CSC2401 Introduction to Computational Complexity

1 Computation Models and Time Complexity

What is Complexity Theory?
e How can computation problems be computed efficiently? How do we measure efficiency?
e How limited resources (time/space/randomness) affect computation?
e Complexity classes and relations between different classes.

Examples of problems: factoring, graph coloring, multiplying matrices, circuit satisfiability.

Definition: 1.1: Decision Problems

For a language L C {0,1}*. Given x € {0,1}*, decide if 2 € L.

Example:

e Graph 3-coloring: Given a graph G, can we color the vertices of G with 3 colors s.t. adjacent vertices
get different colors?

e Circuit SAT: Given a circuit, does it have a satisfying assignment?

Definition: 1.2: Search Problems

Given z € {0,1}*, find y € {0,1}* s.t. ,y € R C {0,1}* x {0,1}*.

Example:
e Graph 3-coloring: Given a graph G, find the coloring satisfying the constraint.

e Circuit SAT: Given a circuit, find a satisfying assignment.

Definition: 1.3: Counting Problems

Given z € {0,1}*, find the number of y € {0,1}* s.t. z,y € R C {0,1}* x {0,1}*.

Example:
e Graph 3-coloring: Given a graph G, find the number of satisfying colorings.

e Circuit SAT: Given a circuit, find the number of assignments.



1.1 Turing Machine
There are multiple computations models: Turing machines, circuits, interactive protocols.

Turing machines are the simple and basic model that simulates physically realizable computation models
with little loss in efficiency.

Definition: 1.4: Turing Machines

A Turing machine is a 7-tuple (Q, %, T, g0, qa, Gr)

1. Q: set of states

2. X: input alphabet

3. T': tape alphabet, L € T (blank, OJ), ¥ Cc T

4. §: transition function 6 : Q \ {qa, ¢} X T — Q x ' x {L, R} s.t. d(q,a) = (¢’,d’,x), where
x € {L, R} means moving left or right. Input set size is fixed and finite. If machine is in state
g and head over tape square with a, then the machine replaces a with ¢’ and moves to state
q'. The head moves to left or right depending on x.

5. qo, qa, qr: initial, accept, reject states, q, # ¢

A Turing machine M works on an input string z € ¥* as follows:

1. Initially, x = z1x9-- -z, € X* appears on the leftmost n squares of the tape. The rest of the tape is
blank. The head starts on the leftmost square of the tape.

2. The initial state is qq.

3. M moves according to §, continues until g, or ¢,, then it halts. M may not halt in finite time.

Definition: 1.5:

M accepts z € ¥* if M with input x eventually halts in q,.
L(M) ={x € ¥* : M accepts x} are the languages accepted by M.

There are different variations/formalizations of Turing Machines:
e Have k tapes (k is a fixed constant) with fixed tape for input
e Tape can be infinite in both directions
e Oblivious Turing machine: movement of head depends on input length only

e Different alphabet

Theorem: 1.1: Properties of Turing Machines

Robustness: Each model can simulate each other with at most polynomial slow down.

Time: a Turing machine runs in 7'(n) time if it performs at most 7'(n) basic operations (transitions)
on inputs of length n.

Space: a Turing machine runs in S(n) space if it uses at most S(n) spaces on the tape for inputs of
length n.

Any Turing Machine can be represented by a string in {0, 1}*.




Definition: 1.6: Universal Turing Machine

Every string in {0, 1}* can represent a Turing machine. Let M, be the Turing machine represented
by string a.

There exists a universal Turing machine U s.t. U can simulate any other Turing machine given the
bit representation.

i.e. Given input (x,«), U can simulate the behavior of M, on x.

Theorem: 1.2:

If the running time of M, on x is T'(|z|), then the running time of U is T'(|z|) log T'(|z|).

Theorem: 1.3:

There exist functions that cannot be computed by any Turing machine.

Proof. The proof is analogous to the diagonalization proof that R is uncountable.

Consider the function UC : {0,1}" — {0,1}. Let ith string be the description of ith Turing machine M;.
Given input = € {0, 1}, if M,(x) = 1, then UC(z) = 0, else UC(z) = 1.

Suppose UC is computable, then o s.t. UC is computed by M,. i.e. My(x) = UC(x) for any z. Then
My (z) = UC(x). Contradiction. O

Note: The set of all Turing machines is countable.

Theorem: 1.4: HALT Problem

Let HALT (o, ) = 1 < M,(x) halts in a finite number of steps. Then HALT is not computable by
any Turing machines.

Proof. Suppose 3 a Turing machine Myarr which computes HALT. We can use MyapT to compute TM
computing UC in Theorem

Define Myc: Given input «, run Mygarr on (o, o). If it does not halt, output 1. Otherwise, use a universal
Turing machine to compute b = M, («) and output 1 —b

UC < HALT. O

1.2 Time Complexity

Definition: 1.7: Time Complexity of Language

DTIME(T'(n)) is the set of all languages L C {0,1}* accepted by a Turing maching with running
time at most ¢T'(n) on inputs of length n, where ¢ is a contant.

Example: DTIME(n?) = {all L C {0,1}* accepted by some Turing machine in cn? time.}.

Definition: 1.8: Complexity Class P

The polytime class P = U DTIME(n®) is the set of decision problems that can be easily solved (in
c>1
polynomial time) by a Turing machine.




Theorem: 1.5: Linear Speedup Theorem

Given any ¢ > 0 and any k-tape Turing machine solving a problem in time 7'(n), there exists another

k-tape Turing machine that solves the same problem in time at most @ + 2n + 3.

Definition: 1.9: Complexity Class NP

L c {0,1}* is NP (Nondeterministic Polynomial time) if there exists a polynomial p: N — N and a
polynomial time Turing machine M, the verifier for L s.t. Vz € {0,1}*, 2 € L & Jy € {0, 1}p(|z|)
s.t. M(z,y) =1.

y is called a certificate/witness for  w.r.t. L and M.

Definition: 1.10: Complexity Class EXP

EXP = U DTIME(2™) is the set of decision problems that can be solved in exponential time by a
c>1
Turing machine.

P ¢ NP ¢ EXP. NP C EXP, because we can brute force all NP problems by trying all possible inputs
which is exponential time w.r.t. input size.

Theorem: 1.6: Time Hierarchy Theorem

Let f,g be time constructable functions s.t. f(n)log(f(n)) = o(g(n)). Then DTIME(f(n)) &
DTIME(g(n)).
e.g. DTIME(n) & DTIME(n'?)

Proof. Consider the function (language) L s.t. given an input « of length f(n). If M, (a) (by some universal
Turing machine) accepts within f(n)log f(n) steps, then reject, otherwise accept. Since f(n)log(f(n)) =
o(g(n)), L € DTIME(g(n)).

Suppose there exists a Turing machine M; that decides L in time cf(n), where c is a constant, |M;| = f(n).
We can assume that |M;|log |M;| > ¢|M;| by padding with zeros, even though M; is a fixed length string.
Then M;({M;)) rejects if and only if accepts. Because we can always decide to accept or reject within
c|M;| < | M;|log|M;| steps. Once we decide to accept, the TM should actually reject it. O

1.3 Reduction and NPC

Definition: 1.11: Karp Reductions

L <, L' if there exists a poly time TM M s.t. x € L & M(z) € L.

Definition: 1.12: NP-Hard and NPC

L'eP=LeP
L' eNP-Hard if L <, L' for all L eNP
L eNPC if L eNP and L eéNP-Hard.




Definition: 1.13: Boolean Formula

A boolean formula ¢ consists of n variables uq,us, ..., u, with logical operators V,A,—~. Let z €
{0,1}", ¢(z) denotes the truth value of ¢ when u; = z;.

Example: ¢ = (u1 Aug) V (—ug V us) V (ug A uy) is a boolean formula

Definition: 1.14: CNF and SAT

A boolean formula is in CNF form if it is an AND of ORs of variables and their negations (literals).
A k-CNF is a CNF formula in which every clause contains at most k variables.

kE-SAT is the language of satisfiable k-CNF formulae: {k-CNFy : Isatisfying assignment for ¢}
SAT = {¢ : p is a CNF formula which has a satisfying assignment}

Example: (uj Vug V —us) A (ug V uz) A (—us V —us) is a CNF.
3-CNF: every clause has at most three literals.
3-SAT: language of satisfiable 3-CNF formulae.

Definition: 1.15: TM-SAT

The Turing machine SAT problem is defined as
TM-SAT = {<a,aj, 1", 1t> : Jy € {0,1}" s.t. M, outputs 1 on (z,y) within ¢ Steps}

Here, 1" represents the string of n 1s, 1* represents the string of ¢ 1s.

Definition: 1.16: Boolean Circuit

A boolean circuit with n inputs and 1 output is a directed acyclic graph with n sources and 1 sink,
all non-source vertices are labelled A, V, -, where A,V have fan-in of 2 and — has fan-in of 1.

The size of a circuit is |C|, which is the number of vertices in C.

Given input = € {0,1}", the circuit outputs C(z).

Theorem: 1.7: Universality of A, V, —

For every Boolean function f : {0,1}% — {0,1} (total of 22" functions), there is an L-CNF formula
¢ of size at most O(12') s.t. @(u) = f(u) for all w € {0,1}F. i.e. Vf, there is a boolean circuit
computing f.

Proof. For every v € {0,1}%, there is a clause ¢, in L variables s.t. ¢,(v) = 0 and for all other inputs u,
cw(u)=1. eg. cy(z1,..,20) =21V 22 V-~V zp if v =(1,0,...,0)
Let ¢ be AND of all clauses ¢, s.t. f(v) = 0. O

Theorem: 1.8: SAT<,3-SAT

There exists a transformation mapping any CNF ¢ to 3-CNF ) s.t. v is satisfiable < ¢ is satisfiable.

Proof. Suppose ¢ is a 4-CNF, ¢ = (uy V uz V U3 V uy).
Add a new variable z and replace ¢ with ¢; A ca, where ¢ =uq Vus V z, co = ug V ug V Z.
Similarly for k-CNF clauses, replace with (k — 1)-CNF clause and 3-CNF clause and then recurse. O



For every T(n) time Turing machine M, there exists an O(T(n)?) size circuit family {Cy}, oy s.t.
Cn(z) = M(x), Vx € {0,1}".

Proof. Firstly, simulate M by an O(T(n)?) time oblivious Turing machine M’.

Given an input x to M’. Let 21, 29, ..., 21 be the local snapshots of the computation of M’ on x.

z; is the encoding of state at time ¢ and symbol read by head. z; is a constant size binary string.

z; only depends on z;_1 and z; where 7’ is the last time when head is in the same position, or some symbol
of x. z; can be computed from previous snapshots on x using a constant size circuit.

The composition of these circuits gives the final circuit from z to z, where k = O(T'(n)?) O

Theorem: 1.9: Cook-Levin Theorem

3-SAT is NPC.

Proof. In this proof, we show that for any language L NP, L <, TM-SAT <, circuit-SAT <, 3-SAT.

1. L <, TM-SAT

Since L €NP, there exists polynomial p and Turing machine M st. =z € L < Jy € {0, 1}p(\x|) s.t.
M(z,y) =1 and M runs in time g(n) for some polynomial g.

Consider the map x — (| M|, z, 1PI=) 190 "where m = |2| + p(|z|) (reading the input + verifying). This
map is a poly time reduction and z € L & <LMJ ,x, 1Pz 1‘1(m)> €TM-SAT.

2. TM-SAT <, circuit-SAT

Consider <LMJ I 1t>. Consider a Turing machine M which on input y of length n runs M on (z,y) for
t steps and accepts iff M accepts.

By Lemma we can construct the O((t +n)?) size circuit Cy, s.t. Cp(y) = M(y), Yy € {0,1}".

Then C,, is satisfiable < ([M],z,1",1") € TM-SAT.

3. Circuit-SAT <, 3-SAT

Let v1,v2, ..., vy, denote the nodes of the circuit C. For each node v;, introduce variable u;. If v; = v; A vk,
add clauses corresponding to u; = uj Aug, t.e. (@ Va;Vug) A (@ VujVag) A VaugVug) A(u Vg Vag).
We can define similar clauses for v; = v; Vg, If v; = —w;, we add claused for u; = w; by (u; Vuj) A (a; Vaj).
If v; is the final output node, then add u; to the formula.

We then obtain a 3-CNF formula ¢ which will be polynomial time reduction (constant addition for each
node)

Circuit C is satisfiable < ¢ is satisfiable. O

Importance of 3-SAT: it is useful in reduction, mathematical logic, constraint satisfaction problem, and it
is well-studied.

Theorem: 1.10:

0/1-Integer Programming: Given m linear inequalities with rational coefficients and n variables
U1, Us, ..., Un. Is there an assignment of Os and 1s satisfying all inequalities?
0/1-Integer Programming is NP Complete.

Proof. 0/1-Integer Programming is NP:
Certificate: an assignment to uj, ..., u,. Plug in and check in polynomial time



3-SAT<,, 0/1-Integer Programming:
Reduction: express CNF formula as an integer program by expressing each clause as an inequality:
e.g. up VugVus —>U1+(1—UQ)—|-(1—U3) >1

O

1.4 co-NP and co-NPC

Definition: 1.17: co-NP

For L C {0,1}", define L = {0,1}* \ L, co-NP={L: L € NP}.
Alternatively, L C {0,1}" is in co-NP if there exists a polynomial p : N — N and polynomial time
Turing Machine M s.t. Vo € {0,1}", z € L < Vy € {0, 1}*1%D M (z,y) = 1.

Definition: 1.18: co-NPC

A language is co-NP complete if it is in co-NP and every co-NP problem can be reduced to it.

1.5 Non-deterministic Turing Machine

Definition: 1.19: Non-deterministic Turing Machine

A non-deterministic Turing Machine (NDTM) (not realized) has two transition functions dg and 0;.
When NDTM computes a function, at each step, it makes an arbitrary choice as to which transition
function to apply. M(x) = 1 if there exists some sequence of choices (the non-deterministic choices
which would make M reach g, on input z). M runs in time 7'(n) if Vo € {0,1}" and every non-
deterministic choices, M halts or reaches g, within T'(n) steps.

Definition: 1.20: NTIME and NP

Given T : N = N, L € {0,1}", L € NTIME(T'(n)) if there exists ¢ > 0 and ¢T'(n) time NDTM M
st. Vz € {0,1}", z € L& M(z) = 1.
NP = | | NTIME(n").

k>1

We can simulate a NDTM using a DTM if the sequence of choices (certificate) is known.

Theorem: 1.11: Non-deterministic Time Hierarchy Theorem

Let f, g be time constructible functions s.t. f(n+1) = o(g(n)), then NTIME(f(n)) g NTIME(g(n)).

Many natural problems in NP are NP-complete, but not every problem in NP is in either P or NPC. e.g.
Factoring is in NP, but Factoring is not NPC and not P.

Theorem: 1.12: Ladner’s Theorem

If P#NP, then there exists a language L € NP\ P that is not NP-complete.

Proof. For H : N — N, let 3-SATy = {gpo 1H() . » € 3-SAT and n = l¢|} be the length n satisfiable
formulas padded with H(n) 1s.

If H grows fast, e.g. H(n) = 2", then 3-SATy € P. (The length of formula is logarithm w.r.t. length of
input). Then brute force is poly time w.r.t. length of inputs.

We need to find H that doesn’t grow too fast to make it in P and not too slow to make it in NPC



Lemma 1. If H is polytime computatble, then 3-SATy € NP.
Lemma 2. If H =n*WM, e¢.q. H =nl8", then 3-SATy is not NP-complete unless P=NP.

Proof. 1f it is NP-Hard, then 3-SAT<, 3-SATy.

We start from a 3-SAT formula ¢ and get a new formula ¢’ which is smaller by a polynomial factor s.t. ¢
is satisfiable & ¢’ is satisfiable.

Repeat this process, we can reduce size ¢’ to constant and brute force the solution to solve 3-SAT in

polynomial time.
Contradiction. Thus 3-SAT g cannot be NP-Hard. O

Lemma 3. If PANP, then there exists H that is polytime computatble grows superpolynomially, but
3-SATy ¢ P

Lemma 4. A modification of previous lemma. Suppose P£ZNP in a meaningful way. i.e. there exists a
polynomial time computable function t s.t. t = n*® and 3-SAT requires time t*1), then 3-SAT, ¢P.

Proof. If 3-SAT; €P, then 3-SAT is in time tO(), O

By the lemmas, we get that there exists intermediate problems in NP. O

1.6 Relativization

Can we use diagonalization to prove P£NP?

Definition: 1.21: Diagonalization

Proofs that only uses ability of Turing machiens to simulate other Turing machines.

Definition: 1.22: Oracle Turing Machines

Turing machines are given access to an oracle that can solve the decision problem for some language
O c {0,1}".

They have a special oracle tape: on it, write ¢ € {0,1}* and in one step, it gets the answer to “is ¢
in O?” This can be repeated arbitrarily often.

Definition: 1.23: P° and NP

PO is the set of languages decided by a poly time Turing machine with oracle access to O.
NP? is the set of languages decided by a poly time non-deterministic Turing machine with oracle
access to O.

Example: SATe PSAT NPc PSAT, Pc PL for L eNPC.
SAT e P5AT ¢co-NPc PSAT



Theorem: 1.13: Properties of Oracle Turing Machines

1. Oracle TMs can also be represented as strings
2. There exists a universal Turing Machine with oracle access to O
3. Proofs using representation of TMs as strings and simulation of TMs by other TMs also hold
for oracle TMs. i.e. they relativize.
Proofs by diagonalization relativize.

Theorem: 1.14: Baker-Gill-Solovay

There exist oracles A, B s.t. P4 = NP4 and PP £ NP8

Proof. Let EXP = UDTIME(?’LC). EXPCOM = {(M,z,1") : M outputs 1 on x in 2" steps}.

C
EXP ¢ PFXPCOM ~ NpEXPCOM ~ px P The final inclusion comes from that NP can be done in
exponential time and brute force the solution is exp time.
Thus for A=EXPCOM, P4 = NP4,

For language B, let Ugp = {1" : 3z € B s.t. |x| = n} be the unity language of B.

It is easy to verify that Ug € NP® for all B. To check 2 = 1" € Up, make non-deterministic guess of string
of length n and query the oracle.

We then find B s.t. Up ¢ PP by diagonalization.

Enumerate M7, M, ... poly time TMs with oracle tapes. Each TM appears infinitely often.

Construct B in stages. Initially B is empty and we add strings at each string.

In stage ¢, make sure MiB does not decide Ug in %, so not in poly time.

Choose n larger than all strings whose status has been decided, so previous machines cannot decide it.
Note Up(1™) does not depend on anything decided in the past.

We want to choose B s.t. M;(1™) messes up.

Run M; on input 1" for % steps. All queries decided in the past answer correctly. For all new queries,
answer “Not in B”.

After M; finishes and outputs 0/1. Make sure M; messes up.

Now M; could have queried at most 35 strings in {0,1}".

If M; accepts, then all strings in {0,1}" are not in B.

If M; rejects, pick a string in {0,1}" not queried and add it to B.

Then M7 (1™) messes up. MP cannot compute Up. O



2 Space Complexity

Let M be a deterministic Turing machine (not necessarily halting)

Definition: 2.1: Space Complexity

Let S: N — Nand L C {0,1}". L € SPACE(s(n)) if there exists a constant ¢ and Turing machine
M deciding L s.t. on every input z € {0,1}", the total number of locations that are at some ppint
non-blank during M’s execution on x is at most ¢ - s(|z|). (Input doesn’t count)

r
\

Theorem: 2.1:
NTIME(t(n))CSPACE(t(n))

Proof. Try all possible computation paths of ¢(n) steps for an NDTM on input of length n. This can be
done in O(t(n)) space, by additionally storing ¢(n) transitions to keep track of current branch. O

Definition: 2.2: Space Complexity Classes

SPACE(f(n)) = {L : L decided by a TM with O(f(n)) space complexity}
NSPACE(f(n)) = {L : L decided by a NDTM with O(f(n)) space complexity }
PSPACE = U SPACE(nk). It formalizes problems solvable by computers with bounded memory.
keN
NPSPACE = | ] NSPACE(n")
keN

By Theorem 2.1} P ¢ NP  PSPACE C EXPTIME.

Let M be halting TM with space complexity f(n). Then the time complexity has lower bound f(n). With
exponential time 2°U() | we can simulate PSPACE.

The number of steps is at most the number of possible configurations. If configuration repeats, then machine
loops.

Theorem: 2.2:
P # EXPTIME

The proof is from time hierachy theorem (Theorem [1.6)).
Thus either P#NP or NP#PSPACE or PSPACE#EXPTIME.

Theorem: 2.3: Savitch’s Theorem

For any function f(n), where f(n) > n, NSPACE(f(n)) C SPACE(f(n)?).

Proof. Let N be a NDTM with space complexity f(n). Consider a deterministic TM that tries every branch

of N. Each branch uses at most f(n) space. Thus total space < 220U (which is based on number of
branches)

Let N = (Q,%,T,6,q0,qa,q) be a NDTM with space complexity f(n).

We will construct a deterministic TM M with space complexity O(f(n)?) s.t. L(M) = L(N).

Let w € X" be the input of length n. Define G = (V, E) the f(n) space configuration graph of N, where
V' = {configurations of N with at most f(n)tape symbols}

10



E ={(c1,c2) € VXV : ¢ yields 2}
Since N is NTM, ¢; can have edges to multiple configs.
V| < |Q|f(n)|T)/™. Fix ds.t. |[V| < 2¥™ for any n.

w € L(N) < there exists a path in G of length at most 2% (") from gow to an accepting configuration of
the form zq,y

We want to find a deterministic algorithms .t. it finds a path from gg to ¢;.

Define CANYIELD(cy, ¢2,t) for ¢1,co € V, t > 1 a recursive algorithm s.t.

If t =1, accept if ¢; yields co, otherwise reject

If t > 2, for each ¢3 € V, recurse on CANYIELD(cy, c3, [£]) and CANYIELD(c3, ca, | 5]). If both accept for
some c3, then accept, otherwise reject.

We set t = 2¢(")_if CANYIELD accept, then the Turing maching M accepts.
CANYIELF(cq, co,t) has t levels of recursion. Each level of recursion uses O(f(n)) additional space.

Total space is O(t(f(n))), but t = O(f(n)), so total space is O((f(n))?). O

Following the above PSPACE=NPSPACE.

Definition: 2.3: PSPACE-Complete

A language B is PSPACE-Complete if
1. B is PSPACE
2. Every A in PSPACE is polytime reducible to B (B is PSPACE-hard)

Theorem: 2.4:

If B is PSPACE-Complete and B €P, then P=PSPACE. If B eNP, then NP=NPSPACE.

Definition: 2.4: Fully Quantified Boolean Formula

A fully quantified boolean formula is a boolean formula where every variable in the formula is
quantified (3,V) at the beginning of the formula (prenex normal form).

Example: Vz,3y[(z Vy) A (Z Vg)] is true.
Jz, Jy [z V 7] is true.
Vz[z] is false.

Definition: 2.5: TQBF

The language TQBF= {¢ : ¢ is a true fully quantified boolean formula}

SAT is a special case where all quantifiers are 3. TAUT is a special case where all quantifiers are V.
SAT<,TQBF, TAUT<,TQBF.

Theorem: 2.5: Meyer-Stockmeyer

TQBF is PSPACE-Complete

Proof. 1. TQBFePSPACE

Let ¢ be a fully quantified boolean formula as input to a Turing machine T’

If © has no quantifiers, evaluate ¢, accept if it evaluates to 1.

If o = Jz), the recursively call T' on ¢ with = 0 and then = 1, if either result in accept, then accept

11



p, else reject.

If ¢ = Vx), then recursively call T on psi. Accept if both x = 0 and x = 1 accept.

Note that space can be reused, for computing t,—¢ and ¥,—1. Thus the space the algorithm used is
Snom = Sn—1,m + O(m), spm = O(nm) where n is the number of variables, and m is the description size.

2. TQBF is PSPACE-Hard

For all A €PSPACE, there exists a constant k& and Turing machine M that decides A in space < n*.
We find a polytime reduction from any string w to a fully quantified ¢ that simulates M on w.
Given O(n*) possible configurations, each needs time 20(n") to simulate on a DTM.

Fix M and w, the goal is to construct a QBF ¢ which is true if and only if M accepts w.

Let ¢, ¢,,+ be a formula which is true if and only if M can go from c¢; to ¢z in at most ¢ steps.

Then set ¢1 = Cstart; €2 = Caccepts t = dn*

If t =1, encode ¢; = ¢o on ¢ yields cs.

Ift>1, @ei ot = M [4p61,m17% A Prasea,t [+ T represents configuration of M.
But at each ¢, ¢ gets doubled. So we consider the following reconstruction:
Perent = Fmaves, ey |((e3,04) = (e1,m)) V ((e3,01) = (1, 02)) = Gy ¢

The final formula size is O(n2¥) for t = 29" (There are O(n*) recursions, and for each level of the recursion,
formula size increased by O(n*)) O

PSPACE captures the complexity of several 2-player games of perfect information.

2.1 Sublinear Spaces

Class L and NL are sublinear space bounds where f(n) is much smaller than n.
We consider a 2-tape TM

1. read-only input tape
2. read/write work tape (on which we measure the space complexity)

We don’t have to store all data on the main memory

Definition: 2.6: L and NL

L is the class of languages decidable in log space on a DTM, L = SPACE(logn)
NL = NSPACE(logn)

Example: A = {Oklk k> 0} is a language in L.

o(1)

For log space problems, #configs< 20(logn) — p , 850 the TM can run in poly time.

L C P, similarly NL C P.

Definition: 2.7: PATH

PATH = {(G, s,t) : G directed graph with a directed path s — t}
PATH = {(G, s,t) : G directed graph without a directed path s — t}

PATHEP, also PATHENL (Gues the next vertex iteratively and save the current vertex only. If it reaches
t, then accept) PATH €coNL

Conjecture: NL=#L.
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Definition: 2.8: NL-Complete

A is NL-Complete if A €ENL and VB €NL, B <jog_space A-
We require that every bit of output is computable in log space.
Log space transducer: a TM with 3 tapes
1. Read only input tape
2. Write only output tape (head cannot move left)
3. Read/Write work tape with O(logn) symbols.
The transducer computes a function f : ¥* — ¥* where f(w) written on output tape when M halts
with w on input tape. f is a log space computable function.
A is logspace reducible to B (A <p B) if A is mapping reducible to B by a logspace computable
function.

Theorem: 2.6:

If A<, Band Be L, then Ae L

Proof. Can define a logspace algo for A on input w and compute f(w) the logspace reduction. Then apply
logspace algo for B, but storage of f(w) is too large to fit in logspace.

So we compute every symbol of f(w) needed when we need it for B. Each symbol can be computed in
logspace O

Corollary 1. If NL-Complete are in L, then NL=L.

Theorem: 2.7:

PATH is NL-Complete

Proof. PATH is NL: non-deterministically guess vertices on s — t path.

PATH is NL-hard: VA eNL, A <;PATH.

For M4 and a string w, the configuration graph has poly n vertices and poly n edges (¢1,c2) € E if ¢1
yields co.

For every pair of vertices c1, ¢, brute force to check if there is an edge in log space.

M accepts w < there is path from ¢4 to c,. O

NL C P.

Proof. Any TM that uses space f(n) runs in time n20U () Log space transducer runs in polytime.

If A eNL, then A <;PATH. So it sufficies to show that PATHEP, which is true. O

Definition: 2.9: NL Certificate

A eNL if there exists a DTM with additional read once (head can only move right) input tape and
p:N— Ns.t. Vze{0,1}, 2 € L & Jy € {0, 1}p(|x‘) s.t. M(x,y) =1 where x is an input tape, y is
a special read-once tape and M uses at most O(log |z|) space on read/write tape for all z.

Equivalence: NDTM can simulate DTM by Nondeterministically guess what the head is reading. If in
NDTM, there is an accepting sequence, take it as the certificate on the R/W tape. DTM can simulate.

13



Theorem: 2.8: Immerman-Szelepcsenyi

NL=coNL

Proof. We show that coNLCNL by showing that PATH €NL and NLCcoNL by showing that PATH&co-NL.
PATH: accept < input graph does not have a path from s to t.

We need to find a read once proof and a logspace TM that verifies it.

Easier problem: Let C be the number of nodes reachable from s. Assume M knows C'.

Given G, s,t,c, M goes over all m nodes of GG. For each node u, M guesses if u is reachable from s. If yes,
then it can be verified by NDTM guessing the path, update the counter.

Suppose counter reaches C' over all nodes and ¢ does not contribute to the count, then accept, else reject.
Increasing the counter ensures that the same path cannot appear twice

General problem: If M doesn’t know C.

Let A; = {nodes at distance i or less from s}. C; = |4;|, C = |A,,| all nodes reachable from S in m steps.
We want to compute Cj1 from C;.

Claim: Given Cj, Yv, we can verify if v € A; 11 and also v ¢ A; 1.

We simply give the path and check the length, we can verify v € A;41. If C; = | 4|, then 3sy, s2, ..., s¢;
with path length <i. Write down the path, verifier checks that these are valid distinct paths. v ¢ A;yq if
v # s; and v is not adjacent to any s;.

For vy, v9, ..., v, vertices in increasing order, concatenate all certificates. M maintains a counter and
compute ’Aﬂ_l‘ = Cit1 [l

14



3 Polynomial Hierarchy

Definition: 3.1: Independent Sets

independent sets: set of vertices s.t. all vertices are not connected by an edge

IDTSET = {(G, k) : G has an independent set of size k}
EXACT-IDTSET = {(G, k) : G has the largest independent set of size k}

IDTSETeNP, EXACT-IDTSETePSPACE, since we can check subsets of size k and k + 1 using poly
space.

Definition: 3.2: 3

¥P is the set of all languages L s.t. there exists poly time Turing machine M and polynomial g s.t.
zeL s Jue {0,139 vy e {0, 13900 A (z,u,0) =1

When we remove v, we get NP. When we remove u, we get co-NP. So X} is a stronger notation.

EXACT-INDSETe ¥8. There exists a vertex set of size k s.t. this set is an independent set and for all
other independent sets, the size is smaller than k.

Definition: 3.3: X¥

For all i, we define X, L € XP if there exists a poly time TM M and polynomial ¢ s.t. z € L <
Fuy € {0,110 vy € {0,13905D . Quuy € {0,139 M (%, uy, ..., u;) = 1, Q; is for all if i even,
exists if ¢ odd.

Note: Vi, X CPSPACE, X =P, ¥ =NP.

Definition: 3.4: II¥

Hf :CO—EZP = {L L e Zf}

z e L e vu e {0,139 3uy € {0,13902D ... Quuy € {0,1390D | Mz, uy, .. us) = 1, Qs is exists if
1 even, for all if 7 odd.

Definition: 3.5: Polynomial Hierarchy

PH= | Jx2.

Theorem: 3.1: Properties of Polynomial Hierarchy

157 CIlyy C 5,
2. PH= | JTI¥

i
D P D
3.3, CX CXio

All the subset containments are strict. The polynomial hierarchy does not collapse.
If ¥¥ = II?, then the PH collapses to i-th level.

15



Definition: 3.6: Time Space

TISP(f(n),g(n)) are the languages L s.t. a single TM M decides L in time f(n) and space g(n).

Theorem: 3.2: Time Space Trade-off

NTIME(n) ¢ TISP(n'2, n02).

Note: SAT can be solved by NDTM in linear time, but cannot solve it within limitation in both time and
space.



4 Boolean Circuit

Definition: 4.1: Boolean Circuit

A circuit is a directed acyclic graph with n inputs and 1 output. All non-input vertices are gates
V, A with fan-in 2, and - with fan-in 1.

The size of a circuit C' is the number of vertices in it. The number of edges is constant multiple of
number of vertices.

Recall that the Circuit-SAT is NP-Complete

Definition: 4.2: T'(n)-size Circuit Family

T'(n)-size circuit family is a sequence of boolean circuits {Cy, },, o 8-t. |Cpn| < n,Vn.
L is in SIZE(T(n)) if there exists a T'(n)-size circuit family {Cp}, oy st. Vo € {0,1}" 2z € L &
Cp(z) = 1.

For every T'(n) time TM M, there exists O(T(n)?) size circuit family {Cp},cy st. Ch(z) =
M(z),Vz € {0,1}".
L € TIME(T(n)) = L € SIZE(O(T(n)?))

Definition: 4.3: P /poly

P /poly is the class of languages decidable by poly size circuits.
P /poly= |, SIZE(n®)

PCP /poly, all languages decidable by TM in poly time can be decided by poly size circuits
1. any unary language 1" €P/poly

2. there exists undecidable unary languages (number of TMs are countable, but number of unary lan-
guages is uncountable). e.g. {1" : n’s binary expansion encodes (M,z) s.t. M halts on x}

Definition: 4.4: Non-uniform

Let L C {0,1}" be a language, L, C LN {0,1}" can have different algorithm A,, for L,.

To prove P#NP, it sufficies to find a function in NP\P/poly. Is it possible that PANP, but NPCP /poly?
i.e. could SAT have small circuit family deciding it?

Theorem: 4.1:

Every function f : {0,1}" — {0, 1} can be computed by circuit of size O(2") (best possible is O (%))
Most functions have circuit size > %

Proof. f(x1,22,...,2s) = [(x1 = 0) A fo(za, ..., zp)] V [(z1 = 1) A fi(z2, ..., z0)].

The number of functions with circuit size S is < SO) (specify types of gates, then specify the inputs and
outputs)
To describe a circuit of size S, it takes O(Slog S) bits.
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2

ﬁ) n_if € is small enough. Thus most funcitons are not

IfsS= %", the number of functions is 22" >> ( -

computatble and require large circuits. O

Theorem: 4.2: Size Hierarchy Theorem

SIZE(S)G SIZE(S log S)

Theorem: 4.3: Karp-Lipton Theorem

If NPCP/poly, then PH= %5,

Proof. 1t suffices to show IT5 C XE.

Consider a II5-complete language: II5-SAT which contains all true formula of the form Vu € {0,1}",3v €
{0,1}" s.t. ¢(u,v) =1. (1)

Since NPCP /poly, there exists a poly size circuit family {Cy}, oy s.t. for all boolean formula ¢ of size n,
Cn(¢) =1 < ¢ is satisfiable. i.e. Ju s.t. ¢(v) = 1.

Then, we can find the solution to ¢ using poly size circuit 3{C},}, C;,(¢) = v s.t. ¢(v) = 1 if ¢ is satisfiable.
If C,, is of size q(n), then C’, has size < 100g(n)?.

Suppose Yu, Jv s.t. ¢p(u,v) =1

Let ¢(u,z) = ¢u(x) (fix u, check if ¢, is satisfiable by z) If Jv s.t. ¢,(v) = 1, then CJ, can find it.
Ou(Cl (b)) = 1. d.e. exists circuit C), s.t. Yu, ¢u(C),(dy)) = 1.

Jw € {0, 1}100q(n)2 s.t. Vu € {0,1}", w is a circuit C), and ¢(u, Cl,(¢y)) =1 (2)

(1)<(2), so IT5 € X8 O
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5 Randomization

Given a population, a part of them have property P, the other do not. How can we determine the fraction?
Deterministically, we can query every individual in the population. But we can also probabilistically
estimate and we only need to query a fraction of the population.

Given two polynomial circuits that evaluates p1, p2, how do we decide if they evaluate the same polynomial?
It turns out that there is no deterministic algorithm. But a randomized algorithm can decide (Evaluate
with random input). If p; = pa, the algorithm is always correct. If p; # po, the algorithm is correct with
probability > %

Definition: 5.1: Probabilistic Turing Machines

PTMs are TMs with 2 transition functions dg and ;. To execute M on z, at each step, independently
and randomly choose which transition function to apply. At the end, output 0 or 1. M (z) is a random
variable. M runs in time T'(n) if for any input x, M halts in T'(|z|) steps for all random choices.
Alternatively, M has access to one extra read once tape which contains a random string.

Definition: 5.2: Bounded Probabilistic Poly-time (BPP)

BPP are decision problems efficiently solvable by PTM. L e BPP if 3 polytime probabilistic PTM M
s.t. Vo € {0,1}%, Pr[M(z) = L(z)] > %. (The PTM M decides the instance @ correctly with high
probability) If z € L, then Pr[M(z) =1] > 2. If 2 ¢ L, then Pr[M(z) = 0] > 2.

Equivalently, L €BPP if 3 poly time TM M and polynomial p : N — N st. z € {0,1}7,
Pr  0.13p0eD [M(z,r) = L(z)] > 2, where r is a randomly sampled string of poly size as a cer-
tificate.

Definition: 5.3: Randomized Poly-time (RP)

If x € L, then Pr[M(x) =1] > £. If x ¢ L, then Pr[M(x) =0] = 1.
co-RP: If z € L, then Pr[M(z) = 1] = 1. If z ¢ L, then Pr[M(z) = 0] > 2.

2
3

.

P,BPP are closed under complement. RP is not closed under complement. PCRP,co-RPCBPP.
Remark 1. Conjecture: P=BPP, likely BPPCNP, BPPCEXP, BPP;NEXP

Theorem: 5.1:
RPCNP

Proof. If x ¢ L, then the TM always reject. If € L, then the TM accepts with high probability. With
the same verifier of NP, we can decide RP. O

Theorem: 5.2: Chernoff Bounds

Let X3, Xs,...,X,, be mutually independent random variables over {0,1}, u = %Z?:lE[Xi] _
62
E[§ S X, Pr[i X —pf 2 ep] <2e777
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Theorem: 5.3: Error Reduction Theorem

L C {0,1}". Suppose there exists polytime PTM M s.t. Va, Pr[M(z) = L(z)] > 5 + |2|7¢. Then V
constants d > 0, there exists polytime PTM M’ s.t. Va, Pr[M’(z) = L(z)] > 1 — 2~ 17,

Theorem: 5.4: Adelman

BPPCP/poly

Let L €eBPP, x € L. We say a string r is bad for = if M (z,r) # L(z).

Fraction of bad string for fixed x < 271%, so number of bad strings for x < 271%2”1.

Fraction of bad strings for some z of length n < %

Therefore, there exists a string r that is good for all z € {0,1}". Hardwire such a string ry to obtain a
circuit C, s.t. on input =, Cp,(x) = M(z,70). Then Cy(x) = L(z), Vz € {0,1}". O

Proof. Assume Pr[M(z,7) # L(z)] < 52 by error reduction theorem.

Theorem: 5.5: Impagliazzo-Wigderson

If there exists L € DTIME(2°(™) that needs circuit of size 2, then BPP=P.

Theorem: 5.6: Sipser-Gacs-Lautemann

BPPC Y& NI

Proof. We show BPPC X5

Rewrite definition of BPP: x € L = Pr[M(z,r) = accept] > 1 —27" and z ¢ L = Pr[M(z,r) =
accept] < 27"

For x € {0,1}", let S, be the set of x s.t. M(z,r) =1, |S;| > (1 —27")2™ or |S,| < 27"2™,

Let S € {0,1}™, w € {0,1}", define S +u={x +u:x € S}

Let k = 27’”

Claim 1: If S € {0,1}", |S| < 2™ ", then for any choice of k vectors, uq, .., ug, Ule(S +u;) #4{0,1}"

O

Proof. S +u;| < 2™ UM (S +w)| < Zmam=n < 2™ Thus they cannot cover {0,1}™

Claim 2: If [S| > (1 — 27)2™, then Juy, ..., up, U, (S + u;) = {0,1}™

Proof. Use the probabilistic method and show that if wq, ..., u; are chosen uniformly and independently,
then Pr[J;(S + w;) = {0,1}™] > 0.

For fixed r € {0,1}", let B, be the event that r ¢ J,(S + u;). We show that Pr[B,] < 27™
Let B! be the event r ¢ S + u;, Pr[Bi] < 27", since |S| > (1 —27")2™.

Therefore, Pr[B,] = (27")F = 272m < 27,

O

With claim 1 and claim 2, z € L < Juy,ug,..,up € {0,1}™ st. ¥r € {0,1}™, r € U (Se + w) <
Jug, ...y ug, Vr € {0,13™, VE_ M (2, r + u;) accepts. Thus L € 5.

Because BPP is closed under complement, BPPC IT5. Thus BPPC ¥ N IIL.

O
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Communication complexity:

Suppose A holds a string z € {0,1}", B holds a string y € {0,1}". A, B want to compute f(z,y) with
minimum communication. E.g. to deterministically determine if x = y, need O(n) communications. With
randomness, only O(logn) is required. With a pre-defined error correcting code, E(x) = ', E(y) = v’
If =y, then 2/ = y/. Otherwise ' and y differ in more places. A then sends ¢, 2}, B computes z} and

y;
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6 Interactive Proof

Definition: 6.1: Proof System

Let L be a language in which strings represent true assertions. A proof system for L is given by a
verification algorithm V' with the following properties:
1. Completeness: true assertions have proofs. If x € L, then there exists a proof s.t.
V(x, proof) =accept.
2. Soundness: false assertions have no proofs. If x € L, then there exists a proof* s.t.
V (z, proof*) =reject.
3. Efficiency: V(z, proof) runs in time poly(|z|)

If all three properties are satisfied, then L=NP. We can augment V with randomness and interaction to
make it more powerful.

Definition: 6.2: Graph (non-)Isomorphism

The Graph Isomorphism problem {(G, H) : G = H} eNP. It always has a proof.
The Graph non-Isomorphism problem {(G,H) : G % H} €co-NP. We don’t know if it is NP. It is
hard to find a proof.

Definition: 6.3: Class IP

L € IP[k] if 3 probabilistic polytime TM V that has k rounds of interaction with prover P : {0,1}" —
{0,1}*. To verify z, follow Fig. . Verifier is polytime, prover can answer any string, WLOG
|¢i], las| < poly(n).

Let IT denote the set of communicated strings. In the final round V = 0,1. V is complete. i.e. if
x € L, 3P st. Pr[V(z,II) = 1] > 2; if o ¢ L, VP*, Pr[V(a,1I) = 1] < 1. The probability is over
random coin tosses of V.

IP=J_ IP[n].
Figure 1: Verfication Procedure
a1 = f(z)
\%4 P
a1 = g(,q1)
g2 = f(v,q1,a1)
az = g(xvqlaalan)
Observations:

1. NPCIP: verifier sends empty question, prover sends the certificate, then verifier decides.
BPPCIP

Just like BPP, the error can be exponentially reduced. (% —1-27" % — 27"

Ll

IPCPSPACE: There is no advantage making prover to be out of PSPACE. The answeers can be
found in PSPACE always. Need to consider the best answer for multiple rounds without knowing
what question is coming, but the best answer is in PSPACE.
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5. public coin v.s. private coin: in private coin model, prover doesn’t see the coin tosses of verifier. In
public coin model, verifier tosses the coin and send the coin toss to prover. The prover then determines
the questions and answers based on the coin toss. The results are deterministic.

6. WLOG, the prover can be deterministic

7. IP with deterministic verifier is NP

Theorem: 6.1: Shamin

[P=PSPACE (if a language is in PSPACE, it can be verified by a poly time verifier with interaction)

Theorem: 6.2:

GNI= {(Gl,Gz) : Gy % Gg}. GNIelP.

Proof. Verifier V toss random coin, pick one of GG1, Gy, randomly permute vertices to produce H. V then
sends H to P.

If G1, G4 are not isomorphic, P can answer if H =2 G or H = Gy correctly. If G1 & (G5, prover has no
idea, the best result will be random guesses. O

Theorem: 6.3: Auther-Merlin

IP[k] = AM[k + 2].

Theorem: 6.4:
co-NPCIP

Proof. Let E#SAT = {(¢, k) : ¢ has exactly k satisfying assignments}
We show that E4SATeIP.
Observations: if ¢(z1, ..., z,) has exactly k satisfying assignments, then Jkg, k1 s.t.

1. ko+ki=k
2. ¢o(x2,...,xn) = ¢(0, 22, ..., x,) has kg satisfying assignments.
3. ¢1(x2, ..., xn) = &(1, 2, ..., ) has k; satisfying assignments.

Idea: both V and P knows ¢ and k. Prover sends kg, ki1, verifier checks that kg + k1 = k, randomly select
b € {0,1} for first variable. Prover recursively show ¢ has k; satisfying assignments and reduce the number
of variables.

If ¢ has k satisfying assignments, then V' accepts with probability 1.

If ¢ does not have k satisfying assignments, V rejects with probability > 2% (always select the “true” b,
the lie will be caught at the end with single variable)

This protocol is too weak and requires exponentially many rounds to reject.

To improve the performance, the key idea is to use arithmetization.

Allow variables to take values in a large field F s.t. {0,1} C F.

Extend the formula to a more robust function ¢ : F* — F s.t. gz~5|{0’1}n = ¢.

We want to make sure that if the prover cheats on one value, the prover has to cheat on more values. We
extend ¢ to multivariate low degree polynomial in F.

Robustness property: two distinct low degree polynomials cannot take the same value in many (more than
degree) locations.
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D1, ey T) = (T1y ey ) 8.6 T = iy P = 1 — B, DAY = P, ¢V = 1 — (1 —)(1—)

Each clause becomes a degree 3 polynomial. With m clauses, we get at most degree 3m

Z gg(azl,...,a;n) =k

z1€{0,1},...,z,€{0,1}
The equation holds if and only if ¢ has k satisfying assignments.
Side note: Primes= {z : x is a prime} €P, so we can decide if a number 2" is a prime in poly(n).
Formal protocal: input ¢(x1,...,x,) and an integer k.

1. P,V compute ¢(x1,...,x,) arithmetization and a finite field F s.t. char(F) > 2% where d = |¢| so ¢
has degree < d

2. Let p1(x) = Z qg(x,azg, ..., Tp) be a univariate polynomial. P computes p; and sends it to V.

T2,..5Tm,

3. V checks if p1(0) + p1(1) = k. If not, reject. Otherwise, choose «; uniformly from F and send to P.
pi(ag) = Z (Z)(al,xg, .oey ). Then prover compuites pa(z) = Z (Z)(al,x, ey Tp)

Z250.%n Z350.5Tn

4. For i = 2,...,n, P sends p;(z) = Z (a1, ooy O, Tig 1, oy ) to V.V checks if p;(0) + ps(1) =
Ti415e-9Tn
pi—1(ca;—1). If not, reject. Otherwise, sample «; uniformly from F and send to P. Now the prover

should show p;(a;) = Z (;3(041, ey QU g 1y ey Ty

Tig1seTn

5. Repeat for n rounds. The last polynomial can be esily computed by V. V accepts if p,(an) =

gb(al, ceey Oén).
Efficiency: arithmetization, each check, sampling etc are poly time.
Completeness: An honest prover can pass the tests.
Soundness: If ¢ does not have k satisfying assignments, then no matter what poly p; is sent, V accepts
with probability < f4 < % < i
If ¢ does not have k satisfying assignments, then either p3(0) + pi(1) # k or p # p1.
If pi # p1 with probability > 1 — %, pi(a1) = p1(a1). After setting first variable, P is left with false
assertion to prove.
Later rounds are similar. If p! ,(a;—1) # pi—1(a;—1), no matter what p} is sent by the prover, either
pi(0) + pi(1) # pi_(@i-1), or pf # p;. P is left with false assertions to prove. O
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7 Probabilistically Checkable Proofs (PCP)

Definition: 7.1: PCP Verifier

Assume the verifier V' has random access to II, and can query any bit of Il using address tape.
Let L be a language, ¢,7 : N — N, L has a (r(n),q(n)) PCP verifier if there exists a probabilistic
poly-time verifier V' with the following properties:

1. Efficiency: on input z € {0,1}" and given access to II € {0,1}", V uses < r(n) random coins
and makes at most q(n) nonadaptive queries to location of II of output 0/1. V(z) is a random
variable.

2. Completeness: if x € L, there exists IT € {0,1}" s.t. Pr[V(z) =1] =1

3. Soundness: if x ¢ L, VII* € {0,1}", Pr[VI'(z) = 1] < 1.

WLOG, I has length at most 2"(™g(n)

Definition: 7.2: PCP Language

L € PCP(r(n),q(n)) if there exists constant ¢,d > 0 s.t. L has a (cr(n),dg(n)) PCP verifier.

Theorem: 7.1: PCP Theorem (ALMSS 1992)

NP = PCP(0, poly(n)) = PCP(logn, 1)

Observations:
1. The constant % can be boosted.
2. PCP(r(n),q(n)) ¢ NTIME(2°0()¢(n)), can toss 20 coins to explore all locations,
so PCP(logn,1) ¢ NTIME(20008)) =NP is trivial.

7.1 Hardness of Approximation

Definition: 7.3: MAX-3SAT

Given a 3-CNF formula ¢, find an assignment such that maximizes number of satisfied clauses.
MAX-3SAT is NP-hard.

An algorithm A is p—approximation (p < 1) for MAX-3SAT if V 3-CNF formula ¢ with m clauses, A(¢) out-
puts assignment that satisfies > pval(¢)m clauses, where val(¢) is max function of satisfiable clauses.

Could it be for p =1 — ¢, Ve > 0, there exists a (1 — €)—approximation algorithm for MAX-3SAT?
If P#NP, then there is no such algorithm.

Theorem: 7.2:

It is NP hard to get p—approximation for all p < 1. But there exists p < 1 s.t. VL €NP, there is a
polytime function f: {0,1}* — {0,1}". If x € L, then val(f(z)) = 1. If z ¢ L, then val(f(z)) < p.

Theorem: 7.3: {—approximation (Hastad)

If there is a % + e—approximation for MAX-3SAT for any € > 0, then P=NP. There exists a

%—approximation algorithm with semidefinite programming.
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Definition: 7.4: Constrained Satisfiability Problem

In ¢—CSP, an instance ¢ is a collection of functions ¢1, ..., ¢, = {0,1}" — {0,1} (m constraints).
Each ¢; depends on ¢ input locations.
val(¢) =max over all u € {0,1}" of functions of ¢1, ..., ¢, that are satisfied.

Definition: 7.5: Gap CSP

Given q € N, p < 1, p—GAPqg—CSP problem determines
1. val(¢) =1
2. val(¢) < p.

It is NP-hard. VL €NP, there exists a polytime f : {0,1}" — {0,1}* where the codomain is ¢q—CSP. If
x € Lyval(f(z)) =1 Ifx ¢ L, val(f(z)) < p.

Theorem: 7.4:

dg,p < 1 s.t. p—GAPg—CSP is NP-hard.

Note that Therorem [7.4] are equivalent

Proof. (Sketch)

Apply to multiple instances
[7.2k57.4] represent ¢; by 3-CNF, transform into a 3SAT instance

q is the same for both.
On input z, V computes f(z) to get some ¢g—CSP instance ¢ = {¢;}; .
Expects II to be assignments to variables. Pick i € {1,...,m}. Check ¢; is satisfied. 0
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8 Cryptography

Let x be the plain text Alice sends to Bob. A computationally bounded adversary Eve can get any
information from the channel between Alice and Bob. Let y = E(x) be the encoded text. It should be
impossible for Eve to guess « from g, but Bob can figure out = from y.

Definition: 8.1: Private Key Perfect Secrecy

A&B share a secret key k (a string chosen at random). A sends y = Ej(z) to B. B computes
z = Dy (Ex(z)).

A (E, D)-scheme is perfect secrecy for keys wu, of length n, if Vo, 2’ € {0,1}™, m < n, distributions
of B, (x) and E,, (2") are identical. If m > n, perfect secrecy is impossible.

Definition: 8.2: One Time Pad

Assume m = n, x € {0,1}"", k < {0,1}"", Ex(z) =bitwise XOR (addition mod 2) of k and =.
Dy (Ek(z)) = « by XOR k and Ej(z).

If we send more than one message using the same key, Eve can learn information from the messages.

Theorem: 8.1:

If P=NP, and (E, D) is an encryption/decryption scheme (polytime computable) with key length

n < message length m, then there exists a polytime algorithm A s.t. 3Jzg,z1 € {0,1}",
Pry e (013" [A(Br(zp)) = 1] > 3.

Proof. Let xg = 0™, s = supp {E,, (0™)}.

Since P=NP, membership in S can be verified in polytime.

Decision problem: is y € S? Certificate: the secret key wu,.

If 3z s.t. Pryqo1y[Er(z) € S] < %, then 1 = z, A on input y will just check if y € S. If y € S, A output
0, else output 1.

Assume Vz € {0,1}™, Pr[E,, () € 5] > 3.

Create a bipartite graph from {0,1}" to {0,1}". If E,, (z) € S, color the edge red.

There exists a key k € {0,1}" with > 2™~ red edges, since Pr[E,,(z) € 5] > 3.

But |S| < 2" < 2m~L. Therefore, there exists key k and 2/, 2" s.t. Ej(2") = Ei(z").

However, this is not a valid (E, D)-scheme, because B cannot decrypt Ey(x’) and Fy(z”). O

Definition: 8.3: One-way Function

A poly-time computable function f : {0,1}* — {0,1}" is a one-way function if for all probabilistic

poly-time algorithm A, Pry o 137 [A(y) = 2’ s.t. f(2') = y] < e(n) for €(n) = ﬁ

If one-way function exists, then P£NP.

Definition: 8.4: Secure Pseudorandom Generator

G :{0,1}* — {0,1}" is a polytime computable function, [ : N = N s.t. I(n) > n, G is a secure PRG
of strech I(n) if |G(z)| = I(|z]) for all z € {0,1}", and for all probabilistic polytime algorithm A,
Pr[A(G(un)) = 1] = Pr [A(Uyn)) = 1] < €(n). i.e. A cannot tell the pseudo-distribution G(uy) from

true random distribution Uy(y).
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One-way functions are enough to construct PRGs.

Theorem: 8.2: Goldreich-Levin

Let {f.} be a family of one-way permutations. Let =z <« {0,1}", r +« {0,1}", g(x,r) =
(f(x),r, (z,7)), where (z,r) is the inner product, g : {0,1}*" — {0,1}*"*! is not a random dis-
tribution, but it is random for a computationally bounded algorithm. For all probabilistic poly-time

algorithm A, Pr,, [A(f(2),7) = (z,7)] < 3 + €(n).
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