
Computer vision: enables computers to process and interpret visual data
Image/video•
Sensing device•
Interpreting device (interpretation)•

CV problems
Computing properties of the 3D world from visual data (measurement)

Ill-posed○

Impossible to invert the image formation process○

•

Algorithms and representations to allow a machine to recognize objects, people, scenes and 
activities (perception and interpretation)

Computationally intensive/expensive○

Do not fully understand the processing mechanisms involved○

•

Algorithms to mine, search, and interact with visual data (search and organization)
Scale is enormous, explosion of visual content○

•

Algorithms for manipulation or creation of image or video content (visual imagination)•

Challenges: lighting, scale, deformation, occlusions, background clutter, local ambiguity and context, 
motion, object inter-class variation

Current techs
Optical character recognition (OCR): convert scanned documents to text•
Face detection•
Smile detection•
Face recognition•
Vision for biometrics•
Object recognition•
3D urban modeling and virtual tourism•
Visual special effects (VFX): shape and motion capture•
Sport vision•
Automotive safety and smart cars•
Interactive games•
Vision for robotics, space exploration

Panorama stitching○

3D terrain modeling○

Obstacle detection, position tracking○

•

Medical imaging•
Captioning and visual question answering•

Introduction
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Graphics takes a model and turn it into images
Vision does the inverse: analysis and synthesis

Image formation: process that produces a particular image depends on
Lighting conditions•
Scene geometry•
Surface properties

Textures○

Reflection: 
Depends on the viewing and illumination (light) direction▪

BRDF: Bidirectional Reflection Distribution Function▪

Lambertian surface:      
  

 
  , where   is constant called albedo.

A surface that looks the same from any direction (points are the same 
brightness)

□

▪

Mirror surface: all incident light reflected in one direction▪

○

•

Camera optics
Pinhole camera:

A box with a small hole (aperture) in it▪

Each scene point contributes to only one sensor pixel▪

Image is upside down▪

Changing the focal length changes the size of the resulting image□

▪

○

•

Sensor properties
Captures the amount of light reflected from the object○

Bare-sensor imaging:
All scene points contribute to all sensor pixels▪

○

•

Perspective effects
Far objects appear smaller

Size is inversely proportional to distance○

•

Parallel lines meet at a point (vanishing point)
Each set of parallel lines meets at a different point○

Sets of parallel lines on the same plane lead to collinear vanishing points (horizon for the 
plane)

Vanishing points must be on the same horizon line▪

○

Can have multiple point perspective○

•

Good way to spot fake images
Scale and perspective do not work○

Vanishing points behave badly○

•

Image formation
2021年9月10日 12:59
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Properties of projection
Points project to points•
Lines project to lines•
Planes project to the whole or half image•
Angles are not preserved•
Incidences (intersections) are preserved•
Degeneration

Line though focal point projects to a point○

Plane through focal point projects to a line○

•

Perspective projection

A 3D object point    
 
 
 
 projects to 2D image point     

  
  

 

      

 
 .○

      

 
 .○

This assumes world coordinate frame at the optical center (pinhole) and aligned with the 
image plane, image coordinate frame aligned with the camera coordinate frame

○

•

Camera matrix

   
  

     

   
    

    

   .

If pixels are squared/lens is perfectly symmetric, then   
    

 .▪

If sensor and pinhole perfectly aligned, then      .▪

If coordinate system centered at the pinhole, then      .▪

○

   

 
 
 
 

 .○

    
  
  
 

    .○

•

Camera calibration is the process of estimating parameters of the camera matrix based on set 
of 3D-2D correspondences

Usually requires a pattern whose structure and size is known○

•

Weak perspective

   
 
 
 
 in a plane at     projected to     

  
   where            ,   

  

  
  .•

Orthographic projection
    ,     .•

Projection pros and cons
Weak perspective

Accurate when object is small and/or distant○

Useful for recognition○

Simpler math○

•

Perspective 
Accurate for real scenes○

•

When maximum accuracy is required, it is necessary to model additional details of a particular 
camera

Use perspective projection with additional parameters○

•

Snell's law
               .•
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               .•
Light rays in particular homogeneous medium travel in straight lines•
At the interface between medium, they either reflect or refract•

Lens:
Capture more light while preserving the abstraction of an ideal pinhole camera•
Pinhole model with lens

Lights bends twice at both interfaces of the lens○

○

•

Thin lens: a lens is considered thin if its thickness ( ) is much less than the radii of curvature of 
its surfaces (  and   )

Can assume that light bends only once at the center of the lens○
 

     
 

 
  

 

 
 .○

○

If   and  are positive, we will have a plus sign.○

  tells where to place the image plane to image objects a specified distance away.○

Solving  is used in auto-focus.○

 is the depth from focus.○

•

Points at different depths
Only certain points will be in complete focus○

Others will result in circle of confusion and ultimately blur○

•

Focal length
The incoming rays, parallel to the optical axis, converge to a single point a distance  
behind the lens.

○

This is where we want to place the image plane○

For thin lens, when    ,     ○

•

Out of focus
The image plane is slightly closer/farther than the focal length○

Creates circle of confusion○

•

Spherical aberration
Rays that strike closer to the edge of the lens will generally focus closer○

Circle of least confusion: the smallest spot created by the lens when imaging a point 
source

○

•

Compound lens system:
Aberrations can be minimized by aligning several simpler lenses○

Can be still modeled by thick lens equation○

•

Vignetting
Some parts of the beam never reaches the second lens○

•

Lens effects
Chromatic aberration

Index of refraction depends on wavelength,  , of light.▪

Light of different colors follows different paths▪

Not all colors can be in equal focus▪

○

•
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Not all colors can be in equal focus▪

Scattering at the lens surface
Some light is reflected at each lens surface▪

○

Other geometric phenomena/distortions
Pincushion distortion▪

Barrel distortion▪

○

Human eye
Iris: like a camera•
Pupil: pinhole/aperture•
Retina: film/digital sensor

Contains light receptors: 
Rods:

Not involved in color vision□
Grey-scale vision only□
Operate at night□
Highly sensitive, can respond to a single photon□
Yield relatively poor spatial detail□
Better motion sensitivity□

▪

Cones:
Color vision□
Operate in bright light□
Less sensitive□
Yield higher resolution□

▪

○

•

Focusing is done by changing shape of lens•
When the eye is properly focused, light from an object outside the eye is imaged on the retina•
Blind spot: where the nerves from the retina exit the eye, collected into the optic nerve, there 
are no receptors

•
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Image as a 2D function
A grey scale image is a 2D function

Domain:                             ○

Range:                 ○

•

Addition (average): 
      

 
     

      

 
     

Note: 
      

 
     

      

 
      

             

 
          .○

This is because of overflow of              .○

Convenient to convert images to doubles when doing processing○

•

Warping: changes domain of image function

Filtering: changes range of image function
Point operation (point processing)

Darken:           ○

Lower contrast: 
      

 
    ○

Non-linear lower contrast:  
      

   
     

   
    ○

Invert:           ○

Lighten:           ○

Raise contrast:         ○

Non-linear raise contrast:  
      

   
     

 
    ○

•

Neighborhood operation (filtering)•

Linear filters
Let       be an    digital image,       be another    digital image (filter or kernel)

 is usually normalized so the sum of the elements is 1.○

•

Let    
 

 
   ,                            

    
 
    .

Each pixel in the output image is a linear combination of the central pixel and its neighboring 
pixels in the original image

○

There are a total of      multiplications○

•

Boundary effects
Ignore the locations: make the computation undefined for the top and bottom  rows and the 
leftmost and rightmost  columns

○

Pad the image with zeros: return zero whenever a value of  is required at some position outside 
the defined limits of  and  .

○

Assume periodicity: the top row wraps around to the bottom row, the leftmost column wraps 
around to the rightmost column

○

Reflect border: copy rows/columns locally by reflecting over the edge○

•

E.g.:

 
   
   
   

 returns the original image.○

 
   
   
   

 returns the image shift left by 1 pixel.○

 

 
  

   
   
   

 blur with a box filter.○

   
   
   

 
 

 

   
   
   

sharpening.

•

Image filter
September 15, 2021 12:48 PM
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 sharpening.○

Correlation

                           
    

 
    .○

•

Convolution

                           
    

 
    .○

Correlation filter rotated by 180.○

If                , then correlation=convolution○

CNN:
Basic operations are convolutions followed by non-linear functions (non-linear filters)▪

○

Superposition:                                   .○

Scaling:                                    ○

Shift invariance: output is local (no dependence on absolute position)○

An operation is linear if it satisfies both superposition and scaling○

Any linear, shift invariant operation can be expressed as convolution○

•

Box filter

 

 
   

   
   
   

 •

Filter has equal positive values that sum up to 1•
Replaces each pixel with the average of itself and its local neighborhood•
It is also referred to as average filter or mean filter•

Smoothing
Smoothing with a box doesn't model lens defocus well•
Smoothing with a box filter depends on direction•
For images in which the center point is 1 and every other point is 0, the output will be a square of the 
same size as the box filter

•

Smoothing with a circular pillbox is a better model for defocus
Defocus: out of focus○

•

Gaussian is a good general smoothing model
For phenomena that are the sum of other small effects○

Whenever the central limit theorem applies○

•

Smoothing with a Gaussian
Weight contributions of pixels by spatial proximity•
2D Gaussian (continuous case)

        
 

             
     

         ,  is the standard deviation.○

•

If  is larger, more blur.•
If  is smaller, less blur.•
To get shadows, we can blur with a Gaussian kernel, then compose the blurred image with the original 
(with some offset)

•

Better Gaussian filter
Sums to 1 (normalized).○

Captures    .○

•

In general, we want the Gaussian filter to capture    .•

Separability
A 2D function of  and  is separable if it can be written as the product of two functions, one a function 
only of  and the other a function only of  . (               )

•

If a 2D filter can be expressed by an outer product of two 1D filters, then it is separable•
It can be implemented as two 1D convolutions

First convolve each row with a 1D filter○

Then convolve each column with a 1D filter

•
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Then convolve each column with a 1D filter○

The 2D Gaussian is the only (non-trivial) 2D function that is both separable and rotationally invariant
A filter is rotationally invariant if we rotate the filter by some angle then the result of the 
convolving the image with the filter does not change

○

•

Gaussian separability:

        
 

             
     

           
 

   
    

 
         

  

         
 

   
    

 
         

  

        .○

Reduces multiplications from      to      .○

•

Smoothing with a pillbox

Let the radius of the filter be  , the 2D pillbox filter is defined as        
 

       
             

           
.

The scaling constant ensures that the area of the filter is one○

•

The 2D pillbox is rotationally invariant but not separable•
Efficient implementation:

As a difference between convolution with a box filter and convolution with the extra corner bits 
filter

○

Postpone scaling the output to a single final step, so that convolution involves filters containing 
only 0 and 1. (no need for multiplication)

○

•

Speeding up the convolution
steps

Let  be the product of two numbers,     .○

Take log:            .○

Then               .○

•

At the expense of two   and one    , multiplication is reduced to addtion.•

Speeding up rotation

Standard approach: use matrix multiplication  
         
        

 .•

Transform to polar coordinates, it becomes addition, at the expense of one polar coordinate transform 
and one inverse polar coordinate transform

•

Similarly, some image processing operations become cheaper in a transform domain•

Convolution theorem:

Let                      (convolution)•

Then                           (element-wise multiplication) where       are Fourier 

transforms

•

At the expense of two Fourier transforms and one inverse Fourier transform, convolution can be 
reduced to complex multiplication

•

Cost of FFT/IFFT for image:          .•

Cost of FFT/IFFT for filter:          •
Cost of convolution:      •

Interpretations of correlation and convolution
Correlation: measures similarity between two signals (filter and image)

Correlation in general is not associative○

•

Convolution: measures the effect one signal has on another signal

Associative:                          ○

Symmetric:                          ○

•

Pre-convolving filters

Convolving two filters of size    and    results in a filter of size      
 

 
    

 

The sequence does not matter○

•

For a set of  filters of size      , the resulting filter will have size        
  

 
     

    
 
.•

Convolution of two 1D Gaussian filters    
     

 :•
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Convolution of two 1D Gaussian filters    
       

   :

   
       

     
   

    
 

         .○

Special case: convolving twice is    
   
    .○

•

Non-linear filters
Median filter: take the median value of the pixels under the filter size

Effective at reducing certain kinds of noise(impulse/salt and pepper/shot noise)○

The filter forces points with distinct values to be more like their neighbors○

•

Bilateral filter (edge preserving non-linear filter)
Like a Gaussian

The filter weights depend on spatial distance from the center pixel▪

Pixels nearby should have greater influence than pixels far away▪

○

Unlike a Gaussian
The filter weights also depend on range distance from the center pixel▪

Pixels with similar brightness value should have greater influence than pixels with dissimilar 
brightness value

▪

○

The weights of neighbor at a spatial offset      away from the center pixel       is given by a 

product:      
     

   
            

                   
 

   
                 .

The first part is the domain kernel▪

The second part is the range kernel (different for each location in the image)▪

○

Application: flash photography
Non-flash images taken under low light conditions often suffer from excessive noise and 
blur

▪

Flash images
Color is unnatural□
Strong shadows or specularities□

▪

We can combine flash and non-flash images to achieve better exposure and color balance, 
and to reduce noise

▪

Joint/cross bilateral: range kernel is computed using a separate guidance image instead of 
the input image

▪

○

•

ReLU (rectified linear unit)
Set negative values to be 0.○

Keep all positive values ○

•

Given    ,  symmetric convolution kernel. if  is not rotated, it is convolution, otherwise, it is correlation
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Images are a discrete (sampled) representation of a continuous world

Continuous case
Image suggests a 2D surface whose appearance varies from point-to-point •
Appearance can be greyscale (b and w) or color

Greyscale: variation in appearance can be described by a single parameter 
corresponding to the amount of light reaching the image at a give point in a given time

○

•

      is a real-valued function of real spatial variables  and  .

      is bounded,           .○

      is bounded in extent, it has a value over at most a bounded region.○

•

Images can also be considered a function of time         

 is the temporal variable.○

•

To make dependence of brightness on wavelength, we can have a spectral variable ( )

More commonly, we think of color as discrete and write                        for R, 

G, B color channels

○

•

Discrete case
Superimpose grid on continuous image•
Sample the underlying continuous image according to the tessellation or tilling imposed by the 
grid

•

Each grid cell is called a picture element (pixel)•
Denote       .•
Point sampling is useful for theoretical development•
Area-based sampling occurs in practice•
Grey-levels: Divide the range      into a finite number of equivalence classes (quantization)

Suppose  bits-per-pixel are available, we can define         
      

 
           

 

 
  .○

Typically,    gives range of 255. ○

•

Sampling
Some information may be lost•
To reconstruct the original image, we need interpolation•
Case 0:       has a discontinuity not falling precisely at an integer

Cannot reconstruct exactly○

•

Sampling theory
Exact reconstruction requires constraint on the rate at which       can change 
between samples (bandlimited signal)

○

Music is bandlimited if it has some maximum temporal frequency○

An image is bandlimited if it has some maximum spatial frequency○

•

Under sampling (aliasing) 
Signal can be confused with one at lower frequency○

Things are missing. There are artifacts○

•

Fundamental result:
For bandlimited signals, if we sample regularly at or above twice the maximum 
frequency(Nyquist rate), we can reconstruct the original signal exactly

○

•

Over sampling (greater than the Nyquist rate)
Samples are redundant and wasted○

•

Reducing aliasing artifacts
Oversampling: sample more than we need and average○

Smoothing before sampling○

•

Under sampling is unavoidable
Medical imaging: try to maximize information content, tolerate some artifacts

•

Sampling
2021年9月22日 12:53
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Medical imaging: try to maximize information content, tolerate some artifacts○

Computer graphics: try to minimize artifacts, tolerate some information missing○

Color
It is an artifact of human perception

How we subjectively perceive a very small range of the wavelengths○

•

It is not an objective physical property of light (light is characterized by its wavelength)•

Color Filter Arrays (CFA)

•

Design choices
Spectral sensitivity functions     .

Each camera has its unique and secret spectral sensitivity functions▪

○

Spatially arrange (mosaic) different color filters
Generally do not match human sensitivity▪

○

•

RAW Bayer image
Lots of noise○

Mosaic artifacts○

•

Demosicing
Produce full RGB image from mosaiced sensor output○

Interpolate from neighbors

Bilinear (average 4 neighbors)
Neighborhood changes for different channels□

□

▪

Bicubic (more neighbors, may over-blur)▪

Edge-aware▪

○

•

Image Processing Pipeline
It is applied by the camera's image signal processor (ISP) to convert a RAW image into a 
conventional image

•

•

Template matching
Use the pattern as a template to find part of one image that matches another•
Use convolution/correlation as comparing a template with each local image patch

Consider the filter and image patch as vectors○

Applying a filter at an image location can be interpreted as computing the dot product
between the filter and the local image patch

○

•
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between the filter and the local image patch
The dot product may be large because the image region is bright. Need 
normalization

▪

Correlation is a dot product▪

Normalized correlation varies between -1 and 1 (magnitude 1). it attains 1 when 
the filter and image region are identical (up to a scale factor)

▪

Linear filtering the entire image computes the entire set of dot products, one for each possible 
alignment of the filter and the image

•

If template is all positive, there is a high correlation between the template and the image at 
where there is a bright spot on the correlation map

Detection can be done by comparing correlation map score to a threshold○

If the threshold is relatively low, the detection will become inaccurate○

If the threshold is very high, we might not detect anything○

•

Template matching fails when
Different scales (fixed in scaled representation)○

Different orientation○

Bad lighting conditions○

Left/right hand○

Partial occlusions○

Different perspective○

Motion/blur○

•

Good:
Works well in presence of noise○

Easy to compute○

•

Scaled representations
Make template matching robust to changes in 2D scale•
Build a scaled representation: Gaussian image pyramid•
Alternatives

Use multiple sizes for each given template○

Ignore the issue of scale○

•

To find template matches at all scales
Template size constant, image scale varies○

Finding hands or faces when we don't know what size they are in the image○

•

Efficient search for image-to-image correspondences
Look first at coarse scales, refine at finer scales○

Much less cost, but may miss best match○

•

To examine all levels of detail
Find edges with different amounts of blur○

Find textures with different spatial frequencies (different levels of detail)○

•

Shrinking the image
Cannot take every second pixel

Artifacts appear
Small phenomena looks bigger□
Fast phenomena looks slower□

▪

○

•

Sub-sample with Gaussian Pre-filtering
Apply a smoothing filter first, then throw away half of the rows and columns○

Smoothing should be sufficient to ensure that the resulting image is bandlimited enough 

•
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Smoothing should be sufficient to ensure that the resulting image is bandlimited enough 
to ensure we can sample every other pixel

Practically, for every image reduction of 
 

 
 , smooth by    .▪

○

Image pyramid
A collection of representations of an image•
Each layer is half the width and half the height of the previous layer•
Gaussian pyramid

Each layer is smoothed by a Gaussian filter and resampled to get the next layer○

Details are smoothed out as we move to higher levels○

Large uniform regions in the original image are preserved○

Impossible to reconstruct the original image○

•

Local feature detection
Detects edges and corners•
Estimating derivatives

  

  
         

               

 
            .○

Differentiation is linear and shift invariant, and thus can be implemented as a 
convolution

○

Discrete approximation: 
  

  
                  .○

Image noise tends to result in pixels not looking exactly like their neighbors, so simple 
finite differences are sensitive to noise

To deal with this, smooth the image prior to derivative estimation▪

○

•
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Example (
  

  
  ):

Example (
  

  
  ):

The weights of any filter used for differentiation need to sum to 0. (for constant image, the derivative is 0)

Edges
It is a location with high gradient (derivative)•
It is a property of the 2D images•
Depth discontinuity•
Surface orientation discontinuity•
Reflectance discontinuity (change in surface material properties)•
Illumination discontinuity (shadow)•

Smoothing and differentiation
Need smoothing to reduce noise prior to taking derivatives•
Need two derivatives in x and y direction•
Can use derivative of Gaussian filters:

Differentiation is convolution○

Convolution is associative○

•

Gradient magnitude
Let   and   be estimates of partial derivatives in x and y directions•

Then        is the gradient

It points in the direction of most rapid increase of intensity○

•

   
    

 
      

 
is the gradient magnitude (edge strength)

Increased smoothing:
Eliminates noise edges▪

Makes edges smoother and thicker▪

Removes fine detail▪

○

•

Gradient direction:         
  

  
  .•

Sobel edge detector

Edge & corner detection
September 27, 2021 11:15 AM
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Sobel edge detector
Use central differencing to compute gradient image instead of first forward differencing (more accurate)•
Use threshold to obtain edges•

Two generic approaches to edge point detection
Local extrema of a first derivative operator•
Zero crossing of a second derivative operator•

Laplacian of Gaussian
Zero crossing approach•
Criteria

Localization in space○

Localization in frequency○

Rotationally invariant○

•

Steps
Gaussian for smoothing○

Laplacian   for differentiation,            .○

Locate zero-crossing in the Laplacian of the Gaussian where      
 

           
     

             
     

         .○

•

Canny Edge detector
Local extrema of a first derivative operator •

2 edges○

•

Criteria
Good detection

Low error rate for omissions (missed edges)▪

Low error rate for commissions (false positive)▪

○

Good localization○

One response to a given edge○

•

Steps
Apply directional derivatives of Gaussian○

Compute gradient magnitude and gradient direction○

Non-maximum suppression

Thin multi-pixel wide ridges down to single pixel width▪

Idea: suppress near-by similar detections to obtain one true result▪

Select the image maximum point across the width of the edge▪

Value at q must be larger than interpolated values at p and r

Keep q if gradient of q>p(backward) and q>r(forward)

□

▪

○

Linking and thresholding
Low, high edge-strength thresholds▪

Accept all edges over low threshold that are connected to edge over high threshold▪

Assume the marked point is an edge point, take the normal to the gradient at that point and use this to 
predict continuation points

▪

○

•

   CPSC425 Page 15    



predict continuation points

□

Edge hysteresis
One way to deal with broken edge chains•
Hysteresis: a lag or momentum factor•
Maintain two thresholds      and     

Use      to find strong edges to start edge chain.○

Use     to find weak edges which continue edge chain.○

•

Typical ratio of the thresholds: 
     

    
      .•

Comparing edge detectors
Good detection: minimize probability of false positives/negatives edges•
Good localization: found edges should be as close to true image edge as possible•
Single response: minimize the number of edge pixels around a single edge•

•

Laplacian pyramid
Building an approximate Laplacian pyramid

Create a Gaussian pyramid○

Take the difference between one Gaussian pyramid level and the next (before subsampling)○

Laplacian = Unit - Gaussian○

•

Algorithm
Repeat:

Filter
Compute residual
subsample

○

Until min resolution reached

•

Properties
Known as the difference-of-Gaussian (DOG) function, a close approximation○

It is a band pass filter, each level represents a different band of spatial frequencies○

•

At each level, retain the residuals instead of blurred images themselves•
We can reconstruct the original image using the pyramid

Original = up sampled current + Laplacian○

Repeat:
Up sample
Sum with residual

○

Until original resolution reached

•

Image blending
Algorithm:

Build Laplacian pyramid LA and LB from images A and B○

Build a Gaussian pyramid GR from mask image R (the mask defines which image pixels should be coming from A 
or B)

○

Form a combined (blended) Laplacian pyramid LS, using nodes of GR as weights:               

•
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Form a combined (blended) Laplacian pyramid LS, using nodes of GR as weights:                 
  .

○

Reconstruct the final blended image from LS○

High level intuition
Smoother blending of flatter regions, sharper blending of more detailed regions○

•

Edge matching in scaled representation fails when
Different orientation•
Left/right hand•
Partial occlusions•
Different perspective•
Motion blur•

Boundary detection
We can formulate boundary detection as a high-level recognition task•
Many boundary detectors output a probability or confidence that a pixel is on a boundary•
Approach

Consider circular windows of radii  at each pixel cut in half by an oriented line through the middle○

Compare visual features on both sides of the cut○

If features are very different on the two sides, the cut line may corresponds to a boundary○

This gives an idea of the orientation of the boundary as well○

•

Features
Raw intensity○

Orientation energy○

Brightness gradient○

Color gradient○

Texture gradient○

•

For each feature type
Compute non-parametric distribution for left side○

Compute non-parametric distribution for right side○

Compare two histograms, on left and right, using statistical test○

•

Use all the histogram similarities as features in a learning based approach that outputs probabilities•

Good feature:
Can be easily found in different images (different orientation)•
Local: features are local, robust to occlusion and clutter•
Accurate: precise localization•
Robust: noise, blur, compression do not have a big impact on the feature•
Distinctive: individual features can be easily matched•
Efficient: close to real-time performance•

Corner:
Any locally distinct 2D image feature that corresponds to a distinct position on an 3D object of interest in the scene•
A corner can be localized reliably.

Place a small window over a patch of constant image value
Sliding the window in any direction, the image in the window will not change▪

○

Place a small window over an edge

Sliding the window in the direction of the edge, the image in the window will not change▪

Cannot estimate location along an edge (aperture problem)▪

○

Place a small window over a corner
Sliding the window in any direction, the image in the window changes▪

○

•

To find a corner
Shifting a small window should give large change in intensity.○

•

Autocorrelation
Correlation of the image with itself•
Window centered on an edge point will have autocorrelation that falls slowly in the direction along the edge and 
rapidly in the direction perpendicular to the edge

•

Windows centered on a corner point will have autocorrelation that falls rapidly in all directions•

Corner detection:
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Corner detection:
Edge detectors perform poorly at corners•
Observations

The gradient is ill-defined exactly at a corner○

Near a corner, the gradient has two or more distinct values○

•

Harris corner detection
Compute image gradients over small region

   
  

  
  ,    

  

  
  .▪

The distribution shows the orientation and magnitude▪

○

Compute the covariance matrix

   
     

 
        

 
 

     
 
      

 
 

      
   
   

  .▪

They are sum of products of gradients over small region around the corner▪

The matrix is symmetric▪

We are fitting a quadratic to the gradients over a small image region

                  
  
  

  
 
  .□

▪

We can visualize  as an ellipse with axis lengths determined by eigenvalues  and orientation 
determined by  .

▪

Harris uses Gaussian instead▪

○

Compute eigenvectors and eigenvalues○

Use threshold on eigenvalues to detect corners
Can use the smallest eigenvalue as the response function▪

Eigenvalues need to be bigger than 1, then              
 

               (more efficient).▪

Also can use 
    

         
       .▪

Harris also checks that ratio of eigenvalues is not too high▪

○

•

Properties:
Rotational invariance

Ellipse rotates but its shape (eigenvalues) remains the same▪

Corner response is invariant to image rotation▪

○

Partial invariance to intensity shifts and scaling
If only derivatives are used, invariant to intensity shifts▪

Intensity scale could affect performance ▪

○

Not invariant to scale changes
After scaling, corner may become an edge▪

We can find local maxima in both position and scale▪

○
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We can find local maxima in both position and scale▪

When using a Laplacian filter, highest response when the signal has the same characteristic scale as the 
filter

▪

Characteristic scale
The scale that produces peak filter response•
We need to apply Laplacian filter at different scales and search over characteristic scales•
Implementation

For each level of Gaussian pyramid, compute feature response (Harris, Laplacian)○

For each level of Gaussian pyramid
If local maximum and cross-scale

Save scale and location of feature        .

○

•
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Textures
Texture is widespread, easy to recognize, but hard to define•
Views VL large numbers of small objects are considered textures•
Patterned surface markings are considered textures•
Def: detail in an image that is at a scale too small to be resolved into its constituent elements 
and at a scale large enough to be apparent in the spatial distribution of image measurements

•

Textons: identifiable elements that repeatedly composes a pattern for texture•

Use of texture
Object identity: if the object has distinctive material properties•
Object's shape: deformation of the texture from point to point•
Shape from texture: estimating surface orientation or shape from texture•

Texture analysis
How do we represent texture•

Texture synthesis
How do we generate new examples of a texture•
Why:

To fill holes in images (inpainting)○

To produce large quantities of texture for computer graphics
Good textures make object models look more realistic▪

○

•

Idea: use an image of the texture as the source of a probability model
Draw samples directly from the actual texture○

Can account for more types of structure○

Very simple to implement○

Success depends on choosing a correct distance○

•

Texture synthesis by non-parametric sampling
Like copying, but not just repetition•
Efros and Leung: 

synthesizing one pixel
Conditional probability distribution of p given the neighborhood window: ▪

directly search the input image for all such neighborhoods to produce a histogram 
for  

▪

To synthesize p, pick one match at random▪

Since the sample image is finite, an exact neighborhood match might not be 
present

▪

Find the best match using SSD (sum of squared difference) error, weighted by 
Gaussian to emphasize local structure and take all samples within some distance 
from that match

▪

○

Synthesizing many pixels
For multiple pixels, grow the texture in layers

In the case of hole-filling, start rom the edges of the hole□
▪

○

•

Big data
Big data enables simple non-parametric, matching-based techniques to solve complex 
problems in CG and vision

○

Algorithm
Create a short list of a few hundred best matching images based on global image 
statistics

▪

Find patches in the short list that match the context surrounding the image region 
we want to fill

▪

○

•

Texture
September 27, 2021 11:16 AM
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we want to fill
Blend the match into the original image▪

Purely data-driven, requires no manual labeling of images○

Texture segmentation
Texture is a property of a region•
Texture segmentation can be done by detecting boundaries between regions of the same or 
similar texture

•

Texture boundaries can be detected using standard edge detection techniques applied to the 
texture measures determined at each point

•

Uses a local window to estimate texture properties and assigns the texture properties as point 
properties of the window's center row and column

•

Texture representations
Using RGB channel•
There are infinitely many degrees of freedom to texture•
Textures are made up of generic sub-elements, repeated over a region with similar statistical 
properties

•

Find the sub-elements with filters, then represent each point in the image with a summary of 
the pattern of sub-elements in the local region

Spots and oriented edge filters at a variety of different orientations and scales○

•

•

Texture representation is hard
Difficult to define and analyze○

Texture synthesis appears more tractable○

•

Oriented pyramids
Laplacian pyramid is orientation independent•
Apply an oriented filter at each layer

Represent image at a particular scale and orientation○

○

•

Goal of texture synthesis
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Goal of texture synthesis
Given a finite sample of some texture, the goal is to synthesize other samples from that same 
texture

The sample needs to be large enough○

•

Compare textures and decide if they're made of the same stuff•

Bag-of-words representation
Take a large corpus of text

Represent every letter by a 26 dimensional one-hot vector○

Represent each word by an average of letter representations in it○

Cluster the words to get a dictionary.
Words that have very similar representations would get clustered together▪

○

Represent every document by histogram of dictionary atoms by associating every word 
to an atom that is closest in terms of distance in 26D

○

•

By comparison
Corpus of text = collection of images○

Letter = pixel location○

Word = patch with pixel in the center○

Dictionary = textons○

•

Texture representation and recognition
Texture is characterized by the repetition of basic elements or textons•
For stochastic textures, it is the identity of the textons, not their spatial arrangement, that 
matters

•
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Color
Light is produced in different amounts at different wavelengths by each light source•
Light is differentially reflected at each wavelength, which gives objects their native color 
(surface albedo)

•

The sensation of color is determined by the visual system, based on the product of light 
intensity and reflectance

•

Color appearance
Reflected light at each wavelength is the product of illumination and surface reflectance at 
that wavelength

•

Surface reflectance is modeled as having two components
Lambertian: equal bright in all directions (diffuse)○

Specular: mirror reflectance (shiny spots)○

•

Color matching 
additive

                .○

Light is a weighted mixture of primaries○

Many colors can be represented as a positive weighted sum○

This defines a color description system
With an agreed         , we only need suppy         ▪

○

RGB primaries, CRT monitors○

•

A negative weight means we need to add it to the test color side (subtractive)
          ○

Interpreted as         .○

This raises a problem for designing displays○

E.g. Ink, CMY primaries, films, prints○

•

We choose R,G,B to be the bases so that positive linear combinations match a large set of 
colors

•

Principles of Trichromacy
Three primaries work, provided we allow subtractive matching•
Exceptional people can only match with two or one primary•

Metametric lights
Two lights whose spectral power distributions appear identical to most observers are called 
metamers

•

Grassmans law for color matches:
Symmetry•
Transitivity•
Proportionality•
Additivity•
This means that color matching is linear•

Representing color
Linear color space

The coordinates of a color are given by the weights of the primaries used to match it○

Choice of primaries is equivalent to choice of color space
RGB: R: 645.2nm, G: 526.3nm, B: 444.4nm.

Negative parts means some colors can be matched only by subtraction□
The subspace of CIE colors that can be displayed on a typical computer □

▪

○

•

Color
September 27, 2021 11:16 AM
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The subspace of CIE colors that can be displayed on a typical computer 
monitor

□

CIE XYZ: primaries are imaginary, but have some convenient properties. Color 
coordinates are        , where X is the amount of the X primary

Always positive, but primaries are imaginary□

  
 

     
     ,   

 

     
     □

Overall brightness is ignored□
Geometry of Color:

White is in the center, with saturation increasing towards the 
boundary



Mixing two colored lights creates colors on a straight line

Mixing 3 colors creates colors within a triangle

Curved edge means there are no 3 actual lights that can create all 
colors that humans perceive



□

▪

May not
Encode properties that are common in language or important in applications▪

Capture human intuitions about the topology of colors▪

○

Uniform color spaces
One cannot reproduce colors exactly○

It is important to know whether a color difference would be noticeable to a human 
viewer

○

McAdam ellipses: each ellipse shows colors perceived to be the same

▪

Differences in x, y are a poor guide to differences in perceived color▪

○

A uniform color space is one in which differences in coordinates are a good guide to 
differences in perceived color

○

•

HSV color space
More natural description of color for human interpretation○

Hue: attribute that describes a pure color
Red, blue▪

○

Saturation: measure of the degree to which a pure color is diluted by white light
Pure spectrum colors are fully saturated▪

○

Value: intensity or brightness○

Hue + saturation is referred to as chromaticity○

•

Color constancy
Image color depends on both light color and surface color•
Color constancy: determine hue and saturation under different colors of lighting•
Goal: correct the changes in illumination in different parts of the scene so that the entire 
image is made consistent  with what would be seen under any fixed reference light source 
(white light)

•

Difficult to predict what colors a human will perceive in a complex scene
Depends on context, other scene information○

•

Humans can usually perceive
The color a surface would have under white light○

•

Environmental effects
Chromatic adaptation: if the human visual system is exposed to a certain color light for a 
while, color perception starts to skew

○

•
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while, color perception starts to skew
Contrast effects: nearby colors affect what is perceived○
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Photometric transformations: change in color
Geometric transformations: objects will appear at different scales, translation and rotation

Good local features
Corner•
Blob•
Patch around the local feature is very informative•

Intensity image
Just use the pixel values of the patch•
Perfectly fine if geometry and appearance is unchanged (template matching)•
Problems:

Sensitive to absolute intensity values○

•

Image gradients/edges
Use pixel differences•
Feature is invariant to absolute intensity values•
Problems

Sensitive to deformations○

•

Key point:
An image location at which a descriptor is computed

Locally distinct points○

Easily localizable and identifiable○

•

Feature descriptor
Summarizes the local structure around the key point•
Allows unique matching of key points in presence of object pose variations, image and 
photometric deformations

•

Scale invariant features (SIFT)
Can help detect locally distinct features (corners)•
David Lowe's invariant local features

Image content is transformed into local feature coordinates that are invariant to 
translation, rotation, scale and other imaging parameters

○

•

Advantages of invariant local features
Locality: robust to occlusion and clutter○

Distinctiveness: individual features can be matched to a large database of objects○

Quantity: many features can be generated for even small objects○

Efficiency: close to real-time performance○

•

SIFT describes both a detector and descriptor
Multi-scale extrema detection

Extreme in both scale and dimensions

      □

▪

○

•

Object recognition
September 27, 2021 11:16 AM
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□

Apply Laplacian filter at different scales (usually half the size)▪

Detect maxima and minima of DoG (difference of Gaussian) in scale space▪

Sampling frequency:
More points are found as sampling frequency increases□
Accuracy of matching decreases after 3 scales/octave□

▪

Key point localization
Select stable key points▪

After key points detection, remove those that have low contrast or are poorly 
localized along an edge

▪

To check poor localization, use the ratio of eigenvalues of  (Harris corners), check 
if it is greater than a threshold

▪

○

Orientation assignment
Create histogram of local gradient directions computed at selected scale

With 10 degree increments, we have histogram of 36 bins□
Size of window is 1.5 scale (Gaussian filter)□
Gaussian-weighted voting□
Highest peak and peaks above 80% of highest also considered for calculating 
dominant orientations

□

▪

Assign canonical orientation at peak of smoothed histogram▪

Each key specifies stable 2D coordinates (x, y, scale, orientation)
Multiply gradient magnitude by a Gaussian kernel□

▪

○

Key point descriptor
Should be robust to local shape distortions, changes in illumination or 3D 
viewpoint

▪

SIFT descriptor
Thresholded image gradients are sampled over      array of locations in 
scale space (weighted by a Gaussian with sigma half the size of the window)

□

Create array of orientation histograms□
8 orientations    histogram array.□
Normalized to unit length to reduce the effects of illumination change

If brightness values are multiplied by a constant, the gradients are 
scaled by the same constant. Normalization cancels the change



If brightness values are increased/decreased by a constant, the 
gradient does not change



□

▪

○

Dimensions in a SIFT descriptor
         .○

16 histograms○

8 orientations in each histogram○

•

Feature stability to noise
Match features after random change in image scale and orientation, with differing levels of 
image noise

•
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•

Feature stability to affine change

Distinctiveness of features
Vary size of database of features, with affine change, image noise•

Histogram of Oriented Gradient (HOG) features
From a cell (   pixels), extract a block (   pixels)•
Histogram of unsigned gradients, one for each cell•
Concatenate and L-2 normalization•
Single scale, no dominant orientation•
Redundant representation due to overlapping blocks•

Speeded up robust features (SURF)
In each    cell grid, we have    sample point.

Each cell is represented by 4 values     
 
     

 
        

        
  .○

•

64 dimensions•

•

Object recognition with invariant features
Identify objects or scenes and determine their pose and model parameters•
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Identify objects or scenes and determine their pose and model parameters•
Applications

Industrial automation and inspection○

Mobile robots, toys, user interfaces○

Location recognition○

Digital camera panoramas○

3D scene modeling, augmented reality○

•

Object recognition
It requires us to first match each key point independently to the database of key points

Many features will not have any correct match in the database because they arise from 
background clutter

○

It would be useful to have a way to discard features that do not have any good match○

•

Probability of correct match
Compare ratio of distance of nearest neighbor to second nearest neighbor (from different 
object)

•

Threshold of 0.8 provides excellent separation•

Nearest-neighbor matching
Hypotheses are generated by approximate nearest neighbor matching of each feature to 
vectors in the database

Finding the nearest neighbor in large ( ) high-dimensional ( ) datasets is linear○

Only approximate methods are feasible○

•

Can give speedup by factor of 1000 while finding nearest neighbor•

Identify consistent features
Identify clusters of at least 3 features that agree on an object and its pose

Detecting less than 1% inliers among 99% outliers○

•

Hough transform
Vote for each potential match according to model ID and pose○

Insert into multiple bins to allow for error in similarity approximation○

•

Model verification
Examine all clusters with at least 3 features•
Perform least-squares affine fit to model•
Discard outliers and perform top-down check for additional features •

Forms of model
D.O.F. = degree of freedom = # parameters•
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Rigid: 2 for translation, 1 for rotation▪

Similarity: 3 for rigid, 1 for similarity▪

○

A projective transformation (homography) warp projective plane into another ○

Warping a model: transform any pixel in the original image to the corresponding image
Changes domain of image function○

If  
  
  
 

    
 
 
 
 , we have    

      

      

   

 .

This is 6 D.O.F.▪

○

•

Solutions for affine parameters

Mapping        to        ○

○

•

Homography (projection) can be used when
The scene is planar•
The scene is very far or has small depth variation (approximately planar)•
The scene is captured under camera rotation only (no translation or pose change)•

3D object recognition
Extract outlines with background•
Subtraction•
Only 3 key points are needed, so extra key points provide robustness•
Under occlusion

Solve for  (affine transform) for each object by leveraging SIFT matches of key points 
for that object, then apply  to the outline of that object

○

•

Object recognition with SIFT
Match each key point independently to database of known key points extracted from training 
examples

Use fast (approximate) nearest neighbor matching○

Threshold based on ratio of distances to best and to second best match○

•

Identify clusters of at least 3 matches that agree on an object and a similar pose
Use generalized Hough transform○

•

Check each cluster found by performing detailed geometric fit of affine transformation to the 
model

Accept/reject interpretation accordingly○

•

Limitation: we need to have correct matches•
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Limitation: we need to have correct matches
Very difficult○

If we can find exact match 80% of the time, we can find 3 matches correctly only about 
50% of the time

○

Image noise, deformations will make this worse○

Multiple object instances will make this impossible○

•

Fitting a model to noisy data
Suppose we are fitting a line to a dataset that consists of 50% outliers•
Using two points

Draw pairs of points uniformly at random, 
 

 
 of the pairs will consist entirely of inliers○

Can identify these good pairs by noticing that a large collection of other points lie close 
to the line fitted to the pair

○

A better estimate of the line can be obtained by refitting the line to the points that lie 
close to the line

○

•

RANSAC (RANdom SAmple Consensus)
Randomly choose minimal subset of data points necessary to fit model (a sample)•
Points with some distance threshold  of model are a consensus set

The size of the consensus set is the model's support○

•

Repeat for  samples, the model with biggest support is the most robust fit
Points within distance  of best model are inliers○

Fit final model to all inliers○

•

•

Choosing sample number
Let  be the fraction of inliers○

Let  be the number of points (DoF) needed to define hypothesis (   for a line in the 
plane,    for a circle in the plane)

○

Suppose  samples are chosen (each of  points)○

The probability that a single sample of  points is correct is   ○

The probability that all sample fails is        ○

Choose  large enough to keep the failure probability below target level○

•

RANSAC divides data into inliers and outliers and yields an estimate computed from the 
minimal set of inliers

Improve this initial estimate with estimation over all inliers (with standard least squares 
minimization)

○

But this may change inliers, so alternate fitting with re-classification as inlier/outlier○

•

Advantages
General method suited for a wide range of model fitting problems

•
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General method suited for a wide range of model fitting problems○

Easy to implement and easy to calculate its failure rate○

Disadvantages
Only handles a moderate percentage of outliers without cost blowing up○

Many real problems have high rate of outliers, but sometimes selective choice of 
random subsets can help

○

•

Automatic matching
Feature extraction

Find features in pair of images using Harris corner detector○

Assumes images are roughly the same scale○

•

Initial match hypothesis
Select best match over threshold within a square search window using SSD or 
normalized cross-correlation for small patch around the corner

○

•

Use RANSAC to find outliers and inliers, then find match•

Fit a model to a set of tokens is difficult
Extraneous data: clutter or multiple models

We do not know what is part of the model○

•

Missing data: only some parts of model are present
Noise causes erroneous matches, perturbs solution○

•

Computational cost:
Not feasible to check all combinations of features by fitting a model to each possible 
subset

○

•

Hough transform
Idea

For each token, vote for all models to which the token could belong○

Return models that get many votes○

•

Image and parameter space

○

A point in image space becomes a line in parameter space○

 points in image spaces gives  lines in the parameter space
Use the intersection to find  and  . The more lines intersecting, the better the 
approximation.

▪

○

•

Line detection in slope and intercept form•
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○

Parametrization
Space of  and  are huge, the accumulator needs to be very large○

•

Lines in normal form
               ,    ,         .

 is bounded by the edge of the image▪

○

A point in image space becomes a wave in the parameter space○

 points becomes  waves in the parameter space○

A line in image space becomes a point in the parameter space○

•

Hough transform for lines uses normal form
Each point votes for the lines that pass through it○

○

•

Mechanics
Construct a quantized array to represent  and  ○

For each point, render curve      into this array adding one vote at each cell○

•

Difficulties: size of cells (bins)
Too big, merge different lines○

Too small, noise causes lines to be missed○

•

Number of lines
Count the peaks in the Hough array○

Treat adjacent peaks as a single peak○

•

Practical details
It is best to vote for the two closest bins in each dimension, as the locations of the bin 
boundaries are arbitrary

Peaks are blurred and noise will not cause similar votes to fall into separate bins▪

○

Use hash table to store the votes
No effort is wasted on initializing and checking empty bins▪

Avoids the need to predict the maximum size of the array, which can be non-
rectangular

▪

○

A key is to have each feature (token) determine as many parameters as possible
Lines are detected more effectively from edge elements with both position and 
orientation

▪

For object recognition, each token should predict position, orientation and scale▪

○

•

The Hough transform can extract feature groupings from clutter in linear time•
Advantages

Can handle high percentage of outliers: each point votes separately○

Can detect multiple instances of a model in a single pass○

•

Disadvantages
Complexity of search time increases exponentially with the number of model 
parameters

○

Can be tricky to pick a good bin size

•
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Can be tricky to pick a good bin size○

Summary
Hough transform is a technique for fitting data to a model

A voting procedure▪

Possible model parameters define a quantized accumulator array▪

Data points vote for compatible entries in the accumulator array▪

○

Key is to have each data point (token) constrain model parameters as tightly as possible○

•

VS. RANSAC
Hough is better with large number of outliers, well over 50%○

Setting bin size to account for certain level of noise is more difficult in Hough○

RANSAC better for high dimensional parameter spaces○

•

Object recognition - implicit shape model
Combined object detection and segmentation using an implicit shape model•
Image patches cast weighted votes for the object centroid•
Index displacements by visual codeword•
Basic idea

Find interest points/key points in an image○

Match patch around each interest point to a training patch○

Vote for object center given the training instances○

Find the patches that voted for the peaks (back-project)○

•

Easy but slow
We need to match a patch around each key point to all patches in all training images○

•

Segmentation: inferring other information
Can combine object detection and segmentation using an implicit shape model○

Image patches cast weighted votes for the object centroid○

○

When back-projecting, back-project labeled segmentations per training patch○

•

Can also infer: part labels, depth, etc•

Visual words
Visual vocabulary•
Compare each patch to a small set of visual words (clusters)•

Object recognition - boundary fragments
Boundary fragments cast weighted votes for the object centroid. Also obtains an estimate of 
the object's contour

•

Object recognition - Poselets
Poselets are image patches that have distinctive appearance and can be used to infer some of 
the configuration of a parts-based object

•

Detected poselets vote for the object configuration•

Generalized Hough transform
Detect an arbitrary geometric shape

Normal Hough transform only detects a definite geometric shape (lines, circles)○

•

Offline procedure
At each boundary point, compute displacement vector       ○

•
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○

Store these vectors in a table indexed by gradient orientation  ○
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Binoculars
They enhance binocular depth perception in two ways

Magnification○

Longer baseline compared to human eyes○

•

Stereo vision
Key idea: 3D coordinates of each point imaged are constrained to lie along a ray. This is true 
also for a second image obtained from a slightly different viewpoint. Rays for the same point in 
the world intersect at the actual 3D location of that point

•

Use two cameras, acquire images of the world from slightly different viewpoints•
Perceive depth based on differences in the relative position of points in the left and right 
image

•

Task: compute depth from two images acquired from slightly different viewpoints•
Approach: match locations in one image to those in another•
Sub-tasks

Calibrate cameras and camera positions
Focal length▪

Displacement of two cameras▪

○

Find all corresponding points○

Compute depth and surfaces○

•

Triangulate on two images of the same point

○

Match correlation windows across scan lines○

•

Scan lines: horizontal lines in the sensor, picking pixels•

Correspondence

•

  could be the projection of any point along the ray   to  •
The projection of those points in the right image forms a line called the epipolar line•

Camera & Motion
October 27, 2021 11:07 AM
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The projection of those points in the right image forms a line called the epipolar line•

Epipolar constraint

•

Match points lie along corresponding epipolar lines•
Reduces correspondence problem to 1D search along conjugate epipolar lines•
Greatly reduce cost and ambiguity of matching•
Epipolar constraints hold in all different cases

2 cameras have different focal points○

Different height offset from the ground○

Different lens characteristics○

Different resolution of sensors○

•

Rectified images (results)
Image planes of cameras are parallel•
Focal points are at the same height•
Focal lengths are the same•
Epipolar lines fall along the horizontal scan lines of the images•
Assume images have been rectified so that epipolar lines correspond to scan lines

Simplifies algorithms○

Improves efficiency○

•

Rectified stereo pair
Reproject image planes onto a common plane parallel to the line between camera centers•
Need two homographies (   transform), one for each input image reprojection•
Depth estimate

○

 

 
   

 

 
 .○

   

 
    

  

 
  .○

Disparity:        
  

 
  (inversely proportional to depth).○

•

Human stereo vision
When a human looks at a point on a surface

The eyes focus on the surface (accommodation)○

The eyes verge on the point (vergence)○

•
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▪

Stereo algorithm

•

Scan line match
Recognition is not needed○

Pixel matching

▪

Too much ambiguity▪

Use SSD, correlation▪

○

Edge matching

▪

Marr/Poggio multiscale stereo algorithm

□

▪

○

Comparison
Edges are more meaningful, but hard to find▪

Edges tend to fail in dense texture
Edge based methods are sparse□

▪

Correlation tend to fail in smooth, featureless regions
Correlation based methods are dense□

▪

○

•

Sum of squared (pixel) difference (SSD):
  and   are corresponding    windows of pixels•
Define the window function by 

                 
 

 
       

 

 
     

 

 
       

 

 
   .

•

SSD measures intensity difference as a function of disparity:

                     
  

            .

•
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              .○

Image normalization

Average pixel:    
 

         
               

             •

Window magnitude:                      
             

                  
 

•

Normalized pixel: subtract the mean, normalize to unit length

        
    

      
       

          .○

•

Image metrics

•

Assume   and   are normalized to unit length•

SSD:                   
 

.•

Correlation:                     .•
Let   be the value of  that minimizes     , then it also minimizes    .•

Similarity measures

Effect of window size
Smaller window:

More detail○

More noise○

•

Larger window
Smoother disparity○

Less detail○

Fails near boundaries○

•

Adaptive window size
Try multiple sizes and select best match○

•

Ordering constraints
We might have some objects blocking the object we want to match•
Block matching:

Too many discontinuities○

Disparity values change slowly○

•

Stereo matching as energy minimization
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Stereo matching as energy minimization
Assume depth should change smoothly•
Energy function for one pixel

○

Smoothness term:                 
       .

▪

○

Can minimize this independently per scanline using dynamic programming (DP)○

•

Interpret the solution as finding a path that is 
Near the data (springs connecting data to solution)○

Smooth, without bending of the flexible path○

•

Trades off to fit the data vs smoothness of solution•

We can use more cameras to reduce ambiguity in stereo matching

Structured light imaging
Structured light and one camera•
Projector acts like reverse camera•

Summary
Stereo is formulated as a correspondence problem

Determine match between location of a scene point in one image and its location in 
another

○

•

If we assume calibrated cameras and image rectification, epipolar lines are horizontal scan 
lines

•

We can use the following to match
Pixels○

Patches○

Edges○

•

Optical flow
Determine how many objects (and/or the camera) moves in the 3D world•
Key idea: 

images acquired as a continuous function of time provide additional constraints. ○

Formulate motion analysis as finding (dense) points correspondences over time○

•

Optical flow is the apparent motion of brightness patterns in the image•
Applications

Image and video stabilization○

Motion-compensated video compression○

Image registration○

Action recognition○

Motion segmentation○

•

Optical flow and motion
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Optical flow and motion
Motion is geometric•
Optical flow is radiometric•
Optical flow but no motion

Moving light sources, lights going on/off, inter-reflection, shadows○

•

Motion, but no optimal flow
Spinning sphere○

•

Examples: Three percepts
Veridical: a 2D rigid, flat, rotating ellipse

A narrow ellipse oscillating rigidly about its center appears rigid▪

A fat ellipse undergoing the same motion appears nonrigid▪

The apparent nonrigidity of a fat ellipse is not a visual illusion. ▪

The ellipse's motion can be influenced by features not physically connected to the 
ellipse

▪

○

Amoeboid: a 2D, non-rigid smoothly deforming shape○

Stereokinetic: a circular rigid disk rolling in 3D○

•

Example: flying insects and birds
Balance the speeds of motion of the images of the two walls○

Adjust speed to hold constant the optical flow in the vicinity of the target
Approach speed decreases as the target is approached and reduces to zero at the 
point of touch down

▪

No need to estimate the distance to the target at any time▪

○

•

Aperture problem

•

Without distinct features to track, the true visual motion is ambiguous•
Locally, one can compute only the component of the visual motion in the direction 
perpendicular to the contour

•

Visual motion
Visual motion is determined when there are distinct features to track, provided

The features can be detected and localized accurately○

The features can be correctly matched over time○

•

Motion as matching

•

Optical flow constraint equation
Consider image intensity being a function of time         .•

Using chain rule, 
  

  
     

  

  
     

  

  
     .•

2D velocity space: the space of all points  
  

  
   

  

  
   .

It is the motion field, a vector at every point in the image

•
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It is the motion field, a vector at every point in the image○

If 
  

  
    , we get the optical flow constraint equation             .

  
  

  
  ,   

  

  
  .○

•

Brightness constancy assumption: brightness of the point moving through image sequence 
remains the same

•

For a small space-time step, the brightness of a point in the scene remains the same•
If the time step is small, we can linearize the intensity function•
Computing:

Spatial derivate
Forward difference▪

Sobel filter▪

Scharr filter▪

○

Temporal derivative
Frame differencing▪

○

Optical flow

  
  

  
  and   

  

  
  need to be solved.▪

Equation determines a straight line in velocity space▪

○

•

Lucas-Kanade
A dense method to compute the motion at every location in an image•
Observations

The 2D motion at a given point has two degrees of freedom○

The partial derivatives provide one constraint○

The 2D motion cannot be determined locally from         alone○

•

Idea: obtain additional local constraint by computing the partial derivatives in a window 
centered at the given      .

•

Assumption: nearby pixels will likely have the same optical flow•

Let        be the center, and        be a point in the window, then  
 
 
  

  
   

   

   
   

 

  

 
   

   

 .

•

Considering all points, we can get     .

  

 

 
 

   
   

   
   

  
   

    

 
 

.○

   

 

 
 

   

   

 
    

 
 

.○

        .
A window size is chosen such that      is constant▪

○

The least squares solution is:         
  

   .

A window size is chosen such that    has rank 2 and is invertible▪

○

Here,        
     

 
        

 
 

     
 
      

 
 

 .○

•

Horn-Schunck optical flow

                        
   .

  is smoothness.○

  is brightness constancy.○

 is weight.○

•

Brightness constancy:                    
 

.•

Smoothness:       
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Smoothness:         
 

 
              

 
             

 
             

 
 

            
 
 .

•
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Problem:
Assign new observations into one of a fixed set of categories (classes)•

Key idea
Build a model of data in a given category based on observations of instances in that category•

Classifier
A procedure that accepts as input a set of features and outputs a class label•
Types

Binary○

Multi-class○

•

Build a classifier using a training set of labelled examples          

Each   is a feature vector○

  is class label○

•

Classification
Collect a database of images with labels•
Use ML to train an image classifier•
Evaluate the classifier on test images•
Issue:

Classification assumes that incoming image belongs to one of  classes○

In practice, it is impossible and useless to enumerate all relevant classes in the world○

•

Solution: create an unknown or irrelevant class•

Bayes rule
Let  be the class label and  be the measurement (evidence)•

Then the posterior probability:        
          

    
        .

Class-conditional probability (likelihood):       ○

Prior probability     ○

Unconditional probability (marginal likelihood)     ○

•

Bayes' risk
Errors may be inevitable○

The minimum risk (shaded) is called the Bayes' risk○

○

•

Discriminative vs generative

Image classification
September 27, 2021 11:16 AM
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Discriminative vs generative
Finding a decision boundary is not the same as modeling a conditional density•
The quality of the classifiers depends only on how well the boundary is positioned•

Loss functions
Loss

Some errors may be more expensive than others○

Let       be the loss caused by calling 1 a 2○

•

Total risk of using classifier  is:
                                  .○

•

Two class classification, classify  as:
1 if                          ○

2 if                          ○

•

Decision boundary: points where the loss is the same for either class•

Errors and overfitting
Training error: the error a classifier makes on the training set•
Testing error: the error the classifier makes on the unseen testing set

We want to minimize this○

•

Overfitting
Phenomenon that causes testing error to be worse than training error○

Model is too complex and fits irrelevant characteristics (noise) in the data○

Classifiers have small training error may not necessarily have small testing error○

•

Underfitting
Model is too simple to represent all the relevant class characteristics○

•

Cross validation
We cannot reliably estimate the error rate of the classifier using the training set•
Validation set: 

Split some training data○

Try out what hyperparameters work best on test set○

•

Cross-validation
Performs multiple splits and averaging the errors over all splits○

○

•

Confusion matrix
When evaluating a multi-class classifier, it may be useful to know how often certain classes are 
often misclassified as others

•

Def: a table those      entry is the frequency an item of true class  was labelled as  by the 
classifier

•

Receiver operating characteristics (ROC)
ROC curves plot trade-off between false positives and false negatives•

Classifier strategies
Parametric

Model driven○

Parameters are learned from training examples○

New data points are classified by the learned model○

Properties
Fast, compact▪

Flexibility and accuracy depend on model assumptions▪

○

•
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Flexibility and accuracy depend on model assumptions▪

Non-parametric
Data driven (data is the model)○

New data points are classified by comparing to the training examples directly○

Properties
Slow▪

Highly flexible decision boundaries▪

○

•

Nearest neighbor classifier
Given a new data point, assign the label of nearest training example in feature space•
k-Nearest Neighbor (kNN) classifier

Can gain robustness to noise by voting over multiple neighbors○

Given a new data point, find the  nearest training example. Assign the label by majority 
vote

○

Works well if the distance measure correctly weights the various dimensions○

For large data sets, as  increases,    approaches optimality in terms of minimizing 
probability of error

○

Decision boundaries respond to local clusters where one class dominates○

•

Linear classifier

Define a score function:                .

  is the image feature vector○

 is the weight parameter○

 is the bias parameter○

•

Support Vector Machines(SVM)
Try to obtain the decision boundary directly•
Parametrized as a separating hyperplane in feature space•
Choose the hyperplane that is as far as possible from each class

Maximize the distance to the closest point from either class○

•

Uses a linear classifier

Find hyperplane  such tha the gap between parallel hyperplanes 
 

   
   is maximized○

○

•

Difficulties
Intra-class variation•
Viewpoint•
Illumination•
Clutter•
Occlusion•

Bag of words representation
Word: a local image patch - described by descriptor (SIFT)•
A codebook of visual words contains representative local patch descriptors

Can be constructed by clustering local descriptors in training images○

Deals well with occlusion○

Scale invariant○

Rotation invariant○

Spatial information of local features can be ignored for object recognition (verification)○

•

The bag of words model accumulates a histogram of occurrences of each visual word•
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The bag of words model accumulates a histogram of occurrences of each visual word
Dictionary learning: learn visual words using clustering

Extract features (SIFT) from images▪

Learn visual dictionary (K-means clustering)▪

○

Encode: build bags of words vectors for each image
Quantization: image features get associated to a visual word (nearest cluster 
center)

▪

Histogram: count the number of visual word occurrences ▪

○

Classify: train and test data using BOWs○

•

Algorithm
Initialize an empty K-bin histogram,   the number of code words○

Extract local descriptors from the image○

For each local descriptor  
Quantize  to its closest codeword     ▪

Increment the histogram bin for     ▪

○

Return the histogram○

Classify the histogram using a trained classifier (SVM, kNN)○

•

Spatial pyramid 
The bag of words representation does not preserve any spatial information•
Spatial pyramid is one way to incorporate spatial information into descriptor•
partitions the image and counts visual words within each grid box, repeated at multiple levels•

Vector space model
A document (datapoint) is a vector of counts over each word (feature)

                              .○

A histogram over words○

•

Similarity between two documents

Use cosine similarity               
     

        
     .○

•

K-means clustering
Assume the cluster centers are known. Assign each point to the closest cluster center•
Assume the assignment of points to clusters is known. Compute the best cluster center for 
each cluster (as the mean)

•

Initialization dependent and converges to a local minimum•

Vector of locally aggregated descriptors (VLAD)
Instead of incrementing the histogram bin by 1, we increment it by the residual vector   
    .

•

Dimensionality:   
 : number of codewords○

 : dimensionality of the local descriptor○

•

VLAD characterizes the distribution of local descriptors with respect to the codewords•

Decision tree
Simple non-linear parametric classifier•
Each internal node is associated with a feature test•
A data point starts at the root and recursively proceeds to the child node determined by the 
feature test, until it reaches a leaf node

•

Leaf node stores a class label or a probability distribution over class labels•
Learning a decision tree involves selecting an efficient sequence of feature tests•

Entropy:                      
   .

 is the set of classes represented in  .○

    is the empirical distribution of class  in  .○

It is highest when data samples are spread equally across all classes, and zero when all 
data samples are from the same class

○

•
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data samples are from the same class

Information gain:         
    

   
         

           

We want to select the feature test that maximizes the information gain○

•

Random forest
An ensemble of decision trees•
Randomness is incorporated via training set sampling and/or generation of the candidate 
binary tests

•

Prediction of random forest is obtained by averaging over all decision trees•

Better classifier
Combine multiple classifiers

Train an ensemble of independent classifiers and average the predictions○

•

Boosting
Train an ensemble of nonlinear classifiers sequentially○

Bias subsequent classifiers to correctly predict training examples that previous classifiers 
got wrong

Increase the weight of falsely predicted data to build the next classifier▪

○

Final boosted classifier is a weighted combination of the individual classifiers○

•
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Intro
In image classification, we assumed the image contained a single, central object•
Task of object detection: detect and localize all instances of a target object class in an image

Put a tight bounding box around the object○

•

Sliding window
Train an image classifier•
Slide a fixed-sized detection window across the image and evaluate the classifier on each 
window

•

Search over location, scale and aspect ratio•

Data for classifier
Basic image classifier

Works badly for regions/windows○

•

Object classifier
Works better○

Require expensive bounding box annotations○

Normalization to fixed size○

•

Face detection (Viola Jones)
Use features that are fast to evaluate to reject most windows early•
A rectangular feature is computed by summing up pixel values within rectangular regions and 
then differencing those region sums

Integral image speeds up region summation, computing Haar wavelets is fast○

•

Integral image

                 
         .○

Sum of left and above.○

                                                  .○

○

Constant time: doesn't depend on the size of the region. Can avoid scale images, just 
scale features directly

○

•

Weak classifier:        
                      

           
•

Use boosting to both select the informative features and form the classifier. 
Each round chooses a weak classifier that simply compares a single rectangular feature 
against a threshold

○

•

Algorithm
Select best filter/threshold combination

Normalize the weights      
    

     
 
   

      ▪

For each feature                  
 
 

0: predicted label and true label are the same○

1: predicted label and true label are different○

▪

Choose the classifier   with the lowest error   ▪

○

Reweight examples

•

Object detection
November 22, 2021 1:19 PM
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Reweight examples

             

             ,    
  

    
   .▪

When correct, updated to              

             
▪

When incorrect, not changed▪

○

Final strong classifier

      
           

    
 

 
    

 
   

           
,       

 

  
  ▪

A weighted linear combination of the T weak classifiers, weights are inversely 
proportional to the training errors

▪

○

Observations
On average only 0.01% of all sub-windows are positive○

Equal computation time is spent on all sub-window○

We want to spend most time only on potentially positive windows○

•

A simple 2-feature classifier can achieve almost 100% detection rate, with 50% false positive 
rate

Can act as the 1st layer of a series to filter out most negative windows○

2nd layer with more features to tackle harder negative windows○

•

Cascade classifiers

•

To make detection faster, features can be reordered by increasing complexity of evaluation 
and the thresholds adjusted so that the early tests have few or no false negatives

•

Windows rejected by early tests can be discarded quickly•

Object proposal
There are a lot of possible windows for sliding•
Object proposal algorithms generate a short list of regions that have generic object-like 
properties

Regions that are likely to contain some objects instead of background○

•

Object detectors considers the candidate regions only•
Object-ness score based on cues

Objects are unique within the image and stand out as salient○

Objects have strong contrasting appearance from surroundings○

Objects have a well-defined closed boundary in space○

•

Multiscale saliency
Favors regions with a unique appearance within the image○

•

Color contrast
Favors regions with a contrasting color appearance from immediate surroundings○

•

Super-pixels straddling
Favors regions with a well-defined closed boundary○

Measures the extent to which super-pixels obtained by image segmentation contain 
pixels both inside and outside of the window

○

•
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Neuron

•

            
            .•

The basic unit of computation in a neural network•
Accepts input, computes weighted sum and applies an activation function (non-linearity) to the sum•
Common activation function: sigmoid, ReLU

Sigmoid

▪

     
 

          .▪

Common in early neural networks▪

Saturated firing rate of neurons▪

○

ReLU

▪

             .▪

Accelerate convergence during learning▪

Used in the most recent neural networks▪

○

•

Neural network
November 24, 2021 10:28 AM
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•

Neural network
A collection of connected neurons•
A neural network comprises neurons connected in an acyclic graph

Outputs of neurons can be inputs to other neurons○

Neural networks contain multiple layers of neurons○

•

Multi-layer perceptron (MLP)

Hidden unit: classifier/feature▪

○

•

Note: each neuron will have its own vector of weights and a bias•
More layers

More complex function mapping○

More efficient due to distributed representation○

•

Activation function
Non-linear activation is required to make the neural net a universal function approximator•
With ReLU: linear spline approximation to any function•
Optimization: finding slopes and transitions of linear pieces•
Quality of approximation depends on the number of linear segments•

Universal approximation theorem
Single hidden layer can approximate any continuous function with compact support to arbitrary 
accuracy, when the width goes to infinity

•

Revised: a network of infinite depth with a hidden layer of size    neurons, where  is the 
dimension of the input space, can approximate any continuous function

•

Further revised: ResNet with a single hidden unit and infinite depth can approximate any continuous 
function

•

Loss
When training a neural network, the final output will be some loss (error) function•
Cross entropy loss

        
 

   

  
    

 

       .○

Loss for i-th training example with true class index   ,    
is the j-th element of the vector of 

class scores coming from the neural net

○

•
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class scores coming from the neural net
 

   

  
    

 

      is the softmax function multi-class classifier○

Back propagation
Compute the gradient of the loss with respect to the network parameters so that we can 
incrementally adjust the network parameter

•

Parameters of a neural network are learned using back propagation, which computes gradients via 
recursive application of the chain rule

•

Gradient descent
Start from random value of      .•
For    to max number of iterations

Compute gradient of the loss with respect to previous parameters
                

.▪

○

Re-estimate the parameters

         
  

  
   .▪

         
  

  
  .▪

 is the learning rate.▪

○

•

Stochastic gradient descent
For large datasets computing the sum is expensive○

Compute instead approximate gradient with mini-batches of much smaller size○

•

Numerical differentiation

○

•

Symbolic differentiation
Input function is represented as computational graph (symbolic tree)

Each node is an input, intermediate or output variable○

•

Difficult to deal with piece-wise functions or complex functions•

Automatic differentiation
Interleave symbolic differentiation and simplification•
Apply symbolic differentiation at the elementary operation level, evaluate and keep intermediate 
results

•

FC layer
Spatial correlations are generally local•
Waste of resources•
Not enough data•

LC layer
Stationarity: statistics is similar at different locations•

Convolutional layer
Share the same parameters across the locations•
Interpretation

Multiple neurons that share weights○

One neuron applied as convolution by shifting

              
 
    

           .▪

Learns multiple filters▪

○

•

Convolve the filter with the image (slide over the image spatially, computing dot products)•
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Convolve the filter with the image (slide over the image spatially, computing dot products)•
The number of neurons in a layer

Determined by depth and stride
Depth: controls number of neurons that connect to the same region of the input layer▪

Depth column: a set of neurons connected to the same region▪

Stride: controls spatial density▪

○

Affected by zero-padding
With padding, we can achieve no shrinking▪

Shrinking quickly doesn't work well▪

○

•

Convolutional neural network
Learning a hierarchy of filters•
As we go deeper in the network, filters learn and respond to increasingly specialized structures•

Pooling layer
Make detection spatially invariant (insensitive to position of the object in the image)•
By pooling response over a spatial locations we gain robustness to position variations•
Makes representation smaller, more manageable and spatially invariant•
Operates over each activation map independently•
Max/avg pooling•

Terminology
Network structure: number and types of layers, forms of activation functions, dimensionality of each 
layer and connections (defines computational graph)

Generally kept fixed, requires some knowledge of the problem and NN to sensibly set○

Deeper is better○

•

Loss function: objective function being optimized
Requires knowledge of the nature of the problem○

Softmax, cross entropy○

•

Parameters: trainable parameters of the network, including weights/biases of linear/fc layers, 
parameters of the activation functions

Optimized using SGD or similar○

•

Hyper-parameters: parameters, including for optimization, that are not optimized directly as part of 
training

•

Multivariate regression
Input: feature vector     .•
Output: output vector     .•

Neural network (input + hidden)             .
With tanh:         .○

With ReLU:    .○

•

Network output layer: 

                           .○

•

Loss:               
 

. Similarity between two distributions•

Binary classification
Input + hidden:

With sigmoid:        .
Threshold hidden output     if      .

Problem: not differentiable, probabilistic interpretation maybe desirable□
▪

○

•

Output

interpret sigmoid output as probability:              

Can interpret the score as the log-odds of    ▪

○

•

Loss: Loss for sigmoid:                       .•

Multiclass classification
Input + hidden: ReLU•
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Input + hidden: ReLU•
Output: softmax•
Loss:            

 
 .•

Training
Initialize parameters of all layers•
For a fixed number of iterations or until convergence

Form mini-batch of examples (randomly chosen from a training dataset)○

Compute forward pass to make predictions for every example and compute the loss
Recursively calling forward for each intermediate layer along computational graph▪

○

Compute backwards pass to compute the gradient of the loss with respect to each parameter 
for each example

Traversing computing graph in reverse order and composing intermediate gradients 
using chain rule

▪

○

Update parameters of all layers, by taking a step in the negative average gradient direction○

•

Inference/prediction
Compute forward pass with optimized parameters on test examples•

Monitoring learning
Visualizing the training loss•
Big gap: overfitting

Increase regularization○

•

No gap: underfitting
Increase model capacity○

•

Convolutional layer summary
Input volume:         .

For mini batch:           .○

•

Hyperparameters
Number of filters:                      .○

Spatial extent of filters            .○

Stride of application        .○

Zero padding:          .○

•

Output volume:         .
For mini batch:           .○

   
            

 
             .○

   
            

 
            .○

•

# learnable parameters:          .•

FC layer of CNNs
Stretch input to linear    vector.•
Each neuron looks at the full input volume and activate•

Pooling layer
Makes representation smaller, more manageable and spatially invariant•
Operates over each activation map independently•
No learned parameters•
Receptive field

Filter    , stride 1.○

Pool of size    .○

Each unit looks at               area.○

•

Summary
Input volume:         ○

Hyperparameters
Spatial extent of filters:  ▪

○

•
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Spatial extent of filters:  ▪

Stride of application  ▪

Output volume         

   
    

 
      .▪

   
    

 
      .▪

     .▪

○

# learnable parameters: 0○

Computer vision applications
Categorization

For each image, predict which category it belongs to out of a fixed set○

•

Detection
As a regression problem: Each image needs a different number of outputs○

As a classification problem: apply CNN to many different crops in the image and CNN classifies 
each patch as object or background

Need to apply CNN to many patches in each image▪

Region proposals
Find image regions that are likely to contain objects

Works by looking at histogram distributions, region aspect ratio, closed 
contours, coherent color



□

Fast to run□
Get true object regions to be in as few top K proposals as possible□

▪

○

R-CNN

▪

Extract promising candidate regions using an object proposals algorithm▪

Resize each proposal window to the size of the input layer of a trained CNN▪

Input each resized image patch to the CNN▪

Final FC layer output can be used as input features to a trained SVM▪

○

Fast R-CNN

▪

Performance dominated by region proposals▪

○

•

Segmentation
Semantic segmentation: label every pixel with a category label○

Sliding window: very inefficient, no reuse of computations for overlapping patches

•
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Sliding window: very inefficient, no reuse of computations for overlapping patches○

Fully convolutional CNNs
Design a network as a number of convolutional layers to make predictions for all pixels 
at once

▪

Convolutions at the original image scale will be expensive▪

Design a network as a number of convolutional layers with down sampling and up 
sampling inside the network 

Down sampling: pooling□
Up sampling: 

nearest neighbor

bed of nails: append zeros

Max un-pooling: remember which element was max when using max 
pooling, then use the positions when up sampling



□

▪

○

Instance segmentation
Differentiate category and instances○

•

Neural image captioning
Use RNNs•
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Human vision
Similarity•
Symmetry•
Common fate•
Proximity•

Clustering
Useful to group together image regions with similar appearance

Image compression○

Approximate nearest neighbor search○

Base unit for higher-level recognition tasks○

Moving object detection in video sequences○

Video summarization○

•

Clustering is a set of techniques to try to find components that belong together
Unsupervised learning○

•

Approaches
Agglomerative clustering

Each data point starts as a separate cluster. Clusters are recursively merged▪

Algorithm
Make each point a separate cluster□
Until the clustering is satisfactory

Merge the two clusters with the smallest inter-cluster distance
□

▪

○

Divisive clustering
The entire data set starts as a single cluster. Clusters are recursively split▪

Algorithm
Construct a single cluster containing all points□
Until the clustering is satisfactory

Split the cluster that yields the two components with the largest inter-cluster 
distance

□

▪

○

•

Inter-cluster distance
Distance between the closest members of   and   .

Single-link clustering.▪

         ,          .▪

○

Distance between the farthest members of   and   .
Complete-link clustering▪

         ,          .▪

○

Average distances between members of   and   .
Group average clustering▪

 

        
              

    

 
    

.▪

○

•

Dendrogram
Generate a hierarchy of clusters and visualized with a dendrogram•

Grouping
2021年12月3日 12:59
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•

K-means clustering
Assume we know how many clusters there are in the data, denote by  .•
Each cluster is represented by a cluster center, mean•
Objective: minimize the representation (quantization) error in letting each data point be represented by 
some cluster center

             
 

 
               

           .○

•

Initialization: choose K random cluster centers•
Alternates between two steps

Assume the cluster centers are known. Assign each point to the closest cluster center○

Assume the assignment of points to clusters is known. Compute the best center for each cluster, as the 
mean of the points assigned to the cluster

○

•

Converges to a local minimum of the objective function
Results are initialization dependent○

•

Advantages
Always converges○

Easy to implement○

•

Disadvantages
Number of classes  needs to be given as input○

Algorithm doesn't always converge to the globally optimal solution○

Limited to compact/spherical clusters○

•

Segmentation by clustering
Segmentation makes use of texture, corners, lines, geometry•
Agglomerative clustering

Represent the image as a weighted graph○

Any pixels that are neighbors are connected by an edge○

Each edge has a weight that measures the similarity between the pixels
Can be based on color, texture▪

Low weights-similar,▪

High weights-different▪

○

Segment the image by performing an agglomerative clustering guided by the graph

                    .▪

○

Internal difference: largest weight in the minimum spanning tree of the cluster     .
                    .▪

For smaller clusters, this doesn't work

Add a term      
 

   
  , we have            as the difference.□

                                            for two clusters.□

▪

○

•
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