
Unit 1

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

1

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 2

https://xkcd.com/1938/

 Given the notation from the textbook, describe in plain English and at a
high level what an instruction does
 Given a Y86 instruction and its description convert that to the short hand

form from that describes what the instruction does
 Given the compiler’s assembly output of a C program map between the C

and assembly
 Given a small piece of C convert it to Y86
 Convert from x86-64 to Y86
 Describe in plain English what a small piece of x86-64 or Y86 is doing
 Explain the purpose and use of the Y86 assembler directives
 Given the description of a an instruction format for an ISA translate

between assembly and machine language byte encodings and vice versa

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 3

Look at a new instruction set architecture
Goal - understand how it might be implemented

Study how it is implemented in hardware
Goal - Appreciate the implications on program performance and

behaviour

Look at a pipelined implementation
Goal - Appreciate the implications on program performance and

behaviour

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 4

 computers implement an Instruction Set Architecture
 ISA: Abstract expression of what a machine does
 Independent of actual implementation
 Multiple implementations of the same ISA

 compilers translate high-level language programs into
sequences of low-level hardware instructions
CPU hardware executes
 one instruction at a time – one per cycle (or does it?)
 cycle is Fetch then Execute
 instructions are stored in memory
 execution transforms register and memory contents from one state to

another

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 5

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

Fetch next
instruction

Execute
instruction

Check for
interrupts

6

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 7

Main
memory

I/O
bridge

Bus interface

ALU

Register file
CPU

System bus Memory bus
PC

From Computer Systems: A Programmer’s Perspective

Most ISAs have in common:
 Some set of registers to work with
 Rules for accessing memory
 A set of instructions for:
 Manipulating memory
 Manipulating registers
 Controlling the flow of instruction execution

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 8

All ISAs have a few types of instructions
Memory based operations (load, store)
 Register based operations (moves, arithmetic operations)
Change program counter (jumps, branches, call, return)
Conditional operations (allows loops, if/then/else)

Some ISAs have instructions that might combine a couple of
these operations
 Example: load from memory and add to register

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 9

How do you learn a new assembly language?
 Read a short description
 http://www.cs.virginia.edu/~evans/cs216/guides/x86.html

 Read a longer description
 http://csapp.cs.cmu.edu/public/1e/public/docs/asm64-handout.pdf
 https://software.intel.com/en-us/node/181178

Or use a C compiler and read the assembly language code it
produces

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 10

http://www.cs.virginia.edu/%7Eevans/cs216/guides/x86.html
http://csapp.cs.cmu.edu/public/1e/public/docs/asm64-handout.pdf
https://software.intel.com/en-us/node/181178

Y86-64: invented by the textbook authors as a teaching tool
A simple subset of the x86-64 (Intel) architecture
 Less instructions, simpler encoding, simpler addressing modes

 Inspired by RISC (reduced instruction set computer)
 It has
 15 general-purpose 64-bit registers
 1 program counter (PC)
 3 condition codes zero (ZF), sign (SF), overflow (OF)
 12 types of instruction

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 11

Registers (64 bits each):

 Instructions that only need one register use F (15) for the second register.

Additional flags available: overflow flag (OF), zero flag (ZF),
sign flag (SF)
 on or off depending on result of previous operation
 only accessible indirectly

Memory contains 264 addressable bytes
 all data accesses load/store 64 bit words aligned on an 8 byte boundary

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 12

%rax %rsp
%rcx %rbp
%rdx %rsi
%rbx %rdi

0
1
2
3

4
5
6
7

%r8 %r12
%r9 %r13
%r10 %r14
%r11

8
9
10
11

12
13
14

 register/memory transfer (at most one memory access per
instruction)
arithmetic and register move (no memory access allowed)
 jumps (conditional and unconditional)
conditional moves (register move only if condition is true)
stack manipulation
procedure calls (special kind of jump)
miscellaneous (halt, nop)

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 13

 register/memory transfers:
 rmmovq rA, D(rB) M8[D + R[rB]] ← R[rA]
 Example: rmmovq %rdx, $0x20(%rsi)

 mrmovq D(rB), rA R[rA] ← M8[D + R[rB]]
 Example: mrmovq $0x0A(%rdx), %rsi

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 14

Register manipulation
 rrmovq rA, rB R[rB] ← R[rA]
 irmovq V, rB R[rB] ←V

Arithmetic instructions
 addq rA, rB R[rB] ← R[rB] + R[rA]
 subq rA, rB R[rB] ← R[rB] − R[rA]
 andq rA, rB R[rB] ← R[rB] ∧ R[rA]
 xorq rA, rB R[rB] ← R[rB] ⊕ R[rA]
 mulq rA, rB R[rB] ← R[rB] * R[rA]
 divq rA, rB R[rB] ← R[rB] / R[rA]
 modq rA, rB R[rB] ← R[rB] % R[rA]

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 15

Extensions, not in the book

Unconditional jump
 jmp Dest PC ← Dest

Conditional jumps
 jle Dest PC ← Dest if last result ≤ 0
 jl Dest PC ← Dest if last result < 0
 je Dest PC ← Dest if last result = 0
 jne Dest PC ← Dest if last result ≠ 0
 jge Dest PC ← Dest if last result ≥ 0
 jg Dest PC ← Dest if last result > 0

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 16

Conditional moves
 cmovle rA, rB R[rB] ← R[rA] if last result ≤ 0
 cmovl rA, rB R[rB] ← R[rA] if last result < 0
 cmove rA, rB R[rB] ← R[rA] if last result = 0
 cmovne rA, rB R[rB] ← R[rA] if last result ≠ 0
 cmovge rA, rB R[rB] ← R[rA] if last result ≥ 0
 cmovg rA, rB R[rB] ← R[rA] if last result > 0

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 17

Stack operations and procedure calls
 call Dest R[%rsp]←R[%rsp] - 8;

M8[R[%rsp]]←PC; PC←Dest;
 ret PC←M8[R[%rsp]]; R[%rsp]←R[%rsp] + 8
 pushq rA R[%rsp]←R[%rsp] - 8; M8[R[%rsp]]←R[rA]
 popq rA R[rA]←M8[R[%rsp]]; R[%rsp]←R[%rsp] + 8

Others
 halt
 nop

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 18

Condition Test Zero flag Sign Flag

g > 0 0 and 0

ge >= 0 0

e == 0 1

ne != 0 0

le <= 0 1 or 1

l < 0 1

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 19

 Labels
 symbolic names for addresses, assigned using label:
 used anywhere a number can be used (number replaces label)

 Fixed values
 .byte X insert the 8-bit number X
 .long X insert the 32-bit number X (in Little Endian)
 .quad X insert the 64-bit number X (in Little Endian)
 .byte X, n / .long X, n / .quad X, n same as above, repeated n times

 Adjust memory location
 .pos X set the address of the next instruction (or directive) to X
 .align X ensure that address of next instruction is aligned to X bytes, padding

(adding unused space) if necessary

20CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

Some conventions define register and stack usage when
one function calls another
 This permits compiler to create code for a function without

knowing where it will be called from

Calling conventions are:
Compiler dependent
 Architecture dependent
Operating system dependent

For example:
 32-bit, x86, gcc-based calling convention is called cdecl (after C)

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 21

 Stack pointer: %rsp
Arguments passed in registers, in this order: %rdi, %rsi, %rdx,

%rcx, %r8, %r9
 Additional arguments passed in stack

Returning value passed in %rax
Caller-save registers: %rax, %r10, %r11 + arguments
 Callee can change their values at will
 Caller responsible for saving before calling other functions

Callee-save registers: %rsp, %rbx, %rbp, %r12, %r13, %r14
 Caller assumes they have same value when function returns
 Callee must restore value before returning

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 22

Parameters are passed in registers unless there are too
many
Stack pointer (%rsp) represents the top of the stack
%rbp is sometimes used for the base of the frame (where stack was

when function started)

Stack is used for:
 local variables in functions
 arguments (if too many)
 returning address
 register values before a function call that may change them

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 23

Local variables

Local variables

Return Address

Argument 7

Argument 8

Argument 9

Caller’s Local variables

…

Caller’s Return Address

…

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 24

(%rsp)

16(%rsp)

8(%rsp)

24(%rsp)

Local variables

Local variables

Saved caller’s %rbp

Return Address

Argument 7

Argument 8

Argument 9

Caller’s Local variables

…

Caller’s Return Address

…

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 25

(%rsp)

(%rbp)
or

16(%rsp)

8(%rsp) or
-8(%rbp)

32(%rsp) or
16(%rbp)

What does x86 have that Y86 doesn’t?

Non-quad versions of instructions and registers:
 XXXb, XXX, XXXl, XXXq for 8, 16, 32, 64 bits, respectively
 ah, al, bh, bl, ch, cl, dh, dl: 8-bit registers
 ax, bx, cx, dx, si, di, sp, bp: 16-bit registers
 eax, ebx, ecx, edx, esi, edi, esp, ebp: 32-bit registers

Additional addressing mode:
 Indexed: e.g., movq 8(%rax, %rbx, 4), %rcx

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 26

 Instructions rmmov, mrmov, irmov, rrmov all called mov
 Addressing of arguments determines type of instruction

Additional instructions
 More ALU operations (inc, dec, or, neg, shl, shr, sal, sar)
 Floating-point instructions
 Combination of instructions (e.g., memory load plus ALU)
 Computation of address (lea)
 Comparison instructions (test, cmp)
 Additional conditions: carry (jc/jnc), overflow (jo/jno), sign (js/jns), parity

(jp/jnp), unsigned versions (ja/jb/jae/jbe)
 Special purpose and privileged instructions (iret, xchg)

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 27

C example:

28

long start[] = { 4, 7, 8, 9, 12, 11 };

long sum_function () {
long sum = 0;
long count = 6;
long *str = start;

while (count) {
sum += *str;
str++;
count--;

}
return sum;

}

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

Compiled to assembly by gcc 4.9.2 with -O1 -S

long start[] = { 4, 7, 8, 9, 12, 11 };

long sum_function () {
long sum = 0;
long count = 6;
long *str = start;

while (count) {
sum += *str;
str++;
count--;

}
return sum;

}

sum_function:

movl $start, %edx # long *str = start

xorl %eax, %eax # long sum = 0

.L2:

addq (%rdx), %rax # sum += *str

addq $8, %rdx # str++

cmpq $start+48, %rdx # if str != &start[6]

jne .L2 # loop

rep ret

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 29

Converting to y86-64

sum_function:

movl $start, %edx

xorl %eax, %eax

.L2:

addq (%rdx), %rax

addq $8, %rdx

cmpq $start+48, %rdx

jne .L2

rep ret

sum_function:

irmovq start, %rdx # long *str = start

xorq %rax, %rax # long sum = 0

.L2: mrmovq (%rdx), %rbx

addq %rbx, %rax # sum += *str

irmovq $8, %rbx

addq %rbx, %rdx # str++

irmovq end, %rbx

subq %rdx, %rbx # if str != &start[6]

jne .L2 # loop

ret

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 30

long a = 1830;
long b = 1131;
long gcd;

int main() {
long r;
while (b > 0) {

r = a % b;
a = b;
b = r;

}
gcd = a;

}

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 31

.pos 0x100

main: xorq %rdx, %rdx # %rdx = 0

mrmovq a(%rdx), %rax # %rax = a

mrmovq b(%rdx), %rbx # %rbx = b

loop: subq %rdx, %rbx # is b <= 0?

jle end # if so, done

modq %rbx, %rax # %rax gets remainder

rrmovq %rax, %rcx # save remainder

rrmovq %rbx, %rax # a = b

rrmovq %rcx, %rbx # b = remainder

jmp loop

end: rmmovq %rax, gcd(%rdx) # gcd = a

rmmovq %rax, a(%rdx) # update a

rmmovq %rbx, b(%rdx) # update b

halt

.pos 0x1000

a: .quad 1830

b: .quad 1131

gcd: .quad 0

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 32

long a = 1830;
long b = 1131;
long gcd;

int main() {
long r;
while (b > 0) {

r = a % b;
a = b;
b = r;

}
gcd = a;

}

Y86-64 instructions

Way to specify what an instruction does

Translation of C to Y86 for simple problems

Now that we know what an instruction does we want to know
how an instruction is represented in memory so that the CPU
can retrieve it and then execute it.

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 33

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 34

 Instructions format:
 Arithmetic instructions:
 addq → fn = 0
 subq → fn = 1
 andq → fn = 2
 xorq → fn = 3
 mulq → fn = 4
 divq → fn = 5
 modq → fn = 6

Conditional jumps and moves:
 jmp → fn = 0
 jle → fn = 1
 jl → fn = 2
 je → fn = 3
 jne → fn = 4
 jge → fn = 5
 jg → fn = 6

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 35

Translate the following into machine language
mrmovq 0x2000(%rax), %rdx
 xorq %rsi, %rbx
 jne $0x1234
 irmovq $0x376, %rax

Translate the following into assembly language
 0x25 0x42
 0x80 0x12 0x34 0x56 0x78 0x00 0x00 0x00 0x00

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 36

 Identify CPU stages and the order an instruction goes
through them in our Y86 sequential processor

Describe/explain the general functionality of each
instruction execution stage

Describe/explain, in plain English, what happens in each
stage as an instruction is executed

Use the notation from the text to describe what happens in
each stage of the processor as the instruction is executed

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 37

The parts
 register file
 PC and instruction registers
 main memory
 combinatorial logic (and gates, or gates, etc.)
 clock

Describing the combinational logic
 We will use C/Java-like statements to describe instruction semantics
 book uses C-like HCL for the same purpose
 real chips use hardware description languages such as Verilog, VHDL

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 38

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 39

Memory (green boxes)
 register file, main memory, program counter (PC) and condition codes

(CC)

Multiplexers (blue boxes)
 control input selects output from one of several data inputs
 similar to switch statement in Java

 Special-Purpose Registers (grey boxes)
 connect memory and multiplexers
 named to indicate their function
 later these will store data between CPU stages
 in Java these are instance variables of stage that contains them

40CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

Modularize by dividing instruction execution into 6 stages:
 Fetch: read instruction and decide on new PC value
Decode: read from registers
 Execute: use the ALU to perform computations
Memory: read data from or write data to memory
Write-back: store value(s) into register(s)
 PC update: store the new PC value

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 41

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 42

The things the programmer sees:
 Registers -> %rax, %rbx, %rsp …
 Program counter -> PC
Memory -> M1[addr], M8[addr] …
 Status register bits ZF, SF, OF
 Set when certain instructions execute
 Indirectly used by certain instructions
 Sometimes referred to as condition codes (CC) or program status word (PSW)

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 43

An instruction precisely describes the actions made on the
current programmer visible state to get to the “next” state

Example: rrmovq rA, rB
 R[rB] <- R[rA]
 PC <- PC + 2

The underlying hardware implementation to achieve the
required outcome may be different provided the result
conforms to the instruction/architecture specification

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 44

Reads the instruction code at the address determined by
PC

Based on instruction code, determines the length of the
instruction

Extracts pieces (arguments) of instruction

Computes the address of the next instruction

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 45

Decode:
Determines which registers need to be read (e.g., the arguments,

or the stack pointer)
 Reads the values of the registers
Determines which registers need to be written to (sets up the

signals, but doesn’t change registers yet)

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 46

Depending upon the instruction, produces the value of the
computation performed at the execute stage
This could be:
 Result of operation (+, -, /, * etc) specified by ifun
 Effective address for a memory reference
 Increment or decrement of the stack pointer

Condition Codes (CC) (i.e. ZF, OF, SF) could be set if it is an
arithmetic operation
Conditional instructions (jXX, cmovXX): evaluates result of

corresponding condition
 Translates previous CC to a flag based on condition

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 47

Memory:
 Read data from main memory, at an address computed by previous stages
 Writes data to main memory, with data and address computed by

previous stages

Write back
 Based on signals computed in decode, changes register values
 These are typically arguments or the stack pointer

PC Update
 Determine the next PC value (following instruction, jump destination,

return destination), possibly based on condition

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 48

Unit 2

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder

1

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 2

Unit outline
Motivation and basic concepts
 Initial Implementation
Hazards
 Types of hazards
 Dealing with hazards by stalling
 Data hazards: forwarding to avoid stalling
 Control hazards: branch prediction
 Indirect jumps

 Performance analysis

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 3

In a sequential Y86 implementation

 Instr 1:

 Instr 2:

 Instr 3:

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 4

Represent each stage as a module (fetch, decode, ...)
Modules are ordered along the flow of computation
One module's output is the input of the next module

Turn each module into a pipeline stage
 Add pipeline registers before every stage except the 1st

 These store the inputs for that stage
 Stages execute in parallel working on different instructions

As we will see later this introduces new problems

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 5

How many stages should a pipeline have?

 If it has too few stages...
We are not exploiting the parallelism present in the program

 If it has too many...
 There is high overhead and complexity
 The program may not have enough parallelism to use them well

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 6

MIPS processor (1985): first RISC processor, 5 stages

Sparc, PowerPC processors: 9 pipeline stages

 Intel Pentium IV (late models): ____________

 Intel Core i7 processor: _______________

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 7

Latency:
How long it takes to execute one instruction from start to finish
Will usually not be reduced in a pipeline

Throughput:
 The number of instructions we can execute per unit of time
 This is the only meaningful measure for pipelined CPUs

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 8

Sequential Implementation

Latency: _____________

Throughput: ___________

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 9

Assuming all stages are in use

Throughput: _________________

Latency: __________________

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 10

Pipeline
Stages

Pipeline
Overhead

Generalizing for pipelined CPUs:
 Stages require an additional overhead
 Storing and retrieving special registers
 Latency for one instruction increases

New instruction can start executing once first stage is complete
 Better throughput overall

 All stages must run in same time slot
 Can’t move to the next instruction until slowest stage is free

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 11

Unit outline
Motivation and basic concepts
 Initial Implementation
Hazards
 Types of hazards
 Dealing with hazards by stalling
 Data hazards: forwarding to avoid stalling
 Control hazards: branch prediction
 Indirect jumps

 Performance analysis

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 12

divide execution into modules along flow of computation
 classic RISC pipeline has five modules
 modules arranged in order along computation flow
 all inputs to a module must be computed by an earlier module in flow

 turn modules into pipeline stages
 add pipeline registers between each stage
 registers store inputs for that stage
 each stage executes in parallel working on a different instruction

observe that
 a stage has less gate-propagation delay than overall circuit
 what determines clock rate?

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 13

How many stages?
 enough to achieve sufficient parallelism
 must have enough parallelism in the program

 not too much to add undue overhead or complexity

Which stages?
 divide instructions into stages that instruction completes in order
 then we can execute the stages in parallel on different instructions

Example: rmmovq rA, D(rB)
what are the parts?
what order do they need to execute?

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 14

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 15

What will each pipeline register contain when the last
instruction in this sequence is entering the Fetch stage?

irmovq $1, %rax
irmovq $2, %rcx
irmovq $3, %rdx
irmovq $4, %rbx
irmovq $5, %rsi

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 16

 an instruction is in flight when
 it is executing in the pipeline

 an instruction is retired when
 it exits the pipeline; i.e., it completes

on upcoming slides ...
 exploiting and expressing parallelism
 instruction-level parallelism
 instruction dependencies
 thread-level parallelism
 sequential consistency
 pipeline hazard, stall and bubble

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 17

Expressing parallelism: it’s a mechanism where the
programmer tells the system that two pieces of code can
execute in parallel

Exploiting parallelism: it’s the system actually executing
two pieces of code in parallel

How do you express parallelism in C or Java?

 Is this mechanism useful for expressing ILP?

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 18

The problem with instruction-level parallelism is:
Programming languages like C, C++ and Java are based on the

sequential consistency model:
 The effect of executing the program must be the same as if instructions

were executed one by one in the order they are written

Programmers write code without thinking about parallelism
 Example:

a = b + c; d = a + 1; e = f + g;
Can be rewritten as:
a = b + c; e = f + g; d = a + 1;

Compilers must find this on their own

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 19

Unit outline
Motivation and basic concepts
 Initial Implementation
Hazards
 Types of hazards
 Dealing with hazards by stalling
 Data hazards: forwarding to avoid stalling
 Control hazards: branch prediction
 Indirect jumps

 Performance analysis

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 20

Consider this code:

irmovq $5, %rax
addq %rax, %rdx

At what stage is irmovq in when addq needs its result?
 At what stage is the value of %rax needed in addq?
 At what stage is the value of %rax updated in irmovq?

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 21

irmovq $5, %rax

addq %rax, %rdx

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 22

irmovq $5, %rax

addq %rax, %rdx

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 23

irmovq $5, %rax

addq %rax, %rdx

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 24

irmovq $5, %rax

addq %rax, %rdx

addq %rax, %rdx

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 25

26

Pipeline requires some parallelism
multiple in-flight instructions run partly at the same time
may even run out-of-order

However, the program must have the same output as if
instructions were executed sequentially (sequential
consistency)

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 26

Execution of 2 or more instructions has to proceed in strict
time order
Must be able to produce the same output as if one instruction were

completely executed before the next instruction is started

 If no dependency, execution order doesn’t matter

Compilers try to expose as much instruction-level
parallelism as they can
 By separating dependent instructions
 By grouping them with others on which they don’t depend

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 27

Example: how can we rewrite the following code to expose
more parallelism?

addq %rax, %rbx
addq %r8, %rbx
addq %rdx, %rcx
addq %r9, %rcx
addq %rsi, %rdi
addq %r10, %rdi

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 28

Compilers can reorder instructions to expose as much
instruction-level parallelism as possible.
However they cannot know every detail of the processor's

pipeline (e.g. later Pentium IV's had more stages than
earlier ones).
How many instructions should be kept between dependencies?

So the pipeline must handle all dependencies correctly
Combined effort:
 Reordering reduces the need for dependency control
 Pipeline handles what can’t be handled in software

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 29

Data dependencies
 Involve dependencies between registers
 Example: one instruction needs a register that is written by a

previous instruction

Control dependencies
 Involve the flow of control (changes in PC)
 Example: conditional jumps decide PC based on the result of a

previous instruction

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 30

 if A and B are instructions, then A ≺ B means instruction B
depends on instruction A
Causal: A ≺ B if B reads a value written by A
Output: A ≺ B if B writes to a location written by A
 Alias (anti): A ≺ B if B writes to a location read by A

Read “≺” as must
happen before

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 31

a) no dependency c) anti-dependency

b) causal dependency d) output dependency

1.
a = 1;
b = 2;

3.
a = 1;
b = a;

2.
a = 1;
a = 2;

4.
a = b;
b = 2;

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 32

a) no dependency c) anti-dependency

b) causal dependency d) output dependency

1.
irmovq $1, %rax
rrmovq %rcx, %rax

3.
rrmovq %rax, %rcx
irmovq $1, %rax

2.
irmovq $1, %rax
rrmovq %rax, %rcx

4.
irmovq $1, %rax
irmovq $2, %rcx

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 33

Control dependencies determine what code is executed
next

Examples:
Whether a branch is taken or not taken (e.g., conditional jumps)
When the next instruction is obtained from a register or memory

(e.g., return)
When an instruction writes to instruction memory (self-modifying

code)
 Will not be explored

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 34

Dependencies are not always a problem
 If there are enough instructions in between dependent instructions,

there is no hazard

Hazard happens when “normal” pipeline execution violates
the dependency

CPU must change its behaviour
 By stalling instructions
 By forwarding values from previous instructions
 By speculating what instructions must run

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 35

Unit outline
Motivation and basic concepts
 Initial implementation
Hazards
 Types of hazards
 Dealing with hazards by stalling
 Data hazards: using data forwarding to avoid stalling
 Control hazards: branch prediction
 Indirect jumps

Performance analysis.

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 36

Explain how a pipelined processor uses stalling, data forward,
and branch prediction to reduce or eliminate hazards.
Define what is meant by a pipeline bubble and explain

why/how a bubble is generated.
For a sequence of machine language instructions, describe at

an arbitrary execution point the state of the pipeline:
 When there are no hazards
 When hazards are handled using only stalling
 When hazards are handled using stalling and/or data forwarding
 When hazards are handled using stalling, data forwarding, and/or branch

prediction

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 37

What is the problem here?

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 38

irmovq $1, %rax

addq %rax, %rbx

F D E

F D

D

F D E

subq %rax, %rcx

xorq %rax, %rdx

M W

M WE

ME

time

F W

M W

pipeline stall: hold an instruction in a pipeline stage for
extra cycles

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 39

irmovq $1, %rax

addq %rax, %rbx

F D E

F D D D D

F F F D

F D E

subq %rax, %rcx

xorq %rax, %rdx

M W

M WE

ME

time

F

The term pipeline bubble denotes a pipeline stage that is
forced to do nothing to avoid a hazard, because of a stall in
a previous stage
 For example, if decode stalls, in the next cycle execute will have a

bubble

The bubble converts the instruction into a NOP

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 40

Fetch Decode Execute Memory Write-
back

irmovq ? ? ? ?

addq irmovq ? ? ?

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 41

Fetch Decode Execute Memory Write-
back

irmovq ? ? ? ?

addq irmovq ? ? ?

subq addq irmovq ? ?

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 42

Fetch Decode Execute Memory Write-
back

irmovq ? ? ? ?

addq irmovq ? ? ?

subq addq irmovq ? ?

subq addq bubble irmovq ?

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 43

Fetch Decode Execute Memory Write-
back

irmovq ? ? ? ?

addq irmovq ? ? ?

subq addq irmovq ? ?

subq addq bubble irmovq ?

subq addq bubble bubble irmovq

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 44

Fetch Decode Execute Memory Write-
back

irmovq ? ? ? ?

addq irmovq ? ? ?

subq addq irmovq ? ?

subq addq bubble irmovq ?

subq addq bubble bubble irmovq

subq addq bubble bubble bubble

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 45

Fetch Decode Execute Memory Write-
back

irmovq ? ? ? ?

addq irmovq ? ? ?

subq addq irmovq ? ?

subq addq bubble irmovq ?

subq addq bubble bubble irmovq

subq addq bubble bubble bubble
xorq subq addq bubble bubble

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 46

Fetch Decode Execute Memory Write-
back

irmovq ? ? ? ?

addq irmovq ? ? ?

subq addq irmovq ? ?

subq addq bubble irmovq ?

subq addq bubble bubble irmovq

subq addq bubble bubble bubble
xorq subq addq bubble bubble

xorq subq addq bubble

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 47

Fetch Decode Execute Memory Write-
back

irmovq ? ? ? ?

addq irmovq ? ? ?

subq addq irmovq ? ?

subq addq bubble irmovq ?

subq addq bubble bubble irmovq

subq addq bubble bubble bubble
xorq subq addq bubble bubble

xorq subq addq bubble
xorq subq addq

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 48

The pipeline-control module
 is a hardware component (circuit) separate from the 5 stages
 examines values across every stage
 decides whether stage should stall or bubble

Each stage register has a control input that determines
what happens when the clock ticks:
Normal: register's new value is the input value
 Stall: register's new value is the same as its current value
 Bubble: register's new value is the same as for NOP

49
CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 49

50
CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 50

Stalls should be avoided
 every stall creates a pipeline bubble
 every bubble results in a cycle when processor can’t retire an

instruction
 retiring a bubble is of no value to program execution

Bubbles decrease overall throughput

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 51

data hazards
 reading registers in decode that are written by instructions

currently in execute, memory or write-back stages
 stall instruction in decode until writer is retired
Write-back only writes register when next clock ticks, so Decode

can’t run until Write-back finishes
 how many stall cycles? ______

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 52

Conditional jump
 At what stage do we know which PC?
 At what stage is the PC needed?
 how many stall cycles? ______

Return
 The next PC is available at the end of?
 how many stall cycles? ______

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 53

 If instructions are executed in-order, they are not a problem
(not a hazard)

Output dependency: first instruction’s output can be
ignored

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 54

irmovq $1, %rax
irmovq $2, %rax
addq %rax, %rdx
irmovq $1, %rax

Causal

Output

Anti

For our pipelined Y86 implementation:
Anti-dependency:
addq %rax, %rdx
irmovq $1, %rax

Output dependency:
addq %rax, %rdx
irmovq $1, %rdx

As long as instructions execute in order, no problem

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 55

For our pipelined Y86 implementation:
Memory dependency:
rmmovq %rax, (%rbx)
mrmovq (%rbx), %rcx

Condition code dependency:
addq %rax, %rdx
cmovle %rcx, %rbx

Again, as long as instructions execute in order, no problem

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 56

F D E

F D

M W

M WE

F D E

F D

M W

M WE

Unit outline
Motivation and basic concepts
 Initial implementation
Hazards
 Types of hazards
 Dealing with hazards by stalling
 Data hazards: using data forwarding to avoid stalling
 Control hazards: branch prediction
 Indirect jumps

Performance analysis.

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 57

may have to stall
 an instruction can’t read a value that the processor doesn’t know

yet

but in most cases processor has computed value, it just
hasn’t written it to the register file yet

Forwarding data will resolve hazard in these cases
Data forwarding: mechanism that forwards values from later

pipeline stages to earlier ones
 instruction can read value before it is written back to register file

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 58

 In y86, at the end of what stage is output known by CPU?
 addq, subq, andq, xorq, mulq, divq, modq
 irmovq, rrmovq
 cmovXX
 pushq, popq, call, ret (changed %rsp)
mrmovq, popq (target reg)

 in y86, at the end of what stage is register value needed?

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 59

60

To Decode
From
W: new register value
M: new value read from

memory
 E: new value from ALU

By sending value and
name from all three stages
back to forwarding logic
in decode stage

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 60

61
61CPSC 313 2019 WT2 © 2020 Jonatan Schroeder

d_srcB

D rB

E icode ifun valC valA valB dstE dstM srcA srcB

valC valPicode ifun rA

Register
file

A B

M

E

dstE

dstM

srcA srcB

d_srcA

d_rvalA

Sel+Fwd
A

Fwd
B

W_valM
W_dstE

e_dstE

d_rvalB

e_valE
M_dstE

M_valE
M_dstM

m_valM
W_dstM

W_valE

dstE dstM srcA srcB

stat

stat

 Instructions:
 irmovq, addq, subq, andq, xorq
 pushq, popq, call, ret - all depend upon %rsp

Forward from _____ to _______

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 62

F D E M W

F D E M W

F D E M W

F D E M W

irmovq $10, %rax

addq %rax, %rbx

addq %rax, %rcx

addq %rax, %rdx

Time

e_valEM_valEW_valE

 Instructions: mrmovq, popq

Stall 1 cycle

Forward from _____ to _______

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 63

F D E M W

F D D E M W

F D E M W

F D E M W

mrmovq (%esi), %rax

addq %rax, %rbx

addq %rax, %rcx

addq %rax, %rdx

Time

F

m_valMW_valM

Unit outline
Motivation and basic concepts
 Initial implementation
Hazards
 Types of hazards
 Dealing with hazards by stalling
 Data hazards: using data forwarding to avoid stalling
 Control hazards: branch prediction
 Indirect jumps

Performance analysis.

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 64

Unconditional jumps and procedure calls
Hazard? (e.g. jmp foo, call bar)

Conditional jumps
Hazard? (e.g. jle foo)
What is the problem?
 At what stage does the CPU know the answer?

Return
Hazard? (e.g. ret)
What is the problem?
 At what stage does the CPU know the answer?

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 65

Problem:
 We won’t know whether or not to jump until end of Execute stage
 In the fetch stage (i.e. when setting the next PC) we don’t know if we

should use valP (branch not taken) or valC (branch taken)

 Idea:
 Guess whether or not branch taken
 Start speculative execution of instructions

 If guess was wrong
 Shoot down all speculative instructions by turning into bubbles
 No instruction reaches a state modification stage (M/W) before we shoot

them down, so no lasting effect

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 66

For conditional jumps:
No bubble if guess right
 Two bubbles if guess wrong

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 67

F D E M W

F D E M W

D E M W

F D E M W

0x100 jle $0xbadbeef

0xbadbeef addq %rax, %rbx

0xbadbeef+2 addq %rax, %rcx

0x109 irmovq $0, %rax

Time

F

Now we know the guess
was wrong

 unconditional jumps (call, jmp)
 predPC = valC, available in F

 conditional jumps
 know if branch taken in E (bch)
 jump prediction in F
 e.g., predPC = valC (i.e., taken)

 misprediction control hazard
 handled by “Select PC” in F
 feedback from M

 no stall if prediction is correct

 return from procedure call
 know target in M
 feedback from W to “Select PC” in F

 y86 stalls 3 cycles

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 78

Instruction
memory

ALU

Data
memory

Select
PC

rB

Select
A

ALU
A

ALU
B

Mem.
control

Addr

read

write

Fetch

Decode

Execute

Memory

Write back
icode

A

f_PC

valE valM

Bchicode valE

icode ifun valC valA

valCicode ifun rA

predPC

CC

E

M

W

F

D

PC
increment

Register
file

dstE dstM srcA srcB

ALU
fun.

data out

data in

B M

E

M_valA

W_valM

W_valE

M_valA

W_valM

d_rvalA

Predict
PC

dstE dstM

valA dstE dstM

valB dstE dstM srcA srcB

valP

d_srcA

e_Bch

M_Bch

Are both jump directions (taken, not taken) equally likely?
 If so might as well just guess at random.

Consider how jumps are used in a program:
 loops:
 continue condition at bottom of loop is normally taken.
 exit condition at top of loop is normally not taken.

 ifs:
 if testing for error condition, error handling code normally skipped.
 if testing for recursion base case, base case normally skipped.

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 79

Most jumps tend to go one way more often
 Taken or not taken for that line of code predominates
 Supported by empirical evidence

 If we can figure this out we can improve a program’s
performance
 By guessing the direction taken more often

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 80

 In many cases the compiler can make a good prediction
because:
 It creates the code
 For loops it knows if the jump means exit or continue
Might be able to spot error test for ifs
Only has the program text to make decisions on
Cannot (usually) use dynamic information from execution

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 81

Conditional jumps to be predicted one way or the other

 If ISA rules are explicit, compiler can adjust code
Compiler can change type of jump based on its prediction
 Example: convert
if (a < b) c = 1; else d = 2;
to
if (a >= b) d = 2; else c = 1;

Complicated prediction rules are OK as long as they are
well-defined

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 82

Example: predict backward jumps are taken and forward
jumps are not taken
 backward jumps (that just go a short distance) are almost always

loop-continue jumps
 so they will be mostly taken
 forward jumps could be anything, so ISA might predict not taken to

add flexibility

what’s most important is that the compiler knows what the
processor will do

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 83

Sometimes the compiler can’t tell, but jump still has a
strong tendency one way or another
 e.g., it’s hard for compilers to tell which if branch tends to be

executed

Dynamic Jump Prediction is done by CPU Hardware
 this is a type of jump where the compiler does not know what will

happen
 hardware bases its prediction on past behaviour for that line of

code

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 84

CPU hardware maintains an on-chip cache of recent jump
results
Caches jump address (key) to bch (value)

When jump is in Execute stage (bch is computed) it
updates this cache

When jump is in Fetch state, use history as basis for
prediction
 Example: if last jump was taken, assume it’s taken again

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 85

Better implementation: remember not just the last
execution, but the last few results
 Example: store branch history as a sequence of bits with 1

indicating taken
 e.g., 1010 means the jump’s recent taken history was: no, yes, no yes

Use the history as predictor to future jumps
Option 1: use the count of the majority of bits as prediction
Option 2: try to observe a pattern
 Trade-off: more complex predictor provides better result, but is

slower

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 86

Compiler needs to know if jump prediction is used and how
the decision is made
Compiler can change code to make better use of predictor

One option
One set of branch instructions that use static prediction
One set that uses dynamic prediction

Another option: delay slots
 Instructions that execute regardless of jump direction
 Found in older RISC processors (e.g., MIPS)

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 87

Unit outline
Motivation and basic concepts
 Initial implementation
Hazards
 Types of hazards
 Dealing with hazards by stalling
 Data hazards: using data forwarding to avoid stalling
 Control hazards: branch prediction
 Indirect jumps

Performance analysis.

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 88

Y86-64 only has direct jumps (destination in instruction)
 Special case: return (discussed later)

 Indirect jumps are common
 Indirect jump: jmp D(%rax)
 PC D + R[%rax]

Double indirect jump: jmp *D(%rax)
 PC M[D + R[%rax]]

 necessary to support modern programming languages (e.g.,
polymorphic dispatch in OO languages)

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 89

Unlike direct jumps, we do not know the target address in
Fetch
 for indirect we know it at the end of Execute
 for double-indirect we know it at the end of Memory
Consequently, we cannot predict it in Fetch, too many targets

This is really bad
 virtually every procedure call in object-oriented language is

double-indirect

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 90

Problem
Can’t “guess” where return moves to
Must read return address from memory
 but that doesn’t happen until M

Result
 leads to seemingly inevitable 3 bubbles for each return
 returns are common, because procedures are small
 a good idea for program readability, but with bad performance

consequences

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 91

Maintain a small stack of return addresses on the CPU Chip
 Add address on call instruction
 Retrieve address on return instruction
 Run retrieved address speculatively

note that this stack has a finite size, so return address may
not be there
 in this case, we follow the old procedure and stall three times

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 92

To generate code for the call
object.method() (e.g. b.foo())
 object contains pointer to table with

method addresses
 Index into the table is determined by the

method name
 Assuming %rax is object address, D is

method index:
 mrmovq (%rax), %rbx

// %rbx is now table address
 call *D(%rbx)

// jump to method address stored in table

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 93

class Base {
void foo () { ... }
void bar () { ... }

}

class Sub extends Base {
void foo () { ... }

}

void zot (Base b) {
b.foo ();

}

Key observation
 while compiler does not actually know the class of object, it knows only

that the object implements the static type of the variable
 many variables tend to store objects of the same type over time

Key idea
 the hardware (or Java Virtual Machine) remembers object type and target

address used the last time call was executed. If next call is to same type,
it uses cached target address instead of reading it from memory.

 Implementation
 maintain a cache of call instructions with address of procedure last called

(ID a call instruction by its address)
 predict that call will call this same procedure again when the same call instruction

is executed

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 94

Unit outline
Motivation and basic concepts
 Initial implementation
Hazards
 Types of hazards
 Dealing with hazards by stalling
 Data hazards: using data forwarding to avoid stalling
 Control hazards: branch prediction
 Indirect jumps

Performance analysis.

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 95

96

 cycles per instruction (CPI)
 measures pipeline efficiency
 Affects effective throughput

 CPI = totalCycles / instructionRetiredCycles
= 1 + lp + mp + rp

 bubble penalties (for implementation with data forwarding and
branch predition):
 load/use lp = 1 bubble * prob. of occurrence
 branch misprediction mp = 2 bubbles * prob. of occurrence
 return rp = 3 bubbles * prob. of occurrence

Don’t count
bubbles

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 96

97
CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 97

Cause Name Instruction
frequency

Condition
frequency Bubbles Penalty

load/use lp 25% 20% 1 ?

mispredict mp 20% 40% 2 ?

return rp 2% 100% 3 ?
total ?

CPI = ?

Goal is improved effective throughput
 retired instructions / second

 1 / (CPI * clock-period)

Are deeper pipelines better?
 Pros

 Cons

CPSC 313 2019 WT2 © 2020 Jonatan Schroeder 98

Unit 3

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

1

 At the end of this module, you will be able to:
 Explain how a C program uses memory
 Write simple C functions that allocate and deallocate memory dynamically
 Recognize and fix common errors related to dynamic memory allocation
 Compare and contrast the implementation issues that must be addressed by

every memory allocator
 Compare and contrast the possible placement algorithms used by memory

allocators
 Describe memory allocator requirements, the trade-offs between them, and how

allocators that maintain implicit, explicit and segregated free lists meet these
requirements
 Contrast internal and external fragmentation, and explain briefly how they occur,

as well as common techniques employed by memory allocators to minimize their
impact

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 2

C, memory addresses and pointers

Dynamic memory allocation

Common programming mistakes with pointers

How a process' memory is organized

A look at the runtime stack

 Implementing a dynamic memory allocator

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 3

What is the value stored in each variable below?

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 4

int *a, b;
int **c;
…
d = &c;
x = a + 7;
y = c[3];

What does the following C
function print?

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 5

void do_something() {
char mtl[5];
char *qc, **cdn = &qc;

mtl[0] = 'Y';
mtl[4] = '\0';
qc = mtl + 2;
*qc = 'A';
qc[-1] = 'P';
*cdn = qc + 1;
**cdn = 'Z';
*(qc - 1) = 'E';
printf("%s\n", mtl);

}

Rewrite the following piece of code using arrays to make it
more readable.

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 6

int confusing(long *p, int n) {
long *q = p + n;
while (n > 0 && *p++ == *--q) {

n -= 2;
}
return n <= 0;

}

A string in C is an array of characters (bytes)
 end of the string is indicated by byte with value 0
 P.S.: Note that 0 (null) and ‘0’ (digit zero) are different values

Every string has:
 array size: size of the array that contains the string
maximum length: array size minus one
 current length: position of the first null byte

Standard C library has many operations on strings
 strlen(s) returns the length of a string

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 7

Allocation: assigning a memory location to store a
variable’s value
 Associating the variable to the address of that location

Global variables: exist before program starts
Compiler allocates variables statically (constant address)
No dynamic computation required for allocation, they just exist

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 8

Compiler doesn’t know address of a[i]
 Unless it knows the value of i statically

Array access is computed from base and index
 Address of element is base plus offset
Offset is index times size of each element

For global arrays:
 The base address and element size are static
 The index value is dynamic (i’s value can change)

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 9

When a program is executed:
 Space is allocated for the shared libraries it needs
 Instructions and initialized data are loaded in memory
 Space is reserved for uninitialized data

The stack and the heap are set up
 The stack is managed by the compiler’s code
 The heap is managed by the user’s program

On a Linux system, we can look at /proc/pid/maps to the
how memory is used for process pid.

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 10

00400000-00401000 r-xp 00000000 08:08 5244791 /home/patrice/fib
00600000-00601000 r--p 00000000 08:08 5244791 /home/patrice/fib
00601000-00602000 rw-p 00001000 08:08 5244791 /home/patrice/fib
7f86a3122000-7f86a32dd000 r-xp 00000000 08:02 1308509 /lib/x86-64-linux-gnu/libc-2.19.so
7f86a32dd000-7f86a34dd000 ---p 001bb000 08:02 1308509 /lib/x86-64-linux-gnu/libc-2.19.so
7f86a34dd000-7f86a34e1000 r--p 001bb000 08:02 1308509 /lib/x86-64-linux-gnu/libc-2.19.so
7f86a34e1000-7f86a34e3000 rw-p 001bf000 08:02 1308509 /lib/x86-64-linux-gnu/libc-2.19.so
7f86a34e3000-7f86a34e8000 rw-p 00000000 00:00 0
7f86a34e8000-7f86a35ed000 r-xp 00000000 08:02 1308538 /lib/x86-64-linux-gnu/libm-2.19.so
7f86a35ed000-7f86a37ec000 ---p 00105000 08:02 1308538 /lib/x86-64-linux-gnu/libm-2.19.so
7f86a37ec000-7f86a37ed000 r--p 00104000 08:02 1308538 /lib/x86-64-linux-gnu/libm-2.19.so
7f86a37ed000-7f86a37ee000 rw-p 00105000 08:02 1308538 /lib/x86-64-linux-gnu/libm-2.19.so
7f86a37ee000-7f86a3811000 r-xp 00000000 08:02 1308526 /lib/x86-64-linux-gnu/ld-2.19.so
7f86a39e5000-7f86a39e8000 rw-p 00000000 00:00 0
7f86a3a0e000-7f86a3a10000 rw-p 00000000 00:00 0
7f86a3a10000-7f86a3a11000 r--p 00022000 08:02 1308526 /lib/x86-64-linux-gnu/ld-2.19.so
7f86a3a11000-7f86a3a12000 rw-p 00023000 08:02 1308526 /lib/x86-64-linux-gnu/ld-2.19.so
7f86a3a12000-7f86a3a13000 rw-p 00000000 00:00 0
7fffc88a3000-7fffc88c4000 rw-p 00000000 00:00 0 [stack]
7fffc88cf000-7fffc88d1000 r-xp 00000000 00:00 0 [vdso]
ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall]

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 11

Scope
 Local variables are only accessible within declaring procedure
 Each execution has its own private copy

Lifetime
 Allocated when procedure starts
 “Freed” when procedure returns (in most languages)

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 12

Activation: execution of a procedure
 Starts with procedure is called, ands when it returns
 There can be many activations of same procedure alive at once

Activation Frame
memory that stores activation’s state
 Includes local variables and arguments

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 13

Order of frame allocation and deallocation is special
 freed in reverse order of allocation

Simple allocation for frames:
 Reserve big chunk of memory for all frames
 Initial address known
 Simple, cheap allocation: add or subtract from a pointer

Questions
What data structure is this like?
What restriction do we place on lifetime of local variables?

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 14

Stack of activation frames
 Stored in memory, grows up from bottom

Stack pointer
 Stores base address (address of first byte) of

current frame

Current frame is the “top” of the stack

First activation is the “bottom” or “base”
of the stack
 Local variables of initial function (e.g., main)

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 15

Code

Static data

Heap

StackStack Bottom
(first frame)

Stack Top
(current frame)

rsp

Value of the stack pointer is dynamic

Local variables and arguments
 Size of each frame is (usually) static
Offset from stack pointer is static

Each frame is like a struct
 Top of frame is in rsp (stack pointer)
 Each variable in procedure is a member of the

struct

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 16

Code

Static data

Heap

StackStack Bottom
(first frame)

Stack Top
(current frame)

rsp

Local variables

Arguments
 Some architectures use registers for arguments

Return address

Other saved registers
Called function may change register values
Values that must be kept after call are saved

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 17

What is the value of l in foo when it is active?
void goo() { int x = 3; } goo();
void foo() { int l; } foo();
What is wrong with this?
int *foo() {
int l;
return &l;

}

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 18

Variables that are an instance of a class or struct
 Created dynamically
 Many instances of the same class/struct can co-exist

 Java vs C
 Java: objects are instances of non-static variables of a class
 C: structs are named variable groups, or one of its instances

 Accessing an instance variable
 requires a reference to a particular object (pointer to a struct)
 then variable name chooses a variable in that object (struct)

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 19

Class X
static int i;
int j;

Object instance of X
int j;

Object instance of X
int j;

Object instance of X
int j;

Object instance of X
int j;

Object instance of X
int j;

Object instance of X
int j;

X someX

A struct is a collection of variables of arbitrary type
 allocated and accessed together

Declaration
 similar to declaring a Java class without methods
 name is “struct” plus name provided by programmer
 static: struct D d0;
 dynamic: struct D* d1;

Access:
 static: d0.e = d0.f;
 dynamic: d1->e = d1->f;

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 20

struct D {
int e;
int f;

}

class D {
public int e;
public int f;

}
≈

Static structs are allocated by the compiler

Dynamic structs are allocated at runtime
 variable that stores struct pointer may be static or dynamic
 struct itself is allocated with a call to malloc

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 21

struct D {
int e;
int f;

}

struct D d0; 0x1000: value of d0.e
0x1004: value of d0.f

Static Memory Layout

struct D* d1; 0x1000: value of d1
(address of instance)

Static Memory Layout

Runtime allocation of dynamic struct

Example: assume malloc returned 0x2000

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 22

struct D {
int e;
int f;

}
void foo() {

d1 = malloc(sizeof(struct D));
}

0x1000: 0x2000 # d1
…
0x2000: value of d1->e
0x2004: value of d1->f

Static Memory Layout

Programs can allocate memory dynamically
 allocation reserves a range of memory for a purpose

 In Java, instances of classes are allocated by the new
statement

 In C, byte ranges are allocated by call to malloc procedure
 these bytes can be used for any type that can fit in them

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 23

Example: array that grows as data grows
When adding an element, if array is full, allocate bigger space and

copy old data to new space

Example: linked list
 Each element is a struct that contains a pointer to next element
More details: CPSC 221

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 24

Memory allocation
 void* malloc(int n);
 n is the number of bytes to allocate
 returning type is void*
 pointer to anything (no specific type assigned)
 can be cast to/from any other pointer type
 cannot be dereferenced directly

Use sizeof to determine number of bytes to allocate
 struct Foo* f = malloc(sizeof(struct Foo));
 statically computes number of bytes in type or variable

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 25

Wise management of memory requires deallocation
Memory is a scarce resource
Deallocation frees previously allocated memory for re-use

 In Java:
Garbage collection: memory is deallocated when no longer in use
 Requires keeping track of every reference to an object

 In C:
Dynamic memory must be deallocated explicitly by calling free
Memory is deallocated immediately, no checks if it’s still in use

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 26

The heap is a large section of memory from which malloc
allocates objects
malloc finds unused space in the heap, marks as used and returns it
 free marks space as unused
 heap may be increased if necessary

All objects are stored in the heap

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 27

What free(x) does
 deallocates “object” at address x
 this memory can be reused by subsequent call to malloc

What free(x) does not do
 after all call to free, x still points at the freed object
 other variables may still point there too

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 28

What bad things can happen below?
struct buffer *create() {

struct buffer *buf = malloc(sizeof(struct buffer));
…
return buf;

}
void destroy(struct buffer *buf) {

…
free(buf);

}
CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 29

A dangling pointer is a pointer to an object that is not
allocated
Often caused by use after free
 if another malloc has been called since last free, could point to

another object

Why is this a problem?
 program thinks it’s writing to one object, but is writing to another
 program may be writing to object of another type

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 30

Examples of dangling pointers:
 Uninitialized pointer
Multiple pointers to same location, one is freed and the other is still

in use
Calling free on the same memory twice
 Function returns pointer to local variable

Good practices to avoid dangling pointers:
 Initialize all pointers to valid data (e.g., NULL)
 If needed, implement reference counting

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 31

A memory leak is a dynamic memory object with no
pointers pointing to it
 Usually happens if a program doesn’t free object properly
May also happen if a pointer to valid object is changed to another

value

Why is this a problem?
 If object had useful information, it can’t be accessed anymore
 If object is large (or if many memory leaks happen in sequence),

program will use too much memory

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 32

Memory leak examples:
 Function allocates memory, then returns without saving or

returning memory
 Function returns dynamically allocated memory, but return value is

ignored
 Last pointer to allocated space is changed to different value

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 33

Buffer overflow: using more data than allocated
Can be a problem with global and local arrays as well
Can be caused by off-by-one errors (e.g., not counting the string

termination byte)

 Incorrect sizeof parameter
Call to malloc with sizeof must match the object you’re allocating,

not its pointer

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 34

Avoid the program cases
 if possible, restrict dynamic allocation/free to single procedure
 if possible, don’t write procedures that return pointers
 if possible, use local variables instead
 local variables are allocated on call and freed on return, automatically

Engineer for memory management
 define rules for which procedure is responsible for deallocation
 use explicit reference counting if multiple potential deallocators
 define rules for which pointers can be stored in data structures
 use coding conventions and documentation to ensure rules are followed

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 35

Valgrind is a program that performs dynamic analysis of
the runtime of a program
 Example: valgrind ./grade

 It runs your program and monitors dynamic allocation and
deallocation

 It can tell if your program has:
memory leaks
 use after free (dangling pointers)

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 36

So far we have been using malloc/calloc and free

But how are they implemented?
How is available memory maintained?
How to keep track of freed blocks?
When is it ok to reuse a block?

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 37

Handling arbitrary sequences of requests
 The allocator can not control the requests for malloc/free

Making immediate responses to requests
 The allocator can not wait to process several requests at once, even

if it would be more efficient

Using only the heap for its data structures
We can use a constant amount of additional space only

Not modifying allocated blocks
 The user program assumes their contents won't change
 It also assumes its location won’t change

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 38

 Implementation issues:
 Placement: when malloc() is called, how to we find a free block that

will be used to satisfy the request?
 Splitting: if we only need part of a free block to satisfy a request,

what do we do with the rest?
Coalescing: do we merge a newly free()'d block with adjacent free

blocks?

These issues arise in all implementations

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 39

Maximizing throughput
We want to respond to requests quickly
 So we need to use simple data structures

Maximizing memory utilization
We want to avoid internal and external fragmentation

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 40

Most allocators impose a minimum size on the blocks they
return to a process
 Because of alignment requirements (pointer addresses must be a

multiple of 4, or 8)
 Because the allocation needs to store information inside the blocks

once they are freed; so the blocks must be large enough

Hence a request for a very small amounts of memory
returns a larger block than that requested

Some space inside the block is wasted

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 41

The block returned by malloc() must consist of consecutive
memory locations

Sometimes there may be enough free space in total, but no
free block is large enough to satisfy the request

The more calls to malloc() and free() have been made with
requests for different size blocks, the more external
fragmentation is a problem

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 42

A simple implementation: the implicit free list.

We have a linked list of blocks.
 The list contains both occupied and free blocks.
 Each block contains its size.
 Each block knows if it's free or occupied:

43

8/0 16/1 16/0 16/116/1
Start

of
heap

Unused

0/1
Double

word
aligned

Block size a/f

031 123

Header
a = 001: Allocated
f = 000: Free

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

 If the block used is larger than the requested size, we can
 use the whole block (increases internal fragmentation)
 divide the block in two (may end up with many small blocks, which

can cause external fragmentation)

Splitting policy may depend on the algorithm
 Some options require a minimum block size

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 44

When freeing a block, merge adjacent free blocks
Avoids ending up with lots of small free blocks all adjacent
We can do this on every free
 Advantage: simpler
 Disadvantage: free operation becomes slower
 Alternative: wait until an allocation request fails

Problem: how to find adjacent blocks

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 45

8/0 16/1 16/0 16/116/1
Start

of
heap

Unused

0/1
Double

word
aligned

free()

We store the block size at the end of the block also:

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 46

Block size

Payload
(allocated block only)

a/f

Padding (optional)

Block size a/f

Block size

Payload
(allocated block only)

etc...

a/f
free()

fixed offset

offset computed
from block size

Placement:
 First-fit: return the first free block that is large enough
 retains large free block near end of the list
 Disadvantage: search time if too many small blocks

 Next-fit: similar but start searching from the last allocated block
 Advantage: faster search time
 Disadvantage: worse memory utilization than first-fit

 Best-fit: find the free block whose size is closest to the requested
size
 Advantage: optimal use of memory
 Disadvantage: slower

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 47

Explicit free list: uses the payload in free blocks to point to other
free blocks
 Block search is faster (don’t need to check blocks in use)
 Doubly-linked list
 Disadvantage: minimum payload size must be enough for two pointers

 Linked-list order (where to pointers point to)
 Last-in First-out: free blocks go at the beginning of the list
 free() takes constant time

 In address order: pointers list blocks in address order
 free() requires linear time (must search previous/next free blocks)
 We get slightly better memory utilization (search is in memory order)

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 48

Segregated free list: one linked list per block size
 Blocks point to other blocks of similar size

One approach (segregated fits):
malloc() finds a block large enough, splits it if desired, and inserts

the other piece in the appropriate free list
 free() coalesces with adjacent free blocks if possible, stores the

new free block in the appropriate free list

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 49

Searching for free blocks is more efficient
We are only searching part of the heap

Memory utilization improves
 First-fit search with a segregated list approximates a best-fit search

of the entire heap

The GNU malloc package, part of the standard C library on
all Linux systems, uses segregated free lists

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 50

Unit 3

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

1

memory, types, and the hierarchy
 locality
cache memories
 getting data in
 how much data to bring in at once
 throwing data away
 locating data
 handling writes

writing cache-friendly code

2CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 3

Core memory
 Popular from 1955-1975
 32 kilobits per cubic metre by the late 1960s
 Semiconductor memory started to take over the market in the early

1970s.

4CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

5

https://commons.wikimedia.org/wiki/File:Magnetic-core_memory.JPG Benoitb

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

https://commons.wikimedia.org/wiki/File:Magnetic-core_memory.JPG

6
https://commons.wikimedia.org/wiki/File:8_bytes_vs._8Gbytes.jpg Daniel Sancho

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

https://commons.wikimedia.org/wiki/File:8_bytes_vs._8Gbytes.jpg

ty
pi

ca
l l

at
en

cy
 (c

yc
le

s)

 Static RAM (SRAM)
 expensive (6 transistors per bit).
 very fast (10ns access times).
 retains its value indefinitely as long as it is powered.
 relatively insensitive to disturbances such as

electrical noise.

 Dynamic RAM (DRAM)
 cheaper (1 transistor and 1 capacitor per bit)
 slower than SRAM (60ns access times)
 value must be refreshed periodically (every 10 to

100ms) or it is lost
 relatively sensitive to disturbances
 uses a lot less power (and generates less heat) than

SRAM.

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 7

Disk
 even cheaper
 slowest (10–15 ms access times)
 data is only accessible in large chunks

Other types of memory:
 ROM, PROM, EPROM, EEPROM
 Read-only (Static, Programmable once, Erasable, Electronically Erasable).
 usually used for BIOS or device firmware.

Flash
 a type of EEPROM used in flash disks, cameras, MP3 players
 wears out after being reprogrammed too many times

8CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

How big things are
 Bigger means slower, typically also cheaper
 If A is bigger and faster than B (for same cost), there’s no point in

using B

Where things are
On chip is much faster
Off chips is slower but typically much bigger

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 9

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 10

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1980 1985 1990 1995 2000 2003 2005 2010

ns

Year

Disk seek time
Flash SSD access time
DRAM access time
SRAM access time
CPU cycle time
Effective CPU cycle time

Disk

SSD

DRAM

SRAM

CPU

cpumemgap

		1980		1980		1980		1980		1980		1980

		1985		1985		1985		1985		1985		1985

		1990		1990		1990		1990		1990		1990

		1995		1995		1995		1995		1995		1995

		2000		2000		2000		2000		2000		2000

		2003		2003		2003		2003		2003		2003

		2005		2005		2005		2005		2005		2005

		2010		2010		2010		2010		2010		2010

Disk seek time

Flash SSD access time

DRAM access time

SRAM access time

CPU cycle time

Effective CPU cycle time

Year

ns

87000000

375

300

1000

75000000

200

150

166

28000000

100

35

50

10000000

70

15

6

8000000

60

3

1.6

8000000

55

2.5

0.3

0.3

8000000

50

2

0.5

0.25

8000000

75000

40

1.5

0.4

0.1

data

				Disk seek time		Flash SSD access time		DRAM access time		SRAM access time		CPU cycle time		Effective CPU cycle time

		1980		87,000,000				375		300		1000

		1985		75,000,000				200		150		166

		1990		28,000,000				100		35		50

		1995		10,000,000				70		15		6

		2000		8,000,000				60		3		1.6

		2003		8,000,000				55		2.5		0.3		0.3

		2005		8,000,000				50		2		0.5		0.25

		2010		8,000,000		75,000		40		1.5		0.4		0.1

data

		

Disk seek time

Flash SSD access time

DRAM access time

SRAM access time

CPU cycle time

Effective CPU cycle time

Sheet1

		

Placement
On-chip: high bandwidth but limited capacity
Off-chip: is clocked slower than CPU and consequently reduced

bandwidth

Type
Disks, flash disks, DRAM, SRAM

Size
 Bigger memory is slower, due to capacitance load and bit lines

Challenge: can we make cheap memory look faster?
CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 11

Credit: Bryant and O’Hallaron, CMU
12CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

Cache
 Small storage device
 Contains a copy of a subset of data from larger, slower storage device
 each level acts as a cache for the next larger, slower level
 programs access data/code at level k more often than data/code at > k
 thus k+1 can be slower than k and so it can be bigger and cheaper

Examples
 The OS and applications cache/buffer disk data in main memory
 web browsers cache web data on your local disk
 the processor caches memory data in L1, L2, and L3 caches

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 13

Credit: Bryant and O’Hallaron, CMU
14CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

How does data get into fast memory?
What naming conventions do we use?
What about dynamic information?
How long does it stay there?

Challenge
make it easy to use this memory
 i.e., transparent for programmers; single, simple model of memory

while getting the best performance from fast memories
 i.e., most data access should come from the smaller, faster memories

15CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

Reference locality exists when
 data or code accesses tend to be near each other in time or space
 recent accesses predict future ones in a simple way

Types of locality
 Temporal locality: multiple accesses to same memory location

within short interval
 Spatial locality: accesses to nearby addresses within a short

interval

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 16

Caching is a technique for exploiting locality

Temporal locality: keep recently access data/code in fast-
memory for a while

Spatial locality: fetch accessed data/code into fast memory
in multi-word blocks

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 17

Data locality
 Reference array elements in succession:
 Reference sum each iteration:

 Instruction locality
 Reference instructions in sequence:
Cycle through loop repeatedly:

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 18

Does this function have good locality?

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 19

How are 2D arrays stored in memory? Consider the
following matrix:

 If the array is stored in row-major order, the values are
stored as follows:

Or in column-major order, as follows:

20

A[0][0] A[0][1] A[0][2]

A[1][0] A[1][1] A[1][2]

A[0][0] A[0][1] A[0][2] A[1][0] A[1][1] A[1][2]

A[0][0] A[1][0] A[0][1] A[1][1] A[0][2] A[1][2]

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

does this code exhibit spatial locality on the array?
 it depends on how the array is stored in memory and how it is

accessed
 Elements are accessed in column-major order

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 21

0

1

2

rows+0

rows+1

stride

Spatial Locality is good
 loop’s stride through memory is low
 each step accesses an element 4 bytes away, not columns*4 bytes

away

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 22

0
1

cols+0
cols+1

stride

Can we do better than this?

for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {
for (k = 0; k < n; k++) {
c[i][j] += a[i][k] * b[k][j];

}
}

}

23CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

Credit: Bryant and O’Hallaron, CMU

24

See 6.6.2 in text
for detailed
discussion

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

 It depends on workload
 some workloads exhibit lots of locality and other’s don’t

Amdahl’s Law
 for cache to matter, it must improve performance for part of

program that executes most of the time
 factor S speedup of code that runs for x% of total time of program

problems
 some workloads exhibit little locality
 some workloads with locality are too big to fit in cache

25CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

Amdahl’s law
 Suppose we speed up some part of a system, in this case through caching
 Overall speedup is then a function of the amount of speedup and the

amount of time that that part of the system executes for
 Suppose system takes 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 time to execute and that part of the program

takes α proportion of time and is sped-up by a factor of k
 New time after speed up is

𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛 = 1 − 𝛼𝛼 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 +
𝛼𝛼𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜
𝑘𝑘

= 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 1 − 𝛼𝛼 +
𝛼𝛼
𝑘𝑘

Speedup =
𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜
𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛

=
1

1 − 𝛼𝛼 + �𝑎𝑎 𝑘𝑘

26CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

Suppose a piece of the code that is run 10% of the time has
its performance improved by 100 times:

1

1 − 𝛼𝛼 + 𝛼𝛼
𝑘𝑘

=
1

1 − .1 + .1
100

=
1

.9 + .001
=

1
.901

≅ 1.11

Suppose code runs 95% of the time is made 4 times faster
(α = .95, k = 4)

1

1 − 𝛼𝛼 + 𝛼𝛼
𝑘𝑘

=
1

1 − .95 + .95
4
≅

1
.05 + .238

≅
1

.288
≅ 3.48

27CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

0.001

0.2

0.4

0.6

0.8

0.99

0
1
2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

O
V

E
R

A
LL

 S
PE

E
D

U
P

SPEEDUP OF OPTIMIZED PART OF THE PROGRAM

9-10

8-9

7-8

6-7

5-6

4-5

3-4

2-3

1-2

0-1

28CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

getting data in

how much data to bring in at once

 locating data

 throwing data out

handling writes

caching instructions

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 29

mrmovq (%rax), %rbx

read 0x1010--0x1017

miss

miss

miss

30CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

mrmovq 8(%rax), %rbx

read 0x1018--0x101f

hit

31CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Larger, slower, cheaper storage
device at level k+1 is partitioned
into blocks.

Data is copied between
levels in block-sized transfer
units

8 9 14 3
Smaller, faster, more expensive
device at level k caches a
subset of the blocks from level k+1

Level k:

Level k+1:
4

4

4 10

10

10

32CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

Request
14
Request
12 Program needs object d, which is stored

in some block b.

 Cache hit
 Program finds b in the cache at level k.

E.g., block 14.

 Cache miss
 b is not at level k, so level k cache must

fetch it from level k+1. E.g., block 12.
 If level k cache is full, then some current

block must be replaced (evicted). Which
one is the “victim”?
 Placement policy: where can the new block

go? e.g., b mod 4
 Replacement policy: which block should be

evicted? e.g., LRU

9 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Level
k:

Level
k+1:

1414

12

14

4*

4*12

12

0 1 2 3

Request
12

4*4*12

33CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

 cache hit
 is an access that can be satisfied by a cache

 cache miss
 is an access that cannot be satisfied by a cache

handling a miss
 propagate down the hierarchy toward main memory
 stops at hit in “lower-level” cache or main memory
 “lower-level” here means lower in the hierarchy (slow on bottom, fast on top) so L2

is “lower” than L1
 propagate data back up hierarchy to CPU
 (usually) add data to each cache on the way

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 34

Types of cache misses:
Cold (compulsory) miss
 Cold misses occur because the cache is empty

Conflict miss
 Conflict misses occur when the cache is large enough, but multiple data

objects all map to the same cache line
 e.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time if both 8 and 0

mapped to the same line

Capacity miss
 Occurs when the set of active cache blocks (working set) is larger than the

cache

35CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

cache block is
 granularity of data transfers into some cache
 power-of-two number of bytes (why?)
 static partitioning of physical address space

 in the cache hierarchy
 typically higher-level caches (faster/smaller) have smaller blocks

picking block size is a design tradeoff
 increasing size improves ______________________

 decreasing size improves ______________________

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 36

naming
 data is named by its numeric physical address
 examples: condition codes, registers, main memory

data is located using its name (address)

37CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

Data item is located
 directly using bits of its address as an index
 address index names a unique location in memory
 fastest way to access a data item

Main memory, register file, condition codes
 always use direct-mapped addressing
 natural because data have a unique location in memory

 In cache:
 Pigeonhole principle: too few holes, too many addresses

38CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

each cache line contains:
 valid bit
 tag: prefix of address range
 block (value)

 finding an item
 use some address bits as index to

the cache line
 check valid bit
 ensure that the rest of the bits

match the tag

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 39

V Tag Data

V Tag Data

V Tag Data

V Tag Data

Values of interest:
 Size of the cache block
 must be power of 2
 determines how many bits are used for the offset

Number of cache lines
 also a power of 2
 Cache index: determines which cache line to check

 Tag is the number of bits needed to check if proper address range
in cache.

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 40

Assume memory is named using 12 bits
 Each byte has a different address
 Total memory space: 4096 bytes

Assume a cache with 8 lines, each for a block of 16 bytes

41CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

All possible addresses are divided into blocks:
 First block: addresses 000000000000, 000000000001, 000000000010,

000000000011, … 000000001111
 Second block: addresses 000000010000, 000000010001, …

000000011111
…
 Last block: addresses 111111110000, 111111110001, …

111111111111

We can use the address as follows:
 First 8 bits: range address (block number)
 Last 4 bits: block offset

42CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

Cache has 8 lines: 000, 001, 010, 011, 100, 101, 110, 111

Where should we store block 01111010?

Assume we just read address 01111010|1111
 Spatial locality: we are likely to read the following address soon:

01111011|0000
 Keeping both in cache simultaneously is beneficial
 So they should be in different cache lines
 Idea: keep 01111010 in line 010, and 01111011 in line 011

43CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

 So the 12-bit address will be divided into (from least to most
significant):
 4 bits for the offset within a block
 3 bits for the index of the cache line to be used
 5 bits for the cache tag

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 44

Tag Index Offset

Address of byte of interest

Main Memory

V Tag Data

V Tag Data

V Tag Data

V Tag Data

45CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

Main Memory

V Tag Data

V Tag Data

V Tag Data

V Tag Data

0 1 0 0 1 0 0 1

46

1. Extract index bits
2. Go to cache line identified
3. Verify that block is valid
4. Check Tag
5. Return bytes starting at
offset if tag matches

0 1 0 0 1 0 0 1

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

V Tag Data

V Tag Data

V Tag Data

V Tag Data

0 1 0 1 1 0 0 0

0 0 0 1 1 0 0 0

0 1 1 1 1 0 0 0

47

Enough space in cache to
hold the data but it maps to
the same spot, other cache

lines are unused!
0 1 0 1 1 0 0 0

0 0 0 1 1 0 0 0

0 1 1 1 1 0 0 0

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

data item is located by searching for its name (TAG)
 searching cache for a tag in hardware is conceptually simple
 check every cache line in parallel at once (one comparator per line)

 any block can be stored at any location in cache within the cache
set
 each block stores a tag and value (just like in direct mapped cache)

associative caches
 fully-associative
 E (or N)-way associative

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 48

Fully Associative Cache: item can be stored anywhere
 only the tag is used to identify a block

problem:
 increasing associativity requires more circuits, thereby decreasing

clock frequency
 tag needs to be larger, requires more comparison

49CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

set-associative
Half-way between direct mapped and fully associative
 divide cache into multiple fully associative caches called sets
 address bits pick one set of cache lines
 associative compares then picks matching tag from lines in set (if

there is a match)

50CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

find set

From CMU slide set
51

Step 1 – find the set

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes = hit

tag

From CMU slide set
52

Step 2 – look for tag
match in parallel

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

check both for match

valid? + match: yes = hit

block offset

short int (2 Bytes) is here

No match:
• One line in set is selected for eviction and replacement
• Replacement policies: random, least recently used (LRU), …

From CMU slide set
53

Step 3 – assuming hit, extract
bytes requested

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

For a given amount of cache memory what should E be
 increasing E improves __________________________

 decreasing E improves __________________________

54CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

 description
 cache contains a collection of direct-mapped sets
 each set contains associatively-matched lines
 each line contains valid bit, tag and data block

 Tuples to parameterize a cache: (𝑆𝑆,𝐸𝐸,𝐵𝐵,𝑚𝑚)
 𝑆𝑆 # of sets – must be power of 2
 𝐸𝐸 # of lines per set
 𝐵𝐵 # of bytes per cache block – must be power of 2
 𝑚𝑚# of physical address bits

 address-bit breakdown
 𝑠𝑠 -> # of set-index bits = log2𝑆𝑆
 𝑏𝑏 -> # of block-offset bits = log2𝐵𝐵
 𝑡𝑡 -> # of tag bits = 𝑚𝑚 − 𝑠𝑠 + 𝑏𝑏

55CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

Number of bits needed to represent each of
 Tag, Sets, and cache block size sums to number of address bits

Cache size
Number of sets * Cache associativity * Cache block size (in bytes)

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 56

 example: 2MB cache, 64-byte blocks, 32-bit physical address
 direct mapped
 fully associative
 8-way set associative

m Tag
(Bits)

Sets
S

(lines/set)
E

Bytes/
block

Direct
Mapped

32 bits

Fully
Associative

32 bits

8-Way 32 bits

57CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

L1 I-cache (per core): 32KB, 4-way set associative

L1 D-cache (per core): 32KB, 8-way set associative.

L2 unified cache (per core): 256KB, 8-way set associative.

L3 unified cache (shared): 8MB, 16-way set associative.

58CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

59CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

60CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

key idea
 fetch data into the cache before it is accessed
 alternative to caching for low-locality workloads (or that don’t fit in

cache)
 typically an addition to caching

 hide memory latency by overlapping fetch with computation

problem
must know or guess what will be accessed in the future
 predicting the future is hard

61CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

Software-based: modify ISA to add prefetch instruction
(IA32: prefetcht0)
 its like a “load” (e.g., mrmovq), but without destination or stalling

for completion
 compiler can exploit static properties of program
 e.g., loops, database queries

Hardware-based: use recent access patterns to predict
future accesses
 hardware can exploit dynamic properties of program
 simple patterns are easy to detect dynamically
 e.g., sequential w/ fixed stride (forward or reverse) - instruction cache

62CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

caching
 data loaded into cache implicitly as side effect of normal access
 exploit temporal and spatial locality when it exists
 keep recently-access data in fast memory for a while
 fetch data into fast memory in multi-word blocks

prefetching
 data loaded into cache explicitly by program or hardware

predictor
 fetch data into fast memory before it is accessed
 thus overlap memory latency with computation

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 63

Throwing data out: what do we do when a set is full?
Direct-mapped caches:
 No choice (only one location can be used)

 Set-associative or fully associative caches:
 Need to select a block to throw out
 What would be the optimal decision for a block to be removed?
 Alternatives: random, Least-recently used (LRU)

The right method depends on the level of the cache
 Caches lower in the memory hierarchy have bigger miss penalty: we can

spend more time to decide

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 64

Multiple copies of the data exist (L1, L2, L3, memory, maybe
even disk)

Case 1: the location being written to is in the cache (write-
hit)
Write-through: write the value back to the next level immediately
Write-back: defer write to next level until cache line is replaced
 Trade-off:

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 65

Case 2: the location being written to is not in the cache (write
miss)
 No-write-allocate: write directly to memory, ignoring the cache
 Write-allocate: load location into the cache before writing
 Trade-off:

Typically:
 Write-through is used with No-write-allocate
 Write-back is used with write-allocate

The choice may vary according to the level in the memory
hierarchy

66CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

 instruction and data caches
 L1 caches typically split instructions from data
 data cache (d-cache) stores only data
 instruction cache (i-cache) stores only instructions
 what’s different about instructions?

unified cache
 stores instructions and data together
 does not distinguish between them
 L2 (and L3) caches are typically unified

67CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

Choice
 one cache per core
 one shared cache for all cores

What are the tradeoffs involved in choice?
 advantages of per-core cache:

 advantages of shared cache:

What about cache coherence?

68CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

workload dependent
 study - use access traces
 some traces collected from real programs
 others generated synthetically

 simulate cache behaviour
 pick a cache configuration
 run access trace through simulator
 look at what hits where

 things to measure
 miss rate for each type of miss (cold, conflict, capacity)
 hit rate
 miss penalty for each type of miss

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 69

To get an overall idea of the performance of a cache system
in terms of:
Cache levels (how each cache performs)
Cache sizes
 Block sizes
 Effects of locality

We want to have a basic idea through a graph: memory
mountain

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 70

A program to show how the read throughput depends upon
temporal (size) and spatial (stride) locality

Run once to warm cache; then run again to measure
performance

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 71

72 Credit: Bryant and O’Hallaron, CMU
CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 72

Slide picture from
Computer Systems a
Programmer’s
perspective

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 73

Se
rie

s1

Se
rie

s3

Se
rie

s5

Se
rie

s7

Se
rie

s9

Se
rie

s1
1

Se
rie

s1
3

Se
rie

s1
5

0

1000

2000

3000

4000

5000

6000

7000

1 3 5 7 9

11

13

15

17 Size (bytes)

R
ea

d
 th

ro
ug

hp
ut

 (M
B

/s
)

Stride (x8 bytes)

Ridges of
temporal
locality

L1

L2

Mem

L3

Slopes of
spatial
locality

Slide picture from
Computer Systems a
Programmer’s
perspective

0

500

1000

1500

2000

2500

3000

3500

16m 8m 4m 2m 1024k 512k 256k 128k 64k 32k 16k 8k 4k 2k 1k

s1
s8
s16
s23

74CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

0

500

1000

1500

2000

2500

3000

3500

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20 s21 s22 s23 s24

8m
256k

Working set Size

75CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

profile and measure
 find out what makes program slow
 determine whether cache performance is a problem

optimize
Cold, capacity, conflict misses
 increase temporal locality
 increase spatial locality
 consider prefetching

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 76

Run access traces. Evaluate the proportion of accesses that hit
the cache in specific functions
 particularly those dealing with large amounts of data

Partition your data, and deal with the subsets one at a time,
instead of dealing with the whole data at once

Figure out where data ended up in memory, and whether or not
it could be relocated to decrease the # of conflict misses

 Increase temporal locality by keeping the working set small

 Increase spatial locality by keeping stride small

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 77

Unit 5

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

1

 Introduction

Disks characteristics

Virtual File Systems

File System implementation and layout
 ISO 9660 (CD-ROMs), MS-DOS, Linux

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 2

Two tools to handle complexity:
Modularity: break a system down into smaller pieces
 Abstraction: hide the details inside each module so the rest of the

system does not need to know about them

Examples of modularity:
 Functions in C, C++ or assembly language
 Files in C or assembly language
Classes in Java, Python

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 3

Problem: functions are what we call soft modularity
One module may easily make mistakes that affects other modules
 Example:
test2:

leaq (%rdi, %rdi, 2), %r15
movq (%rsi, %r15, 8), %rdi
call test4
addq %r15, %rax
ret

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 4

Another example:
long do_something(long x) {

volatile long a[1];
a[2] = 0x0123456789ABCDEF;
return x + 7;

}

How can we isolate modules better?

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 5

One option: run modules on separate computers
 Pros:
 very strong separation
 simple to reason about

Cons:
 slow
 expensive
 passing values gets complicated

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 6

Another option: virtualization
 Instead of using a physical device, we provide another device with

the same interface
 The user interacts with the device in the same way
No need to know the implementation is different
When we virtualize a resource, we can either
 Provide the exact same interface as for the physical resource, or
 Modify it to make it more general, easier to use, easier to implement, etc.

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 7

Processors: a machine runs multiple programs, each of
which assumes it has full control of the CPU

Memory: each program assumes it's the only one using
memory
 It ensures programs can only access the memory they are

authorized to access
 It allows programs to access more “memory” than physically

available
We will discuss virtual memory in details later

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 8

Secondary storage (disks, removable devices, etc.)
 Access using OS-specific primitives (file system)
 Typically abstracted by programming language

 Allows transparent access to different types of devices
 Similar primitives for any type of storage device
 Virtual disks stored in memory, multiple devices providing redundancy, etc.

Communication
 several types of virtual communication links
 send/receive primitives

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 9

Emulation: use software to simulate a physical resource
Virtual file systems
 Java virtual machine

Multiplexing: a single physical resource is shared between
multiple applications
 processors and memory (for individual programs)
web sites (one machine can run multiple web servers)

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 10

Aggregation: several resources residing on different
machines are grouped together transparently
 A file system may be divided between disks located on multiple

file servers
Most popular web services actually consist of many machines (e.g.,

www.google.com)
 Anycast: a network request is sent to any server that responds to it

(used by some DNS servers)

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 11

File systems virtualize storage
devices:
Work directly with the view of the device

provided by the controller
 Provide a device-independent view

Applications see further levels of
abstraction on the file system

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 12

Application

System I/O

File System

Disk

Why do we use file systems?
 They manage the device (so application don't need to)
 They hide complexities of different disk drive types (e.g., rotating

disks vs SSD)
 They organize the data on the disks
 They protect the data against unauthorized and/or incorrect access

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 13

File system properties:
 persistence: must survive reboots
 robustness: must be recoverable after a crash occurs
 efficiency: must be fast and make good use of disk space
 correctness: their state must reflect the operations performed

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 14

What issues are relevant to the design of a file system?
How files are named
Where information about a file is stored
How to find a file's data, given its name
How space for new files is located
How to recover from hardware and software failures

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 15

Memory access is different than disk access
memory locations are accessible individually
 data on disk can only be accessed one chunk (block) at a time
 block size used to be 512 bytes, now most disks use 4096 byte blocks
 blocks are usually a virtualization of one of the physical properties of the disk

(for rotating disks: sectors)

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 16

Memory naming is different than disk naming
 variables are accessed using their address
 data on disk is normally accessed through a file name (path)
 the file system translates the name and offset into a logical block number
 the disk controller maps that number to the location on disk

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 17

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 18
18

Main
memory

I/O
bridge

Bus interface

ALU

Register file

CPU

System bus Memory bus

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor

Disk

I/O bus
Expansion slots for
other devices such

as network adapters

The IBM 350 Disk system (1956)

From: http://en.wikipedia.org/wiki/File:BRL61-IBM_305_RAMAC.jpeg

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 19

http://en.wikipedia.org/wiki/File:BRL61-IBM_305_RAMAC.jpeg

The IBM 350 Disk system specifications (1956)
 3.3 MB
 50 platters @ 1200 RPMs
 24 inch diameter platters
 20 tracks per inch
 100 bits per inch on each track
 50000 sectors per drive
 100 6-bit chars per sector
 IBM 350 + disk leased for $3200

/month (equivalent to $27,287 in 2016 dollar).
 Weighed over 1 ton

From http://www-03.ibm.com/ibm/history/exhibits/storage/storage_350.html

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 20

http://www-03.ibm.com/ibm/history/exhibits/storage/storage_350.html

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 21

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 22
http://www.bolhuijo.com/gallery/diskdrive/aaa

Why are we studying disk characteristics?
 To understand the issues affecting file system performance
 To use this information to improve the performance of the

programs we write

File systems are constrained by the medium they are stored
on (disks)

To help inform our understanding of how file systems work,
we need to know how disks are structured

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 23

Terminology:
 Platter: the circular medium on which data is stored.
 Surface: each platter has two surfaces (sides).
 Track: each surface is divided in concentric tracks.
 Sector: each track is divided into sectors. A sector is the smallest

amount of data that can physically be read from or written to disk.
Cylinder: the corresponding tracks on all of the disk's surfaces.

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 24

Spindle

Surface
Tracks

Track k

Sectors

Gaps

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 25

Hard disks: platter view (from the side)

Surface 0

Surface 1
Surface 2

Surface 3
Surface 4

Surface 5

Cylinder k

Spindle

Platter 0

Platter 1

Platter 2

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 26

A hard disk in action:

SpindleSpindleSpindleSpindle

x

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 27

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 28

What affects the time needed to retrieve data from a hard
disk?
 Seek delay: how long it takes to move the head to the appropriate

track
 Rotational delay: how long it takes for the disk to rotate and bring

the data under the heads
 Transfer delay: how fast the data can be read off the disk

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 29

Example: a disk with
 12000 rotations per minute
 500 sectors per track
 1024 bytes per sector
 average seek time 6ms

What is the average time needed to read one 4096 byte
block?

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 30

What is the average time needed to read one 4096 byte
block?
 Seek delay: 6ms
 Rotation delay: 12000RPM = 200 RPS = 5ms/rotation, average will

be half, so 2.5ms
 Transfer delay: We need to read 4 sectors = 4/500 of a track =

4/500 of 5ms = 0.04ms
 Total time: 6 + 2.5 + 0.04 = 8.54ms

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 31

What is the average time needed to read one 8192 byte
block?
 Seek delay: 6ms
 Rotation delay: 12000RPM = 200 RPS = 5ms/rotation, average will

be half, so 2.5ms
 Transfer delay: We need to read 8 sectors = 8/500 of a track =

8/500 of 5ms = 0.08ms
 Total time: 6 + 2.5 + 0.08 = 8.58ms

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 32

Block Size (KB) average
seek+rot (ms)

transfer (ms) average access
per block (ms)

Throughput
(KB/s)

4 8.50 0.04 8.54 468
8 8.50 0.08 8.58 932

16 8.50 0.16 8.66 1847
32 8.50 0.32 8.82 3628
64 8.50 0.64 9.14 7002

128 8.50 1.28 9.78 13088
256 8.50 2.56 11.06 23146

500 (full track) 8.50 5.00 13.50 37037

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 33

Disks have high per-access overhead

What is the implication on performance?

How do blocks help?

What does that mean for disk locality?

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 34

 Increasing block size:
Higher throughput, Less external fragmentation

Decreasing block size:
More efficient use for small files
 Less internal fragmentation of disk and memory
 Faster access time per block

Compromise:
Choose a small enough block to minimize fragmentation
 Keep related data in contiguous blocks (locality)

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 35

Flash memory: used in USB sticks, digital cameras, iPods,
etc.
Contains B blocks of P pages each
 Page size is around 512B to 4KB
 Each block contains from 32 to 128 pages

To write to a page that has already been written to:
 First need to erase the entire block (1ms)
 Then we can write the page
However we can write pages to a new block and rely on the flash

translation layer for the remapping

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 36

Blocks wear out after repeated writes
Can be erased only about 100,000 times
 The disk will eventually stop working

Flash translation layer uses wear leveling logic:
 Tries to spread erasures evenly across blocks
 Remapping: where each logical block is in flash memory changes

with time
Mapping is internal to disk: transparent to CPU

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 37

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 38

Flash
translation layer

I/O bus

Page 0 Page 1 Page P-1
…

Block 0

…
Page 0 Page 1 Page P-1

…
Block B-1

Flash memory

Solid State Disk (SSD)

Requests to read and
write logical disk blocks

 Intel SSD DC P3700 Series (2TB):
 Sequential read throughput: 2,800MB/s
 Random read throughput: 1,800MB/s
 Sequential write throughput: 2,000MB/s
 Random write throughput: 700MB/s

Compare to average hard drive disk: ~100MB/s

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 39

A file system must be able to:
Given a name, locate the file contents
 Keep track of which blocks are free
Determine which blocks belong to a particular file
Maintain administrative data like file permissions, creation and

modified times
 Find the list of free blocks, root directory, and some “other stuff”

when the system is started
Determine which files are “disk based” and which ones are special

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 40

A file is a sequence of bytes
 This concept typically is the same in most OSs

Content is given meaning by user programs

Type of data (and associated program) determined by:
 Using the file name (e.g., Windows)
 Looking at the first few bytes (e.g., Unix)

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 41

Attributes are associated with each file:
 These vary depending on the operating system

Examples:
 File size
 File owner and group
 Location of the file's data
 Time of creation/last access/last update
 File permissions (who can read/write/execute it)
 Assorted flags (hidden/system/archive/lock/etc)
 Extended attributes (user- or application-defined)

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 42

 In POSIX systems (systems based on Unix), every sequence
of bytes can be a file:
 “Regular” binary and text files containing data
Directories
 I/O devices
 /dev/sda8 (disk partition)
 /dev/pts/4 (terminal)
 /dev/cdrom (a CD ROM drive)
 /dev/mem (the computer's main memory)
 named pipes, sockets, semaphores

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 43

Each file is identified by its name

Rules for names depend on the operating system and file
system
MS-DOS/FAT (1981 to 2000)
 8 ASCII characters, followed by “.” and 3 characters extension
 Case insensitive (that is MYFILE.DOC == myfile.doc)

 ISO 9660 CD-ROM (1988)
 Same as for MS-DOS (to support the lowest common denominator)
 Extensions support longer file names

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 44

Rules for names
Windows NT to 10/NTFS (1993 to current)
 255 Unicode characters (some exceptions), case sensitive (can be switched

off)
 Many Windows tools are case insensitive

 Unix/Linux
 255 ASCII characters (except NULL and /), case sensitive
 UTF-8 can be used with all current versions of Linux

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 45

A directory is just a file whose data contains a list of entries
 Each entry contains information about one file or subdirectory

Every file must be an entry in some directory
 That includes directories, except for the top-level directory

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 46

File System Selection:
 User programs make system calls to access various operations
 A layer called the Virtual File System performs the parts of the

operations that are common to all file systems
 The virtual file system calls low-level functions to accomplish

specific tasks
 Each file system must implement these low-level functions

appropriately

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 47

User program 1 User program 2 User program n...

Virtual File System

ISO 9660 F. S. Ext4 F. S. VFAT F. S. ...

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 48

MS-DOS, Windows
 Each file system is assigned a letter name
 A:\ : floppy disk
 C:\ : primary hard disk
 Z:\ : drive on a server somewhere on the network

 This letter is used to decide which file system to pass the request to
Hence the user must know which file system contains the file

he/she wants to access

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 49

Unix/Linux
 There is a root file system “/” at the top of the hierarchy
 Every other file system appears as a subdirectory in that file

system
 The user need not even be aware that multiple file systems are

involved

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 50

Given a path:
 Find the file system associated to the path
 In the file system’s root directory, find the entry corresponding to

the first component of the path (after the drive or mountpoint)
 In the directory found above, find the entry corresponding to the

next component of the path
 Repeat until the last component of the path is found
 Return the file pointed to by the last entry

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 51

Example: if the path is
“/media/cdrom/docs/grades/a1.csv”
 Find the file system (e.g., /media/cdrom is associated to the CD-

ROM device)
 In the CD-ROM root, find the entry named “docs”
 In the directory found above, find the entry named “grades”
 In the directory found above, find the entry named “a1.csv”
 Return the file pointed to by the entry above

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 52

CD-ROMs are read-only
 The file system layout is simpler
 Files can always be stored in contiguous blocks

Directory entry links name to specific location in disk
 Also includes attributes like size, date/time and flags

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 53

No longer used normally with computers, but in
Most digital cameras
MP3 players
 iPods (if formatted on a Windows machine)

Simple, easy to implement

Cons:
 Uses a lot of memory for allocation table
 Random access to file data is slow
 Prone to fragmentation

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 54

Disk organized in sectors starting at 0
 Equivalent to one big array of sectors

Given the sector number, the drive determines
which cylinder to seek to
which head to use
which sector to read

Boot block
Partition

info
FAT1 FAT2

(duplicate)

Root
Directory

Sectors (blocks/clusters)
Used for the files and

directories

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 55

Root directory stored in fixed location

Files and non-root directories are stored in general cluster
area

Directory entry links name to first block (cluster) number
 Also includes metadata like date/time, size and flags

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 56

Space is managed using a File Allocation Table (FAT)
 Each block represented by a 12, 16 or 32-bit word
 A word contains the number of the next block in file
 In other words: each file is a linked list of blocks

 Typically two copies of the FAT are stored on disk (redundancy)
 A copy is always kept in memory

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 57

11

10

7

3

*

8

*

FAT

File 1 Block 2

File 2 Block 0

File 1 block 0

File 1 Block 1

File 2 Block 2

File 2 Block 1

File 1 Block 3

Data Blocks

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 58

2

3

4

5

6

7

8

9

10

11

2

3

4

5

6

7

8

9

10

11

Moving the hard disk's head from one position to another
takes a long time (comparatively)

Hence file operations are much faster if all of the file's data
is stored in neighbouring blocks

Unfortunately repeated use of the file system may scatter
some files all over the disk

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 59

File system organized in groups

 Information about free/occupied blocks is kept separate
from the information used to locate data

Block Group 0 Block Group 1 ... Block Group n-2 Block Group n-1

Super
Block

Group
Attributes

Block
Bitmap

Inode
Bitmap

Inode
Table

Data
Blocks

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 60

Superblock is located at the start of the disk

Contains global file system information
How many inodes and data blocks the disk holds
How many inodes and data blocks are free
How many inodes and data blocks each group has
Dirty flag (was the system shut down cleanly?)
 Etc.

A lost superblock is a disaster
 So each block group holds a redundant copy of the superblock

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 61

A file is represented by an inode
Contains the file's attributes (but not its name)

File’s data is stored in data blocks
 Inode points directly to first 12 blocks
 Remaining blocks organized in a tree-like fashion
 An indirect block points to some data blocks
 A double-indirect block points to some indirect blocks

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 62

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 63

Type/Permissions

Owner info

File size

Timestamps

Data Blocks # (12)

Indirect Block #

2-indirect Block #

3-indirect Block #

Data Block

Data Block Data Block

Data Block

3-indirect Block

2-indirect Block

Indirect Block Indirect Block Indirect Block

2-indirect Block

2-indirect Block

...

...

...

... ...

...

...

Data Block

Data Block

...

A directory contains file names, and an inode number for
each file name.
Metadata is not stored in directory entry (it is stored in inode)

The first entry of every directory is . : a reference to the
directory itself.

The second entry of every directory is .. : a reference to the
parent directory.

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 64

To read data from a file:
 Find the inode for file (usual path resolution)
 If the offset we need is within the first 12 blocks, read the block

pointed to by the corresponding direct block
 If the offset is in the range of the 1-indirect block, read the indirect

block to find the block number we need, and then read the block
identified by that number
 If offset is in 2- or 3-indirect block, do the same but with additional

indirection

Random access to large files is much faster than for the MS-
DOS file system

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 65

Hard links: several directory entries may refer to one inode
 This is the case for . and ..

Can be used to give a program several names
 The program behaviour may depend on the name used.
 Example:

 All files must belong to the same file system (why?)

ls -ali /bin
1308482 -rwxr-xr-x 3 root root 31112 2010-09-11 06:48 bunzip2*
1308482 -rwxr-xr-x 3 root root 31112 2010-09-11 06:48 bzcat*
1308482 -rwxr-xr-x 3 root root 31112 2010-09-11 06:48 bzip2*

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 66

Unix/Linux also support symbolic (soft) links
 A file whose contents is the name of another file
 Example:

 The second file may be on a different file system
 In fact it does not even need to exist

ls -al /lib
-rw-r--r-- 1 root root 534832 2010-10-21 19:02 libm-2.12.1.so
lrwxrwxrwx 1 root root 14 2010-10-22 18:42 libm.so.6 -> libm-2.12.1.so

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 67

Unlike the MS-DOS file system, modern file systems (ext*fs,
NTFS) try to keep files together

For Linux:
 files are kept within a block group if possible
 files in same directory are kept within a block group if possible
 large files are written to large free areas, whereas small files are

stored in smaller free areas

Fragmentation still happens, but much more slowly
 normally only becomes a problem if the file system is very full

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 68

 I/O: the process of copying data between memory and
external devices
 File system works at the block level
 Applications work at the byte level
 Unix I/O converts the byte level access to block level

operations

Why we study it?
 helps understand how I/O functions provided by

programming languages work
 high level I/O functions provided by programming languages

are not suitable for some applications
 helps understand system structuring concepts

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 69

Application

Unix I/O

File System

Disk Drive

File System
Layering

Basic Unix I/O operations (system calls):
Opening and closing files
 open() and close()

 Reading and writing a file
 Based on current location: read() and write()
 Random location: pread() and pwrite()

Changing the current file position (seek)
 Indicates next offset into file to read or write
 Reading or writing a file implicitly changes the file offset.
 lseek()

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 70

char* path; // file name
...
int source_fd;
if ((source_fd = open(path, O_RDONLY)) < 0) {
perror("Open source failed:");
exit(2);

}
char buf[512];
int chars_read;
chars_read = read(source_fd, buf, sizeof(buf));
while (chars_read > 0) {

// Do something
chars_read = read(source_fd, buf, sizeof(buf));

}

An integer >= 0 on
success, negative on

failure

File descriptor passed in
and used by kernel (OS)
to determine what file to

read the data from

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 71

Open returns a small integer called a file descriptor

Application passes this value back to the kernel in
subsequent requests to work with a file

Each process created starts with three open files:
 0: standard input (stdin)
 1: standard output (stdout)
 2: standard error (stderr)

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 72

Each process has associated with it a fixed size file
descriptor table
 The file descriptor is just the index into this table

Each active entry in the table identifies an entry in a shared
system-wide open file table

Entries are created in the open file table (and a process FD
table) each time open() succeeds

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 73

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
(one table

per process)

Open file table
(shared by

all processes)

v-node table
(shared by

all processes)

File pos

refcnt=1

...

stderr

stdout

stdin
File access

File size

File type

File A

Adapted from: Computer Systems: A Programmer’s Perspective

The above is one
struct in the open file

table

...

Pointers to Buffers

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 74

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 75

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
(one table

per process)

Open file table
(shared by

all processes)
v-node table

File pos

refcnt=1

...
File pos

refcnt=1
...

stderr

stdout

stdin File access
...

File size

File type

File access

...

File size

File type

File A

File B

fd = open("B",…)

Descriptor table
(one table

per process)

Open file table
(shared by all processes) v-node table

File pos

refcnt=1

...
File pos

...

fd 0

fd 1

fd 2

fd 3

fd 4

stderr

stdout

stdin File access
...

File size

File type

File A

File A

fd = open("A",…)

fd 0

fd 1

fd 2

fd 3

fd 4

stderr

stdout

stdin

File B

File access

...

File size

File type
...

refcnt=1

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 76

Descriptor table
(one table

per process)

Open file table
(shared by

all processes)
v-node table

File pos

refcnt=1

...
File pos

refcnt=1
...

fd 0

fd 1

fd 2

fd 3

fd 4

stderr

stdout

stdin

File access
...

File size

File type

File A

File A

fd = open("A",…);

Adapted from: Computer Systems:
A Programmer’s Perspective

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 77

Given what we know, are there interesting
things we can do at the application layer
to speed things up?

A system call is several orders of
magnitude more expensive than a
function call

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 78

Application

Unix I/O

File System

Disk Drive

File System
Layering

Applications can use caching to improve
performance just like the kernel
Most I/O has both
 Spatial locality
 Temporal locality

Application level functions in the
Standard I/O library of C take advantage
of this
All these functions are declared in the

header stdio.h

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 79

Unix I/O

File System

Disk Drive

File System
Layering

Standard I/OApplication

This is
buffered

The C standard library (libc.so) contains a collection of
higher-level standard I/O functions
Different OS architectures may adapt these to their own I/O

interface

Examples of standard I/O functions:
Opening and closing files (fopen and fclose)
 Reading and writing bytes (fread and fwrite)
 Reading and writing text lines (fgets and fputs)
 Formatted reading and writing (fscanf and fprintf)

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 80

 Instead of returning a file descriptor, fopen() returns a
FILE *

The FILE struct contains:
 actual file descriptor
 pointer to a buffer
 position in buffer
 other bookkeeping information

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 81

When fwrite() is called, bytes are copied to the stream
buffer

 If the stream buffer fills during the fwrite()
write() called to “write” the stream buffer
 Stream buffer cleared

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 82

Standard I/O functions use buffered I/O

Buffer flushed to output fd on:
 fflush() call
 Buffer flushing mode (setvbuf function):
 Unbuffered (_IONBF): no buffer used, flushed on

every write
 Line-buffered (_IOLBF): on line break or buffer full

(default for terminal)
 Fully buffered (_IOFBF): on buffer full (default for

file)

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 83

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 85

• Buffer
• Buffer offset
• fd

Kernel boundary write()

Cached File Block Cached File Block

When fread() is called, bytes are copied from the stream
buffer to the application designated location

 If the stream buffer empties during the fread()
 read() called to refill the stream buffer
 Position in stream buffer reset

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 86

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 87

• Buffer
• Buffer offset
• fd

Kernel boundary read()

Cached File Block

Costs over doing a system call
Need extra buffer space
One extra set of copies
 Bookkeeping to ensure the stream buffer exactly matches real file

location
 I/O to random locations can be inefficient

Advantage over system call
 If application I/O requests are much smaller than what the OS disk

buffer holds then greatly reduces the number of system calls
 System calls are very expensive

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 88

 Pros
 Unix I/O is the most general and lowest “overhead” form of I/O
 All other I/O packages are implemented using Unix I/O functions
 Unix I/O provides functions for accessing file metadata
 Unix I/O functions are async-signal-safe and can be used safely in signal

handlers

Cons
 Dealing with short counts is tricky and error prone
 Efficient reading of text lines requires some form of buffering, also tricky and

error prone

 Both of these issues are addressed by the standard I/O and RIO
packages
 RIO package is described in text but you don’t have to know it

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 89

Pros:
 Buffering improves efficiency by decreasing the number of read

and write system calls
 Short counts are handled automatically

Cons:
 Standard I/O functions are not async-signal-safe, and not

appropriate for signal handlers
 Standard I/O is not appropriate for input and output on network

sockets
 Simultaneous read and write of same file descriptor requires seeking, not

supported by sockets

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 90

Binary file examples
 Object code, Images (JPEG, GIF), Documents (DOC, PDF)

Functions you shouldn’t use on binary files
 Line-oriented I/O such as fgets, scanf, printf, rio_readlineb

Different systems interpret a line break differently:
 Linux and Mac OS X: LF(0x0a) [‘\n’]
 HTTP servers & Windows: CR+LF(0x0d 0x0a) [‘\r\n’]

 String functions
 strlen, strcpy
 Interprets byte value 0 (end of string) as special

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 91

Unit 6

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

1

Asynchronous Programming
 Threads
 Synchronization principles
Mutual exclusion locks
Condition variables
 Semaphores

Operating Systems and Processes
 Exceptions
 User and kernel modes
 Processes and process control

2CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

Modern systems require multiple processes to run
simultaneously

Some processes may require the CPU to be idle for some
time
 Something else can be done in the mean time

Some CPUs have multiple cores

Sometimes processes need to share use of a CPU core

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 3

Abstraction for execution
 For programmer, looks like sequential flow of

execution (private CPU)
Can be stopped and started (may be running

or not)
 Physical CPU multiplexes multiple threads at

different times

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 4

main

foo

join

bar

…

Each thread should have the illusion of isolation in CPU

Each thread has:
Own variables (stack, registers)
Own synchronous control flow (program counter)

Threads can resume other threads
Do they have to?

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 5

Creating and starting a thread
 Like an asynchronous procedure call
 Starts a new thread of control to execute a procedure

 Stopping (blocking) a thread
 Save thread’s state and switch to a different thread

Re-starting (unblocking) a thread
 Restore thread’s state and continue running

 Joining with a thread
 Block current thread until a target thread completes
 Can obtain the return value of the target thread
 Turns CPU back into a synchronous procedure call

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 6

Linux support threads through a standard (POSIX) interface
knows as pthreads
To compile, we need to give gcc the -lpthread flag:
gcc -o pingpong pingpong.c -lpthread

All threads for a process share
 The same memory space
 The same global variables and heap
 The same file descriptors (for open files).

Each thread has its own state and stack

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 7

pthread_create: create and start a thread
 Receives a function as parameter, function contains code to execute in

thread
 Caller function continues executing without waiting for thread to

complete

pthread_join: join a thread
 Block until thread completes

pthread_detach: detach a thread
 Allows thread to free its resources as soon as it completes
 Signals that a join is not expected to be called

pthread_yield: yields to a different thread

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 8

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 9

Nascent

Running

Runnable

Blocked

Dead
Freed

Create
Schedule

Yield

Schedule
Block

Unblock

Join/Detach

Complete

Scheduling a thread is:
Deciding which threads should run, and when
When there are more runnable threads than processors
 Involves a policy and a mechanism

Thread Scheduling Policy
 Set of rules that determines which threads should be running
Do some threads have higher priority?
 Should threads get fair access to the processor?
 Should threads be guaranteed to make progress?
 Should one thread be able to preempt another?

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 10

Priority: number assigned to each thread
 Thread with highest priority goes first

When choosing the next thread to run
 Run the highest priority runnable thread
When threads have the same priority, run thread that has waited

the longest

 Implementation (mechanism)
Organize Ready Queue as a priority queue
 Highest priority first, FIFO (first in first out) otherwise

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 11

Preemption occurs when
 a “yield” is forced upon the current running thread
 current thread is stopped to allow another thread to run

Priority-based preemption
when a thread is made runnable (e.g., created or unblocked) with

higher priority than current-running thread, it preempts that thread

Quantum-based preemption
 each thread is assigned a runtime “quantum” (time slot)
 thread is preempted at the end of its quantum
How long should quantum be?

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 12

Threads have been introduced to:
 Exploit parallelism: use different processors to run things at the

same time
Manage asynchrony: do something else while waiting for I/O

Controller (or other blocking condition)

But they introduce other problems:
Coordinating access to memory shared among threads (e.g., static

variables)
 Unpredictable control flow transfers among threads (preemption)

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 13

Ensure mutual exclusion of critical sections
 Threads may share data structure
Operations involve multiple memory accesses
 Accesses can be arbitrarily interleaved

Wait for and signal the occurrence of events
One thread may require the completion of a task performed by

another
 This task is not completion (so pthread_join is not suitable)

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 14

Assume the code on the right
 Stack implemented as an array

Could it cause problems?

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 15

int n;
int array [SIZE];
void push (int i) {
if (n < SIZE) {
array [n] = i;
n++;

}
}
int pop () {

if (n > 0) {
n--;
return array [n];

} else
return -1;

}

void pop_driver (int c) {
int e;
while (c--) {

do {
e = pop ();

} while (e != -1);
/* consume value of e */

}
}

void push_driver (int c) {
while (c--)

push (/* some value */);
}

int main (void) {
push_driver (100);
pop_driver (100);
assert (n==0);

}

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 16

int main (void) {
…
pthread_create(&et, NULL, push_driver, 100);
pthread_create(&dt, NULL, pop_driver, 100);
pthread_join(et, NULL);
pthread_join(dt, NULL);
assert (top==0);

}

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 17

 Shared data
 Data structure that could be accessed by multiple threads
 Concurrent access to shared data can lead to inconsistencies

Critical sections
 Sections of code that access shared data

Race condition
 Simultaneous access to critical section by multiple threads
 Conflicting operations on shared data structure are arbitrarily interleaved
 Unpredictable (non-deterministic) program behaviour
 Usually hard to debug as well

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 18

Consider the following situation:
 We have one or more producers that generate values
 We have one or more consumers that use them
 We need to send the values from the producers to the consumers

A bounded buffer
 has a fixed capacity (for example, N = 4)
 producers write values to it; if it's full they wait
 consumers read values from it; if it's empty they wait

Example application: video playback (e.g., Youtube)
 Producer loads frames from source (e.g., streaming service)
 Consumer shows frames on the screen

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 19

Check example file, threads/boundedbuf.c

How do we know our implementation is correct?
Does it have any race conditions?

Observation:
 send() updates buf->in, but not buf->out
 receive() updates buf->out, but not buf->in

Single-writer principle: if each variable only has one writer,
then communication becomes easier

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 20

The correctness of our algorithm depends on all of:
 A single writer for every shared (global) variable
 Each thread has a [virtual] processor
 They both have the ability to continue running

Memory has read/write coherence
Memory write operations are seen in program order
 The values buf->in and buf->out never overflow
 The values buf->in and buf->out have before-and-after atomicity

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 21

What if we had more producers/consumers?
 Race conditions on buf->in and buf->out

How do we fix this?
We need to make a group of operations before-or-after atomic

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 22

Consider the following code (pingpong.c)
void *counting_thread(void *arg) {

char *name = arg;
int i;
for (i = 0; i < LIMIT; i++) {

counter++;
}
return 0; /* Success */

}
The counter is unprotected
 Other threads can read its value in the middle of the operation

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 23

Mechanism to ensure critical sections are executed by one
thread at a time

Usually implemented in software, with some special
hardware support

Reading and writing may be handled differently
 Two threads reading don’t interfere with each other
 Two threads writing may cause race condition
 A thread writing can cause inconsistent read in other threads
More on that later

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 24

Lock semantics
 A lock is either held by a thread or available
 At most one thread can hold a lock at a time
 A thread attempting to acquire a lock that is already held is forced

to wait

Lock operations (primitives)
 lock: acquire lock, wait if necessary
 unlock: release lock, if other threads are waiting allow one of them

to run

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 25

void push_cs (int e) {
lock(&aLock);
push(e);
unlock(&aLock);

}

int pop_cs () {
int e;
lock(&aLock);
e = pop();
unlock(&aLock);
return e;

}

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 26

Naïve implementation:
 Shared global variable for synchronization
 Lock loops until variable is 0, then sets it to 1
 Unlock sets variable to 0

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 27

void lock (int *lock) {
while (*lock) {}
*lock = 1;

}
void unlock (int *lock) {

*lock = 0;
}

There is still a race condition
 If two threads lock at the same time, they could check that lock is

zero at the same time
 Two threads would “acquire” the lock

Race happens even in machine-code
loop: movq (%rsi), %rax # assume %rsi has &lock

testq %rax, %rax
jne loop
movq $1, (%rsi)

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 28

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 29

p0:
entrance_intents[0] = true;
while (entrance_intents[1]) {
if (turn ≠ 0) {
entrance_intents[0] = false;
while (turn ≠ 0) {
// busy wait

}
entrance_intents[0] = true;

}
}
// insert critical section here
turn = 1;
entrance_intents[0] = false;

p1:
entrance_intents[1] = true;
while (entrance_intents[0]) {
if (turn ≠ 1) {
entrance_intents[1] = false;
while (turn ≠ 1) {
// busy wait

}
entrance_intents[1] = true;

}
}
// insert critical section here
turn = 0;
entrance_intents[1] = false;

Advantages
 It does not require any support from the CPU

Disadvantages
 The process spends a lot of time looping (live-lock)
Optimizing compilers don't know about concurrency
 they may store turn in a register before the loop
 they may remove writes to entrance_intents from the loop
 we need to declare them as volatile to avoid this

 The CPU may perform write operations out of order
 We need to declare them as atomic (C11)

Code doesn’t scale for more than 2 critical sections very well

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 30

We need a special purpose Assembly instruction
 Read and write in a single instruction
No intervening access from other threads
 Atomicity: operations are performed in single, indivisible unit

Test and Set Operation
Change a register, but keep track of old value (usually in a

condition code/flag)

Atomic Memory Exchange
Group a load and store together atomically
 Exchange value of register and memory location

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 31

Spinlock: lock where waiter spins, looping on memory read
until lock is acquired
 Also called a busy-waiting lock

 Implementation using atomic exchange
 Attempt to acquire lock
 Simultaneously read old value
 Lock acquired when old value is free

Problem: exchange operation is expensive

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 32

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 33

_taslock:
xorq %rax, %rax

loop:
lock
btsq %rax, (%rdi)
jc loop
ret

_caslock:
movq $1, %rsi

loop:
xorq %rax, %rax
lock
cmpxchg %rsi, (%rdi)
jne loop
ret

Cannot be implemented in CPU alone
Must synchronize across multiple CPUs
Multiple cores accessing same location at the same time

Typically implemented by memory bus
Memory bus synchronizes every CPU’s access to memory
 Bus couples both parts of exchange (read and write)
 Bus ensures no other transaction intervenes
Higher overhead, slower than normal read and write

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 34

Spinlocks are necessary and ok if spinner only waits for a
short time

Spinlocks waste CPU cycles (polling)
CPU is busy waiting for a thread that may take a long time to run
 If running in a single CPU, other threads are not able to progress

Alternative: block threads when they cannot run
 A thread waiting for an event should block so that other threads

may run
 It should be unblocked when the event happens

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 35

Blocking locks for mutual exclusion
 Attempting to acquire a held lock blocks calling thread
 Blocked thread’s TCB stored in lock’s waiting queue
 Releasing a lock unblocks first thread in waiting queue
 Removes it from waiting queue, adds it to ready queue

Blocking locks for event notification
Wait for event by blocking (waiting queue for event)
 Event signal unblocks

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 36

Spinlocks:
 Uncontended lock has low overhead
Waiting for lock has high overhead and wastes resources

Blocking locks:
 Lock has fixed overhead
Higher than spinlocks’ uncontended lock, but less wait if

contended

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 37

Use blocking locks when:
 Lock may be held for a long time
High contention expected

Use spinlocks when:
 Small critical section, or short wait for event
Minimal contention expected
 To implement blocking locks

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 38

Monitors and condition variables:
 basis for synchronization primitives in Unix, Java, etc.

Monitors (mutex) provide mutual exclusion
 Blocking lock to guarantee mutual exclusion
 Basic operations: lock and unlock

Condition variables provide inter-thread synchronization
 Threads can synchronize events with each other
 wait: blocks until another thread signals
 signal: unblocks a thread currently waiting, if one exists
 broadcast: unblocks all threads currently waiting
 Associated to a mutex, must have mutex lock held

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 39

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_init(&lock, NULL);
pthread_mutex_lock(&lock); /* Acquire */
pthread_mutex_unlock(&lock); /* Release */

pthread_cond_t cv = PTHREAD_COND_INITIALIZER;
pthread_cond_init(&cv, NULL);
pthread_cond_wait(&cv, &mutex);
pthread_cond_signal(&cv);
pthread_cond_broadcast(&cv);

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 40

Condition variables are often used to signal that a desired
state has been reached
One thread checks for condition, and waits if it is not reached
 Another thread establishes the condition and signals the waiter

Wait operation
Must only be called if mutex is held (why?)
 Releases the mutex before blocking
 Reaquires the mutex when unblocked (waits if necessary)
Note: other threads may have acquired mutex in mean time

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 41

Signal operation
Waiter does not run until signaller releases the mutex explicitly
Waiter must recheck wait condition (why?)
 If no threads are waiting, then calling signal has no effect

Broadcast operation
Wakes up all threads waiting for condition
May wake up too many threads: ok since threads recheck condition

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 42

void consumer() {
while (1) {

uthread_mutex_lock(mx);
while (buffer_is_empty())

uthread_cond_wait(has_items);
item = dequeue();
uthread_cond_signal(has_space);
uthread_mutex_unlock(mx);
consume_item(item);

}
}

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 43

void producer() {
while (1) {

item = create_item();
uthread_mutex_lock(mx);
while (buffer_is_full())

uthread_cond_wait(has_space);
enqueue(item);
uthread_cond_signal(has_items);
uthread_mutex_unlock(mx);

}
}

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 44

Assume two threads running concurrently
 Thread 0 calls procedure a
 Thread 1 calls procedure b

We need to ensure that b is not called until a returns
How?

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 45

The problem:
Wait condition check/trigger and CV wait are not atomic
 Signal could occur before wait
Waiter could miss signal and wait forever

The solution:
 Ensure that condition check/trigger and wait are atomic
 Particularly, signal cannot happen between check/trigger and wait
Waiter code is not atomic if signal isn’t inside monitor
Mutual exclusion: locks for both wait and signal

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 46

Naked signal/notify:
 A signal called outside of a monitor
 Should be avoided (can cause wait-signal race)

 It’s sometimes necessary
 e.g., when blocking is not allowed

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 47

Critical sections could be classified as:
 Readers: only read the shared data, do not modify it
Writers: update the shared data

We could then weaken mutual exclusion constraint
Writers require exclusive access
Multiple readers can access monitor concurrently

Reader-Writer Monitors
Can be free, held for reading or held for writing
 If held for reading, multiple readers can access simultaneously

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 48

mutex_lock(): lock for writing
Only acquires lock if it is free
 Sets state to held for writing

mutex_lock_read_only():
 If lock is free, set its state to held for reading
 Increments a reader count (or set)

mutex_unlock():
 If held for writing, set state to free
 If held for reading: decrement reader count
 Set state to free if count is zero

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 49

Policy question
 If monitor state is held for reading
 Writer thread attempts lock, blocks waiting for release
 Are new readers accepted?

Disallowing new readers while writer is waiting
 Affects a thread that could be running and isn’t
 Provides fair access to monitor (writer has been waiting longer)

Allowing new readers while writer is waiting
 Increases concurrency, allows more threads to run
 Writer may need to wait for a long time to get access (starvation)

 Solution: may depend on application

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 50

 Introduced by Edsger Dijkstra (THE System, ~1968)
A semaphore is a non-negative atomic counter
 Attempts to make counter negative block calling thread
 No operation to read value, only to change it

P(s) (or wait):
 Dutch: prober te verlagen
 Atomic: blocks until s>0, then decrements s

V(s) (or signal, or post):
 Dutch: verhogen
 Atomic: increase s and unblocks waiting threads if necessary

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 51

The semaphore library provides the following functions:
sem_t sem;
sem_init(&sem, shared, initial_value);
sem_wait(&sem);
sem_post(&sem);

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 52

 Implementing a mutex using semaphores:
Create semaphore with initial value 1 (free)
 lock is P()/wait()
 unlock is V()/post()

 Implementing condition variables using semaphores
Not as easy as it looks
 In condition variables, signals with no wait have no effect
 In semaphores, signals can unlock a future wait

 Replacing one for the other requires revising code
 Further reading: Andrew D. Birrell. “Implementing Condition

Variables with Semaphores”, 2003.

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 53

 If thread B must wait for thread A to finish:
 Initialize semaphore to 0
 Thread A: sem_post(&b);
 Thread B: sem_wait(&b);

 If both threads need to wait for each other (barrier):
 Initialize two semaphores with 0
 Thread A:

sem_post(a);
sem_wait(b);

 Thread B:
sem_post(b);
sem_wait(a);

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 54

Formulated by Dijkstra around 1965
 As an exam problem

Problem:
 5 philosophers sit at a round table with forks in between each pair
 If they are thinking, they do nothing
 If they want to eat, they grab 2 adjacent forks and eat
 If another philosopher has fork, wait

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 55

Assume philosophers always start with left fork

Assume all philosophers decide to start at the same time
 All philosophers are able to get the left fork
 All philosophers must wait for the right fork
DEADLOCK!!!

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 56

Assume that, if philosophers can’t get the second fork, they
release the first fork, then wait on the second
 If all of them do it at the same time, they will now hold the right fork
 But none can proceed because they can’t get the left

 If the process is repeated, and all philosophers are
synchronized
 Philosophers will repeatedly get one fork at a time
 All are busy, but they are unable to eat
 LIVELOCK!!!

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 57

Race condition
Competing, unsynchronized access to shared variable
 From multiple threads
 At least one thread is typically updating the variable
 Solved with synchronization
 Language does not always help, can be hard

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 58

Deadlock
Multiple competing actions wait for each other
 All actions are prevented from completing

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 59

void foo() {
lock1.lock();
lock2.lock();
// …
lock2.unlock();
lock1.unlock();

}

void bar() {
lock2.lock();
lock1.lock();
// …
lock1.unlock();
lock2.unlock();

}

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 60

Livelock
 Threads respond to actions by other

threads, but other threads also
respond
 Threads are unable to make

progress

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 61

while (true) {
lock1.lock();
if (!lock2.tryLock()) {

lock1.unlock();
lock2.lock();
if (!lock1.tryLock()) {

lock2.unlock();
continue;

}
}
break;

}
// …

Starvation
 A thread is unable to gain regular access to a shared resource
 “Greedy” threads may lock resource for long time
 Threads with higher priority may skip ahead
 Reader threads may acquire reader-writer lock in front of writer

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 62

What’s the problem with the following code?
void foo (int n) {
uthread_mutex_lock (mx);
count -= n;
if (count >= n)
foo(n-1);

uthread_mutex_unlock (mx);
}

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 63

 If lock is acquired again in recursive call
 Lock is held, so thread blocks
 Thread is waiting for lock to be released
 But same thread is actually holding the lock

 If we release lock before calling recursively
Could break critical section’s protection

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 64

Reentrant mutex: allows lock to be acquired more than
once
Only if it is acquired again by the same thread

Unlock only releases the lock if called as many times as
lock was called

Each lock operation increments counter
 Unlock decrements it, and releases lock when counter is zero

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 65

 If you don’t need them, don’t use multiple threads
 If you don’t need them, don’t use shared variables
 Use local variables and parameters whenever possible

Avoid unnecessary locks
 When possible, use atomic data structures and lock-free synchronization
 Be careful with livelock situations

Evaluate scope of lock
 Could deadlock be avoided by reducing portion of code that needs lock?

 If possible, use only one lock at a time
 Deadlock only happens if thread holding a lock needs to wait

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 66

Organize locks into precedence hierarchy
 Locks must always be acquired in same order

Limit wait time on locks
 Provide an alternative action if lock cannot be acquired

Detect and destroy
 If possible, identify when a deadlock has occurred (or is about to

occur)
 Break deadlock by interrupting threads

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 67

Modularity between threads is soft
 They share the same memory
Which means one thread can affect the others

How can we make it harder?
We could run them on different machines
Or simply make sure they don't share memory
 We will see how when we discuss virtual memory

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 68

Modern computers handle multiple processes
simultaneously
 Kernel does not trust processes
 Processes do not trust each other

Operating systems aim to:
 Provide a single-system illusion for each process
Coordinate sharing and isolation
 Provide primitives for transparent access to resources

69CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

Some resources are provided as abstractions
 File systems
 Processes, threads, synchronization
Communication
 Authentication

Shared resources abstract isolated access
 Processor, Memory, I/O access
 Access to resources is limited
 Interaction between processes is limited
Modularity and security are enforced

71CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

OS memory is protected mostly using virtual memory

Hardware operates in two modes: user and kernel
 Regular processes operate in user mode
 Kernel mode required for privileged operations/instructions
 Additional modes may be used in contexts like virtualization

Some instructions are illegal when in user mode

72CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

What you can do only in Kernel mode
Change value of special registers
 Page Table Base, Exception Table Base

Change behaviour of interrupts
 Access memory using physical address
Halt the processor
 Talk to I/O devices
 I/O addresses are mapped to memory that only kernel can access

73CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

Exceptional Control Flow implemented
partly by hardware, partly by OS

Change in control flow in response to
change in CPU state
 E.g.: I/O requests, invalid instruction
Causes CPU to move to kernel mode

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 74

Application Exception
Handler

 Interrupt
 Asynchronous, caused by signal from I/O device

Trap
 Caused by specific instruction (e.g., system call)

Fault
 Caused by instruction with potentially recoverable error
 e.g., access to invalid memory
 Same instruction is repeated, if possible

Abort
 Caused by non-recoverable error
 Control does not return to application

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 75

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 76

Each type of possible exception is assigned an exception
number
 Hardware defined: divide by zero, memory violations, overflows
 OS defined: system calls, I/O signals

At boot time:
 OS sets up Exception Table in memory
 Jump table with addresses of OS procedures (function pointers)

 Special register (exception table base register) has start address of
exception table

When exception happens:
 Switch to kernel mode
 Indirect call to entry in exception table

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 77

Getting into Kernel mode from User mode
 Trap instruction: syscall
 Interrupt from I/O device
 Fault (illegal memory access, divide by zero, etc.)

Switching back to User Mode
 Instruction iret

78CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

Kernel: Collection of modules running in kernel
(supervisor) mode

 Ideally it must be small
 A programming error in kernel mode is fatal
Microkernel: any non-essential services removed from kernel
Disadvantage: slow (too much overhead)

79CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

 Instance of program in execution
 Independent logical control flow
 Illusion that process has exclusive use of CPU

Program runs in a context (state):
 Code and data stored in memory
 Contents of registers, status registers, stack pointer
 Program counter
 OS specific information (e.g., open files, environment variables)

Private address space
 Will be discussed later, with virtual memory

80CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

Each process can have multiple threads

Threads in the same process share:
 Same memory space (code and variables)
 Same resources (e.g., open files, environment variables)

Threads in the same process have different:
 Register values, stack pointer, condition codes
 Flow of control (program counter)

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 81

Abstraction: process runs as if exclusively

Concurrency (multitasking)
 Execution of logical flow is interleaved
 Processes take turns using the CPU

Periodically processes are pre-empted
 Pre-emption process triggers context switch
 Typically caused by interrupt (may be caused by other events)

82CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

When a CPU switches between processes, the state (context)
needs to be switched too
Caused by:
 timer (through interrupts)
 system call block (e.g., I/O wait, sleep)

Context switch:
 switch to kernel mode
 save the context of current process
 restore the context of scheduled process
 set PC to scheduled process in user mode

83CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

Fork is a system call used in Unix-based systems to create a new
process
After a call to fork:
 The current process continues running as usual
 A new process with same state is created
 All process memory is “copied” into new process

Returning value of fork distinguishes “parent” process from
“child” process
 0 (zero): current process is the child process
 positive: current process is the parent process
 value corresponds to process ID of the child

 -1: fork failed, new process was not created

84CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

switch(fork()) {
case -1:

perror("fork"); /* something went wrong */
case 0:

printf("This is the child process!\n");
/* … */

default:
printf("This is the parent process!\n");
/* … */
wait(NULL);

}

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 85

Signal: message that notifies a process that an event has
occurred

Kernel notifies process of specific event:
 System event detected by kernel (e.g., fault)
 Another process requested a signal being sent (system call “kill”)

Process can either:
 Terminate
Handle it through a pre-determined handler function
 Ignore the signal

86CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

Ctrl-C in terminal:
 Triggers SIGINT (by default terminates process)

Kill command:
 Sends a signal to process (by default SIGTERM)

 I/O ready:
 Triggers SIGIO (allows process to proceed with read/write)

Child process terminates (fork):
 Triggers SIGCHLD

87CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

Pipes are a unidirectional method of communication
between processes

A pipe contains two file descriptors:
Data written to side 1 is read from side 0

Example: calling a process with “|”:
 ls -1 | wc

 fifo: named pipe

socketpair: similar, but bidirectional

89CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

An open file can be mapped to a region in memory
 Reads from the region correspond to data in the file
Writes to the region are written back to the file

PTE points directly to file itself

Can be shared between different processes

91CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

A shared memory object is similar to a file, but saved in
memory

Memory mapping allows multiple processes to access
same object

93CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

Unit 7

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

1

Motivation: Isolation, protection and sharing

Address spaces, paging and memory translation

Caching

Demand paging and optimization

2CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

Problem 1: memory space
 Each process behaves as if it’s the only one using memory
 Each process assumes there is, say, 232 bytes of memory
 There are many processes running concurrently
 Physical memory (RAM) is limited

3CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

Problem 2: isolation
 Programs have bugs, pointers can point to wrong memory address
 Unintentional (e.g., bugs)
 Intentional (e.g., Trojan horse)

One process could access memory that belongs to another process

4CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

Problem 3: sharing
 Processes may want to share memory
 Example: Programming libraries
 Code should not be copied to all processes

 Sometimes there are restrictions (e.g., read-only)

5CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

Memory translation
 Program accesses instructions and data using virtual address
MMU (Memory Management Unit) translates it into physical address
 Physical address is used to access memory

MMU must be in hardware
Why?

6CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

Address space: collection of valid addresses
 Usually linear: consecutive integers from

0 to 2𝑛𝑛 − 1.
 Segmented space (early Intel CPUs)
 Each address consisted of two parts

Virtual address space: used by the user process

Physical address space: address used by actual physical
memory

7CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

Virtual and physical addresses are divided into pages
 Pages have fixed size
 Each virtual page can be linked to one physical page (page table)

Translation is performed by MMU

Each process has its own page table

8CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

 Sharing problem:
 Virtual addresses in two processes may point to same physical address
 Page table entry may mark page as read-only

 Isolation problem:
 Same virtual address in different processes leads to different physical

addresses

Memory space problem:
 Unused virtual addresses do not point to an actual physical address
 Some pages may be stored in disk
 Usually separate partition (swap)

9CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

Page table is stored in main memory
 Address is only accessible by the kernel
Most frequently used blocks end up in cache

Each process has separate page table

Base address stored in special register: PTBR (Page Table
Base Register)
 In x86: CR3
Value of register changed during context switch

10CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

Virtual and physical addresses are both divided into pages
of 2𝑝𝑝 addresses each
 Least significant 𝑝𝑝 bits determine the offset within the page
 Remaining bits of virtual address (virtual page number) are used

as index into a page table
Value stored at the index determines the physical page number

A virtual address is converted by:
 Extracting the virtual page number and offset
 Finding the corresponding entry in page table
Combining physical page number with offset

11CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

page index bits page offset bits

page table index bits page offset bits

12

0p-1pn-1

Page Table

0p-1pm-1

virtual address

physical address

address in page table

data from page table

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

Linux processes use
convention for memory
address use

OBS: Addresses here are
listed from bottom to top

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 13

Kernel code and data

Memory mapped region
for shared libraries

Runtime heap (via malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

%rsp

Process
virtual
memorybrk

Physical memory
Identical for
each process

Process-specific data
structures (e.g., page
tables, task and mm
structs, kernel stack) Kernel

virtual
memory

0x400000

Different for
each process

0x7FFFFFFFFFFF

Each process will map regions into different areas
(mappings)
 Text region (code): backed by executable in disk
 Read-only data (e.g., strings): backed by executable in disk
Global variables: initially fault on read
 when read, exception handler copies from executable

Heap, swap: initially fault on read
 when read, exception handler copies from zeroed page
 global variables initialized to zero may use this approach

 Shared libraries: backed by library files
 OS will try to share with other processes

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 14

Cached page: page is currently in physical memory

Uncached (non-resident) page: page is on disk, but not in
memory

Unallocated page: page does not exist yet
Memory space that has not been used or initialized yet

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 15

Each entry of the page table contains (may vary per
architecture):
 SUP bit: if set, can only be accessed in kernel mode
 example: memory used to access devices

 READ bit: if set, process can read the page
WRITE bit: if set, process can write to the page
 EXECUTE bit: if set, address can be used as instruction
 INMEM bit: if set, page is stored in physical memory
 if not set, page may be stored in disk, or not stored at all

 The physical page number (address)

16CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

Process can only access physical memory mapped by its
page table
OS controls the page table, so OS controls access

What about kernel memory for a process?
 Included in the page table
 Kernel acts as a library
 Kernel pages have SUP bit set

18CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

MMU may detect a problem (page fault):
 Accessing a page process is not allowed to access
 Reading/writing to page with no read/write permission
 Accessing SUP page in user mode
 Accessing unallocated page
 Accessing uncached page

When MMU detects a page fault
 Fault triggers kernel mode
 Kernel may fix problem, or abort

19CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

Accessing a page process is not allowed to access
 Usually a programming error
 Example: NULL pointer
Operating system will terminate process, possible save “core”

(copy of memory contents) and issue a warning

20CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

Accessing a page whose read or write bit is unset
 Process may only be allowed to read
 shared library, instruction memory
 OS terminates process

 Page may have not been updated yet
 OS may delay writing to a page until it is accessed
 Pages may block until I/O provides its data

 Page has never been accessed yet
 Call to malloc will create page, but not allocate memory space

21CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

Accessing an uncached page
 Page needs to be retrieved from disk
 Physical memory is treated as fully-associative cache of disk
 More sophisticated cache policy
 Write-back policy (write evicted page to disk)

 Process may be suspended while page fault is handled

 If too many pages need to be retrieved from disk
Very little work is accomplished
 Thrashing
 Typically happens when working set is bigger than RAM

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 22

Virtual memory just below %rsp is
marked as unallocated
When accessed, allocation is

automatic

Virtual memory above heap limit
is marked as invalid
 Segmentation fault on access

System call brk changes size of
heap
 Library functions brk/sbrk

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder 23

Memory mapped region
for shared libraries

Runtime heap (via malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

%rsp

brk

0x400000

0x7FFFFFFFFFFF

Which page is evicted?
 Penalty for bad replacement policy is high
 True LRU is too expensive to be done in hardware

Optimal: Bélàdy’s algorithm (aka Clairvoyent’s algorithm)
 Furthest in the future
 Impossible in practice

LRU is not an option
 There are too many pages
 LRU variations will require too much computation and/or too much

space

24CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

NRU (Not Recently Used) policy:
 Keep two bits per page: one for read, one for write
 Set them every time there is an access
 Clear them (or decrement counter) periodically

Choose pages to evict based on recent access:
 First, pages not modified or accessed
 Then, pages modified but not accessed
 Then, pages accessed but not modified
 Then, pages accessed and modified

25CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

Clock replacement policy
On access, set reference bit
 For each page in round-robin:
 If current bit has reference bit set, clear bit
 Otherwise, evict page

26CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

As is, with virtual memory, every memory access in CPU
requires two reads from physical memory
 If page table is in L1 cache, impact is reduced, but this affects

locality of actual data

How can we make it faster?
 A dedicated cache

27CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

MMU uses a small, high-associativity cache only for virtual
to physical address translation

TLB structure:
 Each entry in TLB corresponds to one page
Virtual page number is composed of set index and tag (similar to

L1 cache)
 TLB entry has same data as page table entry (e.g., read/write/SUP

bits, physical address)

28CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

Consider a memory system where:
Memory is byte addressable
Virtual addresses are 14-bits wide
 Physical addresses are 12-bits wide
 Page size is 64 bytes
 TLB is 4-way set associative with 16 total entries
 L1 d-cache is direct mapped (via physical address), with 8-byte

block size and 16 lines

29CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

Conclusions:
 Page size is 64 bytes: log264 = 6 bits for page offset
Virtual page number: 14 − 6 = 8 bits long
 Physical page number (aka page frame number): 12 − 6 = 6 bits

long

30CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

11 10 9 8 7 6 5 4 3 2 1 0

Physical Page Number Page Offset

Cache Tag Cache Set Index Cache Offset

Virtual address:

Physical address:

31

13 12 11 10 9 8 7 6 5 4 3 2 1 0

Virtual Page Number Page Offset

TLB Tag TLB Index

13 12 11 10 9 8 7 6 5 4 3 2 1 0

Virtual Page Number Page Offset

13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 10 9 8 7 6 5 4 3 2 1 0

Physical Page Number Page Offset

11 10 9 8 7 6 5 4 3 2 1 0

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

Divide Virtual Address into Virtual Page Number (VPN) and Offset
Check TLB for VPN, if miss:
 Compute physical address of page table entry (PTE)
 PTE physical address = PTBR + VPN * PTE_SIZE (e.g., 8)

 Read PTE from memory using this address

Check PTE valid bit, throw exception if invalid
 Read Page Frame Number (PFN) from PTE to compute Physical

Address (PA)
 PA = PFN * PAGE_SIZE + Offset

 Read/Write target PA from/to memory
 Start with L1, then L2…

32CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

 Imagine a scenario:
Virtual address: 48 bits
 Page size: 4KB (212)
 64-bit page table entry

How many pages are there in total?

How much space do you need to store the virtual page of
one process?

What if we have 200 processes running simultaneously?

33CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

What if we make pages bigger?
 Page size: 4GB

What is the size of each virtual page?

What is the impact on memory usage?

34CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

What if page table is divided into groups?
 Each group has, say, 1024 entries
 Each group is stored in its own table
 Another “master” table has pointers to individual tables
Groups where all addresses are unused doesn’t need to exist

This only affects the actual page table, not TLB

35CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

page index bits page offset bitspage index bits page offset bits

level 1 index bits level 2 index bits page offset bits

36

0p1-1p1n-1

0p-1pm-1
physical address

virtual address

Level 1
page table

Level 2
page table

Physical address
of level 2 page
table

0p-1p

p-1p

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

How is space saved?
 If all page entries linked by the first level are unused, the second

level table doesn’t need to exist
 If a second level table isn’t used often, it can be stored in disk

When TLB is properly used, impact of extra access time is
minimized

We are not limited to two levels

37CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

38

Level 1
page table

...

Level 2
page tables

VP 0

...

VP 1023

VP 1024

...

VP 2047

Gap

0

PTE 0

...

PTE 1023

PTE 0

...

PTE 1023

1023 null
PTEs

PTE 1023 1023
unallocated

pages
VP 9215

Virtual
memory

(1K - 9)
null PTEs

PTE 0

PTE 1

PTE 2 (null)

PTE 3 (null)

PTE 4 (null)

PTE 5 (null)

PTE 6 (null)

PTE 7 (null)

PTE 8

2K allocated VM pages
for code and data

6K unallocated VM pages

1023 unallocated pages

1 allocated VM page
for the stack

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

39

CR3

Physical
address
of page

Physical
address
of L1 PT

9

VPO
9 12 Virtual

address

L4 PT
Page
table

L4 PTE

PPN PPO
40 12 Physical

address

Offset into
physical and
virtual page

VPN 3 VPN 4VPN 2VPN 1

L3 PT
Page middle

directory

L3 PTE

L2 PT
Page upper

directory

L2 PTE

L1 PT
Page global

directory

L1 PTE

99

40
/

40
/

40
/

40
/

40
/

12/9
/

9
/

9
/

9
/

512 GB
region

per entry

1 GB
region

per entry

2 MB
region

per entry

4 KB
region

per entry

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

40

CPU

VPN VPO
36 12

TLBT TLBI
432

...

L1 TLB (16 sets, 4 entries/set)

VPN1 VPN2
99

PTE

CR3

PPN PPO
40 12

Page tables

TLB
miss

TLB
hit

Physical
address

(PA)

Result
32/64

...

CT CO
40 6

CI
6

L2, L3, and
main memory

L1 d-cache
(64 sets, 8 lines/set)

L1
hit

L1
miss

Virtual address (VA)

VPN3 VPN4
99

PTE PTE PTE

CPSC 261 2019 WT2 © 2020 Jonatan Schroeder

	Sequential CPU
	Implementing a�Sequential CPU
	Slide Number 2
	Learning Goals
	Short term plan
	From CPEN 211 you know
	What Does the CPU Do?
	Fetch/Execute Cycle
	ISA Commonality
	Instruction Types
	Learning a New Assembly Language
	X86-64/Y86-64 Introduction
	Y86-64 Registers
	Y86-64 Instruction Types
	Y86-64 ISA: Instructions
	Y86-64 ISA: Instructions
	Y86-64 ISA: Instructions
	Y86-64 ISA: Instructions
	Y86-64 ISA: Instructions
	Using zero and sign flags (Simplified)
	Y86 Assembly Language Notes
	Calling Conventions
	Y86-64 Calling Conventions (based on X86-64)
	Y86-64 ISA: Function Calls and Stack
	Stack Structure (no base pointer)
	Stack Structure (with base pointer)
	X86 vs Y86
	X86 vs Y86 (Cont.)
	Assembly Code Example
	Assembly Code Example
	Assembly Code Example
	Exercise: Translate to Y86
	Y86 – GCD code
	What do we know so far
	Y86-64 Memory Representation
	Y86-64 Memory Representation
	Y86-64 Memory Representation
	Basic Implementation –�Learning Goals
	Basic Idea
	Slide Number 39
	Processor Components
	Breaking Things Down
	Slide Number 42
	Y86 Programmer Visible State
	Caveat - Purpose of Instructions
	Stage Functionality - Fetch
	Stage Functionality - Decode
	Stage Functionality - Execute
	Stage Functionality

	Pipelined CPU
	Implementing a�Pipelined CPU
	Slide Number 2
	Pipelined Y86 Implementation
	Motivation
	Pipeline Computation
	Pipeline Stages
	Examples
	Measuring Efficiency
	Latency & Throughput
	Latency and Throughput
	Latency and Throughput
	Pipelined Y86 Implementation
	Pipelined Computation
	The RISC Pipeline
	Slide Number 15
	An Example Problem
	Terminology
	Expressing vs Exploiting Parallelism
	Exploiting Instruction-Level Parallelism
	Pipelined Y86 Implementation
	Pipeline Considerations
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Instruction-Level Parallelism
	Dependencies Constrain Parallelism
	Avoiding Dependencies in Code
	Compilers & Instruction Parallelism
	Dependency Types
	Classifying Data Dependencies
	Types of Data Dependency: Exercise
	Types of Data Dependency: Exercise
	Control Dependencies
	When Dependencies become Hazards
	Pipelined Y86 Implementation
	Learning Goals
	Data Hazards
	Stalling
	Bubble
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Pipeline Control Unit
	Pipeline Control Unit
	Stalling Works, but…
	Stalling Summary
	Stalling for Control Dependencies
	What About Anti and Output Dependencies
	Anti and Output Dependencies
	Other Dependencies
	Pipelined Y86 Implementation
	Dealing with Causal Dependencies
	Data Forwarding
	Pipe (with forwarding)
	Slide Number 61
	Register to Register Hazard with �Data Forwarding
	Load Use Hazard with Data Forwarding
	Pipelined Y86 Implementation
	Control Dependencies
	Branch Prediction
	Branch Prediction
	Predicting the Next PC in Fetch Stage
	Is it jump prediction or guessing?
	Observations
	What the compiler knows
	What compiler wants from ISA
	Example of complex prediction
	Dynamic Jump Prediction
	Implementing Dynamic Jump Prediction
	Implementing Dynamic Jump Prediction
	Dynamic Prediction & Compiler
	Pipelined Y86 Implementation
	Indirect Jumps
	Problem
	Indirect Jumps: Return
	Solution
	Polymorphic Dispatch
	Prediction for Indirect Jumps
	Pipelined Y86 Implementation
	Performance Analysis
	Performance Analysis Example
	Limits to Pipeline Depth

	Pointers And Malloc
	Pointers and Dynamic Allocation
	Learning Goals
	Module Summary
	Review: Addresses and pointers
	Review: Addresses and pointers
	Review: Addresses and pointers
	Strings in C
	Memory Allocation
	Static Array Access
	Process Memory Organization
	00400000-00401000 r-xp 00000000 08:08 5244791 /home/patrice/fib�00600000-00601000 r--p 00000000 08:08 5244791 /home/patrice/fib�00601000-00602000 rw-p 00001000 08:08 5244791 /home/patrice/fib�7f86a3122000-7f86a32dd000 r-xp 00000000 08:02 1308509 /lib/x86-64-linux-gnu/libc-2.19.so�7f86a32dd000-7f86a34dd000 ---p 001bb000 08:02 1308509 /lib/x86-64-linux-gnu/libc-2.19.so�7f86a34dd000-7f86a34e1000 r--p 001bb000 08:02 1308509 /lib/x86-64-linux-gnu/libc-2.19.so�7f86a34e1000-7f86a34e3000 rw-p 001bf000 08:02 1308509 /lib/x86-64-linux-gnu/libc-2.19.so�7f86a34e3000-7f86a34e8000 rw-p 00000000 00:00 0 �7f86a34e8000-7f86a35ed000 r-xp 00000000 08:02 1308538 /lib/x86-64-linux-gnu/libm-2.19.so�7f86a35ed000-7f86a37ec000 ---p 00105000 08:02 1308538 /lib/x86-64-linux-gnu/libm-2.19.so�7f86a37ec000-7f86a37ed000 r--p 00104000 08:02 1308538 /lib/x86-64-linux-gnu/libm-2.19.so�7f86a37ed000-7f86a37ee000 rw-p 00105000 08:02 1308538 /lib/x86-64-linux-gnu/libm-2.19.so�7f86a37ee000-7f86a3811000 r-xp 00000000 08:02 1308526 /lib/x86-64-linux-gnu/ld-2.19.so�7f86a39e5000-7f86a39e8000 rw-p 00000000 00:00 0 �7f86a3a0e000-7f86a3a10000 rw-p 00000000 00:00 0 �7f86a3a10000-7f86a3a11000 r--p 00022000 08:02 1308526 /lib/x86-64-linux-gnu/ld-2.19.so�7f86a3a11000-7f86a3a12000 rw-p 00023000 08:02 1308526 /lib/x86-64-linux-gnu/ld-2.19.so�7f86a3a12000-7f86a3a13000 rw-p 00000000 00:00 0 �7fffc88a3000-7fffc88c4000 rw-p 00000000 00:00 0 [stack]�7fffc88cf000-7fffc88d1000 r-xp 00000000 00:00 0 [vdso]�ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall]�
	Local Variables and the Stack
	Procedure Activation
	Allocating Local Variables
	Runtime Stack
	Variable Addresses
	What is stored in the Stack?
	Some Implications
	Instance Variables
	Structs in C
	Struct Allocation
	Struct Allocation (cont.)
	Dynamic Allocation in C and Java
	Dynamic Allocation: Usage Examples
	Dynamic Allocation in C
	Memory Deallocation
	Memory Heap
	Problems with Explicit Deallocation
	Explicit Deallocation Example
	Dangling Pointers
	Dangling Pointers
	Memory Leaks
	Memory Leaks
	Other Mistakes with Pointers
	Avoiding Memory problems in C
	Detecting Problems: Valgrind
	Implementing a Dynamic Memory Allocator
	Memory AllocatOR Requirements
	Memory Allocator Implementation
	Memory Allocation Goals
	Internal Fragmentation
	External Fragmentation
	Implicit Free List
	Implicit Free List: Splitting
	Implicit Free List: Coalescing
	Implicit Free List: Coalescing
	Implicit Free List: Placement
	Explicit Free List
	Segregated Free List
	Segregated Free List (Cont.)

	Memory Hierarchy
	Memory Hierarchy
	Outline
	Slide Number 3
	Memory Technology - History
	Slide Number 5
	64 bits vs 8 GBytes
	Storing stuff and performance
	Storing stuff and performance
	Some Rules of Thumb
	Trends
	Memory Summary
	The Memory Hierarchy
	Cache Memories
	Intel Core i7 Memory Hierarchy
	Using the memory hierarchy
	Reference locality and caching
	Exploiting Locality
	Locality
	Data Locality Example
	How the array is stored
	What about matrix sum?
	A better version
	Matrix Multiplication
	Access Order and Performance
	Does caching work?
	Amdahl’s law as applied to caches
	Example
	Plot of Amdahl’s Law
	Issues for Cache Design
	Example: Read Access Miss
	Example: Read Access Hit
	Caching in a Memory Hierarchy
	General Caching Concepts
	Summary: Cache hit or miss
	Types of Cache misses
	Block Size
	Locating Data
	Direct-Mapped Addressing
	Direct Mapped Cache – how it works
	Locating the cache line
	Direct Mapped Cache – example
	Example (cont.)
	Example (cont.)
	Example (cont.)
	Assume 8 bit address
	Lookup Summary
	Suppose we access data in this pattern
	Solution: Associative Mapping
	Fully Associative Cache
	Set Associative Mapping
	E-way Set Associative Cache (Here: E = 2)
	E-way Set Associative Cache (Here: E = 2)
	E-way Set Associative Cache (Here: E = 2)
	E-way, set-associative caches
	Summary: Parameterizing a Cache
	Bits and Sizes
	Example
	Intel Core i7 (quad core)
	Core i7
	Does Caching work?
	Prefetching
	Prefetching Techniques
	Summary
	Replacement Policies
	Handling Writes
	Handling Writes
	Instructions and Data
	Multi-Core Issues
	Designing Caches for Performance
	Memory Mountain
	Memory Mountain Test Program
	Slide Number 72
	Slide Number 73
	1.83 GHz CoreDuo – temporal locality
	1.83 GHz CoreDuo – spatial locality
	Writing Cache-Friendly Code
	Applying It into programming

	File Systems
	File Systems
	Outline
	Virtualization
	Soft Modularity
	Virtualization
	Virtualization
	Virtualization
	Virtualization: What to Virtualize
	Virtualization: What to Virtualize
	Virtualization Techniques
	Virtualization Techniques
	File Systems
	Introduction
	Introduction
	Introduction
	memory vs disk
	Memory vs Disk
	System Architecture
	Rotating Disks characteristics
	Rotating Disks characteristics
	Disk Drive
	Head Crash
	Rotating Disks characteristics
	Rotating Disks characteristics
	Rotating Disks characteristics
	Rotating Disks characteristics
	Rotating Disks characteristics
	Rotating Disks characteristics
	Rotating Disks characteristics
	Rotating Disks characteristics
	Computing Disk Delay
	Computing Disk Delay
	How does this scale?
	Block Size vs Sector Size
	Rotating Disks characteristics
	Solid state disk characteristics
	Solid state disk characteristics
	Solid state disk
	SSD Performance increasing rapidly
	File System Implementation
	Files
	File Metadata
	POSIX Files
	File Naming
	File Naming (Cont.)
	Directories
	Virtual File Systems
	Virtual File Systems
	File System Identification
	File System Identification
	File Resolution Process
	File Resolution Process Example
	ISO-9660 file system layout
	MS-DOS (FAT) file system layout
	Disk Organization
	MS-DOS file system layout
	File Allocation Table (FAT)
	FAT-32 system
	Fragmentation in MS-DOS file system
	Linux file system layout
	Linux file system: Superblock
	Files in Linux File System
	Linux file system layout
	Linux file system: Directories
	Linux file system: Resolution
	Linux file system: Hard Links
	Linux file system: Soft Links
	Fragmentation
	The Role of Unix I/O
	Basic Unix I/O Operations
	Example Code
	File Descriptor - Summary
	File Descriptor: Kernel’s View
	The Kernel View
	Actions on open()
	Same File Different Process
	Same File Same Process
	How can we Improve Performance?
	Caching in the Application
	Standard I/O Functions in C
	STDIO
	How it works - writes
	Buffering in Standard I/O
	fwrite()
	How it works - reads
	fread()
	Analysis
	Pros and Cons of Unix I/O
	Pros and Cons of Standard I/O
	Working with Binary Files

	Processes And Threads
	Processes and Threads
	Operating Systems: Outline
	Virtualization of the CPU
	Thread
	Virtual Processes (Threads)
	Thread Operations
	Posix Threads
	Common pthread Operations
	Thread Status
	Thread Scheduling
	Priority Round-Robin Scheduling Policy
	Preemption
	Problems with Threads
	Synchronization
	Shared Data Structure
	A Sequential Test works…
	A Concurrent Test May Not Work
	The Problem
	Example: a bounded buffer
	Example: a bounded buffer
	Example: a bounded buffer
	Example: a bounded buffer
	Thread synchronization
	Mutual Exclusion
	Mutual Exclusion Using Locks
	Using locks for the shared Stack
	Implementing Simple Locks
	Simple Lock Problem
	Dekker’s Algorithm
	Dekker’s Algorithm
	Atomic Memory Exchange Instruction
	Spinlock
	Spinlock Options
	Problems with Atomic Exchange
	Are Spinlocks a Good idea?
	Blocking Locks
	Spinlocks vs Blocking Locks
	Which lock should I use?
	Monitors and Condition Variables
	Mutex and Condition Variables
	Using Condition Variables: Wait
	Using Condition Variables: Signal
	Consumer with Condition Variables
	Producer with Condition Variables
	Event Ordering Exercise
	Wait-Signal Race
	Naked Notify
	Reader-Writer Monitors
	Reader-Writer Monitor Operations
	Fair Access to Reader-Writer Lock
	Semaphores
	Semaphores in C
	Mutual Exclusion using Semaphores
	Ordering Two Threads
	The Dining Philosophers Problem
	Dining Philosophers: Deadlock
	Dining Philosophers: Livelock
	Problems with Concurrency
	Problems with Concurrency
	Deadlock
	Other Problems with Concurrency
	Other Problems with Concurrency
	Problems with Recursion
	Problems with Recursion
	Solution: Reentrant Mutex
	Avoiding Deadlocks
	Avoiding Deadlocks (Cont.)
	Hard Modularity
	Operating Systems
	Abstractions
	Operating System Abstractions
	Kernel Mode
	Exceptions
	Classes of Exceptions
	Slide Number 76
	Exception Handling
	Kernel Mode Transfer
	The Operating System Kernel
	Processes
	Processes vs Threads
	Logical Control Flow
	Context Switch
	Process Control: Fork
	Example:
	Signals
	Signal Examples
	Pipes
	Memory Mapped Files
	Memory Sharing

	Virtual Memory
	Virtual Memory
	Outline
	Virtual Memory: Motivation
	Virtual Memory: Motivation
	Virtual Memory: Motivation
	Virtual Memory
	Address Space
	Virtual Memory
	Virtual Memory
	Page Table
	Page Table
	Virtual Memory Translation
	Memory Space
	Memory Mapping for Processes
	Page Table Entry
	Page Table Entry
	Virtual Memory for Protection
	Page Faults
	Page Faults
	Page Faults
	Page Faults
	Memory Space
	Memory as cache for disk
	Page Replacement Policy
	Page Replacement Policy
	Time optimization
	Translation Lookaside Buffer (TLB)
	Virtual Memory Example
	Virtual Memory Example (cont.)
	Virtual Memory Example (cont.)
	Virtual Page Translation Summary
	Space Optimization
	Space Optimization
	Space Optimization
	Multi-level Page Tables
	Multi-Level Page Tables
	Slide Number 38
	Intel core i7 address translation
	Intel core i7 address translation

