Introduction

January 11, 2021 8:49 AM

Graphics pipeline

OpenGL/WebGL:
e A software interface that allows a programmer to communicate with the graphics hardware
e A programming interface for rendering 2D and 3D graphics
e A cross-language multi-platform APl for computer graphics

OpenGL (Open Graphics Library):
e Open industry-standard API for hardware accelerated graphics drawing
¢ Implemented by graphics-card vendors

OpenGL ES: embedded systems version of OpenGL with reduced functions

WebGL makes OpenGL accessible from JavaScript, same underlying graphics architecture
e WebGL 1.0 is based on OpenGL ES 2.0, now supported in almost all browsers
e WebGL 2.0 is based on OpenGLES 3.0

OpenGL pipeline
e Shapes are discretized into primitives (triangles, line segments formed by vertices)
e Vertex Shader
o Vertices stored in a vertex buffer
o When a draw call is issued, each of the vertices passes through the vertex shader
o Oninput to the vertex shader, each vertex has associated attributes
o On output, each vertex has a value for gl_Position and for its varying variables
e Rasterization
o Datain gl_Position are used to place the three vertices of the triangle on a virtual screen
o The rasterizer figures out which pixels are inside the triangle and (linearly) interpolates
the varying variables from the vertices to each of these pixels
o It always pick 3 vertices
* Fragment shader
o Each pixel is passed through the fragment shader, computes the final color of the pixel
o The pixel is then placed in the framebuffer for display
o By changing the fragment shader, we can simulate light reflecting off of different kinds
of materials

Three.js
e High level library that can use WebGL
¢ Implements scene and mesh abstractions
e Mesh = geometry + material properties
e Scene contains a hierarchy of mesh objects
e Render a scene using a camera

CPSC314 Page 1

Geometry

January 18, 2021 9:46 AM

Points and vectors
¢ Point: a real object position in space
o Origin
e Vector: an algebraic object in space that is associated with operations

Basis and coordinates
e Basis: an independent set of vectors that can produce any vectors in the space by linear
combination

o The size of the basis is the same as the dimension of the space

e Coordinates of a vector in a basis b:

o Ifv =vybg + v1b1, where vy, vy are scalars and by, by are vectors
Vo
U1
o If we pick different basis, v is the same, but the coordinates will change

we can represent v = () by an array of numbers (column matrix)

_ a
o Notation: v = (b)(column vector), v = (a, b) (row vector)

* j.e. We can write the basisas b = (bg, b;)

v
= Thenv=>» (Ui) as a product of matrices

Linear (4 X 4) transformations and affine spaces
e Change of basis, matrix representation

=
P
5] Y,
& EE 7 ‘i ‘
le) pAR> —]
‘\ ////7 &
Nl 5)

Given v = bv,, want to find v = av, (Note: v is always the same)
L L
We can write by in terms of basis a by by = (ao al) <L00>’ where <L00> is the
10 10
coordinates of by with respect to a

Similar for by, so we have (bg by) = b = g(

Loo Log
Let L =
<L1o Lqq

L L
Thenv = by, = g(LOO L01> vy = alvy,
10 11

LOO LOl
LlO Lll

Sov, = Ly,
e Representing points in affine spaces

CPSC314 Page 2

=7 i
7 £
\0\ /A o »

o We can add a vector to a point to produce a new point

Vo
p=o0o+v=0+Dbyvy+bv; = (boblo)(vl)
1
= 1 indicates origin

Vo
o Ifitis 0, it represents the vector in the frame (v = (bo b, 0) (vl))
0

. (bo by o) is called the (coordinate) frame
o In 3D space, we thus have vector 4
o We call these coordinates with one extra number "homogeneous" coordinates, since we
can represent both points and vectors in the same way

CPSC314 Page 3

Frames

January 22, 2021 10:05 AM

Notations:

ours Textbook
Points D 14
Vectors v %
Column matrix | v v
Row matrix | v v’
Basis b BT
Matrices AorA

Coordinate frame
e b= (byby0)

Homogenous transformation matrices
¢ Model and view transformation

0:0
<

w ontd) S tene
{’:f‘l'w-\..«&

a=(aj a; az a,)
b= (b; b, b; b,)
Want to convert a point in frame b to a,
the point on the ball is the same in any frame, only coordinates are different
p = bpy = apa
since b = (by b, by b,) = aB
We have Bpy, = Py
Here B is the model matrix
If we are transforming the world position to camera position, we apply the view matrix

Frames
e World frame w
o Scene/stage
* Model/object frame b
O Object3D class in Three.js
e Camera/eye frame ¢

—» /11’.»1 3-,55%7#

ﬂé\f

Cq’\v\b\,« ~
= C
0 ¢, isin the opposite dlrectlon of the line of sight
* We look at the scene along —c,

0 ¢, is pointing towards us (out of page)

CPSC314 Page 4

Frame transformation matrices (4 X 4 homogenous transformation matrices)
e Model matrix M
o Model to world frame
DPx
o M= Py
bz
1

= Last column is the coordinate of the model's origin p = (px,py, pz) in world frame
e View matrix (Camera matrix) C
o World frame to camera frame
o For VR, we will have two cameras and two view matrices
o C = (normalize(i x¢c,) ¢, xc, normalize(q—p) D)

¢

y

“d Seop

-
[= s
~n —

<

\\)

c

vJ,‘\
= The last column is always the world coordinate of the origin of the camera p
= If we have a point § we want to look at from p(camera matrix), we can use
normalize(q — p) for its z value
o Look at matrixin Three.jsV = C~1

Ifa =wA
e« A=(V1 vy V3)
* Where v; shows how we get a, by w, and w,,
* v, shows how we get a, by wy and w,,
¢ v3 shows how we get a (origin of frame a) by translating w, (origin of frame w)

CPSC314 Page 5

Scene graphs

February 1, 2021 9:58 AM

Suppose we have a model defined in the world frame (W) and & = WA
Given a point p in world frame and we want to apply a transformation R
* Rp rotates p about the world origin
¢ |f we want to rotate p about a, we need to:
o Convert coordinates to a
= p=Wp=ad’lp
o Apply transformin @
= GRA™'p
o Convert back to w
- a=wA
o This gives the final position p’ = WARA™1p
e R’ = ARA™lis the rotation transform
o Similarity transformation

To transform a point in a structure, we need to apply transform matrix layer by layer to get its

position in the world
A scene graph is a data structure containing hierarchical transformations

Wik ez

O gu[/a((v % -

e The world positionof pisp = CT; Fp
e InThree.js
o Child to parent A.matrix
o Child to world A. matrixworld = CT;
¢ Animations meshes create a skeleton = scene graph

o Bone is object 3D

Interpreting chains of transformation
* From right to left: transformation of coordinates from one frame to another

. Ft\
=)

J
|

(¢

Ae)
|

W
e From left to right: moving points in a frame

CPSC314 Page 6

Types of transformations

1 0 0 pg
. .o _ |0 1 0 p,
Translation: T = 00 1 ps
0 0 O
A 0

e Rotation:R = ()whereA is a 3 X 3 orthogonal matrix

0 1

o Letu = Rv, then |u| = |v|, isometry
o RTR =1, (Ris an orthogonal matrix)
o IfR = (Rx Ry R;), then Ry, R,, R, are orthonormal vector
o Always hasdetR =1
o Can construct any rotation as the product of the three matrices
cosf —sing 0
= Rotation about the z-axis: R, = | sin@ cosf 0
0 0 1
= Rotation about the x-axis (the 4th row and column are 0001): R, =
1 0 0
0 cosf —sin@
0 sinf cos@
cos§ 0 sinf
* Rotation about the y-axis: R, = 0 1 0
—sinf 0 cos@
= 3 angles are sufficient to represent any rotation
o s
s, 0 0 O
e Scaling: S = 0 s 00
0 0 s, O
0 0 0 1
-1 0 0
e ReflectiontR; =1 0 1 0
0 0 1

o If R, is some other full rotation matrix,R; R, is also orthogonal
o Determinantis -1
¢ |If calculating from left to right, we are manipulating the coordinate
o E.g.a = wABC, where A is translation, B flips the x, y coordinates, and C is rotation
We first translate the coordinate w by A, then flips the coordinate by B, and rotate by C,
all vertices changes accordingly

Aliasing

e Scene made up of black and white triangles, and jaggles around the edges
* Problem: too much information in one pixel

CPSC314 Page 7

Over-sampling

Multi-sampling
e Render to a high resolution color and z-buffer
e During the rasterization of each triangle, coverage and z-values are computed at this sample
level
* For efficiency, the fragment shader is only called only once per final resolution pixel
¢ Once rasterization is complete, groups of these high resolution samples are averaged together

CPSC314 Page 8

Animation

February 8, 2021 10:09 AM

Modeling: mesh in rest pose/bind pose

Skeleton(bone): rig, armature

Binding: bind skeleton onto the skin
e Determine which part of the skin/mesh bonds to/moves with the bone
¢ rigid binding: divide mesh into portions and bind

Geometric skinning
* Rigid skinning: large extorsion around the binding point
* Smooth skinning: add weights to the skinning
¢ Skinning designate the deformation algorithm: how the mesh/skin is linked to the skeleton(rig)

Rigging: FK vs IK
e Forward Kinematic (FK): specify transformation matrix at every joint
¢ Inverse Kinematic (IK): position a handle at some point, the system computes transformation

at other joints

Key framing: using timeline, set key frame at different points of time.

CPSC314 Page 9

Cameras and projections

February 10, 2021 10:21 AM

For a graphic camera:

Soroon wa -
‘}DY/ _,
/ ‘%‘a
/ S
* Focus is at the camera position
e Screenis at camera local space: z = —1

The perspective shortening can be achieved using similar triangles

In homogeneous coordinates
e The point (y,z, 1) is projected to (— %, -1, 1), so that we havez = —1
o This is not a linear combination of y and z, thus, we have to use homogeneous
coordinates
e Assume that if p are homogeneous coordinates of a point, wp is equivalent to p
o (y,z,1) = (2y,22,2) = (wy,wz,w)
o Can always recover the canonical form by dividing by the last entry
_Y _ = (—y —
o So(s 1,1) =(-y,—z,2)
e So the projection can be written as

y 1 0 O0\yy
A 0 -1 o/\1

1 0 0
= Pp=(0 1 0]isthe projection matrix
0 -1 0

= Left side is called the clip coordinates
= Major flaw: Py is singular, don't know what is in the front or back (losing
information)

y 1 0 0\/y
o inpractice, weuse{ 1 |=]10 0 1]z
-z 0 -1 0o/\1

—y/z
= Then divide by —z, we have —}1}§z , 1/z is more useful than having —1 (depth
1
like)
o Actually, Lis——
z depth

Projective Transformations

CPSC314 Page 10

plae

~y/z
e Using the mapping | —1/z |, everythingin the near plane is mapped into z = %and everything
1
in the far plane is mapped into z =]lc
o It maps the view frustum into a box
2 View
i A.-UY

«f st Um-, //--/'

B Qtﬂr

7 (
Vil goimg S _’jﬁx}_“ | 1
© ZJ»'\/\[;J'F {: ///, e%
/ NALGA P’M / 9/_2_
H CI) | g T
Ffﬁ/v\ﬂ go @ r(

¢ We want to scale and translator the mapped box into a normalized box (i.e. centered at (0,0,0)
with side length = 1)
o This is called the normalized device coordinates (NDC)
* Projection preserves co-linearity and co-planarity of points

Normalized device coordinates to window coordinates and depth
e Map the (x, y) coordinates to the window

N Ao ¢ /ﬂ

Zeee
o EERTOA | e ?
T e el

— |

e Rasterizer produces vertices in the NDC, we then map the vertices to the window coordinates
o In window coordinate, (0,0) actually is a region [—0.5,0.5] X [—0.5,0.5](bottom left
corner)
o Need a transform that maps the lower left corner to [—0.5,0.5] and the upper right
cornerto [W — 0.5,H — 0.5]
o Transformation is done by the viewport matrix

W, g Wt
Xw 2 2\ /Xy
w0 5 0 = |(m
Zy 1 1 |\%n

000 1

= Problem: too close, the object will blow up, lose precision when far away
¢ Depth values stored in a depth buffer/access

Depth
e Visibility

CPSC314 Page 11

o Opaque objects block light and we need to model this computationally
o Can store everything hit along a ray and then compute the asset
= Make sense in ray tracing (one pixel per ray)
= Butin GLSL, we are using fragment shading
e Z-buffer (depth buffer)
o Triangles are drawn in any order
o Each pixel in frame buffer stores depth value of closest geometry observed so far
o When a new triangle tries to set the color of a pixel, we first compare its depth to the
value stored in the z-buffer

. e . . 1
= Depth comparison, if z, is the coordinate in eye frame, we compare z,, = ——
e n Ze

o If observed is closer, replace the value in the buffer
o Done per-pixel, no cycle problem
o There are optimizations, where z-testing is done before the fragment shading is done
e Other uses of visibility
O Generate shadows
o Speed up the rendering process
= |f we know that some object is occluded from the camera, then we don't have to
render the object in the first place

CPSC314 Page 12

Rendering

February 12, 2021 10:11 AM

Modeling material appearance
¢ Rich variety of materials, characterized by surface reflectance and scattering

Shading and shadow
¢ They are variation of color/appearance over the surface
¢ Shadow: appearance due to occlusion from another object on a different part of the same
object
¢ For shading, several options:
o Gouraud shading: compute shading at a vertex to determine vertex color, then
interpolate the color to fragments
o Phong shading: interpolate the normal to the fragments, and do the shading per
fragment
= Current state of the art

Reflection models
¢ Global illumination: light could arrive from all direction

o e
Y ok WL

N
. L/

b“v‘ (If“;yd’ﬁ

e

o May also have subsurface scattering
e Simplify light as arriving from a distant light source, approximated as rays
by v

|
N oA &l F,
e R

Light blob from PVC plastic

e Plastic will appear brightest when observed in the directions clustered about the bounce
direction of the light

AR IR A VARV | U: ue llullt.

B()

= Left side is called diffuse lobe, right side is called specular lobe
e Bidirectional Reflectance Distribution Function (BRDF)
o Models need BRDF as two lobes
o Diffuse: lambertion

= Light reflected is the same for all view vectors v, I; =kl - n
—‘7
N

n >

£

CPSC314 Page 13

o Specular

Phong shading:
e Ambient
o A constant color value
o A crude hack to capture
o Global illumination
¢ Diffuse:
o Follows Lambert's law of perfectly rough surface
o Light reflected is the same for all view vectors v, I; = kgl - n
e Specular = shiny
o Capture highlights

=y
;32 AM n

A B
f.

-

o B is the bound vector/perfect mirror like direction
= |tis a simple ellipsoidal approximation to the specular lobe observed in real
materials
* Intensity Iy = ks (B - v)°?
" B=—l+2(-n)n
= ¢ is the shinniness (specular exponent)

Blinn-Phong shading:
v -

—2 Xt\ |

—
7
% AL

e histhe halfway vector, use h - n instead of B - v

Normal

0 1
o Although it transforms the tangent vector well

e Definenasn- t=0=n"tincoordinates
o Ift, = Tt (T is the transformation matrix), t = T~1t,, want n, to satisfy n7t, = 0
o This give n Tt = 0 which means nlT =TTn, =n

o Son, = (TT)_ln, where (TT)_1 = (A_T 0)

0 1
o Normal matrix do the work

e |fthe transformis T = (A O), it does not correctly transform the normal

Heidrich-Seidel model
e Surface with thin fiber on groove like feature
¢ The microgeometry of a fiber has a lot of potential normal
o Pick n' to be the projection of [perpendicular to t (tangent vector)
s n'=1—-(-t)t.

Basic Toon Shading
e Small palette of colors

CPSC314 Page 14

O‘J’ l-j_
To
Co/(]/\

LN

g—.ﬁ/t.,}.-l

k/F(od')
)

¢ Draw silhouette edges (n-v = 0

Gooch shading
e Darker areas more visible
o Diffuse=dot(light, normal)
e Calculate cool and warm Gooch colors
0 kioor = €00l o10r + alpha*k,.
° kyarm = warmeqor + beta*k,.
e Calculate the final color (mixing/blending the cool and warm colors)

CPSC314 Page 15

Texturing

March 5, 2021 9:59 AM

Normal mapping
e R, G, Bvalues from a texture are interpreted as the three coordinates of the normal at the
point
e Can be used as part of some material simulation

Environment cube maps
¢ Used to model the environment in the distance around the object being rendered
e Use 6 square textures representing the faces of a large cube surrounding the scene

Projector texture mapping
e Glue texture onto triangles using a projector model instead of the affine gluing model
¢ Simulate a slide projector illuminating some triangles in space

Shadow mapping
e First create and store a z-buffered image from the point of view of the light
e Compare what we see in our view to what the light see in its view

Texture mapping
e An efficient way to model surface detail using discrete (sampled) data
e Coordinates: parameterization of surfaces
e Images: sampled representations of continuous functions

Texture coordinates:
e Map to a flat parameter space p = f(t)

o pisin3D
o Can use linear functionp = ft
a
. b longitude)
= Can think =
anthint ¢ f(latitude
1

e More generally:
o Sample at a few points
o Linearly interpolate between the samples (rasterization)
o We can also interpolate texture coordinates
= |f we know the texture coordinates of each vertex, we will know the texture
coordinates of each fragment
= Look up the color, normal, etc. of the fragment in the texture image

Steps for texture mapping

e Create a texture object and load texels (texture pixel) into it
Include texture coordinates with the vertices
e Associate a texture sampler with each texture map used in shader
e Retrieve texel (texture pixel) values

To use a small texture image to cover a large object
e Repeat wrapping is useful for tiling a large area with the same small texture

CPSC314 Page 16

Generating texture coordinates
e Can be done in 3D modeling software
¢ In production, coordinates are designed with model
e Projection, environment maps coordinates can be computed in shaders

Cube mapping

Carnina

0 'a) ac A
+ g 4 \C“f‘;-»;uf

- :

|
/

e samplerCube is a special GLSL function that takes a direction vector and returns the color
stored at this direction in the cube texture map

Shadow mapping
e First pass: create shadow map, a z-buffer image from the point of view of the light
e Second pass: check if fragment is visible to the light using shadow map

Multi sampling: once per final resolution pixel
Super sampling: per original pixel

Coverage
e Rapid changes in color du to
o Texture
= Pre-filtered textures, mip mapping
o Shading
= Generally changes slowly, except at edges of triangles
o Depth discontinuities
= Check if discontinuity passes through pixel
e Super sampling deals with all at once, but at great cost
¢ Maybe efficient to handle each one separately
e Estimate partial coverage of pixel by triangle fragment
e Fraction of pixel covered is called alpha
e Coverage function
o C =1 atany point where the image is occupied
o C = 0 whereitis not

Compositing
¢ Happens after rendering
¢ Generalize idea of anti-aliasing to representing the coverage of each pixel by an object
e Essential for multi-pass rendering, requiring combination of images
¢ Simple image compositing

CPSC314 Page 17

o Given two discrete images, a foreground I, and a background 19
o Use foreground pixel if defined, otherwise use back ground pixel
o May lead to large aliasing
e Alpha blending
o Over operation (pre multiplied alpha)
= Composite image color I¢ = I/ +[°(1 — af).
= The amount of observed background color at a pixel is proportional to the
transparency of the foreground layer at that pixel
= Composite alpha a® = a/ + a?(1 — a/).
= Note: the operation is associative but not commutative
= [%over (I? over I°) = (I* over I?) over I¢.
= [%over I’ # I? over I
o Non pre multiplied alpha
= Composite image color I¢ = a/ I/ + 1°(1 — a”).
= The amount of observed background color at a pixel is proportional to the
transparency of the foreground layer at that pixel
* Composite alpha a¢ = af + ab(l - af).

Reconstruction
e Given a discrete image, create a continuous image (get a texture colors that fall in between
texture pixels)
e Constant interpolation: sample a pixel and hold until we get the next pixel
e Can also use linear or higher order interpolation
e |n 2D, use bilinear interpolation
o Interpolate in x, then interpolate in y (though horizontal/vertical ordering does not
matter)
o Atinteger coordinates, we have continuous=discrete, in between, blended continuously
o Each texel influences a 2-by-2 region

Mip mapping
e Starts with an original texture and then creates a series of lower and lower resolution texture
e Each successive texture is twice as blurry
e Trilinear interpolation: uses 8 pixels to blend

Interpolation
e Sampling (continuous to discrete) and reconstruction (discrete to continuous) bridges
continuous and discrete functions
e Examples
Fonts
Car bodies
Meshes
Audio
o Computer animation using keyframes
e Linear interpolation: straight lines between points
o C(t) = Cy(1 —1t) + Cyt, separate the data from the model, easy to generalize to higher
dimension
e Polynomial interpolation
o A degree n polynomial can pass through n + 1 points
o Will have twisting between linear points
e Splines: piece-wise polynomials of low degree
o Usually degree 2 or 3
o Key is to match derivatives at the joints
¢ Blending functions
o Linear: Ziyc;b;(t), where by(t) = 1 —t, b (t) = t.
o Quadratic: Z2 ,c;b;(t), where by = (1 — t)?, by = 2t(1 — t), b, = t2.
= We can checkthat by + b; + b, =1

O O O O

CPSC314 Page 18

o Bernstein polynomials
= Degree0:by =1
= Degreel:bg=1—t,b; =t
» Degree2: by = (1 —t)?, b, = 2t(1 —t), b, = t2.
* Degreen:b;,n = (711) ti(1 —)t
= ¥b; = 1.

CPSC314 Page 19

Lighting

April 21, 2021 5:33 PM

Lighting equation is evaluated
e For surface reflection (specular)
e Subsurface reflection (diffuse)
o Dielectrics only
e Possibly other surface interfaces like clear-coats

Incoming radiance accounts for
e Local lights
e Indirect light bounced from surfaces

Local illumination
e Lighting calculation done without knowledge of objects in the scene (does not depend on the
geometry of the scene)
e Assumes only computing lighting from light sources
o Light sources
o Environment maps
o Irradiance environment mapping

Global illumination
e Lighting techniques taking into account objects and geometry within the scene

Light probes
e Storage method
¢ A cloud of points with lighting data is stored within the scene
o When sampling, neighboring points are interpolated between
e Often used with irradiance maps to render diffuse global illumination
e Points may be a regular mesh or an irregular cloud of points connected to form a
tetrahedralization (P11)

Ambient occlusion
¢ Not all areas on a mesh can obtain a full hemisphere of incoming light
e Simulate the darkening in areas of occlusion
e HBAO
o For each pixel, compute the normal from depth info, determine the view angle
o For pixels in the hemisphere facing towards the view direction, sample depth to
determine if light rays would be occluded (Monte Carlo)

Shadows
e Achieved for free if using ray tracing
e One of the most costly passes in a traditional rendering pipeline
o Re-render the entire scene multiple times
o Render objects not visible on screen, because they can cast shadows
o Tests visibility and culling within engine
e Hard, soft shadows, contact hardening
o Light sources are not usually punctual
= Light comes from multiple slightly different angles from the same light
= Causes shadows to be slightly blurred the further you are from a light source
= Contact hardening
o Traditional punctual lights cause hard shadows
= With extra cost, effects can be added to generate soft/contact hardening shadows
e Shadow maps

CPSC314 Page 20

o Depth image of the scene from the view of the light
o If camera depth (in light space) is greater than the shadow map, the light does not
contribute
e Shadow atlases
o When computing final lighting of the scene all shadow maps are needed
o Store all shadow maps in a small number textures or atlases
o Render to a portion of the atlases can be achieved by modifying the viewport

Transparency
¢ Global illumination technique (requires knowledge of other objects in the scene)
e |n practice, it requires a forward lighting pass of transparent objects ordered by depth after
opaque pass

Reflection
¢ Implemented with a cube map
e Ray-tracing
o Single bounce path tracing can give a good reflection when paired with temporal anti-
aliasing

Clustered lighting
e Pre-computed pass to gather a list of relevant lights for each cluster
o Limit each cluster to a finite number of lights
o Cache lights to a cluster cell texture
e At lighting time, lookup the cluster for the cluster the rendered point is inside
e Common optimization for forward lighting, but can also be applied to deferred lighting

CPSC314 Page 21

	Introduction
	Geometry
	Frames
	Scene graphs
	Animation
	Cameras and projections
	Rendering
	Texturing
	Lighting

