Intro and background

2022年9月13日 13:55

Data fitting problem

- Given a set of data points (x_i, y_i) , $i \in \{1, 2, ..., n\} = [n]$, Find a, b that defines a line y = ax + b that best matches the data.
 - $(a, b) \in \mathbb{R}^2$ are optimization variables.
- Define an error function
 - $z_i = y_i (ax_i + b), i \in [n].$
- Aim to minimize squared error.
 - $\circ \quad \min_{a,b} \sum_{i=1}^n (y_i ax_i b)^2.$
 - $\circ \frac{\partial f}{\partial a} = \sum_{i=1}^{n} 2(y_i ax_i b)(-x_i) = 0.$ • Simplify: $\sum_{i=1}^{n} x_i y_i = (\sum_{i=1}^{n} x_i^2)a + (\sum_{i=1}^{n} x_i)b.$
 - $\circ \quad \frac{\partial f}{\partial b} = \sum_{i=1}^{n} 2(y_i ax_i b)(-1) = 0.$ • Simplify: $\sum_{i=1}^{n} y_i = (\sum_{i=1}^{n} x_i)a + (\sum_{i=1}^{n} 1)b.$
 - In matrix form

•
$$\begin{pmatrix} \sum_{i=1}^{n} x_i y_i \\ \sum_{i=1}^{n} y_i \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^{n} x_i^2 & \sum_{i=1}^{n} x_i \\ \sum_{i=1}^{n} x_i & n \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}$$

- If invertible, we get a unique (a^*, b^*) .
- Least squares
 - Has an analytic solution
 - Convex problem
 - Quadratic form in terms of (*a*, *b*).
- Linear algebraic approach

$$\circ \begin{pmatrix} y_1 \\ \cdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 & 1 \\ \cdots & 1 \\ x_n & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} + \begin{pmatrix} z_1 \\ \cdots \\ z_n \end{pmatrix}.$$

• $y = Hv + z.$

- We want to minimize $|z|^2 = |y Hv|^2$.
- $\circ \min_{v} |y Hv|^{2} = \min_{v} (y^{T}y 2y^{T}Hv + v^{T}H^{T}Hv).$
- Take derivative with respect to v.
 - $-2y^TH + 2v^TH^TH = 0.$
 - $H^T H v = H^T y$.

•
$$v^* = (H^T H)^{-1} H^T v$$

• $v^{+} = (H^{T}H)^{-H^{T}}y$. • $(H^{T}H)^{-1}$ is a pseudo inverse of H.

MLE (maximum likelihood estimation) gaussian

- Gaussian noise model
 - $\circ \quad y_i = ax_i + b + z_i.$

$$z_i = y_i - ax_i - b \sim iid \ N(0, \sigma^2).$$

• i.e. $z_i \sim P_z(\zeta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{\zeta^2}{2\sigma^2}\right).$

• Problem:

0

• Pick (a, b) to maximize probability of observed data.

$$(a^*, b^*) = \operatorname{argmax} P(x, y; a, b) = \operatorname{argmax} \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2} (y_i - ax_i - b)^2\right).$$

$$= \operatorname{argmax} \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - ax_i - b)^2\right).$$

$$= \operatorname{argmax} \exp\left(-\frac{1}{2\sigma^2} |y - Hv|^2\right) \text{ (here } |y - Hv|^2 \text{ is the l2-norm).}$$

- i.e. minimizing $|y Hv|^2$.
- Unconstrained QP

MLE exp

- Model
 - $\circ \quad y_i = ax_i + b + z_i.$
 - $\circ z_i = y_i ax_i b \sim iid$ double-sided exponentials.

• i.e.
$$z_i \sim P_z(\zeta) = \frac{1}{2c} \exp\left(-\frac{1}{c}|\zeta|\right)$$
.

- Problem:
 - Pick (a, b) to maximize probability of observed data.

$$\circ (a^*, b^*) = \operatorname{argmax} P(x, y; a, b) = \operatorname{argmax} \prod_{i=1}^n \frac{1}{2c} \exp\left(-\frac{1}{c}|y_i - ax_i - b|\right).$$
$$\bullet = \operatorname{argmax} \left(\frac{1}{c}\right)^n \exp\left(-\frac{1}{2}\sum_{i=1}^n |y_i - ax_i - b|\right).$$

- $= \operatorname{argmax}\left(\frac{1}{2c}\right) \exp\left(-\frac{1}{c}\sum_{i=1}^{n}|y_i ax_i b|\right).$ $= \operatorname{argmax}\exp\left(-\frac{1}{c}|y Hv|\right) \text{ (here } |y Hv| \text{ is the l1-norm).}$
- To express l1-norm as an LP, introduce auxiliary variables $(t_1, ..., t_n)$.
 - $\min \sum_{i=1}^{n} t_i$, such that $|y_i ax_i b| \le t_i$, $i \in [n]$.

• Equivalent to $\min \sum_{i=1}^{n} t_i$, such that $y_i - ax_i - b \le t_i$, $y_i - ax_i - b \ge -t_i$.

Single-sided exp noise

$$P(\zeta) = \begin{cases} \frac{1}{c} \exp\left(-\frac{\zeta}{c}\right), \zeta \ge 0\\ 0, \zeta < 0 \end{cases}$$

Log-likelihood
$$\log(P(\zeta)) =\begin{cases} const & -\frac{1}{c}, \zeta \ge 0\\ -\infty, \zeta < 0 \end{cases}$$

MLE for 1-sided exp noise

• min
$$\sum_{i=1}^{n} y_i - ax_i - b$$
, such that $y_i - ax_i - b \ge 0$, $i \in [n]$

MLE uniform

Uniform noise

$$P(\zeta) = \begin{cases} \frac{1}{2c}, |\zeta| \le c\\ 0, otherwise \end{cases}$$

$$\log(P(\zeta)) = \begin{cases} const, |\zeta| \le c\\ -\infty, otherwise \end{cases}$$

Problem

 $\circ \max \log(\prod_{i=1}^n P(y_i - ax_i - b)) = \max \sum_{i=1}^n \log P(y_i - ax_i - b).$

- An ML solution is any solution that satisfies $|y_i ax_i b| \le c, \forall i \in [n]$.
- LP-feasibility

Feasibility problem

- min d, such that $y_i ax_i b \le d$, $y_i ax_i b \ge -d$, $\forall i \in [n]$.
- If $d^* \le c$, then feasible. If $d^* > c$, infeasible.
- Prior on (a, b): $(a, b) \sim N\left((\mu_a, \mu_b), \Sigma\right)$.
 - Where μ are the means, Σ is the 2 \times 2 covariance matrix.
 - Instead of max P(x, y; a, b), will max P(a, b | x, y).
 - Bayes: $P(a, b | x, y) = \frac{P(x, y | a, b)P(a, b)}{P(x, y)}$
 - P(x, y) is fixed by data.
 - P(a, b) is the prior.
 - P(x, y | a, b) is the likelihood of the given model.
- Reduce the problem to $\max P(a, b)$ such that (a, b) feasible.
 - $\circ (a,b) \sim \frac{1}{2\pi \det \Sigma} \exp\left(-\frac{1}{2}(a-\mu_a,b-\mu_b)\Sigma^{-1}\binom{a-\mu_a}{b-\mu_b}\right).$

• So, we want to minimize
$$(a - \mu_a, b - \mu_b)\Sigma^{-1} \begin{pmatrix} a & \mu_a \\ b & -\mu_b \end{pmatrix}$$
.

• Such that
$$y_i - ax_i - b \le c$$
, $y_i - ax_i - b \ge -c$.

 $\circ~$ This a quadratic program (QP)

Vector space

- Def: A set of elements (vectors) closed under addition and scalar multiplication.
- Normed vector space: a vector space with a notion of length of any particular vector and a measure of length or norm
- Inner product space: a normed vector space with a notion of angle between any pair of vectors specifics an inner product space
- Norm: a norm is a function $\|\cdot\| : \mathbb{R}^n \to \mathbb{R}$ such that $\forall x, y \in \mathbb{R}^n$.
 - positivity: $||x|| \ge 0$ and ||x|| = 0 if and only if x = 0 (add identity).
 - Scaling property: ||tx|| = |t|||x||, $t \in \mathbb{R}$, $x \in \mathbb{R}^n$.
 - Triangle inequality: $||x + y|| \le ||x|| + ||y||$.
- examples
 - Euclidean norm: $||x|| = \sqrt{\sum_{i=1}^{n} x_n^2}$.

$$\circ \quad l_p \text{-norms}, p \ge 1 : \|x\|_p = \left(\sum_{i=1}^n |x_n|^p\right)^{\overline{p}}.$$

- l_1 -norm: $||x||_1 = \sum_{i=1}^n |x_i|$.
- l_2 -norm: $||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$.
 - It is not only familiar from Euclidean space, but can also be induced by an inner product
- l_{∞} -norm: $||x||_{\infty} = \max_{i \in [n]} |x_i|$.
- Unit norm balls
 - Norm balls must be convex sets

- Inner product
 - $\circ \langle x, y \rangle = x^T y = \sum_{i=1}^n x_i y_i.$
 - Angle: $\langle x, y \rangle = ||x|| ||y|| \cos \theta$.
 - x and y are orthogonal $(x \perp y)$ if (x, y) = 0.
- Cauchy-Schwartz inequality: $|\langle x, y \rangle| \le ||x||_2 ||y||_2$.

Matrices

- Set of $m \times n$ matrices with elements from \mathbb{R} is denoted as $\mathbb{R}^{m \times n}$.
- Rank of the matrix: $rank(A) = min\{m, n\}$.
- Inner product of matrices: $X, Y \in \mathbb{R}^{m \times n}$, $\langle X, Y \rangle = \sum_{i=1}^{m} \sum_{j=1}^{n} X_{ij} Y_{ij} = tr(X^T Y)$. Induces the Frobenius norm: $||X||_F = \sqrt{\langle X, X \rangle} = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} X_{ij}^2} = \sqrt{tr(X^T X)}$.
- Matrices as transformations $\mathbb{R}^n \to \mathbb{R}^m$.
 - Range of A: $R(A) = \{Ax : x \in \mathbb{R}^n\} \subset \mathbb{R}^m$.
 - Nullspace of A: $N(A) = \{x : Ax = 0\} \subset \mathbb{R}^n$.
- Singular value decomposition (SVD)
 - $\circ A = U\Sigma V^T.$
 - $\circ A \in \mathbb{R}^{m \times n}$.
 - $U \in \mathbb{R}^{m \times m}$, orthogonal.
 - $U^T U = U U^T = I_m$.
 - Orthogonal means that U^Tx preserves the length of x.

$$\Box ||U^{T}x||^{2} = x^{T}UU^{T}x = x^{T}x = ||x||^{2}.$$

- $\circ \Sigma \in \mathbb{R}^{m \times n}$.
 - Rectangular matrix with singular values along the diagonal
 - Number of singular values = rank(A) = r.

$$\begin{array}{ccc} & \sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0. \\ & \begin{pmatrix} \sigma_1 & 0 & 0 \\ 0 & \dots & 0 & 0 \\ 0 & 0 & \sigma_r \\ & 0 & 0 \end{pmatrix} \\ V \in \mathbb{R}^{n \times n}, \text{ orthogonal.} \end{array}$$

- $V^T V = V V^T = I_n$.
- Operation of A on any $x \in \mathbb{R}^{n}$.
 - $\circ \quad Ax = U\Sigma V^T x.$
 - $\circ V^T x$ is a length-preserving rotation
 - Σ is a scaling: scale each of the first *r* components of $(V^T x)$ by σ_i .
 - \circ *U* is again a rotation.

Symmetric matrices

0

- A matrix A is symmetric if $A = A^T$.
- Let S^n be the set of real symmetric matrices, $S^n \subset \mathbb{R}^{n \times n}$.
- If $A \in S^n$, can diagonalize (spectral decomposition), $A = Q\Lambda Q^T$.
 - Q is $n \times n$ orthogonal matrix.

$$\circ \quad \Lambda = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & \lambda_n \end{pmatrix}, \text{ where } \lambda_i \text{ are eigenvalues of } A.$$

- \circ $\;$ Note: real symmetric matrices have purely real eigenvalues.
- A real symmetric matrix $A \in S^n$ is positive semi-definite (PSD) if $v^T A v \ge 0$ for all $v \in \mathbb{R}^n$ and is positive definite (PD) if $v^T A v > 0$ for all $v \in \mathbb{R}^n \{0\}$.
 - Set of PSD: S_+^n .
 - Set of PD: S_{++}^n .
- Consider $A \in S_+^n$, can write $A = Q\Lambda Q^T$.
 - Thus $v^T A v = v^T Q \Lambda Q^T v = w^T \Lambda w = \sum_{i=1}^n \lambda_i w_i^2$.
 - Since Q is invertible, $v^T A v \ge 0$ means $w^T \Lambda w \ge 0$ for all $w \in \mathbb{R}^n$.
 - So $\sum_{i=1}^{n} \lambda_i w_i^2$ means all $\lambda_i \ge 0$.
 - A symmetric matrix A is PSD if and only if all its eigenvalues are non-negative.
 - A symmetric matrix *A* is PD if and only if all its eigenvalues are positive.

Square-root matrix (of a PSD matrix)

•
$$A \in S_{+}^{n}$$
, so $A = Q\Lambda Q^{T}$.
• $\Lambda = \begin{pmatrix} \lambda_{1} & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & \lambda_{n} \end{pmatrix}, \Lambda^{\frac{1}{2}} = \begin{pmatrix} \lambda_{1}^{1/2} & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & \lambda_{n}^{1/2} \end{pmatrix} = diag\left(\sqrt{\lambda_{1}}, \dots, \sqrt{\lambda_{n}}\right).$

• Then $A^{\frac{1}{2}} = Q\Lambda^{\frac{1}{2}}Q^T$. • Since $A^{\frac{1}{2}}A^{\frac{1}{2}} = Q\Lambda^{\frac{1}{2}}Q^TQ\Lambda^{\frac{1}{2}}Q^T = Q\Lambda Q^T = A$.

Partial derivative and gradients

- Let $f : \mathbb{R}^n \to \mathbb{R}$ and fix a point $x \in \mathbb{R}^n$, consider $\lim_{\alpha \to 0} \frac{f(x+\alpha e_i) f(x)}{\alpha}$ where e_i is the ith unit vector. If the limit exists, it is called the partial derivative of f at x and is denoted $\frac{\partial f}{\partial x_i}(x)$.
- If all partial derivative exists, the gradient of f at x is $\nabla f(x) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(x) \\ \frac{\partial f}{\partial x_2}(x) \\ \frac{\partial f}{\partial x_2}(x) \\ \frac{\partial f}{\partial x_1}(x) \end{pmatrix}$.
- Directional derivative
 - For any $y \in \mathbb{R}^n$, the one-sided directional derivative of f at $x \in \mathbb{R}^n$ is $f'(x, y) = \lim_{\alpha \to 0} \frac{f(x+\alpha y) f(x)}{\alpha}$.
 - Gateaux differentiability: If f'(x, y) exists for directions $y \in \mathbb{R}^n$ and is a linear function of y, then

f is differentiable at x.

- A function f is differentiable at x if and only if the gradient $\nabla f(x)$ exists and satisfies $\nabla f(x)^T y =$ f'(x, y) for all $y \in \mathbb{R}^n$.
- Terminology
 - *f* is differentiable over a subset $U \subset \mathbb{R}^n$ if *f* is differentiable at all $x \in U$.
 - f is differentiable if differentiable at all $x \in \mathbb{R}^n$.
 - f is continuously differentiable over $U \subset \mathbb{R}^n$, if it is differentiable over U and ∇f is continuous over U.
 - f is smooth if it is continuous differentiable over all \mathbb{R}^n .
- If *f* is continuously differentiable over $U \subset \mathbb{R}^n$, then $\lim_{y \to 0} \frac{f(x+y) f(x) \nabla f(x)^T y}{\|y\|} = 0$.
 - What it means is that f can be arbitrarily well approximated by an affine function of y as $y \rightarrow 0$.
 - An alternate definition of differentiability: can you approximate the function arbitrarily well with some affine approximation (Frechet differentiability)

Little o notation

- Given 2 semi-infinite sequences $\{x_k\}, \{y_k\}$, write $x_k = o(y_k)$ if $\lim_{k \to \infty} \frac{x_k}{y_k} = 0$.
- For functions, h(y) = o(||y||) if $\lim_{y\to 0} \frac{h(y)}{||y||} = 0$ for all sequences $\{y_k\}$ such that $y_k \to 0$.
- For any sequence $\{y_1, y_2, ..\}$ such that $\lim_{k \to \infty} y_k = 0$, $\lim_{y \to 0} \frac{f(x+y) f(x) \nabla f(x)^T y}{\|y\|} = 0$.
 - $\circ \quad \forall \epsilon > 0, \exists k_0 \text{ such that } \forall k > k_0, \left| \frac{f(x+y_k) f(x) \nabla f(x)^T y_k}{\|y_k\|} \right| < \epsilon.$

• i.e.
$$|f(x+y_k) - f(x) - \nabla f(x)^T y_k| < \epsilon ||y_k||$$

- $f(x + y_k) = f(x) + \nabla f(x)^T y_k + o(||y_k||)$ is the affine approximation.
- Drop the index: $f(x + y) \approx f(x) + \nabla f(x)^T y$.

Scalar function approximation

- 1st order: $f(u) = f(u_0) + f'(u_0)(u u_0) + o(u u_0)$.
- 2nd order: $f(u) = f(u_0) + f'(u_0)(u u_0) + \frac{1}{2}f''(u_0)(u u_0)^2 + o((u u_0)^2)$.

1st order approximation for $f : \mathbb{R}^2 \to \mathbb{R}$:

- $f(u,v) = f(u_0,v_0) + f_u(u_0,v_0)(u-u_0) + f_v(u_0,v_0)(v-v_0) + o(||(u,v) (u_0,v_0)||).$
- $f(u,v) \approx f(u_0,v_0) + f_u(u_0,v_0)(u-u_0) + f_v(u_0,v_0)(v-v_0) = f(u_0,v_0) + \nabla f(u_0,v_0)^T \begin{pmatrix} u-u_0 \\ v-v_0 \end{pmatrix}$ $\circ = f(u_0, v_0) + \left\langle \nabla f(u_0, v_0), \begin{pmatrix} u - u_0 \\ v - v_0 \end{pmatrix} \right\rangle$

1st order approximation for $f : \mathbb{R}^n \to \mathbb{R}$:

- $f(x) = f(x_0) + \sum_{i=1}^n f_{x_i}(x_0)(x x_0) = \frac{f(x_0) + \nabla f(x_0)^T(x x_0)}{f(x_0)} = f(x_0) + \langle \nabla f(x_0), (x x_0) \rangle.$ • Affine approximation $f : \mathbb{R}^n \to \mathbb{R}$.
- Rewrite $\Delta x = x x_0$, it defines a direction, we can scale by λ to get a line $x_0 + \lambda \Delta x$, $\lambda \in \mathbb{R}$.
 - $\circ f(x_0 + \lambda \Delta x) = f(x_0) + \lambda \left(\nabla f(x_0)^T \Delta x \right).$
 - For any centers x_0 and directions Δx , same form as first order Taylor approximation for a scalar function, i.e. some affine $f : \mathbb{R} \to \mathbb{R}$.
 - Inner product $\nabla f(x_0)^T \Delta x$ plays role of slope.
 - λ parametrizes distance from x_0 .
 - Often take Δx to be a unit vector so $||\Delta x|| = 1$.

1st order approximation for $f : \mathbb{R}^n \to \mathbb{R}^m$:

• Can see if as m mapping $f_i : \mathbb{R}^n \to \mathbb{R}$.

•
$$f(x) = \begin{pmatrix} f_1(x) \\ f_2(x) \\ \dots \\ f_n(x) \end{pmatrix} = \begin{pmatrix} f_1(x_0) \\ f_2(x_0) \\ \dots \\ f_n(x_0) \end{pmatrix} + \begin{pmatrix} \nabla f_1(x)^T \\ \nabla f_2(x)^T \\ \dots \\ \nabla f_n(x)^T \end{pmatrix} (x - x_0) + \begin{pmatrix} o(\|x - x_0\|) \\ o(\|x - x_0\|) \\ \dots \\ o(\|x - x_0\|) \end{pmatrix}.$$

ECE1505 Page 5

•
$$\begin{pmatrix} \nabla f_1(x)^T \\ \nabla f_2(x)^T \\ \dots \\ \nabla f_n(x)^T \end{pmatrix} = \begin{pmatrix} f_{1x_1}(x_0) & f_{1x_2}(x_0) & \dots & f_{1x_n}(x_0) \\ \dots & \dots & \dots & \dots \\ f_{nx_1}(x_0) & f_{nx_2}(x_0) & \dots & f_{nx_n}(x_0) \end{pmatrix} = Df(x_0) = J(x_0)$$
 is the derivative (Jacobian) matrix.

•
$$f(x) = f(x_0) + Df(x_0)(x - x_0) + o(||x - x_0||).$$

2nd order approximation for $f : \mathbb{R}^n \to \mathbb{R}$:

•
$$f(x) = f(x_0) + \nabla f(x_0)^T (x - x_0) + \frac{1}{2} (x - x_0)^T \nabla^2 f(x_0) (x - x_0) + o(||x - x_0||^2).$$

• Hessian of f at $x_0 \in \mathbb{R}^n$: $\nabla^2 f(x_0) = \begin{pmatrix} f_{x_1 x_2}(x_0) & f_{x_1 x_2}(x_0) & \dots & f_{x_1 x_n}(x_0) \\ \dots & \dots & \dots & \dots \\ f_{x_n x_1}(x_0) & f_{x_n x_2}(x_0) & \dots & f_{x_n x_n}(x_0) \end{pmatrix}.$

• When
$$n = 1$$
, $\nabla^2 f(x_0) = f''(x_0)$.

• Symmetry:
$$\left(\nabla^2 f(x_0)\right)^{l} = \nabla^2 f(x_0)$$
, because $f_{x_i x_j}(x) = f_{x_j x_i}(x)$.

• Approximation along a line $l = \{x : x = x_0 + \lambda u, \lambda \in \mathbb{R}\}.$

$$\circ f(x_{0} + \lambda u) = f(x_{0}) + \nabla f(x_{0})^{T} (\lambda u) + \frac{1}{2} (\lambda u)^{T} \nabla^{2} f(x_{0}) (\lambda u) + o(||x - x_{0}||^{2}).$$

$$\circ = f(x_{0}) + \lambda (\nabla f(x)^{T} u) + \frac{1}{2} \lambda^{2} u^{T} \nabla^{2} f(x_{0}) u.$$

- Along any line (choice of (x_0, u)), get familiar 2nd order Taylor.
- Offset, the slope and the curvature all depend on x_0 and u.
- 1st order approximation is a plane and 2nd order gives a quadratic surface

Examples of gradients

•
$$f(x) = \langle a, x \rangle = a^T x, \nabla f(x) = a.$$

• $f(x) = \frac{x^T P x}{x^T P x} = \sum_{i=1}^n \sum_{j=1}^n x_i x_j P_{ij} = \sum_{i=1}^n x_i^2 P_{ii} + \dots + x_i x_j (P_{ij} + P_{ji}),$
 $\circ \frac{\partial}{\partial x_k} x^T P x = 2x_k P_{kk} + 2\sum_{i < k} x_i \frac{(P_{ik} + P_{ki})}{2} = 2x_i \frac{(P_{ii} + P_{ii})}{2} + 2\sum_{i < k} x_i \frac{(P_{ik} + P_{ki})}{2}.$
 $\circ = \sum_{i=1}^n x_i (P_{ki} + (P^T)_{ki}).$
 $\circ \nabla (x^T P x) = x^T (P + P^T) = (P + P^T) x.$
 $\circ \text{ If } P \text{ is symmetric, } \nabla (x^T P x) = 2P x.$

Chain rules:

• Gradients for compositions of functions

•
$$f : \mathbb{R}^n \to \mathbb{R}, g : \mathbb{R} \to \mathbb{R}, h(x) = g(f(x)).$$

 $\circ \nabla h(x) = g'(f(x))\nabla f(x).$
• $f : \mathbb{R}^n \to \mathbb{R}^m, g : \mathbb{R}^m \to \mathbb{R}, h(x) = g(f(x)).$

$$\circ \quad \frac{\partial h(x)}{\partial x_k} = \frac{\partial g}{\partial f_1} \frac{\partial f_1}{\partial x_k} + \frac{\partial g}{\partial f_2} \frac{\partial f_2}{\partial x_k} + \dots + \frac{\partial g}{\partial f_m} \frac{\partial f_m}{\partial x_k}.$$

$$\circ \quad Df(x) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_n} \\ \dots & \dots & \dots & \dots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \dots & \frac{\partial f_m}{\partial x_n} \end{pmatrix} (Jacobian).$$

$$\circ \quad \nabla h(x)^T = Df(x)^T \nabla g(f(x)).$$

$$\circ \quad \text{Function of affine function of } x:$$

$$\bullet \quad f: \mathbb{R}^n \to \mathbb{R}^m, f(x) = Ax + b.$$

• h(x) = g(Ax + b).

•
$$\nabla h(x)^T = Df(x)^T \nabla g(f(x)) = A^T \nabla g(Ax + b).$$

Gradient of log det function

•
$$f: S^n \to \mathbb{R}, f(x) = \log \det X, dom(f) = S_{++}^n$$
 (positive definite det $X > 0$).
• $\nabla f(x) = \begin{pmatrix} \frac{\partial f}{\partial x_{11}} & \frac{\partial f}{\partial x_{12}} & \cdots & \frac{\partial f}{\partial x_{1n}} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ \frac{\partial f}{\partial x_{n1}} & \frac{\partial f}{\partial x_{n2}} & \cdots & \frac{\partial f}{\partial x_{nn}} \end{pmatrix}$.

- Consider $\log \det(X + \Delta X), X \in S_{++}^n, \Delta X \in S, X + \Delta X \in S_{++}^n$.
- $\log \det(X + \Delta X) = \log \det \left(X^{\frac{1}{2}} \left(I + X^{-\frac{1}{2}} \Delta X X^{-\frac{1}{2}} \right) X^{\frac{1}{2}} \right) = \log \det \left(\left(I + X^{-\frac{1}{2}} \Delta X X^{-\frac{1}{2}} \right) X \right).$
- = log det X + log det $(I + X^{-\frac{1}{2}} \Delta X X^{\frac{1}{2}})$ = log det X + log $(\prod_{i=1}^{n} (1 + \lambda_i))$ = log det X + $\sum_{i=1}^{n} \log(1 + \lambda_i)$.
 - $M = X^{-\frac{1}{2}} \Delta X X^{-\frac{1}{2}}$, λ_i are eigenvalues of M.
- If Δx is small, then all the λ_i are small and $\log(1 + \lambda_i) \approx \lambda_i$.
- Then $\log \det(X + \Delta X) \approx \log \det X + \sum_{i=1}^{n} \lambda_i = \log \det X + tr(M) = \log \det X + tr\left(X^{-\frac{1}{2}}\Delta X X^{-\frac{1}{2}}\right)$. $\circ = \log \det X + tr(X^{-1}\Delta X) = \log \det X + \langle X^{-1}, \Delta X \rangle$ (since tr(AB) = tr(BA)).
- This means that $\nabla f(x) = X^{-1}$.

For 2 × 2 matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $A^{-1} = \frac{1}{\det A} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

Basic concepts

September 9, 2022 8:21 PM

Mathematical program (optimization)

- Objective function $f_0 : \mathbb{R}^n \to \mathbb{R}$.
- Optimization variable $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$.
- Constraint $f_i : \mathbb{R}^n \to \mathbb{R}, i \in \{1, 2, ..., m\} = [m]$ is the index set.
- Constrained problem
 - $\circ \min_{x\in\mathbb{R}^n} f_0(x).$

• Such that $f_i(x) \leq 0, i \in [m]$.

Solving a problem

- An optimal x denoted x^* is an x that yields smallest $f_0(x)$ among all x that satisfies constraints
- Could be unique, not unique or does not exist

Convex problems

• f_0 and f_i will be convex functions

Affine sets

- A set $C \subset \mathbb{R}^n$ is affine if $\forall x_1, x_2 \in C$, $\theta x_1 + (1 \theta)x_2 \in C$ for any $\theta \in \mathbb{R}$
- Note: can rewrite as $x_2 + \theta(x_1 x_2)$.
 - $\circ x_2$ is the offset.
 - $\circ \theta$ is scaling.
 - $x_1 x_2$ is direction in \mathbb{R}^n .
 - Is a subspace + offset
- e.g.
 - $\circ~$ A line is an affine set
 - Solution to a set of linear equations $\{x : Ax = b\}$ is affine
- An affine combination of points $x_1, ..., x_m$ is $\sum_{i=1}^m \theta_i x_i$ where $\theta_i \in \mathbb{R}$ and $\sum_{i=1}^m \theta_i = 1$.
- Affine hull contains all affine combinations of points in the set

<mark>Convex sets</mark>

- A set $C \in \mathbb{R}^n$ is convex if $\forall x_1, x_2 \in C$, $\forall \theta \in [0,1]$, $\theta x_1 + (1 \theta) x_2 \in C$.
- Convex combination of $x_1, ..., x_m$ is $\sum_{i=1}^m \theta_i x_i$ where $\theta_i \ge 0$ and $\sum_{i=1}^m \theta_i = 1$.
- Convex hull of a set *C* is the set of all convex combinations of points in *C*.

```
• Notation: conv(C) = \{\sum_{i=1}^{m} \theta_i x_i : x_i \in C, \theta_i \ge 0, \forall i \in [m], \sum_{i=1}^{m} \theta_i = 1 \forall m \in \mathbb{Z}^+\}.
```

Conic sets

- A set *C* is a cone if $\forall x \in C, \theta x \in C, \forall \theta \ge 0$.
- Conic combination of points $x_1, ..., x_m$ is $\sum_{i=1}^m \theta_i x_i$ with $\theta_i \ge 0$.

Hyperplanes and half-spaces

- Hyperplanes: $H = \{x : a^T x = b, a \neq 0\}.$
 - *b* is the offset of the subspace from origin.
 - Solution to set of linear constraint
 - Convex and affine
 - Dimension n-1.
 - Other reps: $H = \{x : a^T(x x_0) = 0\} = x_0 + a^{\perp}$ where $a^{\perp} = \{v : a^T v = 0\}$. • With $a^T x_0 = b$.
- Half-space: $\{x : a^T x \le b\} = \{x : a^T (x x_0) \le 0\} = \{x : \langle a, x x_0 \rangle \le 0\}.$ $\circ a^T x_0 = b.$

Polyhedral

- $P = \left\{ x : a_j^T x \le b_j, j \in [m], c_k^T x = d_k, k \in [L] \right\} = \{ x : Ax \le b, Cx = d \}.$
- Polyhedral are convex

Balls and ellipsoids

- Euclidean balls: $B(x_c, r) = \{x : \|x x_c\|_2 \le r\} = \{x : (x x_c)^T (x x_c) \le r^2\}.$ • Convex
- Ellipsoids: $E(x_c, P) = \{x : (x x_c)^T P^{-1} (x x_c) \le 1, P \in S^n_{++}\}.$

• S_{++}^n is positive definite (symmetric and has spectral decomposition $P = Q\Lambda Q^T$, with $\Lambda = diag(\lambda_1, ..., \lambda_n), \lambda_i > 0$).

- $\circ l_2$ -ball is ellipsoid with $P = r^2 I$.
- $E(x_c, P)$ is the image of unit l_2 -ball $B(x_c, 1)$ under affine map $f(u) = P^{\frac{1}{2}}u + x_c$.
- Geometries
 - Consider $P = Q \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & \lambda_n \end{pmatrix} Q^T$, • ellipse is defined by $(x - x_c)^T Q \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & \lambda_n \end{pmatrix} Q^T (x - x_c)$.
 - $(x x_c)^T Q$ is a projection of $x x_c$ onto each orthonormal eigenvector of Q.
 - Let $\tilde{x} = Q^T (x x_c)$, then $\tilde{x} \Lambda^{-1} x = \sum_{i=1}^n \frac{\tilde{x}_i^2}{\lambda_i} \le 1$.
 - Volume of the ellipsoid: $\sqrt{\det P}$.
- Unit norm ball: $\{x : ||x x_c|| \le 1\}$.

Cone of PSD matrices

- PSD: $S_{+}^{n} = \{x \in S^{n} : v^{T}Xv \ge 0, \forall v \in \mathbb{R}^{n}\}$ eigenvalues are real and non-negative.
- S^n_+ is a cone because if $X \in S^n_+$, $\theta X \in S^n_+$, $\forall \theta \ge 0$.
- Shorthand: $X \in S^n_+ \Leftrightarrow X \ge 0, X \in S^n_{++} \Leftrightarrow X > 0$.
- S^n_+ is a convex cone. Let $A, B \in S^n_+, \theta_1, \theta_2 \ge 0, \theta_1 + \theta_2 = 1, \theta_1 A + \theta_2 B \in S^n_+$.

Generalized inequalities

- A proper cone $K \subset \mathbb{R}^n$
 - is a closed, convex set.
 - Has a non-empty interior
 - Contains no lines (pointed)
 - $\circ~$ e.g. half-space is a not-pointed cone
- A proper cone K defines a generalized inequalities denoted \leq_K (less than or equal to w.r.t. K).
 - $\circ x \leq_K y \Leftrightarrow (y-x) \in K, x <_K y \Leftrightarrow (y-x) \in int(K).$
- For standard scalar inequality, the cone K is $K = \mathbb{R}_+ = \{x : x \ge 0\}$.

Operations that preserve convexity

- Take the (possibly infinite) intersections of sets S_{α} .
 - If S_{α} is affine for all α , then $\cap_{\alpha} S_{\alpha}$ is affine.
 - If S_{α} is convex for all α , then $\cap_{\alpha} S_{\alpha}$ is convex.
 - \circ If *S*_α is conic for all α, then ∩_α *S*_α is conic.
- Affine functions preserve convexity
 - Affine function: $f(x) = Ax + b, x \in \mathbb{R}^n, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, f : \mathbb{R}^n \to \mathbb{R}^m$.
 - If $S \subset \mathbb{R}^n$ is convex, then $f(S) = \{f(x) : x \in S\}$ is convex.
 - If $S \subset \mathbb{R}^m$ is convex, then $f^{-1}(S) = \{x : f(x) \in S\}$ is convex.
- Examples
 - A polyhedron is a convex set $P = \{x : Ax \le b\}$ as intersections of *m* half spaces.
 - $\{y : y = Ax + b, ||x|| \le 1\}$ is convex, because $||x|| \le 1$ is convex and y = Ax + b is affine.
 - ${x : ||Ax + b|| \le 1}$ is convex as pre-image of norm ball under affine map.
 - Linear matrix inequality LMI is convex.

- $\{x \in \mathbb{R}^n : x_1A_1 + \dots + x_nA_n \le B, A_i \in S^m, i \in [m], B \in S^m\}.$ $f : \mathbb{R}^n \to S^m$ s.t. $f(x) = B \sum_{i=1}^n x_iA_i$ is an affine map.
- $\{x: B Ax \ge 0\} = \{x: B Ax \in S^m_+\}$ and RHS is convex.
- Then pre image is convex.

Separating & hyperplanes

- Separating: if $S, T \subset \mathbb{R}^n$ are convex and disjoint $(S \cap T = \emptyset)$, then there exists $a \in \mathbb{R}^n$, $a \neq 0$, $b \in \mathbb{R}$, such that $a^T x \ge b$, $\forall x \in T$, $a^T x \le b$, $\forall x \in S$.
 - If inequalities are strict, it is a strict separating hyperplane
- Supporting: if S is convex, $\forall x_0 \in \partial S$, then there exists $a \in \mathbb{R}^n$, $a \neq 0$ such that $a^T x \leq a^T x_0$, $\forall x \in S.$

Convex functions

October 31, 2022 11:23 AM

Convex functions

- Suppose a function $f : \mathbb{R}^n \to \mathbb{R}$ is defined on a convex domain (dom(F) is convex set), then f is a convex function if $\forall x, y \in dom(F), \forall \theta \in [0,1], f(\theta x + (1 \theta)y) \leq \theta f(x) + (1 \theta)f(y)$.
 - f is concave if $f(\theta x + (1 \theta)y) \ge \theta f(x) + (1 \theta)f(y)$.
 - *f* is strictly convex if $\forall \theta \in (0,1), x \neq y, f(\theta x + (1-\theta)y) < \theta f(x) + (1-\theta)f(y).$
 - *f* is strictly concave if $\forall \theta \in (0,1), x \neq y, f(\theta x + (1-\theta)y) > \theta f(x) + (1-\theta)f(y)$.
- Remark:

• Extended value function of a convex function is $\tilde{f}(x) = \begin{cases} f(x), & \text{if } x \in dom(f) \\ \infty, & \text{otherwise} \end{cases}$.

- Example
 - \circ $\,$ Linear and affine functions are both convex and concave $\,$
 - Parabola is convex
 - $\log x$ with $dom = \mathbb{R}_{++}$ is concave
 - $\circ ||x|| \text{ is convex since } ||\theta x + (1-\theta)y|| \le \theta ||x|| + (1-\theta) ||y||.$
 - $\frac{1}{r}$ is convex on \mathbb{R}_{++} , concave on \mathbb{R}_{--} .
- Useful facts
 - f is convex $\Rightarrow \alpha f$ is convex, for all $\alpha \ge 0$.
 - f_1, f_2 convex \Rightarrow $f_1 + f_2$ is convex over $dom(f_1) \cap dom(f_2)$.
 - If f is convex, g(x) = f(Ax + b) is convex $\forall x$ such that $Ax + b \in dom(f)$, $x \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$.
 - $f_1, f_2 \text{ convex} \Rightarrow \max(f_1, f_2) \text{ is convex.}$

The epigraph of a function $f: \mathbb{R}^n \to \mathbb{R}$ is $epi(f) = \{(x, t) \in \mathbb{R}^{n+1} : x \in dom(f), t \ge f(x)\}$.

• *f* is convex if and only if epi(f) is a convex set

Sublevel set

- The sub-level set of a function $f : \mathbb{R}^n \to \mathbb{R}$ at level α is $C(\alpha) = \{x \in dom(f) : f(x) \le \alpha\}$.
- If *f* is convex, then all its sublevel sets are convex sets
 - $C(\alpha)$ is a convex set for all α .
 - Let $epi(f) = \{(x,t): x \in dom(f), t \ge f(x)\}, H = \{(x,t): t = \alpha\}, C(\alpha) = \prod_x (epi(f) \cap H).$
 - i.e. $C(\alpha)$ is the projection of a convex set to x.
- A function is quasi-convex if all its sublevel sets are convex sets

Super level set:

- $C(\alpha) = \{x : f(x) \ge \alpha\}.$
- A function is quasi-concave if all super level sets are convex sets.
- If *f* is concave, then all its super level sets are convex.

Convexity along lines

- *f* is convex if and only if $g(x_0 + tv)$ is convex in $t \in \mathbb{R}$, $\forall x_0 \in dom(f)$, direction $v \in \mathbb{R}^n$.
- $f(x_0 + tv)$ can be seen as $g_{x_0,v}(t)$, where x_0, v are fixed parameters.

Differentiable functions & convexity

- 1st order condition: a differentiable function f(dom(f)) is open and gradient exists everywhere) is convex if and only if dom(f) is convex and $\forall x, y \in dom(f)$, $f(y) \ge f(x) + \nabla f(x)^T (y x)$.
 - f is strictly convex if the inequality holds strictly $\forall x \neq y$.

• Scalar case: $f(y) \ge f(x) + f'(x)(y - x)$.

- Connection to epigraphs
 - The epigraphs must lie in the same side of a hyperplane H.

$$H = \left\{ \begin{pmatrix} u \\ v \end{pmatrix} : \left(\nabla f(x)^T, -1 \right) \begin{pmatrix} u \\ v \end{pmatrix} + \left(f(x) - \nabla f(x)^T x \right) = 0 \right\}.$$

- Second order condition: a continuously twice differentiable function f is convex if and only if dom(f) is convex and $\nabla^2 f(x) \ge 0$ (PSD) for all $x \in dom(f)$.
 - If $\nabla^2 f(x) > 0$ (PD), then f is strictly convex. Reverse doesn't hold
 - $f(x) = x^4$ convex, but f''(0) = 0.
 - Scalar case: $f''(x) \ge 0$.
- e.g.

0

- $\circ f(x) = x^{\alpha}$ is convex on \mathbb{R}_+ for $\alpha \ge 1$ or $\alpha \le 0$.
- $\log x$ is concave on \mathbb{R}_{++} .
- $x \log x$ is convex on \mathbb{R}_{++} .
- $e^{\alpha x}$ is convex $\forall \alpha$.
- $f(x) = x^T P x + 2q^T x + r, P \in S^n$ is convex if $P \ge 0$, concave if $P \le 0$.
 - $\nabla f = (P + P^T)x + 2q$, note: $x^T A x = x^T \left(\frac{1}{2}(A + A^T)\right)x$, $A \in \mathbb{R}^{n \times n}$. • $\nabla^2 f = 2P$.
- $f(x, y) = x^2 + y^2 + 3xy$ is convex along any horizontal/vertical line, but not convex in general.
- $f(x) = \sqrt{x_1 x_2}, \nabla^2 f \le 0$ negative semi-definite, concave.
- $f(x) = \max_i x_i$ is convex.
- $f(x) = \max_{(i,j,k)} x_{[i]} + x_{[j]} + x_{[k]}$ is convex.
- $f(x) = \sum_{i=1}^{n} -\log(b_i a_i^T x)$ is convex.
- $f(x) = \sup_{y \in C} ||x y||$ is convex (*C* doesn't have to be convex).
- $f(x) = \inf_{y \in C} ||x y||$ projection onto *C*, not convex in general.

$$f(x) = \log(e^{x_1} + \dots + e^{x_n}) \text{ is convex on } \mathbb{R}^n.$$

• $\nabla^2 f(x) = \frac{1}{(1^T z)^2} \left((1^T z) diag(z) - zz^T \right) \text{ where } z = (e^{x_1}, \dots e^{x_n}).$

- $v^T \nabla^2 f(x) v = \frac{1}{(1^T z)^2} \left(\left(\sum z_i \right) \left(\sum v_i^2 z_i \right) \left(\sum v_i z_i \right)^2 \right) \ge 0$ by Cauchy schwarz.
 - $\Box \quad \text{With } a_i = v_i \sqrt{z_i}, \ b_i = \sqrt{z_i}.$
 - $\Box \quad \text{Cauchy-schwarz:} (a^T a)(b^T b) \ge (a^T b)^2.$
- Or from the basic definition:

$$\Box \quad \theta f(x) + (1-\theta)f(y) = \theta \log \sum e^{x_i} + (1-\theta) \log \sum e^{y_i},$$

= $\log \left(\left(\sum e^{x_i} \right)^{\theta} \left(\sum e^{y_i} \right)^{1-\theta} \right),$
= $\log \left(\left(\sum \left(e^{\theta x_i} \right)^{\frac{1}{\theta}} \right)^{\theta} \left(\sum \left(e^{(1-\theta)y_i} \right)^{\frac{1}{1-\theta}} \right)^{1-\theta} \right),$
 $\ge \log \left(\sum e^{\theta x_i + (1-\theta)y_i} \right)$ (by Holder's inequality).

• $f(x) = \left(\prod_{i=1}^{n} x_i\right)^{\frac{1}{n}}$ is concave on \mathbb{R}^n_{++} .

•
$$\nabla^2 f(x) = -\frac{\prod_{i=1}^n x_i^{\overline{n}}}{n^2} (n \operatorname{diag}(x_1^{-2}, \dots, x_n^{-2}) - qq^T) \text{ where } q_i = x_i^{-1}.$$

• $v^T \nabla^2 f(x) v = -\frac{\prod_{i=1}^n x_i^{\overline{n}}}{n^2} \left(n \sum_{i=1}^n \frac{v_i^2}{x_i^2} - \left(\sum_{i=1}^n \frac{v_i}{x_i} \right)^2 \right) \le 0.$
 $\square a = 1, b_i = v_i / x_i.$

Consequences of convexity for differentiable functions

- From 1st order condition, if $\exists x^* \in dom(f)$, such that $\nabla f(x^*) = 0$, then $f(y) \ge f(x^*)$ for any y.
 - i.e. if f convex and $\exists x^* \in dom(f)$ such that $\nabla f(x^*) = 0$, then x^* is a global minimum.
 - Converse: if x^* is a global minimizer of f and f is differentiable, then $\nabla f(x^*) = 0$.
 - Can be used for unconstrained optimization

Local optimum

- Def: x^* is a local optimum of f if $\exists \epsilon > 0$ such that $\forall x$ such that $||x x^*|| < \epsilon$, we have $f(x^*) \le f(x)$.
- Thm: suppose *f* is a twice differentiable function, then
 - If x^* is a local optimum, then $\nabla f(x^*) = 0$ and $\nabla^2 f(x) \ge 0$.
 - If $\nabla f(x^*) = 0$ and $\nabla^2 f(x) > 0$, then x^* is a local optimum.
- e.g. $f(x) = x^3$, f''(0) = 0, 0 is not an optimum.

Summary

- For continuously twice differentiable functions, if x^* is a local optimum, then $\nabla f(x^*) = 0$ and $\nabla^2 f(x) \ge 0$.
- If in addition, f is convex, i.e. $\nabla^2 f \ge 0 \ \forall x \in dom(f)$, then $\nabla f(x^*) = 0$ gives x^* a global optimum.
- For convex and C^2 functions, local optimum is global optimum.

Projection

- If h(x, y) is convex in $(x, y) \in \mathbb{R}^{n+p}$, $x \in \mathbb{R}^n$, $y \in \mathbb{R}^p$, then $f(x) = \inf_y h(x, y)$ is convex in x.
- e.g. $f(x) = \inf_{y \in C} ||x y||$ is convex if C is a convex set.

Composition of functions

- $f(x) = g(h(x)), h: \mathbb{R}^n \to \mathbb{R}, g: \mathbb{R} \to \mathbb{R}, dom(f) = \{x : g(x) \in dom(h)\}$. Then f is convex if \circ g and h are convex and h is non-decreasing.
 - *g* concave, *h* convex and *h* is non-increasing.
- $f(x) = g(h(x)), h: \mathbb{R}^n \to \mathbb{R}^k, g: \mathbb{R}^k \to \mathbb{R}$. Then f is convex if h_i is convex for each $i \in [k]$ (or affine), g is convex and non-decreasing in each argument.
- f(Ax + b) is convex if f is convex.

Examples

- $f(x) = \exp(g(x))$ is convex if g(x) is convex.
- $f(x) = \frac{1}{a(x)}$ is convex if g is concave and positive.
 - $h(w) = \frac{1}{w}$ is convex and non increasing on \mathbb{R}_{++} .
- $f(x) = (g(x))^p$ is convex if $p \ge 1$ and g(x) is convex and positive.
 - $h(w) = w^p$ is convex and nondecreasing.
- $f(x) = -\sum_{i=1}^{k} \log(-f_i(x))$ is convex on $\{x : f_i(x) < 0, \forall i \in [k]\}$ if all f_i are convex.
 - dom(f) is convex as intersection of convex sublevel sets.
 - $\log x$ is concave, so $-\log x$ is convex.
 - Each term in the sum is $-\log(-f_i(x))$, $g(x) = -f_i(x)$ is concave and $h(x) = -\log x$ is convex, non-increasing, thus convex.
 - $\circ~$ Sum of convex functions is convex.
- $f(X) = \log \det(X^{-1})$ is convex where $dom(f) = S_{++}^n, f : S_{++}^n \to \mathbb{R}$.
 - Check along a line, let $X_0 \in S_{++}^n$, $V \in S^n$, consider $X_0 + tV$, $t \in \mathbb{R}$.
 - $\tilde{f}(t) = \log \det \left(\left(X_0 + tV \right)^{-1} \right)$ is well defined as long as $X_0 + tV \in S_{++}^n$.

$$\circ = \log \det \left(X_0^{\frac{1}{2}} \left(I + t X_0^{-\frac{1}{2}} V X_0^{-\frac{1}{2}} \right) X_0^{\frac{1}{2}} \right)^{-1} = \log \det \left(X_0^{-\frac{1}{2}} \left(I + t X_0^{-\frac{1}{2}} V X_0^{-\frac{1}{2}} \right)^{-1} X_0^{-\frac{1}{2}} \right).$$

$$\circ = \log \det(X_0^{-1}) + \log \det \left(I + t X_0^{-\frac{1}{2}} V X_0^{-\frac{1}{2}} \right) .$$

- Let $M = X_0^{-2}VX_0^{-2}$, with eigenvalues λ_i , then I + tM has eigenvalues $1 + t\lambda_i$.
- Proof: let u_i be eigenvector of M, then $(I + tM)u_i = u_i + t\lambda_i u_i = (1 + t\lambda_i)u_i$.

$$\circ = \log \det(X_0^{-1}) + \log(\prod_{i=1}^n (1 + \lambda_i t))^{-1}.$$

• Since det $A^{-1} = \frac{1}{1} \det(X) = \prod_{i=1}^n A_i$

• Since det
$$A^{-1} = \frac{1}{\det A}$$
, det $(X) = \prod_{i=1}^{n} \lambda_i$.

$$\circ = \log \det(X_0^{-1}) - \sum_{i=1}^n \log(1 + \lambda_i t).$$

• $1 + \lambda_i t$ is linear in t, $-\log x$ is convex, sum of convex functions is convex.

• $f(X) = (\det X)^{1/n}$ is concave on S_{++}^{n} .

•
$$g(t) = (\det X)^{\frac{1}{n}} = (\det(Z + tV))^{\frac{1}{n}} = \left(\det\left(Z^{\frac{1}{2}}\left(I + tZ^{-\frac{1}{2}}VZ^{-\frac{1}{2}}\right)Z^{\frac{1}{2}}\right)\right)^{\overline{n}},$$

= $\left(\det Z^{\frac{1}{2}}\left(\det\left(I + tZ^{-\frac{1}{2}}VZ^{-\frac{1}{2}}\right)\right)\det Z^{\frac{1}{2}}\right)^{\frac{1}{n}},$

$$= (\det Z)^{\frac{1}{n}} (\prod_{i=1}^{n} (1 + t\lambda_i))^{\frac{1}{n}} \text{ where } \lambda_i \text{ are eigen values of } Z^{-\frac{1}{2}} V Z^{-\frac{1}{2}}.$$

• $f(X) = \lambda_{max}(X)$ (max eigenvalue of X) is convex on S^n .

- $\circ \ \lambda_{max}(X) = \sup_{\|v\| \le 1} v^T X v.$
 - By spectral decomposition $X = Q\Lambda Q^T$ with $QQ^T = Q^T Q = I$.
 - Then $v^T X v = v^T Q \Lambda Q^T v = \tilde{v}^T \Lambda \tilde{v}$ (with $\tilde{v} = Q^T v$, $\|\tilde{v}\| = \|v\|$).
 - $v^T X v = \tilde{v}^T \Lambda \tilde{v} = \sum_{i=1}^n \lambda_i (\tilde{v}_i)^2 \le \sum_{i=1}^n \lambda_{max} (\tilde{v}_i)^2 = \lambda_{max}.$ \Box Inequality is tight, proof by checking $\tilde{v} = e_k.$
- $v^T X v$ is linear in X, $\sup(v^T X v)$ is convex as supremum over set of convex functions.
- $f(X) = \sigma_{max}(X)$ (largest singular value of X) is convex on $dom(f) = \mathbb{R}^{n \times m}$.
 - $\circ \ \ \sigma_{max}(X) = \sup_{\|w\| \le 1} \|Xw\|.$

• Consider single value decomposition $X = u\Sigma v^T = u \begin{pmatrix} \sigma_1 & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & \sigma_r \end{pmatrix} v^T$, with $r = u (W) = \pi m^{T} X^T$

1

$$rank(X), u \in \mathbb{R}^{n \times r}, v \in \mathbb{R}^{m \times r}, u^T u = v^T v = I_r$$

- $||Xw|| = ||u\Sigma v^T w|| = (w^T v\Sigma^T u^T u\Sigma v^T w)^{\frac{1}{2}} = (\widetilde{w}^T \Sigma^2 \widetilde{w})^{\frac{1}{2}}.$ $\Box u^T u = I, \Sigma^T \Sigma = \Sigma^2, \text{ let } v^T w = \widetilde{w}.$
- Since $\Sigma \in S^n$, $(\widetilde{w}^T \Sigma^2 \widetilde{w})^{\frac{1}{2}} = \left(\sum_{i=1}^r \sigma_i \widetilde{w_i}^2\right)^{\frac{1}{2}} \le \left(\sum_{i=1}^r \sigma_{max} \widetilde{w_i}^2\right)^{\frac{1}{2}}$.
- $= \sigma_{max} \|w\| \le \sigma_{max}$.
- Equality can be achieved by setting *w* equal to max right singular vector.

$$\square \text{ e.g. let } \sigma_1 = \sigma_{max}, \text{ set } w = v_1 \text{ where } v = (v_1, v_2, \dots, v_r).$$

$$\Box \quad \text{Then } \widetilde{w} = v^T w = \begin{pmatrix} v_1^T \\ \dots \\ v_r^T \end{pmatrix} w = \begin{pmatrix} 1 \\ \dots \\ 0 \end{pmatrix}.$$

• Since $\|\cdot\|$ is a norm, $\|(\theta X_1 + (1 - \theta)X_2)w\| = \|\theta X_1w + (1 - \theta)X_2w\|$.

- $\leq \theta \|X_1w\| + (1-\theta)\|X_2w\|.$
- So ||Xw|| is convex in X.
- Supremum of a set of convex functions is convex.

Convex optimization problems

October 31, 2022 11:23 AM

Optimization problem

- Let $f_i: \mathbb{R}^{n_i} \to \mathbb{R}, i \in \{0, 1, 2, \dots, m\}, h_i: \mathbb{R}^{n_i} \to \mathbb{R}, i \in [p].$
- Objective function: $\min_x f_0(x)$.
- Such that (Under the constraints):
 - Inequality: $f_i(x) \leq 0, i \in [m]$.
 - Equality: $h_i(x) = 0, i \in [p]$.
 - Each f_i has $dom(f_i)$ and h_i has $dom(h_i)$, $x \in \bigcap_{i=0}^m dom(f_i) \cap_{i=1}^p dom(h_i)$.
- Feasible set: $C = \{x : f_i(x) \le 0, \forall i \in [m], h_i(x) = 0, \forall i \in [p]\}.$
- Optimal value: $f^* = \inf_{x \in C} f_0(x)$.
 - If $C = \emptyset$, $f^* = \infty$.
- Optimal point is an x^* such that $f^* = f_0(x^*)$ and $x^* \in C$.

Feasibility problems

• $f_0(x) = \begin{cases} 0, if \ x \in C \\ \infty, if \ x \notin C \end{cases}$

Convex optimization problem

- $\min f_0(x)$.
- s.t. $f_i(x) \le 0, i \in [m]$,
- $a_i^T x + b_i = 0, i \in [p]$, equivalently Ax = b.
 - They are affine and not generally convex, since level sets of convex functions are generally not convex set
 - e.g. $\{x : x^2 1 = 0\} = \{1, -1\}$ is a level set, not convex.
- And $f_0, f_i, i \in [m]$ are all convex functions.
- $C = \bigcap_{i=1}^{m} \{x : f_i(x) \le 0\} \cap \bigcap_{i=1}^{p} \{x : Ax = b\}$ is convex.
- e.g.
 - Linear program: $\min c_0^T x + d_0$,
 - such that $c_i^T x + d_i \leq 0, i \in [m]$
 - Ax = b.
 - $\circ \min \|Ax b\|.$
 - Such that $l_i \le x_i \le u_i$, $i \in [n]$ (box constraint).
 - Cx = d.

Local optimality and constrained optimality

- Def: x ∈ C is locally optimal if ∃ε > 0 such that ∀y ∈ C and ||x − y|| < ε, we have f₀(y) ≥ f₀(x).
- For a convex optimization problem, a local min is a global min.

Differentiable functions with constraints

- For unconstrained optimization, if can find point where $\nabla f_0(x) = 0$, then x is global minimum.
- For constrained convex optimization, if f_0 is differentiable, then $x^* \in C$ is optimal if and only if $\nabla f_0(x^*)^T(y-x^*) \ge 0$.

Quasi-convex minimization

- $\min f_0(x)$ (quasi-convex, all sublevel sets are convex sets)
 - Such that $f_i(x) \leq 0$, $i \in [m]$ (convex functions).
 - $h_i(x) = 0, i \in [p]$ (affine, Ax = b).
- Basic idea: introduce a surrogate function $\theta_t(x)$, such that $f_0(x) \le t \Leftrightarrow \theta_t(x) \le 0$.
- Solve a sequence (int *t*) of convex feasibility problems.

- $\phi_t(x) \leq 0$ (for $\theta_t(x) \leq 0$).
- $\circ f_i(x) \leq 0, i \in [m].$
- $\circ h_i(x) = 0, i \in [p].$
- E.g. $f_0(x) = \frac{p(x)}{q(x)}, p(x) \ge 0$ convex, q(x) > 0 concave.

• Level sets: $\{x : f_0(x) \le t\} = \{x : \frac{p(x)}{q(x)} \le t\} = \{x : p(x) - tq(x) \le 0\}.$

- $\phi_t(x) = p(x) tq(x)$ is convex with $t \ge 0$.
- Linear fractional programming
 - A special case of the example above

- $f_0(x) = \frac{a^T x + b}{c^T x + d}$, $dom(f_0) = \{x : c^T x + d > 0\}$. Here p(x) tq(x) is linear in x and always convex.
- Norm optimization
 - min ||x|| s.t. Ax = b (min of a convex problem, easy to solve).
 - $\max \|x\|$ s.t. Ax = b (min of a concave problem, harder).
- Linear object with quadratic constraints
 - $\circ \min c^T x$, s.t. $x^T P x + q^T x + r \le 0, P \ge 0$ Is convex. $\circ \min c^T x$, s.t. $x^T P x + q^T x + r = 0, P \ge 0$
 - Is not convex.
- Linear program

0

$$\min c^T x,$$

s.t. $Ax = b$

Is convex. $\circ \min c^T x$, s.t. $Ax = b, x \in \{\pm 1\}$ Is not convex (integer program).

Linear programs (LPs)

- $\min c^T x + d$, (d doesn't affect the program) s.t. $Gx \leq h$, Ax = b.
- · Affine objective, affine equality and inequality constraints
- Feasible sets are polytopes
- Level sets of objective functions are hyperplanes $\{x : c^T x + d = 0\}$.

- Problems that can be formulated as LPs
 - $\circ \min_{x} ||Ax b||_{\infty},$
 - s.t. $Fx \leq g$.
 - Recall $||w||_{\infty} = \max_{i \in [n]} |w_i|$.
 - $\Leftrightarrow \min_{x,t} t$,
 - $Ax b \leq 1t$, $Ax - b \ge -1t$, $Fx \leq g$,
 - $(x, t) \in \mathbb{R}^{n+1}$, with $x \in \mathbb{R}^n$.

 $\circ \min_{x} ||Ax - b||_{1}$

s.t. $Fx \leq g$.

- Recall $||w||_1 = \sum_{i=1}^n |w_i|$. $\Leftrightarrow \min_{x,t} \sum_{i=1}^n t_i$, $Ax - b \leq t$, $Ax - b \ge -t$, $Fx \leq g$, $(x,t) \in \mathbb{R}^{n+m}$, with $x \in \mathbb{R}^n$, $t \in \mathbb{R}^m$. t2

- -t2
- Fitting the largest sphere in a polytope
 - Let $P = \{x : a_i^T x \le b_i, i \in [m]\}, x_c$ =center of the sphere, r = radius of the sphere.
 - $x_c + u \in P$ means $a_i^T(x_c + u) \le b_i$, $i \in [m]$, $\forall u$ such that $||u|| \le r$.
 - Look at a single constraint $a_i^T x_c + a_i^T u \le b_i$.
 - □ Solve for value of case *u* that just satisfies the inequality. □ Direction $\frac{a_i}{\|a_i\|}$, $u_i^* = \frac{a_i}{\|a_i\|}r$, $\|u_i^*\| = r$.

 - $\Box \quad \text{Need to satisfy: } a_i^T x_c + a_i^T u_i^* \leq b_i.$
 - □ Note: $a_i^T u_i^* = ||a_i||r$, so the constraint is $a_i^T x_c + ||a_i||r \le b_i$, $i \in [m]$.
 - $\max_{x_c,r} r$, s.t. $a_i^{\bar{T}} x_c + ||a_i|| r \le b_i, i \in [m],$ $(x_c, r) \in \mathbb{R}^{n+1}$.

Quadratic program (QP)

- $\min \frac{1}{2}x^T P x + q^T x + r,$ s.t. $Gx \leq h$, Ax = b.
- Convex if $P \ge 0$.
- Feasible set is a polytope

• e.g. $\circ \min \|Ax - b\|_2^2,$ s.t. $l_i \leq x_i \leq u_i, i \in [n]$ (box constraint).

•
$$||Ax - b||_2^2 = (Ax - b)^T (Ax - b) = x^T A^T Ax - 2b^T Ax + b^T b.$$

Linear programs with random costs (Portfolio optimization)

- Let $x = (x_1, x_2, ..., x_n)$, where $1^T x = 1$, x_i is partition (fraction) of portfolio invested in ith stock.
- Let $c = (c_1, c_2, ..., c_n)$ with c_i being the return of ith stock after 1 investment period.
- Total return $c^T x$.
- Don't know c_i ahead of time, but you have some idea of the distribution c~N(c̄, Σ).
 c̄ is the vector of expected returns.
 - $\Sigma = E((c \bar{c})(c \bar{c})^T)$ is the covariance matrix.
- Expected return: $E(c^T x) = \bar{c}^T x$.

• Variance:
$$Var(c^T x) = E\left(\left(c^T x - \bar{c}^T x\right)^2\right) = E\left(\left(\left(c^T - \bar{c}^T\right)x\right)^2\right) = E\left(x^T(c - \bar{c})(c - \bar{c})^T x\right) = E\left(x^T(c - \bar{c})(c - \bar{c})^T x\right)$$

- $x^{T} E((c \bar{c})(c \bar{c})^{T})x = x^{T} \Sigma x.$ • $\min_{x} - \bar{c}^{T} x + \gamma x^{T} \Sigma x, (\gamma \in \mathbb{R}, \gamma \ge 0)$ s.t. $Gx \le h$,
 - Ax = b. (other constraints on portfolio allocation)
- $\gamma = 0$ means risk doesn't matter, larger γ means avoiding some risk.

Quadratically constrained quadratic program (QCQP)

- $\min \frac{1}{2} x^T P_0 x + q_0^T x + r_0,$ s.t. $\frac{1}{2} x^T P_i x + q_i^T x + r_i \le 0, i \in [m],$ Ax = b.
- If P_0 , P_i , $i \in [m]$ are PSD, then the problem is convex.

Second order cone program (SOCP)

- $\min f^T x$, s.t. $\|A_i x + b_i\|_2 \le c_i^T x + d_i, i \in [m], A_i \in \mathbb{R}^{n_i \times n}, b_i \in \mathbb{R}^n, c_i \in \mathbb{R}^n, d_i \in \mathbb{R}$ $Fx = g, F \in \mathbb{R}^{p \times n}, g \in \mathbb{R}^p$.
- Norm cone
 - $K = \{(x, t) : ||x|| \le t\} \subset \mathbb{R}^{n+1}$, K is convex (from homogenity/scaling property and triangular inequality).
- Consider $f_i(x) = \begin{pmatrix} A_i \\ c_i^T \end{pmatrix} x + \begin{pmatrix} b_i \\ d_i \end{pmatrix} = \begin{pmatrix} A_i x + b_i \\ c_i^T x + d_i \end{pmatrix} \in \mathbb{R}^{n_i + 1}, f_i \text{ is affine.}$
- To satisfy ith constraint, $\{x : f_i(x) \in K_i\} = f_i^{-1}(K_i)$ with K_i the norm cone with l_2 norm and $n = n_i$.
- If $A_i = 0$, LP.
- If $c_i = 0$, QCQP.

QCQP/SOCP with an analytic solution

- min $c^T x$, s.t. $x^T A x \le 1, A > 0$. • Let $y = A^{\frac{1}{2}}x$, $A = Q\Lambda Q^T$, $A^{\frac{1}{2}} = Q\Lambda^{\frac{1}{2}}Q^T$. • $c^T x = c^T A^{-\frac{1}{2}}A^{\frac{1}{2}}x = \tilde{c}^T y$, with $\tilde{c} = A^{-\frac{1}{2}}c$.
- $x^T A x = x^T A^{\frac{1}{2}} A^{\frac{1}{2}} x = y^T y = ||y||^2 \le 1.$
- The equivalent problem is: $\min \tilde{c}^T y$ s.t. $\|y\|^2 \leq 1$.
- $y^* = -\frac{\tilde{c}}{\|\tilde{c}\|}, x^* = A^{-\frac{1}{2}}y^* = -\frac{A^{-1}c}{\|A^{-1}c\|}.$
- when $A \notin S^n_+$
 - For $x^T A x$ to be valid, $A \in S^n$, it can be decomposed into $A = V \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & \lambda_n \end{pmatrix} V^T = \sum_{i=1}^n \lambda_i V_i V_i^T$

- $\circ \quad x^T A x = \sum_{i=1}^n \lambda_i x^T V_i V_i^T x = \sum_{i=1}^n \lambda_i y_i^T y_i, \text{ with } y_i = V_i^T x, y = V^T x.$
- The constraint is then $\sum_{i=1}^{n} \lambda_i y_i^2 \leq 1$
- The objective is $\min c^T (V^T)^{-1} y = \min (V^{-1}c)^T y$

Unconstrained QPs

- $\min \frac{1}{2}x^T P x + q^T x + r$, where $P \in S^n$.
- *P* not PSD, objective is unbounded below
 - Take v an eigenvector of P such that $\lambda_v < 0$.
 - Look along line tv as $t \to \infty$, $\frac{1}{2}x^T A x = \frac{1}{2}(tv)^T \lambda_v(tv) = \frac{1}{2}t^2 \lambda_v < 0.$

$$\circ \quad \frac{1}{2}x^T P x + q^T x + r = \frac{t^2}{2}\lambda_v + tq^T v + r \to -\infty.$$

- $P \ge 0$, problem is convex.
 - $\nabla\left(\frac{1}{2}x^TPx + q^Tx + r\right) = Px + q$, if can find x^* such that $Px^* = -q$, x^* is optimal.
 - P > 0, *P* is invertible, $x^* = -P^{-1}q$ unique.
 - $\circ P \ge 0$, but P has some zero eigen values.
 - If q ∈ R(P) (column space of P), then can find x* to write Px* = -q, x* is zero slope and global min, not unique.
 - If $q \notin R(P)$, unbounded below.
 - $\Box \quad \text{Let } q = q_{\parallel} + q_{\perp} \text{ with } q_{\parallel} \in R(P), \, q_{\perp} \perp q_{\parallel}.$

$$\Box \quad \text{Take } x = -tq_{\perp} \text{ with } t \ge 0, \frac{1}{2}x^T P x + q^T x + r = -t \left\| q_{\perp} \right\|^2 + r \to -\infty.$$

Robust LP

• $\min c^T x$,

s.t. $a_i^T \leq b_i, i \in [m],$

Don't know (a_i, b_i) exactly, have some uncertainty.

- Worst case (uncertainty ellipse)
 - $\circ \quad a_i \in E_i = \{\overline{a_i} + P_i u : \overline{a_i} \in \mathbb{R}^n, P_i \in \mathbb{R}^{n \times n}, \|u\|_2 \le 1\}.$
 - $\circ \Rightarrow \min c^T x$, $a_i^T \le b_i$, $a_i \in E_i$.

$$\circ \Rightarrow \min c^T x$$
, $\sup_{\|u\|_2 \le 1} (\overline{a_i} + P_i u)^T x \le b_i$

$$\circ (\bar{a}_{i} + P_{i}u)^{T}x = \bar{a}_{i}^{T}x + u^{T}P_{i}^{T}x \le \bar{a}_{i}^{T}x + \left(\frac{P_{i}^{T}x}{\|P_{i}^{T}x\|}\right)^{T}P_{i}^{T}x = \bar{a}_{i}^{T}x + \|P_{i}^{T}x\|.$$

- Equivalently: min $c^T x$, s.t. $\overline{a_i}^T x + \|P_i^T x\| \le b_i$ (SOCP).
- Statistical approach
 - $\circ a_i \sim N(\overline{a_i}, \Sigma).$
 - min $c^T x$, s.t. $\Pr(a_i^T x \le b_i) \ge \eta$, with $\eta > \frac{1}{2}$ the level of confidence. Take $\eta = 0.95$. • $E[a_i^T x - b_i] = \overline{a_i^T} x - b_i \rightarrow \mu_i$.

$$\circ E\left[\left(\left(a_{i}^{T}x-b_{i}\right)-E\left(a_{i}^{T}x-b_{i}\right)\right)^{2}\right]=E\left[\left(a_{i}^{T}x-\overline{a_{i}^{T}}x\right)^{2}\right]=x^{T}E\left[\left(a_{i}-\overline{a_{i}}\right)\left(a_{i}-\overline{a_{i}}\right)^{T}\right]x=x^{T}\Sigma x \rightarrow \sigma_{i}^{2}.$$

• With
$$\Phi(\gamma) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\gamma} e^{-t^2/2} dt$$
, $\Pr\left[\frac{\left(a_i^T x - b_i\right) - \mu_i}{\sigma_i} \le -\frac{\mu_i}{\sigma_i}\right] = \Phi\left(-\frac{\mu_i}{\sigma_i}\right) = \Phi\left(\frac{b_i - \overline{a_i^T x}}{\|\underline{\Sigma}\|^2 x\|}\right)$.

• Invert
$$\Phi$$
, $\frac{b_i - \overline{a_i^T x}}{\left\| \Sigma^{\frac{1}{2}} x \right\|} \ge \Phi^{-1}(\eta)$.

• This gives
$$\min c^T x$$
, s.t. $b_i - \overline{a_i^T} x \ge \Phi^{-1}(\eta) \left\| \Sigma^{\frac{1}{2}} x \right\|$ (SOCP).

Least square problems

- Setup: solve system of linear equations Ax = b.
- If A is square invertible, $x = A^{-1}b$.
- otherwise, 2 cases for $A \in \mathbb{R}^{m \times n}$.

- Overdetermined m > n.
 - More constraints, fewer parameters.
 - No vector x exactly satisfies Ax = b.
 - Idea: find best x that most closely matches the constraints, $\min ||Ax b||_2^2$.
 - $\circ \ f = \|Ax b\|_2^2 = x^T A^T A x 2b^T A x + b^T b.$
 - $\circ \quad \nabla f = 2A^T A x 2A^T b = 0.$
 - If $A^T A$ is invertible (A is full-rank), then $x^* = (A^T A)^{-1} A^T b$.
 - If not, we have linearly dependent columns.
- Underdetermined m < n.
 - More parameters, fewer constraints.
 - In general, many x satisfy Ax = b.
 - Assume *A* is full rank.
 - Idea: $\min ||x||^2$, s.t. Ax = b.
 - Note: set of x that satisfy Ax = b, is $\{x : Ax = b\} = x_0 + N(A)$
 - x_0 is one solution $Ax_0 = b$.
 - $N(A) = \{x : Ax = 0\}$ is the null space of A.
 - Claim: $x^* = A^T (AA^T)^{-1} b$.
 - $Ax^* = b$.
 - Orthogonality: $\langle x x^*, x^* \rangle = 0$ for Ax = b.
 - To calculate it, $(b Ax)^T A = 0$ gives $A^T Ax = A^T b$.

Optimal control example

- Goals: move mass *M* from 0 to *D* in *KT* seconds (discretized time steps).
 - Block initially at rest, surface is frictionless
 - Want block at rest at position D at time KT.
 - u[k] is a constant force applied from t = KT to t = (K + 1)T.
 - Suppose fuel consumption is proportional to $(u[k])^2$.
- Total consumption: $\sum_{i=0}^{K-1} (u[i])^2$.

• System state:
$$\begin{pmatrix} x[k] \\ \dot{x}[k] \end{pmatrix}$$
.
• $\begin{pmatrix} x[0] \\ \dot{x}[0] \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.
• $\begin{pmatrix} x[K] \\ \dot{x}[K] \end{pmatrix} = \begin{pmatrix} D \\ 0 \end{pmatrix}$.

- Transitions
 - $\circ \dot{x}[k+1] = \dot{x}[k] + \ddot{x}[k]T.$
 - $x[k+1] = x[k] + \dot{x}[k]T + \frac{1}{2}\ddot{x}[k]T^2$.
 - $\circ \quad \ddot{x}[k] = \frac{u[k]}{M}.$

•
$$\begin{pmatrix} x[k+1]\\ \dot{x}[k+1] \end{pmatrix} = \begin{pmatrix} 1 & T\\ 0 & 1 \end{pmatrix} \begin{pmatrix} x[k]\\ \dot{x}[k] \end{pmatrix} + \begin{pmatrix} \frac{T^2}{2M}\\ \frac{T}{M} \end{pmatrix} u[k].$$

- So X[k+1] = AX[k] + Bu[k], with $A = \begin{pmatrix} 1 & T \\ 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} \frac{T^2}{2M} \\ \frac{T}{M} \end{pmatrix}$.
 - Using recursion, $X[K] = A^K X[0] + CU$,

• with
$$C = [B, AB, A^2B, \dots A^{K-1}B]$$
 and $U = \begin{pmatrix} u[K-1] \\ \dots \\ u[0] \end{pmatrix}$

• Problem formulation

•
$$\min \sum_{i=0}^{K-1} (u[i])^2 = ||U||^2,$$

s.t. $X = A^K X[0] + CU.$

• Optimal solution.

•
$$U_{LS}^* = C^T (CC^T)^{-1} (X[k] - A^K X[0]).$$

$$\circ \quad C^{T} (CC^{T})^{-1} = \begin{pmatrix} B^{T} \\ \vdots \\ B^{T} (A^{T})^{K-1} \end{pmatrix} \left(\sum_{j=0}^{K-1} A^{j} B B^{T} (A^{T})^{j} \right)^{-1}$$

- $\sum_{i=0}^{K-1} A^{j} B B^{T} (A^{T})^{j}$ is the discrete time controllability Gremmian matrix.
- If C is not full rank, no optimal.

Geometric programs(GP)

- Monomial: $h(x) = cx_1^{\alpha_1}x_2^{\alpha_2} \dots x_n^{\alpha_n}, c \ge 0, \alpha_i \in \mathbb{R}, dom(h) = \{x : x_i > 0\} = \mathbb{R}_{++}^n$
- Posynomial: $f(x) = \sum_{k} c_k x_1^{\alpha_{1k}} x_2^{\alpha_{2k}} \dots x_n^{\alpha_{nk}}$, $c_k \ge 0$ is the sum of monomials.
- Problem:
 - $\circ \min f_0(x),$
 - s.t. $f_i(x) \le 1, i \in [m]$,
 - $h_i(x) = 1, i \in [p].$
 - $f_0, f_1, \dots f_m$ all posynomials, h_i all monomials.
- Get the convex form
 - Let $y_i = \log x_i$.
 - For monomials: $\log h(x) = \log c + \alpha_1 y_1 + \dots + \alpha_n y_n$. (affine in y)
 - For posynomials: $\log f(x) = \log(\sum c_k e^{y_1 \alpha_{1k}} \dots e^{y_n \alpha_{nk}}) = \log(\sum e^{\sum_{i=1}^n y_i \alpha_{ik} + \beta_k}).$
 - $\beta_k = \log c_k$.
 - Convex in *y*.

○ The problem becomes:
$$\min \log f_0(e^{y_1}, ..., e^{y_n})$$

s.t. $\log f_i(e^{y_1}, ..., e^{y_n}) \le 0, i \in [m],$
 $\log h_i(e^{y_1}, ..., e^{y_n}) = 0, i \in [p].$

Example: wireless transmission

0

- *n* transmitters $TX_1, ..., TX_n$, *n* receivers $RX_1, ..., RX_n$, mutally interferring, G_{ij} the gain between TX_i , RX_j , σ^2 receiver noise.
- Signal to interference and noise ratio: $SINR_i = \frac{P_i G_{ii}}{\sum_{i \neq i} P_j G_{ji} + \sigma^2}$.
- Rate of communication: $R_i = \log(1 + SINR_i)$.
- Type 1: $\max_{P_1,\dots,P_n} \min_i SINR_i$, s.t. $P_i \leq P_{max}$.
 - Equivalently, $\max t$ (same as $\min \frac{1}{t}$), s.t. $SINR_i \ge t, \forall i \in [n], \frac{P_1}{P_{max}} \le 1, i \in [n].$

$$\circ \frac{P_{i}G_{ii}}{\sum_{j\neq i}P_{j}G_{ji}+\sigma^{2}} \ge t \Leftrightarrow 1 \ge \frac{\left(\sum_{j\neq i}P_{j}G_{ji}+\sigma^{2}\right)t}{P_{i}G_{ii}} \Leftrightarrow \left[\left(\sum_{j\neq i}P_{j}G_{ji}\right)\left(P_{i}G_{ii}\right)^{-1}+\sigma^{2}\left(P_{i}G_{ii}\right)^{-1}\right]t \le 1.$$

The GP is:
$$\min \frac{1}{t}$$
,
s.t. $\frac{P_1}{P_{max}} \leq 1, i \in [n]$,
 $\left[\left(\sum_{j \neq i} P_j G_{ji} \right) \left(P_i G_{ii} \right)^{-1} + \sigma^2 \left(P_i G_{ii} \right)^{-1} \right] t \leq 1$.

- Type 2: $\max \sum_{i=1}^{n} R_i$, s.t. $P_i \leq P_{max}$.
 - Assume high power ratio, $SINR_i > 1$, $R_i \approx \log(SINR_i)$.
 - $\circ \arg \max \sum_{i=1}^{n} \log SINR_{i} = \arg \max \log \left(\prod_{i=1}^{n} \frac{P_{i}G_{ii}}{\sum_{j \neq i} P_{j}G_{ji} + \sigma^{2}} \right) = \arg \min \log \left(\prod_{i=1}^{n} \frac{\sum_{j \neq i} P_{j}G_{ji} + \sigma^{2}}{P_{i}G_{ii}} \right) = \arg \min \log \left[\left(\sum_{j \neq i} P_{j}G_{ji} \right) \left(P_{i}G_{ii} \right)^{-1} + \sigma^{2} \left(P_{i}G_{ii} \right)^{-1} \right].$
 - $\circ~$ And product of posynomials is a posynomial.

• When
$$R_i = \log(1 + SINR_i) = \log\left(\frac{\sum_j P_j G_{ji} + \sigma^2}{\sum_{j \neq i} P_j G_{ji} + \sigma^2}\right)$$
, not a GP.

Optimization with generalized inequalities

• $\min f_0(x), (f_0 : \mathbb{R}^n \to \mathbb{R})$ s.t. $f_i(x) \leq_{K_i} 0, i \in [m], (f_i : \mathbb{R}^n \to \mathbb{R}^{k_i}, K_i \text{ is a proper cone in } \mathbb{R}^{k_i})$ $h_i(x) = 0, i \in [p] (h_i \text{ are affine}).$

- f_i are K_i -convex, i.e. $f_i(\theta x + (1 \theta)y) \leq_{K_i} \theta f_i(x) + (1 \theta)f_i(y), \forall \theta \in [0, 1], x, y \in dom(f_i).$
 - A function is K_i -convex iff it is K_i -convex along all lines.
 - \circ $\;$ Sublevel sets are convex, hence feasible sets are convex.
 - \circ $\,$ Local optimum=global optimum.
 - Optimality condition: objective non-decreasing as move into feasible set from x^* .

Semidefinite programs (SDP)

• Special case of generalized inequalities

- min $c^T x$,
 - s.t. $f_0 + x_1 f_1 + \cdots x_n f_n \leq_{PSD} 0$, (can have many of them, $f_i \in S^m$) Gx = h.
 - Note: $f(x) = f_0 + f_1 x_1 + \dots + f_n x_n$ is an affine function of x.
 - $\{x : f(x) \le 0\} = \{x : -f(x) \in S^m_+\}$ the preimage of S^m_+ under an affine map, thus convex.
- Standard form: min Tr(CZ),
 - s.t. $Tr(A_iZ) = b_i, i \in [m]$ $Z \ge 0,$
 - $Z \in S^{m}, C, A_1, \dots A_m \in S^{m}.$
 - To transform the above into standard form
 - Introduce slack variables, to turn \leq into =.
 - Write each x in initial form as $x = x^+ x^-$ where $x^+ \ge 0$, $x^- \ge 0$.

•
$$\tilde{Z} = -F_0 - \sum x_i F_i, Z = \begin{pmatrix} \tilde{Z} & 0 & 0 \\ 0 & diag(x^+) & 0 \\ 0 & 0 & diag(x^-) \end{pmatrix}$$
.
• $A_i = \begin{pmatrix} 0 & 0 & 0 \\ 0 & G_i & 0 \\ 0 & 0 & -G_i \end{pmatrix}$.
• $C = \begin{pmatrix} 0 & 0 & 0 \\ 0 & diag(c) & 0 \\ 0 & 0 & -diag(c) \end{pmatrix}$.

Portfolio design

- $x = (x_1, ..., x_n)$ allocations of stocks.
- $P = (P_1, ..., P_n)$ expected returns.
- $\Sigma = E((x-\bar{x})(x-\bar{x})^T).$
- If we don't know Σ exactly, what is the worst Σ for fixed investment strategy x?
- Maybe V_{kl} ≤ Σ_{kl} ≤ U_{kl}, k ∈ [n], l ∈ [n].
 max x^TΣx, s.t. V_{kl} ≤ Σ_{kl} ≤ U_{kl}, k, l ∈ [n].

$$\Sigma \ge 0.$$

• $x^T \Sigma x = tr(x^T \Sigma x) = tr(\Sigma x x^T)$, so this is a SDP.

Relaxation of homogeneous QCQPs

- $\min x^T P_0 x + q_0^T x + r_0,$ s.t. $\frac{1}{2} x^T P_i x + q_i^T x + r_i \le 0, i \in [m].$
- Convex if $P_i \ge 0, \forall i$.
- Homogeneous means $q_i = 0$, $\forall i$.
- Problem non-convex if any P_i not PSD, or if replace \leq with =.

e.g. min $x^T C x$,

s.t. $x^T F_i x \ge g_i, i \in [m]$, if F_i not negative semidefinite, then not convex. $x^T H_i x = l_i, i \in [p]$, not convex.

• $x^T Cx = tr(x^T Cx) = tr(Cxx^T) = tr(CX)$, with $X = xx^T$. • $rank(X) = 1, X \ge 0$. • Equivalently, min tr(CX),

s.t.
$$tr(F_iX) \ge g_i, i \in [m],$$

$$tr(H_iX) = l_i, i \in [p],$$

$$rank(X) = 1, X \ge 0.$$

- Linear constraints
- The only non-convex constraint is rank(X) = 1.

SDP relaxation:

- drop the only non-convex constraint (rank(X) = 1) to get a convex optimization problem
- Objective value may be lower
- Now can compute some X^{*} for relaxed problem. Hope it tells something about solution to original problem
- Calculate the *rank*(1) approximation to X^{*} using SVD

e.g. two way partitioning problem

- Setup: *n* items, partition into 2 sets
- Costs: W_{ij} cost/utility of $i, j \in [n]$ being in the same partition.
 - $\circ -W_{ij}$ is the cost if they are in different partition.
 - $\circ \quad W_{ij} = W_{ji}.$
- Problem: $\min x^T W x$, s.t. $x_i \in \{-1,1\}, i \in [n] \Leftrightarrow x_i^2 = 1$ (non-convex). $x^T W x = \sum_{i,j} x_i x_j W_{ij}$.
- Equivalently:
 - $\min tr(WX)$ s.t. $X_{ii} = 1, i \in [n], X \ge 0, rank(X) = 1.$
- Relax rank(X) = 1 to get SDP

Duality Theory

September 12, 2022 12:56 PM

Start with a (not necessarily convex) optimization problem in standard form

 $\min f_0(x)$, s.t. $f_i(x) \le 0, i \in [m]$, $h_i(x) = 0, i \in [p].$ With optimal value p^* , optimal variables x^* , x is called the primal variables. Domain $D = \left(\bigcap_{i=0}^{m} dom(f_i)\right) \cap \left(\bigcap_{i=0}^{p} dom(h_i)\right).$

The Lagrangian function: $L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x)$, where λ_i, ν_i are the Lagrange multipliers or dual variables. $dom(L) = D \times \mathbb{R}^m \times \mathbb{R}^p$.

The dual function $g(\lambda, \nu) = \min_{x} L(x, \lambda, \nu)$

- x may be feasible or infeasible.
- Minimization removes dependency on x.

Dual optimal problem

- $\max_{\lambda,\nu} g(\lambda,\nu)$,
 - s.t. $\lambda \geq 0$.
- Dual optimum: d^* , optimal variables λ^* , ν^* , (λ, ν) are dual variables.
- $g(\lambda, \nu)$ is concave in λ, ν even if the original f is not convex and h_i is not affine. • $g(\lambda, \nu) = \min_{x} \{f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x)\} = \min\{affine functions\}$ is thus concave.
- $g(\lambda, \nu) \le f_0(x)$ if (a) x is primal feasible and (b) (λ, ν) is dual feasible.
 - Set of points satisfying (a)(b) are $\{x \in D: f_i(x) \le 0, h_i = 0\} \times \{\lambda, \nu: \lambda_i \ge 0\}$.
 - f₀(x) + Σ^m_{i=1} λ_if_i(x) + Σ^p_{i=1} ν_ih_i(x) = f₀(x) + negative < f₀(x) for x primal feasible, λ > 0.
 g(λ, ν) = min{f₀(x) + Σ^m_{i=1} λ_if_i(x) + Σ^p_{i=1} ν_ih_i(x)} ≤ f₀(x).

 - Remarks
 - $f_0(x) \ge g(\lambda, \nu)$ for primal feasible x and dual feasible (λ, ν) . i.e. dual problem provides a lower bound.
 - Best lower bound is to max $g(\lambda, \nu)$, s.t. $\lambda \ge 0$.
 - Bound holds for x^* , i.e. $p^* = f_0(x^*) \ge g(\lambda^*, \nu^*) = d^*$.
- For primal and dual feasible (x, λ, ν) , $f_0(x) g(\lambda, \nu)$ is the duality gap.
 - Weak duality: $p^* d^* \ge 0$.
- Strong duality: for convex optimization problems (f_i convex, h_i affine) and under certain constriant qualification conditions (not all possible constraints are allowed), then $p^* - d^* = 0$.
 - Convexity + constraint gualification is sufficient condition for duality to hold, but not necessary conditions
- Pricing interpretation
 - $\circ \min f_0(x)$,
 - s.t. $f_i(x) \le 0, i \in [m]$,
 - $h_i(x) = 0, i \in [p].$
 - Reformulate as an unconstrained problem using two penalty functions I and \tilde{I} .

•
$$I(x) = \begin{cases} 0, if \ x \le 0\\ \infty, else \end{cases}$$
.

- $\tilde{I}(x) = \begin{cases} 0, if \ x = 0 \\ \infty, else \end{cases}$.
- $\min f_0(x) + \sum_{i=1}^m I(f_i(x)) + \sum_{i=1}^p \tilde{I}(h_i(x)).$
- Note: this is not nice mathematically.
- Basic idea in Lagrange duality is to relax I and \tilde{I} to make it mathematically nice.

- $\lambda_i f_i(x)$ gives a lower bound for $I(f_i(x))$, $v_i h_i(x)$ gives a lower bound for $\tilde{I}(h_i(x))$.
- So $\min f_0(x) + \sum_{i=1}^m I(f_i(x)) + \sum_{i=1}^p \tilde{I}(h_i(x)) \ge \min f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x).$

Dual problem

- Start with original problem
 - $\min f_0(x),$
 - s.t. $f_i(x) \le 0, h_i(x) = 0.$
- Replace with lower bound, $\min_x (f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x)) = L(x, \lambda, \nu).$
- Solve for dual function $g(\lambda, \nu) = \min_{x \in D} L(x, \lambda, \nu)$,
- Provides lower bound on any primal feasible x if (λ, ν) dual feasible
- Maximize lower bound for all dual feasible (λ, ν) .
 - $\max g(\lambda, \nu)$, s.t. $\lambda \ge 0$.

Remarks

- Can consider λ_i and ν_i for violating constraints (cost per unit violation)
- In $L(x, \lambda, \nu)$ are allowed to consider non-primal feasible $x \in D$ and pay linearly
- In problem for which strong duality holds, can replace I and \tilde{I} with linear bounds as long as set λ_i^* and ν_i^* correctly

Slater's conditions

- Thm: a set of constraints $f_i(x) \le 0$, $i \in [m]$, Ax = b satisfies Slater's conditions if $\exists x \in D$ such that $f_i(x) < 0$, $i \in [m]$ and Ax = b.
- e.g. convex constraints not satisfying Slater

 $\circ \quad \text{Intersection has no interior} \\$

• If we have affine inequality constraints $f_i(x) = g_i^T x + h_i \le 0$, we only need to satisfy with equality, not necessarily strict (not part of Slaters)

Strong duality

- Thm: if primal optimization problem is convex and Slater's conditions are satisfied, then $p^* = d^*$. (i.e. duality gap is 0)
- Consider only a single inequality constraint
 - Primal: $\min f_0(x)$, s.t. $f_1(x) \le 0$ with optimal p^* .

- Lagrangian: $L(x, \lambda) = f_0(x) + \lambda f_1(x)$.
- Dual function: $g(\lambda) = \min_{x \in D} L(x, \lambda) = \min_{x \in D} (f_0(x) + \lambda f_1(x)).$
- Dual problem: $\max g(\lambda)$, s.t. $\lambda \ge 0$, with optimal d^* .
- Resource tradeoff: $G = \bigcup_{x \in D} \{ (f_1(x), f_0(x)) \}.$
- Shadow of *G* (solutions dominated by *G*): $A = G + \mathbb{R}^2_+ = \{(u, t) : u \ge f_1(x), t \ge f_0(x), x \in D\}$.

- $\circ~$ Boundary of corresponds to set of interesting designs
- \circ A contains both feasible and infeasible designs.
- Boundary of A is some function p(u)
 - $p(u) = \min f_0(x)$,
 - s.t. $f_1(x) \leq u$.
- \circ Note: $p^* = p(0)$ by definition
- Will show if f_0, f_1 convex,
 - *p* is non-increasing in *u*.
 - p is convex, implying A = epi(p) is convex.
- If nonconvex, may have:

- Prove convexity of *p*.
 - Thm: *p* is convex, i.e. $\forall u_1, u_2 \in dom(p), \lambda \in [0,1], p(\lambda u_1 + (1-\lambda)u_2) \leq \lambda p(u_1) + (1-\lambda)p(u_2)$.
 - Setup:
 - $p(u_1) = \min_x f_0(x)$, s.t. $f_1(x) \le u$.
 - $x_1 = \arg \min_x f_0(x)$, s.t. $f_1(x) \le u$, i.e. $f_0(x_1) = p(u_1)$.
 - Similarly, let x_2 be $f_0(x_2) = p(u_2)$.
 - Look at $\tilde{x} = \lambda x_1 + (1 \lambda) x_2, \lambda \in [0, 1].$
 - $f_1(\tilde{x}) = f_1(\lambda x_1 + (1 \lambda)x_2) \le \lambda f_1(x) + (1 \lambda)f_2(x)$ (convexity of f_1), $\le \lambda u_1 + (1 - \lambda)u_2$ (since x_1 feasible for $p(u_1)$).

 $\circ p(\lambda u_1 + (1-\lambda)u_2) = f_0(\tilde{x}) \le \lambda f_0(x) + (1-\lambda)f_0(x) = \lambda p(u_1) + (1-\lambda)p(u_2).$

• Consider the following optimization problem with $\lambda \geq 0$.

- min_(u,t)(λ, 1) ^u_t, s.t. (u, t) ∈ A, A convex.
 Let (λ, 1) ^u_t = const, then t = const − λu.
- Optimum point is on boundary, corresponds to some $x^*(\lambda)$ s.t. $(u^*, t^*) = (f_1(x^*(\lambda)), f_0(x^*(\lambda)))$.
- All other points are no better
 - $(\lambda, 1) \begin{pmatrix} u^* \\ t^* \end{pmatrix} \le (\lambda, 1) \begin{pmatrix} u \\ t \end{pmatrix}$ for all $\begin{pmatrix} u \\ t \end{pmatrix} \in A$. • $(\lambda, 1) \begin{pmatrix} u - u^* \\ u - t^* \end{pmatrix} \ge 0.$
- i.e. (u^*, t^*) defines a supporting hyperplane of epi(p) = t, touches at point (u^*, t^*) .
- This is non-vertical, since $(\lambda, 1)$ cannot be horizontal, unless $\lambda \to \infty$.
- Tangent point: $(f_1(x^*(\lambda)), f_0(x^*(\lambda)))$.
- Extrapolate back to get y-intercept, $(0, f_0(x^*(\lambda)) + \lambda f_1(x^*(\lambda)))$.
- Connection to dual
 - $\min_{t,u}(\lambda, 1) {\binom{u}{t}}$, s.t. $(u, t) \in A$.
 - $\circ = t^* + \lambda u^* = f_0(x^*) + \lambda f_1(x^*) = \min_{x \in D} f_0(x) + \lambda f_1(x) = g(\lambda) \text{ (dual function).}$
 - Dual optimal: $d^* = \max_{\lambda} g(\lambda), \lambda \ge 0$.
 - Maximize y-intercept to get as close to p* as possible

• If non-convex, A might not be a convex set.

U

 \circ If Slater's condition doesn't hold, the supporting hyperplane at p^* may be vertical.

Sensitivity analysis

- Consider the problem $p^*(u, v) = \min f_0(x)$,
 - s.t. $f_i(x) \le u_i$, $i \in [m]$, $(u_i < 0$ tighten constraint, $u_i > 0$ relax constraint) $h_i(x) = v_i$, $i \in [p]$ ($v_i \ne 0$, switch operating point).
- This is the generalization of p(u) function.
 - $p^*(0,0) = p^*$ is the primal optimal value for unperturbed problem.
- Assume convex optimization satisfying Slater's.
 - $p^*(0,0) = g(\lambda^*, v^*)$ by strong duality. = $\min_x L(x, \lambda^*, v^*)$, p^* achieved at some x^*, λ^*, v^* , $\leq L(x, \lambda^*, v^*)$ for any $x \in D$. Furthermore, pick x primal feasible for perturbed problem. = $f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{i=1}^p v_i^* h_i(x)$. $\leq f_0(x) + \sum_{i=1}^m \lambda_i^* u_i + \sum_{i=1}^p v_i^* v_i$, since x is feasible for perturbed problem and $\lambda_i^* \geq 0$. = $f_0(x) + (\lambda^*)^T u + (v^*)^T v$.
- Also holds for $x \in D$, optimal for perturbed problem for which $f_0(x) = p^*(u, v)$.
- $p^*(u,v) \ge p^*(0,0) (\lambda^*)^T u (v^*)^T v.$
- If $\lambda^* \gg 1$, a small change in constraint changes the optimality greatly.

Lagrange method

- $\min f_0(x)$,
 - s.t. $f_i(x) \le 0, i \in [m]$.
- Steps
 - Form Lagrangian, $L(x, \lambda) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x)$.
 - Find dual, $g(\lambda) = \min_{x} L(x, \lambda)$.
 - Find $\lambda^* = \arg \min_{\lambda \ge 0} g(\lambda)$.
 - Recover x^* (primal optimal) using $L(x, \lambda^*)$ by finding x to minimize $L(x, \lambda^*)$.
- Remarks
 - Attractive framework if there exists structure in dual problem that makes it easy to solve (λ^*, ν^*) for numerically or analytically.
 - Given λ^* , the x that minimizes $L(x, \lambda^*)$ may not be unique when p(u) is convex but not strictly convex.

Lagrange method for least squares.

• $\min ||x||^2$, s.t. $Ax = b, A \in \mathbb{R}^{m \times n}, m < n$, underdetermined. • $x^* = A^T (AA^T)^{-1} b$. • $L(x,v) = ||x||^2 + \sum_{i=1}^m v_i (a_i^T x - b_i) = ||x||^2 + v^T (Ax - b)$. • $g(v) = \min_x (||x||^2 + v^T (Ax - b))$, • $\frac{\partial L}{\partial x} = 2x + A^T v = 0$ gives $x = -\frac{1}{2}A^T v$. • $g(v) = \frac{1}{4} ||A^T v||^2 - \frac{1}{2}v^T AA^T v - v^T b = -\frac{1}{4}v^T AA^T v - v^T b$, • $g'(v) = -\frac{1}{2}AA^T v - b, v^* = \arg \max g(v) = -2(AA^T)^{-1}b$. • $x^* = -\frac{1}{2}A^T v^* = A^T (AA^T)^{-1}b$. • Consider the dual problem • $\max_v g(v) = \min_v (\frac{1}{4}v^T AA^T v + v^T b)$. • Equivalently, $\min \left\| \frac{1}{2}A^T v + x_0 \right\|_2^2$ where $Ax_0 = b$ (overdetermined).

$$= \left\|\frac{1}{2}A^T\nu + x_0\right\|_2^2 = \left(\frac{1}{2}A^T\nu + x_0\right)^T \left(\frac{1}{2}A^T\nu + x_0\right) = \frac{1}{4}\nu^T A A^T\nu + \nu^T b + const.$$

- Note: no constraints in over determined dual problem.
- Re-express: $\min \|y\|^2$ s.t. $y = \frac{1}{2}A^T x + x_0$.
- Dual of the dual
 - Lagrangian $L(x, y, v) = y^T y + v^T \left(\frac{1}{2}A^T x + x_0 y\right).$

Duals of LPs

- $\min c^T x$, s.t. $Ax \leq b$.
- Lagrangian: $L(x, \lambda) = c^T x + \lambda^T (Ax b) = -\lambda^T b + (c^T + \lambda^T A)x.$ Dual function: $g(\lambda) = \begin{cases} -\infty, if \ c^T + \lambda^T A \neq 0 \\ -\lambda^T b, c^T + \lambda^T A = 0 \end{cases}$
- Dual problem:

$$\max -\lambda^{T} b,$$

s.t. $\lambda \ge 0, c^{T} + \lambda^{T} A = 0.$

s.t.
$$\lambda \ge 0$$
, $C' + \lambda' A =$

- Dual of an LP is an LP
- LP satisfies Slater's so strong duality holds

		#variables	# constraints
•	Primal	$\dim(x)$	dim(b)
	Dual	dim(b)	$\dim(b) + \dim(x)$

• Dual of dual

Game theory

- zero sum game with linear payout
- Player 1 (P_1) plays $i \in [n]$, wants to minimize P_{ij} .
- Player 2 (P_2) plays $j \in [m]$, wants to maximize P_{ij} .
- Randomized strategies are allowed
 - P_1 plays *i* with probability u_i .
 - P_2 plays j with probability v_j .
 - Average payout: $\sum_{i} \sum_{j} u_i P_{ij} v_j = u^T P v$.
- Suppose P_1 goes first, its strategy u is known by P_2 , what strategy should P_2 use? $\max_{v} u^T P v$,

s.t.
$$1^{t} v = 1, v \ge 0$$
.

- Note: $(u^T P)v$ is simply selecting j element for $P^T u$, $\max_{j \in [m]} [P^T u]_j$.
- \circ Knowing P_2 will do this, P_1 should choose u to minimize this.

 $\min_{u} \max_{i \in [m]} [P^T u]_i$ s.t. $1^T u = 1, u \ge 0$. • Equivalently. mint, $P^T u \leq t \mathbf{1},$ $1^{T}u = 1.$ $u \ge 0$ (1). • Conversely, P_2 goes first, P_1 wants to minimize the cost. $\min_{u} u^T P v$, s.t. $1^T u = 1, u \ge 0$. • Knowing P_1 will do this, P_2 should choose v to maximize this. $\max_{v} \min_{i \in [n]} [Pv]_i$ s.t. $1^T v = 1, v \ge 0$. • Equivalently. max t, $Pv \geq t\mathbf{1}$, $1^{T}v = 1$, v > 0 (2). • Note: $\min_u \max_v f(u, v) \ge \max_v \min_u f(u, v)$. • Always have 2nd mover (inner) advantage. So (1)≥(2). • Here (1)=(2) since (1) is the dual of (2). • Lagrangian of (1): $L(t, u, \lambda, \mu, \nu) = t + \lambda^T (P^T u - t1) - \mu^T u + \nu (1 - 1^T u).$ • Dual of (1): $g(\lambda, \mu, \nu) = \begin{cases} -\infty, 1 - \lambda^T 1 \neq 0 \text{ or } (P\lambda - \mu - 1\nu) \neq 0 \\ \nu, else \end{cases}$. Dual problem $\max \nu$, s.t. $\lambda \ge 0$, $\mu \ge 0$, $1^T \lambda = 1$, $P\lambda - \mu - 1\nu = 0.$ • Equivalently, $\max \nu$, s.t. $\lambda \geq 0$, $1^T \lambda = 1$, $P\lambda \geq 1\nu$. Note: helped us that inner optimization had explicit solution (select largest/smallest entry)

- Constrained game theory
 - Strategy of P_1 constrained to $Au \leq b$.
 - Strategy of P_2 constrained to $Fv \leq g$.
 - If P_1 goes first, P_2 will $\max_v u^T Pv$, s.t. $Fv \le g$. P_1 solves: $\min_u \max_v u^T Pv$, s.t. $Au \le b$, $Fv \le g$.
 - If P_2 goes first, P_1 will $\min_u u^T Pv$, s.t. $Au \le b$. P_2 solves $\max_v \min_u u^T Pv$, $a t Au \le b$. Fin $\le a$
 - s.t. $Au \leq b, Fv \leq g$.
 - Dualize $\max_{v} u^T_{-} P v$ to get a min problem for P_1 .
 - Dualize $\min_u u^T P v$ to get a min problem for P_2 .
 - Then show the min problem is the dual of the max problem

Dualize l_1 -norm:

- $\min \|x\|$ s.t. Ax = b.
- Equivalently: $\min \sum_{i=1}^{n} t_i$, s.t. $x_i \le t_i$, $x_i \ge -t_i$, Ax = b. • $\min[0^T, 1^T] {x \choose t}$,

s.t.
$$\begin{pmatrix} I & -I \\ -I & -I \end{pmatrix} \le 0$$
,
 $Ax = b$.
• $L(x, t, \lambda, \nu) = \sum_{i=1}^{n} t_i + \lambda^T \begin{pmatrix} I & -I \\ -I & -I \end{pmatrix} \begin{pmatrix} x \\ t \end{pmatrix} + \nu^T (Ax - b)$.
• $g(\lambda, \nu) = \inf_{x,t} \left(\begin{bmatrix} 0^T, 1^T \end{bmatrix} + \lambda^T \begin{pmatrix} I & -I \\ -I & -I \end{pmatrix} + (\nu^T A, 0^T) \right) \begin{pmatrix} x \\ t \end{pmatrix} - \nu^T b = \begin{cases} -\nu^T b, if multiplier is 0 \\ \infty \end{cases}$.
• Let $\lambda^T = (\lambda_x^T, \lambda_t^T), \lambda^T \begin{pmatrix} I & -I \\ -I & -I \end{pmatrix} = (\lambda_x^T - \lambda_t^T, -\lambda_x^T - \lambda_t^T)$.

- Dual problem
 - $\circ \min v^T b,$ s.t. $\lambda_x^T - \lambda_t^T + v^T A = 0,$ $1^T - \lambda_x^T - \lambda_t^T = 0,$
 - $\lambda_x \ge 0, \lambda_t \ge 0.$
 - Final two lines give $\lambda_{x_i} \in [0,1], \lambda_{t_i} \in [0,1]$, box constraints.
 - Combining all constraints $\nu^T A = \lambda_t^T \lambda_x^T = 2\lambda_t^T 1 \in [-1,1]$ (l_{∞} norm).
 - $\circ \min v^T b,$ s.t. $\|v^T A\|_{\infty} \le 1.$
- Dual of l_p is l_q where $\frac{1}{p} + \frac{1}{q} = 1$.

Generalized inequalities

• $f_i(x) \leq_K 0$ where $f_i: \mathbb{R}^n \to \mathbb{R}^m$ and $K \subset \mathbb{R}^m$.

•
$$f_i(x) \le 0$$
 where $f_i: \mathbb{R}^n \to \mathbb{R}$ is a special case $\begin{pmatrix} f_i(x) \\ \vdots \\ f_m(x) \end{pmatrix} \le_{\mathbb{R}^m_+} 0.$

- *K* is a proper cone if it is pointed, convex, non-empty and closed.
- $X \leq_K Y$ if $X Y \in K$.
- For SDP, $K = S_{+}^{m}$, $x, y \in S^{m}$. • min $c^{T}x$, s.t. $x_{1}F_{1} + x_{2}F_{2} + \cdots x_{n}F_{n} + G \leq_{S_{+}^{m}} 0$, Ax = b. • $F_{1}, \dots, F_{n}, G \in S^{m}$.

Dualizing generalized inequalities

- Key idea of dualization: $\sum \lambda_i f_i(\tilde{x}) = \langle \lambda, f(\tilde{x}) \rangle \le 0, \tilde{x}$ primal feasible, λ dual feasible.
- For generalized inequalities, need to identify some set that restricts dual variables to keep (λ, f(x)) ≤ 0 for all x feasible (f(x) ≤_K 0).
- Idea: if primal feasibility constraints defined by cone *K*, the dual variables will need to be constrained to dual cone *K*^{*}.
- Def: Let K be a cone. The set $K^* = \{Y : \langle X, Y \rangle \ge 0, \forall X \in K\}$ is the dual cone.
 - o e.g.

• Restricting to a ray:

• $K = \mathbb{R}^2_+$, then $K^* = \mathbb{R}^2_+$ (self-dual).

- When $\alpha > 90$, K^* reduces to 0.
- To show K^* is cone.
 - Take $Y \in K^*$, $\forall \alpha \ge 0, X \in K^*$, $\langle X, Y \rangle \ge 0$, $\langle X, \alpha Y \rangle = \alpha \langle X, Y \rangle \ge 0$.
- K^* is convex:
 - Let $Y, Z \in K^*, \lambda \in [0,1], X \in K^*$.
 - $\langle X, \lambda Y + (1 \lambda)Z \rangle = \lambda \langle X, Y \rangle + (1 \lambda) \langle X, Z \rangle \ge 0.$
- For $K = S^m_+$, $K^* = K = S^m_+$ is self-dual.
 - Inner product for matrices: $X, Y \in \mathbb{R}^{n \times m}$, $\langle X, Y \rangle = tr(X^T Y) = \sum_{i=1}^n \sum_{j=1}^m X_{ij} Y_{ij}$.
 - $K^* = (S^m_+)^* = \{Y : tr(XY) \ge 0, \forall X \in S^m_+\}.$
 - Any $Y \in S^m$, $Y \notin S^m_+$ is not in K^* .
 - To show, for each Y, find a single $X \in S^m_+$ s.t. $\langle X, Y \rangle < 0$.
 - If $Y \notin S^m_+$, then $\exists q \in \mathbb{R}^m$, s.t. $q^T Y q < 0$.
 - Let $X = qq^T \in S^m_+$.
 - $\langle X, Y \rangle = tr(XY) = tr(qq^TY) = tr(q^TYq) = q^TYq < 0.$
 - So $Y \notin K^*$.
 - Any $Y \in S^m_+$ is in K^* .
 - To show, show that $\forall X \in S^m_+$, s.t. $\langle X, Y \rangle \ge 0$.
 - For $X \in S^m_+$, $X = Q\Lambda Q^T = \sum_{i=1}^m \lambda_i q_i q_i^T$, Q orthogonal, $\Lambda \ge 0$.
 - $\langle X, Y \rangle = tr(XY) = tr(\sum_{i=1}^{m} \lambda_i q_i q_i^T Y) = \sum_{i=1}^{m} \lambda_i tr(q_i q_i^T Y) \ge 0$, since $Y \in S_+^m$.

Dual of SDPs

- $\min c^T x$,
 - s.t. $x_1F_1 + \dots + x_nF_n + G \leq 0, F_i, G \in S^n$.
- Primal variable: $x \in \mathbb{R}^n$.
- Dual variable: $Z \in S^n$.
- Lagrangian: $L(x,Z) = c^T x + \langle Z, x_1 F_1 + \cdots x_n F_n + G \rangle = c^T x + \sum_{i=1}^n x_i \langle Z, F_i \rangle + \langle Z, G \rangle.$ $\circ = \sum_{i=1}^n x_i (c_i + \langle Z, F_i \rangle) + \langle Z, G \rangle.$
- Dual function: $g(z) = \inf_{x} L(x, Z) = \begin{cases} tr(ZG), c_i + tr(ZF_i) = 0, \forall i \in [n] \\ -\infty, else \end{cases}$.
- Dual optimization problem: max tr(ZG),

s.t.
$$c_i + tr(ZF_i) = 0, Z \ge 0.$$

- Dual of SDP is SDP
- SDP can also satisfy strong duality if Slater's conditions are satisfied.

General approach to dualizing generalized inequalities

- If cone defining inequalities is *K*, find dual cone *K*^{*}.
- Constrain dual variables to K^* .
- Weak duality will follow from analogous step.
 - $\circ g(z) = \inf_{x} L(x, z) = \inf_{x} (c^{T}x + \langle Z, x_{1}F_{1} + \cdots + x_{n}F_{n} + G \rangle),$ $= \inf_{x} (c^{T}x - \langle Z, -(x_{1}F_{1} + \cdots + x_{n}F_{n} + G) \rangle),$ $\leq c^{T}x.$
 - If x primal feasible, $-(x_1F_1 + \cdots x_nF_n + G) \ge 0$.
 - If z dual feasible, then $Z \in (S^m_+)^* = S^m_+$.
- For 2 cases of interest, the cones are self-dual.
 - $\circ \ \left(\mathbb{R}^m_+\right)^* = \mathbb{R}^m_+.$
 - $\circ (S^m_+)^* = S^m_+.$

Motivation: SDP relaxations

- Original problem
 - $\circ \min x^T A x$,

s.t.
$$x_i \in \{-1,1\}, i \in [n] \text{ or } x_i^2 = 1.$$

- 1st relaxation
 - $\circ \min x^T A x$,

s.t. $-1 \le x \le 1$.

- If $A \in S_{++}^n$, get x = 0, not helpful.
- If $A \notin S^n_+$, still not convex.
- 2nd relaxation
 - min $tr(XA), X = xx^{T},$ $X_{ii} = 1,$ $X \ge 0,$ rank(X) = 1 (dropped to get SDP).
- Dualizing original problem:

- $g(v) = \operatorname{int}_{x} L(x, v) = \{$ • Dual problem (SDP): $\max -1^{T} v,$
 - s.t. $A + diag(v) \ge 0$.
- Dualizing 2nd relaxation:
 - $L(X,Z,\nu) = tr(XA) + \sum_{i=1}^{n} \nu_i (X_{ii} 1) + \langle Z, -X \rangle = tr \left(X (A + diag(\nu) Z) \right) 1^T \nu.$ $\sigma(Z,\nu) = \min L(X,Z,\nu) = \begin{cases} -1^T \nu_i A + diag(\nu) - Z = 0 \end{cases}$

$$g(Z,v) = \min_{x} L(X,Z,v) = \begin{cases} -\infty, else \\ -\infty, else \end{cases}$$

Dual problem: max −1^Tν, A + diag(v) − Z = 0, Z ≥ 0.
Equivalent to dualizing the original problem

Non-convex problem satisfying strong duality

- min $x^T A x$, s.t. $x^T x \le 1, A \in S^n$.
- If $A \in S^n$, $A = Q\Lambda Q^T$, $Q \in \mathbb{R}^{n \times n}$ is orthonormal, rows/cols provide basis for \mathbb{R}^n . • Can write any $x \in \mathbb{R}^n$ as $x = \sum_{i=1}^n \alpha_i v_i = Q\alpha$.
- Rewrite the problem:

$$\circ x^T A x = (\alpha^T Q^T) Q \Lambda Q^T Q \alpha = \alpha^T \Lambda \alpha = \sum_{i=1}^n \alpha_i^2 \lambda_i.$$

$$\circ \quad x^T x = \alpha^T Q^T Q \alpha = \alpha^T \alpha = \sum_{i=1}^n \alpha_i^2 \le 1.$$

- $A \in S^n_+$, so $\lambda_i \ge 0$, then $p^* = 0$ with $\alpha_i = 0, x = 0$.
- $A \notin S_+^n$, so $\exists i \text{ s.t. } \lambda_i < 0$, then $p^* \ge \lambda_{min} \sum_{i=1}^n \alpha_i^2 \ge \lambda_{min}$ achieved at $\alpha = e_j$, j corresponding to λ_{min} .
- Dualize problem

$$L(x,\lambda) = x^T A x + \lambda (x^T x - 1) = x^T (A + \lambda I) x - \lambda$$

$$g(\lambda) = \min L(x,\lambda) = \begin{cases} -\lambda, A + \lambda I \ge 0 \\ -\infty, else \end{cases}.$$

- $\max -\lambda$, s.t. $A + \lambda I \ge 0$, $\lambda \ge 0$.
- $A + \lambda I = Q\Lambda Q^T + \lambda Q Q^T = Q(\Lambda + \lambda I)Q^T$, so $A + \lambda I \ge 0$ gives $\Lambda + \lambda I \ge 0$ or $\lambda \ge -\lambda_{min}(A)$.
- When $A \in S^m_+$, we get $d^* = 0$.
- When $A \notin S_+^m$, we get $d^* = \lambda_{min}$.
- Strong duality holds
- Dual of the dual

\circ min λ ,

s.t.
$$A + \lambda I \ge 0$$
, $\lambda \ge 0$.

$$L(x, Z, \nu) = \lambda - \langle Z, A + \lambda I \rangle - \nu \lambda = \lambda tr\left(\frac{1}{n}I - \frac{\nu}{n}I - tr(Z)\right) - tr(ZA).$$

$$\left(-tr(ZA), tr\left(\frac{1}{n}I - \frac{\nu}{n}I - tr(Z)\right) = 0 \right)$$

$$\circ \quad g(Z,\nu) = \inf_{\mathcal{X}} L(\mathcal{X},Z,\nu) = \begin{cases} -tr(ZA), tr\left(\frac{-1}{n} - \frac{-1}{n} - tr(Z)\right) = 0\\ -\infty, else \end{cases}.$$

- $\circ \max -tr(ZA),$ s.t. $\nu \ge 0, Z \ge 0, tr(Z) = 1 - \nu.$
- Equivalently, $\min tr(ZA)$, s.t. $Z \ge 0$, $tr(Z) \le 1$.
- Equivalent to the relaxed SDP of the initial problem, with $Z = xx^{T}$.

KKT conditions

- Consider an optimization problem, for which primal and dual optimal values are obtained (at x^* , λ^* , ν^*) and $p^* = d^*$ (strong duality holds)
- $\min f_0(x)$, s.t. $f_i(x) \le 0, i \in [m]$, $h_i(x) = 0, i \in [p]$.
- $L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x).$
 - $\circ \quad g(\lambda,\nu) = \inf_{x} L(x,\lambda,\nu).$
 - If strong duality holds, then $f_0(x^*) = g(\lambda^*, \nu^*)$.
 - $\circ f_0(x^*) = g(\lambda^*, \nu^*) = \inf_x [f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{i=1}^p \nu_i^* h_i(x)],$ $\leq f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + \sum_{i=1}^p \nu_i^* h_i(x^*), (1)$ $\leq f_0(x^*). (2)$
 - We must have all equalities
 - Consequences:
 - (1) $\Rightarrow x^*$ is a minimizer of $L(x, \lambda^*, \nu^*)$.
 - (2) $\Rightarrow \lambda_i^* f_i(x^*) = 0, \forall i \in [m].$
- Complementary slackness
 - Condition that $\lambda_i^* f_i(x^*) = 0, \forall i \in [m]$.
 - If ith constraint is inactive, $f_i(x) < 0$, then $\lambda_i^* = 0$.
 - No more return if we use more resource (changing from $f_i(x) < 0$ to $f_i(x) = 0$).
 - If $\lambda_i^* > 0$, then $f_i(x) = 0$.
 - We have use up all resources, if we want to improve, we go out of feasible set.
- If problem is differentiable
 - conditions
 - $f_0(x), f_i(x), h_i(x)$ are all differentiable.
 - Strong duality still holds
 - Convexity is not considered
 - x^* minimizes $L(x, \lambda^*, \nu^*)$ without constraints, $\nabla_x L(x, \lambda^*, \nu^*)|_{\nu=\nu^*} = 0$.
 - First order/primal optimal condition.
- KKT conditions
 - $\circ \ \nabla_{x} L(x, \lambda^{*}, \nu^{*}) \Big|_{x=x^{*}} = \nabla f_{0}(x^{*}) + \sum_{i=1}^{m} \lambda_{i}^{*} \nabla f_{i}(x^{*}) + \sum_{i=1}^{p} \nu_{i}^{*} \nabla h_{i}(x^{*}) = 0.$
 - $\circ f_i(x^*) \leq 0, \forall i \in [m], h_i(x^*) = 0, \forall i \in [p].$
 - $\circ \ \lambda_i^* \ge 0, \forall i \in [m].$
 - $\circ \quad \lambda_i^* f_i(x^*) = 0, \, \forall i \in [m].$
- Theorems (necessary and sufficient conditions)
 - Necessary: If (x^*, λ^*, ν^*) are primal and dual optimal variables for an optimization problem, for which f_i and h_i all differentiable and for which strong duality holds, then (x^*, λ^*, ν^*) satisfies KKT conditions.
 - Sufficient: start with an optimization problem, for which f_i and h_i all differentiable, f_i convex, h_i affine, then if any $(\tilde{x}, \tilde{\lambda}, \tilde{v})$ satisfies KKT, then.
 - Strong duality holds.
 - \tilde{x} primal optimal.
 - $\tilde{\lambda}, \tilde{\nu}$ dual optimal.
 - Proof (sufficient)
 - $L(x, \tilde{\lambda}, \tilde{v}) = f_0(x) + \sum_{i=1}^m \tilde{\lambda}_i f_i(x) + \sum_{i=1}^p \tilde{v}_i h_i(x).$
 - Since f_0 , f_i convex, $h_i(x)$ affine by assumption, $\tilde{\lambda}_i \ge 0$ by KKT, L is convex in x.
 - Since f_i , h_i differentiable, L is differentiable in x.
 - So, any point of zero gradient is global minimum.
 - By KKT(1), $\nabla_{x} L(x, \tilde{\lambda}, \tilde{\nu})|_{x=\tilde{x}} = 0.$
 - $g(\tilde{\lambda}, \tilde{\nu}) = \inf L(x, \tilde{\lambda}, \tilde{\nu}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu}).$
 - By definition, $g(\tilde{\lambda}, \tilde{\nu}) = f_0(\tilde{x}) + \sum_{i=1}^m \tilde{\lambda}_i f_i(\tilde{x}) + \sum_{i=1}^p \tilde{\nu}_i h_i(\tilde{x}) = f_0(\tilde{x}).$ \Box Since $\tilde{\lambda}_i f_i(\tilde{x}) = 0$ by CS, $h_i(\tilde{x}) = 0$.
 - So strong duality holds.
 - Note, \tilde{x} is also primal feasible by KKT(2).

- Summary
 - $g(\tilde{\lambda}, \tilde{v})$ is a lower bound on $f_0(x)$, $\forall x$ primal feasible and \tilde{x} meets bound with equality, so \tilde{x} is primal optimal.
 - *f*₀(*x̃*) is an upper bound on *g*(*λ*, *ν*), ∀*λ*, *ν* dual feasible and (*λ̃*, *ṽ*) meets bound with equality,s o dual optimal.
- Combine two theorems
 - o Class of optimization problems that are differentiable, so KKT condition exists.
 - Convex, so have sufficiency via B
 - Strong duality holds, so necessity via A
 - $\circ~$ If differentiable, convex, satisfies Slater's, then KKT is necessary and sufficient

Water-filling for additive white Gaussian noise channels

- $z_i \sim N(0, N_i)$. • $N_i \ge 0$: noise variance of channel *i*.
- $P_i \ge 0$: power over channel *i*.
- Total power constraint: $P_T \ge \sum_{i=1}^n P_i$.
- Problem

$$\begin{aligned} \max_{P_i} \sum_{i=1}^n \log\left(1 + \frac{P_i}{N_i}\right) & (\text{equivalently, } \min - \sum_{i=1}^n \log\left(1 + \frac{P_i}{N_i}\right)), \\ \text{s.t. } P_i \geq 0, i \in [n], \\ \sum_{i=1}^n P_i \leq P_T. \end{aligned}$$

•
$$L(P, \lambda, \mu) = \sum_{i=1}^{n} -\log\left(1 + \frac{P_i}{N_i}\right) + \lambda\left(\sum_{i=1}^{n} P_i - P_T\right) - \sum_{i=1}^{n} \mu_i P_i.$$

• KKT conditions

$$\circ \quad \frac{\partial L}{\partial P_i} = -\frac{1}{1 + \frac{P_i}{N_i} N_i} + \lambda - \mu_i = 0, \forall i \in [n].$$

$$\circ P_i \ge 0, \sum_{i=1}^n P_i = P_T$$

- $\circ \ \lambda \geq 0, \mu_i \geq 0, \forall i \in [n].$
- $\mu_i P_i = 0$, if $P_i > 0$, then $\mu_i = 0$.
- λ(∑_{i=1}ⁿ P_i − P_T) = 0, if ∑ P_i < P_T, then λ = 0, if ∑ P_i = P_T, then λ ≥ 0.
 Since objective is monotone increasing in each P_i, will use total budget, ∑ P_i = P_T.
- By 1, $P_i + N_i = \frac{1}{\lambda \mu_i}$. • If $P_i > 0$, then $\mu_i = 0$, $P_i + N_i = \frac{1}{\lambda}$ (power+noise=const for active channels).

If
$$P_i = 0$$
, then $N_i = \frac{1}{\lambda - \mu_i} \ge \frac{1}{\lambda}$.

- $\frac{1}{\lambda}$ is water-filling parameter.
 - If $N_i < \frac{1}{\lambda}$, we add power to channel *i*.
 - If $N_i \ge \frac{1}{2}$, no need to make it active.
- For any fixed λ , $P_i = \max\left\{\frac{1}{\lambda} N_i, 0\right\}$.
- By sorting (by noise level), identify $n^* \le n$ active channels.

$$\sum_{i=1}^{n^*} (P_i + N_i) = \sum_{i=1}^{n^*} \frac{1}{\lambda^*}$$

$$P_T + \sum_{i=1}^{n^*} N_i = \frac{n^*}{\lambda^*}.$$

$$\circ \ \frac{1}{\lambda^*} = \frac{1}{n^*} \Big(P_T + \sum_{i=1}^{n^*} N_i \Big).$$

- Perturb power budget from P_T to $P_T + \epsilon$.
 - Assume n^* active channel, each gets $\frac{\epsilon}{n^*}$ extra power, what's the benefit?

$$\circ \log\left(1 + \frac{P_i^* + \epsilon/n^*}{N_i}\right) - \log\left(1 + \frac{P_i^*}{N_i}\right),$$

$$= \log\left(\frac{P_{i}^{*}+N_{i}+\epsilon/n^{*}}{P_{i}^{*}+N_{i}}\right) = \log\left(1+\frac{\epsilon/n^{*}}{P_{i}^{*}+N_{i}}\right),$$
$$= \log\left(1+\frac{\epsilon/n^{*}}{1/\lambda^{*}}\right),$$
$$\approx \frac{\epsilon/n^{*}}{1/\lambda^{*}} = \frac{\epsilon\lambda^{*}}{n^{*}} \text{ is the rate increase for each channel } i.$$
$$\circ \text{ Total rate is increased by } \epsilon\lambda^{*}.$$

Geometric interpretation of KKT

- $\min f_0(x)$, s.t. $f_i(x) \le 0, i \in [m]$,
 - $h_i(x) = 0, i \in [p].$
- At optimum x*, some f_i(x) < 0 inactive, consider the following problem only min f₀(x),

s.t.
$$f_i(x) = 0, \{i: f_i \ active\},\$$

- $h_i(x) = 0, i \in [p].$
- For equality constraints
 - $\min f_0(x),$

s.t.
$$Ax = b$$

- Perturb x^* while staying feasible
 - $A(x^* + \Delta x) = Ax^* + A\Delta x = b.$
 - A feasible perturbation satisfies $A\Delta x = 0$.

• e.g.
$$A = (2,1), b = 1, 2x_1 + x_2 = 1.$$

$$\Box \quad \Delta x = \left\{ \alpha \begin{pmatrix} -1 \\ 2 \end{pmatrix}, \alpha \in \mathbb{R} \right\}.$$

Generally, $A\Delta x = \begin{pmatrix} a_1^T \\ \vdots \\ a_p^T \end{pmatrix} \Delta x = 0$ gives $a_i \perp \Delta x, \forall i \in [p], \Delta x \in N(A)$

• A point
$$x^* \in C$$
 for a convex opt problem is optimal iff $\forall y \in C$, $\nabla f_0(x^*)^T (y - x^*) \ge 0$.

- $\Box \quad \text{If } \nabla f_0(x^*)^T \Delta x \ge 0, \forall \Delta x \in N(A), \text{ then } -\Delta x \in N(A).$
- □ For optimality, need $\nabla f_0(x^*)^T \Delta x = 0$, $\forall \Delta x \in N(A)$.
- □ In other words, $\nabla f_0(x^*)^T \perp N(A)$, i.e. $\nabla f_0(x^*)^T \in N(A)^{\perp} = R(A^T)$.
 - □ Hence, can write $\nabla f_0(x^*) = A^T \alpha$.
- o Optimum criteria for equality constrained optimization problem
 - A point x is optimal iff $\nabla f_0(x)^T \Delta x = 0$, $\forall x$, s.t. $A \Delta x = 0$.
- Connect to KKT
 - $L(x,v) = f_0(x) + v^T (Ax b).$

$$\nabla_x L = \nabla f_0(x) + A^T \nu = 0, \quad \nabla f_0(x) = A^T(-\nu) \in R(A^T).$$

• e.g. $\min \frac{1}{2} (x_1^2 + x_2^2)$, s.t. $(2,1) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 1$, $x^* = \begin{pmatrix} 2/5 \\ 1/5 \end{pmatrix}$.

$$\Box \quad \nabla f_0(x^*) = \binom{2/5}{1/5}, A^T = \binom{2}{1}, -\nu = \frac{1}{5}.$$

- The KKT condition represent balance of force
 - $\circ \nabla f_0(x) = -\sum_{i=1}^m \lambda_i \nabla f_i(x) \sum_{i=1}^p \nu_i \nabla h_i(x).$
- Why Slater's?
 - We need some $\{\lambda_i\}$ to make $\nabla f_0(x) = -\sum_{i=1}^m \lambda_i \nabla f_i(x)$.
 - e.g. min $x_1 + x_2$, s.t. $(x_1 + 1)^2 + x_2^2 \le 1$, $(x_1 2)^2 + x_2^2 \le 4$.
 - Only one feasible point $x^* = (0,0)$, Slater's doesn't hold.

•
$$\nabla f_0(x) = \begin{pmatrix} 1\\ 1 \end{pmatrix}, \nabla f_1(x) = \begin{pmatrix} 2x_1 + 2\\ 2x_2 \end{pmatrix} = \begin{pmatrix} 2\\ 0 \end{pmatrix}, \nabla f_2(x) = \begin{pmatrix} 2x_1 - 4\\ 2x_2 \end{pmatrix} = \begin{pmatrix} -4\\ 0 \end{pmatrix}.$$

• Cannot pick λ to have $\nabla f_0(x) = -\lambda_1 \nabla f_1(x) - \lambda_2 \nabla f_2(x)$.

Algorithms

September 12, 2022 12:56 PM

Unconstrained optimization

- $\min f_0(x)$, f_0 is convex and twice differentiable
- Idea: produce a sequence x^k , k = 1,2,3, ... such that cost decreases at each step and $f_0(x^k) \rightarrow p^* = \min f_0(x)$.
- Descent method:
 - $x^{k+1} = x^k + t^k \Delta x^k$, t is step size, Δx is direction.
 - Need $f_0(x^{k+1}) < f_0(x^k)$.
- Steepest/gradient descent:
 - Pick Δx^k to align with direction of most negative gradient $\Delta x^k = -\nabla f_0(x^k)$.
 - Since f(x) is convex, $f_0(y) \ge f_0(x) + \nabla f_0(x)^T (y x)$. • Set $f_0(y) = f_0(x^{k+1}), f_0(x) = f_0(x^k), (y - x) = \Delta x^k$.
 - For choice in steep descent, $f_0(x^{k+1}) \ge f_0(x^k) \|\nabla f_0(x^k)\|_2^2$.
 - But just picking direction as above and step size t = 1 does not guarantee progress
 - Algorithm: given $x \in dom(f_0)$.
 - Repeat:
 - $\Box \quad \text{Choose } \Delta x = -\nabla f_0(x).$
 - $\Box \quad \text{Choose } t > 0.$
 - $\Box \quad \text{Update } x + t\Delta x.$
 - Until $\left\|\nabla f_0(x)\right\|^2 < \epsilon$.
- Choosing *t*.
 - Exact line search:
 - Set $t = \arg\min_{t>0} f_0(x + t\Delta x)$.
 - 1D convex optimization problem.
 - Backtracking line search:
 - Parameters:
 - $\Box \ \alpha \in (0,0.5)$: used to identify a good step size.
 - $\ \square \ \beta \in (0,1)$: multiplicative step size search parameter.
 - Algorithm: start with $t = \frac{1}{\rho}$.
 - □ Repeat:
 - Set $t = \beta t$ (reduce step size).

Until
$$f_0(x + t\Delta x) < f_0(x) + \alpha t \nabla f_0(x)^T \Delta x$$
.

- Newton's method:
 - Improved direction

П

- In steepest descent, fit a hyperplane to f₀(x), first order method.
- In Newton's method, fit a second order approximation to determine direction

$$\circ f_0(x + \Delta x) \approx f_0(x) + \nabla f_0(x)^T \Delta x + \frac{1}{2} \Delta x^T \nabla^2 f_0(x) \Delta x.$$

- Minimize $f_0(x)$ w.r.t. Δx to find direction.
 - $\frac{\partial}{\partial \Delta x} (f_0(x + \Delta x)) = \nabla f_0(x) + \nabla^2 f_0(x) \Delta x = 0.$
 - $\Delta x = -(\nabla^2 f_0(x))^{-1} \nabla f_0(x)$ if Hessian is invertible.
- Algorithm: given $x \in dom(f_0)$.
 - Repeat:
 - $\Box \quad \text{Choose } \Delta x_{nt} = -(\nabla^2 f_0(x))^{-1} \nabla f_0(x).$
 - $\Box \quad \text{Choose } t > 0.$
 - $\Box \quad \text{Update } x = x + t\Delta x_{nt}.$
 - Until $\sqrt{\nabla f_0(x)^T (\nabla^2 f_0(x))^{-1} \nabla f_0(x)} < \epsilon.$

• Exit condition: since $f_0(x + t\Delta x_{nt}) \approx f_0(x) - \left(t - \frac{t^2}{2}\right) \nabla f_0(x)^T \left(\nabla^2 f_0(x)\right)^{-1} \nabla f_0(x)$.

• Example:

$$\begin{array}{l} \circ \ \ f_0(x) = \frac{1}{2} \left(x_1^2 + \gamma x_2^2 \right), \gamma > 1. \\ \circ \ \ x = \binom{x_1}{x_2}, x^* = \binom{0}{0}, \nabla f_0(x) = \binom{x_1}{\gamma x_2}, \nabla^2 f_0(x) = \binom{1 \ \ 0}{0 \ \ \gamma}. \\ \circ \ \ \Delta x_{nt} = - \left(\nabla^2 f_0(x) \right)^{-1} \nabla f_0(x) = - \binom{1 \ \ 0}{0 \ \ 1/\gamma} \binom{x_1}{\gamma x_2} = - \binom{x_1}{x_2}. \end{array}$$

Equality constrained minimization

- $\min f_0(x)$,
 - s.t. Ax = b.
- KKT conditions:
 - $\circ L(x,v) = f_0(x) + v^T (Ax b).$
 - $\circ \quad \nabla_x L(x,\nu) = \nabla f_0(x) + A^T \nu = 0.$
 - $\circ Ax = b.$
- Idea is to solve sequentially while continually satisfying primal feasibility
 - $x^{k+1} = x^k + t\Delta x, Ax^{k+1} = b.$
 - $\circ t\Delta x$ must be selected to satisfy primal feasibility.
- min $\nabla f_0(x)v + \frac{1}{2}v^T \nabla^2 f_0(x)v$,
 - s.t. $A(x + v) = \overline{b}$ (since Ax = b, we simply need Av = 0).
- Solve for *v*.
 - $L(v,\mu) = \nabla f_0(x)^T v + \frac{1}{2} v^T \nabla^2 f_0(x) v + \mu^T (Av).$
 - KKT gives: $\nabla_{\nu}L = \nabla f_0(x) + \nabla^2 f_0(x)\nu + A^T\mu = 0, A\nu = 0.$

$$\circ \quad \begin{pmatrix} \nabla^2 f_0(x) & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} \nu \\ \mu \end{pmatrix} = \begin{pmatrix} -\nabla f_0(x) \\ 0 \end{pmatrix}.$$

- The matrix is called KKT matrix.
- \circ Solution:
 - Invert KKT matrix to find v.
 - Back substitution if only $\nabla^2 f_0(x)$ is invertible. If not invertible, can still deal with that by making it PSD. Now consider the invertible case
- Back substitution

$$\circ v + (\nabla^2 f_0(x))^{-1} A^T \mu = - (\nabla^2 f_0(x))^{-1} \nabla f_0(x).$$

- $\circ Av + A(\nabla^2 f_0(x))^{-1} A^T \mu = -A(\nabla^2 f_0(x))^{-1} \nabla f_0(x).$
- Since Av = 0, $\mu = -\left(A(\nabla^2 f_0(x))^{-1}A^T\right)^{-1}A(\nabla^2 f_0(x))^{-1}\nabla f_0(x)$.
- Substitute μ back into v equation, $v = -\nabla^2 f_0(x)^{-1} (\nabla f_0(x) + A^T \mu)$.
 - Note $A^T \mu$ adds the constraint.
- Algorithm: given $x^0 \in dom(f_0)$ such that $Ax^0 = b$.
 - \circ Repeat:
 - Compute *v* as above.
 - Set $\Delta x_{nt} = v$.
 - Line search for *t*.
 - $x^{t+1} = x^t + t\Delta x_{nt}$ (since Av = 0, Atv = 0, doesn't affect feasibility).

• Until
$$\Delta x_{nt}^T (\nabla^2 f_0(x))^{-1} \Delta x_{nt} < \epsilon^2$$

• Infeasible start Newton

$$\circ \min f_0(x^0) + \nabla f_0(x^0)^T v + \frac{1}{2} v^T \nabla^2 f_0(x^0) v_{\mu}$$

s.t. $A(x^0 + v) = b$.
$$\circ \left(\begin{array}{cc} \nabla^2 f_0(x) & A^T \\ A & 0 \end{array} \right) {v \choose \mu} = {-\nabla f_0(x) \\ -(Ax^0 - b)}.$$

$$\circ \quad \text{If use step size } t = 1, \text{ get a feasible } x^1.$$

- Can be used in the algorithm above.
- Interpretation of infeasible start as a primal dual algorithm
 - \circ Update both primal variable x and dual variable v in order to approximately statisfy KKT.
 - $\circ \min f_0(x), \text{ s.t. } Ax = b.$

• KKT:
$$\nabla f_0(x) + A^T v = 0, Ax = b.$$

• Let $y = {X \choose v}$, residue $r(y) = {\nabla f_0(x) + A^T v \choose Ax - b}$.
• Goal: drive $||r(y)|| \to 0$, stop when $||r(y)|| < \epsilon$.
• Start at $y = {X \choose v}$, move to $y + \Delta y = {X \choose v} + {\Delta x \choose \Delta v}$.
• $r(y + \Delta y) = r(y) + Dr(y)\Delta y = r(y) + {\nabla^2 f_0(x) \quad A^T \choose A \quad 0} {\Delta x \choose \Delta v} = 0.$
• ${\nabla f_0(x) + A^T v \choose Ax - b} + {\nabla^2 f_0(x) \quad A^T \choose A \quad 0} {\Delta x \choose \Delta v} = 0.$
• ${\nabla f_0(x) + A^T v \choose Ax - b} + {\nabla^2 f_0(x) \quad A^T \choose \Delta v} = 0.$
• ${\nabla^2 f_0(x) \quad A^T \choose \Delta v} = -{\nabla f_0(x) + A^T v \choose Ax - b}.$
• Equivalently, ${\nabla^2 f_0(x) \quad A^T \choose A \quad 0} {\Delta x \choose v + \Delta v} = -{\nabla f_0(x) \choose Ax - b}.$

Inequality constrained problems

• $\min f_0(x)$, s.t. Ax = b, $f_i(x) \leq 0, i \in [m].$

- Idea (interior point): build a barrier at edge of feasible set so that always stay strictly feasible.
- Log barrier

• Adds a parameter
$$t > 0, -\frac{1}{t}\log(-u)$$

• As $t \to \infty$, get $\begin{cases} 0, u < 0 \\ \infty, u = 0 \end{cases}$.

$$(\omega, u = 0)$$

- Modify problem using log barrier
 - $\min f_0(x) \frac{1}{t} \sum_{i=1}^m \log(-f_i(x)),$ s.t. Ax = b.
 - Often do min $tf_0(x) \sum_{i=1}^m \log(-f_i(x))$, s.t. Ax = b.
- Algorithm (Barrier method)
 - Initialize x^0 feasible, $t^0 = 10$.
 - Repeat:
 - Solve min $tf_0(x) \sum_{i=1}^m \log(-f_i(x))$, s.t. Ax = b using equality constrained algorithms.

 - Update $x^{k+1} = x^*(t^k)$. Increment $t^{k+1} = \gamma t^k$ (typically $\gamma = 10 \sim 20$).
 - Until $\frac{m}{t} < \epsilon$, where *m* is the number of inequality constraints.
- Note: 2 loops
 - Outer: update *t*.
 - Inner: solve an optimization problem.
 - Requires Newton's method, since both $tf_0(x)$ and $\sum_{i=1}^m \log(-f_i(x))$ are large.
- Central path:
 - Trajectory of x^k , stays in the feasible set, moving towards the boundary.

Log barrier cont

•
$$\phi(x) = -\sum \log(-f_i(x)).$$

• $\nabla \phi = \sum -\frac{1}{f_i(x)} \nabla f_i(x).$
• $\nabla^2 \phi = \sum \frac{1}{(f_i(x))^2} \nabla f_i(x) \nabla f_i(x)^T + \sum \frac{1}{-f_i(x)} \nabla^2 f_i(x).$

Phase I: find a feasible x^0

- Solve a feasibility problem
 - mins, s.t. $f_i(x) \leq s, i \in [m]$,
 - Ax = b.

- $s^* < 0$, x^* is in interior, use as x^0 .
- $s^* > 0$, feasible set is empty.
- To initialize phase I, need a strictly feasible (*s*, *x*).
 - Pick any $x \in \mathbb{R}^n$ (actually $\bigcap_i^m dom(f_i)$).
 - Set $s = \max f_i(x) + \epsilon$.

Stopping criteria

- Consider a point x*(t) on central path x*(t) = arg min_{Ax=b} tf₀(x) ∑log(-f_i(x)).
 Any such x*(t) is strictly feasible.
 - Any such x(t) is strictly le
 - $\circ Ax^*(t) = b.$
 - $\circ f_i(x^*(t)) < 0.$
- Lagrangian: $\tilde{L}(x,\mu) = tf_0(x) \sum \log(-f_i(x)) + \mu^T(Ax b)$.
- Since x^* is optimum, must satisfy KKT: $t\nabla f_0(x^*) + \sum \frac{1}{-f_i(x^*)} \nabla f_i(x^*) + A^T \mu = 0.$

$$\circ \quad \nabla f_0(x^*) + \sum \frac{1}{-tf_i(x^*)} \nabla f_i(x^*) + A^T\left(\frac{\mu}{t}\right) = 0.$$

• For original problem

•
$$\lambda_i^* = \frac{1}{-tf_i(x^*(t))} > 0, \, \nu^* = \frac{\mu}{t}.$$

- $L(x, \lambda^*, \nu^*) = f_0(x) + \sum \lambda_i^* f_i(x) + \nu^{*T} (Ax b).$
- Note: $L(x, \lambda^*, \nu^*)$ is convex in x.
- $\arg \min_{x} L(x, \lambda^*, \nu^*) = x$ such that $\nabla_{x} L(x, \lambda^*, \nu^*) = 0$.
- $\nabla_x L(x, \lambda^*, \nu^*) = \nabla f_0(x) + \sum \lambda_i^* \nabla f_i(x) + A^T \nu^* = 0.$
- $x^*(t) = \arg \min_x L(x, \lambda^*, \nu^*).$
- $g(\lambda^*, \nu^*) = \min_{\chi} L(\chi, \lambda^*, \nu^*) = L(\chi^*, \lambda^*, \nu^*) \le \max_{\lambda \ge 0} g(\lambda, \nu) = d^* = p^*.$

•
$$p^* \ge g(\lambda^*, \nu^*) = L(x^*, \lambda^*, \nu^*) = f_0(x^*) + \sum \frac{1}{-tf_i(x^*)} f_i(x^*) + (\nu^*)^T (Ax^* - b) = f_0(x^*) - \frac{m}{t}$$

•
$$\frac{m}{t} \ge f_0(x^*) - p^* \ge 0.$$

• To apply equality constrained Newton to P₁, solve

$$\circ \ \begin{pmatrix} t\nabla^2 f_0(x) & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} \Delta x \\ \nu \end{pmatrix} = - \begin{pmatrix} t\nabla f_0(x) + \nabla \phi(x) \\ Ax - b \end{pmatrix}$$

Inequality-constrained SDPs

- min $c^T x$, s.t. $x_1 F_1 + \cdots x_n F_n + G \le 0$.
- Let $F(x) = x_1F_1 + \dots + x_nF_n + G$.
- $\phi(x) = -\sum \log(-f_i(x)) = -\log(-\prod f_i(x)) = -\log \det(diag(-f_i(x)))$ for ordinary problems.
- Barriers for SDPs: $\phi(X) = -\log \det(-F(X))$.
 - $\circ \ \nabla \log \det X = X^{-1}.$
- Start with an F(X) in interior, $-F(X) \in S^m_+$. $\circ -F(X) > 0$, det(-F(X)) > 0.
- As an eigenvalue approaches boundary, $eig(-F(X)) \rightarrow 0$, $det(-F(X)) \rightarrow 0$, $-\log det(-F(X)) \rightarrow \infty$.
- min $c^T x + \phi(x) = \min c^T x \frac{1}{t} \log \det \left(-F(X)\right).$