CSC2310 Computational Methods for Partial Differential Equations

1 Classification of PDEs

There are three kinds of PDEs of interest:
1. Elliptic: Au =0 or V?u =0
2. Parabolic: u; = V3u
3. Hyperbolic: uy = V2u

1.1 Elliptic PDEs

Laplace: V2u =0

Poisson: VZu = f

e.g. Distribution of heat. Let (2 be the domain. The boundary conditions on 952 could be
1. Dirichlet: u = f
2. Neumann: % =g(x)
3. Robin: au + 5% = h(z)

4. Or mixed based on domain.

Consider Laplace’s equation on a rectangular region:

Vu=0

u(0,y) = f(y)
u(L,y) = g(y)
u(z,0) =u(x,H) =

h (nr=z h nal
sinh (272 )/ sinh (™ I({ 2 . Then the solution

The solution is u(z,y) = h(z)¢(y) with basis sinh (“F%) [smh <M(L v )

is

ot H sinh ("m) H / sinh ("—I?)
2 [H . /N7y
An=p | Swysin () d

0

The solution is perfectly stable. i.e. if f, g are perturbed slighly, the solution is also perturbed slightly; the
solution is smoothed out inside the domain.



Suppose we solve:

Vu=0
u(0,y) = f(y)

The solution is
= nwy nmL = nmwy nmx\ H
u(x,y) = ;An S1n (?) cosh <H> + ;Bn sin (?> sinh <?> %

1.2 Parabolic PDEs (Heat Equation)

U = Kgy
u(0,t) =u(L,t) =0
u(z,0) = f(x)

Separation of variable gives:

nm 2
Also, notice if B,, # 0 for some large n, then u; is huge at t = 0, since %e_k(f) t|t:O =—k (%)2

1.3 Hyperbolic PDEs
O2u = cFudu
u(z,0) = f(x)
u(z,0) = g(x)

D’Alembert’s solution:

T+ct —
216/9C g(x)d:):—l—f(x—i_d)—;f(w ct)

u(x,t) =

—ct

If g =0, then f(x) splits into 2 waves with velocity c¢. The wave equation does not smooth out initial data.
It is also not stiff. It’s stable but derivatives blow up when perturbing ICs.

1.4 General PDEs
How to relate general PDE to one of the three types?
AUz + buyy + CUgy + dug +euy + fu=g

Compare 02, 9, applied to f(x) in [~0.5,0.5]. The Fourier expansion of f(z) is

f(.’E) _ iAHGQMnm



Applying 92 multiplies A,, by —472n?. Applying 9, multiplies A,, by 2min.

[—47n? .. 0

0% = 0 —4mn? 0 Ay,
| 0 e —47n?
[2min - 0

Oy = 0 2mn 0 | A,
| 0 cee o 2min
[—47n? ... 0 2min .- 0

02+ 0, = 0 —4mn? 0 I+| 0 2mn O Ap

| 0 e —47n? 0 s 2min

If higher order terms are all that matter, how to classify?
2nd order linear PDEs can always be written as

c%cl r 83: 1
Al
Oxy, oxy,

with A symmetric. For any A symmetric, there is always an invertible P s.t. PT AP = diag(1,—1,0). Let
the number of 1s be ny, number of -1s be n_, number of 0s be ng.

Theorem: 1.1: Sylvester’s Law of Inertia

The set (ny,n_,ng) is the signature of A. It is invariant over all transformation P. If we pick P s.t.
PT AP has the form PT AP = diag(1, —1,0). Let v = Pz, then the PDE is

(a? 02 o 9

.t = - — u + lower order term = 0
B’U% 8v721+ aUn.;,.Jrl 8vn++n>




2 Finite Difference Method

If we want to solve PDE numerically, we need to somehow represent derivatives. One such way is finite
difference:

fle+h) - flx—h)
2h

d
%f (z) ~
Consider the Taylor expansion:

f(
2

Flo =) = f(@) ~ hf' @)+ T 4 o)

Then %f(a;) ~ f'(z) + O(h?)

fle+h) = f(@) - hf'() + T 4 om?)

There are two sources of errors

1. Truncation error (mathematical error): O(h?) remainder.

2. Cancellation error (floating point approximation error): %, where € is the machine precision. o(z) =
x(1+e€).
(m) . . - . .
If fT,(x) ~ 1, total error is approximately E(h) = & + h?. The minimum is achieved at —5z +2h=0or

h=¢/3. E(e/?) = 2¢2/3 ~ 10710 for e ~ 101 (typical machine epsilon).

Suppose the truncation error is O(h™), we get E(h) = ; + A", the minimum is achieved at h ~ emTL,

so E(h) ~ em+1. A small perturbation R(z) + d(z) (§(z) = esinwx for example) will significantly change
i (R(z) + 6(x)).

What kinds of FDs can we take? Consider a 3 x 3 grid, 8f0° = & (fi.0 — f-10) + O(h?). é?mfg; =
gz(fin—fin = faa+ fa-1) + O(h?).

2.1 Heat Equation

Suppose we want to solve %7; = k‘g %, where k is diffusivity with w(0,¢) = u(L,t) = 0, u(x,0) = f(z). For
2 s
LZx.x < I

simplicity, L =7, f(x) =™’ 5 2 . Then the Fourier series is
2 — ;SE, xr > %

u(x,t) = ZAm sin(mzx)e _kmzt

A, = / f(z) sin(mx)

oo
—1)"™. Easy to see that Z |Ap,| < .

m=1

FOI'm>1,Am_m(

Place a grid on the domain with increments Ax and At, with x = jAx and ¢t = nAt, j = 0,1,...,J.
Consider the grid/mesh functions: let v} = u(jAz,nAt). Write

n+l _ n n o _ n n
u; [ _kujJrl 2uj +uj_y

At B (Ax)?




Apply BC by setting ug = 0,u; = 0 and IC uQ = f(jAx).

Consider 0 A )2, the larger the value, the worse the approximation. Reducing Ax and At may help.

1. Stability: what happens to uy — u(jAz, nAt)‘ as n — 00?7 Whether it stays bounded.

uj —u(jAz, nAt)‘ as Ax, At — 07

2. Consistency: what happens to

Stability:
Suppose we substitute u(z,t) = sin(mx)&(m)™ into the finite difference scheme.
sin(mjAz)(E(m)" T —&(m)") ksin(m(j + 1)Az) — 2sin(mjAz) + sin(m(j — 1)Ax)
At (Az)?
( Split sin(m(j + 1)Az) and sin(m(j — 1)Az))
sin(mjAx)(&(m) — 1)§(m)™  sin(mjAx)(cos(mAzx) — 1)

At - (Az)? §m)”

§(m)"

2kA
€(m) = Tpyzlcos(mAa) 1) +1
— Z Ay, sin(mjAx)E(m)"

m=1

For actual solution to the heat equation, £(m) = e~km*A Compare the Taylor expansions:

&(m)=1- (2§A)t2(1 — cos(mAz)) =1 — m2kAt + %m‘lk‘At(Ax)Q +
x

1
e FmPAL — 2k AL + §m4k2(At)2 +

For solution u} to stay bounded, need max |€(m)| < 1, equivalently, |1 — (QKA)’; (1 — cos(mAz))| < 1. Since

1 — cos(mAz) € (—1,1), we need (QkA)t > 0 to be bounded. = 1 — (‘fﬁ)t > —1, so (QAkﬁ)tg <1

u(z,t) is always bounded, so error is bounded if and only if uy is bounded.

Consistency:

Suppose we have (QKA)’; = L for Az = M At = %2’5, then (QA]“JCA)t L. Now we show that if L < 1, then

[uj —u(jAz,nAt)| — 0 as k — oo.

Proof. Recall that

t) = Z Ap, sin(mx)e*km%

uy = Z Ay, sin(ma)&(m)"

m=1
Then
uy —u(jAz, nAt) Z Ay, sin(mz)(&E(m)" e*ka”At)

3" Apsin(ma)(€(m) — e LS A sin(ma)(g(m)” — eFnnat)

m=mo-+1



Choose mg big enough s.t.

)
€
Y1 <2 Z ‘Am‘<§

m=mo+1

mo
Now we bound ¥; = Z Ay sin(maz) (§(m)" — e_km%m): Since a” +b" = (a—b)(a® L +a"2b+---+b"71)
m=1

and [€(m)] < 1, [e Fm*ndt| < 1,

é—(m)n _ e—kanAt‘ < )é(m) _ e—kaAt mn
1
E(m) =1 —km2At + Em4kAt(Ax)2
1
e FmPAL — 1 2 At + §m4k2(At)2

Since (Ax)? = %At, we get |£(m) — e P A < nA(At)2B for some constant B.

mo mo
S1< Y m* (AL’ Bn|Ap| < mitAtB Y | |Ay|
m=1 m=1

Take At small enough s.t. ¥1 < §.
Therefore X1 + Y9 < €. O

Implicit Equations:
Let 0f; = f((j + %) Az)—f((j - %) Az) so 6% f; = f((j +1)Az) —2f(jAz) + f((j — 1)Az). Take a new
finite difference scheme:

u?“ —ul B k@(ézu);-”“l +(1- 9)(52u)?

At (Ax)?

with 6 € [0,1]. If # = 0, we have explicit scheme. If § = 1, we have implicit scheme.

Substitute u(x, nAt) = sin(mx)&(m)"™ into the new FD scheme, get {(m) = 1_1%;2)(%&1;5(0;1(2?;)).

For § > %, [¢(m)| <1 for any Az and At. The method if unconditionally stable.

2.1.1 Error Analysis

Local truncation error

7 i : . . Ty u”,  —2u"+u”
Suppose u(z,t) is the exact solution to the PDE. Substitute into ~—7;—L = k- B =1
~ ~ 2\ " 5
W+ (50) A+ § (5E) (AP O =@ ponn 1 rge s 2
LHS = A7 - ((%)j +3 (W>j At + O(At?)
?u\"  k ota\"
RHS = A2 (22 O(Az
( x2>j 128 <6t4>j+ (Az%)
Note (842);1 =k (gi’;‘)n, since u(x,t) is the exact solution. The remainders are the local truncation
error J
1, (0%a\" &k oa\"
LTE = At - —(Az)? (=5 O(At?) + O(Az*



Global Errors: Let € = uj —uf, then

vl en € 1 — 2e" + €
J Jo_ it J__ 97 L 1TE
At (Az)? !
e - kAL
AR 3 (& = 26 +61) + O(AF) + O(Aa”At), wherel = (Az)?

L L
G = S+ =D+ 56 + O(A) + O(Ax?At)

If L <1, then max
J

egﬂ‘ < max|ef| + O(AF) + O(As”At).
Since e? =0and n = ﬁ,

max |e}| < n(O(A1) + O(Az?At)) < tH(O(AL) + O(Az?))

Definition: 2.1: Stability

Contributions of local errors stay bounded as grid size — 0.

Definition: 2.2: Consistency

LTE— 0 as Az, At — 0.

Theorem: 2.1: Lax Equivalence Theorem

Stability + Consistency < Convergence

Improving LTE:
Notice in the formula for LTE

Choose (2%2 = %, then the first two terms cancel. This is called compact finite difference scheme.

However, this is typically not used in practice, due to lack of robustness.

2.1.2 Rate of Convergence

Theorem: 2.2: Convergence of Fourier Coefficients

1 s
If f € CP([0,7]), the Fourier coefficients A,, = / f(z)sin(mx)dzx decay to zero like A,, =
0

™
O(#) as m — o0.

Earlier, we have the bounds:

- 1
Yo <2 Z |Am|zo<mp>
0

m=mgo+1
mo C1m0 PAt,p <3
o< Y m*(At)’B |A | < CoBtAt Z mA P~ < { Oy log(mo)At,p =4
m=1 m=1 C3At,p>5



For p > 5, the sum ¥; + X5 decays following ;.
To minimize X1 + o when p < 4, need to choose optimal mg, which turns out to be O (At_i).
Assuming At oc (Az)?,

O (A4 = O (AxP/?) ,p < 3,

Y1+ 32 < S O (At]log At|) = O(Az?|log Az|),p = 4
O(At) = O(Az?),p>5

Proof. For p < 3. The error term is E(mg) = mé_pAt + mg?.
To find the minimum, E’(mg) = 0.
méfpflAt - mapfl =0

= mo = (At)"T

2.2 Equilibrium Heat Equation

Consider the heat equation:

ou_ o
ot Ox?
u(0,t) = a,u(1,t) = B,u(x,0) = g(x)
Let Q(z,t) = —f(x). At equilibrium % = 0. This gives a Poisson equation:
0%u

The general form in high dimension is %—? = V2u + Q or V?u = f(x) for equilibrium. The numerical form

is:
Uj—1 — 2u5 + Ui

(Az)?
where u; ~ u(jAz), fj = f(jAZ), up = @, umy1 = B

fiforj=1,2,..m

Let h = Az. We get AU = F, where

-2 1 0 0
1 1 -2 1 0 ul f1
—2 1 Um Fr
0 1 -2
Ji— 2
To deal with BC, F' = :
fm - %
This comes from % = fi.



To compute the LTE (7;), substitute @(jAx) into the finite difference formula, and apply Taylor expan-

sion.

aj,1 — Qﬂj + ﬂjJrl
h2

Consistency: 7; —+0as h — 0

Stability: Since AU = F, we have U = A™'F. Thus ||U| < ||A~!]| ||F|

Let E=u—1, AE=A(u— @) =—7,s0 E=-A" 7 |E| < || A7 |I7]l-

Since ||7]|,, = O(h2), 7], = O (%) ~0 (hi)

If HA_lH <cash—0,then |E| < CO <h%), so consistency and stability = convergence.

T =

_ o h?
— f; = 0% + 50" + O(h*) — f; = O(h?)

2.2.1 Closer Look at Stability

Since A is symmetric, ||Al|, = max |)p|, where A, is the p-th eigenvalue.
p

Suppose that u? = sin(pmjh), u; = u(jAzx).

(AuP); = sin(pr(j — 1)h) — 2sin2};7rjh) + sin(pm(j + 1)h) _ %(cos(pﬂh) 1) sin(prih)

S0 A\p = h%(cos(pﬂh) —1), where p<m, h=0 ( ) When ph = 1, we get minimum.

1
m

p27r2h2

2
cos(prh) — 1= — +O(h*p*), Ny = ﬁ(cos(pﬂh) —1) = —7?+ O(h?)
|\p| increases w.r.t. p. Take p =1 to get \; ~ —7% + O(h?).
Eigenvalues of A~! are Ay ! so the order will reverse, \)\fl| will be the largest.

1| 1
A | T w2

|1E|l, < vm|El|,=0O(h). To get a bound on ||E||_, we need to construct or approximate A~1.

True eigenvalues and eigenfunctions are @?(x) = sin(prz) and )\Np = —p’n?, HA_1H2 <

For % = f(x) with w(0) = a,u(L) = B, the Green’s function G(x,x) satisfies dd—;G(x,:L‘g) = 0(x — xo)
and G(0,z9) = 0,G(L,x0) = 0.
bx,r < g

Notice that dd—QQG(a:,:cg) =0 at all z # xo, G(0,20) = G(L,x0) = 0. Thus, G(x,z9) =

v d(x — L),z > xo
Since we require %G(x, xg) = 0(x — xg), integrating both sides, we get %G = H(x — ) and G must be
continuous.

d—b=1
Solve for b and d, . This gives:
bl‘o = d(.’L‘o — L)

—Z(L—x9),z <z
G(CIT,Jjo) :G(ﬂfo,l’) = 50( 0) ’
*T(L*CC),CL'>(EO

1 -
= 1 . . 1 . .1
i(x) = . Write F' = (0, ..., +, ...,0), where ith row is +.
fi(@) {O, otherwise ( h ) h
U = A~'F is the ith column of A~', multiplied by %

Recall that }llir% fn(z) = d(x — ). Let @ be the true solution. As h — 0, fr(z) = G(x,xo).
—

We might think that %U — G(jh,xp), but fy is changing as h — 0.

. _2 + . . . . _2 + .
Recall W5y T04L — () for 4 # j, US4 = f(z) = 7.
For j # i, the differential relation has two solutions u; = 1 and u; = j.



Atj=i, (U - mea) < L
— (L —x4),7 <
By inspection, U; = G; ; = L ( Z)’j_ -
(L)) >

AE = -7 =(0,...,¢,..,0), E=¢hG;,; = ZthTi = O(mh|7| ) = O(|]
i=1

o0)

2.3 Elliptic Equations in 2 or More Dimensions

Consider g% + 32772* = fon Q with u = 0 on 0. Let z; = iAx,y; = jAy:

o Wimly = 2Wij + Uitlj | Wig—1 = 2Uig F Uil
Viu= A2 + Ay? = fij
Typically, we have Az = Ay, so we have a 5-point stencil.
Let ul) = (ug j, ooy )T, u = (u®, . )T
[T 1 0 0 O] (4 1 0 0 0]
I T 1 1 —4
A= |o with T'= |
: T I R —4 1
0 0 0 I T 0 0 1 -4

Let N = m? A € R¥*N | the band size (# of foward and backward pass in Gaussian elimination) is
d = v/N = m. The cost of Gaussian elimination is O(Nd?) = O(N?) = O(m?).

It has been proven that the best possible cost of a direct method for Poisson in 2D is

O(m3) = O(N3/2).

Actually, best possible cost for d-dimensional problem is O(N 1+é), where N = m¢,

The 9-point Laplacian Stencil:
2

h
Viu = Viu + 15 (Waaae + 2ty + Uyyyy) + O(h)

In the bracket, it is equivalent to V2(V?u) = V2f. Since we have f, we can just add a correction to RHS
to cancel 2nd order term and increase to fourth order.

2.4 Iterative Methods
Suppose we have a system Az = y. Define F(z) = 2Ty — 27 Az, VF(z) = 0 solves Az = y.
Gradient descent is xy,+1 = 2, — aVF(xy,).

Conjugate gradient: gradient descent + orthogonalization w.r.t. (z,y), = T Ay where A is p.d.
Convergence depends on the condition number x(A).

The error is |le,|| < 2 (1 - Q(A)> lleol|. After O(\/k(A)) = O(m) steps, e, will be small.

The cost of multiplication is O(m?). Total cost is O(m?) = O(N3/?). In d-dim, it is
O(md+1) = O(N”é).

10



Figure 1: 5-point and 9-point Laplacian stencils

P

2.5 Non-rectangular Domains

Suppose we solve V2u = f on Q with u = 0 on 99, and Q is non-rectangular. In 5-point stencil V5, some
points (at most 2) may be out of the region. If more than 2 are out of region, then finite difference will

fail.

Figure 2: Non-rectangular Domain

0<1 <1,0<7, <1 Apply Taylor expansion:

92 (Ax)? (T n 1u(ajo — Azx) — ;u(xo) + mu(axo + TAm))
d%u 1 )
= W(Q:O) + 5(7— - 1)uxazz($0)Aﬂ7 + O((ALL’)

As soon as the symmetry disappears, the first order term appears, and we lose second order convergence.
It is possible to show that after we extend as in Figure [2] we get back second order convergence:

0%u 1 r—1 22 -7 3—7 6
78I2 = (AT)Q <7HU($0 - 2Al') + S"F].)U(x - ZL'Q) + - U(SC()) + 7_(7_ + 1)(7_ + 2)u(x0 + TA:C))
2u
= O3 w) + O((Aa)?)

11



Finite difference requires regularity of the domain. Some smooth transformations may be required for
finite difference to work nicely.

12



3 Direct and Iterative Methods

Definition: 3.1: Fill-in

Fill-ins are entries of L, where LLT = A, not appearing in A. Some orderings are better than others.
Finding the optimal permutation P s.t. LLT = PAPT is NP-hard.

Optimal cost of a direct solve for Poisson’s equation in 2D is O(N %) where N = m?. Optimal fill-in for

Cholesky factorization of a tri-diagonal matrix is O(N log N), A = LT L. In general, for a m? grid

3(d—-1) 2(d-1)
d

and optimal fill-in is O {N d }
Nested dissection provides optimal ordering that achieves the above bounds.

problem in d-dimensions, optimal cost of direct method is O ( N

Iterative methods typically have complexity O (N 1+%) when d = 2 or 3, they are about the same as
directly methods, but typically have larger constants.

3.1 Sparse Direct Solvers

Sparse matrix data structure (triplet form)
1. 4[] = {i1,1i2,...}, row index
2. jl1 ={J1, o, ...}, column index
3. X[]={z1,x2,...}, entries

They represent a matrix with (7, j)-position of value X, we only store non-zero entries.

Compressed-Column form:

1. p[] = {p1,p2, ...}, stores the number of non-empty cells in each column (or prefix sum of it),
length= #columns

2. 4[] ={i11, ..., 41py » 921, ... }, stores the indices of the non-zero entries in each columns,
length= #non-zero entries

3. X[], entries

The cost of accessing a column is O(1).

Sparse triangular solvers:
Let A be a large triangular sparse matrix with nonzero diagonal. We want to solve Ax = b for x.Back
substitution:

by
A1 =b1 = 21 = —
1171 = by A
by — Ao
Ag1my + Agowg = b2 = 29 = — 1 21
22

Consider Lz = b, where L = i 0 Jli €R, Iy e RV=DxXL 100 € RIV-DX(N=1) g — 1 ,
lor Lo T2

b
b= [bl], z1,b1 €ER, z9,by € RN-L,
2
We can solve recursively 1 = l%’ Looxo = by — lo1x1, where Loo is the same structure as L.
The cost of Algorithm [1}is O(n + f), where n is dimension, f is the number of floating point calculations.
For dense b, f ~ |L|.

13



Algorithm 1 Sparse Triangular Solve Dense x

1:x=b
2: for j=0:n—1do
3wy =i/l

4:  for each i > j where [;; # 0 do
5: XTi = T; — lijxj
6: end for
7: end for

Suppose z is sparse, we modify the algorithm as in Algorithm [2 The cost is still O(n + |b| + f), where |b]
is the sparsity of b.

Algorithm 2 Sparse Triangular Solve Sparse z
1:x=b
2: for j=0:n—1do

if x; # 0 then

4 zj = xj/lj

5 for each i > j where /;; # 0 do

6: T =T; — lijxj

7

8

9

w

end for
end if
. end for

We use n sparse triangular solves to factor A = LLT. A generic algorithm will require O(n?). To improve
from O(n + |b| + f), suppose we know in advance the set X = {j : z; # 0}. Then we modify to
Algorithm 3| The cost is now O(|b| + f).

Algorithm 3 Sparse Triangular Solve Sparse  Improved
1:x=b
2: for j € X do
3wy =i/l
4:  for each i > j where [;; # 0 do
5: T =T; — lijx]‘
6: end for
7. end for

Reachability: How do we determine X7
Non-zero entries of x follows two rules (without potential cancellation effects):

1. bi#02>$i750
2. 37]750/\31@”750)?.%750

This can be described as Graph traversal problems:

Let Gr, = (V, E) be a directed graph with V = {1,2,...,n}, E = {(j,%) : l;; # 0} (non-zero entries in j
propagates to ¢ > j) G is acyclic by construction. We want to mark all nodes in X. The following rules
apply:

1. Mark i € B={i:b; # 0}
2. If j is marked, and (j,4) € E, then 7 is marked.

14



Let Reach(B) denote set of all nodes reachable from i € B by paths in Gr. Then X =Reach(B). This can
be done by DFS. Cost is O(|V| 4 |E|) where V and E are the vertices and edges the algorithm visits.
Each edge corresponds to a required floating point operation, so the cost is O(|z| + f) = O(|b| + f).

DFS does not return a sorted array X. We don’t want to sort it because we don’t want |z|log |z| cost.
However, DFS returns X in topological order. i.e. if (j,i) € E, then i must appear after j in X. Since we
only update X; when we have a j s.t. (j,7) € E and x; # 0, we will always have applied all updates by
the time we get to x;.

Note: DFS does not give the exact set X, it gives X O X. Also, some topological orders may not be
valid. A simple modification is by prepending node n to list only after considering all other nodes that
depend on n.

3.1.1 Cholesky Factorization

Ly 0}

Suppose A is symmetric and positive definite, we want to find L s.t. LLT = A. Let L = [lT ]
12 22

Ly € RO=DX(=D 150 € R, 13 € RO-DXL)
[Ln 0 ] [L1T1 512} _ {An a12:|
I o] | 0 a2 aly as
L11LlT1 = A11, Li1li2 = aj9, sparse with |a12| = |l12] < n. Call the algorithm recursively until Li;
becomes a 1 x 1 matrix and it is easy solve backwards.

Every triangular solve has cost O(|a12| + f), so it is possible to achieve O(N).

The elimination tree:

Suppose we solve Li1l12 = a12 using sparse triangular solve. Let £, be non-zero pattern of l12,

L}, = Reachg, , (Ag), where Gj_; is graph of L{l and Ay, is non-zero pattern for kth upper column of A.
We can do DFS on Gj,_; and get a cost of O(|L| + f), but we can also do it in just O(|Lg]).

It turns out that for a Cholesky factorization LLT = A, i < j < k A lii # 0Nl # 0 = l; # 0. This
implies that the graph Gj_1 can be pruned so that each vertex has only one outgoing edge.
V]~ |E|.

Generally, the matrix we work with for elliptic PDEs are symmetric positive definite. For non-symmetric
A, we have the LU-decomposition LU = A. For direct solvers, this only adds a constant factor to the
asymptotic runtime.

3.2 Iterative Methods

Suppose we want to solve Ax = b, we will approximate x by x,, in the affine subspace zg + K, of
dimension m and enforce the condition on residual b — Ax,,, L L,, for another affine subspace L,,. The
methods discussed are Krylov subspace methods: Let rg = Axg — b,

K, (A, rg) = span {To, Arg, ..., Am_lro}.

3.2.1 Conjugate Gradient Method

Suppose A is symmetric positive definite. Let £,, = K,,. Then x,, satifies b — Ax,, 1 L,, if and only if
Ty, minimizes the A-norm ||z, — z|| 4, where b — Az, = 0 and ||z|| , = 2T Az. This is equivalent to
Tm € 7o + K, minimizing F(z) = 27 Ax — 22Tb. (Note VF(x) = 24z — 2b)

Overall idea of the procedure:

1. Start with an initial guess zq
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2. Compute residual r, = b — Axy,

k=1 {pisra)a -

3. Pick a search direction py, =, — >, (pipi)y Pi

W

. Let 511 = xo + Z?:o a;pi, pi € K;. We want V(b — Az, 1) = 0, where V = (po|p1]...|px)-
. Choose a; s.t. (A(zs« — xp41),p:) =0, fori=0,1,....k

t

(A(zs — Th41),pi) = Pr A(Tpg1 — 32) =0
pz'TA»TkJrl = pz‘Tb

k
p} Ao +pl Y iApi = pl'b
i=0

but p;, p; are orthogonal
aip; Api = p; (b — Axo) = p] ro,

T
p; To

pl Ap;

k3

SO (; = and we only need to update «; at step 1.
6. Set xpyr1 = T + Dk

7. Residuals are orthogonal: (rj,r;) =01if i # j

Proposition: 3.1:

Suppose A is PSD. Let £,,, = K,,. Then z,, minimizes ||z, — x|, where b — Az, = 0 if and only if
b— Ax,, L L., = K,y,.

Proof. Suppose M C R™ is a subspace and let € R™, then mlj\r} |z —ylly = |z — y*||y if and only if 1)
ye
y*eMandx—y* L M.

For z € zg + K, to minimize ||z, — z| 4, over z we need Z € z9 + K,, and 2, — 2 L4 K,,. In other words,
(v, —3)T Av = 0 for all v € K,,.

= (Az, — AD)Tv=0= (b— A%)Tv =0V € K,,

Proposition: 3.2:

The vector x,, satisfying b — Ax,, L K,, if and only if it minimizes F(z) = 27 Az — 227b over
T € 2o+ K.

Proof. From Proposition we know that z,, minimizes ||z, — z|| 4, over x € zg + Kpy,.

2w — 2]l 4 = (22 — 2)T A(2s — 2) = (Azy — A2)" (24 — )
= (b—Azx) (2, — x)
by, — 2T Az, — b 2+ 2T A = b2y —2Tb— 0T+ 27 Az

=C+ 2" Az — 22"

For some constant C', and the constant does not affect the minimizer. O
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Proposition: 3.3:

(rg,pi)a =0foralli=0,1,...k — 2

Proof. Note we choose xy s.t. (A(zs —zk),pi), =0 fori=0,1...,k.
i+1
Recall that p; € K;. Thus Ap; € K;1. There exist constants p1; s.t. Ap; = Z'“jpj‘
§=0

i+1
(ks pi) 4 = (Ths Api) = <rk,2ujpj> =0
Jj=0 A

ifi+1<k—1lori<k-—2. O

Proposition: 3.4:

Proof.
k—1 k—1 k
rp=0— Az =b—A (mo + me) =b— Ao — > aiAp; =Y p;p; € Kipa
i=0 i=0 j=0
Since (ry,p;) =0 for j <k —1, then
(rg,ri) = <rkz,ujpj> =0fori<k-—1
j=0

Same for i > k+1 O

Remark 1. p;s are A-orthogonal, r;s are orthogonal.

Algorithm 4 Conjugate Gradient
1: Start with zg
2: Compute rp, = b — Axy, po = ro
(Pk—1,Tk) A
(Pk—1,Pk—1) o
<pk?7 ’I"()>
7\ Pk
(Pks Pk) 4

3: Set pp =1 — Pr_1

N

: Set xpy1 =z +

5: Repeat n times

Total runtime of Algorithm [4|is O(nN), where N is the size of A, A € R¥*N_ We may lose orthogonality
as we progress. In the worst case, instead of converging in n steps, it will take approximately 3n

steps.

3.2.2 Generalized Conjugate Residuals

Consider finding z,, € 29 + K, s.t. b — Ax,, L L,,. Now, instead of setting £,, = K,,, we relax it to
Ly = AK,,.

17



Proposition: 3.5:

Suppose A is nonsingular. Let £,, = AK,,. Then x,, minimizes ||b — Azy,||, if and only if z,,
satisfies b — Ax,, L L.

Proof. Suppose z, € xg + K, minimizing ||b — Az, ||,
This is equivalent to Az, = zp, — 29 € Ky, minimizing ||b — A(xg + Azp,)|l5 = |10 — AAzy, ||, over
Az, € K,

| s
& a0 = Al

Thus AZ,, € AK,,, 1o — A%y, L AK,,, & xp, € 29 + Ky, b— Axyy, L AK,,. O

Algorithm 5 Generalized Conjugate Residuals
1: Start with zg
2: Compute 1, = b — Axy, pg = 1o

k—

[y

. . <Api, ATk;) . .
3: Choose search direction py = rp — —————p,; and orthogonalize (pg, p; =0forj<k-—1
P Z; s Apn) P g Dy Ds) 47 2 j
k
4: Set Tk4+1 = To + Zaipi s.t. <A(xk+1 — x*), Api> =0 fori= 0,1,....k, p; € Ki+1
i=0

Algorithm [5| works for non-symmetric matrices.

Proposition: 3.6:

If AT = A, then (ry,p;) 44 =0 for i <k —2

Proof. Choose zy s.t. (A(zs« —x1), Ap;) =0 fori=0,1,....,k — 1 for b — Az,, L AK,,. Then
Api = 750 wipj.

i+1 i+1
(ks pi) am 4 = (AT, Api) = <Ark,ZMij> = <Tk,ZNjAPj> =0
=0

J=0

ifi+1<k—lort<k-—2. O

Proposition: 3.7:

(ri, Arj) =0 if i # j (residuals are conjugate)

Proof.
k—1
r,=b—Ax,=b—A (wo—l—ZaipZ—)
i=0
k—1
=b— Axg — Z%’Api
i=0
Since (ry, Apj) = 0 for j < k — 1, it follows that (r;, Ar;) =0 for j < 1. O
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Remark 2. p;s are AT A-orthogonal, ;s are A orthogonal.

Now, we have a method that minimize ||z, — 2y,|| 4 for symmetric positive definite A and a method that
minimize || Az, — b||, for any A. For k iterations, O(nk) for conjugate gradient, O(nk?) for generalized
conjugate residual.

3.2.3 Arnoldi’s Method

Suppose we want to construct K,,(A,v;) = span {vl,Avl, ...,Am_lvl}. Choose v1 € R™ s.t. |lv1]| = 1.

Set w; = Av; and orthogonalize w; to v1,...,v;. Set vj11 = quﬁ We get vy, v, ..., vy an orthonormal
basis for K,,(A,v1).

Let Vi, = (vi|va| - -+ |vm). AViy = VinHyp + wpel for a m x m upper Hessenberg matrix H,,, and
wmel = ||wml|| Vimy1el, is something that cannot be represented due to orthogonalization.

Full Orthogonalization Method:
Suppose we want to find x,, € xg + K, (A,19) s.t. b— Az, L K.

Set v1 = H:TOHQ and 8 = [|ro|ly. We have x,, = o + Vinym, where y,, is some coefficient vector.

Tm =b— Azp =b— A(zo + Vinym) = 10 — AViym

Thus b — Ax,, L K,, is equivalent to V":C(ro — AVpym) =0 & V;;fro — V;;CAmem =0.
Since 79 = Buy, we get V.I'rqg = V.I'Buy = Bey. Also, VI AV, = H,,, so Be1 — Hyym = 0, and
ym = H'Be;1. If Ais symmetric, then H,, is triangular.

GMRES (Generalized Minimal Residuals):

Again write AV, = VinHp + || wm || Vins1€L, = Vi1 Hpn.
We want x,, € o+ K, (A,19) s.t. b— Az, L AK,,.
Let v1 = H?"TTOHQ’ B = rolly-

rm=b—Ax, =b— A<x0 + mem) =To — Amem

The optimality condition is equivalent to minimizing 7, in ||-||;-norm.
Multiplying Vn?—&—l projects ry, onto Vi+1, 7o € I&H, AV, € Ky
We get Vr{—kl(ﬁvl) - V7£+1Vm+1Hmym = Bel - Hmym

Minimizing Hﬁel — HmymH2 is a (m 4+ 1) x m least square problem.

3.2.4 Convergence of Conjugate Gradient

Recall that conjugate gradient minimizes ||z, — z|| 4 over =, € z¢ + K,,. We have x,,, = x + ¢m(A)ro,
where gy, is a polynomial of order m — 1. Let P,, = {polynomials of order m}.

s = 20 = gm(A)rolly = min lz. —z0 — g(A)ro] 4
qEPm—l

Let dy = x, — xo, rewrite 7o = b — Axg = A(A7'b — 20) = Az, — 29) = Adp. It is equivalent to
ngin |do — Aq(A)do|| 4. Also let rp,(A) =1 — Agm(A).
qEFm—1
[z = zm 4 = (1 — Agm(A))dol| 4 = in (I = Aq(A))do|| 4

I A)dolly = _min _ [Ir(A)doll

ot (0)=

19



If A is symmetric p.d., then we can always diagonalize it, writing A = UDU*, with U orthonormal, D
diagonal. Then T(A) = Ur(D)U* = Udiag(r(\;))U* and UA*U* = (UAU*)*. Then

r(A)do| = Z Air(Mi)2€2, where & are components of dg in the basis uy, ..., . Thus

|rm(A)do||3, =  min ZM

r€Pn, 7’(0

n
Note Z)\Z@Z = HdOH?m SO
i=1

mln Z Air( min max r()\)2 ||d0||?4

7€ Pp,m( B T‘EPm,r(O)zl AE[A1,An]

This provides an upper bound of ||z, — x| 4.

Spectrum of A~! is /\1 and we are trying to approximate A~! by p(A) where p € P,,_1, whose spectrum is
p(N), L —p(n) == *;“ V= ) 1)) € Py, and 7(0) = 1.

L Ty(142iE
General Form:  min  max [p(t)|, it is minimized by T} = k(iﬂ:g), where T}, is the Chebyshev
PEPyp(7)=1 t[a,f] Ty (1+23=2)
polynomial of degree k.
Minimum at T}, is thus ——————. Let v =0, a = A1, A, M= . Then
k ‘Tk(l-i-?g:ﬁ)’ Y= 1L, B=A, = >\

s~ mlla < gy o = woll <2 (VR0 — o]
Ty —T < ————— |z — 2|4 L2 | Y—=—=— Ty —T
AT T (1 + 2n) ol Vr(A) + 1 ol
Note that number of iterations m will typically be small for a good convergence. m = O(y/k(A)).
It is possible to show that for conjugate residual ||7,[l, < 2 ( Eﬁgj&) 1] Irol,. Convergence rate is half.
It will have m = O(k(A)) iterations.

3.3 Classical Iterative Methods

We use V' to denote approximated solutions and u to denote exact solution. Let e = u — v be error and
r = f — Au be the residual. Notice that Ae = r.

Jacobi Method:
Consider the finite difference matrix for the 1D BVP —u” = f:

—uj_1 +2u; —ujyr = hAf5,1<j<n—1ug=u, =0

Suppose we only solve part of this system at each step:
Take v®) and solve for v**1) by the equation

E+1 1/ & 2 -
v](. )=§<v§_)1+v§+)1+h2fj)a forl1<j<n-—1

(k+1)

If eventually v*) ~ v , v solves the problem.
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In matrix form: let D = diag(2), L and U represent lower /upper bands, then A =D — L — U and we
have

(D-—L-U)u=f
=Du=(L+U)u+f
Do) = (L + U)o® + f
o* D) = DY L+ UW® + D f

Ry = D YL+ U) is the Jacobi iteration matrix.

Weighted /Damped Jacobi Method:

k+1 k w k .
v§+):(1—w)v§-)+§(§)1+vj(+1+h2fj> for1<j#n-1,0<w<1

In matrix form:

O [(1—w)I—i—wRJ]U(k)-FUJDilf,Rw = (1—’11))I—|—U)RJ:I_%A

In Jacobi methods, we have to solve for all v(*) before we can solve for v(k*1)

Gauss-Seidel:
Suppose instead, we do:
k+1 k+1 k
ol = 2( e ) 1< <n -,
. . (k+1)
1.e. use updated value at previous step ]
In matrix form:

(D—Lyu=Uu+ f=v*) = (D - L) 0™ (D - L)Yy

in the same iteration, for potentially faster process.

Define Rgs = (D — L)~'U, the Gauss-Seidel matrix. If we switch the order back and forth (ascending to
descending), then it is called the symmetric Gauss-Seidel.

Red-Black Order:
k+1 k k k+1 k+1 k+1

vy T = =5 ( 51+ V5 +h2f2j)3 v = 3 <v( Do)+ h2f2j+1)
Once we solve vg ]H) all equations in the second part are independent and can be solved in parallel.
3.3.1 Convergence
Consider v+ = Ry(®) 1 ¢ where the exact solution satisfies u = Ru + ¢. Let e®) =4 — v(*),
elF D) = Rek) e(m) = Rme(0) 5o He(m)H — 0 if |[R™|| = 0, so we need p(R) < 1 (max|\;| < 1)
For the specific finite difference matrix A

Ap(A) = -2 (COS <%) —1> = 4sin® (]20%) ,Up,j = sin <p77;j> ,1<p<n—-1,0<j<n
Mp(Ry) =1— %AP(A) =1 — 2wsin? (g—;) ,

Small p gives A\p(Ry) — 1, error does not shrink much as time progresses. Large p gives A\,(R,,) — —1 at
speed depending on w. To make maxz<,<,—1|Ap([2w)| as small as possible, we require

Anj2(Ryw) = An—1(Ry), which gives w = 2 and |Ap| < £ on [%,n — 1]. Factor of 3 is scaled (smoothing
factor).
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4 Multigrid

Let Q" denote a mesh with mesh size h, A\; ~ 1 — wTﬁhQ, so bigger h means error converges to zero faster
everywhere. We can use coarse grids for low frequency in the original problem.

h . (PT2) . (p7] 2 ._n
Up,Qj = Sin <n> = Sln <n/2> = Up,j’ 1 S ] < 5

We can move to coarse grid (low frequency) by adjusting the eigenvectors. However, we don’t know the
eigenvectors, so we cannot do projections directly.

Nested Iteration:

1. Relax Au = f on Q2" to get an initial guess v*"

2. Use that guess to relax Au = f on Q"
Correction Scheme:
1. Relax Au = f on Q" to get an approximation for v"

2. Compute the residual r = f — Av" = A(u — v") = Ael

3. Relax the residual equation Ae = 7 on Q2" to get an approximation on the error e

2

4. Correct the approximation on Q" by setting v « v + €** where 2" is interpolated to Q".

Relax always reduce errors. Adding an extra relaxation after correction, we get the two-grid correction
scheme. This can be done recursively down and up v" < V(v", f).

1. Relax A"u = f" with initial guess
2. If Q" is the coarsest grid, go to step 5.

3. f2 « fh — Ahyh (RHS becomes residuals, subsampled to Q2")
v?" <~ 0. Then call v?" « V2h(y2h, f2h)

2h

4. Correct v + v 4+ v2" where v?" is interpolated to Q"

h

5. Relax AMu = f" with initial guess vy’
We can add extra cycles to get u-cycle scheme: v" Mu(vh, .
To get a good initial guess for v", start with coarse grids.
Full-Multigrid: v" = FMG"(f")

1. If Q" is the coarsest grid, go to step 5

2. f?h « fh by average/subsample

3. v FMG?h(f?h)

4. Set v" « v?" by interpolation

5. v« VRt fh)

Interpolation:
How to go from Q" to Q2" and vice verse?
For interpolation, we can use local polynomials.

For restriction, can set szh = vgj (subsampling/injection). Can also take a weighted average with weights

[1,2,1]. We need to have I}, = ¢(I?")T for some constant c.
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5 Parabolic Equations
Consider the heat equation
O = %u,u(0,t) = u(m,t) = 0,u(x,0) = f(z)

We have the finite difference scheme:

n+1_ n
U i 1

: fﬁ(u?1—2u +ujiq),k=Ath=Ax

We substituted u(z, nk) = sin(ma)({(m))™ into the finite difference scheme, and solve for £(m). We
showed for u} to stay bounded as n — oo, we need [{(m)| < 1 for all m. This gives us the stability

condition % <1
More general BCs: u(0,t) = go(t), u(1,t) = g1(t), IC: u(x,0) = f(z). Explicit scheme is:

untl

1
]szﬁ(u? 1—2u +u]+1)

Let 0f; = fj+% — fj_%, 62fj = fj—1 — 2fj + fj+1, we have a family of implicit schemes:

n+l _ n
U uj 1

= 3 (00T + (1= 0)(8%)]), for 0 € (0,1]

For 6 = %, we have the Crank Nicolson method. Rewrite as:

k
—ruity + (1+2r)u; ntl _ ru”_tll =rui_y + (1= 2r)uj +rujy,r= 57

The cost is O(M ), where M is number of grids.

Local Truncation Error (LTE) 7(z,t) is obtained by substituting true solution u(x,t) into the finite
difference scheme.

Explicit method:

u(t+ k) —u(x,t) 1

T(z,t) = ’ - ﬁ(u(m — h,t) — 2u(z,t) + u(x + h,t))
_ (1,1, 2 4
—<2k 12h>umm+0(kz +h%)
= O(k + h?)

For Crank-Nicolson, 7(xz,t) = O(k? + h?).

5.1 Method of Lines
Consider the explicit scheme. Apply discretization in space only, and we have an equation in t:

5 (8) = 15 (51 (1) = 2us(0) F g1 (6)),5 = 1,2,m

This is a system of ODES:

u'(t) = Au(t) + g(t)
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Apply BCs:

(1) = 75 (a0(8) — 2u1(8) + us(0) = (-2 (0) + us(t)) + L
ul, (t) = %(—2um(t) + 1 (1)) + gz(f)
[90(t)]
0
Then we get g(t) = % S, A= %[1, —2,1] banded matrix.
0
il

This will be computationally expensive than directly solving PDEs, but we can use it to analyze

stability.

Stability Analysis using MOLs:

The eigenvalues of A are A\, = %(cos(pﬂh) —1) = —p*n? + O(h?).

Euler’s method is v = u™ + f(u™). Apply it to u/(t) = Au(t) + g(t). For it to be stable, we require
|1+ kA <1 for all eigenvalues X of A. This is because the system can be written as y' = Ay, or

Ynt1l = Yn + kAYn.

The biggest eigenvalue of A is A, = —%. If S C C is the stability region, Ak € S gives us ‘1 — ;17]2“‘ <1, so
-2 < —%’ < 0, which gives the stability condition we see before.

For trapezoid rule, ™! = u™ + % (f(u") + f(u™1)), Yns1 = Yn + 3(kAyn + kAYn11), we get
Crank-Nicolson. Unconditional stability over LHP.

In general, if uy = KUy, we want K % For explicit scheme, we get k oc h?.

Convergence:
Fix a point (z,t) and examine error as k,h — 0.

Fix relationship between k and h, say % = M. Take kK — 0. We can rewrite methods as
u"t = B(k)u™ + b" (k). For Crank-Nicolson, b" (k) = g(nk), we get B(k) = (I — gA)_l (I+%A4).

Definition: 5.1: Lax-Richtmyer Stable

A linear method of the form u"™! = B(k)u" + b"(k) is Lax-Richtmyer stable if for each T' > 0, there
is a constant Cr > 0 s.t. ||B(k)"|| < Cr for all k >0 and h > 0s.t. kh <T.

Theorem: 5.1: Lax Equivalence

A consistent method of the form u"*! = B(k)u™ + b"(k) is convergent if and only if it is Lax-
Richtmyer stable.

Proof. Suppose we apply the iteration to the true solution u(x,t): u"*! = Bu™ + b" + k7", where
u(z1,ty) T(z1,tn)

u = : and 7" = :
U(Tm, tn) T(Tm, tn)

Since the numerical solution @ satisfies 4"t = Ba"™ + b™.

Subtract to get E"*! = BE™ — k™, where E™ = 4" — u™.
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After N steps,
N
EN _ BNED _ kZBN_nTn_l

N
1B < BN E + k3 BY [

n=1

If the method is Lax-Richtmyer stable, then HBN_"H < Cp for all Nk <T, so

HENH <Cr HEOH 4+ NkCr max HT”_lH < Cr||Eo|| + TCr max “Tn_lH
ne[1,N] ne[L,N]

Thus ||EY|| — 0, because || E°|| = 0 with initial condition u(x,0) = f(z) known.

5.2 Von Neumann Analysis

7’LUJI

If u: R — R, then the Fourier transform of u is a(w) (x)dx. The inverse is

vl

weg(w)dw. Parseval’s relation: ||ully = ||d,.

u(x) = = [ %
We can also define Fourier transform on a grid function u : Z — R:

[e.e]

1

~ _ —imé&
U = — e Um,§ € |—m, T
() \@ 2 ¢ € [-m]
thm = V2T / e §)dt
If spacing of grid is h instead of 1, change of variable with & — h& to get
sy 1 - —imhé T T

m=—0Q0

e M€ dE

Um =

il

Also, we have the parseval’s relation:

w/h o
la)? = / WP = S fuml2h = Jull?

—7T/ m=—oo

Let Don = ﬁ (Uj+1 — Ujfl).
g 1 /.. . 1 g
ighte _ ( i(j+hE _ z(rl)hs) — ijht
Dye TG e . sin(h§)e""s,
so € is an eigenvector of Dy with eigenvalue  sin(hg).
Also 8%6”5 = i¢e™¢, Thus Dye™ = ite'"€ 4 O(h?) by Taylor expansion of %sin(hf).
Consider u"*! = B(k)u™ with ||B(k)"|| < Cr, i.e. ||B(k)|| <1+ ak. Then a"F1(£) = g(&)a"(€).

For u}”l = u? + ﬁ(uy 1~ 2uj +ufyy). Take ulf = e“he and get u”+1 9(§uy,

9(6) = 1+ 5 (cos(¢h) — 1).
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5.3 Multidimensional Problems

Consider u; = Ugz + Uyy With 5-point stencil V2,

k
n+1 n 2, n 2, n+1

Rearraging;:

k n k n
(1 — 2v§> ulitt = <1 + 2v§> s
k n k n

-1
urtl = <I — ];AV§> (I + ];Avg) u™

Let A= (I - %Avg>, A has the same sparsity as Ay2. Eigenvalues are
Apg(A) =1— % [(cos(pmh) — 1) + (cos(qmh) — 1)].

Locally One-dimensional Methods (LOD):
Consider the following LOD method:

k

ufy =y + S (0 + (820))

B (2t + (020

n+l _ | % v
(] —uw—l—2 Yy

ij

In matrix form:

<I - ];Dg) u* = (1 + §D§> u™
k 2 n+1 k 2 *
<I — 2Dy) U = <I—|— §Dy U

u* is in between u" and u™*!. How should we deal with boundary data?
We can solve for it by considering known BCs in 4"*! and solving the second equation backwards to get
u* on the boundary. It is a first order method, but fast.

Alternating Direction Implicit (ADI):

W =t 4 S (3205 + (02u))

5.4 Hyperbolic Systems and Advection Equations

0

ox1
Ug — Z ijUg;e; = 0 is hyperbolic if A = (a;;) is positive definite. Equivalently, let d = -

ot
A = [1(4)1 _01], then dAdu = 0.
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Let v= | : |, Bj =matrix with 1 at (j, j)-position, zero otherwise, and By = 1. We get:

n
Bgvt + Z ijxj =0
J=1

If By is positive definite, B; is symmetric, then it is symmetric hyperbolic system.

Consider u; + auy, = 0, where a is a constant. 1C: u(x,0) = n(x), then u(z,t) = n(x — at)

+1
uit oy S — )
k B A =1
ak
R I
0o 1 0 -1
-1 0 1
Write u'(t) = Au(t), A = —g5 ) . | Note AT = — A, so \p(A) are pure imaginary.
1 -1 0

Ap(A) = =% sin(2mph),p =
Take k = h?, u"*! = B(k
Then \y(B(k)) =1+ kX,

IB(R)"|| < (1+a%k)% <

1,2, ..., m, unstable for any % using methods of lines.
Ju” B( ) =1+ kA(h).
(A ( N, |1+ kX2 <14 (avk)? =1+ a®k. Then
e

27
2 .

Leapfrog:
Let’s use the midpoint method:

yn—|—1 — yn + hf (tn—l—%?yn—‘r%) ’un—‘rl _ un—l + 2% Au"

Stability region: {ic: a € (—1,1)}, i.e. condition is |4¥ } < L
Note that we cannot pertub the eigenvalues, because k)\ »(A) € 0S.

Lax-Friedrichs:
Suppose we take finite difference equation using Euler in time:

+1 _ ak
U? =uj — ﬁ(u?-&-l —uj_y)
Relace uf = §(u' ) +ul, ). Rewrite as
u T — u? o —ul h2 [l —2ul +ul
T JHL(H%J ):%( 2 ]+):ut+au$:€um
u'(t) = Acu(t), where Ac = A+ ;5 (a [1, -2, 1] banded matrix with 1 at the top right and bottom left
cell), A —5-[—1,0,1] with 1 at top right and bottom left cell. Eigenvalues are:

) 2
Ap(Ae) = —%sin(Qﬂph) - i(l — 2cos(2mph))sp =1, . + 2
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z = kAp is an ellipse centered at —Qh—k; with width 41“ height 4 ak  Choose € = % We rescale width to 1. If

| ’ < 1, then it is stable. This is a first order method Ok + h)

Lax-Wendroft:
Recall /(t) = Au(t). Using Taylor series expansion for y' = f(y),

2
Y=g R+ ) + O0)

1
™ =" 4 kAU §k2A2u"

2,2
. ak a“k
it = o (e — ) & G (e — 205+ )
ak a2k2
n n (uf_y —2u} +ujyq)

= —55 (W1 —uj ) + 5

Write this as an Euler method discretization of u'(t) = Acu(t). Get
kAp(Ae) = —i“—}f sin(prh) + (%) (cos(pmh) — 1), so we require ‘ } < 1 for stability. This is a second
order method O(k? + h?).

Upwind Method:
Sometimes, we should only use information from left (previous data) j and j — 1, but we can add
symmtric term to achieve this:

1 ak
Wt == S — )
ak ak
=uj — 2h( Uiy —ujg) + %(U?H —2uj +uj )
Let € = % Like before, we require |%| <land -2< — QEk < 0.

h? 2k? h
€LF = 5, ELW = 5, €UP = G-

For LF, we get —2 < —1 < 0. For LW, we get ‘ ‘ < 1. For UP, we need a > 0, so solution moves left to
right.

CFL Condition:
Recall that u(z,t) = n(z — at), u(z; — ak,t) at time ¢ shifts to u(x;,t + k) at time t + k.

Definition: 5.2: Courant-Friedrichs-Lewy

If u?“ is computed from UL 5y Uy py 10 o5 bjqqo then the Courant-Friedrichs-Lewy (CFL) condition
says that z;1, < x; — ak < 44 for the method to be stable. Since x; = jh, it is equivalent to
—q< % < —p.

In what we have considered p = —1, ¢ = 1.
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6 Finite Element Method

Consider the BVP:

—u"(z) = f(z)
u(0) = 0,u'(1) =0

6.1 Weak Formulation of BVPs

Define an inner product of functions f,g € L2[0,1] by (f, g) / f(x)g(x)dx. Consider the BVP. Let v

be some smooth function:
(f,v) = / f(x)v(z)dr = /01 —u" (x)v(z)dz
=4/ (0)v(0) — o/ (1)v(1) + /01 o (z)v (z)dx
Suppose v(z) satisfies v(0) = 0. Then with «/(1) = 0, we have:

)= [ @

Define a(u,v) / / z)dz, let V = {v € L?[0, 1] a(u,v) < 00,v(0) = 0}. The condition

a(u,v) < co implies v € L2[0, 1] because a(v,v) fo 7))2dx. Then for any u(x) satisfying
—u’(z) = f(z) and any v(z) € V, (f,v) = a(u v).

Definition: 6.1: Variational BVP

Define a solution of the BVP to be any function satisfying (f,v) = a(u,v) for all test functions v € V
and u(0) = 0. This is called the variational or weak formualation of the original BVP.

Dirichlet conditions u(0) = 0 are called essential BCs.
Neumann conditions u/(1) = 0 are called natural BCs, because they are encoded in weak formulation, and
we don’t have to enforce it.

Theorem: 6.1:

Suppose f € C°[0,1], u € C?[0,1] and f and u satisfies (f,v) = a(u,v) for any v € V, u(0) = 0.
Then w is a strong solution.

Proof.
1 1
(f,v) =a(u,v) = /0 o () (z)dr = —/0 o (z)v(z)dz + o' (1)v(1)

1
Thus (f +u”,v) = u/(1)v'(1). Note that / u" (z)v(z)de = (u”,v).
0
Since /(1) = 0, then f +«” =0 on [0, 1].

If not, say f +u” > € on (zg,x1) for some € > 0. Since f +u” € C°[0, 1], we can find some v € V,
v(1) =0s.t. (f +u”,v) > 0. Take v a Schwartz function s.t. v > 0 on (zg,x1). This is a contradiction,
since (f +u”,v) = u/(1)v(1) = 0.

Take v(z) = z. Then (f +u”,v) =0 =14/(1)v(1) =/(1), so /(1) = 0. O
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Ritz-Galerkin Approximation
Let S C V be a finite dimensional subspace. Consider the following problem: Find us € S s.t.
a(us,v) = (f,v) for all v € S. Then we have a discretized BVP.

Theorem: 6.2: Ritz-Galerkin

Given f € L?[0,1], a(us,v) = (f,v) has a unique solution.

n
Proof. Let {¢;};—, be a basis for S. Then we can write u, = Zw@. For any v € S:
j=1

a(us,v) = Z uja(pj,v)
j=1

Consider v = ¢;. Then ZUja(cbj, ¢i) = (f,¢). Let K;;j = CL((ﬁj, ¢;) and F; = (f, ¢;). We get KU = F.
=1

Suppose K is singular. Then for each j, there exists v; #£ 0 s.t.

a(v, ¢;) = ZviKij = sz‘a(¢z‘7 ¢;) =0,
i=1 i=1

n
where v = g v; P;.
i=1

1
But then a(v,v) = / (v'(x))? =0, v'(z) = 0, v(z) must be constant.
0
Recall that v € S C V, v(0) = 0, then v(z) = 0. Contradiction, so K is non-singular det K # 0. O

Viu=f,x cQ

V20— 0 u=0.2co0 K is symmetric p.s.d.
=0,u=0,

K is called stiffness matriz. For {

Error Estimates for Weak Solutions:

How do we know that u, is close to «?

We compare the two values a(us,v) = (f,v) for v € S and a(u,v) = (f,v) for v e V.
Since S C V, subtracting the two in S, we get a(u — ug,w) = 0 for all w € S.

Theorem: 6.3:

Let ||v]|g = Va(v,v), |lu—usllg = migl”u —v||p. Error is optimal approximation to u in S in
ve

I/ p-norm

We will show that if S C is our finite difference space, then ||u — us||p < h[|u”| 2, then we will also have
e = wsll 2 < B2 ] 2

Approximation Assumption: choose S}, s.t. miSn |w—v| 5 < h|jw"|,, for all we C?0,1] N V. Also
vVESH

gives us [Ju — usl|;2 < h?||u"]|;2 if uw € C?0,1]NV.
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6.2 Piecewise Polynomial Spaces and Finite Elements

Let 0 =29 <1 < --- <x, = 1. Let S be space of functions s.t. v € C°[0, 1], v(0) = 0 and v is linear on
[xi,mi+1]. ScV.

Let ¢; € S be defined s.t. ¢;(x;) = d;;. Then {¢;} is a basis for S.
{fi—]-zi—l (x —mim1),2 € [Ti1, 7]

b=
' _:1:¢+117:1:¢ (1‘ - 'rl) +1Lxe [$i7xi+1]

{¢;}s are called nodal basis and xg, x1, ..., x,, are called nodes. We can define an interpolant vy € S for
v € C0,1] by

n

vr(z) = Z v(z;)di()

=1

Theorem: 6.4:

{¢i} spans S.

Proof. If v € S means that v = vy, then we are done.

Since v — vy is piecewise linear by defintion, and vanishes at all {x;}, it must be identically zero. O

Theorem: 6.5:

Let h = max(z; — x;_1), then ||u — us| gz < Ch||u”|| for all u € C%[0,1] NV, where C is independent

off i sl

Proof. Taylor expansion yields piecewise linear approximation to u and the error is O(h?) and depends on
[[u”]]. O

Recall that Zuja(gﬁj,@) = (f,¢:), 1 =1,2,...,n becomes KU = F. We can show that

j=1
K1 = h[l + h;rlh Kiiv1 = Kij1, = _h;rlp Kon = hT—Ll’ where hy = z; — ;1. KU = F becomes:
2 Uil — Ui Ui — Ui—l) 2f;
- B = = f(xi) + O(h
hi + hi+1 < hi—i—l hz hz 4 hi-l—l f( z) ( )

For h; = h for all i, we get:

Ui — 2ui Uiy
72

= f(zi) + O(h),

which is the same as finite difference method.
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6.3 Sobolev Space

Definition: 6.2: LP Spaces

Suppose Q C R" is some domain (open simply connected set). Let f: Q — R.

191 = ([ 1£6@)Pas ) ”

1 fl| Lo = esssup {|f(x)] : = € O}

LP(Q) defined by

LPQ) = {f : Ifll» < o0}

Minkowski Inequality:

If +9llee <N Flle + llgll 2o
Holder’s Inequality: For 1 < p,q < oo, % + % =1
Ifgllp < W Fllzo gl La

Cauchy Schwartz Inequality:

/Qlf(w)g(fﬂ)ldx <[ £llz2 llgll 2

Definition: 6.3: Banach Space

Let V be a vector space, a norm is a function V' — R s.t.
1. vl >0 and |jv]| =0 v =0

2. ||ev]] = || ||v|| for ¢ a scaler
3. v+ w| < ol + [lwl|
A vector space equipped with a norm ||-|| is a normed vector psace. A Banach space is a complete

normed vector space.

Theorem: 6.6:

For 1 < p < oo, LP(Q) is a Banach space.

Consider V = {v :[0,1] = R:v(0) = 0,a(v,v) = fol(v')Qd:U < oo}.

Definition: 6.4: Multi-index

Let a be an n-tupple o = (a1, g, ..., ). Define the length of « by |a| = > ;. Denote D¢, 0%¢,
#(@ the partial derivatives

0\ 0 \*? o \*

Theorem: 6.7: Heine Borel

) is compact if and only if it is closed and bounded.
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Definition: 6.5: Compact Support

Let f: Q — R, the support of f is

supp(f) = {z € Q: f(z) # 0}

A function f: Q — R is compactly supported if supp(f) is compact and supp(f) C Q.

Definition: 6.6: Compactly Supported Functions

Suppose 2 is a domain in R™. Denote by D(€2) or C§°(Q2) set of all C*° functions with compact
support in €.

Definition: 6.7: Locally Integrable Functions

The set of locally integrable functions is

L) ={f:fe L' (K),K CQ compact}

Definition: 6.8: Weak Derivatives

Let f € L (Q), f has a weak derivative D f if there exists a function g € Li (Q) s.t. for all

loc loc

¢ € C5° (),

/ o) p(w)dz = (~1)° / £ ()¢ ()da
Q Q

We call g the weak derivative of f, Dy f.

Definition: 6.9: Sobolev Space

Let k be a nonnegative integer, f € L} (). Suppose that D2 f exists for all |a| < k. The Sobolev
norm |||y g is defined by
p

1/p

I lwgey = | 32 1D A | 1<p<oo
|| <k

1w @) = e 1D |l oo 02)
The Sobolev spaces are defined by:

WE©) = {f € Lhol® : Iy < o0}

Theorem: 6.8:

Sobolev spaces W;(Q) are Banach spaces.
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Theorem: 6.9: Traces Theorem

Suppose {2 C R™ is bounded and has a Lipschitz continuous k-times differentiable boundary I' € C Sl
Let yu = u|p for u € C*(Q). IfsSk—l—l,s—%géZ, ands—%:l+aforl€Zand0<a<1,

14 o o .
then the map u +> <yu, ’y%, ...,7%) has a unique continuous extension:

1 1
Example: W3 — W, where W7 is for fractionally derivatives defined by Gamma Function.

Theorem: 6.10:

1. Ifkgmandlgpgoo,thenW;lCsz
2. If 1 <p<gqg<oo, then W(f(Q)CWIf(Q)

Theorem: 6.11: Sobolev Inequality

Let k be a positive integer and 1 < p < co. Suppose that Kk > nif p=1and k > % if p > 1. Then
there exists a constant C' s.t. for all u € W;(Q),

[ull Lo @y < Cllullwn

Furthermore, u can be considered as a function in C°(£2), meaning that there exists a @ € C°(Q) s.t.
lu = @l oo () = O

Corollary 1. Let k,m be positive integers s.t. m < k and 1 < p < oo. Suppose k >n+m if p=1 and
k>m+ 2 ifp>1. Then ||lullymq) < Cllullys (). u can be considered as a function in C™ ().
< p

Definition: 6.10: Dual Space

Consider a Banach space B. A linear function L : B — R is continuous if and only if L is bounded:

ILI|= sup |L(v)| < o0
veB, vl =1

L is called a functional. The collection of all bounded linear functionals on B is also a Banach space
under the operator norm. Denote as B’ (dual space of B)

Definition: 6.11: Hilbert Space

Let V' be a vector space, b: V x V — R a bilinear and symmetric function satisfying: b(v,v) > 0 for

all v € V and b(v,v) =0 < v =0. Then b is an inner product and V' is an inner product space.

If an inner product space V' is complete, then it is a Hilbert space. Each Hilbert space with |[v|| =
b(v,v) is a Banach space.

e L?(Q) is a Hilbert space with inner product (f, g) = / f(z)g(z)dz
Q

o H*(Q) = W§(Q) is a Hilbert space with inner product (f, g), = Z (Dt Diwg) 12
jal<h
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Theorem: 6.12: Riesz Representation

If L is a continuous linear functional on a Hilbert space H, then there exists a unique v € H s.t.
Lv = (u,v) for all v € H. Furthermore, ||L||; = ||u|| 4.

Definition: 6.12: Continuous and Coercive Functionals

Let @ : V xV — R be a symmetric bilinear form in a normed vector space (V,|[-]|). a is
bounded /continuous if IC' > 0 s.t. |a(u,v)| < C|u| |v]. ais coercive if I > 0 s.t. a ||v]|* < a(v,v).

Theorem: 6.13:

If H is a Banach space, a : V x V — R is a symmetric bilinear form that is continuous on H and
coercive on a closed subspace V' C H, then (V,a(-,-)) is a Hilbert space.

To define a symmetric variational problem, we need
1. H is a Banach space
2. V C H is a closed subspace
3. a: Hx H— R is bounded symmetric bilinear form on H and coercive on V'

The problem is then: Given F € V', find u € V s.t. a(u,v) = F(v) for all v € V. If all three properties
are satisfied, then Theorem implies that there is a unique solution u € V', where

V= {v :10,1] = R :a(v,v) = /(UI)Qd.T < 00, v(0) :O} ={ve H'0,1] : v(0) =0}

Ritz-Galerkin Approximation Problem:

Suppose that Vj, C V is a finite dimensional subspace. Given F € V', find uy, € V}, s.t. a(up,v) = F(v) for
all v € V,. By Theorem it has a unique solution up € V3. Then a(u — up,v) =0 for all v € V},, so
lu—upllp = gelg;lb |u — vl g, where [|v]|; = y/a(u,v). Coercivity and boundedness of a implies that

- = C min [Ju— vlly.
lu = unlly = C min flu vl

Theorem: 6.14: Ritz-Galerkin

Suppose v is a solution to a symmetric variational problem and wy, is the Ritz-Galerkin approximation.
Then

C
[|u — Uh”v < — min [ju — UHv»
o veEV

where ||-||, is the norm on V' C H. C'is the boundedness constant and « is related to the coercivity

constant.

Proof. Since a is coercive

min flu— vl

1 1
|u —uplly, < 7a |u —upllp = Ja e
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Since a is bounded:

. c .
Ju—unlly < = min fu = vl <~ min fu ol

O

To define a nonsymmetric variational problem, we need
1. (H,(-,-)) is a Hilbert space.
2. V C H is a closed subspace
3. a:H xH — R is bilinear, not necessarily symmetric
4. a is continuous on V
5. a is coercive on V'

The last two points mean that Ja > 0,C > 0 s.t. a||v]* < a(v,v) < C|v|?

Theorem: 6.15: Lax-Milgram

Given a Hilbert space (V,(-,-)), a continuous bilinear coercive a : V. x V — R and F € V', there
eixsts a unique solution v € V s.t. a(u,v) = F(v) for all v € V.

Theorem: 6.16: Cea

C
_ < — mi _
|u —un|ly < o lu —vll,

Suppose we have a variaional problem, symmetric or non-symmetric on a subset V' C H'(Q) with solution
u € V and Ritz-Galerkin approximation up € V3, C V in finite dimensional subspace V},.
Let I" : V. N C*¥(2) — V}, be an interpolation operator s.t. (I")2 = I". Suppose

B =

h m—1 o
[ “Hm(m < CW™ Hulgm (Q), where Julgmo) = | D [ Daullf,q,

la)|=m

is a semi-norm on H™. Since I"u € Vy, |ju — up| () < Ch™ YHu|gm () for all w € V N CF(Q).

6.4 Finite Element Space

For the variational problem a(u,v) = F(v) for v € V, we want to find V}, C V.

Definition: 6.13: Finite Element

Suppose
1. K C R" is a compact set with piecewise smooth boundary and non-empty interior, called
element
2. P is a finite dimensional space of functions on K, called shape functions
3. N ={Ny,..., Ny} is a basis for P’ (The dual space with functionals) called nodal variables.
Then (K, P,N) is a finite element
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Definition: 6.14: Nodal Basis

Let (K,P,N) be a finite element. The basis {¢1, ..., ¢} of P, dual to N' (N;(¢;) = d;5), is called
nodal basis.

Let P be a d-dimensional vector space. {Ny, ..., Ny} C P’. Then the following are equivalent:
1. {Ny,..., Ny} is a basis for P’
2. fve P, Nqu=0foralli=1,....,d, then v =0

Triangular Elements:
Let K be a triangle. Let P, denote set of polynomials in two variables upto order k.
dim(Py) = 2(k + 1)(k + 2).

Lagrange Elements:
P =P, dim(Py) = 3. N = {Ny, Ny, N3}, N;(v) = v(z;), where z1, 22, 23 are vertices.
P = P, dim(P») = 6. z4, 25, 26 are midpoints.

Suppose the variational problem is a(u,v) = F(v), and there are three nodal basis ¢1, ¢2, ¢3 in one
element, then the element matrix and the RHS are:

[a(d1, ¢1) a(d1,p2) aldr, ¢3)
K= |a(¢2,¢1) ald2,¢2) alp2,¢3)
La(¢s, 1) a(d3, ¢2) a(gs, ¢s3)
[F(¢1)
Fe = |F(¢2)
| F(¢3)

6.5 Interpolant

Denote the local interpolant on an element K:

k
Igv = Z Ni(v) o
i1

Proposition: 6.1:

Corollary 2. I% = Ik

Definition: 6.15: Subdivision

A subdivision of a domain 2 is a collection of element domains {K;} s.t.
L. int(K;) Nint(K;) =0 for i # j
2. UK; = Q
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Definition: 6.16: Global Interpolant

Suppose 2 is a domain with subdivision 7 and each K € 7T is associated with a finite element
(K, P,N). Let m be the highest derivative appearing in the nodal variables N of all of the elements.

For f € C™(Q) = C™(R")|q, the global interpolant is:

It flk, = Ik, f

forall K; € T.

Note that we don’t know if ITf € C°(Q).

Definition: 6.17: Triangulation

A triangulation of a polygon domain € is a subdivision consisting of triangles s.t. no vertex of any
triangle is in the interior of an edge of another triangle.

Definition: 6.18: Continuity Order

An interpolant has continuity order r if Irf € CY(Q) for all f € C™(Q). Call V& =
{Irf:feC™ )} aC" finite element space r > 0. Also, ITf € W (Q).

One necessary condition for triangles is that each edge must have nodes (nodal variables) that are fixed or
symmetric around the midpoints of the edge.

The Lagrange or Hermite elements are both C?, the Argyris elements are C'. Lagrange has m = r = 0,
Hermite m = 1,r = 0, Argyris m = 2,r = 1.
6.6 Approximation Assumption

We want to estimate || I7f — fllgi (o) for f € cm™(Q).

Definition: 6.19: Star-Shaped

A region ) is star-shaped w.r.t. some ball B if for all € ©, the closed convex hall of {x} U B C .

The Taylor polynomial of order m evaluated at y is given by
1
(Ty u)(x) = P uy)(@ =),
la|<m
where o = (ay, ..., o) is a multi index and a! = a;!--- !

Ifue W;”_l(Q), deerivatives are defined a.e., but cannot necessarily be evaluated pointwise. If
u ¢ C™1(Q), then the Taylor series does not make sense pointwise. However, it is defined if we average

over a ball B. Define
Q") = [ Tru)o)dy,

where ¢ € C*°(Q2) and ¢ = 0 outside B.

Let pmax = sup {p :  is star-shaped w.r.t. a ball of radius p}. Let d = diam(2). If € is star-shaped, we
can bound u — Q™ u.
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Lemma: 6.2: Bramble-Hilbert

Let B be a ball in € s.t. € is star-shaped w.r.t. By with radius p > %pmax. Suppose that u € W;"()
with p > 1. Then for 0 < k < m, the semi-norms satisfy:

lu— Q™ ulyro) < Cdm_k|u|W;1(Q)

As triangles become smaller d — 0, the error — 0.

Theorem: 6.17:

Let (K,P,N) be a finite element s.t.
1. K is star-shaped w.r.t. some ball
2. Pm—1 CPCWIK)
3. Nc CYK)
Suppose 1 Spgooandeitherm>l+%whenp> lorm >1+n when p=1. Then for 0 <i<m

and v € W(K), we have

[0 = Ixvlwi(x) < O(diamE)™ ™ [vlym (k)

Let Q be a domain, {Th}, 0 < h <1isa family of subdivisions s.t.

max {diamT T € Th} < hdiam(2)

Theorem: 6.18:

Let {’Th} be a non-degenerate family of subdivisions of a polyhedral domain Q C R™. Let (K,P,N)
be a reference element satisfying the conditions from Theorem Suppose T € T" is affine
equivalent to the reference lement. Then 3C' > 0, depending only on reference element s.t. for all

0<s<m,
P
> [Jo- ol < Ch™ ol
Ws(T) B P
TeTh

If the gloabl interpolation I"v € C"(Q) for » > 0, then it is equivalent to

i
P

6.7 Discontinuous Galerkin Methods

Definition: 6.20: Broken Sobolev Space

The broken Sobolev space is

HH@,T") = {v e L2(@) : v|x € B¥(K) for all K € T"}

Let " denote the set of all faces of elements K € T". Let F& denote faces on 9Q and FP = Fh\ Fh.

Suppose I' € F ;‘ . Let KIEL) and KISR) be adjacent faces.
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For v € HY(Q,T"), define vl(ﬂL) =), vl(ﬂR) = v|.(m), the average value is (v)p = (v
r r

difference is [v]r = Ul(ﬂL) - vlgR).

Consider —V?u = f. Write

/V2uvdx:/fvdac,
Q Q

where u € H?(Q) and v € HY(Q, T").

Z /KVqudx— Z /aK(n-Vu)vd:E:/vadaz

KeTh KeTh
& Z / VuVudz — Z /n(Vu> [v]da::/fvdx—i—/n-Vquac
Kerh 'K rerh /T @ r

a(u,v) is defined by LHS, and we can enforce v =0 on I'.

6.8 Isoparametric Approximations

(L)
r

+ UIQR)), and the

Suppose that (K,P,N) is a fixed reference element. Suppose we have another element domain
K. = F(K), for some mapping F' and basis functions ¢$(z) = ¢;(F~Y(x)). e.g. F = > j—1 jT; gives an

affine transformation.

Suppose that Q is a polyhedral domain and let V}, be a finite element space on . Let F : Q — €, where

Q) is Lipschitz, but not necessarily polyhedral. Then

Vi= {0 @) o e F@Q) 0 e Wi}

is called an isoparametric equivalent finite elment space when F € Vj,.

i.e. to evaluate v(x) for € Q, we transform it to & = F~'(x) € Q and evaluate v(&)

Let © be a domain with smooth boundary and €2, is a polyhedral approximation. It is possible to

construct piecewise polynomial mapping of degree k — 1 s.t.
1. it is equal to identity away from OS2
2. distance from 9Q and dF"(Qy,) is O(h*)
3. Jacobians of F' are bounded

Then for 0 < s <1, k=m—1,

h m—s
v—1 UHWs(Fh(Qh)) S Ch ’fU|W§n(Fk(Qh))

40



7 Integral Equation Methods

Consider the Laplace equation:

VZu=0,2€Q
u(z) = g(x),x € 00

Green’s function G(z,y) for Laplace equation satisfies:

V2G(a,y) = 8(z — ),z € Q

In 2D:
1
Gla,y) = 5 log|lz —y|
u(z) = | G(z,y)o(y)dy,z € Q
o0
lim u(z) = G(z,y)o(y)dy = g(x)
z—00 a0

Proof. Rewrite the Laplace equation in polar coordinates:

2 _1(0 (OF\\ 1Of
vf_r ar \ or +r2892
Assume % = 0 (no dependence on ), then
10 ( 0G
con-14 (%)

(p) AT

Setting it to zero for p > 0, we have an ODE, which gives:

G(p) = c1logp+ c2

With the condition: / V2G(x,y)dx = 1, we get G(p) = = logp
B

In 3D, G(z,y) = —ﬁm

Idea: we solve for the equation along the boundary using Green’s function.
Issues:

1. Singularity of Green’s function
2. The matrix for G(z,y) is dense
3. Condition number for G is large. G is a compact operator, with A; — 0.

Instead, we can also write:

we) = [ (GG oty < 0

Jin (o) = o)+ [ (af(y)c:(x,y)) o(y)dy = gla).x € 00

o(x) is almost identity, while the second term has % decay. It becomes well-conditioned.
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Suppose Q@ = H = {(z1,22) : x2 > 0} is the upper half plane. Consider approaching (0,0) from below.
Write z = (21, 22), ¥y = (y1,¥2), and take 1 =0, o =h — 0

1 1
G(z,y) = 5 log |z —yll = 1 o8 ((x1 = 91)* + (22 — 2)?)

. . > 1
lim [ G(z,y)p(y)dy = lim —log ((z1 —y1)* + (22 — ¥2)?) p(y)dy
x—0 o0 ml,r2—>0 —50 47T
—tim [ L og(y? + h2)p(y)dys
h—0 J_o 4T
> 1
= / _arlos yip(y1)dys
Consider the second formulation:
0 1 0
e | o 2 o 2
an(y) G(‘Tay) A 8y2 og (($1 yl) + (‘/1:2 y2) )
_ 1 Y2 — 2
4 (21— y1)? + (w2 — y2)?
© 1 —h

I
fflg% 1) 8”(2!)

G(z,y)o(y)dy = limy o(y1)dy:.

-0 J_ %y% —|—h2

€ h 3 m
efine @5 () /OO e Y1 = arctan <h> + 5

If £ <0, then as h — 0, ’llin%) D,(8) =0. If £ > 0, we get 7.
%
For any kernel G(z,y), we get

1. First kind integral equation: g(z) = G(z,y)o(y)dy,z € 00
o0

1
2. Second kind integral equation: g(x) = 50(1’) +/ <
o0

0
au(y)G(av,y)> o(y)dy,x € 0

The integration parts are called Fredholm integral equations.
Let Aju] = (I + K)[u] = f. Suppose A, is a discretization of A. We want A, [u,] = up + Kpuy,. Let u be

the true solution so that A,u = f, + 7. Let e, = u — u,, be the error.
Then Ae, =7 or e, = A, 17. A, is bounded, T is from discretization of u and f (quadrature error,

O(h™))
Boundary is splitted into chunks of size h, each chunk is discretized into n points.

7.1 Singular Quadrature

Let w, z € R2. It is possible to show

O tog w2 =1m -~
og |lw — z|| = Im
on(z) & w—z
Suppose we want to evaluate fC %dz along a contour C, where p(z) is the density.
N ' v
Suppose that p(z) ~ Zajz]. Let p; = fo wzizdz. Then if z; = —1, 20 =1, C': 21 ~ 2z (a path from z; to
7=0
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z9). Then,

w — 29
Pozlog( >
w— z1

Dj+1 = 2pj +¢5,¢j =

1—(—1)
J

7.2 Fast Multipole Method
Consider G(z,y) = 5= log ||z — y||.

N-1
g(x;) = %o(aji) + z;) <8n(ax])G
j=

Cost of first term is O(N), second term is O(N?).

(Hfz‘vl’j)> o(xj)w;

However, with iterative method, since the matrix is well-conditioned, the cost can be reduced.

Suppose Q,,Q, C R? are the source and target set, with |Q,| = N, || = M, and Q, NQ; =0. = € Q,,
y € Q. The Green’s function can be approximated as:

P-1
By (2)Cp(y)
p=0
Then
N N P-1 P-1 N
ui =y Glrny)ai =Y > Blei)Cplys)a; = D Bplws) | Y Colyi)as
j=1 j=1 p=0 p=0 j—1
N
Write ¢, = Z Cp(yj)g;. Cost to compute ¢, is O(NP).
j=1

Then the cost to compute all is O(NP + M P) instead of O(NM), where N is the number of sources and
M is the number of targets.
We need multi-level /multigrid evaluation to take care of the interactions among grids.

Core idea of fast multipole method is to use the compressed form:

P-1
xla y] Z Bp
p=0

to evaluate interaction of well-separated 2, and 2.

Suppose that we have many source boxes Q((yl), cee Q((,K), all well-separated from €2.. Rank of interactions is
still P. To compute all g, it costs O(K N P). To compute u;, it costs O(K M) per box.

Using u; = 25:_01 By(z4)dp, we can find functions Cp(x) and coefficients 4, (computed from §,) s.t.
u; = 25;01 Cp(x;)tp. The expansion ¢ is called an outgoing expansion, and 4 is an incoming
expansion.

1. Tgf ®:¢° — @° is outgoing-from-source operator

2. TTZ,J:,—O : 4% — 47 is incoming-from-outgoing operator
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3. Tﬁf AT el s target-from-incoming operator, evaluating the local expansion 4" at x;s to get u”.
Instead of computing A(2-, Q) : ¢° — u” at cost O(MN), we break into 3 steps

1. T2 . 7 — 7 at cost O(NP)

2. THC . 47— a7 at cost O(P?)

3. T 47— 7 at cost O(MP)

Sketch of the algorithm:
1. Construct multi-level boxes with different scale. Parent box of 7 is box on the level above containing

7. Children of 7, £ are boxes on level below. Neighbor list £2¢! are boxes on the same level

touching 7. Interaction list £I"* are boxes s.t.
(a) o, T are on the same level
(b) ¢ and 7 do not touch
(c) parents of o and 7 touches
2. start from bottom level, create ¢ for each box

3. go above one level, combine ¢ from £ for the parent box

4. construct @ for each grid from top down and add everything in the interaction list
1

Operation on each level is linear and grid size is geometric series .

44



	Classification of PDEs
	Elliptic PDEs
	Parabolic PDEs (Heat Equation)
	Hyperbolic PDEs
	General PDEs

	Finite Difference Method
	Heat Equation
	Error Analysis
	Rate of Convergence

	Equilibrium Heat Equation
	Closer Look at Stability

	Elliptic Equations in 2 or More Dimensions
	Iterative Methods
	Non-rectangular Domains

	Direct and Iterative Methods
	Sparse Direct Solvers
	Cholesky Factorization

	Iterative Methods
	Conjugate Gradient Method
	Generalized Conjugate Residuals
	Arnoldi's Method
	Convergence of Conjugate Gradient

	Classical Iterative Methods
	Convergence


	Multigrid
	Parabolic Equations
	Method of Lines
	Von Neumann Analysis
	Multidimensional Problems
	Hyperbolic Systems and Advection Equations

	Finite Element Method
	Weak Formulation of BVPs
	Piecewise Polynomial Spaces and Finite Elements
	Sobolev Space
	Finite Element Space
	Interpolant
	Approximation Assumption
	Discontinuous Galerkin Methods
	Isoparametric Approximations

	Integral Equation Methods
	Singular Quadrature
	Fast Multipole Method


