
Machine learning: create new functions using example behavior rather than explicit instructions
Approximate functions (not perfect, but accurate enough) that can be applied to new data•

Deep learning: specific type of ML using neural networks
ML and Deep learning are a type of AI

Labelled data:
Examples come with the expected answer•
It provides an example of an input to output mapping from which we would like the ML 
system to generalize for other similar inputs

There might be overfit○

•

What problems for ML
Lots of high-quality data is available•
desired output is clear, unambiguous and testable•
the input to output relationship is not already well understood•

Things that don't need ML:
Clear and well understood mathematical relationship between input and output•
Clear and well understood physical relationship between the input and output

Trajectory formula○

Learn the gravitational function○

•

Clear and well understood algorithmic relationship between the input and output•

Deep learning can't: why, explain, plan, deductive reasoning, design
Deep learning provides answers, but not justifications•

Neural networks
Know how to train them efficiently•
Back propagation quickly and efficiently find a high quality approximate function

Basis of success for neural networks'○

•

Deep neural networks
Networks with many trainable layers, which allows them to express very complex functions•
Generally effective when we have a very large set of training data•

Where does deep learning work well
Problems where the input is unstructured data

Images/video, natural language○

•

Problems with complex relationships but clear goals
Classifying images○

Identifying objects○

•

AI and AGI
AI (Artificial Intelligence): any technique that makes computers act intelligently•
AGI (Artificial General Intelligence): making computers smart like us•

Data science: process of using data analysis to build understanding
Machine learning: process of using example data to create approximate functions that can then be 
applied to new data. (understanding is rarely provided)
Neural networks: ML using an interconnected network of trainable artificial neurons (perceptrons) 
that maps some input to an output
Deep learning: ML using multi-layered neural networks, which are normally trained with large data 

Introduction
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Deep learning: ML using multi-layered neural networks, which are normally trained with large data 
sets
Supervised learning: ML when the example data provides both the expected input and output. You 
can supervise the training process by identifying and correcting mistakes
Labelled data: example data that includes the expected output, used in supervised learning
Unsupervised learning: ML when only expected input is provided. In this case, the ML system learns 
relationships between the inputs themselves.
Unlabeled data: example data that does not include the expected output, used in unsupervised 
learning.
Reinforcement learning: ML which uses only high-level goals and repeated trial and error during 
training
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Fundamental challenge of ML: the machine can only learn if we have examples that we can use to 
train it.

Logistic regression
It is a technique that assumes that we can make a prediction (hypothesis) bases on a linear 
combination of the inputs

                          .○

 and  are called parameters, we want to find the correct parameters○

•

Binary classification
Classify data into 2 groups•
Can use 0 and 1 to represent each•
Sigmoid: a function that forces values between 0 and 1

     
 

     
     .○

•

Final logistic equation: 
          .•
If      , we predict 1•
If      , we predict 0•

To find parameters:
Guess and test•
Simulated annealing•
Genetic algorithms•
Gradient descent•

Cost function ( )
A way to compare combinations of  and  to know which works best•
It is a measure of fitness of any given selection of  and  .•

If     
    

      
                     , then     is a better set of parameters selection 

than    .

•

First solution: accuracy = right answers/total answers.•
Parameter adjustment

If          is the overall cost, then 
  

   
   is the rate of change of the cost w.r.t   .○

Then we can improve the parameters by:

     
  

  
   .▪

     
  

  
  .▪

Learning rate:  is the size of the adjustment▪

○

•

Building a cost function
It needs to be differentiable, convex function○

When    :               ○

When    :                 ○

We can combine them:                          .○

Using chain rule, we can find that 
  

   
           , 

  

  
      .○

Finally,    
 

 
                

                       
    .

  

   
    

 

 
     

         
   .▪

  

  
   

 

 
           

   .▪

○

•

Machine learning and logistic regression
September 14, 2021 1:31 PM
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Main algorithm

Assume:           .•

Initialize    to random values or zero•

Repeatedly apply:      
       

  
      ,      

       

  
      .•

Stop when   target error•

The goal is prediction, it only matters if it works for new data

Sources of inaccuracy
AI model does not match the underlying nature of the data (data is not linearly separable)•
Learning algorithm did not find the best set of parameters for the model•
The example data is not representative of the new data

Not enough data to represent function○

The data is noisy○

The underlying behavior is not deterministic○

•

Hyperparameters in logistic regression
Learning rate  :

Too large: final parameters are worse than random○

Too small: final parameters are better than random, but not optimal○

•

Number of iterations
Too small: final parameters are better, but not optimal○

Too large: as long as the learning rate is small enough, this only costs CPU cycles○

•

•

Build a test data set
Most important: take some of the data and put it off to the side•

•

•
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•

Different issues
AI model doesn't fit data

Training accuracy is low and hyperparameter tuning doesn't help○

Consider a different AI model○

•

We are not finding the best parameters
Unexpected shape of cost/iterations graph○

Tune the hyperparameters○

•

Example data does not represent the new data (lack of data, noisy data, non-deterministic 
data)

High training accuracy but low test accuracy○

Try to find more, better or different data○

•

Reporting the accuracy of the ML system
Select a representative test data set from the labelled data•
Make sure we don't use the test data to train the ML•
Report the accuracy of the test data set•

Vectorization
Machine learning are computationally expensive

Best solutions comes from:
A lot of example data▪

Models that contain a lot of parameters▪

Trained over a lot of iterations▪

○

•
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Trained over a lot of iterations▪

It is critical to find high quality solutions in a reasonable timeframe○

•
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Problem with logistic regression:
The assumption about linear relationship•
We can continue to add various terms to logistic regression and gradient descent will work•

Neural networks
Can learn very complex non-linear relationships between an arbitrary number of features
across an arbitrary number of examples rather than having to specify them

•

It is a type of computation graph inspired by an idealized view of a real neuron•
Computation graphs:

A way to specify a computation relationship between inputs and outputs○

○

Logistic regression

▪

Shorthand:▪

▪

This is a small neural network▪

○

•

We use     rather than sigmoid in the middle layers for neural networks•
Emergent behavior: connecting even a small number of units with simple behaviors enables 
the approximation of very complex functions

•

However, it can be trained in a straight-forward and efficient manner•

Activation function
Connecting multiple linear regression units does not add much new flexibility•
The non-linear activation function (like tanh and sigmoid) is the key to allowing combinations 
of logistic regression units to produce complex functions

The parameter directly effects the location of the decision boundary

•

Neural network
September 21, 2021 1:22 PM
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The parameter directly effects the location of the decision boundary○

Without it, all combinations of logistic regression would continue to be linear○

Formalization 

Cost function:          
 

 
                 

                          
    .

Use   to denote the activation of the output layer of the NN.○

•

Back propagation 
Step 1: calculate   using computation graph○

Step 2: determine the loss○

Step 3: update each parameter (using the partial derivative of cost)○

The same derivatives are re-used across and back through the NN▪

•

The logistic regression gives the last layer in the NN
  

   
        

    

         
      .○

   
   

   
                .○

   
   

     
          

   
   

   
   

     
      .○

•

The cross NN layers:
Consider the equations: 

  
   

     
   
  
   

     
   
  
   

       
     

      
   

, so 
   

   

   
            

   
.▪

  
   

       
   

, so   
   

   

   
                 

   
▪

○

So:
  

   
       .

○

•
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            .▪

  

   
            

   
                 

   
  .▪

•

Interpretation
We are propagating the error and attributing it to each node and then each parameter○

When       , none of the parameters are adjusted○

•

Implementation
Use vectorization to group operations together•
Avoid re-calculating values that are used repeatedly•
Number of layers and number of neurons in each layer are hyperparameters•
For 1 hidden layer and single output

  is the number of input features▪

  is the number of hidden units in layer [1]▪

    is a matrix of all the parameters in layer[1] with shape        .▪

    is a matrix of all the parameters in layer[2] with shape       .▪

    is a vector of the bias parameters in layer[1] with shape       .▪

    is a vector of the bias parameters in layer[2] with shape      .▪

 is the number of examples in the training data set▪

 is a matrix of all the input features for all examples in the training data set with 

shape       .

▪

 is the labels for all the examples in the training data set with shape      .▪

Forward propagation
Consider a single example  , 

                     ,                   ,           .□

                        ,                      .□

▪

For all  examples▪

○

•
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For all  examples

               ,             ,           .□

                  ,                .□

▪

Back propagation (vectorized)

          .▪

      
 

 
            .▪

      
 

 
         

 .▪

                         .▪

      
 

 
         .▪

      
 

 
         

 .▪

○

Parameter update (Vectorized)

                .▪

                .▪

                .▪

                .▪

○

Repeat until cost < target○

Parameter initialization
Setting all parameters to 0 does not work○

Uniform non-zero value does not work○

The initialization should be random numbers○

•

Hidden units/layers
NN architecture is extremely flexible. We can define any number of hidden layers and any 
number of units per layer

•

However, more units are not necessarily better (cost in terms of training and deployment 
computing resources/time)

•

Extra units contribute to overfit•

Overfit in NN
The best answer is the one that is the most accurate on new data•
A learned solution that track too close to the training data risks missing the big picture and 
simply memorizing training data

•

The number of hidden layers and the number of units/layer are hyperparameters to be tuned 
to achieve optimal performance

•

Validation
For logistic regression, we need two data sets (test and training)•
For NNs, we need 3 data sets, because of the overfit

Training data: train the model○

Validation data: tune the hyperparameters○

Test data: measure the performance○

•

The validation data set gives us data that was not used to train the NN, but can be used to 
tune the hyperparameters

•

The test data set then gives us independent reference to measure the performance of the AI•

Images as input data
Grayscale image 

Can be modelled as an array of pixels○

Each array value is        representting brightness of the pixel.○

0 for black and 255 for white○

•

Color image
Model as three channels (RGB),      .○

Feature vector:

Flatten each array into a vector and concatenate▪

It becomes a vector of length    .▪

○

•
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It becomes a vector of length    .▪

Each pixel is a feature, can use LR and NN to classify•

Multiclass classification
Number of possible classes   .

    for the binary classification.○

     for MNIST○

     for CIFAR○

         for Image Net○

    for ISIC○

•

Versus multilabel
Multiclass: input has exactly one label○

Multilabel: input has one or more labels○

•

Output encoding:
One-hot encoded vector of length   .○

It maps discrete categories to single continuous output○

It allows us to extend what we know about building binary classification models○

•

Common approaches
Multiple binary classifiers

One-vs-all (one-vs-rest)
Build   binary classifiers□
One binary classifier per class□
Each classifier predicts whether the input is in its class or not□
Classes may overlap, sample may be in more than one or none of the classes□

▪

One-vs-one

Build 
        

 
       binary classifiers (all possible combinations of 2 classes)□

Each classifier only receives data about the pair of classes it is discriminating 
between

□

Use a majority voting scheme to select the class that was predicted the most 
often among the binary classifiers

□

Scales poorly with number of classes□
Performs about the same as One-vs-all□

▪

○

Single classifier with multiple outputs
Deep neural networks▪

Change output layer to have one node per class, each output continues to act as a 
binary classifier for that class

▪

Has   output nodes▪

Classes are mutually exclusive▪

○

•

Activation function (softmax):
It normalizes the output such that each output node continues to produce a value between 0 
and 1.0 and also sum to 1.0

•

Can interpret this as a set of prediction probabilities for each class•
Input:  a vector  of length   •

Function:       
   

  
    

   

      .•

We finally choose the class with the highest probability•
It is a generalization of sigmoid•

Categorical Cross Entropy Loss (Softmax Loss):
Generalization of the Binary Cross Entropy Loss•

                  
  
   .

For     :

                      .▪

       ,          ,            .▪

○

•

It quantifies the difference between two probability distributions over the same underlying set 
of events

•
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of events
A true distribution (true labels)○

An estimated distribution (predicted labels)○

Cost function
Minimize the average loss across all training samples.•

       
 

 
                 

   .•

Back propagation
  

   
          .•

  

   
          .•

  

   
          .•

Summary of single neural network with multiple output
One output node for each class•
Use Softmax activation on final layer•
Minimize the categorical cross-entropy loss•
Train on one-hot encoded label data•
Cannot be used for multi-label classification•

Multilabel classification
Cannot use softmax•
Use separate classifiers or use sigmoid on outputs•
Labels cannot be one-hot encoded vectors•
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General points
It is an extended version of 2-layer neural networks•
We count layers that have parameters•
Fully Connected (FC): each input connects to each node

Each FC layer can have different number of units○

Also referred to as Multilevel Perceptron (MLP)○

•

Number of parameters per FC layer:

Weights:            .○

Biases:     .○

•

Layers and vectorized forward propagation
Arranged in layers for vectorized computation•
Activation function is not required to be the same in the same layer•

Increase capacity of the approximation function
A neural network with one hidden layer provides the mapping:

                                 .○

•

This is a class of functions and each member function of this class is realized by a specific set of 
values for the parameters

•

Feature space transformation
For           .

A linear transformation of  .○

A translation of  ○

An application of     .○

•

With logistic regression (any linear classifier), we can manually transform features to encode 
non-linearity

This is called feature engineering and requires analysis and human effort○

Data then could be linearly separable○

•

There is no formal definition of deep neural network
The number of layers does not matter too much

Universal approximation theorem
A neural network with one hidden layer can approximate any continuous function•
But whether the suitable parameters can be found easily or how many units we need are 
unanswered

•

In practice, deep networks generally perform better than shallow ones, especially on 
unstructured data with wide variation

•

Problems that deep learning works well
Input is unstructured data

Images/video○

Radar○

X-ray○

Audio/voice○

Natural language○

Mixed data○

•

Problems with complex relationships but clear goals
Classifying images○

Identifying objects○

Winning chess

•

Deep Neural Networks
September 27, 2021 12:24 PM
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Winning chess○

Predicting consumer behavior○

Back propagation through softmax and categorical cross-entropy
Consider     ,                              

    

   
              .○

    

   
           .○

    

   
           .○

  

   
          .○

  

   
          .○

  

   
          .○

•

Back Propagation on computation graphs
Calculating closed-form partial derivatives become infeasible and error prone with deep 
networks and many parameters

•

If we want to try a different loss function or make architectural changes like trying different 
activation functions, need to derive again

•

At graph construction
Assign variable names to each intermediate node's output○

Re-express each node as a function of its immediate inputs○

Derive local gradients of each node's output w.r.t. its immediate inputs (simple 
derivations)

○

•

Forward propagation
Values are supplied to input variables○

For each node that has values for all of its inputs, compute output and propagate 
forward

○

Repeat until all node outputs computed○

•

Backward propagation
Compute input gradient on the output nodes○

For each node that has a value for its output gradient, compute each input gradient 
using chain rule and propagate backwards

○

Repeat until all gradients computed○

•

From each node's perspective

○

Forward propagation, when all input values arrive
Compute output value▪

Compute local gradient values▪

○

Backward propagation, when upstream gradient arrives on output

▪

Using chain rule, compute downstream gradient on inputs▪

○

•

Back propagation is a local process•
Computations for both forward and backward propagation can be performed on per-node •
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Computations for both forward and backward propagation can be performed on per-node 
basis as values arrive

On input during forward○

On output during backward○

•

Local gradients can be computed during forward propagation•
Use chain rule to flow back•

Gradients on different nodes

Addition           : 
  

  
    

  

  
    

  

  
   ○

Upstream gradient is distributed to all inputs○

A change on any input independently changes the output○

•

Subtraction           :
  

  
   

  

  
  , 

  

  
    

  

  
  ○

Upstream gradient passed onto variables being subtracted from○

Negative of upstream gradient passed onto variable being subtracted○

•

Multiplication          :
  

  
    

  

  
  , 

  

  
    

  

  
  ○

Upstream multiplied with all other input values○

A change on an input is scaled by the value of the other inputs to affect a change in the 
output

○

•

Equality (linear):
Pass through○

•

Branch:

○

Use the multivariable chain rule○

•

Max                :

If    , 
  

  
   

  

  
  , 

  

  
    ○

Upstream gradient is routed to larger variable○

Only one input can affect the output at any time○

•

Sigmoid (softmax):
  

  
         .○

•

Tanh:
  

  
       .○

•

Back propagation at input layer
No need to compute this, since we aren't interested in how to change the input to minimize 
loss

•

But this can help visualize what the network has learned•

Summary:
Once upstream gradient is 0, all downstream gradients are also 0•
Back propagation sends a signal back throughout the network telling us how to change each 
parameter, but it doesn't make any neural network trainable

•
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Activation functions
Sigmoid: 

     
 

     
       ○

Maps input to values between 0 and 1○

Vanishing (saturated) gradients (big problem)

When    is large, the gradient is practically 0, which makes 
  

  
    (saturated)

When in saturated region, it is a saturated neuron□
Active (unsaturated) region is small□

▪

When gradient is small, learning will be slow
Parameters will change extremely slowly□
Once a sigmoid neuron is in saturation, very hard for training to update the 
neuron's weights to improve the model

□

▪

○

Always positive

All 
  

  
   
       will be positive (have the same sign).▪

If all inputs to a unit are the same sign, then all weights for that unit have the 

same sign for 
  

  
   (positive due to Sigmoid)

Gradient descent will update all weights in the same direction (all increase, 
all decrease)

□

▪

Problem of Non-zero-centered inputs (inconvenient)▪

○

Max value of sigmoid gradient = 0.25

Each time gradients flow through a sigmoid function, it is reduced to 
 

 
 or more▪

Also contributes to the vanishing gradients problems▪

○

Do not use Sigmoid for hidden layers
Can still use it on the output. With binary cross-entropy loss, the saturation effect 
is removed

▪

Sigmoid function is a class of functions with the S shape▪

○

•

Tanh activation function
              ○

Also a type of Sigmoid function
Still has saturated regions and vanishing gradients problem▪

○

Output range:       
Solves the problem of non-zero-centered outputs▪

○

Generally faster learning compared to logistic sigmoid.○

•

Rectified Linear Activation Unit (ReLU)
             ○

Local gradient: 
  

  
    

     
     

.

Downstream gradient 
  

  
    

  

  
                     

                   
.▪

○

Pros:

•
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Pros:
No vanishing gradient problem▪

Passthrough for gradient flow▪

Easy to compute
Speeds up training□
Speeds up prediction□

▪

Sparse activations
ReLU can output a true 0

Sigmoid can only output near 0

Tanh can only output zero at one specific point

□

True 0 lead to sparse activations of neurons□

▪

○

Cons
Dead ReLU

If no gradient flows through a ReLU neuron, its associated parameters won't 
receive info on how to change

□

If this is the case for all training samples, then the parameters will never 
update

□

Cause   
   
        

   
    

   
   

   
         

   
:

  
   
  for all training samples.

When   
   
   

   
initialized such that   

   
  , dead from start.

Learning rate is too high. During iteration,   
   
   

   
updated such that 

  
   
  .



□

Avoiding Dead ReLU
Initialize bias terms with small positive value

Need to be mindful about how we initialize weight parameters

□

▪

Non-zero-centered output (all positive)
Not a big issue□

▪

○

When in doubt, use ReLU for FC NNs and CNNs○

Need to be careful for RNNs due to exploding gradient problem○

Variations
Try to fix dead ReLU problem by changing the    region▪

Leaky ReLU:                  

Gives a chance to get out of dead ReLU□
▪

Parametric ReLU (generalization of leaky ReLU)
              □
Slope of line at    is a learned parameter□

▪

ELU:       
     

           
▪

SELU:       
      

            
▪

○

Summary
ReLU is a good default choice○

ReLU is strictly better than tanh○

ReLU and tanh are strictly better than Sigmoid (Don't use Sigmoid for hidden layer)○

•

Vectorized forward propagation

Weight matrix:              .•

Bias vector:        .•

Output vector:        .•

      :        .•

Activation:       .•

Vectorized backward propagation

Jacobian matrix 
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Jacobian matrix 
  

  
   

 

 
 
 

   

   
   

   

   
    

   

   
   

   

   
   

   

   
    

   

   
   

    
   

   
   

   

   
    

   

   
   

 

 
 
 

•

Cost function: 
  

  
   

 

 
 
 

  

   
   

  

   
   
 
  

    
   

 

 
 
 

shape       , 

Cross-entropy loss gives: 
  

   
    

 

 
  

 

  
 .○

•

  

  
   

  

  
  

  

  
  shpe       .•

Activation function shape:     .

  

  
   

 

 
 
 

   

   
   

   

   
    

   

   
   

   

   
   

   

   
    

   

   
   

    
   

   
   

   

   
    

   

   
   

 

 
 
 

.○

For tanh activation
Since          , .…            ▪

  

  
   

 

 
 
 

   

   
      

 
   

   
     

    

   
   

   
   

 

 
 
 

.▪

   

   
        

 .▪

○

For ReLU

  

   
     

  

   
        

      
.▪

Simply copy over upstream gradient or set to 0▪

○

For Softmax

  

   
       

  

   
     

  

  
   

 
   .▪

○

•

Jacobian is diagonal (hence sparse) for element-wise vector operations•
Most vector operations used in neural networks have sparse Jacobian matrices•
We do not need to construct the full Jacobian matrix and never have to compute its full 
matrix-vector multiply with the upstream gradients

•

Tensors
Multidimensional arrays

Scalar is 0d tensor○

Vector is 1d tensor○

Matrix is 2d tensor○

•

Local derivatives are high-order tensors

         ,          ,          .○

  

  
                 

  

  
                .○

  

  
          , 

  

  
   

  

  
   

  

  
  .○

•

Derivative of a matrix by a scalar

  

  
 

     

  

     

  
 

     

  
    

     

  

     

  
 

     

  

.

•
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 .○

Each element of downstream gradient is inner product between slice of Jacobian and 
upstream gradient. But only one non-zero row

•

Furthermore, Jacobian slices are just copies of rows from  , so we just need  •

Cost function back propagation

Downstream gradients will be scaled by 
 

 
  •

  

  
   

 

  
 

 

 
  

 

 
  
 
 

 
   

  
 

.•

Each sample is only making a 
 

 
  contribution to the final cost•

Broadcasting (addition of the bias)
  

     
    

  

  
  .•

But     is shape        , and 
  

  
  is shape         .•

We broadcast/replicate the bias to match the shape of 
  

  
  

The same parameters are used for each of the  samples○

•

Each column is for one sample, each row is for one unit of the layer

  

  
 
        

  

   
       

   

  
  

   
       

   

    
  

   
       

   

  
  

   
       

   

 
   .○

Average loss is more practical than total loss○

•
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Convolutional Neural Networks (CNNs)
A class of neural networks typically used for image analysis and computer vision•
Image classification•
Retrieval•
object detection•
object segmentation•
Scene labeling•
Pose estimation•
Vision based reinforcement learning•
Image captioning•

Image 
data is unstructured data•
Converting to a feature vector throws away spatial information•
Too many parameters in fully connected network for large images•
Pixels that form a visual feature are local

Every unit is trying to make sense of the entire image○

But spatial correlation is fairly local○

Solution: locally connected

Have each unit connect only to a smaller region of the image▪

Can work well on centered images▪

No tolerance to translation
Also not taking advantage that image patterns often repeat at other parts of 
the image

□
▪

○

Solution: shared patterns
Instead of multiple neurons sharing parameter, we use one neural that scans a 
specific feature (kernel)

▪

Translation invariant▪

Use multiple filters. Each looks for a different feature▪

○

•

Convolutional filters
Motivation: edge detection•
Operation: element-wise multiply and sum•
e.g. vertical edge detection

Kernel:  
    
    
    

 .○

Output is intensity with which vertical edge occurs at the corresponding input location○

If not high contrast, the intensity is lower○

Dark to light: sign is different
Change signs on the filter▪

○

•

Horizontal edge detection
Similar to vertical○

Kernel:  
   
   
      

 .○

•

Output:
Output of convolution is a feature map○

Describes the intensity and location where a feature is present in the input image○

•

Treat the filter values as learnable parameters, supply data and let the model learn the best 
values for the data

•

CNN
October 9, 2021 10:10 PM

   CPEN400D Page 20    



Convolutional layer
Each filter generates one feature map

Can think of each filter as a neuron○

 number of        , where  is the filter size and  is the number of color channel○

•

Collection of filters can be represented as a single          weight tensor

○

•

Need a single bias for each filter with implicit broadcast

○

•

Activation is applied to each element separately•
Total number of parameters in a convolutional layer

Weight parameters:       .○

Bias parameters:  .○

Total:           .○

•

Generalization and Vectorization

○

                  .○

                  .○

         .○

•

Filters look across all channels
Each channel of a volume is the activation map of a lower level feature○

To build filters that look for compositions of lower level features, must look at multiple 
activation maps

○

•

Filter the same shape as the input
Result will be a single number○

Each filter corresponds to a single FC neuron○

•

CNN and FC
CNN is more efficient than FC•
CNN allows us to achieve sparse connectivity between layers while also taking advantage of 
spatial structure of image data to allow parameter sharing

Sparsely connected: each neuron is connected to a different subset of the inputs○

Parameter sharing: instead of each neuron having its own weight and bias, they share 
the same parameters

○

•

CNN is just a FC layer with sparse connectivity and parameter sharing

                              .○

•
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Padding
CNN shrinks the images in spatial dimensions of    .

Shrinking volumes○

Input data at the edges influence fewer output values than input data in the middle○

•

Pad the perimeter of the input volume before convolution
Output preserves original spatial dimensions○

Output dimension:                    .○

•

Typically
No padding○

Pad so that the output volume is the same as the input volume

  
   

 
   only depends on the filter size▪

Works well for odd sizes, but causes asymmetry for even sizes. (Use only filters 
with odd size)

▪

○

•

Stride
Slide the convolutional filter by larger steps•
The amount by which we step is stride ( )•
Output size

Input:        ○

Output:  
      

 
         

      

 
           .○

•

A form of compression/down sampling of the feature map•
A way to shrink the volumes in a controlled fashion

It is necessary to control size before the final layer○

•

Summary of convolutional layer
Hyperparameters

Number of filters  ○

Filter size      ○

Stride  ○

Padding  ○

•

Input volume

                      ○

•

Output volume

 
           

 
            

           

 
              .○

•

# learned parameters

             ○

•

Receptive fields
Suppose we use    filters in all layers•
Each output element sees a    region of its input

               .○

•

Final layers
Image classifier

Flatten the final volume○

Use one or more fully connected layer○

Final volume must be a manageable size○

Can think of convolutional layers as a feature extractors
Compress the image into a signature▪

Use the signature for classification▪

Learn structure from unstructured data▪

○

•

Control size
Stride, padding○

•
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Pooling layer
Pool each channel independently

Does not change channel size○

Only changes spatial dimensions○

•

Hyperparameters
Pooling function○

Pool size      ○

Stride  ○

No learned parameters
Reduces spatial dimensions, but does not change channel dimension▪

○

○

Usually    , we have  
      

 
     

      

 
             ○

•

Max pooling (used more)
Output is max value within each region○

○

Reduces size (compress the data)○

Discard all but the strongest signal○

Adds flexibility to feature detection in the form of tolerance to translation○

•

Average pooling
Output is average value within each region○

•

Vectorized Implementation
Convolutions are implemented as matrix multiplication•
Transform input volume into 2D matrix

This depends on filter shape○

Each "filter shape" elements forms a column in the matrix○

•

Transform filters into 2D matrix

Reshape the         filters into a row vector of size        ○

If there are  filters, each filter is a row in the matrix○

•

•

In code
Transforming the input volume: im2col.

•
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Transforming the input volume: im2col.
hard▪

○

Transforming the weight matrix: w.reshape(K,-1).○

Transforming the final output is also a reshape○

Fourier transform

Convolution Theorem:                 ○

Fourier transform of a convolution of two signals is equal to the elementwise product of 
the Fourier transform of each respective signal

                      .▪

○

•

Back propagation
Convolution node

○

  

  
  shape:                    .

  

  
   

  

  
  

  

  
       

  

  
                   .▪

Pad:
    
          ,       .□
    
          ,       .□

▪

○

  

  
   shape:                .

  

  
    

  

  
  

  

  
   . ▪

Compute each channel independently▪

▪

Here, 
  

    
      

      
      

 .▪

▪

○

•
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Each Jacobian slice is a sliding window over the input  □
  

  
      

  

  
  .□

▪

For FC layer, Jacobian has a lot of 0
Each neuron has own set of weights.□
They do not affect the output of other neurons□

▪

For Conv layer, every weight affects every output▪

Chain rule application: tensor-matrix multiply•

•

Max pooling
Upstream gradient is routed to larger variable○

Only one input can affect the output at any time○

Similar to max function○

•

Adversarial inputs via back propagation
Pick an input image to modify•
Pick an output class you want to trick the classifier into predicting•
Use a cost function that maximizes that class's output probability•
Use back propagation to find changes to the input image to maximize cost•

Numerical gradient checking
  

  
         

             

  
           .•

When  is not zero, but very small, we can get a decent approximation to the derivative•
For a multivariable function

  

   
    

                               

  
                       .○

  

   
    

                               

  
                       .○

•

Number of parameters per layers
Convolutional layer:             •
Max pooling:  •

Fully connected:   
      

     
   .•
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Computational resource analysis
Number of floating point operations (FLOPs) for a convolution layer

Convolution is a bunch of multiply-accumulate (MAC) operations. One MAC can be done 
in a single flop

○

Given weights            and output of shape of                 

             activations to compute▪

Each activation is a dot product between two          tensors ( MACs)▪

Total flops:                    
Number of outputs * number of flops to compute each output□

▪

○

•

Number of FLOPs for pooling layer

Given a single region      in which to pool○

Max pool is comparison of    numbers○

Avg pool is addition of    numbers○

Total flops:    .○

Given a pooling layer with output shape                 .

              regions to compute.▪

Total flops:                   .▪

○

•

Number of FLOPs for FC layer

Output of each unit is weighted sum of   
     

numbers (MACs)○

Output of all units (total flop) is   
   
   

     
.○

•

FLOPs depends on a lot of implementation details
Hardware architecture○

The way you write the code○

Compiler○

•

LeNet:

Top1 and Top5 error
Top1: the fraction of test images for which the correct label is not the prediction of the model•
Top5: the fraction of test images for which the correct label is not among the five labels 
considered most probable by the model

•

Alex net
Popularized CNNs for computer vision•

CNN architectures & applications
2021年11月4日 12:18
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Popularized CNNs for computer vision•
16% top-5 error, 26% for runner up•
Popularized ReLUs for CNNs

Networks with ReLU consistently learned faster○

•

Overlapping pooling
Reduce top1 and top5 error○

Overlapping pooling helped model generalize (reduce overfit)○

•

Used local response normalization layers•
Architecture hyperparameters chosen by trial-and-error•

ZFNet
A bigger Alex net•
Bigger capacity is still better•
Still use trial-and-error for architecture design•
No consideration for computation efficiency•
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VGGNet
Systematic design principles

All conv layers are    stride 1, same pad
Two stacked    conv layers can still see a    spatial region of the output▪

Two    layers use less parameters, less flops than one    layer, but needs 
more memory due to intermediate activation maps.

▪

Still, stacking smaller filters is better
Can achieve equivalent receptive field□
Fewer parameters to train□
Requires less computation□
Needs more memory, but not a problem with GPU memory□
Has multiple levels of non-linearities (ReLU)□
Less overfitting□

▪

○

All max pool layers are    stride 2
Necessary for controlling final volume size▪

Non-overlapping stride follows intuition of doing a straight-forward down-
sampling

▪

○

The conv layer following a pool layer will have enough filters to double the volume 

•
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The conv layer following a pool layer will have enough filters to double the volume 
channel size

A conv layer operating on a volume that has half spatial dimensions and double 
channel size take the same number of flops

▪

Keeps same compute time per layer▪

○

VGGNet is a class of architectures
Using design rules, a number of architectures were evaluated○

Each architecture has 5 stages○

A stage consists of 1-4 conv layers followed by max pool○

The ones that people talk about are VGG16 and VGG19, with 16 and 19 layers○

•

Summary
Very uniform and straight forward architecture○

Has a large number of parameters○

VGG19 slightly better than VGG16○

Win the localization challenge, but not the classification challenge○

•

GoogLeNet (Inception)
Motivations

Efficient use of compute resources○

Bigger architecture is potentially better, but
More parameters - more prone to overfitting - get more data - expensive▪

Requires more computation - computation budget is finite - need to be more 
efficient with how you go bigger

▪

○

•

Inception module
Basic building block of the inception network○

VGGNet eliminated filter size as a hyperparameter by proposing to always use    and 
arguing that this has many benefits

○

Inception module eliminates filter size as a hyperparameter○

Has filters of different sizes in a single layer
Stack the output into a single volume▪

○

Still computationally efficient○

•

   convolutions
Pooling allows us to down-sample/reduce the spatial dimensions, but doesn't let us 
change the size of the channel dimension

○

Can reduce the channel dimension using a convolution layer with    filters○

May seem redundant, but filters have an implied third dimension equal to the input 
volumes number of channels

○

○

For one of the filters
Weighted sum across all feature maps at each spatial location▪

▪

○

Conceptually like a form of compression where compression scheme is learned from the 
data

○

Output features are a composition of the input features

•
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Output features are a composition of the input features○

Summary of inception module
Inception module has filters of different sizes in same layer○

Use    convolutions to improve computation efficiency○

Intuition of    convolutions is combining feature maps○

Doesn't hurt as long as not too aggressive○

•

Global average pooling
Traditionally, final layers is a flattening of the final volume into a vector and sending this 
to one or more FC layers

Huge vector - large number of parameters for subsequent FC layer▪

○

Another approach
Average pool across the entirety of each activation map - one number per 
activation map

▪

Resulting vector is fed to subsequent FC layers▪

○

Advantages
Pooling operation is essentially free▪

No parameters to optimize so less prone to overfitting▪

Since we are looking over the entire feature map, thus more robust to spatial 
translation of the final activations

▪

○

•

InceptionV3(Reception)
Three types of inception modules

First inception module
Same as GoogLeNet's inception module except    replaced by two layers of 
   filters

▪

▪

○

○

•

Spatially separable convolutions
Decompose a    convolution into two convolutions (   and    )○

More efficient than using one convolution.○

•

ResNet
Both training and test errors may increase with more layers•
Deep network should be at least as good as shallow network

If the additional layers just learned the identity, then functionally, the deeper network is 
equivalent to the shallow network

○

•

Optimization problem
Hypothesis: current techniques make it hard to find the identity function for a layer and 
a function that improves the overall model

○

Proposed solution: augment architecture to start with the identity function, and then 
learn from there

○

•
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learn from there
Residual block for fully connected layer

○

Add a shortcut○

If       and       approach 0, then            .○

Stacking these blocks to make a network deeper shouldn't hurt○

The residual identity function gives a good baseline on which to try to improve○

Also
Doesn't add any learned parameters▪

Doesn't increase computational complexity significantly▪

Shortcut paths provide another path for backprop gradient flow▪

○

Shape of       and     must match.
If not, either use a projection matrix or pad with zeros▪

○

•

Architecture
34 parameter layers○

No pooling layers. Use stride=2 in conv layer to shrink volumes○

Use global average pooling instead of FC layers at the end○

•

Comparison

Memory usage
Sources

Activations: the intermediate volumes and their gradients○

Parameters: parameter values and their gradients○

Training data: the batch currently being processed○

•

For training, you need to fit everything into the GPU memory, or else you take massive 
runtime hit

•

Can tune optimizer batch size•

MobileNet
Another way of using    convolutions to create a factorized convolution which in turn 
further improves compute efficiency

•

Hyperparameter to trade off accuracy and FLOPs/Params•

Traditional convolution
Filter produces a single map

Channel independent convolution○

Summing across channels/   convolution with fixed filter value (1).○

•

Depth-wise separable convolutions has two stages•
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Depth-wise separable convolutions has two stages
Depth-wise convolution

One          filter▪

Each channel convolved independently▪

○

Point wise convolution

 number of          filters.▪

○

•

Object localization and detection
Localization

Output
Class prediction▪

Bounding box            ▪

Fixed number of objects▪

○

Start with CNN classifier architecture○

Add FC layer to predict bounding box
Treat as regression problem▪

Use squared loss (i.e.   loss)

                                        
  

           .□

▪

Bounding box cost = average loss (with   loss, mean squared error/MSE)▪

Final cost = categorical cross entropy loss (class prediction) + Bounding box cost▪

○

•

Landmark detection
Localization with only the center    .○

FC layer predicts two numbers      for each landmark.○

Examples
Face detection▪

Pose detection: define a landmark for each joint▪

○

•

Object detection
Detecting fixed number of objects: localization○

Detecting multiple objects: sliding window
Start with a trained CNN classifier▪

Supply various crops of the image to the CNN via sliding window▪

Sliding window locations for one window of shape        in an image of shape 
     :

                 .□

▪

Repeat for all possible window shapes:

                    
    

 
    

.□

Infeasible to look at all possible window sizes at all locations iteratively□

▪

○

•

Regions with CNN features (R-CNN)
First use a region proposal algorithm to find a manageable number of regions (crops) that 
potentially have an object

•

Send region crops to classifier•
Region crop location and size is the bounding box prediction•
R-CNN

Evaluate one region at a time○

•

Fast R-CNN
Classify all proposed regions at once○

•

Faster R-CNN
Uses a CNN to propose regions○

•

You only look once (YOLO) 
Implement sliding window via convolution

Start with a trained CNN classifier○

Convert FC layers to use convolutional equivalent implementation○

Supply larger image for object detection○

Each sliding window location is a potential bounding box for an object

•
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Each sliding window location is a potential bounding box for an object
For each output set, we can map back to region of input ▪

○

Can evaluate all sliding window locations in one pass•
Some restrictions on stride and size of the sliding window•
Conv layer to FC layer

Flatten○

Convolve with filters that have the same shape as input volume, one filter for each FC 
output unit

○

•

Anchor box
Change localizer to predict up to X objects at each location with predefined bounding 
box shapes

○

•

Problem of sliding window 
Objects may not fit perfectly inside of sliding window

Inaccurate bounding box predictions○

•

Solution
Instead of applying a CNN classifier at each sliding window location, apply a CNN 
classifier + localizer

Outputs a bounding box prediction in addition to class predictions▪

○

•

Can only detect one object at each sliding window location•

Image retrieval
Use the final flattened volume as a signature of an image•
Find similar images by finding similar signatures•
With a trained network, compute and store signature vector of each image•
Given a new image, find images with the smallest Euclidian distance between signature 
vectors

•

Visualization feature vectors
Flatten out last volume•
Apply dimension reduction•
plot•

Saliency maps
Define the parts of the image imported for the prediction•
Can do image segmentation•
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Optimizer:
Get the network to reach its potential by finding good parameter values•

Optimization
Define a cost function (objective function) to measure the quality of a solution

Cost function models desired traits (objectives) of the solution○

The solution is a set of parameter values○

The objective is to minimize difference between model prediction and actual labels○

•

Use an optimization algorithm (optimizer) to search for a solution that minimizes/maximizes the cost 
function

Infeasible to solve for an optimal solution○

Instead, iteratively search for a good-enough solution○

•

Neural network classifier

Objective is to minimize difference between true label  and predicted label   ,          •

Prediction is a function of the input  and network parameters    ,            .•

Training objective is thus a function of        ,             .

For a given training set,    are constant,         .○

•

•

Optima:
Minima: 

Convex in all variables○

○

Maxima:
Concave in all variables○

○

Global refers to the biggest/smallest among all maxima/minima○

Local refers to all the rest○

Related but not optima (Saddle):
Concave in some variables, convex in others○

○

Gradients at optima and saddle are 0, 
  

   
     for all parameters   .○

•

Deep learning cost function is not convex
There are many equal global minima •

Gradient descent
Intuition

Start somewhere in parameter space○

Move in direction with the steepest decrease in cost○

Repeat○

•

Hyperparameters
Parameter initialization method○

Learning rate○

Number of iterations○

•

Improving gradient descent allows us to go through training faster and tune more•
Problem•

Gradient Descent & optimization
2021年11月16日 9:12
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Problem
Cost is a function of all training image○

When training set size gets large, computational requirements make classic gradient descent 
impractical

Takes too long to compute gradient for one training iteration○

Requires too much memory to store activations of all samples concurrently in GPU memory○

○

•

Mini-Batch gradient descent
Use a small subset of the training set (a mini-batch) as an approximation of the overall training set•
Hyperparameters

Parameter initialization method○

Learning rate○

Number of iterations○

Sampling method○

Batch size - 32/64/128/256
Power of 2 because sometimes memory access works out better○

Pick as big as you can and still fit into GPU memory, significant performance hit from memory 
access if can't fit into memory

○

○

•

A common sample method
Random shuffle full set○

Partition into mini-batches○

Iterate across each mini-batch○

One full pass through the set is called an epoch○

○

•

If minibatch size=full size, same as classic gradient descent•
If minibatch size=1, each sample is a mini-batch

Stochastic gradient descent (SGD)
Keras use SGD to refer to mini-batch gradient descent○

○

Lose benefits from vectorization○

•

Problems
Different dimensions (parameters) may change at different rates

Direction of steepest descent isn't directly to minimum unless it is a circle○

Larger steps at steeper areas, and smaller steps at shallower areas○

○

Local optima and saddle points
Saddle points are unstable but simply no gradient info○

Gradient descent will stop updating parameters○

○

Meandering nature of mini-batch gradient descent
Winding path○

○

•

Exponentially weighted averages
Moving average•
Can be used to smooth out short-term fluctuations and highlight longer-term trends•

                .

Approximately   is the average value over 
 

   
   datapoints.○

 slows down the descent○

•

Use an exponentially weighted average of past gradients to update the parameters•
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   doesn't matter too much (factored into learning rate)○

         
  

  
   .○

○

Solution to problem 1
Consistent gradient will build up velocity from accumulated acceleration○

Inconsistent gradients will cancel out○

•

Solution to problem 2
At saddle points, gradient is 0, but historical component (momentum) won't be○

At local minima, velocity can help get back out of some local minima○

•

Solution to problem 3
The moving average create a smoothing effect○

•

Bias correction (issue at  around zero)

                              .○

   
         

    
      .○

Biases will make large updates at the start which will destroy weight initialization or send you into a 
spot in the parameter space with no gradients

○

•

Per-parameter adaptive learning rates (Adagrad)
We have larger steps at steeper areas and smaller steps at shallower areas for gradient descent•

Keep a separate grad_sq for each parameter○

•

Intuition
Square of gradients focuses on magnitude and not direction○

Dimensions moving through a region with large gradient will accumulate a larger value into grad_sq, 
and when you divide by this, you are making the update smaller

Dampen○

○

Dimensions moving through a region with small gradient will accumulate a smaller value into grad_sq, 
and when you divide by this, you are making the update larger

Accelerate○

○

•

Problem
No decay of grad_sq, gets bigger and bigger○

•

Solutions•
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Solutions
RMSProp

Use exponentially weighted average of the square of the gradients○

○

○

Adam
Combines RMSProp and momentum○

Work well across a wide variety of deep learning problems○

A good default choice for optimizer○

○

○

•

Second-order optimization
Look also at second-order derivative (Hessian)•
Tells about the curvature•

Learning rate schedules
Vary learning rate over training

Start high and reduce over time○

Annealing, decaying the learning rates○

•

The method in which we decay/anneal the learning rate is referred to as the Decay/Annealing schedule
Generally, want to reduce learning rate once progress plateau○

•

Trade-offs
Too slow: wasting time bounding around○

Too fast: slow down training○

•

Common decay schedules
Step decay

Reduce learning rate at fixed points○

New hyperparameters
Which intervals to decay□
How to decay at each interval□

○

○

Decay based on function
Typically no new hyperparameters needed○

Exponential decay:       
   .

 is a hyperparameter.□
○

Linear decay:         
 

 
  

 is the total training iterations.□

○

Cosine decay:    
 

 
          

  

 
    ○

Inverse sqrt decay:      
 

  
    ○

1/t decay:      
 

    
    ○

○

•

Choosing schedule
Try constant learning rate first○

Step decay: manually decay after progress plateaus○

Function: non new parameters○

•

Weight initialization
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Weight initialization
Hard to start close to a global minima•
Want gradients to be well-behaved (not all zero)•
Initialize with 0 or constants breaks the back propagation•
Initialize with a Gaussian random

Breaks symmetry (not all initialized to same value)○

Mean 0: zero-centered inputs, final weights might be zero-centered○

Multiplying by  gives the random variable a standard deviation equal to  ○

Good for shallow networks○

For deeper networks (with large hidden unit) activations get closer to 0
Gradient approach 0○

For tanh, most activations are in saturation○

○

Gaussian or uniform
Not clear which one is necessarily better○

○

•

Xavier initialization 
Set the variance of Gaussian equal to the number of inputs to the layer○

For tanh and ReLU

○

○

For Kaiming/he_normal

○

○

•

Bias initialization
Simply initialize with 0

Symmetry breaking done in initializing the weight parameters○

Could initialize with small positive number when using ReLU○

•

Data preprocessing
Consider sigmoid: always positive, parameter updates will be negative

Inefficient training○

Pick a zero-centered activation function○

•

First layer: if data is all positive, parameter updates will be positive
Inefficient training○

•

Preprocess the input data can help optimization•
Preprocess: Mean subtraction

Compute mean for each feature across training samples    
 

 
     

    
   ○

Subtract mean from each sample's features       ○

•

Normalization/scaling

Compute variance of each feature across all training samples   
  

 

 
      

   
    

 
 
   .○

Divide each feature by standard deviation    
 

 
 .○

Corresponding weights will tend to become similar scale○

Absolute feature scales
Even if all features are on similar scale, we don't want these scales to be large○

Still leads to large gradients. Small change will lead to big changes in final cost
Cost is sensitive to small changes to weights□

○

Harder to optimize○

○

•

Standardization (Z-score normalization)

Combine the previous two   
  

     

  
    .○

•

Whitening/decorrelating•
Image data

Each pixel is a feature○

Each feature is on the same scale relative to each other○

Still need normalization○

Examples
AlexNet: subtracted mean○

VGGNet: subtracted channel mean

○

•
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VGGNet: subtracted channel mean○

ResNet: subtracted channel mean , divided by channel standard deviation○

At inference/prediction
Any transformation performed on an input for training must be performed for inputs at prediction○

•

Batch normalization
Normalizing inputs of the hidden layers•
Stabilizes the optimization problem by giving each layer a target mean and variance•
Makes optimization less sensitive to learning rate and weight initialization•
Algorithm

For a given mini-batch with  samples,  is a matrix of shape      .○

For each input   , compute its mean   and variance   
 .○

For each sample and each feature, normalize   
  

     

  
    .○

•

Zero mean unit variance
Too strict, makes optimization problem harder○

Let the model learn target mean and variance for each layer○

•

Learned mean and variance
Two new trainable parameters      for each output that act to shift and scale the normalized layer 
outputs

○

        
    .○

If      ,      ,       .○

If     ,     ,       
 , with zero mean and unit variance.○

•

Backward propagation
  

  
    

  

   
    

 .○

  

  
    

  

   
     

  
 .○

  

   
     

  

   
    .○

  

  
   

 

  
     

  

  
      

  

  
   

  

  
   .○

•

Can be applied before the nonlinear activation
Works well○

•

Can speed up training 
Can use larger learning rate○

•

At prediction
Batch norm is a function of all samples in the mini-batch○

Can't compute mean and variance of only one sample○

Use moving average○

Extra processing at inference time○

•

Slight regularization effect
Mean and variance on mini-batch is only an approximation to the actual mean and variance compared 
to the entire training set activations

○

Introduces noise○

Unintended regularization effect○

•

Why
Helps stabilize a layer's output○

Reduces internal covariate shift○

Smooths the objective landscape○

Length-direction decoupling○

•

Overfit
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•

Get more training data•
regularization•

Regularization via cost function
Add additional terms to encourage regularization in our solution•

   
 

 
           

      .•

L2 regularization (weight decay)

   
 

 
           

         
 .○

Sum the square of each parameter value○

Cost can be minimized when each parameter value is small○

Convex function○

Global min when all weights are 0○

Try to minimize the loss and the regularization term
Loss term will be large if all weights are zero○

○

Specify the importance

   
 

 
           

          
 .○

   : we don't optimize for regularization.○

   : we don't optimize for loss.○

Default: 0.01○

○

Most popular○

Discourages subset of weights dominating○

•

L1 regularization
        

 .○

•

L2 and L1 (Elastic net)
         

 
       

  
 .○

•

Regularizing bias parameters
Not often•
Doesn't have a big impact•

Dropout 
On each parameter update iteration, randomly remove some hidden unit from the network•
Train a bunch of smaller simpler models and ensemble them together

Each model overfits in different ways so averages out○

•

Don't put too much weight into any particular feature
Similar effect to L2 regularization○

•

Force each unit to learn to work well with a random subset of input units
Learn useful features on its own instead of relying on certain input○

•

Implement dropout by outputting 0 at appropriate locations

○

Random mask generated on each forward pass○

Keep_prob is the probability of not dropping a node○

 is the output with some nodes changed to 0.○

  unique masks.○

•

At prediction
Non deterministic predictions

•
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Non deterministic predictions○

Expected output value:                          
  

   .

           : output for one mask○

Each mask occur with         ○

○

Not feasible to compute for any moderate sized layer○

Good approximation: scale the inputs with keep_prob.

○

Backward: 
  

  
   

  

  
       ○

○

Inverted dropout

○

Backward: 
  

  
   

  

  
                 .○

•

Mainly use with FC layers
Prone to overfitting compared to conv layers○

•

Not used with con layers
Conv layers aren't so prone to overfitting because each swatch (convolutional location on input 
volume) is a separate piece of training data

○

•

Drop connect:
Similar to dropout•
Zero out random weights at training (connections) instead of nodes•

Data augmentation
One way of regularization

Avoid overfitting to the original data○

•

Generate new training data from existing training data•
For images

Mirror○

Rotate○

Blur○

Saturation○

Cropping○

•

Regularization
Common use: L2•
Large FC layer: dropout•
Don't rely on batch norm•
Data augmentation for images•

Hyperparameter tunning
Hyperparameter: any choice that affects your model architecture or optimization process

Architecture
Number of layers○

Number of units/filters per layer○

○

Optimization
Learning rate○

Weight initialization○

Optimizer hyperparameters○

Regularization techniques

○

•
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Regularization techniques○

Random search is better than grid search
Log scale vs linear scale

Log scale: Learning rate from 0.0001 to 1▪

○

Coarse to fine
Do hyperparameter search in initial range of hyperparameter values▪

Find the values that minimize the cost▪

Zoom into a tighter region of values around this set of values and repeat search▪

○

•

General advice
Start by using a small subset of training set and get the model to 100% accuracy

Turn off regularization○

Flush out buds in optimization flow and glares deficiencies○

•

Use full training set, find a learning rate that shows good decrease in cost
Turn on regularization○

Can see effect  of learning rate in small number of training iterations○

•

Hyperparameter search•
Monitor histograms of gradients, parameters, activations during training

Tensor board○

•

Get training accuracy high first
Low training accuracy means unable to learn○

Validation accuracy can't do better○

•

Then work on closing the gap and improve validation accuracy•
Look at failing cases

Visualize data○

Look for patterns○

•

Look at cost curves
Learning rate too big○

Bad initialization○

Loss plateaus○

Decayed learning rate too soon○

Overfitting○

Potential underfitting○

•

Transfer learning
Take a model that was trained for one task and repurpose it for a second similar task•
When repurposing, keep some of the learnings from the first task•
Usage

Image
Start with CNN trained on a large data set

We expect this to have learned many important feature□
Early layers of CNNs learn a vocabulary of visual constructs (edges, textures, patterns), no 
need to relearn

□

▪

Replace output layer with the new output layer ▪

Train with new data set, but only update the new output layer's parameters
Can also let the last couple conv layers be retrained□

▪

○

Text and speech○

•

When
Both tasks have same input (images, audio, language data)○

Significant less training data available for the new task○

Expect low-level features to be similar in both tasks○

•

Benefits
Leverage previous training efforts so don't need to start from scratch○

Start with very good parameter values
Lower loss▪

○

Don't need to relearn common low-level features○

Can train a good model even if we have few data

•
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Can train a good model even if we have few data○
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Intro
Simple ML to create approximation for translation does not produce high quality result•
In real world data unfolds over time

Information in both individual components of the data and their ordering with respect to 
other components

○

Need to consider the context○

•

Add context to ML system
Can try to increase the inputs to system to reflect the context

                            .○

               are all the data from the past.○

Won't scale○

•

Use activations from the previous step in the sequence can be used to bias the activations on the 
next step

Can simultaneously learn the amount of context required while we learn the input to output 
mappings

○

•

Recurrent Neural Networks (RNNs)

•

•

  
   

              
           .

     is the contribution from current input○

   is regular NN parameters○

     
        is the contribution from current context (previous inputs over time)○

   is previous activation parameters○

•

RNN, NLP
October 27, 2021 5:26 PM
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•

I/O sequence length flexibility

○

One to one: image classification○

One to many: image captioning○

Many to one: sentiment classification○

Many to many: machine translation
Can accommodate extra words▪

Need <eos> to tell us when to stop encoding/decoding▪

○

•

RNN feature extraction
RNN structure does a form of feature extraction •
e.g. extract similar words•
RNNs isolate elements of sequences like convolutional filters isolate regions of an image•

Context
Context doesn't only flow one way•
Once we have the data, we can look forward and backward in time•
Even when we deploy a system, we can buffer the inputs long enough to consider context in two 
directions

•

Bidirectional RNN

    and       are set to 0.▪

○

•
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    and       are set to 0.▪

Forward + backward○

Combine the outputs○

Using BRNNs with each sentence considered a sequence is the current state of the art for 
most NLP applications today

○

RNN applications
Sound•
Video•
Natural language•
Online interactions•
Music•
Sports•
Real-time navigating•
Radar tracking•

Human behavior prediction
With what we know, predict what we will do next•
Training and prediction

Record everything you see, hear○

Record everywhere you move and whatever you say and type○

Train RNN

▪

○

Deploy

▪

○

•

Usability
Data recording/storage is easy○

The biggest distributed RNNs would be able to process the data without much of a challenge○

The only real question would be how predictable are you and would it be worth the time and 
effort to do that training

○

•

Many human behaviors are predictable and there is a huge money motivation•

RNN Notation

Inputs:         where      and       
   

•

Outputs:         where      and       
   

•

 training examples.•
Each input and output in the training example has a sequence length  .•

NLP word representation
A standard AI network can only accept numbers as inputs and outputs•
Need to assign each word a number•
Dictionary (vocabulary)

Create an ordered dictionary and assign each word number based on its position in the 
•
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Create an ordered dictionary and assign each word number based on its position in the 
sequence

○

Makes learning task hard and added un-intentioned bias
Words are biased together based on their position in the alphabet▪

○

Normalized and less compressed representation
One-hot encoding

A vector marks which word it is and which word it is not▪

No order bias, better activations▪

○

•

Unknown words
Create one more vector element as unknown word (UKW)○

Can allow UKW as an output if it makes sense○

As long as the vocabulary includes all the words that are important for NLP task, should be no 
problem mapping some words to UKW

○

•

RNN loss function
Expand a single loss function over the entire output sequence•

Define the overall loss to be the sum                          
  
   .•

With one hot encoding                                                    .•

RNN computation graph and back propagation

•

Step 1. calculate   using computation graph.•
Step 2. determine the loss•
Step 3. update each parameter

Later values have impact on previous layers.○

○

•

Step 4. repeat until         .•
Note: the RNN parameters are being updated with the average gradients on each sample•

Vanishing gradients
As sequence get long, it can be difficult to enable earlier elements to correctly influence later 
outputs

•

We can bypass some activations by holding the previous value•
Gated recurrent unit (GRU)

Gating function                 
            .○

Gives value between 0 and 1 based on learned parameters and standard RNN unit inputs○

Can use the following to decide if we should keep the previous activation or update it

  
            

               
        .▪

Standard activation becomes a candidate    
                    

        
   .▪

○

•

Long short term memory (LSTM)
Most RNNs use the general LSTM to manage the vanishing gradient problems•
Three independent learned functions

Update:                
         

•
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Update:                 
        

    ○

Forget:                 
        

    ○

Output:                 
        

    ○

Candidate memory: 

   
      

              
        

   .○

  
      

      
      

     
        

(Update the internal memory with both updating and 

forgetting)

○

Output:   
      

         
      

.○

•

•

Note: GRU and LSTM are important to RNNs, especially NLP applications
Structure of sequential data sets•
A key element is critical for a period of time, and then no longer relevant•

Categorical vs. Binary Cross Entropy
Softmax: classes are mutually exclusive•
Sigmoid: 

Classes may overlap, so that case must be interpreted○

For NLP, overlap could equal UKW○

•

Depends on the goal of the learning system•

Word encodings
Some words are related•
Closeness map:

○

Machines can learn these ideas○

Instead of using a one-hot-encoding for each of the words in the vocabulary, we can imagine 
that for each word we have a vector where each element of the vector can be thought of as 
an attribute

○

•
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○

We can then build an implicit distance between different words and learn the attribute groups○

Embedding matrix
Pick the number of attributes (hyperparameter) that we think we will be sufficient to hold our 
encodings

○

With  attributes and  words in the vocabulary, the embedding matrix  will be of size 
     .

○

Learning:
Algorithms: Word2Vec, negative sampling, GloVe▪

Treat the elements of the matrix as parameters to be learned and use gradient descent 
to find a good solution

▪

○

•

Language models
Used to predict language based on current and previous inputs (context)•
An encoding that allows similar objects to be represented as similar would make the problem easier•
With the embedding matrix, we can use the one-hot-encoding for each word to extract the vector 
for the specific word

Let one hot be:   .○

 is the position of the 1 in the one-hot vector, then        .○

  is the encoding of the    word in the vocabulary.○

•

Basic language model
Over a large set of training data, we would learn to predict the next word from the previous 
words

○

Normally the inputs would be one-hot-encodings with length equal to the vocabulary size○

•

Adding learnable embedding matrix
By simply multiplying the input one-hot-vector by the embedding matrix○

○

Learned parameters:          .○

•

The embedding matrix can be reused for other applications. If we create  once on a very large and 
high-quality data set, we can use it as a starting point for other NLP tasks where we have less 
example data

New applications do not have to start from scratch○

•

Attention models
For the simple machine translation model, the entire sentence must be encoded•
We would like the output sequence generator to pay attention to a selection of the activations of 
the input words.

•

Model that enables the view•
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Model that enables the view

○

Define  as the amount of attention that should be paid to each activation and define 

      
    

      .

Computing attention weights could be similar to softmax      
   

         
   

          
   

  
 

            .▪

But,      
  can be learned from a neural network.▪

○

Context for each output sequence            
     

    
    .○

•
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