 9.3: Derivative

The derivative of f at a is Df(a) = B. Df : Rn → Rm is linear.

Theorem: 9.2:

If f is differentiable at a, then f is continuous at a.

Proof. If f is differentiable, ∀h ∈ Rn \ {0}, f(a+h)−f(a)−Bh
|h| → 0. Thus, f(a+h)− f(a)−Bh → 0 as h → 0.

Choose h (in place of δ) s.t. Bh < ϵ, f is continuous by Definition 8.7.

We now define some short hand notation for matrices and the Jacobian matrix.

Remark 41. Let L : Rn → Rm be a linear map and a ∈ Rn. a =

n∑
j=1

ajej = (a1, ..., an). The point La ∈ Rm

can be written as La =
∑

ajLej . We can decompose L = (L1, ..., Lm), where Lj : Rn → R are linear.
Lej = (L1ej , ..., Lmej). Let Liej = lij , They form a matrix [lij ] ∈ Rm×n

Remark 42. Let U ⊂ Rn, f1 : Rn → Rm1 , f2 : Rn → Rm2 be differentiable. Let m = m1 + m2. Then
Rm1 × Rm2 = Rm. Construct f : Rn → Rm by f = (f1, f2). The derivative of f at a is Df(a) =
(Df1(a), Df2(a)).

Definition: 9.4: Jacobian Matrix

Let f : U → Rm, f = (f1, ..., fm), where fi : U → R. f(x) = (f1(x), ..., fm(x)). Then Df(a)ej =

(Df1(a)ej , ..., Dfm(a)ej) =
(
∂f1
∂xj

(a), ..., ∂fm∂xj
(a)
)
. The derivative (Df)(a) can be represented by a

m× n matrix

Jf (a) = Df(a) =
[
∂fi
∂xj

(a)
]

Theorem: 9.3:

Suppose all of the partial derivatives ∂fi
∂xj

in the Jacobian matrix exist at all points x ∈ u and all of
the partial derivatives are continuous at x = a, then f is differentiable at a.

Proof. We consider n = 2, m = 1 cause. Let f : U → R where U ⊂ R2, so f = f(x1, x2).
Consider a = (a1, a2) ∈ U , h ∈ R2 \ {0} s.t. a+ h ∈ U .

f(a+ h)− f(a) = f(a1 + h1, a2 + h2)− f(a1, a2)

= f(a1 + h1, a2 + h2)− f(a1, a2 + h2) + f(a1, a2 + h2)− f(a1, a2)

=
∂f

∂x1
(c1, a2 + h2)h1 +

∂f

∂x2
(a1, d2)h2 for some c1 ∈ (a1, a1 + h1), c2 ∈ (a2, a2 + h2).

By Theorem 5.10.
Let c = (c1, a2 + h2), d = (a1, d2).
We want to show f(a+h)−f(a)−Df(a)h

|h| → 0 as h → 0, where Df(a) =
[

∂f
∂x1

(a), ∂f
∂x2

(a)
]
.
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|f(a+ h)− f(a)−Df(a)h| =
∣∣∣∣( ∂f

∂x1
(c)− ∂f

∂x1
(a)

)
h1 +

(
∂f

∂x2
(d)− ∂f

∂x2
(a)

)
h2

∣∣∣∣
≤
∣∣∣∣ ∂f∂x1

(c)− ∂f

∂x1
(a)

∣∣∣∣ |h1|+ ∣∣∣∣ ∂f∂x2
(d)− ∂f

∂x2
(a)

∣∣∣∣ |h2|
(By Triangle inequality)

Note |h| ≥ max(|h1|, |h2|), so
∣∣∣f(a+h)−f(a)−Df(a)h

h

∣∣∣ ≤ ∣∣∣ ∂f∂x1
(c)− ∂f

∂x1
(a)
∣∣∣ + ∣∣∣ ∂f∂x2

(d)− ∂f
∂x2

(a)
∣∣∣ → 0 as c → a,

d → a.
By squeeze theorem,

∣∣∣f(a+h)−f(a)−Df(a)h
h

∣∣∣→ 0

Definition: 9.5:

Let U ⊂ Rn, f : U → R. Define f ∈ C1(U) if ∂f
∂xi

, i = 1, ..., n exist and are continuous at every point
x ∈ U .
Similarly, we define f ∈ Ck if ∂f

∂xi
∈ Ck−1(U), i = 1, ..., n.

f ∈ C∞(U) if f ∈ Ck(U) for any k ≥ 1.

Theorem: 9.4: Interchanging Partial Derivative

∂

∂xi

∂

∂xj
=

∂

∂xj

∂

∂xi
=

∂2

∂xi∂xj

Proof. Take a ∈ U ⊂ R2, a = (a1, a2), h = (h1, h2) ∈ R2 \ {0} s.t. a+ h ∈ U .
Define ∆(h) = f(a1+h1, a2+h2)−f(a1, a2+h2)−f(a1+h1, a2)+f(a1, a2), ϕ(s) = f(a1+h1, s)−f(a1, s).
Note that ∆(h) = ϕ(a2 + h2)− ϕ(a2) = ϕ′(c2)h2 for c2 ∈ (a2, a2 + h2) by Theorem 5.10.

∆(h) =

(
∂f

∂x2
(a1 + h1, c2)−

∂f

∂x2
(a1, c2)

)
h2

=

(
∂

∂x1

(
∂f

∂x2
(c1, c2)

)
h1

)
h2 for c1 ∈ (a1, a1 + h) (By Theorem 5.10)

=
∂

∂x1

∂f

∂x2
(c)h1h2

By symmetry, we get ∆(h) = ∂
∂x2

∂f
∂x1

(d)h1h2.
Thus ∂

∂x1

∂f
∂x2

(c) = ∂
∂x2

∂f
∂x1

(d). As h → 0, c → a and d → a, ∂
∂x1

∂f
∂x2

(a) = ∂
∂x2

∂f
∂x1

(a) for any a ∈ U .

9.2 Chain Rule

Theorem: 9.5: Multivariable Chain Rule

Let U, V ⊂ Rn be open, f : U → V , g : V → Rk. Choose a ∈ U and b = f(a) ∈ V . Define
g ◦ f : U → Rk s.t. g ◦ f(x) = g(f(x)). If f is differentiable at a and g is differentiable at b, then
g ◦ f is differentiable at a and (Dg ◦ f)(a) = (Dg)(b) ◦Df(a).

Proof. Let h ∈ Rn \ {0} s.t. a+ h ∈ U .
Let ∆(h) = f(a+ h)− f(a). F (h) = f(a+h)−f(a)−Df(a)h

|h| = ∆(h)−Df(a)h
|h| .
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Since f is differentiable at a, F (h) → 0 as h → 0 by Definition 9.2.
Firstly, we show taht ∆(h)

|h| = F (h) + Df(a)h
|h| is bounded.

Define |Df(a)| = sup
i

∣∣∣∣ ∂f∂xi (a)
∣∣∣∣.

We can write Df(a)h =
∑

hiDf(a)ei =
∑

hi
∂f
∂xi

(a)

Then |Df(a)h| =
∣∣∣∣∑hi

∂f

∂xi
(a)

∣∣∣∣ ≤ ∑
|hi|

∣∣∣∣ ∂f∂xi (a)
∣∣∣∣ ≤ m|h||Df(a)| by triangle inequality and |h1| ≤ |h|.

The sum is converted to multiplication of m because the terms are independent of i.
Thus ∆(h)

|h| ≤ F (h) +m|h||Df(a)| is bounded, since all values on the RHS are finite.

Now consider g : V → Rk at b = f(a) ∈ V . Let k ∈ Rn \ {0} s.t. b+ k ∈ V .
Define G(k) = g(b+k)−g(b)−Dg(b)k

|k| . Then g(b+ k)− g(b) = Dg(b)k + |k|G(k).

g ◦ f(a+ h)− g ◦ f(a) = g(f(a+ h))− g(f(a)) = g(b+∆(h))− g(b)

= Dg(b)∆(h) + |∆(h)|G(∆(h)) (Let k = ∆(h))

= Dg(b) ◦Df(a)h+ |h|Dg(b)F (h) + |∆(h)|G(∆(h))

(Substitute in ∆(h) = |h|F (h) +Df(a)h)

Then g◦f(a+h)−g◦f(a)−Dg(b)◦Df(a)h
|h| = Dg(b)F (h) + ∆(h)

|h| G(∆(h)) → 0 as h → 0.

Theorem: 9.6:

If f : U → V ⊂ Rn is Cr and g : V → Rp is Cr, then g ◦ f : U → Rp is Cr.

Proof. Consider r = 1, by Theorem 9.5, Dg ◦ f(x) = Dg(f(x)) ◦Df(x) =
[
∂gi
∂xj

Df(x)
]
. g ∈ C1, so ∂gi

∂xj
is

continuous. Also, Df(x) =
[
∂fi
∂xj

]
is continuous. Thus Dg ◦ f(x) is continuous. g ◦ f is C1. Then we can

prove by induction on r.

Theorem: 9.7: Multivariable Mean Value Theorem

Let U ⊂ Rn be open, f : U → R and f ∈ C1. For a ∈ U , h ∈ Rn s.t. a + h ∈ U , we have
f(a+ h)− f(a) = Df(c)h, where c is a point on the line segment a+ th, t ∈ [0, 1].

Proof. Define ϕ : [0, 1] → R, ϕ(t) = f(a+ th).
Then Theorem 5.10 and Theorem 9.5 implies ϕ(1)− ϕ(0) = ϕ′(c) = Df(c)h for c ∈ {a+ th, t ∈ [0, 1]}

9.3 Inverse Function Theorem

Definition: 9.6: Euclidean and Supremum Ball

The Euclidean ball is Bδ(a) = {x ∈ Rn : ∥x − a∥ < δ}. The supremum ball is Rδ(a) = {x ∈ Rn :
|x− a| < δ}. The supremum ball is a rectangular region and Bδ(a) ⊂ Rδ(a).

Notation: If a = 0, we simply write Bδ and Rδ.

Definition: 9.7: Convex Set

U ⊂ Rn is convex if a, b ∈ U ⇒ (1− t)a+ tb ∈ U for all t ∈ [0, 1].
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Definition: 9.8: Diffeomorphism

Let U and V be open sets in Rn and f : U → V a Cr map. The map f is a Cr diffeomorphism if it
is bijective and f−1 : V → U is also Cr.

Lemma: 9.1:

Let U ⊂ Rn be open and f : U → Rk be C1. Assume U is convex. If |Df(a)| ≤ c for all a ∈ U , then
∀x, y ∈ U , |f(x)− f(y)| ≤ nc|x− y|.

Proof. Let x, y ∈ U , since U is convex, we can apply Theorem 9.7 to a point d on the line joining x to y in
U .
For each component fi,

|fi(x)− fi(y)| =

∣∣∣∣∣∣
∑
j

∂fi
∂xj

(d)(xj − yj)

∣∣∣∣∣∣
≤
∑
j

∣∣∣∣ ∂fi∂xj
(d)

∣∣∣∣ |xj − yj | (By Triangle inequaltiy)

≤
∑
j

c|xj − yj | since |Df(a)| ≤ c

≤ nc|x− y|

This is true for all i, thus |f(x)− f(y)| ≤ nc|x− y|.

Lemma: 9.2:

Let U ⊂ Rn be open and f : U → R be C1. Suppose f achieves min at b ∈ U . Then ∂f
∂xi

(b) = 0 for
i = 1, ..., n

Proof. We can reduce to one dimension in each direction.
Let b = (b1, ..., bn), ϕ(t) = f(b1, ..., bi−1, t, bi+1, ..., bn). ϕ(t) is C1 near bi and has a min at bi, then
∂f
∂xi

(b) = 0.

Theorem: 9.8: Inverse Function Theorem

Let U, V ⊂ Rn be open, and f : U → V be C1. Suppose g = f−1 : V → U is also C1. i.e.
g(f(x)) = x. Then

Dg(b) ◦Df(a) = I,Dg(b) = (Df(a))−1

Remark 43. To prove the theorem, we consider a local diffeomorphism. If Df(a) : U ⊂ Rn → Rn is
bijective, then there exists a neighborhood U1 of a in U and a neighborhood V of f(a) in Rn s.t. f(U1) ⊂ V
is a Cr diffeomorphism of U1.

Proof. We want to show f is a locally diffeomorphism at a, so we need to show that f is bijective and f−1

is Cr.

Firstly, we show that f is bijective:
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1. (Injective) Assume for simplicity a = 0, f(a) = 0 and Df(0) = I.
Define g : U → Rn by g(x) = x − f(x), Dg(0) = I − Df(0) = 0, i.e. ∃δ > 0 s.t. ∀x ∈ Rδ(0)
|Dg(x)| < ϵ

n .
By Lemma 9.1, ∀ϵ > 0, ∃δ > 0 s.t. ∀x, y ∈ Rδ(0), |g(x)− g(y)| ≤ n|Dg(x)||x− y| < ϵ|x− y|.
Take x, y ∈ Rδ(0).
|x−y| = |x−f(x)+f(x)−f(y)+f(y)−y| = |g(x)−g(y)+f(x)−f(y)| ≤ |g(x)−g(y)|+ |f(x)−f(y)|
⇒ |x− y| ≤ ϵ|x− y|+ |f(x)− f(y)| ⇒ (1− ϵ)|x− y| ≤ |f(x)− f(y)|
Choose δ s.t. ϵ > 1

2 . |f(x)− f(y)| ≥ 1
2 |x− y|. Thus ∀x ̸= y, f(x) ̸= f(y). f is injective.

2. (Surjective) Since Df(0) = I, det
[
∂fi
∂xj

(0)
]
= 1, we can choose δ s.t. ∀x ∈ Rδ, det

[
∂fi
∂xj

(0)
]
> 1

2 .
Let y ∈ Bδ/4.
Consider h : Rδ → R with h(x) = ∥f(x)− y∥2. Since Rδ is compact, h has a minimum at c ∈ Rδ by
Corollary of Theorem 8.21. We now want to show that c ∈ Int(Rδ).
Consider the boundary points, x ∈ Rδ s.t. |x| = δ, |f(x)− f(0)| = |f(x)| ≥ δ

2 .
Then ∥f(x)∥ ≥ δ

2 and ∥f(x)− y∥ ≥ δ
4 , since y ∈ Bδ/4. Then h(x) ≥ (δ/4)2.

h(0) = ∥f(0) − y∥2 = ∥y∥2 < (δ/4)2. Then h(0) ≤ h(x), ∀x ∈ Bd(Rδ). Thus c cannot be in the
boundary, and c ∈ Rδ.
By Lemma 9.2, ∂h

∂xj
(x) = 0, ∀j = 1, ..., n.

Since h(x) =

n∑
i=1

(fi(c)− yi)
2,

∂h

∂xj
(c) = 2

n∑
i=1

(fi(c)− y1)
∂fi
∂xj

(c).

However, det
[
∂fi
∂xj

(0)
]
> 1

2 ̸= 0, we must have fi(c) − yi = 0. i.e. ∀y ∈ Bδ/4, ∃c ∈ Rδ s.t. f(c) = y,
so f is surjective.

Thus f : U1 = Rδ → V = Bδ/4 is bijective.

Then, we show that f−1 : V → U1 is continuous: Let a, b ∈ V . Define x = f−1(a), y = f−1(b). Then
a = f(x) and b = f(y), |a− b| = |f(x)− f(y)| ≥ 1

2 |x− y|
Thus |a− b| ≥ 1

2 |f
−1(a)− f−1(b)|, so f−1 is continuous on V = Bδ/4.

We show that f−1 : V → U1 is differentiable at 0 and Df−1(0) = I.
Let k ∈ Rn \ {0} s.t. k → 0. We want to show f−1(0+k)−f−1(0)−Df−1(0)k

|k| → 0 as k → 0.

Note f−1(0) = 0, this simplifies to f−1(k)−k
|k| .

Define h = f−1(k) s.t. f(h) = k and |k| = |k − 0| ≥ 1
2 |f

−1(k)− f−1(0)| = 1
2 |h|.

Thus f−1(k)−k
|k| ≤ h−f(h)

1
2
|h| .

Note that h−f(h)
|h| = f(h)−f(0)−Df(0)h

|h| . Since f is differentiable, h−f(h)
|h| = f(h)−f(0)−Df(0)h

|h| → 0.

By squeeze theorem, f−1(0+k)−f−1(0)−Df−1(0)k
|k| → 0 as k → 0. Thus f−1 is differentiable.

Now we have shown that there exists a neighborhood U1 = Rδ of 0 in U and a neighborhood V = Bδ/4 in
Rn s.t. f : U1 → V is bijective, f−1 : V → U1 is continuous and f−1 is differentiable at 0.

We can shift f from 0 to any arbitrary point a ∈ U by defining U ′ = U − a = {x− a : x ∈ U}.
Define f1 : U

′ → R by f1(x) = f(x+ a)− b s.t. f1(0) = 0 and Df1(0) = Df(a).
Let A = Df1(0) = Df(a). A is invertible.
Define f2 : U

′ → Rn by f2 = A−1f1 s.t. f2(0) = 0 and Df2(0) = I. Thus the results around 0 also hold for
f2.
Because f1 = A ◦ f2, the results also apply to f1.
Finally, f(x) = f1(x− a) + b, thus the theorem holds for f .
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We have now shown that f : U → V is bijective for any U, V .
Let c ∈ U , Df(c) =

[
∂fi
∂xj

(c)
]
= Jf (c).

Since Df(c) is bijective, det
[
∂fi
∂xj

(c)
]
̸= 0.

f ∈ C1 ⇒ ∂fi
∂xj

continuous on U . If det
[
∂fi
∂xj

(c)
]
̸= 0, then det Jf (c) ̸= 0 for c → a.

We can shrink U s.t. det Jf (c) ̸= 0 ∀c ∈ U .
Then ∀c ∈ U , f−1 is differentiable at f(c).
Let g = f−1 s.t. g ◦ f = I. Suppose p ∈ U and q = f(p). Then by chain rule, Dg(q) ◦ Df(p) = 1 and
Dg(q) = Df(p)−1, Jq(q) = Jf (p)

−1.

i.e. ∀x ∈ V ,
[
∂gi
∂xj

(x)
]
=
[
∂fi
∂xj

g(x)
]−1

.

Also g ∈ C1 since f ∈ C1. And we can show by induction that g ∈ Ck if f ∈ Ck.

86


	Basic Set Theory
	Definitions
	Induction
	Cantor's Theory of Cardinality

	Real Numbers
	Ordered Sets and Rational Numbers
	Fields and Ordered Fields
	Real Numbers
	Absolute Values
	Decimal Representation and Uncountability of Reals
	Complex Field

	Sequences and Series
	Sequences and Limits
	Facts about Limits
	Limsup, Liminf, and Bolzano-Weierstrass
	Cauchy Sequences
	Series
	Convergence Tests


	Continuous Functions
	Limits of Functions
	Continuous Functions
	Extreme and Intermediate Value Theorems
	Uniform Continuity

	Derivatives
	Derivative
	Mean Value Theorem
	Taylor's Theorem

	Riemann Integration
	The Riemann Integrals
	Fundamental Theorem of Calculus
	Integration Techniques

	Sequence of Functions
	Motivation
	Pointwise and Uniform Convergence
	Interchange of Limits
	Power Series

	Metric Spaces
	Introduction
	General Theory
	Compact Sets
	Compact Metric Spaces
	Complete Metric Spaces
	The Banach Fixed Point Theorem
	Completion of Metric Spaces

	Relevant Topics
	Additional Definitions

	Derivatives in Higher Dimensions
	Differentiation in Higher Dimensions
	Chain Rule
	Inverse Function Theorem


