
Five essential tasks in software engineering:
Specification/Requirements:

Specification is a description of a software system to be developed
Functional: use cases, interactions the software must provide ○

non-functional○

•

Requirement•
Design:

Different aspects•
Guides the development team in building a software product•

Implementation:
Converting the design into an executable system•
Must address some fundamental principles (requirements)•

Verification & Validation
More than testing•
Make sure that a system conforms to the specification and meets the requirements•
Verification: does the software meet the specification?•
Validation: does the specification capture the customer's needs? Is it what the customer
wants?

•

Maintenance & Evolution (most of the time)
Modification of a software product after delivery•
Four main types:

Corrective: fixing errors○

Perfective: implementing new/changed user requirements○

Adaptive: modifying the system to cope with changes in environment○

Preventive: increasing maintainability or reliability○

•

A software process is who is doing what, when, and how in the development of a software system

Process models:
Code-and-fix

Good for small projects and short-lived prototypes○

Hard to accommodate changes○

No good way for assessing risks○

•

Waterfall
Following the steps○

Advantages
Suitable for projects that are well understood but complex▪

○

Disadvantages
Requires much planning up-front (not easy)▪

No sense of progress until the end▪

Delivered product may not match need▪

○

•

Staged Delivery
procedure

Waterfall-like beginnings (requirements and design upfront)▪

Short release cycles (plan, code, test, release, repeat)▪

Delivery possible at the end of any cycle▪

○

Advantages
Intermediate deliveries can have feedback▪

Can ship at the end of any release cycle▪

Integration problems are visible early▪

○

disadvantages
Requirements must be known up-front▪

○

•

Lecture 1
September 9, 2020 5:04 PM

 CPEN321 Page 1

Requirements must be known up-front▪

Evolutionary prototyping
Similar to staged delivery○

Requirements are not know up-front but discovered by feedback○

Advantages
Participatory design ▪

Useful feedback loops▪

Practical and widely used▪

○

Disadvantages
Spec must be flexible▪

Requires customer involvement▪

Planning, schedule, feature set are hard to estimate▪

○

•

Spiral
Risk-oriented variation of evolutionary prototyping○

Need to identify and solve problems with the highest risk at each iteration○

Advantages
Early indication of problems▪

Decrease risks▪

Appropriate at the beginning▪

○

Disadvantages
Must assess risk▪

Tasks are changed frequently▪

○

•

Agile
Customer collaboration○

Responding to change○

Value individuals and interactions○

Practices
Continuous integration (CI)▪

Scrum
Scrum member rotate through roles (especially product owner) each
iteration.

□

Sprint (iteration) is the basic unit of development in scrum
It is restricted to a specific duration (usually two weeks)

Sprint planning: communicate the scope of work for the sprint

What have you completed◊

What is blocking in your way◊

What will you do next◊



□

Challenges
Team members are geographically dispersed or part-time

Members have very specialized skills

Products with many external dependencies

Products with regulated quality control

□

▪

Test-driven development▪

Pair programming▪

○

•

Keeping track of progress
Task board (GitHub has an native solution)

Can have priority points based on difficulty○

•

Burndown chart
Time-work remaining chart○

•

Sprint review and retrospective
Review:

Review the work that was completed and planned but not completed▪

Present completed work to the stakeholders▪

Team and stakeholder collaborate on what to work next▪

○

Retrospective
What went well during the sprint?▪

○

•

 CPEN321 Page 2

What went well during the sprint?▪

What could be improved?▪

 CPEN321 Page 3

Processes: Main Message
Customize the processes depending on the product, organizational culture, team structure,
needs, etc.

•

Follow processes, but do not over-emphasize process over product•
This is how we should develop a software. (SDLC)

UML: Unified Modeling Language
It's a common standard of software development, independent of development process and
programming language.

UML diagrams are used for capturing different aspects of design:
Requirements•
Systems architecture•
Program design•

UML diagrams types
Class:

use rectangle showing the name of the class, data structure, attributes and operations○

Shows the relationships between classes in a system○

Visibility symbols
+: public▪

-: private▪

#: protected▪

~: package▪

○

Object:
An instance of a class, can optionally contain values of fields▪

Written in a rectangle [object name; class name](not necessary to have both)▪

○

Interfaces:
Specifies a contract▪

○

In UML, both Classes and Interfaces are instances of an abstract class called Classifier○

Relations
Generalization

Relationship between a more general class (super class, parent) and a more
specific class (subclass, child)

□
▪

Association
Role: association end name□
Multiplicity: multiple class can associate to one class, and one class can
associate to multiple classes

□

Types:
Binary

Aggregation: a weak form of whole/part



One segment can belong to multiple triangles

Triangles must have 3 segments

◊

Composition: a strong form of whole/part◊



□

▪

○

•

Lecture 2
September 16, 2020 5:07 PM

 CPEN321 Page 4



One File belongs to one folder, and doesn't have the right
to live by itself, and one file can only live in one folder.



Folders can have multiple files

Only one end of association can be marked as
aggregation/composition

◊

They should form an acyclic graph, since no instance should be
part of itself directly or indirectly.

◊

N-ary

Dependencies▪

Case diagram:

Represents the user's interaction with the system (use cases)○

Subject: boundaries of the system○

Actors: shapes with names (nouns)○

Use cases: ellipses with names (verbs)○

Line associations: connect actors to use cases
Multiplicity▪

○

Relationships
users

Generalization□
▪

Use cases
Include: A includes B, then B must be executed in/with A□
Extend: A extends B, A may/may not be executed before B□
Generalization□

▪

○

•

Sequence diagram:•

 CPEN321 Page 5

Represents the interactions of the objects in a system○

Consider small, discrete pieces of systems○

Messages
Synchronous call sends a message and wait for the response▪

Asynchronous call sends a message and proceeds immediately without waiting for
a return value

▪

○

Execution specification represents a period in the participant's lifetime
Can be overlapped▪

○

Interaction fragments:
Allows to call another interaction▪

Good for simplifying large and complex systems, and reusing interactions▪

○

Eg.

▪

User tries to get FB resource by web browser (synchronous)▪

Web browser requests FB access (synchronous)▪

The application sends an http redirect back to the web browser (async)▪

Web browser tries to authorize on the FB server (sync)▪

FB send back the permission form to web browser (async)▪

Web browser shows the form to the user (async)▪

○

 CPEN321 Page 6

Requirements specify what to build (not how to build it)
Functional: actors and actions

What the users can do○

•

Non-functional: performance, safety, security, scalability, dependability, reusability, portability•

How to build requirements:
Access to users is important

Talk to users○

Ask questions to dig for requirements○

think about why, not just what○

Allow requirements to change later○

•

Personas
Think about typical users of a system○

Personas should be different from each other○

Pros:
Help understand the customers and satisfy customer problems▪

Align the stakeholder in the entire company▪

○

Cons:
May lead to false sense of understanding▪

Biases on the developer perception▪

○

Example (online dating system)○

•

How to document requirements:
Non-functional requirements

Specific and measurable○

Write down in a list○

Can vary for different devices to fit users○

•

Functional requirements
Document

Detailed and long (rigid)▪

Includes: preface, introduction, glossary, user requirements definition, system
architecture…

▪

○

Prototype
Evolutionary prototype

Will become deliverable system□
▪

Throw-away prototyping
Just used for defining the specification and thrown away□
Throw away because the system is poorly structured and difficult to
maintain

□

▪

○

•

Lecture 3
September 21, 2020 2:59 PM

 CPEN321 Page 7

maintain
Pros:

Clear and easy to understand

Appealing to the users

Useful for parts of systems that's hard to describe

□

Cons
Non-functional requirements are hard to express

Some functional requirements are difficult to prototype

Has no legal standing as a contract

Time consuming

□

User stories:
High level definition of a requirement▪

Contains just enough info so that the developers can produce a reasonable
estimate of the effort to implement it

▪

Format:
As persona (a role), I want sth, so that benefit□

▪

○

Use cases:
Focus on behaviors to meet the user's needs▪

Actors are not personas
Multiple personas can be a single user□

▪

Add more info (relationships between actors, use cases)▪

○

Screen sketches

Dating system example
Use case: register, setup profile, make some of the profile to be private, search based on specific
requirements/filter, direct messages, Like/dislike other users, ban users, upgrade the membership.
Actors: users (register, setup profile, search based on filter, direct message, like/dislike users),
system owner (ban, browse users)

 CPEN321 Page 8

System modules:
Use nouns, not verbs•
Break a large system down into progressively smaller components or classes that are
responsible for some part of the problem domain

•

Lecture 4
September 23, 2020 5:45 PM

 CPEN321 Page 9

Single responsibility principle:
Every module should have single responsibility•
Responsibility should be entirely encapsulated by the module•
All module functions should be aligned with that responsibility•

Low Coupling/High cohesion principle
Cohesion: degree to which the elements of a module belong together

Related code should be close to each other○

•

Coupling: the degree to which the different modules depend on each other
Modules should be independent○

•

High Fan-in/ Low Fan-out principle
Have a module used by many others (fan in)•
Do not use many other modules (fan out)

High fan-out lacks cohesion○

•

•

Principle of least knowledge
Keep only the info and resources absolutely necessary for the module•
Module should assume as little as possible about the structure or properties of any other
modules

•

Do not repeat yourself:
Implement all functions once and only once•

Keep things simple

Module interfaces:
Only the concept with use cases, not the detail implementation•
Identify input and return value•
Return value from one method should be an input to the next method•
Collect info from multiple use cases

Completeness○

•

Meaningful and consistent names
Either remove or delete○

•

Think about single responsibility, coupling/cohesion, fan-in/fan-out•

Note:
Architecture and high-level design are interchangeable•
Low-level design: detailed design of individual modules•
Modules, subsystems, components are interchangeable•

Lecture 5
September 28, 2020 2:37 PM

 CPEN321 Page 10

Architecture
It is a big picture of high-level modules and their interactions

Interfaces and communication protocols○

Frameworks, tools, and languages○

Database and data structures○

Design of the main algorithms○

Security mechanisms○

•

Architectural pattern: stylized description of good design practice, based on experience
Often a complete system has a combination of architectural styles○

Layered architecture
Android software can be layered▪

○

Client-server architecture
Android itself is not a client-server architecture. ▪

○

Pipe-and-filter architecture○

Model-view-controller
Has three layers: model (data), controller (logic), view (user representation of
data)

▪

○

Message bus
A software system that sends and receives messages using multiple channels▪

○

•

 CPEN321 Page 11

Patterns and principles
Principles: guideline to follow, regardless of what patterns we are using

Don't repeat yourself○

Single responsibility○

Separation of concerns○

Independence, high fan-in/low fan-out○

Least knowledge○

Make it simple (KISS)○

•

Patterns: something useful to follow when designing, it satisfies most principles
Layered architecture○

Client-server○

Pipe-and-filter○

Model-view-controller○

Message bus○

•

Microservices are used for backend development, split the backend into multiple independent
components

Developed, deployed, scaled independently with different languages/technology•
Communicate over lightweight interfaces•
Characteristics

Organized around business capabilities, one service per business capability○

Loosely coupled (have few interfaces)○

Owned by a small team○

Independently deployable○

Highly maintainable and testable○

•

At runtime
Managed by container-orchestration system○

•

Why do we need microservices
Agile development means more speed and independence○

Cloud allows companies to scale individual services up/down○

Technology: docker, kubernetes○

•

Challenges
Complexity shifted outside the code○

Performance○

Security○

Framework diversity○

Logging, monitoring and distributed tracing○

•

Microservice is not library, it is an component, it can use API to talk with other microservices

API (Application Programming Interface):
Is a style defining an interface, not a library•
It can belong to a class, a library, or a microservices•
Libraries expose API to the external world•

Lecture 6
September 28, 2020 9:33 PM

 CPEN321 Page 12

REST (Representational State Transfer)
It is a design style (guideline) for communication in networked systems

Not a protocol or specification○

•

Main parts
Resource identification: URI

Most important▪

Every resource has a unique URI▪

Every URI refers to exactly one resource▪

○

Resource representation: any format, e.g. JSON, XML, web page
Can flow to and from the service▪

○

Unified interface to get, create, delete or update resources
REST uniform interface principle uses 4 main HTTP methods

GET: retrieve□
POST: create□
PUT: update□
DELETE□

▪

Don't use GET to delete or post▪

○

•

Stateless server
Server does not keep track of the client's state•
When a client makes a request, it includes all necessary information for the server to fulfill the
request

•

 CPEN321 Page 13

 CPEN321 Page 14

What to track in version control
Source code without generated files•
Tests•
Docs•
Configuration files•

Types of version control system
Centralized

A central repository contains all data and histories○

All commits are made to the central repo○

Each developer only has a snapshot of the repo○

Pros:
Everyone knows what the others do▪

○

Cons:
If the main server goes down, single point of failure▪

Cannot keep track of their own change without sharing▪

○

•

Distributed
Each copy is a full repo

Include data of current version and full history▪

○

Developers can commit locally to their own repo
Push to the remote, if they want their commits to be visible to others▪

○

No centralized repo, changes can go to any remote○

Pros:
Do local commits, full history is always available▪

Don't need to access a remote server▪

Can commit changes continuously▪

○

Cons:
More complex synch mechanism▪

Require a large amount of space when working with binary files that cannot be
compressed

▪

○

•

Git
Branching

Can write and test different solutions in parallel○

Can develop two features at the same time○

Achieves code isolation○

Master branch: default branch when creating a repo○

Head: a special pointer that simply points to the currently checked out branch or commit
Git checkout changes the head pointer▪

Git checkout HEAD~1: roll back to the parent of the HEAD▪

Git checkout HEAD~2: roll back 2 generations of HEAD▪

○

•

Merging
Git uses 3-way merging

What is the original version▪

What you changed▪

What the other developer changed▪

○

2-way merging
Cannot tell whether you/I/Both modified something▪

○

Steps○

•

Lecture 7
October 14, 2020 5:19 PM

 CPEN321 Page 15

▪

▪

If used properly
Non-destructive▪

Keeps info in merge commit▪

○

If used improperly
Creates large amount of extraneous merge commits▪

Might cause the project histories to be messy and less readable▪

○

Rebasing
To avoid messy history○

Shift the branch from one base master branch timestamp to another○

Pros
Keep a clean linear project history▪

No merge commits▪

○

Cons
Rewrite project histories▪

Lose information such as conflict resolutions▪

○

•

Squashing
Meld a series of commits down into a single commit○

•

 CPEN321 Page 16

•

Cherry-pick
Choose a commit from one branch and apply it to another by creating a new commit○

Useful when developers need a specific commit applied to some branches, but not
commits prior to this one

○

Creates a duplicate commit with the same changes and developers lose the ability to
track the history of the original commit

○

•

Conflicts in integration
Conflicts occur when

Two commits modified the same line in the same file▪

A file is deleted that another person is attempting to edit▪

○

Must resolve merge conflicts before merging○

Integrate frequently to avoid merge conflicts○

•

GitHub
Git is the version control system, a tool to manage source code history•
GitHub is a hosting service for Git repos•

Clone and fork
Clone uses the same copy•
Fork makes a new copy of the repo

You will not affect the original copy when modifying the forked copy○

Used to propose changes or use other people's repo as starting point○

•

Pull request
If have write access, can push directly•
Otherwise, need a pull request•

Workflow
Master only good for small simple projects (master is always deployable)

Everyone works on the master branch○

Always pull before push○

•

Master/develop workflow (develop is center of development work)
Two branches: master and develop○

Master HEAD always reflects a production-ready state○

Develop HEAD always reflects a state with the latest delivered changes for next release○

•

Feature branch (used for individual features)
Exists when the feature is in development○

Eventually merged back into develop or discarded○

•

Release branch (keep track of all releases)
Create a branch for each upcoming release

•

 CPEN321 Page 17

Create a branch for each upcoming release○

Enables concurrent release management, multiple and parallel releases○

 CPEN321 Page 18

Push notifications
Three components

Front-end client•
Back-end server•
Push notification server•

Workflow:
Front-end client creates a persistent connection with the push notification server and receives
a token that reflects their connection

•

The token is sent to the back-end•
Back-end, sends the message to the push notification server with the token•
Push notification server notifies the front-end through the persistent connection•

Use Firebase cloud messaging for push notifications

Lecture 8
October 19, 2020 3:02 PM

 CPEN321 Page 19

Code review
When

When developer's code is integrated with any of the main branches•
•

Who
Everyone.•

•

Types
Manual

Improve the code
Direct feedback leads to better algorithms, tests, design patterns▪

Prospect of someone reviewing your code raises the quality threshold▪

Forces code authors to articulate their decisions▪

Reduces redundancy▪

○

Improve the programmer○

What to look for?
Bugs▪

Security vulnerabilities▪

Performance issues▪

Common code problems related to
Understandability, readability

Inconsistent names

Disagreement between code and specification

Not following style standards

□

Adherence to coding standards and best practices□
Design and architecture□
Documentation/comments□

▪

Magic numbers▪

Fail fast▪

Duplicated code▪

Long lines of code, methods, classes▪

Conditional complexity▪

○

•

Automated
Manual code review is expensive○

Code can be analyzed statically and dynamically○

If automated analysis fails, the code is rejected and developer needs to fix○

•

•

Lecture 9
October 21, 2020 5:06 PM

 CPEN321 Page 20

Verification: does the implementation meet the spec
Validation: does it address the customer needs
Testing involves both verification and validation

Test plan: A document describing the scope, approach, resources, and schedule of intended test
activities
Test case: a single unique unit of testing code
Test suit: collection of test cases
Test oracle: expected behavior
Test harness: collection of all the above

Process:
Choose input data•
Define expected outcome•
Run on the input to get the actual outcome•
Compare the actual and expected outcomes•

Software testing is a dynamic verification of the behavior of a program:
On a finite set of test cases•
Suitably selected from the usually infinite executions domain•
Against the specified expected behavior (oracle)•

White-box/Black-box testing
White-box (code internal)

Unit testing○

Component testing○

Every line of the code is covered
Statements, branches, paths▪

○

Find bugs in the implementation that are not covered by the specification○

Test may have same bugs as implementation○

•

Black-box (input-output)
Integration testing○

User acceptance testing○

Based on requirement or design specification of the software○

Robust with respect to changes in the implementation
No need to change test when code changed▪

○

Allows for independent testers○

Process is not influenced by component being tested○

•

Level of automation:
Manual testing

Manually creating test cases○

No automation○

Pros:
Clever test case design▪

Interaction with system inspiration for new tests▪

Human oracle▪

○

Cons:
Single test case execution▪

Limited data▪

Might not be repeatable▪

○

•

Test scripting•

Lecture 10
October 26, 2020 3:04 PM

 CPEN321 Page 21

Test scripting
Manually creating test cases○

Automated test execution○

Repeatable○

•

Test generation
Automatically generate test cases○

Based on some criteria (e.g. path coverage)○

Oracle problem○

Pros:
Clever test case design▪

Repeatable, facilitates continuous testing▪

More test cases and input data possible▪

Human oracle (documented)▪

○

Cons:
Cost of setting up test infrastructure▪

Maintenance cost of test suites▪

○

•

Test last: the conventional way. Testing follows the implementation

Test first: agile view in which testing is used as a development tool

Regression testing
Verifies that software which was previously developed and tested still performs the same way
after it was changed or interfaced with other software.

•

Process: when find a bug
Store the input that elicited that bug, plus the correct output○

Add these to the test suite○

Check that the test suite fails○

Fix the bug and verify the fix○

•

Why
Ensures that the fix solves the problem○

Helps to populate test suite with good tests○

Protects against versions that reintroduce the bug○

It happened at least once, and it might happen again○

•

Summary:
Write tests first, then implement•

 CPEN321 Page 22

Write tests first, then implement•
Regression•
Automation•
Statement-level coverage•

Unit tests
Tests the behavior of an individual unit in isolation•
Typically written by developers•
Typically automated•

Assertions:
If the condition is true:

Execution continues normally○

•

If the condition is false:
Test fails○

Execution skips the rest of the test method○

Message is printed○

•

Mocking:
A controllable replacement for an existing software unit to which your code under test has a
dependency

•

A mock is a type of test double object
A test double object replaces a production object for testing purposes

To test partially implemented systems▪

To eliminate dependencies of your system so your tests are more focused on your
functionality

▪

To abstract away difficult-to-control elements▪

○

Other types of test double object
Dummy: passed around but never used. (to fill parameter list)▪

Fake: take shortcuts which makes them not suitable for production▪

Stubs: canned answers to calls made during the test▪

Spies: stubs that also record information based on how they were called▪

○

•

Core idea:
Identify the external dependency

Suppose A depends on B▪

○

Extract the core functionality of the object into an interface
Create an interface B based on B▪

Change all of A's code to work with interface B▪

○

Write a tub class that also implements the interface, but returns predetermined fake
data

○

•

Mocking with Jest
Reassign a function to the mock function (jest.fn())○

•

 CPEN321 Page 23

 CPEN321 Page 24

Java script promise
All async functions return a Promise object•
Represents the eventual completion or failure of an asynchronous operation and its resulting
value

•

Can be resolved or pending•

Integration testing
Individual software modules are combined and tested as a group•
Approaches

Big-bang
Most of the developed modules are coupled together to form a complete software
system

▪

Effective for saving time in the integration testing process▪

Failures are hard to pinpoint▪

○

Bottom-up
Lowest level components are tested first▪

Repeat until the component at the top of the hierarchy is tested▪

Helpful only when all or most of the modules of the same development level are
ready

▪

○

Top-down
Reverse of bottom-up▪

Simulate the behavior of the lower-level modules that are not yet integrated▪

○

Mixed (sandwich)
Combines top-down with bottom-up▪

○

Risky-hardest
Starting with the risky and hardest software module first▪

○

•

System testing
Test the behavior of the system as a whole

Functional testing (all requirements are met)
From the backend and front-end side▪

○

Installation○

Performance, load, stress testing
Performance is a major aspect of program acceptance by users▪

Measure before optimizing
Runtime CPU/memory usage□
Web page load times, requests/minute, latency□

▪

Focus on high-level optimizations▪

Lazy evaluation, caching, combining queries saves time▪

○

Usability○

Graphical user interface testing○

Other non-functional requirements○

•

Profiling:
Log and monitor

Especially for cloud-based systems○

•

Profiling is expensive and slows down the code
Make sure it is short○

•

If the app meet's the project's stated performance requirements, don't optimize it•

User acceptance testing
System is shown to the user/client/customer to make sure that it meets their needs•

Lecture 11
October 28, 2020 5:08 PM

 CPEN321 Page 25

System is shown to the user/client/customer to make sure that it meets their needs
A form of black-box system testing○

•

Beta testing
Advantages

Customers test for free▪

Gives test cases representative of customer use▪

Helps to determine what is most important to the customers▪

Test in real settings other than in lab▪

○

Disadvantages
Do not exhaust your beta-testers▪

Beta testers may have a particular perspective to the system, may not able to
catch system bugs

▪

○

•

GUI testing
GUI responds to user events (clicks)

Event-driven systems▪

○

GUI interacts with the underlying code by method calls or messages○

Testing GUI correctness is critical for system usability, robustness and safety○

Difference between GUI and non-GUI
Non-GUI: test cases invoke methods of the system and catch the return values▪

GUI:
Identify the components of a GUI□
Exercise GUI events□
Provide inputs to the GUI components□
Test the functionality underlying a GUI set of components□
Assert the GUI properties to see if they are consistent with the expectations□

▪

○

Types:
During acceptance testing: accept the system▪

Regression testing test the system with respect to changes▪

○

Challenges
Maintenance is hard and costly

Non-deterministic behavior□
GUIs are dynamic and change□
Small structural changes can break the test cases□

▪

Adequacy hard to measure▪

Technology-dependent▪

○

Approaches
Manual

Based on the domain and application knowledge of the tester□
▪

Capture and replay
Based on capture and replay of user sessions□
Difficult to detect faults looking at the GUI□
Indeterministic state transitions□
Relies on screen diffing□
Some tools produce scripts that can be updated by the tester to include
conditions and acceptance criteria

□

▪

Manual test generation
E.g. Espresso for Android

Instrumentation-based framework

Use Android Instrumentation to inspect and interact with Activities
under test



□
▪

Automated test generation
Random event generator

E.g. Monkey tester

Fires random events◊

Report crashes or errors◊

Struggles to provide text inputs◊

Low code coverage◊



□
▪

○

•

 CPEN321 Page 26

Low code coverage◊

No test oracle◊

Model-based□
Search-based□

Testing is one of the most important SE activities
Be systematic

 CPEN321 Page 27

Static program analysis: reasoning about code
Process of automatically analyzing the behavior of programs

Input: the code of the program○

Output: code or interesting facts about the code○

•

E.g. compilers, intellisense•
Major application

Program correctness○

Program optimization○

Program understanding, validation, and repair○

•

Why program analysis:
Reduce development costs

Validation and verification is usually 50%○

•

Maintenance costs
2-3 times as much as development costs○

•

Models: abstract syntax tree (AST)
Common form of representing expressions and program statements•
Two kinds of nodes: operator and operands

Operator applied to N operands○

•

Each node denotes a construct occurring in the source code•

•

•

Control flow graph (CFG):
Basic block: maximal program region with a single entry and single exit point•
Nodes N: statements or basic blocks•
Directed edges E: potential transfer of control from the end of one region directly to the
beginning of another

•

Lecture 12
November 2, 2020 3:00 PM

 CPEN321 Page 28

beginning of another
Intra-procedural (within a method)•
A sub path through a control flow graph:

A sequence of nodes such that for each , is an edge in the graph○

•

A complete path starts at the start node and ends at the final node•
Infeasible path: path that will never been reached

CFG overestimates the executable behavior○

•

Benefits
The most commonly used representation○

Basis for many types of automated analysis
Graphical representations of interesting programs are too complex for direct
human understanding

▪

○

Basis for various transformations
Compiler optimizations▪

Software analysis▪

○

•

•

Call graphs (Inter-procedural CFG)
Between functions•
Node represent procedures•
Edges represent potential calls relation•

F is overridden in B○

•

Creating the exact (static) call graph is an undecidable problem
All non-trivial semantic properties of programs are undecidable

A semantic property is about the program's behavior (i.e. does the program
terminate for all inputs)

▪

A property is non-trivial if it is neither true nor false for every computable function▪

○

•

Computing call graphs requires•

 CPEN321 Page 29

Computing call graphs requires
Point-to analysis○

Exceptions○

•

Multiple existing heuristic algorithms
Various degree of precision/scalability○

•

Data flow analysis
A technique for gathering information about the propagation of data values in the program•

Variable Definition and uses(DU)
Variable definition: the variable is assigned a value

Variable declaration (often the special value uninitialized)○

Variable initialization○

Assignment○

Values received by a parameter○

Value increments○

•

Variable use: the variable's value is actually used
Expressions○

Conditional statements○

Parameter passing○

returns○

•

Data dependence graph:
Nodes: program statements•
Edges: DU pairs, labeled with the variable name•

Keep all the arrows○

•

•

 CPEN321 Page 30

•

Used in
Compilers and optimization○

Security analysis○

•

 CPEN321 Page 31

Testing is a dynamic verification of the behavior of a program
On a finite set of test cases•
Suitably selected from the usually infinite executions domain•
Against the specified expected behavior•

Systematic testing:
Black-box: test cases come from requirements/user stories•
White-box: inspect the code/coverage criteria to see if you missed cases•

Measuring test suite quality with coverage
Various kinds of coverage

Statement: is every statement run by some test case?
Each statement (or node in the CFG) must be executed at least once▪

Coverage =

 ▪

○

Branch: is every direction of an if or while statement taken by some test case
Every path going out of a node executed at least once▪

Coverage: percentage of edges hit▪

Each predicate must be both true and false to achieve 100%▪

○

Path: is every path through the program taken by some test case

Coverage:

 ▪

Each CFG path must be executed at least once▪

○

•

Limitations of Symbolic execution
Expensive

Executing all feasible program paths is exponential in the number of branches○

Does not scale to large programs○

•

Problems with function calls•
Problems with handling loops

Often unroll them up to a certain depth rather than dealing with termination or loop
invariants

○

•

To write a test
Identify the fault•
Write a test case that does not execute statements related to the fault•
Write a test case that executed the statements related to the fault, but does not result in a
detectable error state

•

Write a test case that detects the fault•

Limitations of coverage
Coverage is just a heuristic•
100% coverage may not be achievable•
100% is not sufficient•
Common practice: statement-level coverage + clever test selection + test case for all found
bugs + regression

•

More advanced techniques: input space partitioning, combinational testing•

Lecture 13
November 4, 2020 5:19 PM

 CPEN321 Page 32

DevOps:
A software engineering practice that aims at unifying software development (Dev) and
software operations (Ops)

•

Why
Limited capacity of operations staff○

Limited dev insights into operations○

Developers and operators don't always pursue the same goals
Developers want to push new features▪

Operators want to keep the system available▪

○

Poor communication between developers and operators○

•

Encourages communication and collaboration between development and operations staff, get
them talking

•

Tool Chain
Plan: requirements, architecture, design○

Create: code development and review, source code management tools○

Code merging○

Build: continuous integration tools, build status○

Test: continuous testing tools that provide feedback on business risks○

Package: artifact repository, application pre-deployment staging○

Release: change management, release approvals, release automation○

Configure: infrastructure configuration and management, infrastructure as code tools○

Monitor: applications performance monitoring, end-user experience○

•

Continuous integration:
The practice of routinely integrating code changes into a main branch of repository, and
testing the changes, as early and often as possible

•

Developers work on a feature branch•
At regular intervals they submit pull requests•
Branch tested and integrated with development branch•
Tools:

Travis○

Jenkins○

Pipelines○

Integrate with Git-based version control system○

•

Deployment is not trivial:
Challenges:

Any development team can deploy their code at any time - no synchronization among
development teams

○

It takes time to replace one instance of version A with an instance of version B○

Needs to be always available to customers○

•

Solution: API Gateway/Proxy
Single entry point for all clients for a number of different underlying APIs○

Limit clients' visibility of your internal structure○

Performs authentication/authorization/logging○

Can be configured to route the request to the appropriate version/service○

•

Load balancer
Facilitates load distribution•
Directs traffic efficiently to all the servers present in the application configuration•

Usage and tools

Lecture 14
November 9, 2020 3:36 PM

 CPEN321 Page 33

Usage and tools
Multiple concepts can be implemented in one tool•
Support continuous integration, blue-green deployments, API management•

Only one version is available at any time○

Requires 2N VMs
Additional cost▪

○

Rollback is easy○

•

Rolling upgrade: upgrade VM, APIs one by one
Multiple versions are available at the same time○

Requires N+1 VMs
Can be done at nearly no extra cost▪

○

•

Canary testing
Canaries are small number of instances of a new version placed in production in order to
perform live testing in a production environment

•

Canaries are observed closely to determine whether the new version introduces any logical or
performance problems. If not, roll out new version globally. If so, roll back canaries

•

Implementation
Create set of new VMs as canaries○

Designate a collection of customers as testing the canaries.
Organization-based▪

Geographically based▪

At random▪

○

Then
Route messages from canary customers to canaries

Can be done through making registry/load balancer canary aware□
▪

Observe the canaries closely▪

Decide on rolling out/back▪

○

•

Dev and Ops are related activities
Developers’ responsibility: unlikely to be able to “throw your final version over the fence” and

let operations worry about running it!
•

Result: Shorter development cycles, increased deployment frequency, closer alignment with
business objectives

•

Automation is important
Makes the processes faster, more manageable, more repeatable •

Tools can help but cannot replace good practices and processes

 CPEN321 Page 34

	Lecture 1
	Lecture 2
	Lecture 3
	Lecture 4
	Lecture 5
	Lecture 6
	Lecture 7
	Lecture 8
	Lecture 9
	Lecture 10
	Lecture 11
	Lecture 12
	Lecture 13
	Lecture 14

