
Data fitting problem

Given a set of data points        ,                 , Find    that defines a line       that best 

matches the data.
        are optimization variables.○

•

Define an error function

             ,      .○

•

Aim to minimize squared error.

                 
  

   .○
  

  
                    

 
     .

Simplify:      
 
        

  
          

 
     .▪

○

  

  
                    

     .

Simplify:    
 
        

 
          

     .▪

○

In matrix form

 
     
 
   

   
 
   

   
   

  
      

 
   

   
 
    

  
 
 
 .▪

If invertible, we get a unique        .▪

○

•

Least squares
Has an analytic solution○

Convex problem○

Quadratic form in terms of      .○

•

Linear algebraic approach

 

  
 
  
   

   
  
   

  
 
 
   

  
 
  
 .

      .▪

○

We want to minimize            
 

.○

          
 
       

                .○

Take derivative with respect to  .

              .▪

        .▪

        
  
   .▪

○

     
  

is a pseudo inverse of  .○

•

MLE (maximum likelihood estimation) gaussian
Gaussian noise model

           .○

                     
  .

i.e.          
 

     
               

  

   
    .▪

○

•

Problem:
Pick      to maximize probability of observed data.○

                                
 

     
               

 

   
             

 
  

   .

        
 

     
           

 
     

 

   
              

  
    .▪

            
 

   
         

 
 (here       

 
is the l2-norm).▪

i.e. minimizing       
 

.▪

○

•

Unconstrained QP•

Intro and background
2022年9月13日 13:55
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MLE exp
Model

           .○

               double-sided exponentials.

i.e.          
 

  
       

 

 
     .▪

○

•

Problem:
Pick      to maximize probability of observed data.○

                                
 

  
       

 

 
             

   .

        
 

  
   

 
     

 

 
             

    .▪

            
 

 
        (here       is the l1-norm).▪

○

•

To express l1-norm as an LP, introduce auxiliary variables (       ).

      
 
   , such that              ,      .○

Equivalent to       
 
   , such that            ,             .○

•

Single-sided exp noise

      
 

 
      

 

 
      

     
.○

Log-likelihood            
       

 

 
     

      
.○

MLE for 1-sided exp noise
             

   , such that           ,      .▪

○

•

MLE uniform
Uniform noise

      
 

  
        

           
.○

           
           

            
.○

•

Problem

                   
 
                        

   .○

•

An ML solution is any solution that satisfies             ,       .•

LP-feasibility•

Feasibility problem
    , such that           ,            ,       .•
If     , then feasible. If     , infeasible.•

Prior on      :                   .

Where  are the means,  is the    covariance matrix.○

Instead of              , will                .

Bayes:              
                  

      
            .▪

      is fixed by data.▪

      is the prior.▪

            is the likelihood of the given model.▪

○

•

Reduce the problem to          such that      feasible.

      
 

      
           

 

 
             

   
    
    

  .○

So, we want to minimize             
   

    
    

 .

Such that           ,            .▪

○

This a quadratic program (QP)○

•

Vector space
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Vector space
Def: A set of elements (vectors) closed under addition and scalar multiplication.•
Normed vector space: a vector space with a notion of length of any particular vector and a measure of 
length or norm

•

Inner product space: a normed vector space with a notion of angle between any pair of vectors specifics 
an inner product space

•

Norm: a norm is a function         such that        .
positivity:      and      if and only if    (add identity).○

Scaling property:            ,    ,     .○

Triangle inequality:              .○

•

examples

Euclidean norm:         
  

   

       
 

.○

  -norms,    :            
  

    

 

 
  
.

  -norm:           
 
   .▪

  -norm:          
  

   

       
 

.

It is not only familiar from Euclidean space, but can also be induced by an inner 
product

□

▪

  -norm:                  .▪

Unit norm balls
Norm balls must be convex sets□

▪

○

•

Inner product

               
 
   .○

Angle:                 .○

 and  are orthogonal (   ) if        .○

•

Cauchy-Schwartz inequality:                 .•

Matrices
Set of    matrices with elements from  is denoted as     .•
Rank of the matrix:                 .•

Inner product of matrices:         ,               
 
   

 
           .

Induces the Frobenius norm:            
      

       
  

   
 
   

           
 

         
         

.○

•

Matrices as transformations      .
Range of  :                  .○

Nullspace of  :                 .○

•

Singular value decomposition (SVD)
      .○

      .○

      , orthogonal.

          .▪

Orthogonal means that    preserves the length of  .

     
 
                .□

▪

○

      .
Rectangular matrix with singular values along the diagonal▪

Number of singular values =          .▪

            .▪

○

•
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            .▪

 

    
   
    

 

  

 .▪

      , orthogonal.

          .▪

○

Operation of  on any     .
        .○

   is a length-preserving rotation○

 is a scaling: scale each of the first  components of      by   .○

 is again a rotation.○

•

Symmetric matrices
A matrix  is symmetric if     .•
Let   be the set of real symmetric matrices,        .•
If     , can diagonalize (spectral decomposition),       .

 is    orthogonal matrix.○

   
    
   
    

 , where   are eigenvalues of  .○

Note: real symmetric matrices have purely real eigenvalues.○

•

A real symmetric matrix     is positive semi-definite (PSD) if       for all     and is positve 
definite (PD) if       for all         .

Set of PSD:   
 .○

Set of PD:    
 .○

•

Consider     
 , can write       .

Thus                        
  

   .○

Since  is invertible,       means       for all     .○

So      
  

   means all     .○

A symmetric matrix  is PSD if and only if all its eigenvalues are non-negative.○

A symmetric matrix  is PD if and only if all its eigenvalues are positive.○

•

Square-root matrix (of a PSD matrix)
    

 , so       .•

   
    
   
    

 ,  
 

 
   

  
      
   

    
   
          

         
     .•

Then  
 

 
    

 

 
   .

Since  
 

 
  

 

 
    

 

 
     

 

 
          .○

•

Partial derivative and gradients

Let       and fix a point     , consider       
             

 
           where   is the ith unit vector. If 

the limit exists, it is called the partial derivative of  at  and is denoted 
  

   
      .

•

If all partial derivative exists, the gradient of  at  is       

 

 
 
 

  

   
      

  

   
      
 

  

   
      

 

 
 
 

.•

Directional derivative

For any     , the one-sided directional derivative of  at     is         

      
            

 
          .

○

Gateaux differentiability: If        exists for directions     and is a linear function of  , then 

 is differentiable at  .

○

•
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 is differentiable at  .
A function  is differentiable at  if and only if the gradient      exists and satisfies         

       for all     .

○

Terminology
 is differentiable over a subset     if  is differentiable at all    .○

 is differentiable if differentiable at all     .○

 is continuously differentiable over     , if it is differentiable over  and   is continuous 
over  .

○

 is smooth if it is continuous differentiable over all   .○

•

If  is continuously differentiable over     , then       
                    

   
                  .

What it means is that  can be arbitrarily well approximated by an affine function of  as    .○

An alternate definition of differentiability: can you approximate the function arbitrarily well with 
some affine approximation (Frechet differentiability)

○

•

Little o notation

Given 2 semi-infinite sequences          , write         if       
  

  
    .•

For functions,            if       
    

   
     for al sequences     such that     .•

For any sequence           such that           ,       
                    

   
                  .

    ,    such that      ,  
                   

   

    
                     .○

i.e.                               .○

                             is the affine approximation.○

Drop the index:                    .○

•

Scalar function approximation

                                           .•

2nd order:                         
 

 
              

 
          

 
 .•

1st order approximation for       :

                                                                  .•

                                                                  
 
 
    
    

 .

                      
    
    

  .○

•

1st order approximation for       :

                         
 
                

 
                            .

Affine approximation       .○

•

Rewrite        , it defines a direction, we can scale by  to get a line       ,    .

                        
 
   .○

For any centers   and directions   , same form as first order Taylor approximation for a scalar 
function, i.e. some affine      .

○

Inner product       
 
  plays role of slope.○

 parametrizes distance from   .○

Often take   to be a unit vector so       .○

•

1st order approximation for        :
Can see if as  mapping     

   .•

     

 

 
 
     

     
 

      

 
 
 

 

 
 
      

      
 

       

 
 
 

 

 
 
      

 

      
 

 
      

 

 

 
 
       

 

 
 
         

         
 

          

 
 

.•

    
 

    
 

 
     

 
                   

    
                   

         is the derivative (Jacobian)    ECE1505 Page 5    



 

 
 
      

 

      
 

 
      

 

 

 
 
  

                         
    

                         
              is the derivative (Jacobian) 

matrix.

•

                                 .•

2nd order approximation for       :

                 
 
       

 

 
       

 
                      

 
 .•

Hessian of  at     
 :          

                            
    

                            
 .

When    ,                .○

Symmetry:          
 
        , because                  .○

•

Approximation along a line                  .

                     
 
     

 

 
                          

 
 .○

                  
 

 
             .○

Along any line (choice of       ), get familiar 2nd order Taylor.○

Offset, the slope and the curvature all depend on   and  .○

1st order approximation is a plane and 2nd order gives a quadratic surface○

•

Examples of gradients
              ,        .•

                   
 
   

 
       

    
 
                   , 

 

   
                   

         

 
        

       
         

 
            

         

 
        

   .○

             
  
  

   .○

                        .○

If  is symmetric,            .○

•

Chain rules:
Gradients for compositions of functions•

      ,      ,             .

                   .○

•

       ,       ,             .
     

   
     

  

   
   

   

   
    

  

   
   

   

   
      

  

   
   

   

   
   .○

       

   

   
   

   

   
    

   

   
   

    
   

   
   

   

   
    

   

   
   

 (Jacobian).○

                     .○

Function of affine function of  :
       ,          .▪

            .▪

                                .▪

○

•

Gradient of log det function

      ,             ,           
 (positive definite       ).•

       

  

    
   

  

    
    

  

    
    

    
  

    
    

  

    
     

  

    
    

 .•

Consider           ,      
 ,     ,         

 .•
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Consider             ,      
 ,     ,         

 .•

                     
 

 
      

 

 
     

 

 
   

 

 
         

      
 

 
     

 

 
   

 
.•

                    
 

 
    

 

 
                      

 
                     

   

   .

    
 

 
     

 

 
 ,   are eigenvalues of  .○

•

If   is small, then all the   are small and             .•

Then                         
 
                               

 

 
     

 

 
  .

                                   (since              ).○

•

This means that          .•

For    matrix    
  
  

 ,     
 

    
     

   
   

 .
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Mathematical program (optimization)
Objective function     

   .•

Optimization variable                 
 .•

Constraint     
   ,                is the index set.•

Constrained problem
            .○

Such that        ,      .○

•

Solving a problem
An optimal  denoted   is an  that yields smallest      among all  that satisfies constraints•
Could be unique, not unique or does not exist•

Convex problems
  and   will be convex functions•

Affine sets
A set     is affine if         ,              for any    •

Note: can rewrite as            .

  is the offset.○

 is scaling.○

     is direction in   .○

Is a subspace + offset○

•

e.g.
A line is an affine set○

Solution to a set of linear equations         is affine○

•

An affine combination of points        is      
 
   where     and    

 
     .•

Affine hull contains all affine combinations of points in the set•

Convex sets
A set     is convex if         ,         ,              .•
Convex combination of        is      

 
   where     and    

 
     . •

Convex hull of a set  is the set of all convex combinations of points in  .

Notation:               
 
                        

 
            .○

•

Conic sets
A set  is a cone if     ,     ,     .•
Conic combination of points        is      

 
   with     .•

Hyperplanes and half-spaces

Hyperplanes:                .

 is the offset of the subspace from origin.○

Solution to set of linear constraint○

Convex and affine○

Dimension    .○

Other reps:                       where             .

With       .▪

○

•

Half-space:                                        .

      .○

•

Polyhedral

      
            

                     .

Basic concepts
September 9, 2022 8:21 PM
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                          .•

Polyhedral are convex•

Balls and ellipsoids

Euclidean balls:                                
 
          .

Convex○

•

Ellipsoids:                  
 
                 

  .

   
 is positive definite (symmetric and has spectral decomposition       , with   
             ,     ).

○

  -ball is ellipsoid with      .○

       is the image of unit   -ball        under affine map       
 

 
     .○

Geometries

Consider     
    
   
    

   ,▪

ellipse is defined by       
 
  

    
   
    

         .▪

      
 
 is a projection of     onto each orthonormal eigenvector of  .▪

Let            , then         
   
 

  
    

     .▪

Volume of the ellipsoid:      
      

.▪

○

•

Unit norm ball:             .•

Cone of PSD matrices
PSD:   

                     eigenvalues are real and non-negative.•
  
 is a cone because if     

 ,      
 ,     .•

Shorthand:     
     ,      

     .•
  
 is a convex cone. Let       

 ,        ,        ,           
 .•

Generalized inequalities
A proper cone     

is a closed, convex set.○

Has a non-empty interior○

Contains no lines (pointed)○

e.g. half-space is a not-pointed cone○

•

A proper cone  defines a generalized inequalities denoted   (less than or equal to w.r.t.  ).

            ,                  .○

•

For standard scalar inequality, the cone  is             .•

Operations that preserve convexity
Take the (possibly infinite) intersections of sets   . 

If   is affine for all  , then     is affine.○

If   is convex for all  , then     is convex.○

If   is conic for all  , then     is conic.○

•

Affine functions preserve convexity
Affine function:          ,     ,       ,     ,        .○

If     is convex, then                is convex.○

If     is convex, then                  is convex.○

•

Examples
A polyhedron is a convex set           as intersections of  half spaces.○

                is convex, because      is convex and       is affine.○

            is convex as pre-image of norm ball under affine map.○

Linear matrix inequality - LMI is convex.

                       
          .

○

•
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             .▪

       s.t.             
 
   is an affine map.▪

                     
  and RHS is convex.▪

Then pre image is convex.▪

Separating & hyperplanes
Separating: if       are convex and disjoint (     ), then there exists     ,    , 
   , such that      ,     ,      ,     .

If inequalities are strict, it is a strict separating hyperplane○

•

Supporting: if  is convex,       , then there exists     ,    such that         , 
    .

•
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Convex functions
Suppose a function        is defined on a convex domain (      is convex set), then  

is a convex function if            ,         ,                    

         .

 is concave if                              .○

 is strictly convex if         ,    ,                             .○

 is strictly concave if         ,    ,                             .○

•

Remark: 

Extended value function of a convex function is        
                

           
.○

•

Example
Linear and affine functions are both convex and concave○

Parabola is convex○

    with        is concave○

   is convex since                          .○
 

 
 is convex on    , concave on    .○

•

Useful facts
 is convex    is convex, for all    .○

     convex       is convex over                .○

If  is convex,             is convex   such that            ,     ,   

    ,     .

○

     convex            is convex. ○

•

The epigraph of a function       is                                    .

 is convex if and only if       is a convex set•

Sublevel set

The sub-level set of a function       at level  is                       .•

If  is convex, then all its sublevel sets are convex sets
    is a convex set for all  .○

Let                               ,              ,                

  .

i.e.     is the projection of a convex set to  .▪

○

•

A function is quasi-convex if all its sublevel sets are convex sets•

Super level set:

               .•

A function is quasi-concave if all super level sets are convex sets.•
If  is concave, then all its super level sets are convex.•

Convexity along lines

 is convex if and only if         is convex in    ,           , direction     .•

        can be seen as         , where     are fixed parameters.•

Differentiable functions & convexity

1st order condition: a differentiable function  (      is open and gradient exists 

everywhere) is convex if and only if       is convex and            ,           

           .

 is strictly convex if the inequality holds strictly     .○

•

Convex functions
October 31, 2022 11:23 AM
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○

Scalar case:                     .○

Connection to epigraphs
The epigraphs must lie in the same side of a hyperplane  .○

    
 
 
              

 
 
                   .○

•

Second order condition: a continuously twice differentiable function  is convex if and only if 

      is convex and         (PSD) for all         .

If         (PD), then  is strictly convex. Reverse doesn't hold

       convex, but         .▪

○

Scalar case:         .○

•

e.g.
       is convex on   for    or    .○

    is concave on    .○

     is convex on    .○

   is convex   .○

                ,     is convex if    , concave if    .

             , note:         
 

 
         ,       .▪

      .▪

○

                is convex along any horizontal/vertical line, but not convex in 

general.

○

          
     ,      negative semi-definite, concave.○

           is convex.○

                             is convex.○

                
    

   is convex.○

                is convex ( doesn't have to be convex).○

                projection onto  , not convex in general.

 is convex if  is convex.▪

○

                   is convex on   .

       
 

     
                        where             .▪

          
 

     
           

 
      

   
 
         

 
  

 
   by Cauchy schwarz.

With         
   ,       

   .□

Cauchy-schwarz:                 
 

.□

▪

Or from the basic definition:

                         
               

 ,□

           
  

 
      

  
   

 ,

    
         

 

 
   

 
 
 

            
 

   
     

 
 
   

 
,

                   
  (by Holder's inequality).

▪

○

         
 
    

 

 
  

is concave on    
 .

        
  

 

 
 
   

   

  
                

       
        where      

  .▪

           
  

 

 
 
   

   

  
         

  
 

  
   

 
    

  

  
     

 

   .

   ,         .□

▪

○

•

Consequences of convexity for differentiable functions

From 1st order condition, if           , such that         , then           for any 

 .

i.e. if  convex and           such that         , then   is a global minimum.○

Converse: if   is a global minimizer of  and   is differentiable, then         .○

Can be used for unconstrained optimization○

•
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Local optimum
Def:   is a local optimum of  if     such that   such that         , we have 
          .

•

Thm: suppose  is a twice differentiable function, then
If   is a local optimum, then         and         .○

If          and         , then   is a local optimum.○

•

e.g.        ,         ,  is not an optimum.•

Summary
For continuously twice differentiable functions, if   is a local optimum, then         and 
        .

•

If in addition,  is convex, i.e.               , then         gives   a global 

optimum.

•

For convex and   functions, local optimum is global optimum.•

Projection

If       is convex in           ,     ,     , then                is convex in  .•

e.g.                 is convex if  is a convex set.•

Composition of functions

            ,       ,      ,                       . Then  is convex if

 and  are convex and  is non-decreasing.○

 concave,  convex and  is non-increasing.○

•

            ,        ,       . Then  is convex if   is convex for each      (or 

affine),  is convex and non-decreasing in each argument.

•

       is convex if  is convex.•

Examples

              is convex if     is convex.•

     
 

    
   is convex if  is concave and positive.

     
 

 
  is convex and non increasing on    .○

•

           
 

is convex if    and     is convex and positive.

       is convex and nondecreasing.○

•

                  
 
   is convex on                   if all   are convex.

      is convex as intersection of convex sublevel sets.○

    is concave, so      is convex.○

Each term in the sum is             ,            is concave and           is 

convex, non-increasing, thus convex.

○

Sum of convex functions is convex.○

•

                is convex where           
 ,      

   .

Check along a line, let       
 ,     , consider      ,    .○

                    
  
 is well defined as long as          

 .○

          

 

 
       

 
 

 
 
   

 
 

 
    

 

 
  
  

          
 
 

 
       

 
 

 
 
   

 
 

 
  
  

  
 
 

 
  .○

          
                

 
 

 
 
   

 
 

 
  
  

.

Let     
 
 

 
 
   

 
 

 
 
, with eigenvalues   , then     has eigenvalues      .▪

Proof: let   be eigenvector of  , then                            .▪

○

          
                

 
    

  
.

Since        
 

    
    ,           

 
   .▪

○

          
               

 
   .○

     is linear in  ,      is convex, sum of convex functions is convex.

•
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     is linear in  ,      is convex, sum of convex functions is convex.○

              is concave on    
 .

           
 

 
              

 

 
         

 

 
       

 

 
    

 

 
   

 

 
   

 

 
  

,▪

      
 

 
           

 

 
    

 

 
       

 

 
  

 

 
  

,

       
 

 
  
         

 
    

 

 
  

where   are eigen values of   
 

 
    

 

 
 .

•

            (max eigenvalue of  ) is convex on   .
                 

   .

By spectral decomposition       with          .▪

Then                    (with       ,         ).▪

                    
  

              
  

        .

Inequality is tight, proof by checking      .□

▪

○

    is linear in  ,          is convex as supremum over set of convex functions.○

•

              (largest singular value of  ) is convex on            .

                    .

Consider single value decomposition          
    
   
    

   , with   

       ,       ,       ,           .

▪

                           
 

 
 
          

 

 
 
.

     ,       , let       .□

▪

Since     ,          
 

 
 
        

 
   

 
 

 

 
 
          

 
   

 
 

 

 
 
.▪

             .▪

Equality can be achieved by setting  equal to max right singular vector.

e.g. let        , set     where               .□

Then         
  
 

 
  
 
    

 
 
 
 .□

▪

○

Since    is a norm,                                 .

                  .▪

So     is convex in  .▪

○

Supremum of a set of convex functions is convex.○

•
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Optimization problem

Let     
    ,              ,     

    ,      .•

Objective function:          .•
Such that (Under the constraints): 

Inequality:        ,      .○

Equality:        ,      .○

Each   has        and   has        ,       
            

 
       .○

•

Feasible set:                                    .•

Optimal value:               .
If    ,     .○

•

Optimal point is an   such that        
  and     .•

Feasibility problems

       
        
        

.•

Convex optimization problem
        .•
s.t.        ,      ,•

  
       ,      , equivalently     .

They are affine and not generally convex, since level sets of convex functions are 
generally not convex set

○

e.g.                  is a level set, not convex.○

•

And   ,   ,      are all convex functions.•

      
                 

         is convex.•

e.g.

Linear program:      
     , 

such that   
       ,      ▪

    .▪

○

         .
Such that         ,      (box constraint).▪

    .▪

○

•

Local optimality and constrained optimality

Def:    is locally optimal if     such that     and        , we have       

     .

•

For a convex optimization problem, a local min is a global min.•

Differentiable functions with constraints
For unconstrained optimization, if can find point where         , then  is global minimum.•
For constrained convex optimization, if   is differentiable, then     is optimal if and only if 

     
           . 

•

Quasi-convex minimization
        (quasi-convex, all sublevel sets are convex sets)

Such that        ,      (convex functions).○

       ,      (affine,     ).○

•

Basic idea: introduce a surrogate function      , such that                .•
Solve a sequence (int  ) of convex feasibility problems.

     (for      ).
•

Convex optimization problems
October 31, 2022 11:23 AM
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       (for        ).○

       ,      .○

       ,      .○

E.g.       
    

    
   ,       convex,       concave.

Level sets:                
    

    
                       .○

                is convex with    .○

•

Linear fractional programming
A special case of the example above○

      
     

     
     ,                    .○

Here           is linear in  and always convex.○

•

Norm optimization
      s.t.     (min of a convex problem, easy to solve).○

      s.t.     (min of a concave problem, harder).○

•

Linear object with quadratic constraints
      ,○

s.t.             ,    
Is convex.
      ,○

s.t.             ,    
Is not convex.

•

Linear program
      ,○

s.t.     
Is convex.
      ,○

s.t.     ,       

Is not convex (integer program).

•

Linear programs (LPs)
        , ( doesn't affect the program)•
s.t.     ,
    .
Affine objective, affine equality and inequality constraints•
Feasible sets are polytopes•

Level sets of objective functions are hyperplanes            .•

Problems that can be formulated as LPs
           ,○

s.t.     .

Recall                  .▪

        ,▪

       ,
        ,
    ,
          , with     .

•
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           ,○

s.t.     .

Recall           
 
   .▪

          
 
   ,▪

      ,
       ,
    ,
          , with     ,     .

Fitting the largest sphere in a polytope

Let        
            ,    center of the sphere,   radius of the 

sphere.

▪

      means   
          ,      ,   such that      .▪

Look at a single constraint   
      

     .
Solve for value of case  that just satisfies the inequality.□

Direction 
  

    
   ,   

  
  

    
    ,    

    .□

Need to satisfy:   
      

   
    .□

Note:   
   

       , so the constraint is   
            ,      .□

▪

        , ▪

s.t.   
            ,      ,

        
   .

○

Quadratic program (QP)

   
 

 
           ,•

s.t.     ,
    .
Convex if    .•
Feasible set is a polytope•

•

e.g.

          
 ,○

s.t.               (box constraint).

     
                            .

•
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                                .▪

Linear programs with random costs (Portfolio optimization)

Let               , where      ,   is partition (fraction) of portfolio invested in ith 

stock.

•

Let               with   being the return of ith stock after 1 investment period.•

Total return    .•
Don't know   ahead of time, but you have some idea of the distribution          .

  is the vector of expected returns.○

                  is the covariance matrix.○

•

Expected return:            .•

Variance:                      
 
               

 
                      

                        .

•

       
        , (       )•

s.t.     ,
    . (other constraints on portfolio allocation)
   means risk doesn't matter, larger  means avoiding some risk.•

Quadratically constrained quadratic program (QCQP)

   
 

 
         

     ,•

s.t. 
 

 
         

       ,      ,

    .
If   ,   ,      are PSD, then the problem is convex.•

Second order cone program (SOCP)
      ,•

s.t.             
     ,      ,     

    ,     
 ,     

 ,     

    ,       ,     .
Norm cone

                    ,  is convex (from homogenity/scaling property and 
triangular inequality).

○

•

Consider        
  
  
     

  
  
   

      
  
     

       ,   is affine.•

To satisfy ith constraint,                
      with   the norm cone with   norm and 

    .

•

If     , LP.•
If     , QCQP.•

QCQP/SOCP with an analytic solution
      ,•
s.t.       ,    .

Let    
 

 
  ,       ,  

 

 
    

 

 
   .•

        
 

 
  

 

 
       , with      

 

 
  .•

        
 

 
  

 

 
          

 
  .•

The equivalent problem is:        s.t.    
 
  .•

    
  

    
   ,      

 

 
     

    

      
     .•

when     
 

For     to be valid,     , it can be decomposed into     
    
   
    

    

       
  

   

○

•
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   , with      

  ,      .○

The constraint is then      
  

     ○

The objective is          
  
           

 
 ○

Unconstrained QPs

   
 

 
           , where     .•

 not PSD, objective is unbounded below
Take  an eigenvector of  such that     .○

Look along line   as    , 
 

 
      

 

 
             

 

 
       .○

 

 
            

  

 
              .○

•

   , problem is convex.

  
 

 
                 , if can find   such that       ,   is optimal.○

   ,  is invertible,         unique.○

   , but  has some zero eigen values.
If       (column space of  ), then can find   to write       ,   is zero 
slope and global min, not unique.

▪

If       , unbounded below.
Let        with        ,      .□

Take       with    , 
 

 
                  

 
     .□

▪

○

•

Robust LP
      ,•

s.t.   
    ,      ,

Don't know        exactly, have some uncertainty.

Worst case (uncertainty ellipse)

                          
           .○

          
          .○

                          
 
    .○

         
 
     

       
      

    
  
  

   
   

      

 

  
      

      
   .○

Equivalently:       , s.t.    
      

      (SOCP).○

•

Statistical approach

           .○

      , s.t.      
        , with   

 

 
 the level of confidence. Take       .○

    
         

           .○

      
           

       
 
       

     
      

 
                  

    
 
          

 .

○

With      
 

   
           

     
 

  
,    

   
         

  
           

  

  
       

  

  
      

     
      

  
 
 
  
  

       .○

Invert  , 
     

      

  
 
 
  
  

             .○

This gives       , s.t.      
              

 

 
   (SOCP).○

•

Least square problems
Setup: solve system of linear equations     .•
If  is square invertible,       .•
otherwise, 2 cases for       .•
Overdetermined    .•
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Overdetermined    .
More constraints, fewer parameters.○

No vector  exactly satisfies     .○

Idea: find best  that most closely matches the constraints,           
 .○

         
                  .○

               .○

If    is invertible ( is full-rank), then         
  
   .○

If not, we have linearly dependent columns.○

•

Underdetermined    .
More parameters, fewer constraints.○

In general, many  satisfy     .○

Assume  is full rank.○

Idea:        , s.t.     .○

Note: set of  that satisfy     , is                 

  is one solution      .▪

             is the null space of  .▪

○

Claim:           
  
 .

     .▪

Orthogonality:              for     .▪

○

To calculate it,           gives         .○

•

Optimal control example
Goals: move mass  from  to  in   seconds (discretized time steps).

Block initially at rest, surface is frictionless○

Want block at rest at position  at time   .○

    is a constant force applied from     to         .○

Suppose fuel consumption is proportional to        .○

•

Total consumption:            
   .•

System state:  
    
     

 .

 
    
     

   
 
 
 .○

 
    
     

   
 
 
 .○

•

Transitions 
                    .○

                   
 

 
        .○

      
    

 
   .○

•

 
      

       
   

  
  

  
    

     
   

  

  
   

 

 
  
     .•

So                   , with    
  
  

 ,    

  

  
   

 

 
  
 .

Using recursion,               , ○

with                    and    
      

 
    

 .○

•

Problem formulation

              
        ,○

s.t.            .

•

Optimal solution.

   
         

  
             .○

     
  
 

  

 

    
   

       
    

   

  

.

•
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.○

          
    

   is the discrete time controllability Gremmian matrix.○

If  is not full rank, no optimal.○

Geometric programs(GP)

Monomial:         
    

     
  ,    ,     ,                    

 .•

Posynomial:           
     

      
    

 ,     is the sum of monomials.•
Problem:

        ,○

s.t.        ,      ,

       ,      .

         all posynomials,   all monomials.

•

Get the convex form
Let         .○

For monomials:                         . (affine in  )○

For posynomials:                 
             

                  
 
    

  .

        .▪

Convex in  .▪

○

The problem becomes:           
         

s.t.        
           ,      ,

       
           ,      .

○

•

Example: wireless transmission
 transmitters          ,  receivers          , mutally interferring,    the gain 

between    ,    ,   receiver noise.

•

Signal to interference and noise ratio:       
     

      
 
      
          .•

Rate of communication:                .•

Type 1:                    , s.t.        .

Equivalently,     (same as    
 

 
 ), s.t.        ,       , 

  

    
      ,      .○

     

      
 
      
               

       
 
        

     
                     

 
           

  
          

  
   

 .

○

The GP is:    
 

 
 ,

s.t. 
  

    
      ,      ,

        
 
           

  
          

  
    .

○

•

Type 2:       
 
   , s.t.        .

Assume high power ratio,        ,              .○

               
 
               

     

      
 
      
           

     

           
      
 
      

     
           

                      
 
           

  
          

  
 .

○

And product of posynomials is a posynomial.○

When                     
      
 
    

      
 
      
           , not a GP.○

•

Optimization with generalized inequalities
        , (     

   )•

s.t.          ,      , (    
     ,   is a proper cone in    )

       ,      (  are affine).

  are   -convex, i.e.                        ,       ,     
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  are   -convex, i.e.                                  ,         ,     

       .

A function is   -convex iff it is   -convex along all lines.○

Sublevel sets are convex, hence feasible sets are convex.○

Local optimum=global optimum.○

Optimality condition: objective non-decreasing as move into feasible set from   .○

•

Semidefinite programs (SDP)
Special case of generalized inequalities•
      ,•
s.t.                   , (can have many of them,     

 )
    .

Note:                    is an affine function of  .○

                      
  the preimage of   

 under an affine map, thus 

convex.

○

Standard form:          ,

s.t.           ,      

   ,
    ,            .
To transform the above into standard form

Introduce slack variables, to turn  into  .▪

Write each  in initial form as        where     ,     .▪

            
 
 ,    

    
          

          
 .▪

    
   
    
     

 .▪

   

   
         
          

 .▪

○

•

Portfolio design

           allocations of stocks.•

           expected returns.•

                  .•

If we don't know  exactly, what is the worst  for fixed investment strategy  ?•
Maybe            ,            .•
       ,•
s.t.            ,        ,
   .

                      , so this is a SDP.•

Relaxation of homogeneous QCQPs

           
     ,•

s.t. 
 

 
         

       ,      .

Convex if     ,   .•
Homogeneous means     ,   .•
Problem non-convex if any   not PSD, or if replace  with  .•

e.g.        ,
s.t.         ,      , if   not negative semidefinite, then not convex.

        ,      , not convex.

                             , with      .

         ,    .○

•

Equivalently,        ,•
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Equivalently,          ,

s.t.           ,      ,

          ,      ,

         ,    .
Linear constraints○

The only non-convex constraint is          .○

•

SDP relaxation: 
drop the only non-convex constraint (         ) to get a convex optimization problem•
Objective value may be lower•
Now can compute some   for relaxed problem. Hope it tells something about solution to 
original problem

•

Calculate the        approximation to   using SVD•

e.g. two way partitioning problem
Setup:  items, partition into 2 sets•
Costs:    cost/utility of        being in the same partition.

    is the cost if they are in different partition.○

       .○

•

Problem:        ,

s.t.          ,         
   (non-convex).

             
 
   .

•

Equivalently:
         s.t.      ,      ,    ,          .○

•

Relax          to get SDP•
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Start with a (not necessarily convex) optimization problem in standard form
        ,
s.t.        ,      ,

       ,      .

With optimal value   , optimal variables   ,  is called the primal variables.

Domain        
               

 
        .

The Lagrangian function:                        
 
            

 
   , where      are the Lagrange 

multipliers or dual variables,               .

The dual function                    
 may be feasible or infeasible.•
Minimization removes dependency on  .•

Dual optimal problem
            ,•
s.t.    .
Dual optimum:   , optimal variables      ,      are dual variables.•
      is concave in    even if the original  is not convex and   is not affine.

                          
 
            

 
                          is thus concave.○

•

            if (a)  is primal feasible and (b)      is dual feasible.

Set of points satisfying (a)(b) are                              .○

              
 
            

 
                        for  primal feasible,    .○

                         
 
            

 
          .○

Remarks
            for primal feasible  and dual feasible      . i.e. dual problem provides a 
lower bound.

▪

Best lower bound is to          , s.t.    .▪

Bound holds for   , i.e.        
              .▪

○

•

For primal and dual feasible        ,             is the duality gap.
Weak duality:        .○

•

Strong duality: for convex optimization problems (  convex,   affine) and under certain constriant 
qualification conditions (not all possible constraints are allowed), then        .

Convexity + constraint qualification is sufficient condition for duality to hold, but not necessary 
conditions

○

•

Pricing interpretation
        ,○

s.t.        ,      ,

       ,      .

Reformulate as an unconstrained problem using two penalty functions  and   .

      
        
      

.▪

       
        
      

.▪

                  
 
              

 
   .▪

Note: this is not nice mathematically.▪

○

Basic idea in Lagrange duality is to relax  and   to make it mathematically nice.○

•

Duality Theory
September 12, 2022 12:56 PM
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▪

▪

       gives a lower bound for         ,        gives a lower bound for          .○

So                   
 
              

 
                     

 
            

 
   .○

Dual problem
Start with original problem

        ,
s.t.        ,        .

•

Replace with lower bound,                     
 
            

 
             .•

Solve for dual function                      ,
Provides lower bound on any primal feasible  if      dual feasible○

•

Maximize lower bound for all dual feasible      .
         ,○

s.t.    .

•

Remarks
Can consider   and   for violating constraints (cost per unit violation)•
In          are allowed to consider non-primal feasible    and pay linearly•

In problem for which strong duality holds, can replace  and   with linear bounds as long as set   
 and   

 

correctly
•

Slater's conditions
Thm: a set of constraints        ,      ,     satisfies Slater's conditions if     such that 
       ,      and     .

•

e.g. convex constraints not satisfying Slater

          
  
  

  
    
  

   .  ○

          
  
  

  
    
  

   .○

Intersection has no interior○

•

If we have affine inequality constraints         
       , we only need to satisfy with equality, not 

necessarily strict (not part of Slaters)
•

Strong duality
Thm: if primal optimization problem is convex and Slater's conditions are satisfied, then      . (i.e. 
duality gap is 0)

•

Consider only a single inequality constraint
Primal:         , s.t.        with optimal   .○

Lagrangian:                .

•
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Lagrangian:                    .○

Dual function:                                       .○

Dual problem:        , s.t.    , with optimal   .○

Resource tradeoff:                      .•

Shadow of  (solutions dominated by  ):       
                             .

○

Boundary of corresponds to set of interesting designs○

 contains both feasible and infeasible designs.○

Boundary of  is some function     

             ,▪

s.t.        .

○

Note:        by definition○

Will show if      convex,
 is non-increasing in  .▪

 is convex, implying         is convex.▪

○

If nonconvex, may have:

▪

○

•

Prove convexity of  .

Thm:  is convex, i.e.              ,        ,                          

       .

○

Setup:

               , s.t.        .▪

               ,  s.t.        , i.e.             .▪

Similarly, let   be             .▪

Look at               ,        .▪

                                        (convexity of   ),▪

            (since   feasible for      ).

○

                                                         .○

•

Consider the following optimization problem with    .•
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○

              
 
 
 , s.t.        ,  convex.○

Let       
 
 
       , then           .○

Optimum point is on boundary, corresponds to some      s.t.              
          

      .○

All other points are no better

      
  

  
        

 
 
 for all  

 
 
   .▪

      
    

    
   .▪

○

i.e.        defines a supporting hyperplane of         , touches at point        .○

This is non-vertical, since      cannot be horizontal, unless    .○

Tangent point:      
          

      .○

Extrapolate back to get y-intercept,        
           

      .○

Connection to dual

            
 
 
 , s.t.        .○

            
        

                          (dual function).○

Dual optimal:            ,    .
Maximize y-intercept to get as close to   as possible▪

○

If non-convex,  might not be a convex set.○

If Slater's condition doesn't hold, the supporting hyperplane at   may be vertical.

•
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If Slater's condition doesn't hold, the supporting hyperplane at   may be vertical.○

Sensitivity analysis
Consider the problem                 ,

s.t.         ,      , (    tighten constraint,     relax constraint)

        ,      (    , switch operating point).

•

This is the generalization of     function.
          is the primal optimal value for unperturbed problem.○

•

Assume convex optimization satisfying Slater's.
                by strong duality.○

          
     ,   achieved at some         ,

           for any    . Furthermore, pick  primal feasible for perturbed problem.

          
      

 
       

      
 
   .

          
   

 
       

   
 
   , since  is feasible for perturbed problem and   

   .

                    .

•

Also holds for    , optimal for perturbed problem for which              .•
                             .•
If     , a small change in constraint changes the optimality greatly.•

Lagrange method
        ,•
s.t.              .
Steps

Form Lagrangian,                      
 
   .○

Find dual,                .○

Find                 .○

Recover   (primal optimal) using        by finding  to minimize        .○

•

Remarks
Attractive framework if there exists structure in dual problem that makes it easy to solve        for 
numerically or analytically.

○

Given   , the  that minimizes        may not be unique when     is convex but not strictly 
convex.

○

•

Lagrange method for least squares.
       ,•
s.t.     ,       ,    , underdetermined.

          
  
 .•

                  
      

 
                 .•

             
           , 

  

  
           gives    

 

 
    .○

•

     
 

 
      

 
 

 

 
             

 

 
           , 

       
 

 
       ,                      

  
 .○

    
 

 
             

  
 .○

•

Consider the dual problem

              
 

 
            .○

Equivalently,     
 

 
        

 

 
where      (overdetermined).○

 
 

 
        

 

 
  

 

 
        

 
 
 

 
         

 

 
                 .○

Note: no constraints in over determined dual problem.○

Re-express:       
 

s.t.   
 

 
       .○

•

Dual of the dual

Lagrangian                 
 

 
          .○

               .

•
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                   .
  

  
   

 

 
   , hence        , unless 

 

 
     .▪

If 
 

 
     ,                      , 

  

  
       , so   

 

 
  .▪

○

      
     

 

 
     

 
 

 
            

 

 
     

.○

Dual problem:      
 

 
         s.t.     .○

     
 

 
        

 
          

   , s.t.     .○

     
 

 
        

 
, s.t.     .○

Let        ,         , so     
 

 
  

 
, s.t.       .○

Let     
 

 
 ,         , s.t.     .○

Dual of the dual is the primal for convex problems○

Duals of LPs
      , s.t.     .•

Lagrangian:                                   .•

Dual function:       
              

              
.•

Dual problem:
       ,
s.t.    ,         .

•

Dual of an LP is an LP•
LP satisfies Slater's so strong duality holds•

#variables # constraints

Primal             

Dual                    

•

Dual of dual
Rewrite       , s.t.       ,     .○

                                            .○

             
                 

               

                
.○

Dual:       , 
s.t.         ,    .
Equivalently: let     

     
  ,

s.t.     .

○

•

Game theory
zero sum game with linear payout•
Player 1 (  ) plays      , wants to minimize    .•

Player 2 (  ) plays      , wants to maximize    .•

Randomized strategies are allowed
  plays  with probability   .○

  plays  with probability   .○

Average payout:          
 
 

 
      .○

•

Suppose   goes first, its strategy  is known by   , what strategy should   use?
     

   ,
s.t.      ,    .

Note:       is simply selecting  element for    ,           
   

 
.○

Knowing   will do this,   should choose  to minimize this.○

             
 
,

•
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,

s.t.      ,    .
Equivalently.○

    ,
      , 
     ,
   (1).

Conversely,   goes first,   wants to minimize the cost. 
     

   ,
s.t.      ,    .
Knowing   will do this,   should choose  to maximize this.○

                 ,

s.t.      ,    .
Equivalently.○

    ,
     , 
     ,
   (2).

•

Note:                              .
Always have 2nd mover (inner) advantage.○

So (1) (2).○

•

Here (1)=(2) since (1) is the dual of (2).

Lagrangian of (1):                                       .○

Dual of (1):           
                         

      
.○

Dual problem○

    ,
s.t.    ,    ,
     ,
         .
Equivalently,○

    ,
s.t.    ,
     ,
     .

•

Note: helped us that inner optimization had explicit solution (select largest/smallest entry)•

Constrained game theory
Strategy of   constrained to     .•
Strategy of   constrained to     .•
If   goes first,   will      

   , s.t.     .
  solves:          

   ,
s.t.     ,     .

•

If   goes first,   will      
   , s.t.     .

  solves          
   ,

s.t.     ,     .

•

Dualize      
   to get a min problem for   .•

Dualize      
   to get a min problem for   .•

Then show the min problem is the dual of the max problem•

Dualize   -norm:
      s.t.     .•
Equivalently:       

 
   , s.t.      ,       ,     .

           
 
 
 ,○

s.t. 
   
    

  ,

•
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s.t.  
   
    

   ,

    .

              
 
       

   
    

  
 
 
          .•

                
         

   
    

            
 
 
         

                     
 

.•

Let       
    

  ,    
   
    

     
    

     
    

  .•

Dual problem
      ,○

s.t.   
    

       ,

     
    

   ,
    ,     .
Final two lines give          ,          , box constraints.○

Combining all constraints       
    

     
          (  norm).○

      ,○

s.t.      
 
  .

•

Dual of   is   where 
 

 
  

 

 
   .•

Generalized inequalities
        where     

    and     .

       where     
   is a special case  

     
 

     
    

  .○

•

 is a proper cone if it is pointed, convex, non-empty and closed.•
    if      .•
For SDP,     

 ,       .
      ,○

s.t.                       ,

    .
           

 .○

•

Dualizing generalized inequalities

Key idea of dualization:          
 
             ,   primal feasible,  dual feasible.•

For generalized inequalities, need to identify some set that restricts dual variables to keep           

for all  feasible (       ).

•

Idea: if primal feasibility constraints defined by cone  , the dual variables will need to be constrained to 
dual cone   .

•

Def: Let  be a cone. The set                    is the dual cone.
e.g.

▪

Restricting to a ray: 

□

▪

    
 , then      

 (self-dual).▪

When     ,   reduces to 0.▪

○

•
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When     ,   reduces to 0.▪

To show   is cone.
Take     ,     ,    ,        ,                .▪

○

  is convex:
Let       ,        ,     .▪

                                 .▪

○

For     
 ,        

 is self-dual.

Inner product for matrices:         ,                       
 
   

 
   .○

      
  

 
                  

  .○

Any     ,     
 is not in   .

To show, for each  , find a single     
 s.t.        .▪

If     
 , then      , s.t.       .▪

Let         
 .▪

                                     .▪

So     .▪

○

Any     
 is in   .

To show, show that      
 , s.t.        .▪

For     
 ,               

  
   ,  orthogonal,    .▪

                       
   

               
    

     , since     
 .▪

○

•

Dual of SDPs
      ,•
s.t.                ,       

 .
Primal variable:     .•
Dual variable:     .•

Lagrangian:                                          
 
         .

               
 
         .○

•

Dual function:                  
                          

       
.•

Dual optimization problem:
         ,

s.t.             ,    .

•

Dual of SDP is SDP•
SDP can also satisfy strong duality if Slater's conditions are satisfied.•

General approach to dualizing generalized inequalities
If cone defining inequalities is  , find dual cone   .•
Constrain dual variables to   .•
Weak duality will follow from analogous step.

                      
                    ,

       
                       ,

    .

○

If  primal feasible,                   .○

If  dual feasible, then      
  

 
   

 .○

•

For 2 cases of interest, the cones are self-dual.

   
  

 
   

 .○

   
  

 
   

 .○

•

Motivation: SDP relaxations
Original problem

       ,○

s.t.           ,      or   
   .

•

1st relaxation
       ,○

s.t.       .

•
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s.t.       .
If      

 , get    , not helpful.○

If     
 , still not convex.○

2nd relaxation
         ,      ,○

     ,
   ,
         (dropped to get SDP).

•

Dualizing original problem:

                  
     

                      .○

                 
                

       
.○

Dual problem (SDP):○

       ,
s.t.            .

•

Dualizing 2nd relaxation:

                          
 
                                 .○

                     
                  

       
.○

Dual problem:○

       ,
             ,    .
Equivalent to dualizing the original problem○

•

Non-convex problem satisfying strong duality
       ,•
s.t.      ,     .
If     ,       ,       is orthonormal, rows/cols provide basis for   .

Can write any     as        
 
      .○

•

Rewrite the problem:

                          
   

 
   .○

                  
  

     .○

•

    
 , so     , then     with     ,    .•

    
 , so   s.t.     , then           

  
         achieved at     ,  corresponding to     .•

Dualize problem

                                .○

                
         
       

.○

     ,○

s.t.       ,    .
                        , so       gives       or           .○

When     
 , we get     .○

When     
 , we get        .○

Strong duality holds○

•

Dual of the dual
    ,○

s.t.       ,    .

                            
 

 
   

 

 
                .○

                     
           

 

 
   

 

 
           

       
.○

          ,○

s.t.    ,    ,           .
Equivalently,          , s.t.    ,        .○

Equivalent to the relaxed SDP of the initial problem, with      .○

•
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KKT conditions
Consider an optimization problem, for which primal and dual optimal values are obtained (at   ,   ,   ) 
and      (strong duality holds)

•

        ,•
s.t.        ,      ,

       ,      .

                       
 
            

 
   .

                   .○

If strong duality holds, then     
           .○

    
                          

      
 
       

      
 
    ,○

     
      

     
   

       
     

   
   , (1)

     
  . (2)

We must have all equalities○

Consequences:
(1)    is a minimizer of           .▪

(2)    
     

    ,       .▪

○

•

Complementary slackness
Condition that   

     
    ,       .○

If ith constraint is inactive,        , then   
   .

No more return if we use more resource (changing from        to        ).▪

○

If   
   , then        .

We have use up all resources, if we want to improve, we go out of feasible set.▪

○

•

If problem is differentiable
conditions

     ,      ,      are all differentiable.▪

Strong duality still holds▪

Convexity is not considered▪

○

  minimizes           without constraints,        
      

    
  .

First order/primal optimal condition.▪

○

•

KKT conditions

       
      

    
      

      
      

   
       

      
   

     .○

    
    ,       ,     

    ,       .○

  
   ,       .○

  
     

    ,       .○

•

Theorems (necessary and sufficient conditions)
Necessary: If           are primal and dual optimal variables for an optimization problem, for 
which   and   all differentiable and for which strong duality holds, then           satisfies KKT 
conditions.

○

Sufficient: start with an optimization problem, for which   and   all differentiable,   convex,   
affine, then if any           satisfies KKT, then.

Strong duality holds.▪

  primal optimal.▪

     dual optimal.▪

○

Proof (sufficient)

                          
 
             

 
   .▪

Since   ,   convex,      affine by assumption,      by KKT,  is convex in  .▪

Since   ,   differentiable,  is differentiable in  .▪

So, any point of zero gradient is global minimum.▪

By KKT(1),                    .▪

                                  .▪

By definition,                           
 
              

 
          .

Since            by CS,         .□

▪

So strong duality holds.▪

Note,   is also primal feasible by KKT(2).▪

○

Summary

•
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Summary

        is a lower bound on      ,   primal feasible and   meets bound with equality, so   is 

primal optimal.

▪

      is an upper bound on       ,     dual feasible and        meets bound with equality,s 

o dual optimal.

▪

○

Combine two theorems
Class of optimization problems that are differentiable, so KKT condition exists.○

Convex, so have sufficiency via B○

Strong duality holds, so necessity via A○

If differentiable, convex, satisfies Slater's, then KKT is necessary and sufficient○

•

Water-filling for additive white Gaussian noise channels

•

          .

    : noise variance of channel  .○

•

    : power over channel  .•
Total power constraint:       

 
   .•

Problem

            
  

  
    

   (equivalently,            
  

  
    

   ),

s.t.     ,      ,
   
 
      .

•

                 
  

  
    

         
 
             

 
   .•

KKT conditions
  

   
     

 

  
  
  
   

    
 

  
         ,       .○

    ,    
 
      .○

   ,     ,       .○

      , if     , then     .○

     
 
         , if    

 
    , then    , if    

 
    , then    .

Since objective is monotone increasing in each   , will use total budget,    
 
    .▪

○

•

By 1,       
 

    
    .

If     , then     ,       
 

 
 (power+noise=const for active channels).○

If     , then    
 

    
     

 

 
 .○

•

 

 
 is water-filling parameter.

If    
 

 
 , we add power to channel  .○

If    
 

 
 , no need to make it active.○

•

For any fixed  ,        
 

 
       .•

By sorting (by noise level), identify     active channels.

        
  

     
 

  
    

   .○

      
  

    
  

  
  .○

 

  
   

 

  
         

  

    .○

•

Perturb power budget from   to     .

Assume   active channel, each gets 
 

  
  extra power, what's the benefit?○

      
  
      

  
              

  
 

  
   ,○

    
  
        

 

  
    

      
    

  
    

,

•
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      ,

       
    

    
    ,

 
    

    
    

   

  
   is the rate increase for each channel  .

Total rate is increased by    .○

Geometric interpretation of KKT
        ,•
s.t.              ,

             .

At optimum   , some        inactive, consider the following problem only
        ,

s.t.                      ,

             .

•

For equality constraints
        ,
s.t.     .
Perturb   while staying feasible

                  .▪

A feasible perturbation satisfies      .▪

e.g.        ,    ,         .

      
  
 
      .□

▪

Generally,      
  
 

 
  
 
     gives      ,       ,        .▪

A point     for a convex opt problem is optimal iff     ,      
           .

If      
       ,         , then         .□

For optimality, need      
       ,         .□

In other words,      
        , i.e.      

               .□

Hence, can write      
      .□

▪

○

Optimum criteria for equality constrained optimization problem

A point  is optimal iff       
     ,   , s.t.      .▪

○

Connect to KKT

                     .▪

                ,                    .▪

e.g.    
 

 
    

    
  , s.t.       

  
  
   ,     

   
   

 .

     
    

   
   

 ,     
 
 
 ,    

 

 
 .□

▪

○

•

The KKT condition represent balance of force

                 
 
             

 
   .○

•

Why Slater's?

We need some     to make                  
 
   .○

e.g.         , s.t.       
 
   

   ,       
 
   

   .

Only one feasible point         , Slater's doesn't hold.▪

        
 
 
 ,         

     
   

   
 
 
 ,         

     
   

   
  
 
 .▪

Cannot pick  to have                          .▪

○

•
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Unconstrained optimization
        ,    is convex and twice differentiable•

Idea: produce a sequence   ,          such that cost decreases at each step and 

    
              .

•

Descent method:

             ,  is step size,   is direction.○

Need     
         

  .○

•

Steepest/gradient descent:

Pick    to align with direction of most negative gradient           
  .○

Since     is convex,                   
      .

Set           
    ,           

  ,          .▪

○

For choice in steep descent,     
         

         
   

 

 
.○

But just picking direction as above and step size    does not guarantee progress○

Algorithm: given           .

Repeat:
Choose           .□
Choose    .□
Update      .□

▪

Until         
 
  .▪

○

•

Choosing  .
Exact line search:

Set                     .▪

1D convex optimization problem.▪

○

Backtracking line search:
Parameters:

         : used to identify a good step size.□
       : multiplicative step size search parameter.□

▪

Algorithm: start with   
 

 
  .

Repeat:
Set     (reduce step size).

□

Until                         
   .□

▪

○

•

Newton's method: 
Improved direction

In steepest descent, fit a hyperplane to      , first order method.▪

In Newton's method, fit a second order approximation to determine direction▪

○

                     
    

 

 
             .○

Minimize      w.r.t.   to find direction.
 

   
                                .▪

             
  
      if Hessian is invertible.▪

○

Algorithm: given          .

Repeat:

Choose                
  
      .□

Choose    .□
Update          .□

▪

Until        
          

  
      

                       
 

  .▪

○

Exit condition: since                      
  

 
         

          
  
      .○

•

Example:•

Algorithms
September 12, 2022 12:56 PM
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Example:

      
 

 
    

     
  ,    .○

   
  
  
 ,     

 
 
 ,         

  
   

 ,          
  
  

 .○

               
  
         

  
    

  
  
   

    
  
  
 .○

•

Equality constrained minimization
        ,•
s.t.     .
KKT conditions:

                     .○

                     .○

    .○

•

Idea is to solve sequentially while continually satisfying primal feasibility

           ,        .○

   must be selected to satisfy primal feasibility.○

•

           
 

 
           ,•

s.t.         (since     , we simply need     ).
Solve for  .

             
   

 

 
                  .○

KKT gives:                          ,     .○

  
        

  
  
 
    

       
 

 .○

The matrix is called KKT matrix.○

Solution:
Invert KKT matrix to find  .▪

Back substitution if only        is invertible. If not invertible, can still deal with 
that by making it PSD. Now consider the invertible case

▪

○

•

Back substitution

           
  
              

  
      .○

             
  
               

  
      .○

Since     ,               
  
   

  
          

  
      .○

Substitute  back into  equation,           
              .

Note    adds the constraint.▪

○

•

Algorithm: given           such that       .

Repeat: 
Compute  as above.▪

Set       .▪

Line search for  .▪

             (since     ,      , doesn't affect feasibility).▪

○

Until     
          

  
       .○

•

Infeasible start Newton

       
        

  
 
  

 

 
         

   ,○

s.t.          .

  
        

  
  
 
    

       

        
 .○

If use step size    , get a feasible   .○

Can be used in the algorithm above.○

•

Interpretation of infeasible start as a primal dual algorithm
Update both primal variable  and dual variable  in order to approximately statisfy KKT.○

        , s.t.     .

KKT:           ,     .▪

○

•
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KKT:             ,     .▪

Let    
 
 
 , residue       

          
    

 .○

Goal: drive         , stop when         .○

Start at    
 
 
 , move to       

 
 
   

  
  
 .○

                            
        

  
  
  
  
   .

 
          

    
    

        

  
  
  
  
   .▪

○

  
        

  
  
  
  
       

       
    

 .○

Equivalently,   
        

  
  

  
    

    
      

    
 .○

Inequality constrained problems
        ,•
s.t.     ,
       ,      .
Idea (interior point): build a barrier at edge of feasible set so that always stay strictly feasible.•
Log barrier

Adds a parameter    ,  
 

 
        .○

As    , get  
     
     

.○

•

Modify problem using log barrier

         
 

 
             

 
   ,○

s.t.     .

Often do                       
 
   , s.t.     .○

•

Algorithm (Barrier method)
Initialize   feasible,      .○

Repeat:

Solve                       
 
   , s.t.     using equality constrained 

algorithms.

▪

Update            .▪

Increment         (typically        ).▪

○

Until 
 

 
    , where  is the number of inequality constraints.○

•

Note: 2 loops
Outer: update  .○

Inner: solve an optimization problem.

Requires Newton's method, since both       and             
 
   are large.▪

○

•

Central path:

Trajectory of   , stays in the feasible set, moving towards the boundary.○

•

Log barrier cont

                  
 
 .•

     
 

     
          

 
 .•

     
 

       
                   

  
   

 

      
            
 
 .•

Phase I: find a feasible   

Solve a feasibility problem
    ,○

s.t.        ,      ,
    .

•

    ,   is in interior, use as   .•
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    ,   is in interior, use as   .•
    , feasible set is empty.•
To initialize phase I, need a strictly feasible      .

Pick any     (actually   
        ).○

Set             .○

•

Stopping criteria

Consider a point      on central path                                    
 
 .

Any such      is strictly feasible.○

        .○

    
       .○

•

Lagrangian:                            
 
          .•

Since   is optimum, must satisfy KKT:       
    

 

     
  

           
   

       .

     
    

 

      
  

           
   

     
 

 
    .○

•

For original problem
        ,○

s.t.        ,
    .
                       

 
          .○

•

  
  

 

      
     

          ,    
 

 
 .•

                    
      

 
           .•

Note:           is convex in  .•
            

       such that        
       .•

       
                

       
 
        .•

                  
     .•

                  
                                    .•

                            
    

 

      
  

          
   

                   
   

 

 
  .•

 

 
       

       .•

To apply equality constrained Newton to   , solve

   
        

  
  
  
 
    

             

    
 .○

•

Inequality-constrained SDPs
      ,•
s.t.               .
Let                   .•

                  
 
              

 
                         for ordinary 

problems.

•

Barriers for SDPs:                    .

            .○

•

Start with an     in interior,         
 .

       ,             .○

•

As an eigenvalue approaches boundary,             ,             , 

                .

•

                   
 

 
              .•
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