
DollaramaBot: Optimizing An Arbitrage Bot
Fabian Krause

dept. of Computer Science
University of Freiburg

fabian.krause@mail.utoronto.ca
UTORid: krausefa

Maksym Muzychenko
dept. of Computer Science

University of Toronto
maksym.muzychenko@mail.utoronto.ca

UTORid: muzychen

Vladyslav Nekriach
dept. of Theoretical Cybernetics

Taras Shevchenko National University of Kyiv
vladyslav.nekriach@mail.utoronto.ca

UTORid: nekriach

Yuntao Wu
dept. Electrical and Computer Engineering

University of Toronto
winstonyt.wu@mail.utoronto.ca

UTORid: wuyuntao

Abstract—This paper presents a decentralized arbitrage bot
implemented in Solidity using the Uniswap V2 protocol. The bot
comprises four components: a Mempool API, a TypeScript server,
an Arbitrage Smart Contract, and an on-chain data provider
(Web3 connection). The Mempool API fetches transactions from
the mempool, simulates their execution, and calculates the net
changes in token balances of monitored pools. The TypeScript
server listens to the Mempool API and checks for profitable
arbitrage opportunities, taking into account the total gas price
of the arbitrage transaction. If a profitable opportunity is de-
tected, the TypeScript server calls the Arbitrage Smart Contract,
which atomically performs the arbitrage transaction. The bot’s
gas usage was optimized in three iterations, with the final
implementation minimizing the amount of code in the smart
contract and using off-chain calculations in TypeScript. Overall,
this decentralized arbitrage bot optimizes current approach to
profiting from price discrepancies in Uniswap V2 pools.

Index Terms—Arbitrage bot, Blockchain, Gas optimization,
Mempool, Solidity, Uniswap V2

I. INTRODUCTION

Blockchain technology has revolutionized the way we think
about trust and decentralized systems. One of the most popular
applications of this technology is the creation of digital cur-
rencies such as Bitcoin and Ethereum. However, blockchain
technology has also enabled the creation of other innovative
applications, including smart contracts and decentralized appli-
cations (DApps). Blockchain technology enables decentralized
exchanges, which makes it easier to do arbitrage and make a
profit than traditional centralized markets.

In recent years, the use of arbitrage bots has become in-
creasingly popular in the cryptocurrency market. An arbitrage
bot is a software program that automatically buys and sells
digital assets across different exchanges to take advantage of
price discrepancies. However, these bots often face challenges
such as high transaction fees (known as gas fees) and the
unpredictable nature of transaction confirmation times, which
can lead to missed opportunities and losses.

In this project, we implement an arbitrage bot using Solidity
and Uniswap V2 protocol and investigate ways to improve
the arbitrage outcome. Our approach involves reducing gas
usage and incorporating mempool information to improve

the bot’s efficiency and reliability. By leveraging blockchain
technology, we demonstrate how our optimized arbitrage bot
can provide significant benefits to traders and investors in the
cryptocurrency market.

This paper is organized as follows. Section 2 provides a
background on blockchain technology and arbitrage bots. Sec-
tion 3 describes our methodology for optimizing the arbitrage
bot. Section 4 presents our experimental results and evaluation.
Finally, Section 5 concludes the paper with a discussion of the
contributions and future directions.

II. BACKGROUND

A. Memory Pool

The memory pool is a data structure used by nodes in a
blockchain network to store unconfirmed transactions that are
waiting to be included in the next block. Transactions are
first broadcast to the network and are then validated by nodes
before being added to the mempool. Once a transaction is
in the mempool, miners can choose to include it in the next
block they mine, depending on factors such as the transaction
fee and size.

One of the main benefits of using mempool data is that it
provides more up-to-date information about transactions that
will be included in the future block. Offchain calculations,
which rely on historical data or external sources, may not
accurately reflect the current state of the network and can lead
to suboptimal transaction parameters. By contrast, mempool
data provides real-time information on the current state of
the network and can be used to adjust transaction parameters
accordingly.

Moreover, using mempool data can help reduce the risk
of missed opportunities in arbitrage trading. Because the
cryptocurrency market is highly volatile and prices can fluc-
tuate rapidly, even small delays in transaction confirmation
times can result in missed opportunities for profitable trades.
By incorporating mempool data into the optimization of an
arbitrage bot, traders can increase the likelihood of successful
trades and reduce the risk of missed opportunities.



B. AMM and Arbitrage

An automated market maker (AMM) is an autonomous
trading mechanism that eliminates the need of a centralized
exchanges for users to trade and builds the foundation of
decentralized exchanges (DEX) [1].

Uniswap is the first platform to use AMM [2]. Many of the
current AMMs, such as Sushi Swap and PancakeSwap (BSC)
are based on Uniswap [3], [4]. Our project focuses on these
Uniswap based AMMs.

We can do arbitrage between these AMMs once the prices
of same token pair diverges on different AMMs. We can
encapsulate arbitrage transactions in one EVM transaction so
that we can guarantee that the price won’t move during the
execution of the arbitrage.

Suppose we want to do arbitrage on token pair ETH/USDC.
The ETH/USDC pair must exists on multiple AMMs on chain.
Assume USDC is the token with actual value we want to get
profit in. We will keep it reserved after arbitrage, while the
ETH tokens will not be reserved after the arbitrage. If both of
the tokens have actual values, we can reserve either one, but
we need to be consistent.

The arbitrage can be done using Flashswap [10] of Uniswap
V2. Suppose pool1 and pool2 are two pools that have the same
two tokens on different AMMs. Once the price diverges, we
can do arbitrage using smart contract. The contract calculates
the price denominated in ETH. Suppose the price of ETH in
pool1 is lower:

1. Borrow x ETH from pool1. The contract need to repay
the debt to pool1 no matter the outcome of the arbitrage
succeeds or not. The debt can be denominated in USDC.
The flash loan must be repaid in the same transaction,
which is enforced by the smart contract. If the we cannot
pay back the money to the lender, the network will reject
the transaction and the lender will always get the fund
back.

2. Sell all the borrowed ETH on pool2. We get y2 USDC.
3. Repay the debt to pool1 using y1 USDC.
4. As a result, we get a profit y2 − y1 USDC.
Our goal is to find x such that y2−y1 is maximized. In the

next section, we show how this x can be calculated.

C. Mathematical Formulation

Suppose initially, pool1 has a1 USDC and b1 ETH, pool2
has a2 USDC and b2 ETH. Then the following 2 equations
must be satisfied in Uniswap,

a1b1 = k1, a2b2 = k2, (1)

where k1 and k2 are constants depending on the reserves in
the pool.

In pool1, we use USDC to borrow ETH, so the amount of
USDC increases by ∆a1 and the amount of ETH decreases
by ∆b1 in pool1. The equation must still be satisfied, so we
have

(a1 +∆a1)(b1 −∆b1) = k1,

(a1 +∆a1) =
k1

b1 −∆b1
,

∆a1 =
k1

b1 −∆b1
− a1, (2)

∆a1 =
k1 − a1b1 + a1∆b1

b1 −∆b1
,

∆a1 =
a1∆b1

b1 −∆b1
.

Similarly, in pool2, the amount of USDC will decrease and
the amount of ETH will increase. And we have

∆a2 =
a2∆b2

b2 +∆b2
. (3)

Since we use all the ETH we get from pool1 to trade for
USDC in pool2, we have ∆b1 = ∆b2. This is equivalent to
x in the previous section AMM and Arbitrage. Also, ∆a1 is
equivalent to y1, ∆a2 is equivalent to y2.

The final profit we get is

f(x) = ∆a2 −∆a1 =
a2x

b2 + x
− a1x

b1 − x
. (4)

We want to find x that maximizes the profit f(x). This can
be done by finding the solution of f ′(x) = 0 and

f ′(x) =
a2(b2 + x)− a2x

(b2 + x)2
− a1(b1 − x) + a1x

(b1 − x)2

=
a2b2

(b2 + x)2
− a1b1

(b1 − x)2
. (5)

Setting Eq.5 to equal to 0 and ignoring the possibility of
denominators being 0, we get

a2b2
(b2 + x)2

− a1b1
(b1 − x)2

= 0

⇒ (a2b2 − a1b1)x
2 − 2b1b2(a1 + a2)x

+ b1b2(a2b1 − a1b2) = 0. (6)

This is a quadratic equation and the solution can be easily
found:

x =
−b±

√
b2 − 4ac

2a
,

where a = a2b2 − a1b1,

b = −2b1b2(a1 + a2), (7)
c = b1b2(a2b1 − a1b2),

with the constraints 0 < x < b1.

And the solution x is the value we need to borrow from
pool1.

III. METHODOLOGY

We implemented the bot in Solidity using the Uniswap V2
protocol following the idea of amm-arbitrageur [8].



Fig. 1. System design

A. System architecture

The system comprises four components: Mempool API
(3rd party service from Blocknative [9]), TypeScript server,
Arbitrage Smart Contract, and on-chain data provider (Web3
connection). The overall system design can be found in Fig.
1.

Mempool API fetches transactions from mempool that affect
monitored pools and simulates the execution of them. It
calculates the net changes in token balances of these pools
after executing mempool transactions. The TypeScript server
is listening to the Mempool API, and on each balance change
event, it calculates whether this transaction creates an arbitrage
opportunity, taking into account the total price of gas the
arbitrage transaction will burn. If current reserves allow for
profitable arbitrage, the TypeScript server calls the Arbitrage
Smart Contract, which atomically performs the arbitrage trans-
action.

In order to understand whether a balance change event is
creating a profitable transaction, the TypeScript server has
to maintain a local balance state of the monitored pools.
However, we cannot use the balance changes from the sim-
ulated transactions as the only means to update the reserve
states. The problem lies in the fact the Blocknative Mempool
API executes simulations of transactions against the state of
previous block. This limitation forces the system to update the
local reserves state using on-chain data every block. That’s
when the Web3 connection comes into play, serving as a
secure data source of the balance data. The problem is further
discussed in section Blocknative Mempool limitations.

B. Blocknative Mempool limitations

The Blocknative Mempool API has a limitation: it does
not take into account the possibility that some transactions
that initially fail against the state of the previous block may
actually succeed if another transaction is executed before the
failing transaction. For example, if an arbitrage bot sends
a transaction Tarbitrage based on a mempool transaction
Tmempool, even though Tarbitrage will fail against the state
of the previous block, it will be successful after Tmempool is
executed.

This limitation causes the Mempool API to report incorrect
net balance changes to the Typescript server, which can result

in the bot sending failing transactions. Malicious actors can
exploit this limitation, which reduces the usability of the bot
to zero.

To overcome this limitation, a custom implementation of a
Mempool API is needed, one that simulates transactions based
on the state obtained after previous mempool transactions have
been executed. However, implementing such an API is outside
the scope of this project.

C. Gas Optimization

We have done three iterations while developing the bot,
trying to optimize its gas usage for sending transactions and
for deploying it to the chain in the later iterations.

1) First Pass: The initial idea was to include all the
calculation (e.g. getProfit which requires the code to solve
a quadratic equation) in the smart contract and have minimum
code in Typescript. The following issues are encountered.

1. There is no native support for floating point numbers
in solidity. We need to use uint256 type to store it
with multiples of 10s and still need to be careful about
overflow. The accuracy may still be low.

2. There is no built-in function for calculating square roots,
so we need to use Newton’s method to approximate the
solution, which could increase the gas usage due to large
number of iterations.

Before any calculation, we need to divide all the a1, a2,
b1, b2 by a large number 10i so that the calculation will not
overflow the 256 bit integer, and we need to multiply this
number back in the solution to get an approximated integer
solution that is close enough to the exact solution.

After the reduction by 10i to avoid overflow issue, there
are several ways we explore to solve the quadratic equation
g(x) = ax2 + bx+ c, with a, b, c defined in E.q. 7:

1. Apply Newton’s method to g(x), and iteratively solve
xt+1 = xt− g(xt)

g′(xt)
= xt− a(xt)

2+bxt+c
2axt+b until xt+1 = xt

(convergence), with initial condition x0 = ±c. Since we
don’t know which root will satisfy the condition, we
need to calculate both from 2 distinct initial conditions.

2. Use the quadratic formula, and calculate the square root
function using Newton’s method, xt+1 = 1

2 (xt +
x0

xt
).

We iteratively solve this until xt+1 = xt (convergence).



Fig. 2. Sequence diagram for performing arbitrage

3. A slight improvement to 2. Instead of non-deterministic
amount of iterations, we exploit the property of 256 bit
integers. To get the square root of 256 bit integers, we
require at most 7 iterations of bit shift (division by 2) to
reduce at most 128 bits for the final solution as is done
in ABDK and PRB math [5], [6].

The results of total gas usages and accuracy can be find in
Table I.

2) Second Pass: We are using Solidity complier 0.8.7, and
SafeMath library for Uniswap V2 together. Since Solidity
version newer than 0.8.0 handles the overflow statements [7],
we can also remove one of them. We find that using the
language built-in overflow check is slightly more expensive,
so we decided to go with the SafeMath library and reduced
the gas usage to 206,970.

implementation accuracy gas usage
of the full arbitrage

1. Naive Newton on g(x) off by 1 X (cannot be deployed,
gas over used)

2. Quadratic formula
naive square root closest integer 284,867

3. Quadratic formula
efficient square root closest integer 210,478

TABLE I
GAS USAGE AND ACCURACY OF THE 3 IMPLEMENTATIONS

3) Third Pass: When we go through the Typescript code
that deploy and trigger the smart contract functions, we find
that several calculations, including the quadratic equation
solver and UniswapV2 functions such as getAmountIn and
getAmountOut, doesn’t have to be in the smart contract. The



system after the modification can be seen in Fig. 2. With this
modification, we reduced the gas usage to 177,700 without
smart contract optimizer, and 173,394 with smart contract
optimizer. We also reduced the gas used for deployment from
4,944,282 to 1,293,338. This also increases the accuracy of the
solutions calculated, since Typescript supports floating points
and can store and apply operations on any arbitrarily large
numbers using the BigNumber library.

IV. EVALUATION

We tested our bot on Ethereum Goerli testnet. Bot was
able to capture arbitrage opportunities that were artificially
created (example arbitrage transaction [12]). The bot was able
to capture the transactions while they were in the mempool,
allowing to capture arbitrage opportunities before they were
recorded on-chain.

We also evaluated the advantage of using the Blocknative
Mempool API by watching 100 UniswapV2 pools on the
Ethereum main net for transactions, limited by the maximum
daily simulated transactions in the free tier of Blocknative. Of
the 152 total registered transactions, 57% were first discovered
in the Mempool before successfully being confirmed later on,
37% were first seen on-chain, and the remaining transactions
failed. Elapsed time between simulation and confirmation can
be seen in Fig. 3. Two transactions with a high delay of 32s and
152s are not shown for better visibility. The median elapsed
time is 8.4 seconds, the average elapsed time 10.6 seconds.
The average time per block is 12.2 seconds as of April 8,
2023 [11].

Fig. 3. Elapsed time between simulation of transaction and its inclusion in a
block. Dashed red line shows average block generation time.

V. DISCUSSION

In this paper, we presented an implementation of an ar-
bitrage bot on the Uniswap V2 protocol using Solidity. Our
system comprises four components: Mempool API, TypeScript
server, Arbitrage Smart Contract, and on-chain data provider.
The bot listens to balance change events, calculates whether

an arbitrage opportunity exists, and atomically executes the
arbitrage transaction if profitable.

Our evaluation of the Mempool API has shown that we
can get a significant time advantage for the majority of
transactions. One of it’s main limitations is that the API
executes simulations of transactions against the state of the
previous block, which can lead to wrong balance changes be-
ing returned and failing transactions being sent. We identified
the need for a custom implementation of a Mempool API
that simulates transactions based on the state obtained after
previous Mempool transactions were executed. However, this
implementation was out of the scope of our project.

We also encountered issues with gas optimization during the
development of our bot. Our initial idea was to include all the
necessary calculations in the smart contract, but this approach
had drawbacks due to the lack of native support for floating
point numbers and built-in functions for calculating square
roots in Solidity. We iterated on our design to minimize gas
usage for sending transactions and deploying the bot to the
chain.

Future work includes exploring alternative Mempool APIs
and optimizing gas usage further. We also plan to evaluate the
profitability of our bot in real-world scenarios and compare it
to existing arbitrage bots to assess its effectiveness. Finally, we
plan to set up a node in one of the blockchains to optimize
bot’s performance. Using our own node would allow us to
have direct access to the blockchain data, bypassing the need
for an external data provider. This could potentially reduce
the latency and improve the reliability of the data, leading
to more accurate identification of arbitrage opportunities and
faster execution times.

REFERENCES

[1] What Is an Automated Market Maker (AMM)? — Gemini.
(n.d.). Gemini. https://www.gemini.com/cryptopedia/amm-what-
are-automated-market-makers

[2] Uniswap V2 Overview. (2020, March 23). Uniswap Protocol.
https://blog.uniswap.org/uniswap-v2

[3] Sushi. (n.d.). Sushi. https://www.sushi.com/
[4] Home — PancakeSwap. (n.d.). https://pancakeswap.finance/
[5] ABDK library. https://github.com/abdk-consulting/abdk-libraries-

solidity
[6] PRB math. https://github.com/PaulRBerg/prb-math
[7] Solidity 0.8.0 changes https://docs.soliditylang.org/en/latest/080-

breaking-changes.html
[8] Arbitrageur https://github.com/paco0x/amm-arbitrageur
[9] Blocknative Mempool Explorer https://explorer.blocknative.com

[10] Wang, D., Wu, S., Lin, Z., Wu, L., Yuan, X., Zhou, Y., Wang, H. and
Ren, K., 2021, May. Towards a first step to understand flash loan and its
applications in defi ecosystem. In Proceedings of the Ninth International
Workshop on Security in Blockchain and Cloud Computing (pp. 23-28).

[11] Etherscan: Ethereum Average Block Time.
https://etherscan.io/chart/blocktime

[12] Example of successful transaction performed by
created arbitrage bot. shorturl.at/dACI4, transaction
0x64d8c25945b618ef3cf38ff617ada11a69f871df94febbbd9019fb5df9336172


	Introduction
	Background
	Memory Pool
	AMM and Arbitrage
	Mathematical Formulation

	Methodology
	System architecture
	Blocknative Mempool limitations
	Gas Optimization
	First Pass
	Second Pass
	Third Pass


	Evaluation
	Discussion
	References

