
CSC2310 Computational Methods for Partial Differential Equations

1 Classification of PDEs

There are three kinds of PDEs of interest:

1. Elliptic: ∆u = 0 or ∇2u = 0

2. Parabolic: ut = ∇2u

3. Hyperbolic: utt = ∇2u

1.1 Elliptic PDEs

Laplace: ∇2u = 0
Poisson: ∇2u = f

e.g. Distribution of heat. Let Ω be the domain. The boundary conditions on ∂Ω could be

1. Dirichlet: u = f

2. Neumann: ∂u
∂x = g(x)

3. Robin: αu+ β ∂u
∂x = h(x)

4. Or mixed based on domain.

Consider Laplace’s equation on a rectangular region:
∇u = 0

u(0, y) = f(y)

u(L, y) = g(y)

u(x, 0) = u(x,H) = 0

The solution is u(x, y) = h(x)ϕ(y) with basis sinh
(nπy

H

) [sinh
(
nπx
H

)
/ sinh

(
nπL
H

)
sinh

(
nπ(L−x)

H

)
/ sinh

(
nπL
H

)]. Then the solution

is

u(x, y) =
∞∑
n=1

An sin
(nπy

H

) sinh
(
nπ(L−x)

H

)
sinh

(
nπx
H

) +
∞∑
n=1

Bn sin
(nπy

H

) sinh
(
nπx
H

)
sinh

(
nπx
H

)
An =

2

H

∫ H

0
f(y) sin

(nπy
H

)
dy

Bn =
2

H

∫ H

0
g(y) sin

(nπy
H

)
dy

The solution is perfectly stable. i.e. if f, g are perturbed slighly, the solution is also perturbed slightly; the
solution is smoothed out inside the domain.

1

Suppose we solve:
∇u = 0

u(0, y) = f(y)

ux(0, y) = g(y)

The solution is

u(x, y) =
∞∑
n=1

An sin
(nπy

H

)
cosh

(
nπL

H

)
+

∞∑
n=1

Bn sin
(nπy

H

)
sinh

(nπx
H

) H

nπ

1.2 Parabolic PDEs (Heat Equation)
ut = kuxx

u(0, t) = u(L, t) = 0

u(x, 0) = f(x)

Separation of variable gives:

u(x, t) =

∞∑
n=1

Bn sin
(nπx

L

)
e−k(nπ

L)
2
t

Bn =
2

L

∫ L

0
f(x) sin

(nπx
L

)
dx

Also, notice if Bn ̸= 0 for some large n, then ut is huge at t = 0, since d
dte

−k(nπ
L)

2
t|t=0 = −k

(
nπ
L

)2
1.3 Hyperbolic PDEs

∂2
t u = c2u∂2

xu

u(x, 0) = f(x)

ut(x, 0) = g(x)

D’Alembert’s solution:

u(x, t) =
1

2c

∫ x+ct

x−ct
g(x)dx+

f(x+ ct) + f(x− ct)

2

If g = 0, then f(x) splits into 2 waves with velocity c. The wave equation does not smooth out initial data.
It is also not stiff. It’s stable but derivatives blow up when perturbing ICs.

1.4 General PDEs

How to relate general PDE to one of the three types?

auxx + buyy + cuxy + dux + euy + fu = g

Compare ∂2
x, ∂x applied to f(x) in [−0.5, 0.5]. The Fourier expansion of f(x) is

f(x) =

∞∑
−∞

Ane
2πinx

2

Applying ∂2
x multiplies An by −4π2n2. Applying ∂x multiplies An by 2πin.

∂2
x =

−4πn2 · · · 0
0 −4πn2 0
0 · · · −4πn2

An

∂x =

2πin · · · 0
0 2πin 0
0 · · · 2πin

An

∂2
x + ∂x =

−4πn2 · · · 0
0 −4πn2 0
0 · · · −4πn2

I +

2πin · · · 0
0 2πin 0
0 · · · 2πin

An

If higher order terms are all that matter, how to classify?

2nd order linear PDEs can always be written as∂x1...
∂xn


T

A

∂x1...
∂xn


with A symmetric. For any A symmetric, there is always an invertible P s.t. P TAP = diag(1,−1, 0). Let
the number of 1s be n+, number of -1s be n−, number of 0s be n0.

Theorem: 1.1: Sylvester’s Law of Inertia

The set (n+, n−, n0) is the signature of A. It is invariant over all transformation P . If we pick P s.t.
P TAP has the form P TAP = diag(1,−1, 0). Let v = Px, then the PDE is(

∂2

∂v21
+ · · ·+ ∂2

∂v2n+

− ∂

∂vn++1
− · · · − ∂

∂vn++n

)
u+ lower order term = 0

3

2 Finite Difference Method

If we want to solve PDE numerically, we need to somehow represent derivatives. One such way is finite
difference:

d

dx
f(x) ≈ f(x+ h)− f(x− h)

2h

Consider the Taylor expansion:

f(x+ h) = f(x) + hf ′(x) +
f ′′(x)

2
h2 +O(h3)

f(x− h) = f(x)− hf ′(x) +
f ′′(x)

2
h2 +O(h3)

Then
d

dx
f(x) ≈ f ′(x) +O(h2)

There are two sources of errors

1. Truncation error (mathematical error): O(h2) remainder.

2. Cancellation error (floating point approximation error): ϵ|f |
h , where ϵ is the machine precision. o(x) =

x(1 + ϵ).

If
∣∣∣f (m)(x)

m!

∣∣∣ ≈ 1, total error is approximately E(h) = ϵ
h + h2. The minimum is achieved at − ϵ

h2 + 2h = 0 or

h = ϵ1/3. E(ϵ1/3) = 2ϵ2/3 ≈ 10−10 for ϵ ≈ 10−16 (typical machine epsilon).

Suppose the truncation error is O(hm), we get E(h) = ϵ
h + hm, the minimum is achieved at h ≈ ϵ

1
m
+1,

so E(h) ≈ ϵ
m

m+1 . A small perturbation R(x) + δ(x) (δ(x) = ϵ sinωx for example) will significantly change
d
dx(R(x) + δ(x)).

What kinds of FDs can we take? Consider a 3 × 3 grid, ∂f0,0
∂x = 1

2h(f1,0 − f−1,0) + O(h2). ∂2f0,0
∂x∂y =

1
4h2 (f1,1 − f1,−1 − f−1,1 + f−1,−1) +O(h2).

2.1 Heat Equation

Suppose we want to solve ∂u
∂t = k ∂2u

∂x2 , where k is diffusivity with u(0, t) = u(L, t) = 0, u(x, 0) = f(x). For

simplicity, L = π, f(x) =

{
2
πx, x ≤

π
2

2− 2
πx, x > π

2

. Then the Fourier series is

u(x, t) =
∞∑
n=1

Am sin(mx)e−km2t

Am =
1

π

∫ π

0
f(x) sin(mx)dx

For m > 1, Am = 4
π(2n+1)2

(−1)n. Easy to see that
∞∑

m=1

|Am| <∞.

Place a grid on the domain with increments ∆x and ∆t, with x = j∆x and t = n∆t, j = 0, 1, ..., J .
Consider the grid/mesh functions: let unj = u(j∆x, n∆t). Write

un+1
j − unj

∆t
= k

unj+1 − 2unj + unj−1

(∆x)2

4

Apply BC by setting un0 = 0, unJ = 0 and IC u0j = f(j∆x).

Consider k∆t
(∆x)2

, the larger the value, the worse the approximation. Reducing ∆x and ∆t may help.

1. Stability: what happens to
∣∣∣unj − u(j∆x, n∆t)

∣∣∣ as n→∞? Whether it stays bounded.

2. Consistency: what happens to
∣∣∣unj − u(j∆x, n∆t)

∣∣∣ as ∆x,∆t→ 0?

Stability:
Suppose we substitute u(x, t) = sin(mx)ξ(m)n into the finite difference scheme.

sin(mj∆x)(ξ(m)n+1 − ξ(m)n)

∆t
= k

sin(m(j + 1)∆x)− 2 sin(mj∆x) + sin(m(j − 1)∆x)

(∆x)2
ξ(m)n

(Split sin(m(j + 1)∆x) and sin(m(j − 1)∆x))

sin(mj∆x)(ξ(m)− 1)ξ(m)n

∆t
=

sin(mj∆x)(cos(m∆x)− 1)

(∆x)2
ξ(m)n

ξ(m) =
2k∆t

(∆x)2
(cos(m∆x)− 1) + 1

unj =

∞∑
m=1

Am sin(mj∆x)ξ(m)n

For actual solution to the heat equation, ξ(m) = e−km2∆. Compare the Taylor expansions:

ξ(m) = 1− 2k∆t

(∆x)2
(1− cos(m∆x)) = 1−m2k∆t+

1

12
m4k∆t(∆x)2 + · · ·

e−km2∆t = 1−m2k∆t+
1

2
m4k2(∆t)2 + · · ·

For solution unj to stay bounded, need max
m
|ξ(m)| ≤ 1, equivalently,

∣∣∣1− 2k∆t
(∆x)2

(1− cos(m∆x))
∣∣∣ ≤ 1. Since

1− cos(m∆x) ∈ (−1, 1), we need 2k∆t
(∆x)2

> 0 to be bounded. ⇒ 1− 4k∆t
(∆x)2

≥ −1, so 2k∆t
(∆x)2

≤ 1.
u(x, t) is always bounded, so error is bounded if and only if unj is bounded.

Consistency:
Suppose we have 2k∆̃t

(∆̃x)2
= L for ∆x = ∆̃x

k , ∆t = ∆̃t
k2

, then 2k∆t
(∆x)2

= L. Now we show that if L ≤ 1, then
|unj − u(j∆x, n∆t)| → 0 as k →∞.

Proof. Recall that

u(x, t) =
∞∑

m=1

Am sin(mx)e−km2t

unj =

∞∑
m=1

Am sin(mx)ξ(m)n

Then

unj − u(j∆x, n∆t) =

∞∑
m=1

Am sin(mx)(ξ(m)n − e−km2n∆t)

=

m0∑
m=1

Am sin(mx)(ξ(m)n − e−km2n∆t) +
∞∑

m=m0+1

Am sin(mx)(ξ(m)n − e−km2n∆t)

:= Σ1 +Σ2

5

Choose m0 big enough s.t.

Σ1 ≤ 2
∞∑

m=m0+1

|Am| <
ϵ

2

Now we bound Σ1 =

m0∑
m=1

Am sin(mx)(ξ(m)n−e−km2n∆t): Since an+bn = (a−b)(an−1+an−2b+ · · ·+bn−1)

and |ξ(m)| ≤ 1, |e−km2n∆t| ≤ 1,∣∣∣ξ(m)n − e−km2n∆t
∣∣∣ ≤ ∣∣∣ξ(m)− e−km2∆t

∣∣∣n
ξ(m) = 1− km2∆t+

1

12
m4k∆t(∆x)2

e−km2∆t = 1− km2∆t+
1

2
m4k2(∆t)2

Since (∆x)2 = 2k∆t
L , we get |ξ(m)− e−km2∆t| ≤ m4(∆t)2B for some constant B.

Σ1 ≤
m0∑
m=1

m4(∆t)2Bn|Am| ≤ m4
0t∆tB

m0∑
m=1

|Am|

Take ∆t small enough s.t. Σ1 <
ϵ
2 .

Therefore Σ1 +Σ2 < ϵ.

Implicit Equations:
Let δfj = f

((
j + 1

2

)
∆x
)
− f

((
j − 1

2

)
∆x
)

so δ2fj = f((j +1)∆x)− 2f(j∆x) + f((j − 1)∆x). Take a new
finite difference scheme:

un+1
j − unj

∆t
=

kθ(δ2u)n+1
j + (1− θ)(δ2u)nj

(∆x)2

with θ ∈ [0, 1]. If θ = 0, we have explicit scheme. If θ = 1, we have implicit scheme.

Substitute u(x, n∆t) = sin(mx)ξ(m)n into the new FD scheme, get ξ(m) = 1−(1−θ)L(1−cos(m∆x))
1+θL(1−cos(m∆x)) .

For θ ≥ 1
2 , |ξ(m)| ≤ 1 for any ∆x and ∆t. The method if unconditionally stable.

2.1.1 Error Analysis

Local truncation error
Suppose ũ(x, t) is the exact solution to the PDE. Substitute into

un+1
j −un

j

∆t = k
un
j+1−2un

j +un
j−1

(∆x)2
.

LHS =
ũnj +

(
∂ũ
∂t

)n
j
∆t+ 1

2

(
∂2ũ
∂t2

)n
j
(∆t)2 +O(∆t3)− ũnj

∆t
=

(
∂ũ

∂t

)n

j

+
1

2

(
∂2ũ

∂t2

)n

j

∆t+O(∆t2)

RHS = k

(
∂2ũ

∂x2

)n

j

− k

12
(∆x)2

(
∂4ũ

∂t4

)n

j

+O(∆x4)

Note
(
∂ũ
∂t

)n
j

= k
(
∂2ũ
∂x2

)n
j
, since ũ(x, t) is the exact solution. The remainders are the local truncation

error

LTE =
1

2
∆t

(
∂2ũ

∂t2

)n

j

+
k

12
(∆x)2

(
∂4ũ

∂t4

)n

j

+O(∆t2) +O(∆x4)

6

Global Errors: Let ϵnj = unj − ũnj , then

ϵn+1
j − ϵnj

∆t
= k

ϵnj+1 − 2ϵnj + ϵnj−1

(∆x)2
+ LTE

ϵn+1
j − ϵnj =

L

2
(ϵnj+1 − 2ϵnj + ϵnj−1) +O(∆t2) +O(∆x2∆t), whereL =

2k∆t

(∆x)2

ϵn+1
j =

L

2
ϵnj+1 + (1− L)ϵnj +

L

2
ϵnj−1 +O(∆t2) +O(∆x2∆t)

If L ≤ 1, then max
j

∣∣∣ϵn+1
j

∣∣∣ ≤ max
j

∣∣ϵnj ∣∣+O(∆t2) +O(∆x2∆t).

Since ϵ0j = 0 and n = t
∆t ,

max
j

∣∣ϵnj ∣∣ ≤ n(O(∆t2) +O(∆x2∆t)) ≤ t(O(∆t) +O(∆x2))

Definition: 2.1: Stability

Contributions of local errors stay bounded as grid size → 0.

Definition: 2.2: Consistency

LTE→ 0 as ∆x,∆t→ 0.

Theorem: 2.1: Lax Equivalence Theorem

Stability + Consistency ⇔ Convergence

Improving LTE:
Notice in the formula for LTE

LTE =
1

2
∆t

(
∂2ũ

∂t2

)n

j

+
k

12
(∆x)2

(
∂4ũ

∂t4

)n

j

+O(∆t2) +O(∆x4)

Choose k∆t
(∆x)2

= 1
6 , then the first two terms cancel. This is called compact finite difference scheme.

However, this is typically not used in practice, due to lack of robustness.

2.1.2 Rate of Convergence

Theorem: 2.2: Convergence of Fourier Coefficients

If f ∈ Cp([0, π]), the Fourier coefficients Am =
1

π

∫ π

0
f(x) sin(mx)dx decay to zero like Am =

O
(

1
mp+1

)
as m→∞.

Earlier, we have the bounds:

Σ2 ≤ 2

∞∑
m=m0+1

|Am| = O
(

1

mp
0

)

Σ1 ≤
m0∑
m=1

m4(∆t)2B
t

∆t
|Am| ≤ C0Bt∆t

m0∑
m=1

m4−p−1 ≤


C1m

4−p
0 ∆t, p ≤ 3

C2 log(m0)∆t, p = 4

C3∆t, p ≥ 5

7

For p ≥ 5, the sum Σ1 +Σ2 decays following Σ1.

To minimize Σ1 +Σ2 when p ≤ 4, need to choose optimal m0, which turns out to be O
(
∆t−

1
4

)
.

Assuming ∆t ∝ (∆x)2,

Σ1 +Σ2 ≤


O
(
∆tp/4

)
= O

(
∆xp/2

)
, p ≤ 3,

O (∆t| log∆t|) = O(∆x2| log∆x|), p = 4

O(∆t) = O(∆x2), p ≥ 5

Proof. For p ≤ 3. The error term is E(m0) = m4−p
0 ∆t+m−p

0 .
To find the minimum, E′(m0) = 0.

m4−p−1
0 ∆t−m−p−1

0 = 0

⇒ m0 = (∆t)−
1
4

2.2 Equilibrium Heat Equation

Consider the heat equation:

∂u

∂t
=

∂2u

∂x2

u(0, t) = α, u(1, t) = β, u(x, 0) = g(x)

Let Q(x, t) = −f(x). At equilibrium ∂u
∂t = 0. This gives a Poisson equation:

∂2u

∂x2
= f(x), u(0) = α, u(1) = β

The general form in high dimension is ∂u
∂t = ∇2u+Q or ∇2u = f(x) for equilibrium. The numerical form

is:

uj−1 − 2uj + uj+1

(∆x)2
fj for j = 1, 2, ...,m

where uj ≈ u(j∆x), fj ≈ f(j∆x), u0 = α, um+1 = β

Let h = ∆x. We get AU = F , where

A =
1

h2



−2 1 0 · · · 0

1 −2 1
. . . 0

0 1 −2 . . .
...

. −2 1
0 · · · · · · 1 −2


, U =

u1...
um

 , F =

f1...
fn



To deal with BC, F =

 f1 −
α
h2

...
fm − β

h2

.

This comes from α−2u1+u2
h2 = f1.

8

To compute the LTE (τj), substitute ũ(j∆x) into the finite difference formula, and apply Taylor expan-
sion.

τj =
ũj−1 − 2ũj + ũj+1

h2
− fj = ∂2ũj +

h2

12
∂4ũj +O(h4)− fj = O(h2)

Consistency: τj → 0 as h→ 0
Stability: Since AU = F , we have U = A−1F . Thus ∥U∥ ≤

∥∥A−1
∥∥ ∥F∥

Let E = u− ũ, AE = A(u− ũ) = −τ , so E = −A−1τ , ∥E∥ ≤
∥∥A−1

∥∥ ∥τ∥.
Since ∥τ∥∞ = O(h2), ∥τ∥2 = O

(
h2
√
h

)
= O

(
h

3
2

)
.

If
∥∥A−1

∥∥ ≤ c as h→ 0, then ∥E∥ ≤ CO
(
h

3
2

)
, so consistency and stability ⇒ convergence.

2.2.1 Closer Look at Stability

Since A is symmetric, ∥A∥2 = max
p
|λp|, where λp is the p-th eigenvalue.

Suppose that upj = sin(pπjh), uj ≈ u(j∆x).

(Aup)k =
sin(pπ(j − 1)h)− 2 sin(pπjh) + sin(pπ(j + 1)h)

h2
=

2

h2
(cos(pπh)− 1) sin(pπjh)

so λp =
2
h2 (cos(pπh)− 1), where p ≤ m, h = O

(
1
m

)
. When ph ≈ 1, we get minimum.

cos(pπh)− 1 = −p2π2h2

2
+O(h4p4), λp =

2

h2
(cos(pπh)− 1) = −π2 +O(h2)

|λp| increases w.r.t. p. Take p = 1 to get λ1 ≈ −π2 +O(h2).
Eigenvalues of A−1 are λ−1

p , so the order will reverse, |λ−1
1 | will be the largest.

True eigenvalues and eigenfunctions are ũp(x) = sin(pπx) and λ̃p = −p2π2,
∥∥A−1

∥∥
2
≤
∣∣∣ 1
λ1

∣∣∣ = 1
π2 .

∥E∥∞ ≤
√
m ∥E∥2 = O(h). To get a bound on ∥E∥∞, we need to construct or approximate A−1.

For d2u
dx2 = f(x) with u(0) = α, u(L) = β, the Green’s function G(x, x0) satisfies d2

dx2G(x, x0) = δ(x − x0)
and G(0, x0) = 0, G(L, x0) = 0.

Notice that d2

dx2G(x, x0) = 0 at all x ̸= x0, G(0, x0) = G(L, x0) = 0. Thus, G(x, x0) =

{
bx, x < x0

d(x− L), x > x0
.

Since we require d2

dx2G(x, x0) = δ(x− x0), integrating both sides, we get d
dxG = H(x− x0) and G must be

continuous.

Solve for b and d,

{
d− b = 1

bx0 = d(x0 − L)
. This gives:

G(x, x0) = G(x0, x) =

{
− x

L(L− x0), x < x0

−x0
L (L− x), x > x0

fj(x) =

{
1
h , j = 1

0, otherwise
. Write F = (0, ..., 1

h , ..., 0), where ith row is 1
h .

U = A−1F is the ith column of A−1, multiplied by 1
h .

Recall that lim
h→0

fh(x) = δ(x− x0). Let ũ be the true solution. As h→ 0, fh(x)→ G(x, x0).

We might think that 1
hU → G(jh, x0), but fh is changing as h→ 0.

Recall uj−1−2uj+uj+1

h2 = 0 for i ̸= j, uj−1−2uj+uj+1

h2 = fh(x) =
1
h .

For j ̸= i, the differential relation has two solutions uj = 1 and uj = j.

9

At j = i, 1
h

(
ui−1−uj

h − ui−ui+1

h

)
< 1

h .

By inspection, Uj = Gi,j =

{
−xj

L (L− xi), j ≤ i

−xi
L (L− xj), j > i

AE = −τ = (0, ..., ϵ, ..., 0)T , E = ϵhGi,j =
m∑
i=1

hGi,jτi = O(mh ∥τ∥∞) = O(∥τ∥∞)

2.3 Elliptic Equations in 2 or More Dimensions

Consider ∂2u
∂x2 + ∂2u

∂y2
= f on Ω with u = 0 on ∂Ω. Let xi = i∆x, yj = j∆y:

∇2u =
ui−1,j − 2ui,j + ui+1,j

∆x2
+

ui,j−1 − 2ui,j + ui,j+1

∆y2
= fi,j

Typically, we have ∆x = ∆y, so we have a 5-point stencil.
Let u(j) = (u1,j , ..., um,j)

T , u = (u(1), ..., u(m))T .

A =



T I 0 0 0

I T I
. . .

...

0
.

...
...

. T I
0 0 0 I T


with T =



−4 1 0 0 0

1 −4 1
. . .

...

0
.

...
...

. −4 1
0 0 0 1 −4


Let N = m2, A ∈ RN×N , the band size (# of foward and backward pass in Gaussian elimination) is
d =
√
N = m. The cost of Gaussian elimination is O(Nd2) = O(N2) = O(m4).

It has been proven that the best possible cost of a direct method for Poisson in 2D is
O(m3) = O(N3/2).

Actually, best possible cost for d-dimensional problem is O(N1+ 1
d), where N = md.

The 9-point Laplacian Stencil:

∇2
9u = ∇2u+

h2

12
(uxxxx + 2uxxyy + uyyyy) +O(h4)

In the bracket, it is equivalent to ∇2(∇2u) = ∇2f . Since we have f , we can just add a correction to RHS
to cancel 2nd order term and increase to fourth order.

2.4 Iterative Methods

Suppose we have a system Ax = y. Define F (x) = xT y − xTAx, ∇F (x) = 0 solves Ax = y.

Gradient descent is xn+1 = xn − α∇F (xn).

Conjugate gradient: gradient descent + orthogonalization w.r.t. ⟨x, y⟩A = xTAy where A is p.d.
Convergence depends on the condition number κ(A).

The error is ∥en∥ ≤ 2

(
1− 2√

κ(A)

)n

∥e0∥. After O(
√

κ(A)) ≈ O(m) steps, en will be small.

The cost of multiplication is O(m2). Total cost is O(m3) = O(N3/2). In d-dim, it is
O(md+1) = O(N1+ 1

d).

10

Figure 1: 5-point and 9-point Laplacian stencils

2.5 Non-rectangular Domains

Suppose we solve ∇2u = f on Ω with u = 0 on ∂Ω, and Ω is non-rectangular. In 5-point stencil ∇5, some
points (at most 2) may be out of the region. If more than 2 are out of region, then finite difference will
fail.

Figure 2: Non-rectangular Domain

0 < τy ≤ 1, 0 < τx ≤ 1. Apply Taylor expansion:

∂2u

∂x2
=

1

(∆x)2

(
2

τ + 1
u(x0 −∆x)− 2

τ
u(x0) +

2

τ(τ + 1)
u(x0 + τ∆x)

)
=

∂2u

∂x2
(x0) +

1

3
(τ − 1)uxxx(x0)∆x+O((∆x)2

As soon as the symmetry disappears, the first order term appears, and we lose second order convergence.
It is possible to show that after we extend as in Figure 2, we get back second order convergence:

∂2u

∂x2
=

1

(∆x)2

(
τ − 1

τ + 2
u(x0 − 2∆x) +

2(2− τ)

τ + 1
u(x− x0) +

3− τ

τ
u(x0) +

6

τ(τ + 1)(τ + 2)
u(x0 + τ∆x)

)
=

∂2u

∂x2
(x0) +O((∆x)2)

11

Finite difference requires regularity of the domain. Some smooth transformations may be required for
finite difference to work nicely.

12

3 Direct and Iterative Methods

Definition: 3.1: Fill-in

Fill-ins are entries of L, where LLT = A, not appearing in A. Some orderings are better than others.
Finding the optimal permutation P s.t. LLT = PAP T is NP-hard.

Optimal cost of a direct solve for Poisson’s equation in 2D is O(N
3
2) where N = m2. Optimal fill-in for

Cholesky factorization of a tri-diagonal matrix is O(N logN), A = LTL. In general, for a md grid
problem in d-dimensions, optimal cost of direct method is O

(
N

3(d−1)
d

)
and optimal fill-in is O

{
N

2(d−1)
d

}
.

Nested dissection provides optimal ordering that achieves the above bounds.
Iterative methods typically have complexity O

(
N1+ 1

d

)
when d = 2 or 3, they are about the same as

directly methods, but typically have larger constants.

3.1 Sparse Direct Solvers

Sparse matrix data structure (triplet form)

1. i[] = {i1, i2, ...}, row index

2. j[] = {j1, j2, ...}, column index

3. X[] = {x1, x2, ...}, entries

They represent a matrix with (i, j)-position of value X, we only store non-zero entries.

Compressed-Column form:

1. p[] = {p1, p2, ...}, stores the number of non-empty cells in each column (or prefix sum of it),
length= #columns

2. i[] = {i11, ..., i1p1 , i21, ...}, stores the indices of the non-zero entries in each columns,
length= #non-zero entries

3. X[], entries

The cost of accessing a column is O(1).

Sparse triangular solvers:
Let A be a large triangular sparse matrix with nonzero diagonal. We want to solve Ax = b for x.Back
substitution:

A11x1 = b1 ⇒ x1 =
b1
A11

A21x1 +A22x2 = b2⇒ x2 =
b2 −A21x1

A22

Consider Lx = b, where L =

[
l11 0
l21 L22

]
, l11 ∈ R, l21 ∈ R(N−1)×1, L22 ∈ R(N−1)×(N−1), x =

[
x1
x2

]
,

b =

[
b1
b2

]
, x1, b1 ∈ R, x2, b2 ∈ RN−1.

We can solve recursively x1 =
b1
l11

, L22x2 = b2 − l21x1, where L22 is the same structure as L.

The cost of Algorithm 1 is O(n+ f), where n is dimension, f is the number of floating point calculations.
For dense b, f ≈ |L|.

13

Algorithm 1 Sparse Triangular Solve Dense x

1: x = b
2: for j = 0 : n− 1 do
3: xj = xj/ljj
4: for each i > j where lij ̸= 0 do
5: xi = xi − lijxj
6: end for
7: end for

Suppose x is sparse, we modify the algorithm as in Algorithm 2. The cost is still O(n+ |b|+ f), where |b|
is the sparsity of b.

Algorithm 2 Sparse Triangular Solve Sparse x

1: x = b
2: for j = 0 : n− 1 do
3: if xj ̸= 0 then
4: xj = xj/ljj
5: for each i > j where lij ̸= 0 do
6: xi = xi − lijxj
7: end for
8: end if
9: end for

We use n sparse triangular solves to factor A = LLT . A generic algorithm will require O(n2). To improve
from O(n+ |b|+ f), suppose we know in advance the set X = {j : xj ̸= 0}. Then we modify to
Algorithm 3. The cost is now O(|b|+ f).

Algorithm 3 Sparse Triangular Solve Sparse x Improved
1: x = b
2: for j ∈ X do
3: xj = xj/ljj
4: for each i > j where lij ̸= 0 do
5: xi = xi − lijxj
6: end for
7: end for

Reachability: How do we determine X?
Non-zero entries of x follows two rules (without potential cancellation effects):

1. bi ̸= 0⇒ xi ̸= 0

2. xj ̸= 0 ∧ ∃i(lij ̸= 0)⇒ xi ̸= 0

This can be described as Graph traversal problems:
Let GL = (V,E) be a directed graph with V = {1, 2, ..., n}, E = {(j, i) : lij ̸= 0} (non-zero entries in j
propagates to i > j) GL is acyclic by construction. We want to mark all nodes in X. The following rules
apply:

1. Mark i ∈ B = {i : bi ̸= 0}

2. If j is marked, and (j, i) ∈ E, then i is marked.

14

Let Reach(B) denote set of all nodes reachable from i ∈ B by paths in GL. Then X =Reach(B). This can
be done by DFS. Cost is O(|Ṽ |+ |Ẽ|) where Ṽ and Ẽ are the vertices and edges the algorithm visits.
Each edge corresponds to a required floating point operation, so the cost is O(|x|+ f) = O(|b|+ f).

DFS does not return a sorted array X. We don’t want to sort it because we don’t want |x| log |x| cost.
However, DFS returns X in topological order. i.e. if (j, i) ∈ E, then i must appear after j in X. Since we
only update Xi when we have a j s.t. (j, i) ∈ E and xj ̸= 0, we will always have applied all updates by
the time we get to xi.

Note: DFS does not give the exact set X, it gives X̃ ⊃ X. Also, some topological orders may not be
valid. A simple modification is by prepending node n to list only after considering all other nodes that
depend on n.

3.1.1 Cholesky Factorization

Suppose A is symmetric and positive definite, we want to find L s.t. LLT = A. Let L =

[
L11 0
lT12 l22

]
,

L11 ∈ R(n−1)×(n−1), l22 ∈ R, l12 ∈ R(n−1)×1,[
L11 0
lT12 l22

] [
LT
11 l12
0 l22

]
=

[
A11 a12
aT12 a22

]
L11L

T
11 = A11, L11l12 = a12, sparse with |a12| ≈ |l12| ≪ n. Call the algorithm recursively until L11

becomes a 1× 1 matrix and it is easy solve backwards.

Every triangular solve has cost O(|a12|+ f), so it is possible to achieve O(N).

The elimination tree:
Suppose we solve L11l12 = a12 using sparse triangular solve. Let Lk be non-zero pattern of l12,
Lk = ReachGk−1

(Ak), where Gk−1 is graph of LT
11 and Ak is non-zero pattern for kth upper column of A.

We can do DFS on Gk−1 and get a cost of O(|Lk|+ f), but we can also do it in just O(|Lk|).

It turns out that for a Cholesky factorization LLT = A, i < j < k ∧ lji ̸= 0 ∧ lki ̸= 0⇒ lkj ̸= 0. This
implies that the graph Gk−1 can be pruned so that each vertex has only one outgoing edge.
|V | ≈ |E|.

Generally, the matrix we work with for elliptic PDEs are symmetric positive definite. For non-symmetric
A, we have the LU-decomposition LU = A. For direct solvers, this only adds a constant factor to the
asymptotic runtime.

3.2 Iterative Methods

Suppose we want to solve Ax = b, we will approximate x by xm in the affine subspace x0 +Km of
dimension m and enforce the condition on residual b−Axm ⊥ Lm for another affine subspace Lm. The
methods discussed are Krylov subspace methods: Let r0 = Ax0 − b,
Km(A, r0) = span

{
r0, Ar0, ..., A

m−1r0
}
.

3.2.1 Conjugate Gradient Method

Suppose A is symmetric positive definite. Let Lm = Km. Then xm satifies b−Axm ⊥ Lm if and only if
xm minimizes the A-norm ∥x∗ − x∥A, where b−Ax∗ = 0 and ∥x∥A = xTAx. This is equivalent to
xm ∈ x0 +Km minimizing F (x) = xTAx− 2xT b. (Note ∇F (x) = 2Ax− 2b)

Overall idea of the procedure:

1. Start with an initial guess x0

15

2. Compute residual rk = b−Axk

3. Pick a search direction pk = rk −
∑k−1

i=0
⟨pi,rk⟩A
⟨pi,pi⟩A

pi

4. Let xk+1 = x0 +
∑k

i=0 αipi, pi ∈ Ki. We want V T (b−Axk+1) = 0, where V = (p0|p1|...|pk).

5. Choose αi s.t. ⟨A(x∗ − xk+1), pi⟩ = 0, for i = 0, 1, ..., k

⟨A(x∗ − xk+1), pi⟩ = pTi A(xk+1 − x∗) = 0

pTi Axk+1 = pTi b

pTi Ax0 + pTi

k∑
i=0

αiApi = pTi b

but pi, pj are orthogonal

αip
T
i Api = pTi (b−Ax0) = pTi r0,

so αi =
pTi r0
pTi Api

and we only need to update αi at step i.

6. Set xk+1 = xk + αkpk

7. Residuals are orthogonal: ⟨rj , ri⟩ = 0 if i ̸= j

Proposition: 3.1:

Suppose A is PSD. Let Lm = Km. Then xm minimizes ∥x∗ − x∥A where b− Ax∗ = 0 if and only if
b−Axm ⊥ Lm = Km.

Proof. Suppose M ⊂ Rn is a subspace and let x ∈ Rn, then min
y∈M
∥x− y∥2 = ∥x− y∗∥2 if and only if 1)

y∗ ∈M and x− y∗ ⊥M .

For x̃ ∈ x0 +Km to minimize ∥x∗ − x∥A over x we need x̃ ∈ x0 +Km and x∗ − x̃ ⊥A Km. In other words,
(x∗ − x̃)TAv = 0 for all v ∈ Km.

⇒ (Ax∗ −Ax̃)T v = 0⇒ (b−Ax̃)T v = 0∀v ∈ Km

Proposition: 3.2:

The vector xm satisfying b − Axm ⊥ Km if and only if it minimizes F (x) = xTAx − 2xT b over
x ∈ x0 +Km.

Proof. From Proposition 3.1, we know that xm minimizes ∥x∗ − x∥A over x ∈ x0 +Km.

∥x∗ − x∥A = (x∗ − x)TA(x∗ − x) = (Ax∗ −Ax)T (x∗ − x)

= (b−Ax)T (x∗ − x)

= bTx∗ − xTAx∗ − bTx+ xTAx = bTx∗ − xT b− bTx+ xTAx

= C + xTAx− 2xT b

For some constant C, and the constant does not affect the minimizer.

16

Proposition: 3.3:

⟨rk, pi⟩A = 0 for all i = 0, 1, ..., k − 2

Proof. Note we choose xk s.t. ⟨A(x∗ − xk), pi⟩A = 0 for i = 0, 1..., k.

Recall that pi ∈ Ki. Thus Api ∈ Ki+1. There exist constants µj s.t. Api =
i+1∑
j=0

µjpj .

⟨rk, pi⟩A = ⟨rk, Api⟩ =

〈
rk,

i+1∑
j=0

µjpj

〉
A

= 0

if i+ 1 ≤ k − 1 or i ≤ k − 2.

Proposition: 3.4:

⟨ri, rj⟩ = 0 if i ̸= j

Proof.

rk = b−Axk = b−A

(
x0 +

k−1∑
i=0

αipi

)
= b−Ax0 −

k−1∑
i=0

αiApi =

k∑
j=0

µjpj ∈ Kk+1

Since ⟨rk, pj⟩ = 0 for j ≤ k − 1, then

⟨rk, ri⟩ =

〈
rk

i∑
j=0

µjpj

〉
= 0 for i ≤ k − 1

Same for i ≥ k + 1

Remark 1. pis are A-orthogonal, ris are orthogonal.

Algorithm 4 Conjugate Gradient
1: Start with x0
2: Compute rk = b−Axk, p0 = r0

3: Set pk = rk −
⟨pk−1, rk⟩A
⟨pk−1, pk−1⟩A

pk−1

4: Set xk+1 = xk +
⟨pk, r0⟩
⟨pk, pk⟩A

pk

5: Repeat n times

Total runtime of Algorithm 4 is O(nN), where N is the size of A, A ∈ RN×N . We may lose orthogonality
as we progress. In the worst case, instead of converging in n steps, it will take approximately 3n
steps.

3.2.2 Generalized Conjugate Residuals

Consider finding xm ∈ x0 +Km s.t. b−Axm ⊥ Lm. Now, instead of setting Lm = Km, we relax it to
Lm = AKm.

17

Proposition: 3.5:

Suppose A is nonsingular. Let Lm = AKm. Then xm minimizes ∥b−Axm∥2 if and only if xm
satisfies b−Axm ⊥ Lm.

Proof. Suppose xm ∈ x0 +Km minimizing ∥b−Axm∥2.
This is equivalent to ∆xm = xm − x0 ∈ Km minimizing ∥b−A(x0 +∆xm)∥2 = ∥r0 −A∆xm∥2 over
∆xm ∈ Km

⇔ min
∆x̃m∈AKm

∥r0 −∆x̃m∥2

Thus ∆x̃m ∈ AKm, r0 −∆x̃m ⊥ AKm ⇔ xm ∈ x0 +Km, b−Axm ⊥ AKm.

Algorithm 5 Generalized Conjugate Residuals
1: Start with x0
2: Compute rk = b−Axk, p0 = r0

3: Choose search direction pk = rk −
k−1∑
i=0

⟨Api, Ark⟩
⟨Api, Api⟩

pi and orthogonalize ⟨pk, pj⟩ATA = 0 for j ≤ k − 1

4: Set xk+1 = x0 +

k∑
i=0

αipi s.t. ⟨A(xk+1 − x∗), Api⟩ = 0 for i = 0, 1, ..., k, pi ∈ Ki+1

Algorithm 5 works for non-symmetric matrices.

Proposition: 3.6:

If AT = A, then ⟨rk, pi⟩ATA = 0 for i ≤ k − 2

Proof. Choose xk s.t. ⟨A(x∗ − xk), Api⟩ = 0 for i = 0, 1, ..., k − 1 for b−Axm ⊥ AKm. Then
Api =

∑i+1
i=0 µjpj .

⟨rk, pi⟩ATA = ⟨Ark, Api⟩ =

〈
Ark,

i+1∑
j=0

µjpj

〉
=

〈
rk,

i+1∑
j=0

µjApj

〉
= 0

if i+ 1 ≤ k − 1 or i ≤ k − 2.

Proposition: 3.7:

⟨ri, Arj⟩ = 0 if i ̸= j (residuals are conjugate)

Proof.

rk = b−Axk = b−A

(
x0 +

k−1∑
i=0

αipi

)

= b−Ax0 −
k−1∑
i=0

αiApi

Since ⟨rk, Apj⟩ = 0 for j ≤ k − 1, it follows that ⟨ri, Arj⟩ = 0 for j ≤ 1.

18

Remark 2. pis are ATA-orthogonal, ris are A orthogonal.

Now, we have a method that minimize ∥x∗ − xm∥A for symmetric positive definite A and a method that
minimize ∥Axm − b∥2 for any A. For k iterations, O(nk) for conjugate gradient, O(nk2) for generalized
conjugate residual.

3.2.3 Arnoldi’s Method

Suppose we want to construct Km(A, v1) = span
{
v1, Av1, ..., A

m−1v1
}
. Choose v1 ∈ Rm s.t. ∥v1∥ = 1.

Set wj = Avj and orthogonalize wj to v1, ..., vj . Set vj+1 =
wj

∥wj∥2
. We get v1, v2, ..., vm an orthonormal

basis for Km(A, v1).
Let Vm = (v1|v2| · · · |vm). AVm = VmHm + wmeTm for a m×m upper Hessenberg matrix Hm, and
wmeTm = ∥wm∥Vm+1e

T
m is something that cannot be represented due to orthogonalization.

Full Orthogonalization Method:
Suppose we want to find xm ∈ x0 +Km(A, r0) s.t. b−Axm ⊥ Km.
Set v1 =

r0
∥r0∥2

and β = ∥r0∥2. We have xm = x0 + Vmym, where ym is some coefficient vector.

rm = b−Axm = b−A(x0 + Vmym) = r0 −AVmym

Thus b−Axm ⊥ Km is equivalent to V T
m (r0 −AVmym) = 0⇔ V T

m r0 − V T
mAVmym = 0.

Since r0 = βv1, we get V T
m r0 = V T

mβv1 = βe1. Also, V T
mAVm = Hm, so βe1 −Hmym = 0, and

ym = H−1
m βe1. If A is symmetric, then Hm is triangular.

GMRES (Generalized Minimal Residuals):
Again write AVm = VmHm + ∥wm∥Vm+1e

T
m = Vm+1Hm.

We want xm ∈ x0 +Km(A, r0) s.t. b−Axm ⊥ AKm.
Let v1 =

r0
∥r0∥2

, β = ∥r0∥2.

rm = b−Axm = b−A(x0 + Vmym) = r0 −AVmym

The optimality condition is equivalent to minimizing rm in ∥·∥2-norm.
Multiplying V T

m+1 projects rm onto Vm+1, r0 ∈ Km+1, AVm ∈ Km+1.
We get V T

m+1(βv1)− V T
m+1Vm+1Hmym = βe1 −Hmym.

Minimizing
∥∥βe1 −Hmym

∥∥
2

is a (m+ 1)×m least square problem.

3.2.4 Convergence of Conjugate Gradient

Recall that conjugate gradient minimizes ∥x∗ − x∥A over xm ∈ x0 +Km. We have xm = x0 + qm(A)r0,
where qm is a polynomial of order m− 1. Let Pm = {polynomials of order m}.

∥x∗ − x0 − qm(A)r0∥A = min
q∈Pm−1

∥x∗ − x0 − q(A)r0∥A

Let d0 = x∗ − x0, rewrite r0 = b−Ax0 = A(A−1b− x0) = A(x∗ − x0) = Ad0. It is equivalent to
min

q∈Pm−1

∥d0 −Aq(A)d0∥A. Also let rm(A) = I −Aqm(A).

∥x∗ − xm∥A = ∥(I −Aqm(A))d0∥A = min
q∈Pm−1

∥(I −Aq(A))d0∥A

∥rm(A)d0∥A = min
r∈Pm,r(0)=1

∥r(A)d0∥A

19

If A is symmetric p.d., then we can always diagonalize it, writing A = UDU∗, with U orthonormal, D
diagonal. Then r(A) = Ur(D)U∗ = Udiag(r(λi))U

∗ and UAkU∗ = (UAU∗)k. Then

∥r(A)d0∥2A =
n∑

i=1

λir(λi)
2ξ2i , where ξi are components of d0 in the basis u1, ..., un. Thus

∥rm(A)d0∥2A = min
r∈Pm,r(0)=1

n∑
i=1

λir(λi)
2ξ2i

Note
n∑

i=1

λiξ
2
i = ∥d0∥2A, so

min
r∈Pm,r(0)=1

n∑
i=1

λir(λi)
2ξ2i ≤ min

r∈Pm,r(0)=1
max

λ∈[λ1,λn]
r(λ)2 ∥d0∥2A

This provides an upper bound of ∥x∗ − xm∥A.

Spectrum of A−1 is 1
λi

and we are trying to approximate A−1 by p(A) where p ∈ Pm−1, whose spectrum is

p(λj), 1
λ − p(λ) = 1−λp(λ)

λ = r(λ)
λ , r(λ) ∈ Pm and r(0) = 1.

General Form: min
p∈Pk,p(γ)=1

max
t∈[α,β]

|p(t)|, it is minimized by T̂k =
Tk

(
1+2 t−β

β−α

)
Tk

(
1+2 γ−β

β−α

) , where Tk is the Chebyshev

polynomial of degree k.

Minimum at Tk is thus 1∣∣∣Tk

(
1+2 γ−β

β−α

)∣∣∣ . Let γ = 0, α = λ1, β = λn, η = λ1
λn−λ1

. Then

∥x∗ − xm∥A ≤
1

Tm(1 + 2η)
∥x∗ − x0∥A ≤ 2

(√
κ(A)− 1√
κ(A) + 1

)m

∥x∗ − x0∥A

Note that number of iterations m will typically be small for a good convergence. m = O(
√

κ(A)).

It is possible to show that for conjugate residual ∥rm∥2 ≤ 2
(
κ(A)−1
κ(A)+1

)⌊m2 ⌋ ∥r0∥2. Convergence rate is half.
It will have m = O(κ(A)) iterations.

3.3 Classical Iterative Methods

We use V to denote approximated solutions and u to denote exact solution. Let e = u− v be error and
r = f −Au be the residual. Notice that Ae = r.

Jacobi Method:
Consider the finite difference matrix for the 1D BVP −u′′ = f :

−uj−1 + 2uj − uj+1 = h2fj , 1 ≤ j ≤ n− 1, u0 = un = 0

Suppose we only solve part of this system at each step:
Take v(k) and solve for v(k+1) by the equation

v
(k+1)
j =

1

2

(
v
(k)
j−1 + v

(k)
j+1 + h2fj

)
, for 1 ≤ j ≤ n− 1

If eventually v(k) ≈ v(k+1), v solves the problem.

20

In matrix form: let D = diag(2), L and U represent lower/upper bands, then A = D − L− U and we
have

(D − L− U)u = f

⇒ Du = (L+ U)u+ f

Dv(k+1) = (L+ U)v(k) + f

⇒ v(k+1) = D−1(L+ U)v(k) +D−1f

RJ = D−1(L+ U) is the Jacobi iteration matrix.

Weighted/Damped Jacobi Method:

v
(k+1)
j = (1− w)v

(k)
j +

w

2

(
v
(k)
j−1 + v

(k)
j+1 + h2fj

)
for 1 ≤ j ̸= n− 1, 0 ≤ w ≤ 1

In matrix form:

v(k+1) = [(1− w)I + wRJ]v
(k) + wD−1f,Rw := (1− w)I + wRJ = I − w

2
A

In Jacobi methods, we have to solve for all v(k) before we can solve for v(k+1)

Gauss-Seidel:
Suppose instead, we do:

v
(k+1)
j =

1

2

(
v
(k+1)
j−1 + v

(k)
j+1 + h2fj

)
, 1 ≤ j ≤ n− 1,

i.e. use updated value at previous step v
(k+1)
j−1 in the same iteration, for potentially faster process.

In matrix form:

(D − L)u = Uu+ f ⇒ v(k+1) = (D − L)−1Uv(k) + (D − L)(−1)f

Define RGS = (D − L)−1U , the Gauss-Seidel matrix. If we switch the order back and forth (ascending to
descending), then it is called the symmetric Gauss-Seidel.

Red-Black Order:

v
(k+1)
2j =

1

2

(
v
(k)
2j−1 + v

(k)
2j+1 + h2f2j

)
; v

(k+1)
2j+1 =

1

2

(
v
(k+1)
2j + v

(k+1)
2j+2 + h2f2j+1

)
Once we solve v

(k+1)
2j , all equations in the second part are independent and can be solved in parallel.

3.3.1 Convergence

Consider v(k+1) = Rv(k) + g, where the exact solution satisfies u = Ru+ g. Let e(k) = u− v(k),
e(k+1) = Re(k), e(m) = Rme(0), so

∥∥e(m)
∥∥→ 0 if ∥Rm∥ → 0, so we need ρ(R) < 1 (max |λj | < 1)

For the specific finite difference matrix A

λp(A) = −2
(
cos
(pπ
n

)
− 1
)
= 4 sin2

(pπ
2n

)
, vp,j = sin

(
pπj

n

)
, 1 ≤ p ≤ n− 1, 0 ≤ j ≤ n

λp(Rw) = 1− w

2
λp(A) = 1− 2w sin2

(pπ
2n

)
,

Small p gives λp(Rw)→ 1, error does not shrink much as time progresses. Large p gives λp(Rw)→ −1 at
speed depending on w. To make maxn

2
≤p≤n−1 |λp(Rw)| as small as possible, we require

λn/2(Rw) = λn−1(Rw), which gives w = 2
3 and |λp| ≤ 1

3 on
[
n
2 , n− 1

]
. Factor of 3 is scaled (smoothing

factor).

21

4 Multigrid

Let Ωh denote a mesh with mesh size h, λ1 ≈ 1− wπ2

2 h2, so bigger h means error converges to zero faster
everywhere. We can use coarse grids for low frequency in the original problem.

vhp,2j = sin

(
pπ2j

n

)
= sin

(
pπj

n/2

)
= v2hp,j , 1 ≤ j <

n

2

We can move to coarse grid (low frequency) by adjusting the eigenvectors. However, we don’t know the
eigenvectors, so we cannot do projections directly.

Nested Iteration:

1. Relax Au = f on Ω2h to get an initial guess v2h

2. Use that guess to relax Au = f on Ωh

Correction Scheme:

1. Relax Au = f on Ωh to get an approximation for vh

2. Compute the residual r = f −Avh = A(u− vh) = Aeh

3. Relax the residual equation Ae = r on Ω2h to get an approximation on the error e2h

4. Correct the approximation on Ωh by setting vh ← vh + e2h where e2h is interpolated to Ωh.

Relax always reduce errors. Adding an extra relaxation after correction, we get the two-grid correction
scheme. This can be done recursively down and up vh ← V (vh, f).

1. Relax Ahu = fh with initial guess

2. If Ωh is the coarsest grid, go to step 5.

3. f2h ← fh −Ahvh (RHS becomes residuals, subsampled to Ω2h)
v2h ← 0. Then call v2h ← V 2h(v2h, f2h)

4. Correct vh ← vh + v2h where v2h is interpolated to Ωh

5. Relax Ahu = fh with initial guess vhi .

We can add extra cycles to get µ-cycle scheme: vh ←Mµ(v
h, fh).

To get a good initial guess for vh, start with coarse grids.

Full-Multigrid: vh = FMGh(fh)

1. If Ωh is the coarsest grid, go to step 5

2. f2h ← fh by average/subsample

3. v2h ← FMG2h(f2h)

4. Set vh ← v2h by interpolation

5. vh ← V h(vh, fh)

Interpolation:
How to go from Ωh to Ω2h and vice verse?
For interpolation, we can use local polynomials.
For restriction, can set v2hj = vh2j (subsampling/injection). Can also take a weighted average with weights
[1, 2, 1]. We need to have Ih2h = c(I2hh)T for some constant c.

22

5 Parabolic Equations

Consider the heat equation

∂tu = ∂2
xu, u(0, t) = u(π, t) = 0, u(x, 0) = f(x)

We have the finite difference scheme:

un+1
j − unj

k
=

1

h2
(unj−1 − 2unj + unj+1), k = ∆t, h = ∆x

We substituted u(x, nk) = sin(mx)(ξ(m))n into the finite difference scheme, and solve for ξ(m). We
showed for unj to stay bounded as n→∞, we need |ξ(m)| ≤ 1 for all m. This gives us the stability
condition 2k

h ≤ 1.

More general BCs: u(0, t) = g0(t), u(1, t) = g1(t), IC: u(x, 0) = f(x). Explicit scheme is:

un+1
j − unj

k
=

1

h2
(unj−1 − 2unj + unj+1)

Let δfj = fj+ 1
2
− fj− 1

2
, δ2fj = fj−1 − 2fj + fj+1, we have a family of implicit schemes:

un+1
j − unj

k
=

1

h2
(θ(δ2u)n+1

j + (1− θ)(δ2u)nj), for θ ∈ (0, 1]

For θ = 1
2 , we have the Crank Nicolson method. Rewrite as:

−run+1
j−1 + (1 + 2r)un+1

j − run+1
j+1 = runj−1 + (1− 2r)unj + runj+1, r =

k

2h2

The cost is O(M), where M is number of grids.

Local Truncation Error (LTE) τ(x, t) is obtained by substituting true solution u(x, t) into the finite
difference scheme.

Explicit method:

τ(x, t) =
u(t+ k)− u(x, t)

k
− 1

h2
(u(x− h, t)− 2u(x, t) + u(x+ h, t))

=

(
1

2
k − 1

12
h2
)
uxxxx +O(k2 + h4)

= O(k + h2)

For Crank-Nicolson, τ(x, t) = O(k2 + h4).

5.1 Method of Lines

Consider the explicit scheme. Apply discretization in space only, and we have an equation in t:

u′j(t) =
1

h2
(uj−1(t)− 2uj(t) + uj+1(t)), j = 1, 2, ...,m

This is a system of ODES:

u′(t) = Au(t) + g(t)

23

Apply BCs:

u′1(t) =
1

h2
(g0(t)− 2u1(t) + u2(t)) =

1

h2
(−2u1(t) + u2(t)) +

g0(t)

h2

u′m(t) =
1

h2
(−2um(t) + um−1(t)) +

g1(t)

h2

Then we get g(t) = 1
h2


g0(t)
0
...
0

g1(t)

, A = 1
h2 [1,−2, 1] banded matrix.

This will be computationally expensive than directly solving PDEs, but we can use it to analyze
stability.

Stability Analysis using MOLs:
The eigenvalues of A are λp =

2
h2 (cos(pπh)− 1) = −p2π2 +O(h2).

Euler’s method is un+1 = un + f(un). Apply it to u′(t) = Au(t) + g(t). For it to be stable, we require
|1 + kλ| < 1 for all eigenvalues λ of A. This is because the system can be written as y′ = λy, or
yn+1 = yn + kλyn.

The biggest eigenvalue of A is λm = − 4
h2 . If S ⊂ C is the stability region, λk ∈ S gives us

∣∣1− 4k
h2

∣∣ ≤ 1, so
−2 ≤ − 4k

h2 ≤ 0, which gives the stability condition we see before.

For trapezoid rule, un+1 = un + 1
2

(
f(un) + f(un+1)

)
, yn+1 = yn + 1

2(kλyn + kλyn+1), we get
Crank-Nicolson. Unconditional stability over LHP.

In general, if ut = κuxx, we want κ ∝ h
k . For explicit scheme, we get k ∝ h2.

Convergence:
Fix a point (x, t) and examine error as k, h→ 0.

Fix relationship between k and h, say k
h2 = M . Take k → 0. We can rewrite methods as

un+1 = B(k)un + bn(k). For Crank-Nicolson, bn(k) = g(nk), we get B(k) =
(
I − k

2A
)−1 (

I + k
2A
)
.

Definition: 5.1: Lax-Richtmyer Stable

A linear method of the form un+1 = B(k)un+ bn(k) is Lax-Richtmyer stable if for each T > 0, there
is a constant CT > 0 s.t. ∥B(k)n∥ ≤ CT for all k > 0 and h ≥ 0 s.t. kh ≤ T .

Theorem: 5.1: Lax Equivalence

A consistent method of the form un+1 = B(k)un + bn(k) is convergent if and only if it is Lax-
Richtmyer stable.

Proof. Suppose we apply the iteration to the true solution u(x, t): un+1 = Bun + bn + kτn, where

un =

u(x1, tn)...
u(xm, tn)

 and τn =

 τ(x1, tn)...
τ(xm, tn)

.

Since the numerical solution û satisfies ûn+1 = Bûn + bn.
Subtract to get En+1 = BEn − kτn, where En = ûn − un.

24

After N steps,

EN = BNE0 − k
N∑

n=1

BN−nτn−1

∥∥EN
∥∥ ≤ ∥∥BN

∥∥∥∥E0
∥∥+ k

N∑
n=1

∥∥BN−n
∥∥∥∥τn−1

∥∥
If the method is Lax-Richtmyer stable, then

∥∥BN−n
∥∥ ≤ CT for all Nk ≤ T , so∥∥EN

∥∥ ≤ CT

∥∥E0
∥∥+NkCT max

n∈[1,N]

∥∥τn−1
∥∥ ≤ CT ∥E0∥+ TCT max

n∈[1,N]

∥∥τn−1
∥∥

Thus
∥∥EN

∥∥→ 0, because
∥∥E0

∥∥ = 0 with initial condition u(x, 0) = f(x) known.

5.2 Von Neumann Analysis

If u : R→ R, then the Fourier transform of u is û(w) =
1√
2π

∫ ∞

−∞
e−iωxu(x)dx. The inverse is

u(x) = 1√
2π

∫∞
−∞ eiωxû(w)dw. Parseval’s relation: ∥u∥2 = ∥û∥2.

We can also define Fourier transform on a grid function u : Z→ R:

û(ξ) =
1√
2π

∞∑
m=−∞

e−imξum, ξ ∈ [−π, π]

um =
1√
2π

∫ π

−π
e−imξû(ξ)dξ

If spacing of grid is h instead of 1, change of variable with ξ 7→ hξ to get

û(ξ) =
1√
2π

∞∑
m=−∞

e−imhξumh, ξ ∈
[
−π

h
,
π

h

]
um =

1√
2π

∫ π/h

−π/h
e−imhξû(ξ)dξ

Also, we have the parseval’s relation:

∥û∥2 =
∫ π/h

−π/h
|û(ξ)|2 dξ =

∞∑
m=−∞

|um|2h = ∥u∥2h

Let D0vj =
1
2h (vj+1 − vj−1).

D0e
ijhξ =

1

2h

(
ei(j+1)hξ − ei(j−1)hξ

)
=

1

h
sin(hξ)eijhξ,

so eijhξ is an eigenvector of D0 with eigenvalue 1
h sin(hξ).

Also ∂
∂xe

ixξ = iξeixξ. Thus D0e
ijhξ = iξeijhξ +O(h2) by Taylor expansion of 1

h sin(hξ).

Consider un+1 = B(k)un with ∥B(k)n∥ ≤ CT , i.e. ∥B(k)∥ ≤ 1 + αk. Then ûn+1(ξ) = g(ξ)ûn(ξ).

For un+1
j = unj + k

h2 (u
n
j−1 − 2unj + unj+1). Take unj = eijhξ and get un+1

j = g(ξ)unj ,
g(ξ) = 1 + 2k

h2 (cos(ξh)− 1).

25

5.3 Multidimensional Problems

Consider ut = uxx + uyy with 5-point stencil ∇2
5,

un+1
ij = unij +

k

2
(∇2

5u
n
ij +∇2

5u
n+1
ij)

Rearraging:(
1− k

2
∇2

5

)
un+1
ij =

(
1 +

k

2
∇2

5

)
unij

⇒
(
I − k

2
A∇2

5

)
un+1 =

(
I +

k

2
A∇2

5

)
un

un+1 =

(
I − k

2
A∇2

5

)−1(
I +

k

2
A∇2

5

)
un

Let A =
(
I − k

2A∇2
5

)
, A has the same sparsity as A∇2

5
. Eigenvalues are

λp,q(A) = 1− k
h2 [(cos(pπh)− 1) + (cos(qπh)− 1)].

Locally One-dimensional Methods (LOD):
Consider the following LOD method:

u∗ij = unij +
k

2
((δ2xu)

n
ij + (δ2xu)

∗
ij)

un+1
ij = u∗ij +

k

2
((δ2yu)

∗
ij + (δ2yu)

n+1
ij)

In matrix form:(
I − k

2
D2

x

)
u∗ =

(
I +

k

2
D2

x

)
un(

I − k

2
D2

y

)
un+1 =

(
I +

k

2
D2

y

)
u∗

u∗ is in between un and un+1. How should we deal with boundary data?
We can solve for it by considering known BCs in un+1 and solving the second equation backwards to get
u∗ on the boundary. It is a first order method, but fast.

Alternating Direction Implicit (ADI):

u∗ij = unij +
k

2
((δ2yu)

n
ij + (δ2xu)

∗
ij)

un+1
ij = u∗ij +

k

2
((δ2xu)

∗
ij + (δ2yu)

n+1
ij)

5.4 Hyperbolic Systems and Advection Equations

ut −
∑
i,j

aijuxixj = 0 is hyperbolic if A = (aij) is positive definite. Equivalently, let d =


∂

∂x1
...
∂

∂xn
∂
∂t

,

A1 =

[
A 0
0 −1

]
, then dAdu = 0.

26

Let v =


ux1

ux2

...
uxn

ut

, Bj =matrix with 1 at (j, j)-position, zero otherwise, and B0 = 1. We get:

B0vt +

n∑
j=1

Bjvxj = 0

If B0 is positive definite, Bj is symmetric, then it is symmetric hyperbolic system.

Consider ut + aux = 0, where a is a constant. IC: u(x, 0) = η(x), then u(x, t) = η(x− at)

un+1
j − unj

k
= − a

2h
(unj+1 − unj−1)

un+1
j = unj −

ak

2h
(unj+1 − unj−1)

Write u′(t) = Au(t), A = − a
2h


0 1 0 −1
−1 0 1

.
1 −1 0

. Note AT = −A, so λp(A) are pure imaginary.

λp(A) = − ia
h sin(2πph), p = 1, 2, ...,m, unstable for any k

h using methods of lines.
Take k = h2, un+1 = B(k)un, B(k) = I + kA(h).
Then λp(B(k)) = 1 + kλp(A(h)), |1 + kλp|2 ≤ 1 + (a

√
k)2 = 1 + a2k. Then

∥B(k)n∥ ≤ (1 + a2k)
n
2 ≤ e

a2T
2 .

Leapfrog:
Let’s use the midpoint method:

yn+1 = yn + hf
(
tn+

1
2 , yn+

1
2

)
, un+1 = un−1 + 2kAun

Stability region: {iα : α ∈ (−1, 1)}, i.e. condition is
∣∣ak
h

∣∣ < 1.
Note that we cannot pertub the eigenvalues, because kλp(A) ∈ ∂S.

Lax-Friedrichs:
Suppose we take finite difference equation using Euler in time:

un+1
j = unj −

ak

2h
(unj+1 − unj−1)

Relace unj = 1
2(u

n
j−1 + unj+1). Rewrite as

un+1
j − unj

k
+ a

(
unj+1 − unj−1

2h

)
=

h2

2k

(
unj−1 − 2unj + unj+1

h2

)
⇒ ut + aux = ϵuxx

u′(t) = Aϵu(t), where Aϵ = A+ ϵ
h2 (a [1,−2, 1] banded matrix with 1 at the top right and bottom left

cell), A = − a
2h [−1, 0, 1] with 1 at top right and bottom left cell. Eigenvalues are:

λp(Aϵ) = −
ia

h
sin(2πph)− 2ϵ

h2
(1− 2 cos(2πph)), p = 1, ...,m+ 2

27

z = kλp is an ellipse centered at −2kϵ
h2 with width 4kϵ

h2 height ak
h . Choose ϵ = h2

2k . We rescale width to 1. If∣∣ak
h

∣∣ ≤ 1, then it is stable. This is a first order method O(k + h).

Lax-Wendroff :
Recall u′(t) = Au(t). Using Taylor series expansion for y′ = f(y),

yn+1 = yn + kf(yn) +
k2

2
f ′(yn) +O(k3)

un+1 = un + kAun +
1

2
k2A2un

un+1
j − unj = −ak

2h
(unj+1 − unj−1) +

a2k2

8h2
(unj−2 − 2unj + unj+2)

= −ak

2h
(unj+1 − unj−1) +

a2k2

2h2
(unj−1 − 2unj + unj+1)

Write this as an Euler method discretization of u′(t) = Aϵu(t). Get
kλp(Aϵ) = −iakh sin(pπh) +

(
ak
h

)2
(cos(pπh)− 1), so we require

∣∣ak
h

∣∣ ≤ 1 for stability. This is a second
order method O(k2 + h2).

Upwind Method:
Sometimes, we should only use information from left (previous data) j and j − 1, but we can add
symmtric term to achieve this:

un+1
j = unj −

ak

h
(unj − unj−1)

= unj −
ak

2h
(unj+1 − unj−1) +

ak

2h
(unj+1 − 2unj + unj−1)

Let ϵ = ah
2 . Like before, we require

∣∣ak
h

∣∣ ≤ 1 and −2 < −2ϵk
h2 < 0.

ϵLF = h2

2k , ϵLW = 2k2

2 , ϵUP = ah
2 .

For LF, we get −2 < −1 < 0. For LW, we get
∣∣ak
h

∣∣ ≤ 1. For UP, we need a > 0, so solution moves left to
right.

CFL Condition:
Recall that u(x, t) = η(x− at), u(xj − ak, t) at time t shifts to u(xj , t+ k) at time t+ k.

Definition: 5.2: Courant-Friedrichs-Lewy

If un+1
j is computed from unj+p, u

n
j+p+1, ..., i

n
j+q, then the Courant-Friedrichs-Lewy (CFL) condition

says that xj+p ≤ xj − ak ≤ xj+q for the method to be stable. Since xj = jh, it is equivalent to
−q ≤ ak

k ≤ −p.

In what we have considered p = −1, q = 1.

28

6 Finite Element Method

Consider the BVP:

−u′′(x) = f(x)

u(0) = 0, u′(1) = 0

6.1 Weak Formulation of BVPs

Define an inner product of functions f, g ∈ L2[0, 1] by ⟨f, g⟩ =
∫ 1

0
f(x)g(x)dx. Consider the BVP. Let v

be some smooth function:

⟨f, v⟩ =
∫ 1

0
f(x)v(x)dx =

∫ 1

0
−u′′(x)v(x)dx

= u′(0)v(0)− u′(1)v(1) +

∫ 1

0
u′(x)v′(x)dx

Suppose v(x) satisfies v(0) = 0. Then with u′(1) = 0, we have:

⟨f, v⟩ =
∫ 1

0
u′(x)v′(x)dx

Define a(u, v) =

∫ 1

0
=

∫ 1

0
u′(x)v′(x)dx, let V =

{
v ∈ L2[0, 1] : a(u, v) <∞, v(0) = 0

}
. The condition

a(u, v) <∞ implies v′ ∈ L2[0, 1], because a(v, v) =
∫ 1
0 (v

′(x))2dx. Then for any u(x) satisfying
−u′′(x) = f(x) and any v(x) ∈ V , ⟨f, v⟩ = a(u, v).

Definition: 6.1: Variational BVP

Define a solution of the BVP to be any function satisfying ⟨f, v⟩ = a(u, v) for all test functions v ∈ V
and u(0) = 0. This is called the variational or weak formualation of the original BVP.

Dirichlet conditions u(0) = 0 are called essential BCs.
Neumann conditions u′(1) = 0 are called natural BCs, because they are encoded in weak formulation, and
we don’t have to enforce it.

Theorem: 6.1:

Suppose f ∈ C0[0, 1], u ∈ C2[0, 1] and f and u satisfies ⟨f, v⟩ = a(u, v) for any v ∈ V , u(0) = 0.
Then u is a strong solution.

Proof.

⟨f, v⟩ = a(u, v) =

∫ 1

0
u′(x)v′(x)dx = −

∫ 1

0
u′′(x)v(x)dx+ u′(1)v(1)

Thus ⟨f + u′′, v⟩ = u′(1)v′(1). Note that
∫ 1

0
u′′(x)v(x)dx =

〈
u′′, v

〉
.

Since u′(1) = 0, then f + u′′ = 0 on [0, 1].

If not, say f + u′′ > ϵ on (x0, x1) for some ϵ > 0. Since f + u′′ ∈ C0[0, 1], we can find some v ∈ V ,
v(1) = 0 s.t. ⟨f + u′′, v⟩ > 0. Take v a Schwartz function s.t. v > 0 on (x0, x1). This is a contradiction,
since ⟨f + u′′, v⟩ = u′(1)v(1) = 0.

Take v(x) = x. Then ⟨f + u′′, v⟩ = 0 = u′(1)v(1) = u′(1), so u′(1) = 0.

29

Ritz-Galerkin Approximation
Let S ⊂ V be a finite dimensional subspace. Consider the following problem: Find us ∈ S s.t.
a(us, v) = ⟨f, v⟩ for all v ∈ S. Then we have a discretized BVP.

Theorem: 6.2: Ritz-Galerkin

Given f ∈ L2[0, 1], a(us, v) = ⟨f, v⟩ has a unique solution.

Proof. Let {ϕi}ni=1 be a basis for S. Then we can write us =
n∑

j=1

ujϕj . For any v ∈ S:

a(us, v) =
n∑

j=1

uja(ϕj , v)

Consider v = ϕi. Then
n∑

j=1

uja(ϕj , ϕi) = ⟨f, ϕ⟩. Let Kij = a(ϕj , ϕi) and Fi = ⟨f, ϕi⟩. We get KU = F .

Suppose K is singular. Then for each j, there exists vi ̸= 0 s.t.

a(v, ϕj) =

n∑
i=1

viKij =

n∑
i=1

via(ϕi, ϕj) = 0,

where v =

n∑
i=1

viϕi.

But then a(v, v) =

∫ 1

0
(v′(x))2 = 0, v′(x) = 0, v(x) must be constant.

Recall that v ∈ S ⊂ V , v(0) = 0, then v(x) = 0. Contradiction, so K is non-singular detK ̸= 0.

K is called stiffness matrix. For

{
∇4u = f, x ∈ Ω

∇2u = 0, u = 0, x ∈ ∂Ω
, K is symmetric p.s.d.

Error Estimates for Weak Solutions:
How do we know that us is close to u?
We compare the two values a(us, v) = ⟨f, v⟩ for v ∈ S and a(u, v) = ⟨f, v⟩ for v ∈ V .
Since S ⊂ V , subtracting the two in S, we get a(u− us, w) = 0 for all w ∈ S.

Theorem: 6.3:

Let ∥v∥E =
√
a(v, v), ∥u− us∥E = min

v∈S
∥u− v∥E . Error is optimal approximation to u in S in

∥·∥E-norm

We will show that if Sh ⊂ is our finite difference space, then ∥u− us∥E ≤ h ∥u′′∥L2 , then we will also have
∥u− us∥L2 ≤ h2 ∥u′′∥L2 .

Approximation Assumption: choose Sh s.t. min
v∈Sh

∥w − v∥E ≤ h
∥∥w′′∥∥

L2 for all w ∈ C2[0, 1] ∩ V . Also

gives us ∥u− us∥L2 ≤ h2 ∥u′′∥L2 if u ∈ C2[0, 1] ∩ V .

30

6.2 Piecewise Polynomial Spaces and Finite Elements

Let 0 = x0 < x1 < · · · < xn = 1. Let S be space of functions s.t. v ∈ C0[0, 1], v(0) = 0 and v is linear on
[xi, xi+1]. S ⊂ V .

Let ϕi ∈ S be defined s.t. ϕi(xj) = δij . Then {ϕi} is a basis for S.

ϕi =

{
1

xi−xi−1
(x− xi−1), x ∈ [xi−1, xi]

− 1
xi+1−xi

(x− xi) + 1, x ∈ [xi, xi+1]

{ϕi}s are called nodal basis and x0, x1, ..., xn are called nodes. We can define an interpolant vI ∈ S for
v ∈ C0[0, 1] by

vI(x) =
n∑

i=1

v(xi)ϕi(x)

Theorem: 6.4:

{ϕi} spans S.

Proof. If v ∈ S means that v = vI , then we are done.

Since v − vI is piecewise linear by defintion, and vanishes at all {xj}, it must be identically zero.

Theorem: 6.5:

Let h = max
i

(xi − xi−1), then ∥u− uI∥E ≤ Ch ∥u′′∥ for all u ∈ C2[0, 1]∩ V , where C is independent
of h and u.

Proof. Taylor expansion yields piecewise linear approximation to u and the error is O(h2) and depends on
∥u′′∥.

Recall that
n∑

j=1

uja(ϕj , ϕi) = ⟨f, ϕi⟩, i = 1, 2, ..., n becomes KU = F . We can show that

Ki,i+1 = h−1
i + h−1

i+1, Ki,i+1 = Ki+1,i = −h−1
i+1, Knn = h−1

n , where hi = xi − xi−1, KU = F becomes:

− 2

hi + hi+1

(
ui+1 − ui

hi+1
− ui − ui−1

hi

)
=

2fi
hi + hi+1

= f(xi) +O(h)

For hi = h for all i, we get:

−ui+1 − 2ui + ui−1

h2
= f(xi) +O(h),

which is the same as finite difference method.

31

6.3 Sobolev Space

Definition: 6.2: Lp Spaces

Suppose Ω ⊂ Rn is some domain (open simply connected set). Let f : Ω→ R.

∥f∥Lp =

(∫
Ω
|f(x)|pdx

)1/p

∥f∥L∞ = esssup {|f(x)| : x ∈ Ω}

Lp(Ω) defined by

Lp(Ω) = {f : ∥f∥Lp <∞}

Minkowski Inequality:

∥f + g∥Lp ≤ ∥f∥Lp + ∥g∥Lp

Holder’s Inequality: For 1 ≤ p, q ≤ ∞, 1
p + 1

q = 1

∥fg∥L1 ≤ ∥f∥Lp ∥g∥Lq

Cauchy Schwartz Inequality:∫
Ω
|f(x)g(x)|dx ≤ ∥f∥L2 ∥g∥L2

Definition: 6.3: Banach Space

Let V be a vector space, a norm is a function V → R s.t.
1. ∥v∥ ≥ 0 and ∥v∥ = 0⇔ v = 0
2. ∥cv∥ = |c| ∥v∥ for c a scaler
3. ∥v + w∥ ≤ ∥v∥+ ∥w∥

A vector space equipped with a norm ∥·∥ is a normed vector psace. A Banach space is a complete
normed vector space.

Theorem: 6.6:

For 1 ≤ p ≤ ∞, Lp(Ω) is a Banach space.

Consider V =
{
v : [0, 1]→ R : v(0) = 0, a(v, v) =

∫ 1
0 (v

′)2dx <∞
}

.

Definition: 6.4: Multi-index

Let α be an n-tupple α = (α1, α2, ..., αn). Define the length of α by |α| =
∑

αi. Denote Dαϕ, ∂αϕ,
ϕ(α) the partial derivatives(

∂

∂x1

)α1
(

∂

∂x2

)α2

· · ·
(

∂

∂xn

)αn

ϕ

Theorem: 6.7: Heine Borel

Ω is compact if and only if it is closed and bounded.

32

Definition: 6.5: Compact Support

Let f : Ω→ R, the support of f is

supp(f) = {x ∈ Ω : f(x) ̸= 0}

A function f : Ω→ R is compactly supported if supp(f) is compact and supp(f) ⊂ Ω.

Definition: 6.6: Compactly Supported Functions

Suppose Ω is a domain in Rn. Denote by D(Ω) or C∞
0 (Ω) set of all C∞ functions with compact

support in Ω.

Definition: 6.7: Locally Integrable Functions

The set of locally integrable functions is

L1
loc(Ω) =

{
f : f ∈ L1(K),K ⊂ Ω compact

}
Definition: 6.8: Weak Derivatives

Let f ∈ L1
loc(Ω), f has a weak derivative Dα

wf if there exists a function g ∈ L1
loc(Ω) s.t. for all

ϕ ∈ C∞
0 (Ω),∫
Ω
g(x)ϕ(x)dx = (−1)α

∫
Ω
f(x)ϕ(α)(x)dx

We call g the weak derivative of f , Dα
wf .

Definition: 6.9: Sobolev Space

Let k be a nonnegative integer, f ∈ L1
loc(Ω). Suppose that Dα

wf exists for all |α| ≤ k. The Sobolev
norm ∥·∥Wk

p (Ω) is defined by

∥f∥Wk
p (Ω) =

∑
|α|≤k

∥Dα
wf∥

p
Lp(Ω)

1/p

, 1 ≤ p <∞

∥f∥Wk
∞(Ω) = max

|α|≤k
∥Dα

wf∥L∞(Ω)

The Sobolev spaces are defined by:

W k
p (Ω) =

{
f ∈ L1

loc(Ω) : ∥f∥Wk
p (Ω) <∞

}
Theorem: 6.8:

Sobolev spaces W k
p (Ω) are Banach spaces.

33

Theorem: 6.9: Traces Theorem

Suppose Ω ⊂ Rn is bounded and has a Lipschitz continuous k-times differentiable boundary Γ ∈ Ck,1.
Let γu = u|Γ for u ∈ C∞(Ω). If s ≤ k + 1, s − 1

p /∈ Z, and s − 1
p = l + σ for l ∈ Z and 0 < σ < 1,

then the map u 7→
(
γu, γ ∂u

∂v , ..., γ
∂lu
∂vl

)
has a unique continuous extension:

W s
p (Ω) 7→

l∏
j=0

W
s−j− 1

p
p (Γ)

Example: W 1
2 7→W

1
2
2 , where W

1
2
2 is for fractionally derivatives defined by Gamma Function.

Theorem: 6.10:

1. If k ≤ m and 1 ≤ p ≤ ∞, then Wm
p ⊂W k

p

2. If 1 ≤ p ≤ q ≤ ∞, then W k
q (Ω) ⊂W k

p (Ω)

Theorem: 6.11: Sobolev Inequality

Let k be a positive integer and 1 ≤ p < ∞. Suppose that k ≥ n if p = 1 and k > n
p if p > 1. Then

there exists a constant C s.t. for all u ∈W k
p (Ω),

∥u∥L∞(Ω) ≤ C ∥u∥Wk
p (Ω)

Furthermore, u can be considered as a function in C0(Ω), meaning that there exists a ũ ∈ C0(Ω) s.t.
∥u− ũ∥L∞(Ω) = 0.

Corollary 1. Let k,m be positive integers s.t. m < k and 1 ≤ p <∞. Suppose k ≥ n+m if p = 1 and
k > m+ n

p if p > 1. Then ∥u∥Wm
∞(Ω) ≤ C ∥u∥Wk

p
(Ω). u can be considered as a function in Cm(Ω).

Definition: 6.10: Dual Space

Consider a Banach space B. A linear function L : B → R is continuous if and only if L is bounded:

∥L∥ = sup
v∈B,∥v∥=1

|L(v)| <∞

L is called a functional. The collection of all bounded linear functionals on B is also a Banach space
under the operator norm. Denote as B′ (dual space of B)

Definition: 6.11: Hilbert Space

Let V be a vector space, b : V × V → R a bilinear and symmetric function satisfying: b(v, v) ≥ 0 for
all v ∈ V and b(v, v) = 0⇔ v = 0. Then b is an inner product and V is an inner product space.
If an inner product space V is complete, then it is a Hilbert space. Each Hilbert space with ∥v∥ =√

b(v, v) is a Banach space.

• L2(Ω) is a Hilbert space with inner product ⟨f, g⟩ =
∫
Ω
f(x)g(x)dx

• Hk(Ω) = W k
2 (Ω) is a Hilbert space with inner product ⟨f, g⟩k =

∑
|α|≤k

⟨Dα
wf,D

α
wg⟩L2(Ω)

34

Theorem: 6.12: Riesz Representation

If L is a continuous linear functional on a Hilbert space H, then there exists a unique u ∈ H s.t.
Lv = ⟨u, v⟩ for all v ∈ H. Furthermore, ∥L∥H′ = ∥u∥H .

Definition: 6.12: Continuous and Coercive Functionals

Let a : V × V → R be a symmetric bilinear form in a normed vector space (V, ∥·∥). a is
bounded/continuous if ∃C > 0 s.t. |a(u, v)| ≤ C ∥u∥ ∥v∥. a is coercive if ∃α > 0 s.t. α ∥v∥2 < a(v, v).

Theorem: 6.13:

If H is a Banach space, a : V × V → R is a symmetric bilinear form that is continuous on H and
coercive on a closed subspace V ⊂ H, then (V, a(·, ·)) is a Hilbert space.

To define a symmetric variational problem, we need

1. H is a Banach space

2. V ⊂ H is a closed subspace

3. a : H ×H → R is bounded symmetric bilinear form on H and coercive on V

The problem is then: Given F ∈ V ′, find u ∈ V s.t. a(u, v) = F (v) for all v ∈ V . If all three properties
are satisfied, then Theorem 6.12 implies that there is a unique solution u ∈ V , where

V =

{
v : [0, 1]→ R : a(v, v) =

∫
(v′)2dx <∞, v(0) = 0

}
=
{
v ∈ H1[0, 1] : v(0) = 0

}

Ritz-Galerkin Approximation Problem:
Suppose that Vh ⊂ V is a finite dimensional subspace. Given F ∈ V ′, find uh ∈ Vh s.t. a(uh, v) = F (v) for
all v ∈ Vh. By Theorem 6.12, it has a unique solution uh ∈ Vh. Then a(u− uh, v) = 0 for all v ∈ Vh, so
∥u− uh∥E = min

v∈Vh

∥u− v∥E , where ∥v∥E =
√
a(u, v). Coercivity and boundedness of a implies that

∥u− uh∥V = C min
v∈Vh

∥u− v∥V .

Theorem: 6.14: Ritz-Galerkin

Suppose u is a solution to a symmetric variational problem and uh is the Ritz-Galerkin approximation.
Then

∥u− uh∥V ≤
C

α
min
v∈Vh

∥u− v∥V ,

where ∥·∥V is the norm on V ⊂ H. C is the boundedness constant and α is related to the coercivity
constant.

Proof. Since a is coercive

∥u− uh∥V ≤
1√
α
∥u− uh∥E =

1√
α
min
v∈Vh

∥u− v∥E

35

Since a is bounded:

∥u− uh∥V ≤
1√
α
min
v∈Vh

∥u− v∥E ≤
C√
α
min
v∈Vh

∥u− v∥V

To define a nonsymmetric variational problem, we need

1. (H, ⟨·, ·⟩) is a Hilbert space.

2. V ⊂ H is a closed subspace

3. a : H×H → R is bilinear, not necessarily symmetric

4. a is continuous on V

5. a is coercive on V

The last two points mean that ∃α > 0, C > 0 s.t. α ∥v∥2 ≤ a(v, v) ≤ C ∥v∥2

Theorem: 6.15: Lax-Milgram

Given a Hilbert space (V, ⟨·, ·⟩), a continuous bilinear coercive a : V × V → R and F ∈ V ′, there
eixsts a unique solution u ∈ V s.t. a(u, v) = F (v) for all v ∈ V .

Theorem: 6.16: Cea

∥u− uh∥V ≤
C

α
min
v∈Vh

∥u− v∥h

Suppose we have a variaional problem, symmetric or non-symmetric on a subset V ⊂ H1(Ω) with solution
u ∈ V and Ritz-Galerkin approximation uh ∈ Vh ⊂ V in finite dimensional subspace Vh.
Let Ih : V ∩ Ck(Ω)→ Vh be an interpolation operator s.t. (Ih)2 = Ih. Suppose

∥∥∥u− Ihu
∥∥∥
H1(Ω)

≤ Chm−1|u|Hm(Ω), where |u|Hm(Ω) =

 ∑
|α|=m

∥Dα
wu∥

p
Lp(Ω)

 1
p

is a semi-norm on Hm. Since Ihu ∈ Vh, ∥u− uh∥H1(Ω) ≤ Chm−1|u|Hm(Ω) for all u ∈ V ∩ Ck(Ω).

6.4 Finite Element Space

For the variational problem a(u, v) = F (v) for v ∈ V , we want to find Vh ⊂ V .

Definition: 6.13: Finite Element

Suppose
1. K ⊂ Rn is a compact set with piecewise smooth boundary and non-empty interior, called

element
2. P is a finite dimensional space of functions on K, called shape functions
3. N = {N1, ..., Nk} is a basis for P ′ (The dual space with functionals) called nodal variables.

Then (K,P,N) is a finite element

36

Definition: 6.14: Nodal Basis

Let (K,P,N) be a finite element. The basis {ϕ1, ..., ϕk} of P, dual to N (Ni(ϕj) = δij), is called
nodal basis.

Lemma: 6.1:

Let P be a d-dimensional vector space. {N1, ..., Nd} ⊂ P ′. Then the following are equivalent:
1. {N1, ..., Nd} is a basis for P ′

2. If v ∈ P , Niv = 0 for all i = 1, ..., d, then v = 0

Triangular Elements:
Let K be a triangle. Let Pk denote set of polynomials in two variables upto order k.
dim(Pk) =

1
2(k + 1)(k + 2).

Lagrange Elements:
P = P1, dim(P1) = 3. N = {N1, N2, N3}, Ni(v) = v(zi), where z1, z2, z3 are vertices.
P = P2, dim(P2) = 6. z4, z5, z6 are midpoints.

Suppose the variational problem is a(u, v) = F (v), and there are three nodal basis ϕ1, ϕ2, ϕ3 in one
element, then the element matrix and the RHS are:

Ke =

a(ϕ1, ϕ1) a(ϕ1, ϕ2) a(ϕ1, ϕ3)
a(ϕ2, ϕ1) a(ϕ2, ϕ2) a(ϕ2, ϕ3)
a(ϕ3, ϕ1) a(ϕ3, ϕ2) a(ϕ3, ϕ3)


F e =

F (ϕ1)
F (ϕ2)
F (ϕ3)


6.5 Interpolant

Denote the local interpolant on an element K:

IKv =

k∑
i=1

Ni(v)ϕi

Proposition: 6.1:

Ni(IK(f)) = Ni(f)

Corollary 2. I2K = IK

Definition: 6.15: Subdivision

A subdivision of a domain Ω is a collection of element domains {Ki} s.t.
1. int(Ki) ∩ int(Kj) = ∅ for i ̸= j
2. ∪Ki = Ω

37

Definition: 6.16: Global Interpolant

Suppose Ω is a domain with subdivision T and each K ∈ T is associated with a finite element
(K,P,N). Let m be the highest derivative appearing in the nodal variables N of all of the elements.
For f ∈ Cm(Ω) = Cm(Rn)|Ω, the global interpolant is:

IT f |Ki = IKif

for all Ki ∈ T .

Note that we don’t know if IT f ∈ C0(Ω).

Definition: 6.17: Triangulation

A triangulation of a polygon domain Ω is a subdivision consisting of triangles s.t. no vertex of any
triangle is in the interior of an edge of another triangle.

Definition: 6.18: Continuity Order

An interpolant has continuity order r if IT f ∈ C1(Ω) for all f ∈ Cm(Ω). Call VT ={
IT f : f ∈ Cm(Ω)

}
a Cr finite element space r ≥ 0. Also, IT f ∈Wn+1

∞ (Ω).

One necessary condition for triangles is that each edge must have nodes (nodal variables) that are fixed or
symmetric around the midpoints of the edge.

The Lagrange or Hermite elements are both C0, the Argyris elements are C1. Lagrange has m = r = 0,
Hermite m = 1, r = 0, Argyris m = 2, r = 1.

6.6 Approximation Assumption

We want to estimate ∥IT f − f∥H1(Ω) for f ∈ Cm(Ω).

Definition: 6.19: Star-Shaped

A region Ω is star-shaped w.r.t. some ball B if for all x ∈ Ω, the closed convex hall of {x} ∪B ⊂ Ω.

The Taylor polynomial of order m evaluated at y is given by

(Tm
y u)(x) =

∑
|α|<m

1

α!
Dαu(y)(x− y)α,

where α = (α1, ..., αn) is a multi index and α! = α1! · · ·αn!.

If u ∈Wm−1
p (Ω), deerivatives are defined a.e., but cannot necessarily be evaluated pointwise. If

u /∈ Cm−1(Ω), then the Taylor series does not make sense pointwise. However, it is defined if we average
over a ball B. Define

Qmu(x) =

∫
B
Tm
y u(x)ϕ(y)dy,

where ϕ ∈ C∞(Ω) and ϕ = 0 outside B.

Let ρmax = sup {ρ : Ω is star-shaped w.r.t. a ball of radius ρ}. Let d = diam(Ω). If Ω is star-shaped, we
can bound u−Qmu.

38

Lemma: 6.2: Bramble-Hilbert

Let B be a ball in Ω s.t. Ω is star-shaped w.r.t. B1 with radius ρ > 1
2ρmax. Suppose that u ∈Wm

p (Ω)
with p ≥ 1. Then for 0 ≤ k ≤ m, the semi-norms satisfy:

|u−Qmu|Wk
p (Ω) ≤ Cdm−k|u|Wm

p (Ω)

As triangles become smaller d→ 0, the error → 0.

Theorem: 6.17:

Let (K,P,N) be a finite element s.t.
1. K is star-shaped w.r.t. some ball
2. Pm−1 ⊂ P ⊂Wm

∞(K)
3. N ⊂ C l(K)′

Suppose 1 ≤ p ≤ ∞ and either m > l+ n
p when p > 1 or m ≥ l+ n when p = 1. Then for 0 ≤ i ≤ m

and v ∈Wm
p (K), we have

|v − IKv|W i
p(K) ≤ C(diamK)m−i|v|Wm

p (K)

Let Ω be a domain,
{
T h
}
, 0 ≤ h ≤ 1 is a family of subdivisions s.t.

max
{

diamT : T ∈ T h
}
≤ hdiam(Ω)

Theorem: 6.18:

Let
{
T h
}

be a non-degenerate family of subdivisions of a polyhedral domain Ω ⊂ Rn. Let (K,P,N)
be a reference element satisfying the conditions from Theorem 6.17. Suppose T ∈ T h is affine
equivalent to the reference lement. Then ∃C > 0, depending only on reference element s.t. for all
0 ≤ s ≤ m, ∑

T ∈T h

∥∥∥v − IhT v
∥∥∥p
W s

p (T)

 1
p

≤ Chm−s|v|Wm
p (Ω)

If the gloabl interpolation Ihv ∈ Cr(Ω) for r ≥ 0, then it is equivalent to∥∥∥v − Ihv
∥∥∥
W s

p (Ω)
≤ Chm−s|v|Wm

p (Ω)

6.7 Discontinuous Galerkin Methods

Definition: 6.20: Broken Sobolev Space

The broken Sobolev space is

Hk(Ω, T h) =
{
v ∈ L2(Ω) : v|K ∈ Hk(K) for all K ∈ T h

}
Let Fh denote the set of all faces of elements K ∈ T h. Let Fh

B denote faces on ∂Ω and Fh
I = Fh \ Fh

B.
Suppose Γ ∈ Fh

I . Let K
(L)
Γ and K

(R)
Γ be adjacent faces.

39

For v ∈ H1(Ω, T h), define v
(L)
Γ = v|

K
(L)
Γ

, v(R)
Γ = v|

K
(R)
Γ

, the average value is ⟨v⟩Γ = 1
2(v

(L)
Γ + v

(R)
Γ), and the

difference is [v]Γ = v
(L)
Γ − v

(R)
Γ .

Consider −∇2u = f . Write∫
Ω
∇2uvdx =

∫
Ω
fvdx,

where u ∈ H2(Ω) and v ∈ H1(Ω, T h).∑
K∈T h

∫
K
∇u∇vdx−

∑
K∈T h

∫
∂K

(n · ∇u)vdx =

∫
Ω
fvdx

⇔
∑

K∈T h

∫
K
∇u∇vdx−

∑
Γ∈Fh

I

∫
Γ
n · ⟨∇u⟩ [v]dx =

∫
Ω
fvdx+

∫
Γ
n · ∇uV dx

a(u, v) is defined by LHS, and we can enforce v = 0 on Γ.

6.8 Isoparametric Approximations

Suppose that (K,P,N) is a fixed reference element. Suppose we have another element domain
Ke = F (K), for some mapping F and basis functions ϕe

j(x) = ϕj(F
−1(x)). e.g. F =

∑n
j=1 ϕjxj gives an

affine transformation.

Suppose that Ω̃ is a polyhedral domain and let Ṽh be a finite element space on Ω̃. Let F̃ : Ω̃→ Ω, where
Ω is Lipschitz, but not necessarily polyhedral. Then

Vh =
{
v(F̃−1(x)) : x ∈ F̃ (Ω̃), v ∈ Ṽh

}
is called an isoparametric equivalent finite elment space when F̃ ∈ Ṽh.
i.e. to evaluate v(x) for x ∈ Ω, we transform it to x̃ = F̃−1(x) ∈ Ω̃ and evaluate v(x̃)

Let Ω be a domain with smooth boundary and Ωh is a polyhedral approximation. It is possible to
construct piecewise polynomial mapping of degree k − 1 s.t.

1. it is equal to identity away from ∂Ω

2. distance from ∂Ω and ∂F h(Ωh) is O(hk)

3. Jacobians of F are bounded

Then for 0 ≤ s ≤ 1, k = m− 1,∥∥∥v − Ihv
∥∥∥
W s

p (F
h(Ωh))

≤ Chm−s|v|Wm
p (Fk(Ωh))

40

7 Integral Equation Methods

Consider the Laplace equation:

∇2u = 0, x ∈ Ω

u(x) = g(x), x ∈ ∂Ω

Green’s function G(x, y) for Laplace equation satisfies:

∇2
xG(x, y) = δ(x− y), x ∈ Ω

In 2D:

G(x, y) =
1

2π
log ∥x− y∥

u(x) =

∫
∂Ω

G(x, y)σ(y)dy, x ∈ Ω

lim
x→∂Ω

u(x) =

∫
∂Ω

G(x, y)σ(y)dy = g(x)

Proof. Rewrite the Laplace equation in polar coordinates:

∇2f =
1

r

(
∂

∂r

(
r
∂f

∂r

))
+

1

r2
∂2f

∂θ2

Assume ∂2f
∂θ2

= 0 (no dependence on θ), then

∇2G(ρ) =
1

ρ

∂

∂ρ

(
ρ
∂G

∂ρ

)
Setting it to zero for ρ > 0, we have an ODE, which gives:

G(ρ) = c1 log ρ+ c2

With the condition:
∫
B
∇2

xG(x, y)dx = 1, we get G(ρ) = 1
2π log ρ

In 3D, G(x, y) = − 1
4π

1
∥x−y∥

Idea: we solve for the equation along the boundary using Green’s function.
Issues:

1. Singularity of Green’s function

2. The matrix for G(x, y) is dense

3. Condition number for G is large. G is a compact operator, with λi → 0.

Instead, we can also write:

u(x) =

∫
∂Ω

(
∂

∂n(y)
G(x, y)

)
σ(y)dy, x ∈ Ω

lim
x→∂Ω

u(x) =
1

2
σ(x) +

∫
∂Ω

(
∂

∂n(y)
G(x, y)

)
σ(y)dy = g(x), x ∈ ∂Ω

σ(x) is almost identity, while the second term has 1
N2 decay. It becomes well-conditioned.

41

Suppose Ω = H = {(x1, x2) : x2 ≥ 0} is the upper half plane. Consider approaching (0, 0) from below.
Write x = (x1, x2), y = (y1, y2), and take x1 = 0, x2 = h→ 0

G(x, y) =
1

2π
log ∥x− y∥ = 1

4π
log
(
(x1 − y1)

2 + (x2 − y2)
2
)

lim
x→0

∫
∂Ω

G(x, y)ρ(y)dy = lim
x1,x2→0

∫ ∞

−∞

1

4π
log
(
(x1 − y1)

2 + (x2 − y2)
2
)
ρ(y)dy

= lim
h→0

∫ ∞

−∞

1

4π
log(y21 + h2)ρ(y1)dy1

=

∫ ∞

−∞

1

4π
log y21ρ(y1)dy1

Consider the second formulation:

∂

∂n(y)
G(x, y) =

1

4π

∂

∂y2
log
(
(x1 − y1)

2 + (x2 − y2)
2
)

=
1

4π

y2 − x2
(x1 − y1)2 + (x2 − y2)2

lim
x→0

∫
∂Ω

∂

∂n(y)
G(x, y)σ(y)dy = lim

h→0

∫ ∞

−∞

1

2π

−h
y21 + h2

σ(y1)dy1.

Define Φh(ξ) =

∫ ξ

−∞

h

y21 + h2
dy1 = arctan

(
ξ

h

)
+

π

2

If ξ < 0, then as h→ 0, lim
h→0

Φh(ξ) = 0. If ξ > 0, we get π.

For any kernel G(x, y), we get

1. First kind integral equation: g(x) =

∫
∂Ω

G(x, y)σ(y)dy, x ∈ ∂Ω

2. Second kind integral equation: g(x) =
1

2
σ(x) +

∫
∂Ω

(
∂

∂u(y)
G(x, y)

)
σ(y)dy, x ∈ ∂Ω

The integration parts are called Fredholm integral equations.

Let A[u] = (I +K)[u] = f . Suppose An is a discretization of A. We want An[un] = un +Knun. Let u be
the true solution so that Anu = fn + τ . Let en = u− un be the error.
Then Anen = τ or en = A−1

n τ . An is bounded, τ is from discretization of u and f (quadrature error,
O(hn))
Boundary is splitted into chunks of size h, each chunk is discretized into n points.

7.1 Singular Quadrature

Let w, z ∈ R2. It is possible to show

∂

∂n(z)
log ∥w − z∥ = Im

(
dz

w − z

)
Suppose we want to evaluate

∫
C

ρ(z)
w−zdz along a contour C, where ρ(z) is the density.

Suppose that ρ(z) ≈
N∑
j=0

ajz
j . Let pj =

∫
C

zj

w−zdz. Then if z1 = −1, z2 = 1, C : z1 ∼ z2 (a path from z1 to

42

z2). Then,

p0 = log

(
w − z2
w − z1

)
pj+1 = zpj + cj , cj =

1− (−1)j

j

7.2 Fast Multipole Method

Consider G(x, y) = 1
2π log ∥x− y∥.

g(xi) =
1

2
σ(xi) +

N−1∑
j=0

(
∂

∂n(xj)
G(xi, xj)

)
σ(xj)wj

Cost of first term is O(N), second term is O(N2).

However, with iterative method, since the matrix is well-conditioned, the cost can be reduced.

Suppose Ωσ,Ωτ ⊂ R2 are the source and target set, with |Ωσ| = N , |Ωτ | = M , and Ωσ ∩ Ωτ = ∅. x ∈ Ωσ,
y ∈ Ωτ . The Green’s function can be approximated as:

G(x, y) =

P−1∑
p=0

Bp(x)Cp(y)

Then

ui =
N∑
j=1

G(xi, yj)qj =
N∑
j=1

P−1∑
p=0

Bp(xi)Cp(yj)qj =
P−1∑
p=0

Bp(xi)

 N∑
j−1

Cp(yj)qj



Write q̂p =
N∑
j=1

Cp(yj)qj . Cost to compute q̂p is O(NP).

Then the cost to compute all is O(NP +MP) instead of O(NM), where N is the number of sources and
M is the number of targets.
We need multi-level/multigrid evaluation to take care of the interactions among grids.

Core idea of fast multipole method is to use the compressed form:

G(xi, yj) =

P−1∑
p=0

Bp(xi)Cp(yj)

to evaluate interaction of well-separated Ωσ and Ωτ .

Suppose that we have many source boxes Ω(1)
σ , ...,Ω

(K)
σ , all well-separated from Ωτ . Rank of interactions is

still P . To compute all q̂, it costs O(KNP). To compute ui, it costs O(KM) per box.

Using ui =
∑P−1

p=0 Bp(xi)q̂p, we can find functions Cp(x) and coefficients ûp (computed from q̂p) s.t.
ui =

∑P−1
p=0 Cp(xi)ûp. The expansion q̂ is called an outgoing expansion, and û is an incoming

expansion.

1. T ofs
σ : qσ 7→ q̂σ is outgoing-from-source operator

2. T ifo
τ,σ : q̂σ 7→ ûτ is incoming-from-outgoing operator

43

3. T tfi
τ : ûτ 7→ uτ is target-from-incoming operator, evaluating the local expansion ûτ at xis to get uτ .

Instead of computing A(Ωτ ,Ωσ) : q
σ 7→ uτ at cost O(MN), we break into 3 steps

1. T ofs
σ : qσ 7→ q̂σ at cost O(NP)

2. T ifo
τ,σ : q̂σ 7→ ûτ at cost O(P 2)

3. T tfi
τ : ûτ 7→ uτ at cost O(MP)

Sketch of the algorithm:

1. Construct multi-level boxes with different scale. Parent box of τ is box on the level above containing
τ . Children of τ , Lchild

τ are boxes on level below. Neighbor list Lnei
τ are boxes on the same level

touching τ . Interaction list Lint
τ are boxes s.t.

(a) σ, τ are on the same level

(b) σ and τ do not touch

(c) parents of σ and τ touches

2. start from bottom level, create q̂ for each box

3. go above one level, combine q̂ from Lchild
τ for the parent box

4. construct û for each grid from top down and add everything in the interaction list

Operation on each level is linear and grid size is geometric series 1
4n .

44

	Classification of PDEs
	Elliptic PDEs
	Parabolic PDEs (Heat Equation)
	Hyperbolic PDEs
	General PDEs

	Finite Difference Method
	Heat Equation
	Error Analysis
	Rate of Convergence

	Equilibrium Heat Equation
	Closer Look at Stability

	Elliptic Equations in 2 or More Dimensions
	Iterative Methods
	Non-rectangular Domains

	Direct and Iterative Methods
	Sparse Direct Solvers
	Cholesky Factorization

	Iterative Methods
	Conjugate Gradient Method
	Generalized Conjugate Residuals
	Arnoldi's Method
	Convergence of Conjugate Gradient

	Classical Iterative Methods
	Convergence

	Multigrid
	Parabolic Equations
	Method of Lines
	Von Neumann Analysis
	Multidimensional Problems
	Hyperbolic Systems and Advection Equations

	Finite Element Method
	Weak Formulation of BVPs
	Piecewise Polynomial Spaces and Finite Elements
	Sobolev Space
	Finite Element Space
	Interpolant
	Approximation Assumption
	Discontinuous Galerkin Methods
	Isoparametric Approximations

	Integral Equation Methods
	Singular Quadrature
	Fast Multipole Method

