
Graphics pipeline
OpenGL/WebGL:

A software interface that allows a programmer to communicate with the graphics hardware•
A programming interface for rendering 2D and 3D graphics•
A cross-language multi-platform API for computer graphics•

OpenGL (Open Graphics Library):
Open industry-standard API for hardware accelerated graphics drawing•
Implemented by graphics-card vendors•

OpenGL ES: embedded systems version of OpenGL with reduced functions

WebGL makes OpenGL accessible from JavaScript, same underlying graphics architecture
WebGL 1.0 is based on OpenGL ES 2.0, now supported in almost all browsers•
WebGL 2.0 is based on OpenGL ES 3.0•

OpenGL pipeline
Shapes are discretized into primitives (triangles, line segments formed by vertices)•
Vertex Shader

Vertices stored in a vertex buffer○

When a draw call is issued, each of the vertices passes through the vertex shader○

On input to the vertex shader, each vertex has associated attributes○

On output, each vertex has a value for gl_Position and for its varying variables○

•

Rasterization
Data in gl_Position are used to place the three vertices of the triangle on a virtual screen○

The rasterizer figures out which pixels are inside the triangle and (linearly) interpolates
the varying variables from the vertices to each of these pixels

○

It always pick 3 vertices○

•

Fragment shader
Each pixel is passed through the fragment shader, computes the final color of the pixel○

The pixel is then placed in the framebuffer for display○

By changing the fragment shader, we can simulate light reflecting off of different kinds
of materials

○

•

Three.js
High level library that can use WebGL•
Implements scene and mesh abstractions•
Mesh = geometry + material properties•
Scene contains a hierarchy of mesh objects•
Render a scene using a camera•

Introduction
January 11, 2021 8:49 AM

 CPSC314 Page 1

Points and vectors
Point: a real object position in space

Origin○

•

Vector: an algebraic object in space that is associated with operations•

Basis and coordinates
Basis: an independent set of vectors that can produce any vectors in the space by linear
combination

○

The size of the basis is the same as the dimension of the space○

•

Coordinates of a vector in a basis :
If , where are scalars and are vectors○

we can represent

 by an array of numbers (column matrix)

If we pick different basis, is the same, but the coordinates will change○

Notation:

 (column vector), (row vector)

i.e. We can write the basis as ▪

Then

 as a product of matrices▪

○

•

Linear () transformations and affine spaces
Change of basis, matrix representation

○

Given , want to find (Note: is always the same)

We can write in terms of basis by

 , where

 is the

coordinates of with respect to

Similar for , so we have

Let

Then

So

•

Representing points in affine spaces•

Geometry
January 18, 2021 9:46 AM

 CPSC314 Page 2

We can add a vector to a point to produce a new point ○

1 indicates origin

If it is 0, it represents the vector in the frame (

)□

▪

 is called the (coordinate) frame▪

In 3D space, we thus have vector 4○

We call these coordinates with one extra number "homogeneous" coordinates, since we
can represent both points and vectors in the same way

○

 CPSC314 Page 3

Notations:

ours Textbook

Points

Vectors

Column matrix

Row matrix

Basis

Matrices

or

Coordinate frame

 •

Homogenous transformation matrices
Model and view transformation•

Want to convert a point in frame b to a,
the point on the ball is the same in any frame, only coordinates are different

Since

We have

Here

is the model matrix

If we are transforming the world position to camera position, we apply the view matrix

Frames
World frame

Scene/stage○

•

Model/object frame

Object3D class in Three.js○

•

Camera/eye frame

○

 is in the opposite direction of the line of sight
We look at the scene along ▪

○

 is pointing towards us (out of page)○

•

Frame transformation matrices (homogenous transformation matrices)

Frames
January 22, 2021 10:05 AM

 CPSC314 Page 4

Frame transformation matrices (homogenous transformation matrices)
Model matrix

Model to world frame○

Last column is the coordinate of the model's origin in world frame▪

○

•

View matrix (Camera matrix)
World frame to camera frame○

For VR, we will have two cameras and two view matrices○

▪

The last column is always the world coordinate of the origin of the camera ▪

If we have a point we want to look at from (camera matrix), we can use
normalize() for its value

▪

○

Look at matrix in Three.js ○

•

If
 •
Where shows how we get by and •

 shows how we get by and •

 shows how we get (origin of frame) by translating (origin of frame)•
•

 CPSC314 Page 5

Suppose we have a model defined in the world frame () and

Given a point in world frame and we want to apply a transformation
 rotates about the world origin•
If we want to rotate about a, we need to:

Convert coordinates to

 ▪

○

Apply transform in

 ▪

○

Convert back to

 ▪

○

This gives the final position
 ○

•

 is the rotation transform
Similarity transformation○

•

To transform a point in a structure, we need to apply transform matrix layer by layer to get its
position in the world
A scene graph is a data structure containing hierarchical transformations

The world position of is •
In Three.js

Child to parent ○

Child to world ○

•

Animations meshes create a skeleton scene graph
Bone is object 3D○

•

Interpreting chains of transformation
From right to left: transformation of coordinates from one frame to another

○

•

From left to right: moving points in a frame•

Scene graphs
February 1, 2021 9:58 AM

 CPSC314 Page 6

○

Types of transformations

Translation:

 •

Rotation:

 where is a orthogonal matrix

Let , then , isometry○

 , (R is an orthogonal matrix)○

If , then , , are orthonormal vector○

Always has ○

Can construct any rotation as the product of the three matrices

Rotation about the z-axis:

 ▪

Rotation about the x-axis (the 4th row and column are 0001):

▪

Rotation about the y-axis:

 ▪

3 angles are sufficient to represent any rotation▪

○

s○

•

Scaling:

 •

Reflection:

If is some other full rotation matrix, is also orthogonal○

Determinant is -1○

•

If calculating from left to right, we are manipulating the coordinate
E.g. , where is translation, flips the coordinates, and is rotation○

We first translate the coordinate by , then flips the coordinate by , and rotate by ,
all vertices changes accordingly

•

Aliasing
Scene made up of black and white triangles, and jaggles around the edges•
Problem: too much information in one pixel•

 CPSC314 Page 7

Over-sampling

Multi-sampling
Render to a high resolution color and z-buffer•
During the rasterization of each triangle, coverage and z-values are computed at this sample
level

•

For efficiency, the fragment shader is only called only once per final resolution pixel•
Once rasterization is complete, groups of these high resolution samples are averaged together•

 CPSC314 Page 8

Modeling: mesh in rest pose/bind pose
Skeleton(bone): rig, armature
Binding: bind skeleton onto the skin

Determine which part of the skin/mesh bonds to/moves with the bone•
rigid binding: divide mesh into portions and bind•

Geometric skinning
Rigid skinning: large extorsion around the binding point•
Smooth skinning: add weights to the skinning•
Skinning designate the deformation algorithm: how the mesh/skin is linked to the skeleton(rig)•

Rigging: FK vs IK
Forward Kinematic (FK): specify transformation matrix at every joint•
Inverse Kinematic (IK): position a handle at some point, the system computes transformation
at other joints

•

Key framing: using timeline, set key frame at different points of time.

Animation
February 8, 2021 10:09 AM

 CPSC314 Page 9

For a graphic camera:

•

Focus is at the camera position•
Screen is at camera local space: •
The perspective shortening can be achieved using similar triangles•

In homogeneous coordinates

The point is projected to

 , so that we have

This is not a linear combination of and , thus, we have to use homogeneous
coordinates

○

•

Assume that if are homogeneous coordinates of a point, is equivalent to
 ○

Can always recover the canonical form by dividing by the last entry○

So

 ○

•

So the projection can be written as

 is the projection matrix▪

Left side is called the clip coordinates▪

Major flaw: is singular, don't know what is in the front or back (losing
information)

▪

○

in practice, we use

Then divide by , we have

 , is more useful than having (depth

like)

Actually,

 is

 □

▪

○

•

Projective Transformations

Cameras and projections
February 10, 2021 10:21 AM

 CPSC314 Page 10

•

Using the mapping

 , everything in the near plane is mapped into

 and everything

in the far plane is mapped into

 .

It maps the view frustum into a box○

○

•

We want to scale and translator the mapped box into a normalized box (i.e. centered at (0,0,0)
with side length = 1)

This is called the normalized device coordinates (NDC)○

•

Projection preserves co-linearity and co-planarity of points•

Normalized device coordinates to window coordinates and depth
Map the coordinates to the window•

•

Rasterizer produces vertices in the NDC, we then map the vertices to the window coordinates
In window coordinate, actually is a region (bottom left
corner)

○

Need a transform that maps the lower left corner to and the upper right
corner to

○

Transformation is done by the viewport matrix

 .▪

Problem: too close, the object will blow up, lose precision when far away▪

○

•

Depth values stored in a depth buffer/access•

Depth
Visibility

Opaque objects block light and we need to model this computationally
•

 CPSC314 Page 11

Opaque objects block light and we need to model this computationally○

Can store everything hit along a ray and then compute the asset
Make sense in ray tracing (one pixel per ray)▪

But in GLSL, we are using fragment shading▪

○

Z-buffer (depth buffer)
Triangles are drawn in any order○

Each pixel in frame buffer stores depth value of closest geometry observed so far○

When a new triangle tries to set the color of a pixel, we first compare its depth to the
value stored in the z-buffer

Depth comparison, if is the coordinate in eye frame, we compare

 ▪

○

If observed is closer, replace the value in the buffer○

Done per-pixel, no cycle problem○

There are optimizations, where z-testing is done before the fragment shading is done○

•

Other uses of visibility
Generate shadows○

Speed up the rendering process
If we know that some object is occluded from the camera, then we don't have to
render the object in the first place

▪

○

•

 CPSC314 Page 12

Modeling material appearance
Rich variety of materials, characterized by surface reflectance and scattering•

Shading and shadow
They are variation of color/appearance over the surface•
Shadow: appearance due to occlusion from another object on a different part of the same
object

•

For shading, several options:
Gouraud shading: compute shading at a vertex to determine vertex color, then
interpolate the color to fragments

○

Phong shading: interpolate the normal to the fragments, and do the shading per
fragment

Current state of the art▪

○

•

Reflection models
Global illumination: light could arrive from all direction

○

May also have subsurface scattering○

•

Simplify light as arriving from a distant light source, approximated as rays

○

•

Light blob from PVC plastic
Plastic will appear brightest when observed in the directions clustered about the bounce
direction of the light

Left side is called diffuse lobe, right side is called specular lobe▪

○

•

Bidirectional Reflectance Distribution Function (BRDF)
Models need BRDF as two lobes○

Diffuse: lambertion
Light reflected is the same for all view vectors , ▪

▪

○

Specular

•

Rendering
February 12, 2021 10:11 AM

 CPSC314 Page 13

Specular○

Phong shading:
Ambient

A constant color value○

A crude hack to capture○

Global illumination○

•

Diffuse:
Follows Lambert's law of perfectly rough surface○

Light reflected is the same for all view vectors , ○

•

Specular = shiny
Capture highlights○

•

 is the bound vector/perfect mirror like direction
It is a simple ellipsoidal approximation to the specular lobe observed in real
materials

▪

Intensity

▪

 ▪

 is the shinniness (specular exponent)▪

○

•

Blinn-Phong shading:

•

 is the halfway vector, use instead of •

Normal

If the transform is

 , it does not correctly transform the normal

Although it transforms the tangent vector well○

•

Define as in coordinates
If (is the transformation matrix), , want to satisfy

 ○

This give
 which means

 ○

So

 , where

 ○

Normal matrix do the work○

•

Heidrich-Seidel model
Surface with thin fiber on groove like feature•
The microgeometry of a fiber has a lot of potential normal

Pick to be the projection of perpendicular to (tangent vector)
 .▪

○

•

Basic Toon Shading
Small palette of colors•

 CPSC314 Page 14

○

Draw silhouette edges ()•

Gooch shading
Darker areas more visible•
Diffuse=dot(light, normal)•
Calculate cool and warm Gooch colors

 .○

 .○

•

Calculate the final color (mixing/blending the cool and warm colors)•

 CPSC314 Page 15

Normal mapping
R, G, B values from a texture are interpreted as the three coordinates of the normal at the
point

•

Can be used as part of some material simulation•

Environment cube maps
Used to model the environment in the distance around the object being rendered•
Use 6 square textures representing the faces of a large cube surrounding the scene•

Projector texture mapping
Glue texture onto triangles using a projector model instead of the affine gluing model•
Simulate a slide projector illuminating some triangles in space•

Shadow mapping
First create and store a z-buffered image from the point of view of the light•
Compare what we see in our view to what the light see in its view•

Texture mapping
An efficient way to model surface detail using discrete (sampled) data•
Coordinates: parameterization of surfaces•
Images: sampled representations of continuous functions•

Texture coordinates:
Map to a flat parameter space

 is in 3D○

Can use linear function

Can think

 ▪

○

•

More generally:
Sample at a few points○

Linearly interpolate between the samples (rasterization)○

We can also interpolate texture coordinates
If we know the texture coordinates of each vertex, we will know the texture
coordinates of each fragment

▪

Look up the color, normal, etc. of the fragment in the texture image▪

○

•

Steps for texture mapping
Create a texture object and load texels (texture pixel) into it•
Include texture coordinates with the vertices•
Associate a texture sampler with each texture map used in shader•
Retrieve texel (texture pixel) values•

To use a small texture image to cover a large object
Repeat wrapping is useful for tiling a large area with the same small texture•

Texturing
March 5, 2021 9:59 AM

 CPSC314 Page 16

•

Generating texture coordinates
Can be done in 3D modeling software•
In production, coordinates are designed with model•
Projection, environment maps coordinates can be computed in shaders•

Cube mapping

•

samplerCube is a special GLSL function that takes a direction vector and returns the color
stored at this direction in the cube texture map

•

Shadow mapping
First pass: create shadow map, a z-buffer image from the point of view of the light•
Second pass: check if fragment is visible to the light using shadow map•

Multi sampling: once per final resolution pixel
Super sampling: per original pixel

Coverage
Rapid changes in color du to

Texture
Pre-filtered textures, mip mapping▪

○

Shading
Generally changes slowly, except at edges of triangles▪

○

Depth discontinuities

Check if discontinuity passes through pixel▪

○

•

Super sampling deals with all at once, but at great cost•
Maybe efficient to handle each one separately•
Estimate partial coverage of pixel by triangle fragment•
Fraction of pixel covered is called alpha•
Coverage function

 at any point where the image is occupied○

 where it is not○

•

Compositing
Happens after rendering•
Generalize idea of anti-aliasing to representing the coverage of each pixel by an object•
Essential for multi-pass rendering, requiring combination of images•
Simple image compositing

Given two discrete images, a foreground , and a background
•

 CPSC314 Page 17

Given two discrete images, a foreground , and a background ○

Use foreground pixel if defined, otherwise use back ground pixel○

May lead to large aliasing○

Alpha blending
Over operation (pre multiplied alpha)

Composite image color .
The amount of observed background color at a pixel is proportional to the
transparency of the foreground layer at that pixel

▪

▪

Composite alpha .▪

Note: the operation is associative but not commutative

 .▪

 .▪

▪

○

Non pre multiplied alpha

Composite image color .
The amount of observed background color at a pixel is proportional to the
transparency of the foreground layer at that pixel

▪

▪

Composite alpha .▪

○

•

Reconstruction
Given a discrete image, create a continuous image (get a texture colors that fall in between
texture pixels)

•

Constant interpolation: sample a pixel and hold until we get the next pixel•
Can also use linear or higher order interpolation•
In 2D, use bilinear interpolation

Interpolate in x, then interpolate in y (though horizontal/vertical ordering does not
matter)

○

At integer coordinates, we have continuous=discrete, in between, blended continuously○

Each texel influences a 2-by-2 region○

•

Mip mapping
Starts with an original texture and then creates a series of lower and lower resolution texture•
Each successive texture is twice as blurry•
Trilinear interpolation: uses 8 pixels to blend•

Interpolation
Sampling (continuous to discrete) and reconstruction (discrete to continuous) bridges
continuous and discrete functions

•

Examples
Fonts○

Car bodies○

Meshes○

Audio○

Computer animation using keyframes○

•

Linear interpolation: straight lines between points
 , separate the data from the model, easy to generalize to higher
dimension

○

•

Polynomial interpolation
A degree polynomial can pass through points○

Will have twisting between linear points○

•

Splines: piece-wise polynomials of low degree
Usually degree 2 or 3○

Key is to match derivatives at the joints○

•

Blending functions

Linear:
 , where .○

Quadratic:
 , where

 , ,
 .

We can check that ▪

○

Bernstein polynomials

•

 CPSC314 Page 18

Bernstein polynomials
Degree 0: ▪

Degree 1: ▪

Degree 2:
 , ,

 .▪

Degree :

 ▪

 .▪

○

 CPSC314 Page 19

Lighting equation is evaluated
For surface reflection (specular)•
Subsurface reflection (diffuse)

Dielectrics only○

•

Possibly other surface interfaces like clear-coats•

Incoming radiance accounts for
Local lights•
Indirect light bounced from surfaces•

Local illumination
Lighting calculation done without knowledge of objects in the scene (does not depend on the
geometry of the scene)

•

Assumes only computing lighting from light sources
Light sources○

Environment maps○

Irradiance environment mapping○

•

Global illumination
Lighting techniques taking into account objects and geometry within the scene•

Light probes
Storage method•
A cloud of points with lighting data is stored within the scene

When sampling, neighboring points are interpolated between○

•

Often used with irradiance maps to render diffuse global illumination•
Points may be a regular mesh or an irregular cloud of points connected to form a
tetrahedralization (P11)

•

Ambient occlusion
Not all areas on a mesh can obtain a full hemisphere of incoming light•
Simulate the darkening in areas of occlusion•
HBAO

For each pixel, compute the normal from depth info, determine the view angle○

For pixels in the hemisphere facing towards the view direction, sample depth to
determine if light rays would be occluded (Monte Carlo)

○

•

Shadows
Achieved for free if using ray tracing•
One of the most costly passes in a traditional rendering pipeline

Re-render the entire scene multiple times○

Render objects not visible on screen, because they can cast shadows○

Tests visibility and culling within engine○

•

Hard, soft shadows, contact hardening
Light sources are not usually punctual

Light comes from multiple slightly different angles from the same light▪

Causes shadows to be slightly blurred the further you are from a light source▪

Contact hardening▪

○

Traditional punctual lights cause hard shadows
With extra cost, effects can be added to generate soft/contact hardening shadows▪

○

•

Shadow maps
Depth image of the scene from the view of the light

•

Lighting
April 21, 2021 5:33 PM

 CPSC314 Page 20

Depth image of the scene from the view of the light○

If camera depth (in light space) is greater than the shadow map, the light does not
contribute

○

Shadow atlases
When computing final lighting of the scene all shadow maps are needed○

Store all shadow maps in a small number textures or atlases○

Render to a portion of the atlases can be achieved by modifying the viewport○

•

Transparency
Global illumination technique (requires knowledge of other objects in the scene)•
In practice, it requires a forward lighting pass of transparent objects ordered by depth after
opaque pass

•

Reflection
Implemented with a cube map•
Ray-tracing

Single bounce path tracing can give a good reflection when paired with temporal anti-
aliasing

○

•

Clustered lighting
Pre-computed pass to gather a list of relevant lights for each cluster

Limit each cluster to a finite number of lights○

Cache lights to a cluster cell texture○

•

At lighting time, lookup the cluster for the cluster the rendered point is inside•
Common optimization for forward lighting, but can also be applied to deferred lighting•

 CPSC314 Page 21

	Introduction
	Geometry
	Frames
	Scene graphs
	Animation
	Cameras and projections
	Rendering
	Texturing
	Lighting

