Intro and background

2022年9月13日 13:55

Data fitting problem

- Given a set of data points (x_i, y_i) , $i \in \{1, 2, ..., n\} = [n]$, Find a, b that defines a line $y = ax + b$ that best matches the data.
	- \circ $(a, b) \in \mathbb{R}^2$ are optimization variables.
- Define an error function
	- $z_i = y_i (ax_i + b), i \in [n].$
- Aim to minimize squared error.
	- $\min_{a,b} \sum_{i=1}^{n} (y_i ax_i b)^2$.
	- ∂ ∂ $\sum_{i=1}^{n} 2(y_i - ax_i - b)(-x_i) = 0.$ Simplify: $\sum_{i=1}^{n} x_i y_i = (\sum_{i=1}^{n} x_i^2) a + (\sum_{i=1}^{n} x_i) b.$ \circ
	- ∂ ∂ $\circ \frac{\partial f}{\partial b} = \sum_{i=1}^n 2(y_i - ax_i - b)(-1) = 0.$
	- Simplify: $\sum_{i=1}^{n} y_i = (\sum_{i=1}^{n} x_i)a + (\sum_{i=1}^{n} 1)b$. ○ In matrix form
		- $\overline{ }$ $\sum_{i=1}^{n}$ $\bigg) = \begin{pmatrix} \sum_{i=1}^n x_i^2 & \sum_{i=1}^n a_i \end{pmatrix}$ $\binom{a}{b}$ $\begin{pmatrix} \sum_{l=1}^{L} x_{l} y_{l} \\ \sum_{i=1}^{n} y_{i} \end{pmatrix} = \begin{pmatrix} \sum_{l=1}^{L} x_{l} & \sum_{l=1}^{L} x_{l} \\ \sum_{i=1}^{n} x_{i} & n \end{pmatrix} \begin{pmatrix} \alpha \\ b \end{pmatrix}.$
		- $\sum_{i=1}^{n}$ $\sum_{i=1}^{n}$
		- If invertible, we get a unique (a^*, b^*) .
- Least squares
	- Has an analytic solution
	- Convex problem
	- \circ Quadratic form in terms of (a, b) .
- Linear algebraic approach •

$$
\circ \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 & 1 \\ \dots & 1 \\ x_n & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} + \begin{pmatrix} z_1 \\ \dots \\ z_n \end{pmatrix}.
$$

\n• $y = Hv + z.$

$$
\circ \quad \text{We want to minimize } |z|^2 = |y - Hv|^2.
$$

- $\sup_{v} |y Hv|^2 = \min_{v} (y^T y 2y^T H v + v^T H^T H v).$
- \circ Take derivative with respect to v .
	- $-2y^T H + 2v^T H^T H = 0.$

•
$$
H^T H v = H^T y.
$$

$$
\bullet \quad v^* = (H^T H)^{-1} H^T y.
$$

 \circ $(H^TH)^{-1}$ is a pseudo inverse of H.

MLE (maximum likelihood estimation) gaussian

- Gaussian noise model
	- $y_i = ax_i + b + z_i$.

$$
z_i = y_i - ax_i - b \sim \text{iid } N(0, \sigma^2).
$$

\n• i.e. $z_i \sim P_z(\zeta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{\zeta^2}{2\sigma^2}\right).$

• Problem:

 \circ

 \circ Pick (a, b) to maximize probability of observed data.

$$
(a^*, b^*) = \operatorname{argmax} P(x, y; a, b) = \operatorname{argmax} \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2} (y_i - ax_i - b)^2\right).
$$

\n•
$$
= \operatorname{argmax} \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - ax_i - b)^2\right).
$$

\n•
$$
= \operatorname{argmax} \exp\left(-\frac{1}{2\sigma^2} |y - Hv|^2\right) \text{ (here } |y - Hv|^2 \text{ is the 12-norm)}.
$$

- i.e. minimizing $|y Hv|^2$.
- Unconstrained QP

MLE exp

- Model
	- $y_i = ax_i + b + z_i.$
	- o $z_i = y_i ax_i b$ \sim iid double-sided exponentials.

$$
\bullet \quad \text{i.e. } z_i \sim P_z(\zeta) = \frac{1}{2c} \exp\left(-\frac{1}{c} |\zeta|\right).
$$

- Problem:
	- \circ Pick (a, b) to maximize probability of observed data.

$$
(a^*,b^*) = \operatorname{argmax} P(x,y;a,b) = \operatorname{argmax} \prod_{i=1}^n \frac{1}{2c} \exp \left(-\frac{1}{c} |y_i - ax_i - b|\right).
$$

$$
= \operatorname{argmax} \left(\frac{1}{2c}\right)^n \exp \left(-\frac{1}{c} \sum_{i=1}^n |y_i - ax_i - b|\right).
$$

- = argmax exp $\left(-\frac{1}{a}\right)$ \bullet = argmax exp $\left(-\frac{1}{c}|y-Hv|\right)$ (here $|y-Hv|$ is the l1-norm).
- To express l1-norm as an LP , introduce auxiliary variables $(t_1, ..., t_n)$.
	- $\sup_{i=1}^n t_i$, such that $|y_i ax_i b| \le t_i$, $i \in [n]$.

 \circ Equivalent to min $\sum_{i=1}^{n} t_i$, such that $y_i - ax_i - b \leq t_i$, $y_i - ax_i - b \geq -t_i$.

• Single-sided exp noise

$$
P(\zeta) = \begin{cases} \frac{1}{c} \exp\left(-\frac{\zeta}{c}\right), \zeta \ge 0\\ 0, \zeta < 0 \end{cases}
$$

$$
\circ \quad \text{Log-likelihood log}\left(P(\zeta)\right) = \begin{cases} const & -\frac{5}{c}, \zeta \ge 0 \\ -\infty, \zeta < 0 \end{cases}.
$$

○ MLE for 1-sided exp noise

$$
\min \sum_{i=1}^{n} y_i - ax_i - b
$$
, such that $y_i - ax_i - b \ge 0$, $i \in [n]$.

MLE uniform

Uniform noise •

$$
\circ \quad P(\zeta) = \begin{cases} \frac{1}{2c}, |\zeta| \le c \\ 0, otherwise \end{cases}
$$

$$
\circ \quad \log(P(\zeta)) = \begin{cases} const, |\zeta| \le c \\ -\infty, otherwise \end{cases}
$$

• Problem

o max $\log(\prod_{i=1}^{n} P(y_i - ax_i - b)) = \max \sum_{i=1}^{n} \log P(y_i - ax_i - b)$.

- An ML solution is any solution that satisfies $|y_i ax_i b| \le c$, $\forall i \in [n]$.
- LP-feasibility

Feasibility problem

- min d, such that $y_i ax_i b \le d$, $y_i ax_i b \ge -d$, $\forall i \in [n]$.
- If $d^* \leq c$, then feasible. If $d^* > c$, infeasible.
- Prior on (a, b) : $(a, b) \sim N((\mu_a, \mu_b), \Sigma)$.
	- \circ Where μ are the means, Σ is the 2 \times 2 covariance matrix.
	- \circ Instead of $\max P(x, y; a, b)$, will $\max P(a, b \mid x, y)$.
		- Bayes: $P(a, b | x, y) = \frac{P}{A}$ **•** Bayes: $P(a, b | x, y) = \frac{P(x,y | a, b)P(a, b)}{P(x,y)}$.
		- $P(x, y)$ is fixed by data.
		- $P(a, b)$ is the prior.
		- $P(x, y | a, b)$ is the likelihood of the given model.
- Reduce the problem to max $P(a, b)$ such that (a, b) feasible.

$$
\circ \ (a,b) \sim \frac{1}{2\pi \det \Sigma} \exp\left(-\frac{1}{2}\left(a-\mu_a,b-\mu_b\right)\Sigma^{-1}\left(\begin{matrix}a-\mu_a\\b-\mu_b\end{matrix}\right)\right).
$$

○ So, we want to minimize
$$
(a - \mu_a, b - \mu_b)\Sigma^{-1} \begin{pmatrix} a & \mu_a \\ b & -\mu_b \end{pmatrix}
$$
.

■ Such that
$$
y_i - ax_i - b \le c
$$
, $y_i - ax_i - b \ge -c$.

○ This a quadratic program (QP)

Vector space

- Def: A set of elements (vectors) closed under addition and scalar multiplication.
- Normed vector space<mark>: a vector space with a notion of length of any particular vector and a measure of</mark> length or norm
- Inner product space</mark>: a normed vector space with a notion of angle between any pair of vectors specifics an inner product space
- Norm: a norm is a function $\lVert \cdot \rVert : \mathbb{R}^n \to \mathbb{R}$ such that $\forall x, y \in \mathbb{R}^n$.
	- positivity: $||x|| \ge 0$ and $||x|| = 0$ if and only if $x = 0$ (add identity).
	- Scaling property: $||tx|| = |t| ||x||$, $t \in \mathbb{R}$, $x \in \mathbb{R}^n$.
	- \circ Triangle inequality: $||x + y|| \le ||x|| + ||y||$.
- examples
	- Euclidean norm: $||x|| = \sqrt{\sum_{i=1}^{n} x_i}$ Ī. **Euclidean norm:** $||x|| = \sqrt{\sum_{i=1}^{n} x_i^2}$.

$$
\circ \quad l_p\text{-norms}, p \ge 1: ||x||_p = \left(\sum_{i=1}^n |x_n|^p\right)^{\frac{1}{p}}.
$$

- \blacksquare l_1 -norm: $||x||_1 = \sum_{i=1}^n |x_i|$. l_2 -norm: $||x||_2 = \sqrt{\sum_{i=1}^n}$ $\frac{1}{\sqrt{2}}$ I_2 -norm: $||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$.
	- \Box It is not only familiar from Euclidean space, but can also be induced by an inner product
- I_{∞} -norm: $||x||_{\infty} = \max_{i \in [n]} |x_i|.$
- Unit norm balls
	- □ Norm balls must be convex sets

- Inner product
	- $\Diamond(x,y) = x^T y = \sum_{i=1}^n x_i y_i.$
	- \circ Angle: $\langle x, y \rangle = ||x|| ||y|| \cos \theta$.
	- \circ x and y are orthogonal $(x \perp y)$ if $\langle x, y \rangle = 0$.
- Cauchy-Schwartz inequality: $|(x,y)| \leq ||x||_2 ||y||_2$.

Matrices

- Set of $m \times n$ matrices with elements from $\mathbb R$ is denoted as $\mathbb R^{m \times n}$.
- Rank of the matrix: $rank(A) = min\{m, n\}$.
- Inner product of matrices: $X, Y \in \mathbb{R}^{m \times n}$, $\langle X, Y \rangle = \sum_{i=1}^{m} \sum_{j=1}^{n} X_{ij} Y_{ij} = tr(X^T Y)$. •
	- Induces the <mark>Frobenius norm</mark>: $\|X\|_F = \sqrt{\langle X, X\rangle} = \sqrt{\sum_{i=1}^m\sum_j^n}$ $\frac{1}{\sqrt{2}}$ • Induces the **Frobenius norm**: $||X||_F = \sqrt{\langle X, X \rangle} = \sqrt{\sum_{i=1}^m \sum_{j=1}^n X_{ij}^2} = \sqrt{tr(X^T X)}$.
- Matrices as transformations $\mathbb{R}^n \to \mathbb{R}^m$.
	- Range of $A: R(A) = \{Ax : x \in \mathbb{R}^n\}$ ⊂ \mathbb{R}^m .
	- \circ Nullspace of $A: N(A) = \{x : Ax = 0\} \subset \mathbb{R}^n$.
- **•** Singular value decomposition (SVD)
	- \circ $A = U\Sigma V^T$.
	- $\circ A \in \mathbb{R}^{m \times n}$.
	- \circ $U \in \mathbb{R}^{m \times m}$, orthogonal.
		- $U^T U = U U^T = I_m.$
			- **•** Orthogonal means that $U^T x$ preserves the length of x .

$$
\Box \, \|U^T x\|^2 = x^T U U^T x = x^T x = \|x\|^2.
$$

- \circ $\Sigma \in \mathbb{R}^{m \times n}$.
	- Rectangular matrix with singular values along the diagonal
	- Number of singular values = $rank(A) = r$.

$$
\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0.
$$

\n
$$
\sigma_1 \quad \begin{pmatrix} \sigma_1 & 0 & 0 \\ 0 & \cdots & 0 \\ 0 & 0 & \sigma_r \\ 0 & 0 & 0 \end{pmatrix}.
$$

\n
$$
V \in \mathbb{R}^{n \times n}
$$
, orthogonal.

- $V^T V = V V^T = I_n$.
- Operation of A on any $x \in \mathbb{R}^n$.
	- \circ $Ax = U\Sigma V^T x$.
	- \circ $V^T x$ is a length-preserving rotation
	- $\,\circ\,\,$ Σ is a scaling: scale each of the first r components of $\left(V^{T}x\right)$ by $\sigma_{i}.$
	- \circ *U* is again a rotation.

Symmetric matrices

 \circ

- A matrix A is symmetric if $A = A^T$.
- Let S^n be the set of real symmetric matrices, $S^n \subset \mathbb{R}^{n \times n}$.
- If $A \in S^n$, can diagonalize (spectral decomposition), $A = Q \Lambda Q^T$.
	- \circ 0 is $n \times n$ orthogonal matrix.

$$
\circ \ \Lambda = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & \lambda_n \end{pmatrix}
$$
, where λ_i are eigenvalues of A.

- Note: real symmetric matrices have purely real eigenvalues.
- A real symmetric matrix $A \in S^n$ is positive semi-definite (PSD) if $v^T A v \ge 0$ for all $v \in \mathbb{R}^n$ and is positve definite (PD) if $v^T A v > 0$ for all $v \in \mathbb{R}^n - \{0\}.$
	- \circ Set of PSD: S_+^n .
	- \circ Set of PD: S_{++}^n .
- Consider $A \in S^n_+$, can write $A = Q \Lambda Q^T$.
	- \circ Thus $v^T A v = v^T Q \Lambda Q^T v = w^T \Lambda w = \sum_{i=1}^n \lambda_i w_i^2$.
	- \circ Since Q is invertible, $v^T A v \geq 0$ means $w^T \Lambda w \geq 0$ for all $w \in \mathbb{R}^n$.
	- \circ So $\sum_{i=1}^n \lambda_i w_i^2$ means all $\lambda_i \geq 0$.
	- \circ A symmetric matrix A is PSD if and only if all its eigenvalues are non-negative.
	- \circ A symmetric matrix A is PD if and only if all its eigenvalues are positive.

Square-root matrix (of a PSD matrix)

•
$$
A \in S_+^n
$$
, so $A = Q\Lambda Q^T$.
\n• $\Lambda = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & \lambda_n \end{pmatrix}$, $\Lambda^{\frac{1}{2}} = \begin{pmatrix} \lambda_1^{-1/2} & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & \lambda_n^{1/2} \end{pmatrix} = diag(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n}).$

• Then
$$
A^{\frac{1}{2}} = Q\Lambda^{\frac{1}{2}}Q^T
$$
.
\n• Since $A^{\frac{1}{2}}A^{\frac{1}{2}} = Q\Lambda^{\frac{1}{2}}Q^TQ\Lambda^{\frac{1}{2}}Q^T = Q\Lambda Q^T = A$.

Partial derivative and gradients

- Let $f : \mathbb{R}^n \to \mathbb{R}$ and fix a point $x \in \mathbb{R}^n$, consider $\lim_{\alpha \to 0} \frac{f}{f}$ • Let $f:\mathbb{R}^n\to\mathbb{R}$ and fix a point $x\in\mathbb{R}^n$, consider $\lim_{\alpha\to 0}\frac{f(x+\alpha e_i)f(x)}{\alpha}$ where e_i is the ith unit vector. If the limit exists, it is called the partial derivative of f at x and is denoted $\frac{\partial f}{\partial x_i}(x)$.
- If all partial derivative exists, the gradient of f at x is $\nabla f(x) = \frac{1}{\partial x_2}(x)$. Е L L ∂ $rac{c}{\partial}$
- Directional derivative
	- \circ For any $y \in \mathbb{R}^n$, the one-sided directional derivative of f at $x \in \mathbb{R}^n$ is $f'(x)$ $\lim_{\alpha\to 0} \frac{f}{\alpha}$ $\frac{\int (x+ay)-\int (x)}{\alpha}$.
	- Gateaux differentiability: If $f'(x, y)$ exists for directions $y \in \mathbb{R}^n$ and is a linear function of y, then

 Δ

 ∂ $rac{c}{\partial}$

 ∂ ∂ $\frac{c}{a}$

 $\frac{2}{\cdots}$ |

 $\frac{1}{2}$

┪ ⊣ f is differentiable at x .

- \circ A function f is differentiable at x if and only if the gradient $\nabla f(x)$ exists and satisfies $\nabla f(x)^T$ $f'(x, y)$ for all $y \in \mathbb{R}^n$.
- Terminology
	- \circ f is differentiable over a subset $U \subset \mathbb{R}^n$ if f is differentiable at all $x \in U$.
	- \circ f is differentiable if differentiable at all $x \in \mathbb{R}^n$.
	- $\circ\;f$ is continuously differentiable over $U\subset\mathbb{R}^n$, if it is differentiable over U and ∇f is continuous over U .
	- \circ f is smooth if it is continuous differentiable over all \mathbb{R}^n .
- If f is continuously differentiable over $U \subset \mathbb{R}^n$, then $\lim_{y\to 0} \frac{f(x+y)-f(x)-\nabla f(x)^T}{\|x\|}$ • If f is continuously differentiable over $U \subset \mathbb{R}^n$, then $\lim_{y\to 0} \frac{f(x+y)-f(x-y)}{\|y\|} = 0$.
	- \circ What it means is that f can be arbitrarily well approximated by an affine function of y as $y \to 0$.
	- An alternate definition of differentiability: can you approximate the function arbitrarily well with some affine approximation (Frechet differentiability)

Little o notation

- Given 2 semi-infinite sequences $\{x_k\}, \{y_k\}$, write $x_k = o(y_k)$ if $\lim_{k \to \infty} \frac{x_k}{y_k}$ Given 2 semi-infinite sequences $\{x_k\}, \{y_k\}$, write $x_k = o(y_k)$ if $\lim_{k\to\infty} \frac{x_k}{y_k} = 0$.
- For functions, $h(y) = o(\|y\|)$ if $\lim_{y\to 0} \frac{h}{\|y\|}$ • For functions, $h(y) = o(||y||)$ if $\lim_{y\to 0} \frac{h(y)}{||y||} = 0$ for al sequences $\{y_k\}$ such that $y_k \to 0$.
- For any sequence $\{y_1, y_2, ...\}$ such that $\lim_{k\to\infty} y_k = 0$, $\lim_{y\to 0} \frac{f(x+y)-f(x)-\nabla f(x)^T}{\|x\|}$ • For any sequence $\{y_1, y_2, ...\}$ such that $\lim_{k\to\infty} y_k = 0$, $\lim_{y\to 0} \frac{f(x+y)-f(x-y)}{\|y\|} = 0$.
	- $\forall \epsilon > 0$, $\exists k_0$ such that $\forall k > k_0$, $\frac{\int f(x+y_k) f(x) \nabla f(x)^T}{\|x_k\|}$ $\left|\frac{\partial}{\partial \theta}\right| \leq \theta$, $\exists k_0$ such that $\forall k > k_0$, $\left|\frac{\partial (x+y_k) - \partial (x-y_k)}{\partial x_k}\right| < \epsilon$.

$$
\circ \text{ i.e. } \left| f(x + y_k) - f(x) - \nabla f(x)^T y_k \right| < \epsilon \|y_k\|.
$$

- \circ $f(x + y_k) = f(x) + \nabla f(x)^T y_k + o(||y_k||)$ is the affine approximation.
- \circ Drop the index: $f(x+y) \approx f(x) + \nabla f(x)^T y$.

Scalar function approximation

- 1st order: $f(u) = f(u_0) + f'(u_0)(u u_0) + o(u u_0)$.
- 2nd order: $f(u) = f(u_0) + f'(u_0)(u u_0) + \frac{1}{2}$ • 2nd order: $f(u) = f(u_0) + f'(u_0)(u - u_0) + \frac{1}{2}f''(u_0)(u - u_0)^2 + o((u - u_0)^2)$.

1st order approximation for $f : \mathbb{R}^2 \to \mathbb{R}$:

- $f(u,v) = f(u_0, v_0) + f_u(u_0, v_0)(u u_0) + f_v(u_0, v_0)(v v_0) + o(||(u, v) (u_0, v_0)||).$
- $f(u, v) \approx f(u_0, v_0) + f_u(u_0, v_0)(u u_0) + f_v(u_0, v_0)(v v_0) = f(u_0, v_0) + \nabla f(u_0, v_0)^T$ \overline{u} • $f(u, v) \approx f(u_0, v_0) + f_u(u_0, v_0)(u - u_0) + f_v(u_0, v_0)(v - v_0) = f(u_0, v_0) + \nabla f(u_0, v_0) \left(\frac{v - v_0}{v - v_0} \right)$ $=$ $\overline{\mathfrak{u}}$ \circ = $f(u_0, v_0) + (\nabla f(u_0, v_0), (\frac{u_0}{v_0}, \frac{v_0}{v_0}))$

1st order approximation for $f : \mathbb{R}^n \to \mathbb{R}$:

- $f(x) = f(x_0) + \sum_{i=1}^{n} f_{x_i}$ • $f(x) = f(x_0) + \sum_{i=1}^n f_{x_i}(x_0)(x - x_0) = f(x_0) + \nabla f(x_0)^T (x - x_0) = f(x_0) + \langle \nabla f(x_0), (x - x_0) \rangle$ \circ Affine approximation $f : \mathbb{R}^n \to \mathbb{R}$.
- Rewrite $\Delta x = x x_0$, it defines a direction, we can scale by λ to get a line $x_0 + \lambda \Delta x$, $\lambda \in \mathbb{R}$.
	- $f(x_0 + \lambda \Delta x) = f(x_0) + \lambda (\nabla f(x_0)^T \Delta x).$
	- \circ For any centers x_0 and directions Δx , same form as first order Taylor approximation for a scalar function, i.e. some affine $f : \mathbb{R} \to \mathbb{R}$.
	- \circ Inner product $\nabla f(x_0)^T \Delta x$ plays role of slope.
	- \circ λ parametrizes distance from x_0 .
	- Often take Δx to be a unit vector so $\|\Delta x\| = 1$.

1st order approximation for $f : \mathbb{R}^n \to \mathbb{R}^m$:

• Can see if as *m* mapping
$$
f_i : \mathbb{R}^n \to \mathbb{R}
$$
.

•
$$
f(x) = \begin{pmatrix} f_1(x) \\ f_2(x) \\ \dots \\ f_n(x) \end{pmatrix} = \begin{pmatrix} f_1(x_0) \\ f_2(x_0) \\ \dots \\ f_n(x_0) \end{pmatrix} + \begin{pmatrix} \nabla f_1(x)^T \\ \nabla f_2(x)^T \\ \dots \\ \nabla f_n(x)^T \end{pmatrix} (x - x_0) + \begin{pmatrix} o(||x - x_0||) \\ o(||x - x_0||) \\ \dots \\ o(||x - x_0||) \end{pmatrix}.
$$

$$
\begin{pmatrix}\n\nabla f_1(x)^T \\
\nabla f_2(x)^T \\
\vdots \\
\nabla f_n(x)^T\n\end{pmatrix} = \begin{pmatrix}\nf_{1x_1}(x_0) & f_{1x_2}(x_0) & \dots & f_{1x_n}(x_0) \\
\vdots & \vdots & \ddots & \vdots \\
f_{nx_1}(x_0) & f_{nx_2}(x_0) & \dots & f_{nx_n}(x_0)\n\end{pmatrix} = Df(x_0) = J(x_0)
$$
 is the derivative (Jacobian)
matrix.

•
$$
f(x) = f(x_0) + Df(x_0)(x - x_0) + o(||x - x_0||)
$$
.

2nd order approximation for $f : \mathbb{R}^n \to \mathbb{R}$:

•
$$
f(x) = f(x_0) + \nabla f(x_0)^T (x - x_0) + \frac{1}{2} (x - x_0)^T \nabla^2 f(x_0) (x - x_0) + o \left(\|x - x_0\|^2 \right).
$$

\n• Hessian of f at $x_0 \in \mathbb{R}^n$: $\nabla^2 f(x_0) = \begin{pmatrix} f_{x_1 x_2}(x_0) & f_{x_1 x_2}(x_0) & \dots & f_{x_1 x_n}(x_0) \\ \dots & \dots & \dots & \dots \\ f_{x_n x_1}(x_0) & f_{x_n x_2}(x_0) & \dots & f_{x_n x_n}(x_0) \end{pmatrix}.$

$$
\circ \text{ When } n = 1, \nabla^2 f(x_0) = f''(x_0).
$$

$$
\circ \text{ Symmetry:} \left(\nabla^2 f(x_0)\right)^T = \nabla^2 f(x_0), \text{ because } f_{x_i x_j}(x) = f_{x_j x_i}(x).
$$

• Approximation along a line
$$
l = \{x : x = x_0 + \lambda u, \lambda \in \mathbb{R}\}
$$
.

$$
\circ \quad f(x_0 + \lambda u) = f(x_0) + \nabla f(x_0)^T (\lambda u) + \frac{1}{2} (\lambda u)^T \nabla^2 f(x_0) (\lambda u) + o\left(\left\|x - x_0\right\|^2\right).
$$

\n
$$
\circ \quad = f(x_0) + \lambda (\nabla f(x)^T u) + \frac{1}{2} \lambda^2 u^T \nabla^2 f(x_0) u.
$$

- \circ Along any line (choice of (x_0, u)), get familiar 2nd order Taylor.
- \circ Offset, the slope and the curvature all depend on x_0 and u .
- 1st order approximation is a plane and 2nd order gives a quadratic surface

Examples of gradients

•
$$
f(x) = \langle a, x \rangle = a^T x, \nabla f(x) = a.
$$

\n• $f(x) = \frac{x^T P x}{x^T P x} = \sum_{i=1}^n \sum_{j=1}^n x_i x_j P_{ij} = \sum_{i=1}^n x_i^2 P_{ii} + \dots + x_i x_j (P_{ij} + P_{ji}),$
\n $\circ \frac{\partial}{\partial x_k} x^T P x = 2x_k P_{kk} + 2 \sum_{i < k} x_i \frac{(P_{ik} + P_{ki})}{2} = 2x_i \frac{(P_{ii} + P_{ii})}{2} + 2 \sum_{i < k} x_i \frac{(P_{ik} + P_{ki})}{2}.$
\n $\circ = \sum_{i=1}^n x_i (P_{ki} + (P^T)_{ki}).$
\n $\circ \nabla (x^T P x) = x^T (P + P^T) = (P + P^T) x.$
\n \circ If *P* is symmetric, $\nabla (x^T P x) = 2P x.$

Chain rules:

• Gradients for compositions of functions

•
$$
f: \mathbb{R}^n \to \mathbb{R}, g: \mathbb{R} \to \mathbb{R}, h(x) = g(f(x))
$$
.
\n• $f: \mathbb{R}^n \to \mathbb{R}, g: \mathbb{R} \to \mathbb{R}, h(x) = g(f(x))$.
\n• $f: \mathbb{R}^n \to \mathbb{R}^m, g: \mathbb{R}^m \to \mathbb{R}, h(x) = g(f(x))$.
\n• $\frac{\partial h(x)}{\partial x_k} = \frac{\partial g}{\partial f_1} \frac{\partial f_1}{\partial x_k} + \frac{\partial g}{\partial f_2} \frac{\partial f_2}{\partial x_k} + \dots + \frac{\partial g}{\partial f_m} \frac{\partial f_m}{\partial x_k}$.
\n• $Df(x) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_m} \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \dots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$ (Jacobian).
\n• $\nabla h(x)^T = Df(x)^T \nabla g(f(x))$.

 \circ Function of affine function of x:

$$
f: \mathbb{R}^n \to \mathbb{R}^m, f(x) = Ax + b.
$$

$$
\bullet \quad h(x) = g(Ax + b).
$$

\n- $$
h(x) = g(Ax + b).
$$
\n- $$
\nabla h(x)^T = Df(x)^T \nabla g(f(x)) = A^T \nabla g(Ax + b).
$$
\n

Gradient of log det function

\n- \n
$$
f: S^n \to \mathbb{R}, f(x) = \log \det X, \, \text{dom}(f) = S^n_{++} \text{ (positive definite det } X > 0).
$$
\n
\n- \n
$$
\nabla f(x) = \begin{pmatrix} \frac{\partial f}{\partial x_{11}} & \frac{\partial f}{\partial x_{12}} & \dots & \frac{\partial f}{\partial x_{1n}} \\ \frac{\partial f}{\partial x_{n1}} & \frac{\partial f}{\partial x_{n2}} & \dots & \frac{\partial f}{\partial x_{nn}} \end{pmatrix}.
$$
\n
\n

- Consider $\log \det(X + \Delta X)$, $X \in S_{++}^n$, $\Delta X \in S$, $X + \Delta X \in S_{++}^n$.
- $\log \det(X + \Delta X) = \log \det \left(X^{\frac{1}{2}} \right)$ $rac{1}{2}(I+X^{-\frac{1}{2}})$ $\frac{1}{2}\Delta XX^{-\frac{1}{2}}$ $(\frac{1}{2})\chi^{\frac{1}{2}}$ $(\frac{1}{2})$ = log det $((I + X^{-\frac{1}{2}}))$ $\frac{1}{2}\Delta XX^{-\frac{1}{2}}$ • $\log \det(X + \Delta X) = \log \det \left(x^{\frac{1}{2}} \left(I + X^{-\frac{1}{2}} \Delta X X^{-\frac{1}{2}} \right) X^{\frac{1}{2}} \right) = \log \det \left(\left(I + X^{-\frac{1}{2}} \Delta X X^{-\frac{1}{2}} \right) X \right).$
- $=\log \det X + \log \det (I + X^{-\frac{1}{2}})$ $\frac{1}{2}\Delta XX^{\frac{1}{2}}$ • $=\log \det X + \log \det (I + X^{-\frac{1}{2}} \Delta X X^{\frac{1}{2}}) = \log \det X + \log (\prod_{i=1}^{n} (1 + \lambda_i)) = \log \det X + \sum_{i=1}^{n} (1 + \lambda_i)$ λ_i).
	- $M = X^{-\frac{1}{2}}$ $\frac{1}{2}\Delta XX^{-\frac{1}{2}}$ \circ $M = X^{-\frac{1}{2}}\Delta X X^{-\frac{1}{2}}$, λ_i are eigenvalues of M.
- If Δx is small, then all the λ_i are small and $\log(1 + \lambda_i) \approx \lambda_i$.
- Then $\log \det(X + \Delta X) \approx \log \det X + \sum_{i=1}^n X_i$ $\frac{1}{2}$ $\frac{1}{2}\Delta XX^{-\frac{1}{2}}$ • Then $\log \det(X + \Delta X) \approx \log \det X + \sum_{i=1}^n \lambda_i = \log \det X + tr(M) = \log \det X + tr(X^{-\frac{1}{2}}\Delta X X^{-\frac{1}{2}})$ \circ = log det $X + tr(X^{-1}\Delta X)$ = log det $X + \langle X^{-1}, \Delta X \rangle$ (since $tr(AB) = tr(BA)$).
- This means that $\nabla f(x) = X^{-1}$.

For 2 \times 2 matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $A^{-1} = \frac{1}{\det}$ $\frac{1}{\det A}\begin{pmatrix} d \\ -\end{pmatrix}$ $\begin{pmatrix} a & b \\ -c & a \end{pmatrix}$.

Basic concepts

September 9, 2022 8:21 PM

Mathematical program (optimization)

- Objective function $f_0 : \mathbb{R}^n \to \mathbb{R}$.
- Optimization variable $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$.
- Constraint $f_i : \mathbb{R}^n \to \mathbb{R}$, $i \in \{1, 2, ..., m\} = [m]$ is the index set.
- Constrained problem
	- o $\min_{x \in \mathbb{R}^n} f_0(x)$.

○ Such that $f_i(x) \leq 0$, $i \in [m]$.

Solving a problem

- An optimal x denoted x^* is an x that yields smallest $f_0(x)$ among all x that satisfies constraints
- Could be unique, not unique or does not exist

Convex problems

• f_0 and f_i will be convex functions

Affine sets

- A set $C \subset \mathbb{R}^n$ is affine if $\forall x_1, x_2 \in C$, $\theta x_1 + (1 \theta)x_2 \in C$ for any $\theta \in \mathbb{R}$
- Note: can rewrite as $x_2 + \theta(x_1 x_2)$.
	- \circ x_2 is the offset.
		- \circ θ is scaling.
		- \circ $x_1 x_2$ is direction in \mathbb{R}^n .
		- Is a subspace + offset
- e.g.
	- A line is an affine set
	- \circ Solution to a set of linear equations $\{x : Ax = b\}$ is affine
- An affine combination of points $x_1, ..., x_m$ is $\sum_{i=1}^m \theta_i x_i$ where $\theta_i \in \mathbb{R}$ and $\sum_{i=1}^m \theta_i = 1$.
- Affine hull contains all affine combinations of points in the set

Convex sets

- A set $C \in \mathbb{R}^n$ is convex if $\forall x_1, x_2 \in C$, $\forall \theta \in [0,1]$, $\theta x_1 + (1 \theta)x_2 \in C$.
- Convex combination of $x_1, ..., x_m$ is $\sum_{i=1}^m \theta_i x_i$ where $\theta_i \geq 0$ and $\sum_{i=1}^m \theta_i = 1$.
- Convex hull of a set C is the set of all convex combinations of points in C . \circ Notation: $conv(C) = {\sum_{i=1}^{m} \theta_i x_i : x_i \in C, \theta_i \ge 0, \forall i \in [m], \sum_{i=1}^{m} \theta_i = 1 \forall m \in \mathbb{Z}^+}.$

Conic sets

- A set C is a cone if $\forall x \in C$, $\theta x \in C$, $\forall \theta \ge 0$.
- Conic combination of points $x_1, ..., x_m$ is $\sum_{i=1}^m \theta_i x_i$ with $\theta_i \geq 0$.

Hyperplanes and half-spaces

- Hyperplanes: $H = \{x : a^T x = b, a \neq 0\}.$
	- \circ *b* is the offset of the subspace from origin.
	- Solution to set of linear constraint
	- Convex and affine
	- \circ Dimension $n-1$.
	- Other reps: $H = \{x : a^T(x x_0) = 0\} = x_0 + a^{\perp}$ where $a^{\perp} = \{v : a^T v = 0\}.$ ■ With $a^T x_0 = b$.
- Half-space: $\{x : a^T x \le b\} = \{x : a^T (x x_0) \le 0\} = \{x : \langle a, x x_0 \rangle \le 0\}.$ $a^Tx_0 = b.$

Polyhedral

- $P = \{x : a_i^T x \le b_j, j \in [m], c_k^T x = d_k, k \in [L] \} = \{x : Ax \le b, Cx = d\}.$
- Polyhedral are convex

Balls and ellipsoids

- Euclidean balls: $B(x_c, r) = \{x : ||x x_c||_2 \le r\} = \{x : (x x_c)^T (x x_c) \le r^2\}.$ ○ Convex
- Ellipsoids: $E(x_c, P) = \{x : (x x_c)^T P^{-1}(x x_c) \le 1, P \in S_{++}^n\}.$
	- \circ S_{++}^n is positive definite (symmetric and has spectral decomposition $P = Q\Lambda Q^T$, with $diag(\lambda_1, ..., \lambda_n), \lambda_i > 0$).
	- \circ l_2 -ball is ellipsoid with $P = r^2I$.
	- $E\big(x_c, P\big)$ is the image of unit l_2 -ball $B\big(x_c, 1\big)$ under affine map $\overline{f(u)} = P^{\frac{1}{2}}$ $\sigma E(x_c, P)$ is the image of unit l_2 -ball $B(x_c, 1)$ under affine map $f(u) = P^{\frac{1}{2}}u + x_c$.
	- Geometries
		- Consider λ $\boldsymbol{0}$ $\boldsymbol{0}$ ■ Consider $P = Q \begin{bmatrix} 0 & ... & 0 \end{bmatrix} Q^T$, ellipse is defined by $\left(x-x_c\right)^T Q$ λ $\boldsymbol{0}$ $\boldsymbol{0}$ ■ ellipse is defined by $(x-x_c)^TQ$ | 0 … 0 $Q^T(x-x_c)$.
		- $\bullet \quad \left(x-x_c\right)^T Q$ is a projection of $x-x_c$ onto each orthonormal eigenvector of Q .
		- Let $\tilde{x} = Q^T(x x_c)$, then $\tilde{x} \Lambda^{-1} x = \sum_{i=1}^n \frac{\tilde{x}_i^2}{\tilde{x}_i}$ ■ Let $\tilde{x} = Q^T(x - x_c)$, then $\tilde{x} \Lambda^{-1} x = \sum_{i=1}^n \frac{x_i}{\lambda_i} \leq 1$.
		- Volume of the ellipsoid: $\sqrt{\det P}$.
- Unit norm ball: $\{x : ||x x_c|| \le 1\}.$

Cone of PSD matrices

- PSD: $S^n_+ = \{x \in S^n : v^T X v \geq 0, \forall v \in \mathbb{R}^n\}$ eigenvalues are real and non-negative.
- S_+^n is a cone because if $X \in S_+^n$, $\theta X \in S_+^n$, $\forall \theta \geq 0$.
- Shorthand: $X \in S^n_+ \Leftrightarrow X \geq 0, X \in S^n_{++} \Leftrightarrow X > 0.$
- S_+^n is a convex cone. Let $A, B \in S_+^n$, $\theta_1, \theta_2 \ge 0$, $\theta_1 + \theta_2 = 1$, $\theta_1 A + \theta_2 B \in S_+^n$.

Generalized inequalities

- A <mark>proper cone</mark>
	- is a closed, convex set.
	- Has a non-empty interior
	- Contains no lines (pointed)
	- e.g. half-space is a not-pointed cone
- A proper cone K defines a generalized inequalities denoted \leq_K (less than or equal to w.r.t. K).
	- \circ $x \leq_K y \Leftrightarrow (y-x) \in K$, $x <_K y \Leftrightarrow (y-x) \in int(K)$.
- For standard scalar inequality, the cone K is $K = \mathbb{R}_+ = \{x : x \geq 0\}.$

Operations that preserve convexity

- Take the (possibly infinite) intersections of sets S_{α} .
	- \circ If S_{α} is affine for all α , then $\cap_{\alpha} S_{\alpha}$ is affine.
	- \circ If S_α is convex for all α , then $\cap_\alpha S_\alpha$ is convex.
	- \circ If S_{α} is conic for all α , then $\cap_{\alpha} S_{\alpha}$ is conic.
- Affine functions preserve convexity
	- \circ Affine function: $f(x) = Ax + b$, $x \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $f : \mathbb{R}^n \to \mathbb{R}^m$.
	- If $S \subset \mathbb{R}^n$ is convex, then $f(S) = \{f(x) : x \in S\}$ is convex.
	- \circ If $S \subset \mathbb{R}^m$ is convex, then $f^{-1}(S) = \{x : f(x) \in S\}$ is convex.
- Examples
	- \circ A polyhedron is a convex set $P = \{x : Ax \leq b\}$ as intersections of m half spaces.
	- \circ $\{y : y = Ax + b, ||x|| \le 1\}$ is convex, because $||x|| \le 1$ is convex and $y = Ax + b$ is affine.
	- \circ $\{x: ||Ax + b|| \le 1\}$ is convex as pre-image of norm ball under affine map.
	- Linear matrix inequality LMI is convex.
- $\{x \in \mathbb{R}^n : x_1 A_1 + \dots + x_n A_n \leq B, A_i \in S^m, i \in [m], B \in S^m\}.$
- $f: \mathbb{R}^n \to S^m$ s.t. $f(x) = B \sum_{i=1}^n x_i A_i$ is an affine map.
- ${x : B Ax \ge 0} = {x : B Ax \in S_+^m}$ and RHS is convex.
- Then pre image is convex.

Separating & hyperplanes

- Separating: if $S, T \subset \mathbb{R}^n$ are convex and disjoint $(S \cap T = \emptyset)$, then there exists $a \in \mathbb{R}^n$, $a \neq 0$, $b \in \mathbb{R}$, such that $a^T x \geq b$, $\forall x \in T$, $a^T x \leq b$, $\forall x \in S$.
	- If inequalities are strict, it is a strict separating hyperplane
- Supporting: if S is convex, $\forall x_0 \in \partial S$, then there exists $a \in \mathbb{R}^n$, $a \neq 0$ such that $a^T x \leq a^T x_0$, $\forall x \in S$.

Convex functions

October 31, 2022 11:23 AM

Convex functions

- Suppose a function $f: \mathbb{R}^n \to \mathbb{R}$ is defined on a convex domain ($dom(F)$ is convex set), then is a convex function if $\forall x, y \in dom(F)$, $\forall \theta \in [0,1]$, $f(\theta x + (1 - \theta)y) \leq \theta f(x) +$ $(1-\theta)f(y)$.
	- \circ f is concave if $f(\theta x + (1 \theta)y) \ge \theta f(x) + (1 \theta)f(y)$.
	- \circ f is strictly convex if $\forall \theta \in (0,1)$, $x \neq y$, $f(\theta x + (1-\theta)y) < \theta f(x) + (1-\theta)f(y)$.
	- \circ f is strictly concave if $\forall \theta \in (0,1)$, $x \neq y$, $f(\theta x + (1-\theta)y) > \theta f(x) + (1-\theta)f(y)$.
- Remark:

Extended value function of a convex function is $\tilde{f}(x) = \begin{cases} f & \text{if } x \leq x \end{cases}$ ∞ \circ Extended value function of a convex function is $f(x) = \begin{cases} 1 & (x), (y, x) \in \mathbb{R}^n \\ y & (x, y) \in \mathbb{R}^n \end{cases}$

- Example
	- Linear and affine functions are both convex and concave
	- Parabola is convex
	- \circ log x with $dom = \mathbb{R}_{++}$ is concave
	- $||x||$ is convex since $||\theta x + (1 \theta)y|| \le \theta ||x|| + (1 \theta)||y||$.
	- $\mathbf{1}$ \circ $\frac{1}{x}$ is convex on \mathbb{R}_{++} , concave on \mathbb{R}_{--} .
- Useful facts
	- \circ f is convex \Rightarrow αf is convex, for all $\alpha \geq 0$.
	- \circ f_1, f_2 convex \Rightarrow $f_1 + f_2$ is convex over $dom(f_1) \cap dom(f_2)$.
	- \circ If f is convex, $g(x) = f(Ax + b)$ is convex $\forall x$ such that $Ax + b \in dom(f)$, $x \in \mathbb{R}^n$, $\mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$.
	- f_1, f_2 convex \Rightarrow max (f_1, f_2) is convex.

The epigraph of a function $f: \mathbb{R}^n \to \mathbb{R}$ is $epi(f) = \{(x, t) \in \mathbb{R}^{n+1} : x \in dom(f), t \ge f(x)\}.$

• f is convex if and only if $epi(f)$ is a convex set

Sublevel set

- The sub-level set of a function $f : \mathbb{R}^n \to \mathbb{R}$ at level α is $C(\alpha) = \{x \in dom(f) : f(x) \leq \alpha\}.$
- If f is convex, then all its sublevel sets are convex sets
	- \circ $C(\alpha)$ is a convex set for all α .
	- \circ Let $epi(f) = \{(x, t): x \in dom(f), t \ge f(x)\}, H = \{(x, t): t = \alpha\},$ H).
		- i.e. $C(\alpha)$ is the projection of a convex set to x.
- A function is quasi-convex if all its sublevel sets are convex sets

Super level set:

- $C(\alpha) = \{x : f(x) \ge \alpha\}.$
- A function is quasi-concave if all super level sets are convex sets.
- If f is concave, then all its super level sets are convex.

Convexity along lines

- \bullet f is convex if and only if $g(x_0+t v)$ is convex in $t\in \mathbb{R}$, $\forall x_0\in dom(f)$, direction $v\in \mathbb{R}^n$.
- $f(x_0 + tv)$ can be seen as $g_{x_0, v}(t)$, where x_0, v are fixed parameters.

Differentiable functions & convexity

- 1st order condition: a differentiable function f ($dom(f)$ is open and gradient exists everywhere) is convex if and only if $dom(f)$ is convex and $\forall x, y \in dom(f)$, $f(y) \ge f(x) +$ $\nabla f(x)^T(y-x)$.
	- \circ f is strictly convex if the inequality holds strictly $\forall x \neq y$.

 \circ Scalar case: $f(y) \geq f(x) + f'(x)(y - x)$.

- Connection to epigraphs
	- \circ The epigraphs must lie in the same side of a hyperplane H .

$$
\circ \quad H = \left\{ \begin{pmatrix} u \\ v \end{pmatrix} : \left(\nabla f(x)^T, -1 \right) \begin{pmatrix} u \\ v \end{pmatrix} + \left(f(x) - \nabla f(x)^T x \right) = 0 \right\}.
$$

- Second order condition: a continuously twice differentiable function f is convex if and only if $dom(f)$ is convex and $\nabla^2 f(x) \geq 0$ (PSD) for all $x \in dom(f)$.
	- \circ If $\nabla^2 f(x) > 0$ (PD), then f is strictly convex. Reverse doesn't hold
		- $f(x) = x^4$ convex, but $f''(0) = 0$.
	- \circ Scalar case: $f''(x) \geq 0$.
- e.g.
	- \circ $f(x) = x^{\alpha}$ is convex on \mathbb{R}_+ for $\alpha \ge 1$ or $\alpha \le 0$.
	- \circ log x is concave on \mathbb{R}_{++} .
	- \circ x log x is convex on \mathbb{R}_{++} .
	- \circ $e^{\alpha x}$ is convex $\forall \alpha$.
	- \circ $f(x) = x^T P x + 2q^T x + r$, $P \in S^n$ is convex if $P \ge 0$, concave if $P \le 0$.
		- $\nabla f = (P + P^T)x + 2q$, note: $x^T Ax = x^T \left(\frac{1}{2}\right)$ ■ $\nabla f = (P + P^T)x + 2q$, note: $x^T Ax = x^T \left(\frac{1}{2}(A + A^T)\right)x$, $A \in \mathbb{R}^{n \times n}$. $\bullet \quad \nabla^2 f = 2P.$
	- \int $f(x,y) = x^2 + y^2 + 3xy$ is convex along any horizontal/vertical line, but not convex in general.
	- $\int f(x) = \sqrt{x_1 x_2}$, $\nabla^2 f \leq 0$ negative semi-definite, concave.
	- \circ $f(x) = \max_i x_i$ is convex.
	- \circ $f(x) = \max_{(i,j,k)} x_{[i]} + x_{[j]} + x_{[k]}$ is convex.
	- \circ $f(x) = \sum_{i=1}^{n} -\log(b_i a_i^T x)$ is convex.
	- \circ $f(x) = \sup_{y \in C} ||x y||$ is convex (*C* doesn't have to be convex).
	- $p \circ f(x) = \inf_{y \in C} ||x y||$ projection onto C, not convex in general. **•** f is convex if C is convex.

$$
\circ \quad f(x) = \log(e^{x_1} + \dots + e^{x_n}) \text{ is convex on } \mathbb{R}^n.
$$

•
$$
\nabla^2 f(x) = \frac{1}{(1^T z)^2} ((1^T z) diag(z) - z z^T)
$$
 where $z = (e^{x_1}, \dots e^{x_n}).$

- $v^T \nabla^2 f(x) v = \frac{1}{\sqrt{x}}$ ■ $v^T \nabla^2 f(x) v = \frac{1}{(1^T z)^2} \Big(\big(\sum z_i \big) \big(\sum v_i^2 z_i \big) - \big(\sum v_i z_i \big)^2 \Big) \ge 0$ by Cauchy schwarz.
	- \Box With $a_i = v_i \sqrt{z_i}$, $b_i = \sqrt{z_i}$.
	- \Box Cauchy-schwarz: $\left(a^Ta\right)\left(b^Tb\right)\geq \left(a^Tb\right)^2$.
- Or from the basic definition:

$$
\theta f(x) + (1 - \theta)f(y) = \theta \log \sum e^{x_i} + (1 - \theta) \log \sum e^{y_i},
$$

\n
$$
= \log \left(\left(\sum e^{x_i} \right)^{\theta} \left(\sum e^{y_i} \right)^{1-\theta} \right),
$$

\n
$$
= \log \left(\left(\sum (e^{\theta x_i})^{\frac{1}{\theta}} \right)^{\theta} \left(\sum (e^{(1-\theta)y_i})^{\frac{1}{1-\theta}} \right)^{1-\theta} \right),
$$

\n
$$
\geq \log \left(\sum e^{\theta x_i + (1-\theta)y_i} \right) \text{ (by Holder's inequality)}.
$$

 $f(x) = (\prod_{i=1}^{n} x_i)$ $\mathbf{1}$ $\frac{1}{n}$ is concave on \mathbb{R}^n_{++} . \circ

\n- \n
$$
\nabla^2 f(x) = -\frac{\prod_{i=1}^n x_i^{\overline{n}}}{n^2} \left(n \operatorname{diag} \left(x_1^{-2}, \ldots, x_n^{-2} \right) - q q^T \right)
$$
\n where $q_i = x_i^{-1}$.\n
\n- \n
$$
v^T \nabla^2 f(x) v = -\frac{\prod_{i=1}^n x_i^{\frac{1}{n}}}{n^2} \left(n \sum \frac{v_i^2}{x_i^2} - \left(\sum \frac{v_i}{x_i} \right)^2 \right) \leq 0.
$$
\n
$$
\Box \quad a = 1, \, b_i = v_i / x_i.
$$
\n
\n

Consequences of convexity for differentiable functions

- From 1st order condition, if $\exists x^* \in dom(f)$, such that $\nabla f(x^*) = 0$, then $f(y) \ge f(x^*)$ for any \mathcal{Y} .
	- i.e. if f convex and $\exists x^* \in dom(f)$ such that $\nabla f(x^*) = 0$, then x^* is a global minimum.
	- \circ Converse: if x^* is a global minimizer of f and f is differentiable, then $\nabla f(x^*) = 0$.
	- Can be used for unconstrained optimization

Local optimum

- Def: x^* is a local optimum of f if $\exists \epsilon > 0$ such that $\forall x$ such that $\|x x^*\| < \epsilon$, we have $f(x^*) \leq f(x)$.
- Thm: suppose f is a twice differentiable function, then
	- \circ If x^* is a local optimum, then $\nabla f(x^*) = 0$ and $\nabla^2 f(x) \geq 0$.
	- \circ If $\nabla f(x^*) = 0$ and $\nabla^2 f(x) > 0$, then x^* is a local optimum.
- e.g. $f(x) = x^3$, $f''(0) = 0$, 0 is not an optimum.

Summary

- For continuously twice differentiable functions, if x^* is a local optimum, then $\nabla f(x^*) = 0$ and $\nabla^2 f(x) \geq 0.$
- If in addition, f is convex, i.e. $\nabla^2 f \geq 0$ $\forall x \in dom(f)$, then $\nabla f(x^*) = 0$ gives x^* a global optimum.
- For convex and C^2 functions, local optimum is global optimum.

Projection

- \bullet If $h(x,y)$ is convex in $(x,y)\in \mathbb{R}^{n+p}$, $x\in \mathbb{R}^n$, $y\in \mathbb{R}^p$, then $f(x)=\inf_y h(x,y)$ is convex in $x.$
- e.g. $f(x) = \inf_{y \in C} ||x y||$ is convex if C is a convex set.

Composition of functions

- $\bullet\;\; f(x)=g\big(h(x)\big),$ $h\!:\mathbb{R}^n\to\mathbb{R},$ $g\!:\mathbb{R}\to\mathbb{R},$ $dom(f)=\{x:g(x)\in dom(h)\}.$ Then f is convex if \circ g and h are convex and h is non-decreasing.
	- \circ g concave, h convex and h is non-increasing.
- \bullet $f(x) = g(h(x))$, $h: \mathbb{R}^n \to \mathbb{R}^k$, $g: \mathbb{R}^k \to \mathbb{R}$. Then f is convex if h_i is convex for each $i \in [k]$ (or affine), q is convex and non-decreasing in each argument.
- $f(Ax + b)$ is convex if f is convex.

Examples

- $f(x) = \exp(g(x))$ is convex if $g(x)$ is convex.
- $f(x) = \frac{1}{a(x)}$ • $f(x) = \frac{1}{g(x)}$ is convex if g is concave and positive.
	- $h(w) = \frac{1}{w}$ \circ $h(w) = \frac{1}{w}$ is convex and non increasing on \mathbb{R}_{++} .
- $f(x) = (g(x))^p$ is convex if $p \ge 1$ and $g(x)$ is convex and positive.
	- \circ $h(w) = w^p$ is convex and nondecreasing.
- $f(x) = -\sum_{i=1}^{k} \log(-f_i(x))$ is convex on $\{x : f_i(x) < 0, \forall i \in [k]\}$ if all f_i are convex.
	- \circ dom(f) is convex as intersection of convex sublevel sets.
		- \circ log x is concave, so $-\log x$ is convex.
		- \circ Each term in the sum is $-\log(-f_i(x))$, $g(x) = -f_i(x)$ is concave and $h(x) = -\log x$ is convex, non-increasing, thus convex.
		- Sum of convex functions is convex.
- $f(X) = \log \det(X^{-1})$ is convex where $dom(f) = S_{++}^n, f : S_{++}^n \to \mathbb{R}$.
	- \circ Check along a line, let $X_0 \in S_{++}^n$, $V \in S^n$, consider $X_0 + tV$, $t \in \mathbb{R}$.
		- $\tilde{f}(t) = \log \det \left(\left(X_0 + tV \right)^{-1} \right)$ is well defined as long as $X_0 + tV \in S_{++}^n$.

$$
\circ = \log \det \left(X_0^{\frac{1}{2}} \left(I + tX_0^{-\frac{1}{2}} V X_0^{-\frac{1}{2}} \right) X_0^{\frac{1}{2}} \right)^{-1} = \log \det \left(X_0^{-\frac{1}{2}} \left(I + tX_0^{-\frac{1}{2}} V X_0^{-\frac{1}{2}} \right)^{-1} X_0^{-\frac{1}{2}} \right).
$$

$$
\circ = \log \det(X_0^{-1}) + \log \det(I + tX_0^{-\frac{1}{2}}VX_0^{-\frac{1}{2}})
$$

- Let $M = X_0^{-\frac{1}{2}}$ $\frac{1}{2}V X_0^{-\frac{1}{2}}$ **•** Let $M = X_0^{-\frac{1}{2}} V X_0^{-\frac{1}{2}}$, with eigenvalues λ_i , then $I + tM$ has eigenvalues $1 + t\lambda_i$.
- Proof: let u_i be eigenvector of M, then $(I + tM)u_i = u_i + t\lambda_i u_i = (1 + t\lambda_i)u_i$.

$$
\circ = \log \det(X_0^{-1}) + \log \left(\prod_{i=1}^n (1 + \lambda_i t)\right)^{-1}.
$$

Since $\det A^{-1} = \frac{1}{\det A}$, $\det(X) = \prod_{i=1}^n \lambda_i$.

$$
\circ = \log \det(X_0^{-1}) - \sum_{i=1}^n \log(1 + \lambda_i t).
$$

 \circ 1 + $\lambda_i t$ is linear in t, $-\log x$ is convex, sum of convex functions is convex.

• $f(X) = (\det X)^{1/n}$ is concave on S_{++}^n .

•
$$
g(t) = (\det X)^{\frac{1}{n}} = (\det(Z + tV))^{\frac{1}{n}} = (\det (Z^{\frac{1}{2}}(I + tZ^{-\frac{1}{2}}VZ^{-\frac{1}{2}})Z^{\frac{1}{2}}))^{\frac{1}{n}}
$$

= $(\det Z^{\frac{1}{2}}(\det (I + tZ^{-\frac{1}{2}}VZ^{-\frac{1}{2}})) \det Z^{\frac{1}{2}})^{\frac{1}{n}}$

=
$$
(\det Z)^{\frac{1}{n}}(\prod_{i=1}^{n}(1+t\lambda_i))^{\frac{1}{n}}
$$
 where λ_i are eigen values of $Z^{-\frac{1}{2}}VZ^{-\frac{1}{2}}$.
\n• $f(X) = \lambda_{max}(X)$ (max eigenvalue of X) is convex on S^n .

- \circ $\lambda_{max}(X) = \sup_{\|v\| \leq 1} v^T X v.$
	- By spectral decomposition $X = Q\Lambda Q^T$ with $QQ^T = Q^TQ = I$.
	- Then $v^T X v = v^T Q \Lambda Q^T v = \tilde{v}^T \Lambda \tilde{v}$ (with $\tilde{v} = Q^T v$, $\|\tilde{v}\| = \|v\|$).
	- $v^T X v = \tilde{v}^T \Lambda \tilde{v} = \sum_{i=1}^n \lambda_i (\tilde{v}_i)^2$ i $\sum_{i=1}^{n} \lambda_{max}(\widetilde{v}_i)^2 = \lambda_{max}.$ \Box Inequality is tight, proof by checking $\tilde{v} = e_k$. ▪
- $\circ \;\; v^T X v$ is linear in X , $\sup \bigl(v^T X v\bigr)$ is convex as supremum over set of convex functions.
- $f(X) = \sigma_{max}(X)$ (largest singular value of X) is convex on $dom(f) = \mathbb{R}^{n \times m}$.
	- \circ $\sigma_{max}(X) = \sup_{\|w\| \leq 1} \|Xw\|.$

Consider single value decomposition $X = u \Sigma v^T$ σ $\boldsymbol{0}$ $\boldsymbol{0}$ ■ Consider single value decomposition $X = u \Sigma v^T = u \begin{bmatrix} 0 & \dots & 0 \end{bmatrix} v^T$, with

$$
rank(X), u \in \mathbb{R}^{n \times r}, v \in \mathbb{R}^{m \times r}, u^T u = v^T v = I_r.
$$

- $||Xw|| = ||u\Sigma v^T w|| = (w^T v \Sigma^T u^T u \Sigma v^T w)^{\frac{1}{2}}$ $\frac{1}{2} = (\widetilde{W}^T \Sigma^2 \widetilde{W})^{\frac{1}{2}}$ $\frac{1}{2}$. $u^T u = I$, $\Sigma^T \Sigma = \Sigma^2$, let $v^T w = \widetilde{w}$. ▪
- Since $\Sigma \in S^{n}$, $\left(\widetilde{w}^{T} \Sigma^{2} \widetilde{w}\right)^{\frac{1}{2}}$ $\frac{1}{2} = \left(\sum_{i=1}^{r}$ $\binom{2}{ }$ $\mathbf{1}$ $\frac{1}{2} \leq (\sum_{i}^{r}$ $\binom{2}{ }$ $\mathbf{1}$ **Since** $\Sigma \in S^n$, $(\widetilde{w}^T \Sigma^2 \widetilde{w})^{\frac{1}{2}} = \left(\sum_{i=1}^r \sigma_i \widetilde{w}_i^2\right)^{\frac{1}{2}} \le \left(\sum_{i=1}^r \sigma_{max} \widetilde{w}_i^2\right)^{\frac{1}{2}}$.
- $= \sigma_{max} ||w|| \leq \sigma_{max}.$
- Equality can be achieved by setting w equal to max right singular vector.

$$
\Box \quad \text{e.g. let } \sigma_1 = \sigma_{max}, \text{ set } w = v_1 \text{ where } v = (v_1, v_2, \dots, v_r).
$$

$$
\Box \quad \text{Then } \widetilde{w} = v^T w = \begin{pmatrix} v_1^T \\ \dots \\ v_r^T \end{pmatrix} w = \begin{pmatrix} 1 \\ \dots \\ 0 \end{pmatrix}.
$$

○ Since $\lVert \cdot \rVert$ is a norm, $\lVert (\theta X_1 + (1-\theta)X_2)w \rVert = \lVert \theta X_1w + (1-\theta)X_2w \rVert$.

- $\bullet \leq \theta \|X_1 w\| + (1 \theta) \|X_2 w\|.$
- **•** So $\|Xw\|$ is convex in X.
- Supremum of a set of convex functions is convex.

Convex optimization problems

October 31, 2022 11:23 AM

Optimization problem

- Let $f_i: \mathbb{R}^{n_i} \to \mathbb{R}$, $i \in \{0,1,2,...,m\}$, $h_i: \mathbb{R}^{n_i} \to \mathbb{R}$, $i \in [p]$.
- Objective function: $\min_{x} f_0(x)$.
- Such that (Under the constraints):
	- Inequality: $f_i(x) \leq 0$, $i \in [m]$.
	- **Equality:** $h_i(x) = 0, i \in [p]$.
	- \circ Each f_i has $dom(f_i)$ and h_i has $dom(h_i)$, $x \in \cap_{i=0}^m dom(f_i) \cap_{i=1}^p dom(h_i)$.
- Feasible set: $C = \{x : f_i(x) \leq 0, \forall i \in [m], h_i(x) = 0, \forall i \in [p]\}.$
- Optimal value: $f^* = \inf_{x \in C} f_0(x)$.
- o If $C = \emptyset$, $f^* = \infty$. • Optimal point is an x^* such that $f^* = f_0(x^*)$ and $x^* \in \mathcal{C}$.
- Feasibility problems
	- $f_0(x) = \begin{cases} 0 \\ 0 \end{cases}$ • $f_0(x) = \begin{cases} \infty, & \text{if } x \notin C. \end{cases}$

Convex optimization problem

- min $f_0(x)$.
- s.t. $f_i(x) \le 0, i \in [m],$
- $a_i^T x + b_i = 0$, $i \in [p]$, equivalently $Ax = b$.
	- They are affine and not generally convex, since level sets of convex functions are generally not convex set
	- e.g. ${x : x^2 1 = 0} = {1, -1}$ is a level set, not convex.
- And $f_0, f_i, i \in [m]$ are all convex functions.
- $C = \bigcap_{i=1}^{m} \{x : f_i(x) \le 0\} \cap \bigcap_{i=1}^{p} \{x : Ax = b\}$ is convex.
- e.g.
	- \circ Linear program: min $c_0^T x + d_0$,
		- such that $c_i^T x + d_i \leq 0$,
		- $Ax = b$.
	- \circ min|| $Ax b$ ||.
		- Such that $l_i \leq x_i \leq u_i$, $i \in [n]$ (box constraint).
		- $Cx = d$.

Local optimality and constrained optimality

- Def: $x \in C$ is locally optimal if $\exists \epsilon > 0$ such that $\forall y \in C$ and $||x y|| < \epsilon$, we have $f_0(x)$.
- For a convex optimization problem, a local min is a global min.

Differentiable functions with constraints

- For unconstrained optimization, if can find point where $\nabla f_0(x) = 0$, then x is global minimum.
- For constrained convex optimization, if f_0 is differentiable, then $x^* \in C$ is optimal if and only if $\nabla f_0(x^*)^T(y - x^*) \geq 0.$

Quasi-convex minimization

- min $f_0(x)$ (quasi-convex, all sublevel sets are convex sets)
	- Such that $f_i(x) \leq 0$, $i \in [m]$ (convex functions).
		- \circ $h_i(x) = 0$, $i \in [p]$ (affine, $Ax = b$).
- Basic idea: introduce a surrogate function $\theta_t(x)$, such that $f_0(x) \leq t \Leftrightarrow \theta_t(x) \leq 0$.
- Solve a sequence (int t) of convex feasibility problems.
- $\varphi_t(x) \leq 0$ (for $\theta_t(x) \leq 0$).
- \circ $f_i(x) \leq 0, i \in [m].$
- $h_i(x) = 0, i \in [p].$
- E.g. $f_0(x) = \frac{p}{a}$ • E.g. $f_0(x) = \frac{p(x)}{q(x)}$, $p(x) \ge 0$ convex, $q(x) > 0$ concave.
	- Level sets: $\{x: f_0(x) \le t\} = \{x: \frac{p}{a}\}$ ○ Level sets: { $x : f_0(x) \le t$ } = { $x : \frac{p(x)}{q(x)} \le t$ } = { $x : p(x) - tq(x) \le 0$ }.
	- $\varphi_t(x) = p(x) tq(x)$ is convex with $t \ge 0$.
- Linear fractional programming
	- A special case of the example above
	- $f_0(x) = \frac{a^T}{a^T}$ \circ $f_0(x) = \frac{a \cdot x + b}{c^T x + d}$, $dom(f_0) = \{x : c^T x + d > 0\}.$
	- \circ Here $p(x) tq(x)$ is linear in x and always convex.
- Norm optimization
	- \circ min ||x|| s.t. $Ax = b$ (min of a convex problem, easy to solve).
	- \circ max ||x|| s.t. $Ax = b$ (min of a concave problem, harder).
- Linear object with quadratic constraints
	- \circ min $c^T x$, s.t. $x^T P x + q^T x + r \le 0$, Is convex. \circ min $c^T x$, s.t. $x^T P x + q^T x + r = 0$,
		- Is not convex.
- Linear program
	- \circ min $c^T x$, s.t. $Ax = b$ Is convex.
	- \circ min $c^T x$, s.t. $Ax = b, x \in \{\pm 1\}$ Is not convex (integer program).

Linear programs (LPs)

- min $c^T x + d$, (d doesn't affect the program) s.t. $Gx \leq h$, $Ax = b$.
- Affine objective, affine equality and inequality constraints
- Feasible sets are polytopes
- Level sets of objective functions are hyperplanes $\{x : c^T x + d = 0\}.$

- Problems that can be formulated as LPs
	- \circ $\min_{x} ||Ax b||_{\infty}$
		- s.t. $Fx \leq g$.
			- Recall $||w||_{\infty} = \max_{i \in [n]} |w_i|$.
			- $\blacksquare \Leftrightarrow \min_{x,t} t$,
				- $Ax b \leq 1t$, $Ax - b \ge -1t$,
				-
				- $Fx\leq g,$ $(x, t) \in \mathbb{R}^{n+1}$, with $x \in \mathbb{R}^n$.

 \circ $\min_{x} ||Ax - b||_1$,

s.t. $Fx \leq g$.

- Recall $||w||_1 = \sum_{i=1}^n |w_i|$.
- \blacksquare \Leftrightarrow min_{x,t} $\sum_{i=1}^{n} t_i$, $Ax - b \leq t$, $Ax - b \geq -t$, $Fx\leq g,$ $(x, t) \in \mathbb{R}^{n+m}$, with $x \in \mathbb{R}^n$, $t \in \mathbb{R}^m$. tz $t \sim \overline{t}$ $-t₃$ $\mathcal O$

$$
-t_1 - t_1
$$

- Fitting the largest sphere in a polytope
	- Let $P = \{x : a_i^T x \le b_i, i \in [m]\}, x_c$ =center of the sphere, $r =$ radius of the sphere.
	- $x_c + u \in P$ means $a_i^T(x_c + u) \leq b_i$, $i \in [m]$, $\forall u$ such that $||u|| \leq r$.
	- **•** Look at a single constraint $a_i^T x_c + a_i^T u \leq b_i$.
		- \Box Solve for value of case u that just satisfies the inequality.
		- Direction $\frac{a_i}{\|a_i\|}$, $u_i^* = \frac{a_i}{\|a_i\|}$ \Box Direction $\frac{a_i}{\|a_i\|}$, $u_i^* = \frac{a_i}{\|a_i\|}r$, $\|u_i^*\| = r$.
		- \Box Need to satisfy: $a_i^T x_c + a_i^T u_i^* \leq b_i$.
		- \Box Note: $a_i^T u_i^* = \|a_i\|r$, so the constraint is $a_i^T x_c + \|a_i\| r \leq b_i$, $i \in [m].$
	- \blacksquare max_{x_c}, r , s.t. $a_i^T x_c + ||a_i|| r \le b_i, i \in [m],$ $(x_c, r) \in \mathbb{R}^{n+1}$.

Quadratic program (QP)

- $\min \frac{1}{2} x^T P x + q^T x + r$, s.t. $Gx \leq h$, $Ax = b$.
- Convex if $P \geq 0$.
- Feasible set is a polytope

e.g. • \circ min $||Ax - b||_2^2$, s.t. $l_i \leq x_i \leq u_i$, $i \in [n]$ (box constraint).

■
$$
||Ax - b||_2^2 = (Ax - b)^T (Ax - b) = x^T A^T A x - 2b^T A x + b^T b
$$
.

Linear programs with random costs (Portfolio optimization)

- Let $x = (x_1, x_2, ..., x_n)$, where $1^T x = 1$, x_i is partition (fraction) of portfolio invested in ith stock.
- Let $c = (c_1, c_2, ..., c_n)$ with c_i being the return of ith stock after 1 investment period.
- Total return $c^T x$.
- Don't know c_i ahead of time, but you have some idea of the distribution $c{\sim}N(\bar{c},\Sigma)$. \circ \bar{c} is the vector of expected returns.
	- $\circ \ \ \Sigma = \mathrm{E}\big((c-\bar{c})(c-\bar{c})^T\big)$ is the covariance matrix.
- Expected return: $E(c^T x) = \bar{c}^T x$.

• Variance:
$$
Var(c^T x) = E((c^T x - \bar{c}^T x)^2) = E((c^T - \bar{c}^T)x)^2 = E(x^T (c - \bar{c})(c - \bar{c})^T x) =
$$

- $x^T E((c \bar{c})(c \bar{c})^T)x = x^T \Sigma x.$ • $\min_{x} -\bar{c}^{T}x + \gamma x^{T}\Sigma x, (\gamma \in \mathbb{R}, \gamma \ge 0)$ s.t. $Gx \leq h$.
	- $Ax = b$. (other constraints on portfolio allocation)
- $\gamma = 0$ means risk doesn't matter, larger γ means avoiding some risk.

Quadratically constrained quadratic program (QCQP)

- $\min \frac{1}{2} x^T P_0 x + q_0^T x + r_0$ s.t. $\frac{1}{2}$ $\frac{1}{2}x^T P_i x + q_i^T x + r_i \leq 0, i \in [m],$ $Ax = b$.
- If P_0 , P_i , $i \in [m]$ are PSD, then the problem is convex.

Second order cone program (SOCP)

- min $f^T x$, s.t. $||A_i x + b_i||_2 \le c_i^T x + d_i, i \in [m], A_i \in \mathbb{R}^{n_i \times n}, b_i \in \mathbb{R}^n, c_i \in \mathbb{R}^n$, $Fx = g, F \in \mathbb{R}^{p \times n}, g \in \mathbb{R}^p$.
- Norm cone
	- \circ $K = \{(x, t) : ||x|| \le t\} \subset \mathbb{R}^{n+1}$, K is convex (from homogenity/scaling property and triangular inequality).
- Consider f_i (\overline{A} c_i^T \boldsymbol{b} $\begin{bmatrix} a_i \\ d_i \end{bmatrix}$ \overline{A} • Consider $f_i(x) = \begin{pmatrix} 0 & t \\ c_i^T \end{pmatrix} x + \begin{pmatrix} 0 & t \\ d_i \end{pmatrix} = \begin{pmatrix} 0 & t \\ c_i^T x + d_i \end{pmatrix} \in \mathbb{R}^{n_i + 1}$, f_i is affine.

 $\frac{1}{2} = O \Lambda^{\frac{1}{2}}$

- To satisfy ith constraint, $\{x : f_i(x) \in K_i\} = f_i^{-1}(K_i)$ with K_i the norm cone with l_2 norm and $n = n_i$.
- If $A_i = 0$, LP.
- If $c_i = 0$, QCQP.

QCQP/SOCP with an analytic solution

- min $c^T x$, s.t. $x^T A x \le 1, A > 0$. Let $y = A^{\frac{1}{2}}$ $\frac{1}{2}\chi$, $A = Q\Lambda Q^T$, $A^{\frac{1}{2}}$ • Let $y = A^{\frac{1}{2}}x$, $A = Q\Lambda Q^T$, $A^{\frac{1}{2}} = Q\Lambda^{\frac{1}{2}}Q^T$.
- $c^T x = c^T A^{-\frac{1}{2}}$ $rac{1}{2} \frac{1}{4}$ $\frac{1}{2}x = \tilde{c}^T y$, with $\tilde{c} = A^{-\frac{1}{2}}$ • $c^T x = c^T A^{-\frac{1}{2}} A^{\frac{1}{2}} x = \tilde{c}^T y$, with $\tilde{c} = A^{-\frac{1}{2}} c$.
- $x^T A x = x^T A^{\frac{1}{2}}$ $\frac{1}{2}A^{\frac{1}{2}}$ • $x^T A x = x^T A^{\frac{1}{2}} A^{\frac{1}{2}} x = y^T y = ||y||^2 \le 1.$
- The equivalent problem is: min $\tilde{c}^T y$ s.t. $||y||^2 \leq 1$.
- $y^* = -\frac{\tilde{c}}{\ln \tilde{a}}$ $\frac{\tilde{c}}{\|\tilde{c}\|}$, $x^* = A^{-\frac{1}{2}}$ $\frac{1}{2}y^* = -\frac{A^-}{4}$ • $y^* = -\frac{c}{\|\tilde{c}\|}$, $x^* = A^{-\frac{1}{2}}y^* = -\frac{A}{\|A^{-1}c\|}$.
- when $A \notin S^n_+$
	- For $x^T A x$ to be valid, $A \in S^n$, it can be decomposed into λ $\boldsymbol{0}$ $\boldsymbol{0}$ \circ For $x^T Ax$ to be valid, $A \in S^n$, it can be decomposed into $A = V \begin{bmatrix} 0 & ... & 0 \end{bmatrix} V^T$ $\sum_{i=1}^{n}$
- \therefore $x^T A x = \sum_{i=1}^n \lambda_i x^T V_i V_i^T x = \sum_{i=1}^n \lambda_i y_i^T y_i$, with $y_i = V_i^T x$, $y = V^T x$.
- \circ The constraint is then $\sum_{i=1}^{n}$
- $\circ \quad$ The objective is $\min c^T \big(V^T\big)^{-1} y = \min \bigl(V^{-1} c\bigr)^T y$

Unconstrained QPs

- $\min \frac{1}{2} x^T P x + q^T x + r$, where $P \in S^n$.
- P not PSD, objective is unbounded below
	- \circ Take ν an eigenvector of P such that $\lambda_{\nu} < 0$.
	- Look along line tv as $t \to \infty$, $\frac{1}{2}$ $\frac{1}{2}x^T A x = \frac{1}{2}$ $\frac{1}{2}(tv)^T \lambda_v(tv) = \frac{1}{2}$ ○ Look along line tv as $t \to \infty$, $\frac{1}{2}x^T Ax = \frac{1}{2}(tv)^T \lambda_v(tv) = \frac{1}{2}t^2 \lambda_v < 0$.
	- $\mathbf{1}$ $\frac{1}{2}x^T P x + q^T x + r = \frac{t^2}{2}$ $\int_{0}^{1} \frac{1}{2} x^{T} P x + q^{T} x + r = \frac{1}{2} \lambda_{v} + t q^{T} v + r \to -\infty.$
- $P \geq 0$, problem is convex.
	- $\nabla \left(\frac{1}{2}\right)$ $\circ \ \ \nabla \left(\frac{1}{2} x^T P x + q^T x + r \right) = Px + q$, if can find x^* such that $Px^* = -q$, x^* is optimal.
	- \circ $P > 0$, P is invertible, $x^* = -P^{-1}q$ unique.
	- \circ $P \geq 0$, but P has some zero eigen values.
		- If $q \in R(P)$ (column space of P), then can find x^* to write $Px^* = -q$, x^* is zero slope and global min, not unique.
		- If $q \notin R(P)$, unbounded below.
			- □ Let $q = q_{\parallel} + q_{\perp}$ with $q_{\parallel} \in R(P)$, $q_{\perp} \perp q_{\parallel}$.
				- Take $x = -tq_{\perp}$ with $t \geq 0$, $\frac{1}{2}$ □ Take $x = -tq_{\perp}$ with $t \ge 0$, $\frac{1}{2}x^{T}Px + q^{T}x + r = -t||q_{\perp}||^{2} + r \rightarrow -\infty$.

Robust LP

• min $c^T x$,

s.t. $a_i^T \leq b_i$, $i \in [m]$,

Don't know (a_i, b_i) exactly, have some uncertainty.

- Worst case (uncertainty ellipse)
	- $o \ a_i \in E_i = {\bar{a}_i + P_i u : \bar{a}_i \in \mathbb{R}^n, P_i \in \mathbb{R}^{n \times n}, ||u||_2 \leq 1}.$
	- $\circ \Rightarrow$ min $c^T x$, $a_i^T \leq b_i$, $a_i \in E_i$.

$$
\circ \Rightarrow \min c^T x \, \sup_{\|u\|_2 \leq 1} (\overline{a_i} + P_i u)^T x \leq b_i.
$$

$$
\circ \left(\overline{a_i} + P_i u\right)^T x = \overline{a_i}^T x + u^T P_i^T x \leq \overline{a_i}^T x + \left(\frac{P_i^T x}{\|P_i^T x\|}\right)^T P_i^T x = \overline{a_i}^T x + \|P_i^T x\|.
$$

- \circ Equivalently: min $c^T x$, s.t. $\overline{a_i}^T x + ||P_i^T x|| \leq b_i$ (SOCP).
- Statistical approach
	- $o \quad a_i \sim N(\bar{a_i}, \Sigma).$
	- $\min c^T x$, s.t. $\Pr(a_i^T x \leq b_i) \geq \eta$, with $\eta > \frac{1}{2}$ $\text{O} \quad \min c^T x$, s.t. $\Pr(a_i^T x \le b_i) \ge \eta$, with $\eta > \frac{1}{2}$ the level of confidence. Take $\eta = 0.95$. \circ $E[a_i^T x - b_i] = \overline{a_i^T} x - b_i \rightarrow \mu_i.$

$$
\circ \quad E\left[\left((a_i^T x - b_i) - E(a_i^T x - b_i)\right)^2\right] = E\left[\left(a_i^T x - \overline{a_i^T} x\right)^2\right] = x^T E\left[(a_i - \overline{a_i})(a_i - \overline{a_i})^T\right]x = x^T \Sigma x \to \sigma_i^2.
$$

$$
\circ \text{ With } \Phi(\gamma) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\gamma} e^{-t^2/2} dt, \Pr\left[\frac{(a_i^T x - b_i) - \mu_i}{\sigma_i} \le -\frac{\mu_i}{\sigma_i}\right] = \Phi\left(-\frac{\mu_i}{\sigma_i}\right) = \Phi\left(\frac{b_i - \overline{a_i^T} x}{\|\sum_{i=1}^{\frac{1}{2}} x\|}\right).
$$

$$
\circ \quad \text{Invert } \Phi, \frac{b_i - \overline{a_i^T} x}{\|\sum_{\alpha=1}^{\frac{1}{2}} x\|} \ge \Phi^{-1}(\eta).
$$

$$
\circ \quad \text{This gives } \min c^T x, \text{ s.t. } b_i - \overline{a_i^T} x \ge \Phi^{-1}(\eta) \left\| \Sigma^{\frac{1}{2}} x \right\| \text{ (SOCP).}
$$

Least square problems

- Setup: solve system of linear equations $Ax = b$.
- If A is square invertible, $x = A^{-1}b$.
- otherwise, 2 cases for $A \in \mathbb{R}^{m \times n}$.
- Overdetermined $m > n$.
	- More constraints, fewer parameters.
	- \circ No vector x exactly satisfies $Ax = b$.
	- \circ Idea: find best x that most closely matches the constraints, $\min \|Ax b\|_2^2$.
	- $\int f = \|Ax b\|_2^2 = x^T A^T A x 2b^T A x + b^T b.$
	- \circ $\nabla f = 2A^T A x 2A^T b = 0.$
	- \circ If $A^T A$ is invertible (A is full-rank), then $x^* = (A^T A)^{-1} A^T b$.
	- If not, we have linearly dependent columns.
- Underdetermined $m < n$.
	- More parameters, fewer constraints.
	- \circ In general, many x satisfy $Ax = b$.
	- \circ Assume A is full rank.
	- \circ Idea: min $||x||^2$, s.t. $Ax = b$.
	- \circ Note: set of x that satisfy $Ax = b$, is
		- x_0 is one solution $Ax_0 = b$.
		- $N(A) = \{x : Ax = 0\}$ is the null space of A.
	- \circ Claim: $x^* = A^T (AA^T)^{-1} b$.
		- $Ax^* = b.$
		- Orthogonality: $\langle x x^*, x^* \rangle = 0$ for $Ax = b$.
	- \circ To calculate it, $(b Ax)^T A = 0$ gives $A^T Ax = A^T b$.

Optimal control example

- Goals: move mass M from 0 to D in KT seconds (discretized time steps).
	- Block initially at rest, surface is frictionless
	- \circ Want block at rest at position D at time KT .
	- \circ $u[k]$ is a constant force applied from $t = KT$ to $t = (K + 1)T$.
	- \circ Suppose fuel consumption is proportional to $(u[k])^2$.
- Total consumption: $\sum_{i=0}^{K-1} (u[i])^2$.

• System state:
$$
\begin{pmatrix} x[k] \\ \dot{x}[k] \end{pmatrix}
$$
.
\n
$$
\circ \begin{pmatrix} x[0] \\ \dot{x}[0] \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.
$$
\n
$$
\circ \begin{pmatrix} x[K] \\ \dot{x}[K] \end{pmatrix} = \begin{pmatrix} D \\ 0 \end{pmatrix}.
$$

- Transitions
	- $\circ \dot{x}[k+1] = \dot{x}[k] + \ddot{x}[k]T.$
	- $x[k+1] = x[k] + \dot{x}[k]T + \frac{1}{2}$ \circ $x[k+1] = x[k] + \dot{x}[k]T + \frac{1}{2}\ddot{x}[k]T^2$.
	- $\ddot{x}[k] = \frac{u}{k}$ \circ $\ddot{x}[k] = \frac{u[k]}{M}$.

•
$$
\begin{pmatrix} x[k+1] \\ \dot{x}[k+1] \end{pmatrix} = \begin{pmatrix} 1 & T \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x[k] \\ \dot{x}[k] \end{pmatrix} + \begin{pmatrix} \frac{T^2}{2M} \\ \frac{T}{M} \end{pmatrix} u[k].
$$

- So $X[k+1] = AX[k] + Bu[k]$, with $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ T^2 $\frac{1}{2}$ T $\frac{1}{M}$ • So $X[k+1] = AX[k] + Bu[k]$, with $A = \begin{pmatrix} 1 & 1 \ 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 2M \ T \end{pmatrix}$.
	- \circ Using recursion, $X[K] = A^K X[0] + CU$,

$$
\circ \quad \text{with } C = \left[B, AB, A^2 B, \dots A^{K-1} B \right] \text{ and } U = \begin{pmatrix} u[K-1] \\ \dots \\ u[0] \end{pmatrix}.
$$

• Problem formulation

$$
\circ \quad \min \sum_{i=0}^{K-1} (u[i])^2 = ||U||^2,
$$
\n
$$
\text{s.t. } X = A^K X[0] + CU.
$$

• Optimal solution.

$$
\circ U_{LS}^* = C^T (CC^T)^{-1} (X[k] - A^K X[0]).
$$

$$
\circ \quad C^{T}(CC^{T})^{-1} = \begin{pmatrix} B^{T} \\ \vdots \\ B^{T}(A^{T})^{K-1} \end{pmatrix} (\sum_{j=0}^{K-1} A^{j}BB^{T}(A^{T})^{j})^{-1}.
$$

- $\circ\;\; \sum_{j=0}^{K-1}A^{j}BB^{T}\big(A^{T}\big)^{j}$ is the discrete time controllability Gremmian matrix.
- \circ If C is not full rank, no optimal.

Geometric programs(GP)

- Monomial: $h(x) = cx_1^{\alpha_1} x_2^{\alpha_2} ... x_n^{\alpha_n}$, $c \ge 0$, $\alpha_j \in \mathbb{R}$, $dom(h) = \{x : x_i > 0\} = \mathbb{R}_{++}^n$.
- Posynomial: $f(x) = \sum_k c_k x_1^{\alpha_{1k}} x_2^{\alpha_{2k}} \dots x_n^{\alpha_{nk}}, c_k \ge 0$ is the sum of monomials.
- Problem:
	- \circ min $f_0(x)$,
		- s.t. $f_i(x) \leq 1$, $i \in [m]$,
		- $h_i(x) = 1, i \in [p].$
		- $f_0, f_1, \ldots f_m$ all posynomials, h_i all monomials.
- Get the convex form
	- \circ Let $y_i = \log x_i$.
	- \circ For monomials: $\log h(x) = \log c + \alpha_1 y_1 + \cdots + \alpha_n y_n$. (affine in y)
	- \circ For posynomials: $\log f(x) = \log(\sum c_k e^{y_1 \alpha_{1k}} ... e^{y_n \alpha_{nk}}) = \log(\sum e^{\sum_{i=1}^n y_i \alpha_{ik} + \beta_k}).$
		- \bullet $\beta_k = \log c_k$.
		- **•** Convex in y .

\n- ○ The problem becomes:
$$
\min \log f_0(e^{y_1}, \ldots, e^{y_n})
$$
\n- s.t. $\log f_i(e^{y_1}, \ldots, e^{y_n}) \leq 0, i \in [m],$ $\log h_i(e^{y_1}, \ldots, e^{y_n}) = 0, i \in [p].$
\n

Example: wireless transmission

 \circ

- *n* transmitters $TX_1, ..., TX_n$, *n* receivers $RX_1, ..., RX_n$, mutally interferring, G_{ij} the gain between TX_i , RX_j , σ^2 receiver noise.
- Signal to interference and noise ratio: $SINR_i = \frac{P}{\sum_i P_i}$ • Signal to interference and noise ratio: $SINR_i = \frac{P_i U_i}{\sum_{i \neq i} P_j G_{ji} + \sigma^2}$.
- Rate of communication: $R_i = \log(1 + SINR_i)$.
- Type 1: $\max_{P_1,\dots,P_n} \min_i SINR_i$, s.t. $P_i \leq P_{max}$.
	- Equivalently, max t (same as min $\frac{1}{t}$), s.t. $SINR_i \geq t$, $\forall i \in [n]$, $\frac{P}{P_{m}}$ \circ Equivalently, max t (same as min $\frac{1}{t}$), s.t. $SINR_i \geq t$, $\forall i \in [n]$, $\frac{r_1}{P_{max}} \leq 1$, $i \in [n]$.

$$
\circ \frac{P_i G_{ii}}{\sum_{j\neq i} P_j G_{ji} + \sigma^2} \geq t \Leftrightarrow 1 \geq \frac{(\sum_{j\neq i} P_j G_{ji} + \sigma^2)t}{P_i G_{ii}} \Leftrightarrow \left[\left(\sum_{j\neq i} P_j G_{ji} \right) \left(P_i G_{ii} \right)^{-1} + \sigma^2 \left(P_i G_{ii} \right)^{-1} \right] t \leq 1.
$$

The GP is:
$$
\min \frac{1}{t'}
$$
,
\n $\text{s.t. } \frac{P_1}{P_{max}} \leq 1, i \in [n],$
\n $\left[\left(\sum_{j \neq i} P_j G_{ji} \right) \left(P_i G_{ii} \right)^{-1} + \sigma^2 \left(P_i G_{ii} \right)^{-1} \right] t \leq 1.$

- Type 2: $\max \sum_{i=1}^{n} R_i$, s.t. $P_i \le P_{max}$.
	- \circ Assume high power ratio, $SINR_i > 1$, $R_i \approx \log(SINR_i)$.
	- arg max $\sum_{i=1}^n$ \boldsymbol{P} \circ arg max $\sum_{i=1}^{n} \log SINR_i = \arg \max \log \left(\prod_{i=1}^{n} \frac{P}{\sum_{i \neq i} P_i} \right)$ arg min $\log \left(\prod_{i=1}^n \frac{\sum_{j\neq i} P_j G_{ji} + \sigma^2}{P_j G_i}\right)$ $\frac{n}{i=1} \frac{\sum_{j\neq i} P}{P}$ $^{-1} + \sigma^2 (P_i G_{ii})^{-1}$.
	- And product of posynomials is a posynomial.

$$
\circ \quad \text{When } R_i = \log\left(1 + SINR_i\right) = \log\left(\frac{\sum_j P_j G_{ji} + \sigma^2}{\sum_{j \neq i} P_j G_{ji} + \sigma^2}\right), \text{ not a GP.}
$$

Optimization with generalized inequalities

• min $f_0(x)$, $(f_0: \mathbb{R}^n \to \mathbb{R})$ s.t. $f_i(x)\leq_{K_i} 0$, $i\in[m]$, $(f_i:\mathbb{R}^n\to\mathbb{R}^{k_i}$, K_i is a proper cone in \mathbb{R}^{k_i}) $h_i(x) = 0$, $i \in |p|$ (h_i are affine).

- f_i are K_i -convex, i.e. $f_i(\theta x + (1-\theta)y) \leq_{K_i} \theta f_i(x) + (1-\theta)f_i(y)$, $\forall \theta \in [0,1]$, $dom(f_i)$.
	- \circ A function is K_i -convex iff it is K_i -convex along all lines.
	- Sublevel sets are convex, hence feasible sets are convex.
	- Local optimum=global optimum.
	- \circ Optimality condition: objective non-decreasing as move into feasible set from x^* .

Semidefinite programs (SDP)

• Special case of generalized inequalities

- min $c^T x$,
	- s.t. $f_0 + x_1 f_1 + \cdots x_n f_n \leq_{PSD} 0$, (can have many of them, $f_i \in S^m$) $Gx = h$.
		- \circ Note: $f(x) = f_0 + f_1 x_1 + \cdots + f_n x_n$ is an affine function of x.
		- $\circ \{x : f(x) \leq 0\} = \{x : -f(x) \in S^m_+\}$ the preimage of S^m_+ under an affine map, thus convex.
- Standard form: $min Tr(CZ)$,
	- s.t. $Tr(A_i Z) = b_i$, $Z \geq 0$,
	- $Z \in S^m$, $C, A_1, ... A_m \in S^m$.
	- To transform the above into standard form
		- Introduce slack variables, to turn \leq into $=$.
		- Write each x in initial form as $x = x^+ x^-$ where $x^+ \geq 0$, $x^- \geq 0$.

\n- \n
$$
\tilde{Z} = -F_0 - \sum x_i F_i, Z = \begin{pmatrix} \tilde{Z} & 0 & 0 \\ 0 & diag(x^+) & 0 \\ 0 & 0 & diag(x^-) \end{pmatrix}.
$$
\n
\n- \n
$$
A_i = \begin{pmatrix} 0 & 0 & 0 \\ 0 & G_i & 0 \\ 0 & 0 & -G_i \end{pmatrix}.
$$
\n
\n- \n
$$
C = \begin{pmatrix} 0 & 0 & 0 \\ 0 & diag(c) & 0 \\ 0 & 0 & -diag(c) \end{pmatrix}.
$$
\n
\n

Portfolio design

- $x = (x_1, ..., x_n)$ allocations of stocks.
- $P = (P_1, ..., P_n)$ expected returns.
- $\Sigma = E((x \bar{x})(x \bar{x})^T).$
- If we don't know Σ exactly, what is the worst Σ for fixed investment strategy x ?
- Maybe $V_{kl} \leq \Sigma_{kl} \leq U_{kl}$, $k \in [n], l \in [n]$. • max $x^T \Sigma x$, $\angle U$, $\frac{1}{2}$, $\frac{1}{2}$

$$
S.T. V_{kl} \leq \lambda_{kl} \leq U_{kl}, \kappa, t \in [n],
$$

$$
\Sigma \geq 0.
$$

$$
\star^T \Sigma \star - tr(\star^T \Sigma \star) - tr(\Sigma \star \star^T)
$$

•
$$
x^T \Sigma x = tr(x^T \Sigma x) = tr(\Sigma x x^T)
$$
, so this is a SDP.

Relaxation of homogeneous QCQPs

- min $x^T P_0 x + q_0^T x + r_0$, s.t. $\frac{1}{2}$ $\frac{1}{2}x^T P_i x + q_i^T x + r_i \leq 0, i \in [m].$
- Convex if $P_i \geq 0$, $\forall i$.
- Homogeneous means $q_i = 0$, $\forall i$.
- Problem non-convex if any P_i not PSD, or if replace \leq with $=$.

e.g. min $x^T C x$,

s.t. $x^T F_i x \ge g_i$, $i \in [m]$, if F_i not negative semidefinite, then not convex. $x^T H_i x = l_i, i \in [p]$, not convex.

• $x^T C x = tr(x^T C x) = tr(C x x^T) = tr(C X)$, with $X = x x^T$. \circ rank(X) = 1, X \pin 0.

• Equivalently, min $tr(CX)$,

$$
\text{s.t. } \text{tr}\big(F_i X\big) \ge g_i, \, i \in [m],
$$

$$
tr(H_iX)=l_i, i\in[p],
$$

$$
rank(X) = 1, X \ge 0.
$$

 \circ Linear constraints

 \circ The only non-convex constraint is $rank(X) = 1$.

SDP relaxation:

- drop the only non-convex constraint ${rank(X) = 1}$ to get a convex optimization problem
- Objective value may be lower
- Now can compute some X^* for relaxed problem. Hope it tells something about solution to original problem
- Calculate the $rank(1)$ approximation to X^* using SVD

e.g. two way partitioning problem

- Setup: n items, partition into 2 sets
- Costs: W_{ij} cost/utility of $i, j \in [n]$ being in the same partition.
	- \circ -W_{ij} is the cost if they are in different partition.
	- \circ $W_{ij} = W_{ji}.$
- Problem: $\min x^T W x$, s.t. $x_i \in \{-1,1\}$, $i \in [n] \Leftrightarrow x_i^2 = 1$ (non-convex). $x^T W x = \sum_{i,j} x_i x_j W_{ij}.$
- Equivalently:
	- min $tr(WX)$ s.t. $X_{ii} = 1$, $i \in [n]$, $X \ge 0$, $rank(X) = 1$.
- Relax $rank(X) = 1$ to get SDP

Duality Theory

September 12, 2022 12:56 PM

Start with a (not necessarily convex) optimization problem in standard form

 $\min f_0(x)$, s.t. $f_i(x) \leq 0$, $i \in [m]$, $h_i(x) = 0, i \in [p].$ With optimal value p^* , optimal variables x^* , x is called the primal variables. Domain $D = (\cap_{i=0}^m \text{dom}(f_i)) \cap (\cap_{i=0}^p \text{dom}(h_i)).$

The Lagrangian function: $L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x)$ $\sum_{i=1}^{p} v_i h_i(x)$, where λ_i , v_i are the Lagrange multipliers or dual variables, $dom(L) = D \times \mathbb{R}^m \times \mathbb{R}^p$.

The dual function $g(\lambda, \nu) = \min_x L(x, \lambda, \nu)$

- x may be feasible or infeasible.
- Minimization removes dependency on x .

Dual optimal problem

- max_{λ}, $g(\lambda, \nu)$,
	- s.t. $\lambda \geq 0$.
- Dual optimum: d^* , optimal variables $\lambda^*, \nu^*, (\lambda, \nu)$ are dual variables.
- $g(\lambda, \nu)$ is concave in λ, ν even if the original f is not convex and h_i is not affine. $g(\lambda, \nu) = \min_x \{ f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i \}$ \circ $g(\lambda, \nu) = \min_x \{f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x)\} = \min\{affine functions\}$ is thus concave.
- $g(\lambda, \nu) \le f_0(x)$ if (a) x is primal feasible and (b) (λ, ν) is dual feasible.
	- Set of points satisfying (a)(b) are $\{x \in D : f_i(x) \leq 0, h_i = 0\} \times \{\lambda, \nu : \lambda_i \geq 0\}.$
	- $f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p v_i h_i(x)$ \circ $f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) = f_0(x) + negative < f_0(x)$ for x primal feasible, $\lambda > 0$.
	- $g(\lambda, \nu) = \min\{f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i\}$ \circ $g(\lambda, \nu) = \min\{f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x)\} \le f_0(x).$
	- Remarks
		- $f_0(x) \ge g(\lambda, \nu)$ for primal feasible x and dual feasible (λ, ν) . i.e. dual problem provides a lower bound.
		- **•** Best lower bound is to max $g(\lambda, \nu)$, s.t. $\lambda \geq 0$.
		- Bound holds for x^* , i.e. $p^* = f_0(x^*) \ge g(\lambda^*, v^*) = d^*$.
- For primal and dual feasible (x, λ, ν) , $f_0(x) g(\lambda, \nu)$ is the duality gap.
	- $\circ \;\;$ <mark>Weak duality</mark>: $p^*-d^*\geq 0.$
- Strong duality: for convex optimization problems (f_i convex, h_i affine) and under certain constriant qualification conditions (not all possible constraints are allowed), then $p^* - d^* = 0$.
	- Convexity + constraint qualification is sufficient condition for duality to hold, but not necessary conditions
- Pricing interpretation
	- \circ min $f_0(x)$,
		- s.t. $f_i(x) \le 0$, $i \in [m]$,
		- $h_i(x) = 0, i \in |p|.$
	- \circ Reformulate as an unconstrained problem using two penalty functions I and \tilde{I} .

$$
I(x) = \begin{cases} 0, & if x \leq 0 \\ \infty, & else \end{cases}.
$$

- $\tilde{I}(x) = \begin{cases} 0, & \text{if } x = 0 \\ \infty, & \text{else} \end{cases}$
- $\min f_0(x) + \sum_{i=1}^m I(f_i(x)) + \sum_{i=1}^p \tilde{I}(h_i(x))$ \blacksquare min $f_0(x) + \sum_{i=1}^m I(f_i(x)) + \sum_{i=1}^p \tilde{I}(h_i(x)).$
- Note: this is not nice mathematically.
- Basic idea in Lagrange duality is to relax I and \tilde{I} to make it mathematically nice.

- $\circ \;\; \lambda_i f_i(x)$ gives a lower bound for $I\big(f_i(x)\big)$, $v_i h_i(x)$ gives a lower bound for $\tilde{I}\big(h_i(x)\big).$
- So min $f_0(x) + \sum_{i=1}^m I(f_i(x)) + \sum_{i=1}^p \tilde{I}(h_i(x))$ $\sum_{i=1}^{p} \tilde{I}(h_i(x)) \ge \min f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$ ○ So min $f_0(x) + \sum_{i=1}^m I(f_i(x)) + \sum_{i=1}^p \tilde{I}(h_i(x)) \ge \min f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x)$.

Dual problem

- Start with original problem
	- $\min f_0(x)$,
	- s.t. $f_i(x) \le 0$, $h_i(x) = 0$.
- Replace with lower bound, $\min_x(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x))$ • Replace with lower bound, $\min_x(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x)) = L(x, \lambda, \nu).$
- Solve for dual function $g(\lambda, \nu) = \min_{x \in D} L(x, \lambda, \nu)$,
- \circ Provides lower bound on any primal feasible x if (λ, ν) dual feasible
- Maximize lower bound for all dual feasible (λ, ν) .
	- \circ max $g(\lambda, \nu)$, s.t. $\lambda \geq 0$.

Remarks

- Can consider λ_i and ν_i for violating constraints (cost per unit violation)
- In $L(x, \lambda, \nu)$ are allowed to consider non-primal feasible $x \in D$ and pay linearly
- In problem for which strong duality holds, can replace I and \tilde{I} with linear bounds as long as set λ_i^* and v_i^* correctly

Slater's conditions

- Thm: a set of constraints $f_i(x) \leq 0$, $i \in [m]$, $Ax = b$ satisfies Slater's conditions if $\exists x \in D$ such that $f_i(x) < 0$, $i \in [m]$ and $Ax = b$.
- e.g. convex constraints not satisfying Slater

$$
\begin{aligned}\n&\circ \quad (x_1 + 1, y_1) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 + 1 \\ y_1 \end{pmatrix} \le 1. \\
&\circ \quad (x_1 - 2, y_1) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 - 2 \\ y_1 \end{pmatrix} \le 4.\n\end{aligned}
$$

○ Intersection has no interior

If we have affine inequality constraints $f_i(x) = g_i^T x + h_i \leq 0$, we only need to satisfy with equality, not necessarily strict (not part of Slaters)

Strong duality

- Thm: if primal optimization problem is convex and Slater's conditions are satisfied, then $p^* = d^*$. (i.e. duality gap is 0)
- Consider only a single inequality constraint
	- \circ Primal: min $f_0(x)$, s.t. $f_1(x) \leq 0$ with optimal p^* .
- \circ Lagrangian: $L(x, \lambda) = f_0(x) + \lambda f_1(x)$.
- \circ Dual function: $g(\lambda) = \min_{x \in D} L(x, \lambda) = \min_{x \in D} (f_0(x) + \lambda f_1(x)).$
- O Dual problem: max $g(\lambda)$, s.t. $\lambda \geq 0$, with optimal d^* .
- Resource tradeoff: $G = \bigcup_{x \in D} \{(f_1(x), f_0(x))\}.$
- Shadow of G (solutions dominated by G): $A = G + \mathbb{R}^2_+ = \{(u,t) : u \geq f_1(x), t \geq f_0(x), x \in D\}.$

- Boundary of corresponds to set of interesting designs
- \circ A contains both feasible and infeasible designs.
- \circ Boundary of A is some function
	- $p(u) = \min f_0(x)$,
		- s.t. $f_1(x) \leq u$.
- \circ Note: $p^* = p(0)$ by definition
- \circ Will show if f_0, f_1 convex,
	- **•** *p* is non-increasing in u .
	- **•** p is convex, implying $A = epi(p)$ is convex.
- If nonconvex, may have:

- Prove convexity of p .
	- \circ Thm: p is convex, i.e. $\forall u_1, u_2 \in dom(p)$, $\lambda \in [0,1]$, $\lambda)p(u_2)$.
	- o Setup:
		- $p(u_1) = \min_x f_0(x)$, s.t. $f_1(x) \leq u$.
		- $x_1 = \arg\min_x f_0(x)$, s.t. $f_1(x) \le u$, i.e. $f_0(x_1) = p(u_1)$.
		- **E** Similarly, let x_2 be $f_0(x_2) = p(u_2)$.
		- **•** Look at $\tilde{x} = \lambda x_1 + (1 \lambda)x_2, \lambda \in [0,1].$
		- $f_1(\tilde{x}) = f_1(\lambda x_1 + (1 \lambda)x_2) \leq \lambda f_1(x) + (1 \lambda)f_2(x)$ (convexity of f_1), $\leq \lambda u_1 + (1 - \lambda)u_2$ (since x_1 feasible for $p(u_1)$).

 $p(\lambda u_1 + (1 - \lambda)u_2) = f_0(\tilde{x}) \leq \lambda f_0(x) + (1 - \lambda)f_0(x) = \lambda p(u_1) + (1 - \lambda)p(u_2).$

• Consider the following optimization problem with $\lambda \geq 0$.

- $\min_{(u,t)} (\lambda, 1) \binom{u}{t}$ \circ $\min_{(u,t)} (\lambda, 1) \binom{u}{t}$, s.t. $(u, t) \in A$, A convex.
- Let $(\lambda, 1)$ $\binom{u}{t}$ \circ Let $(\lambda, 1) {u \choose t}$ = const, then $t = const - \lambda u$.
- \circ Optimum point is on boundary, corresponds to some $x^*(\lambda)$ s.t. $(u^*,t^*) = (f_1(x^*(\lambda)),f_0(x^*(\lambda))).$
- All other points are no better
	- $(\lambda, 1)$ $\begin{pmatrix} u^* \\ z^* \end{pmatrix}$ $\begin{pmatrix} u^* \\ t^* \end{pmatrix} \leq (\lambda, 1) \begin{pmatrix} u \\ t \end{pmatrix}$ $\binom{u}{t}$ for all $\binom{u}{t}$ \bullet $(\lambda,1) {u \choose t^*} \leq (\lambda,1) {u \choose t}$ for all ${u \choose t} \in A$. $(\lambda, 1)$ $\binom{u-u^*}{u-u^*}$ $(\lambda, 1) \binom{u - u}{u - t^*} \ge 0.$
- \circ i.e. (u^*,t^*) defines a supporting hyperplane of $epi(p)=t$, touches at point (u^*,t^*) .
- \circ This is non-vertical, since $(\lambda, 1)$ cannot be horizontal, unless $\lambda \to \infty$.
- \circ Tangent point: $(f_1(x^*(\lambda)), f_0(x^*(\lambda)))$.
- \circ Extrapolate back to get y-intercept, $\big(0,f_0\big(x^*(\lambda)\big)+\lambda f_1\big(x^*(\lambda)\big)\big).$
- Connection to dual
	- $\min_{t,u}(\lambda, 1) \binom{u}{t}$ \circ min_{t,u}(λ , 1) $\binom{u}{t}$, s.t. $(u, t) \in A$.
	- \circ = $t^* + \lambda u^* = f_0(x^*) + \lambda f_1(x^*) = \min_{x \in D} f_0(x) + \lambda f_1(x) = g(\lambda)$ (dual function).
	- \circ Dual optimal: $d^* = \max_{\lambda} g(\lambda), \lambda \geq 0$.
		- **•** Maximize y-intercept to get as close to p^* as possible

 \circ If non-convex, A might not be a convex set.

U

 \circ If Slater's condition doesn't hold, the supporting hyperplane at p^* may be vertical.

Sensitivity analysis

- Consider the problem $p^*(u, v) = \min f_0(x)$,
	- s.t. $f_i(x) \leq u_i$, $i \in [m]$, ($u_i < 0$ tighten constraint, $u_i > 0$ relax constraint) $h_i(x) = v_i$, $i \in [p]$ ($v_i \neq 0$, switch operating point).
- This is the generalization of $p(u)$ function.
	- $p^*(0,0) = p^*$ is the primal optimal value for unperturbed problem.
- Assume convex optimization satisfying Slater's.
	- $p^*(0,0) = g(\lambda^*, \nu^*)$ by strong duality. $=\min_x L(x,\lambda^*,\nu^*), p^*$ achieved at some $x^*, \lambda^*, \nu^*,$ $\leq L(x, \lambda^*, \nu^*)$ for any $x \in D$. Furthermore, pick x primal feasible for perturbed problem. $=f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{i=1}^p v_i^* h_i(x).$ i $\leq f_0(x) + \sum_{i=1}^m \lambda_i^* u_i + \sum_{i=1}^p v_i^*$ $_{i=1}^{p}$ $v_i^*v_i$, since x is feasible for perturbed problem and $\lambda_i^* \geq 0$. $=f_0(x) + (\lambda^*)^T u + (v^*)^T v.$
- Also holds for $x \in D$, optimal for perturbed problem for which $f_0(x) = p^*(u, v)$.
- $p^*(u, v) \ge p^*(0, 0) (\lambda^*)^T u (v^*)^T v$.
- If $\lambda^* \gg 1$, a small change in constraint changes the optimality greatly.

Lagrange method

- min $f_0(x)$,
	- s.t. $f_i(x) \leq 0, i \in [m]$.
- Steps
	- \circ Form Lagrangian, $L(x, \lambda) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x)$.
	- \circ Find dual, $g(\lambda) = \min_x L(x, \lambda)$.
	- \circ Find $\lambda^* = \arg \min_{\lambda \geq 0} g(\lambda)$.
	- \circ Recover x^* (primal optimal) using $L(x, \lambda^*)$ by finding x to minimize $L(x, \lambda^*)$.
- Remarks
	- \circ Attractive framework if there exists structure in dual problem that makes it easy to solve (λ^*, v^*) for numerically or analytically.
	- Given λ^* , the x that minimizes $L(x, \lambda^*)$ may not be unique when $p(u)$ is convex but not strictly convex.

Lagrange method for least squares.

- $\min\|x\|^2$, s.t. $Ax = b$, $A \in \mathbb{R}^{m \times n}$, $m < n$, underdetermined. • $x^* = A^T (AA^T)^{-1} b$. • $L(x, v) = ||x||^2 + \sum_{i=1}^m v_i (a_i^T x - b_i) = ||x||^2 + v^T (Ax - b).$ • $g(v) = \min_x (||x||^2 + v^T (Ax - b)),$ ∂ $\frac{\partial L}{\partial x} = 2x + A^T v = 0$ gives $x = -\frac{1}{2}$ $\frac{\partial L}{\partial x} = 2x + A^T v = 0$ gives $x = -\frac{1}{2}A^T v$. $g(v) = \frac{1}{4}$ $\frac{1}{4}$ $||A^T v||^2 - \frac{1}{2}$ $\frac{1}{2}v^{T}AA^{T}v - v^{T}b = -\frac{1}{4}$ • $g(v) = \frac{1}{4} ||A^T v||^2 - \frac{1}{2} v^T A A^T v - v^T b = -\frac{1}{4} v^T A A^T v - v^T b,$ $g'(v) = -\frac{1}{2}$ $g'(v) = -\frac{1}{2}AA^T v - b$, $v^* = \arg \max g(v) = -2(AA^T)^{-1}b$. $x^* = -\frac{1}{3}$ \circ $x^* = -\frac{1}{2}A^T v^* = A^T (A A^T)^{-1} b.$ Consider the dual problem • $\max_{v} g(v) = \min_{v} \left(\frac{1}{t} \right)$ \circ max_v $g(v) = min_v \left(\frac{1}{4} v^T A A^T v + v^T b\right)$. Equivalently, min $\left\| \frac{1}{2} \right\|$ $rac{1}{2}A^T$ \circ Equivalently, $\min \left\| \frac{1}{2} A^T v + x_0 \right\|^2$ where $Ax_0 = b$ (overdetermined).
	- $\overline{\mathbf{c}}$ $\frac{1}{2}$ $rac{1}{2}A^T$ $\overline{\mathbf{c}}$ $\frac{2}{\pi} = \left(\frac{1}{2}\right)$ $\frac{1}{2}A^T v + x_0 \bigg)^T \bigg(\frac{1}{2}$ $\frac{1}{2}A^T v + x_0 = \frac{1}{4}$ \circ $\left\| \frac{1}{2} A^T v + x_0 \right\|_2^2 = \left(\frac{1}{2} A^T v + x_0 \right)^2 \left(\frac{1}{2} A^T v + x_0 \right) = \frac{1}{4} v^T A A^T v + v^T b + const.$
	- Note: no constraints in over determined dual problem.
	- Re-express: $\text{min} ||y||^2$ s.t. $y = \frac{1}{2}$ \circ Re-express: min $||y||^2$ s.t. $y = \frac{1}{2}A^T x + x_0$.
- Dual of the dual
	- Lagrangian $L(x, y, v) = y^Ty + v^T(\frac{1}{2})$ \circ Lagrangian $L(x, y, v) = y^T y + v^T \left(\frac{1}{2}A^T x + x_0 - y\right)$.

$$
g(v) = \min_{x,y} L(x, y, v).
$$
\n
\n• $\frac{\partial L}{\partial x} = \frac{1}{2}Av$, hence $g(v) = -\infty$, unless $\frac{1}{2}Av = 0$.
\n• If $\frac{1}{2}Av = 0$, $L(x, y, v) = y^T y + v^T x_0 - v^T y$, $\frac{\partial L}{\partial y} = 2y - v$, so $y = \frac{1}{2}v$.
\n
$$
g(v) = \begin{cases}\n-\infty, if \frac{1}{2}Av \neq 0 \\
-\frac{1}{4}v^T v + v^T x_0, if \frac{1}{2}Av = 0\n\end{cases}
$$
\n
$$
\therefore \text{ Dual problem: } \max_{v} -\frac{1}{4}v^T v + v^T x_0 \text{ s.t. } Av = 0.
$$
\n
$$
\Leftrightarrow \min_{v} \frac{1}{4} (v - 2x_0)^T (v - 2x_0) - x_0^T x_0 \text{ s.t. } Av = 0.
$$
\n
$$
\Leftrightarrow \min_{v} \frac{1}{4} ||v - 2x_0||^2, \text{ s.t. } Av = 0.
$$
\n
$$
\therefore \text{ Let } z = v - 2x_0, Av = Az + 2b, \text{ so } \min ||\frac{z}{2}||^2, \text{ s.t. } Az = -2b.
$$
\n
$$
\therefore \text{ Let } \tilde{z} = -\frac{z}{2}, \min ||\tilde{z}||^2, \text{ s.t. } Az = b.
$$
\n
$$
\text{Dual of the dual is the primal for convex problems}
$$
\n
$$
f \in \mathbb{R}
$$

- Duals of LPs • min $c^T x$, s.t. $Ax \leq b$.
	- Lagrangian: $L(x, \lambda) = c^T x + \lambda^T (Ax b) = -\lambda^T b + (c^T + \lambda^T A) x$.
	- Dual function: $g(\lambda) = \begin{cases} -\infty, if \ c^T + \lambda^T, \ \lambda^T$ • Dual function: $g(\lambda) = \begin{cases} -\lambda^T b, c^T + \lambda^T A = 0 \end{cases}$.
	- Dual problem:

$$
\max - \lambda^T b,
$$

s.t. $\lambda \ge 0$, $c^T + \lambda^T A = 0$.

$$
1.1.7 \leq 0.6 \leq 0.7
$$

Dual of an LP is an LP

• LP satisfies Slater's so strong duality holds

• Dual of dual

\n- \n
$$
\text{Rewrite min } \lambda^T b, \text{ s.t. } A^T \lambda = -c, -\lambda \leq 0.
$$
\n
\n- \n
$$
L(\lambda, z, y) = \lambda^T b - z^T \lambda + y^T (A^T \lambda + c) = (b^T - z^T + y^T A^T) \lambda + y^T c.
$$
\n
\n- \n
$$
g(z, y) = \min_{\lambda} (b^T - z^T + y^T A^T) \lambda + y^T c = \begin{cases} -\infty, b^T - z^T + y^T A^T \neq 0 \\ y^T c, b^T - z^T + y^T A^T = 0 \end{cases}.
$$
\n
\n- \n
$$
\text{Dual: max } c^T y,
$$
\n
\n- \n
$$
\text{st. } Ay + b - z = 0, z \geq 0.
$$
\n
\n- \n
$$
\text{Equivalently: let } x = -y
$$
\n
\n- \n
$$
\min_{x} c^T x,
$$
\n
\n- \n
$$
\text{st. } Ax \leq b.
$$
\n
\n

Game theory

- zero sum game with linear payout
- Player 1 (P_1) plays $i \in [n]$, wants to minimize P_{ij} .
- Player 2 (P_2) plays $j \in [m]$, wants to maximize P_{ij} .
- Randomized strategies are allowed
	- \circ P_1 plays i with probability u_i .
	- ρ_2 plays j with probability v_j .
	- \circ Average payout: $\sum_i \sum_j u_i P_{ij} v_j = u^T P v$.
- Suppose P_1 goes first, its strategy u is known by P_2 , what strategy should P_2 use? $\max_{v} u^T P v$,

s.t.
$$
1^T v = 1, v \ge 0
$$
.

- Note: $(u^T P) v$ is simply selecting j element for $P^T u$, $\max_{j \in [m]} \lceil P^T u_j \rceil$ $\circ \;\;$ Note: $(u^T P) v$ is simply selecting j element for $P^T u$, $\max_{j \in [m]} \bigl[P^T u \bigr]_j.$
- \circ Knowing P_2 will do this, P_1 should choose u to minimize this.

 $\min_u \max_{j \in [m]} [P^T]$ j' s.t. $1^T u = 1, u \ge 0.$ ○ Equivalently. $min t$, $P^T u \leq t$ **1**, $1^T u = 1$, $u \geq 0$ (1). • Conversely, P_2 goes first, P_1 wants to minimize the cost. $\min_u u^T P v$, s.t. $1^T u = 1, u \ge 0.$ \circ Knowing P_1 will do this, P_2 should choose v to maximize this. $\max_v \min_{i \in [n]} [Pv]_i$ s.t. $1^T v = 1, v \ge 0.$ ○ Equivalently. max t, $Pv \geq t$ **1**, $1^T v = 1$, $v \ge 0$ (2). • Note: $\min_u \max_v f(u, v) \ge \max_v \min_u f(u, v)$. ○ Always have 2nd mover (inner) advantage. \circ So (1) \geq (2). • Here $(1)=(2)$ since (1) is the dual of (2) . $\circ \;\;$ Lagrangian of (1): $L(t,u,\lambda,\mu,\nu)=t+\lambda^T\big(P^Tu-t1\big)-\mu^Tu+\nu\big(1-1^Tu\big).$ Dual of (1): $g(\lambda, \mu, \nu) = \begin{cases} -\infty, 1-\lambda^T \end{cases}$ ○ Dual of (1): $g(\lambda, \mu, \nu) =\begin{cases} -\infty, 1-\lambda, 1+\nu \text{ or } (\lambda-\mu-1\nu) + \nu, \\ \nu, else \end{cases}$ ○ Dual problem max v, s.t. $\lambda \geq 0, \mu \geq 0$, $1^T \lambda = 1$, $P\lambda - \mu - 1\nu = 0.$ ○ Equivalently, $max v$, s.t. $\lambda \geq 0$, $1^T \lambda = 1$, $P\lambda \geq 1\nu$. • Note: helped us that inner optimization had explicit solution (select largest/smallest entry)

Constrained game theory

- Strategy of P_1 constrained to $Au \leq b$.
- Strategy of P_2 constrained to $Fv \leq g$.
- If P_1 goes first, P_2 will $\max_v u^T P v$, s.t. $F v \leq g$. P_1 solves: $\min_u \max_v u^T P v$, s.t. $Au \leq b$, $Fv \leq g$.
- If P_2 goes first, P_1 will $\min_u u^T P v$, s.t. $Au \leq b$. P_2 solves $\max_v \min_u u^T P v$, s.t. $Au \leq b$, $Fv \leq g$.
- Dualize max_v $u^T P v$ to get a min problem for P_1 .
- Dualize $\min_u u^T P v$ to get a min problem for P_2 .
- Then show the min problem is the dual of the max problem

Dualize l_1 -norm:

- min $||x||$ s.t. $Ax = b$.
- Equivalently: min $\sum_{i=1}^{n} t_i$, s.t. $x_i \le t_i$, $x_i \ge -t_i$, $Ax = b$. $\min[0^T, 1^T]$ \circ min[0^T, 1^T] $\binom{x}{t}$, •

s.t.
$$
\begin{pmatrix} I & -I \ -I & -I \end{pmatrix} \le 0
$$
,
\n $Ax = b$.
\n• $L(x, t, \lambda, \nu) = \sum_{i=1}^{n} t_i + \lambda^T \begin{pmatrix} I & -I \ -I & -I \end{pmatrix} \begin{pmatrix} x \ t \end{pmatrix} + \nu^T (Ax - b)$.
\n• $g(\lambda, \nu) = \inf_{x,t} \left(\begin{bmatrix} 0^T, 1^T \end{bmatrix} + \lambda^T \begin{pmatrix} I & -I \ -I & -I \end{pmatrix} + \begin{bmatrix} \nu^T A, 0^T \end{bmatrix} \right) \begin{pmatrix} x \ t \end{pmatrix} - \nu^T b = \begin{cases} -\nu^T b, if multiplier is 0 \ \infty \end{cases}$.
\n• Let $\lambda^T = (\lambda_x^T, \lambda_t^T), \lambda^T \begin{pmatrix} I & -I \ -I & -I \end{pmatrix} = (\lambda_x^T - \lambda_x^T - \lambda_x^T - \lambda_t^T)$.
\n• Dual problem
\n• $\min \nu^T b$,
\n• $t, \lambda_x^T - \lambda_t^T + \nu^T A = 0$,
\n $1^T - \lambda_x^T - \lambda_t^T = 0$,
\n $\lambda_x \ge 0, \lambda_t \ge 0$.
\n• $\text{Final two lines give } \lambda_{x_i} \in [0,1], \lambda_{t_i} \in [0,1]$, box constraints.
\n• Combining all constraints $\nu^T A = \lambda_t^T - \lambda_x^T = 2\lambda_t^T - 1 \in [-1,1]$ (l_{∞} norm).
\n• $\min \nu^T b$,
\n• $t, ||\nu^T A||_{\infty} \le 1$.

• Dual of
$$
l_p
$$
 is l_q where $\frac{1}{p} + \frac{1}{q} = 1$.

Generalized inequalities

•

$$
f_i(x) \leq_K 0 \text{ where } f_i: \mathbb{R}^n \to \mathbb{R}^m \text{ and } K \subset \mathbb{R}^m.
$$

$$
\circ f_i(x) \leq 0 \text{ where } f_i: \mathbb{R}^n \to \mathbb{R} \text{ is a special case } \left(\begin{array}{c} f_i(x) \\ \vdots \end{array} \right) \leq_{\mathbb{R}^m_+} 0.
$$

•
$$
K
$$
 is a proper cone if it is pointed, convex, non-empty and closed.

• $X \leq_K Y$ if $X - Y \in K$.

• For SDP,
$$
K = S_+^m
$$
, $x, y \in S^m$.
\n
$$
\circ \min c^T x,
$$
\n
$$
\text{s.t. } x_1 F_1 + x_2 F_2 + \dots + x_n F_n + G \leq_{S_+^m} 0,
$$
\n
$$
Ax = b.
$$
\n
$$
\circ F_1, \dots, F_n, G \in S^m.
$$

Dualizing generalized inequalities

- Key idea of dualization: $\sum \lambda_i f_i(\tilde{x}) = \langle \lambda, f(\tilde{x}) \rangle \leq 0$, \tilde{x} primal feasible, λ dual feasible.
- For generalized inequalities, need to identify some set that restricts dual variables to keep for all x feasible $(f(x) \leq_K 0)$.

f,

- \bullet Idea: if primal feasibility constraints defined by cone K, the dual variables will need to be constrained to dual cone K^* .
- Def: Let K be a cone. The set $K^* = \{Y : \langle X, Y \rangle \geq 0, \forall X \in K\}$ is the dual cone.
	- e.g.

$$
\mathbb{R}^{\mathbb{R}^*}
$$

■ Restricting to a ray:

• $K = \mathbb{R}^2_+$, then $K^* = \mathbb{R}^2_+$ (self-dual).

- When $\alpha > 90$, K^* reduces to 0.
- \circ To show K^* is cone.
	- Take $Y \in K^*$, $\forall \alpha \ge 0, X \in K^*$, $\langle X, Y \rangle \ge 0$, $\langle X, \alpha Y \rangle = \alpha \langle X, Y \rangle \ge 0$.
- \circ K^* is convex:
	- Let $Y, Z \in K^*, \lambda \in [0,1], X \in K^*.$
	- $(X, \lambda Y + (1 \lambda)Z) = \lambda \langle X, Y \rangle + (1 \lambda) \langle X, Z \rangle \geq 0.$
- For $K = S_+^m$, $K^* = K = S_+^m$ is self-dual.
	- \circ Inner product for matrices: $X, Y \in \mathbb{R}^{n \times m}$, $\langle X, Y \rangle = tr(X^T Y) = \sum_{i=1}^n \sum_{j=1}^m X_{ij} Y_{ij}$.
	- $N^* = (S_+^m)^* = \{ Y : tr(XY) \ge 0, \forall X \in S_+^m \}.$
	- \circ Any $Y \in S^m$, $Y \notin S^m_+$ is not in K^* .
		- To show, for each Y, find a single $X \in S^m_+$ s.t. $\langle X, Y \rangle < 0$.
		- If $Y \notin S^m_+$, then $\exists q \in \mathbb{R}^m$, s.t. $q^T Y q < 0$.
		- Let $X = qq^T \in S^m_+$.
		- $\langle X, Y \rangle = tr(XY) = tr(qq^{T}Y) = tr(q^{T}Yq) = q^{T}Yq < 0.$
		- So $Y \notin K^*$.
	- \circ Any $Y \in S^m_+$ is in K^* .
		- To show, show that $\forall X \in S^m_+$, s.t. $\langle X, Y \rangle \geq 0$.
		- For $X \in S^m_+$, $X = Q \Lambda Q^T = \sum_{i=1}^m \lambda_i q_i q_i^T$, Q orthogonal, $\Lambda \geq 0$.
		- $\langle X, Y \rangle = tr(XY) = tr\left(\sum_{i=1}^m \lambda_i q_i q_i^T Y\right) = \sum_{i=1}^m \lambda_i tr\left(q_i q_i^T Y\right) \geq 0$, since $Y \in S_+^m$.

Dual of SDPs

- min $c^T x$,
	- s.t. $x_1 F_1 + \dots + x_n F_n + G \leq 0$, F_i , $G \in S^n$.
- Primal variable: $x \in \mathbb{R}^n$.
- Dual variable: $Z \in S^n$.
- Lagrangian: $L(x, Z) = c^T x + (Z, x_1 F_1 + \cdots x_n F_n + G) = c^T x + \sum_{i=1}^n x_i \langle Z, F_i \rangle + \langle Z, G \rangle$. \circ = $\sum_{i=1}^{n} x_i (c_i + \langle Z, F_i \rangle) + \langle Z, G \rangle$.
- Dual function: $g(z) = \inf_x L(x, Z) = \begin{cases} t \end{cases}$ $\overline{}$ • Dual function: $g(z) = \inf_x L(x, Z) = \{f'(z_0), f'(z_1), f'(z_2)\}$
- Dual optimization problem: $max tr(ZG)$.

s.t.
$$
c_i + tr(ZF_i) = 0, Z \ge 0
$$
.

- Dual of SDP is SDP
- SDP can also satisfy strong duality if Slater's conditions are satisfied.

General approach to dualizing generalized inequalities

- If cone defining inequalities is K , find dual cone K^* .
- Constrain dual variables to K^* .
- Weak duality will follow from analogous step. •

$$
\circ \quad g(z) = \inf_{x} L(x, z) = \inf_{x} (c^T x + \langle Z, x_1 F_1 + \dots + x_n F_n + G \rangle),
$$

= $\inf_{x} (c^T x - \langle Z, -(x_1 F_1 + \dots + x_n F_n + G) \rangle),$
 $\leq c^T x.$

- o If x primal feasible, $-(x_1F_1 + \cdots x_nF_n + G) \ge 0$.
- o If z dual feasible, then $Z \in (S_+^m)^* = S_+^m$.
- For 2 cases of interest, the cones are self-dual.
	- \circ $(\mathbb{R}^m_+)^* = \mathbb{R}^m_+$.
	- $(S_{+}^{m})^{*} = S_{+}^{m}$.

Motivation: SDP relaxations

- Original problem
	- \circ min $x^T A x$,

s.t.
$$
x_i \in \{-1,1\}
$$
, $i \in [n]$ or $x_i^2 = 1$.

- 1st relaxation
	- \circ min $x^T A x$,

s.t. $-1 \le x \le 1$.

- o If $A \in S_{++}^n$, get $x = 0$, not helpful.
- \circ If $A \notin S^n_+$, still not convex.
- 2nd relaxation
	- \circ min tr(XA), $X = xx^T$, $X_{ii} = 1$, $X \geq 0$, $rank(X) = 1$ (dropped to get SDP).
- Dualizing original problem:

$$
\circ L(x,v) = x^T A x + \sum_{i=1}^n v_i (x_i^2 - 1) = x^T (A + diag(v)) x - 1^T v.
$$

\n
$$
\circ g(v) = \inf_x L(x,v) = \begin{cases} -1^T v, A + diag(v) \ge 0 \\ -\infty, else \end{cases}
$$

- Dual problem (SDP): $\max -1^T \nu$,
	- s.t. $A + diag(v) \ge 0$.
- Dualizing 2nd relaxation:
	- $0 \text{ } L(X,Z,v) = tr(XA) + \sum_{i=1}^{n} v_i (X_{ii} 1) + \langle Z, -X \rangle = tr(X(A + diag(v) Z)) 1^T v.$ $g(Z,v) = \min_x L(X,Z,v) = \begin{cases} -1^T v, A + diag(v) - Z = 0 \\ cos \theta \end{cases}$

$$
g(Z,v) = \min_x L(X,Z,v) = \begin{cases} 1 & v, t \in \mathcal{X} \\ -\infty, else \end{cases}
$$

- Dual problem: $\max -1^T \nu$, $A + diag(v) - Z = 0, Z \ge 0.$
- Equivalent to dualizing the original problem

Non-convex problem satisfying strong duality

- min $x^T A x$, s.t. $x^T x \leq 1$, $A \in S^n$.
- If $A \in S^n$, $A = Q \Lambda Q^T$, $Q \in \mathbb{R}^{n \times n}$ is orthonormal, rows/cols provide basis for \mathbb{R}^n . \circ Can write any $x \in \mathbb{R}^n$ as $x = \sum_{i=1}^n \alpha_i v_i = Q\alpha$.
- Rewrite the problem:

$$
\circ \ \ x^T A x = (\alpha^T Q^T) Q \Lambda Q^T Q \alpha = \alpha^T \Lambda \alpha = \sum_{i=1}^n \alpha_i^2 \lambda_i.
$$

$$
\circ \ \ x^T x = \alpha^T Q^T Q \alpha = \alpha^T \alpha = \sum_{i=1}^n \alpha_i^2 \le 1.
$$

- $A \in S^n_+$, so $\lambda_i \geq 0$, then $p^* = 0$ with $\alpha_i = 0$, $x = 0$.
- $A \notin S^n_+$, so $\exists i$ s.t. $\lambda_i < 0$, then $p^* \geq \lambda_{min} \sum_{i=1}^n \alpha_i^2 \geq \lambda_{min}$ achieved at $\alpha = e_j$, j corresponding to λ_{min} .
- Dualize problem

$$
L(x,\lambda) = x^T A x + \lambda (x^T x - 1) = x^T (A + \lambda I) x - \lambda.
$$

\n
$$
\circ \quad g(\lambda) = \min L(x,\lambda) = \begin{cases} -\lambda, A + \lambda I \ge 0 \\ -\infty, else \end{cases}.
$$

- \circ max $-\lambda$, s.t. $A + \lambda I \geq 0$, $\lambda \geq 0$. \circ $A + \lambda I = Q\Lambda Q^T + \lambda Q Q^T = Q(\Lambda + \lambda I)Q^T$, so $A + \lambda I \ge 0$ gives $\Lambda + \lambda I \ge 0$ or $\lambda \ge -\lambda_{min}(A)$.
- \circ When $A \in S^m_+$, we get $d^* = 0$.
- \circ When $A \notin S^m_+$, we get $d^* = \lambda_{min}$.
- Strong duality holds
- Dual of the dual

\circ min λ ,

s.t.
$$
A + \lambda I \geq 0, \lambda \geq 0
$$
.

$$
\circ L(x, Z, v) = \lambda - \langle Z, A + \lambda I \rangle - v\lambda = \lambda \operatorname{tr} \left(\frac{1}{n} I - \frac{v}{n} I - \operatorname{tr}(Z) \right) - \operatorname{tr}(ZA).
$$

$$
\left(-\operatorname{tr}(ZA) \operatorname{tr} \left(\frac{1}{n} I - \frac{v}{n} I - \operatorname{tr}(Z) \right) = 0
$$

$$
\circ \quad g(Z,v) = \inf_x L(x,Z,v) = \begin{cases} -tr(ZA), tr\left(\frac{1}{n}I - \frac{v}{n}I - tr(Z)\right) = 0 \\ -\infty, else \end{cases}
$$

- \circ max $-tr(ZA)$, s.t. $\nu \geq 0, Z \geq 0, tr(Z) = 1 - \nu$.
- \circ Equivalently, min $tr(ZA)$, s.t. $Z \geq 0$, $tr(Z) \leq 1$.
- \circ Equivalent to the relaxed SDP of the initial problem, with $Z = xx^T$.

KKT conditions

- Consider an optimization problem, for which primal and dual optimal values are obtained (at x^* , λ^* , v^*) and $p^* = d^*$ (strong duality holds)
- min $f_0(x)$, s.t. $f_i(x) \le 0$, $i \in [m]$, $h_i(x) = 0, i \in [p].$
- $L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$ • $L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^{\nu} \nu_i h_i(x).$
	- \circ $g(\lambda, \nu) = \inf_{\alpha} L(x, \lambda, \nu).$
		- o If strong duality holds, then $f_0(x^*) = g(\lambda^*, v^*)$.
		- $f_0(x^*) = g(\lambda^*, \nu^*) = \inf_x [f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{i=1}^p \nu_i^* h_i(x)]$ \circ $f_0(x^*) = g(\lambda^*, \nu^*) = \inf_x [f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{i=1}^p \nu_i^* h_i(x)],$ $\leq f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + \sum_{i=1}^p \nu_i^* h_i(x^*)$ $_{i=1}^{P}v_{i}^{*}h_{i}(x^{*}),$ (1) $\leq f_0(x^*)$. (2)
	- We must have all equalities
	- Consequences:
		- (1) \Rightarrow x^{*} is a minimizer of $L(x, \lambda^*, v^*)$.
		- (2) $\Rightarrow \lambda_i^* f_i(x^*) = 0, \forall i \in [m].$
- Complementary slackness
	- \circ Condition that $\lambda_i^* f_i(x^*) = 0$, $\forall i \in [m]$.
	- **O** If ith constraint is inactive, $f_i(x) < 0$, then $\lambda_i^* = 0$.
		- No more return if we use more resource (changing from $f_i(x) < 0$ to $f_i(x) = 0$).
	- o If $\lambda_i^* > 0$, then $f_i(x) = 0$.
		- We have use up all resources, if we want to improve, we go out of feasible set.
- If problem is differentiable
	- conditions
		- $f_0(x)$, $f_i(x)$, $h_i(x)$ are all differentiable.
		- Strong duality still holds
		- Convexity is not considered
	- $\sigma \propto x^*$ minimizes $L(x, \lambda^*, \nu^*)$ without constraints, $\nabla_x L(x, \lambda^*, \nu^*)\big|_{x=x^*} = 0.$
		- First order/primal optimal condition.
- KKT conditions
	- $\big|\nabla_{x}L(x,\lambda^{*},\nu^{*})\big|_{x=x^{*}}=\nabla f_{0}(x^{*})+\sum_{i=1}^{m}\lambda_{i}^{*}\nabla f_{i}(x^{*})+\sum_{i=1}^{p}\nu_{i}^{*}\nabla h_{i}(x^{*})=0.$
	- \circ $f_i(x^*) \leq 0$, $\forall i \in [m]$, $h_i(x^*) = 0$, $\forall i \in [p]$.
	- \circ $\lambda_i^* \geq 0$, $\forall i \in [m]$.
	- \circ $\lambda_i^* f_i(x^*) = 0$, $\forall i \in [m]$.
- Theorems (necessary and sufficient conditions)
	- \circ Necessary: If (x^*, λ^*, ν^*) are primal and dual optimal variables for an optimization problem, for which f_i and h_i all differentiable and for which strong duality holds, then (x^*, λ^*, ν^*) satisfies KKT conditions.
	- \circ Sufficient: start with an optimization problem, for which f_i and h_i all differentiable, f_i convex, affine, then if any $(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$ satisfies KKT, then.
		- Strong duality holds.
		- \tilde{x} primal optimal.
		- $\tilde{\lambda}$, $\tilde{\nu}$ dual optimal.
	- Proof (sufficient)
		- $L(x, \tilde{\lambda}, \tilde{v}) = f_0(x) + \sum_{i=1}^{m} \tilde{\lambda}_i f_i(x) + \sum_{i=1}^{p} \tilde{v}_i h_i(x)$ $L(x, \lambda, \tilde{v}) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \tilde{v}_i h_i(x).$
		- Since f_0, f_i convex, $h_i(x)$ affine by assumption, $\widetilde{\lambda}_i \geq 0$ by KKT, L is convex in x.
		- Since f_i , h_i differentiable, L is differentiable in x.
		- So, any point of zero gradient is global minimum.
		- By KKT(1), $\nabla_x L(x, \lambda, \tilde{v})\big|_{x=\tilde{x}} = 0.$
		- $g(\tilde{\lambda}, \tilde{\nu}) = \inf L(x, \tilde{\lambda}, \tilde{\nu}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu}).$
		- By definition, $g(\tilde{\lambda}, \tilde{\nu}) = f_0(\tilde{x}) + \sum_{i=1}^m \tilde{\lambda}_i f_i(\tilde{x}) + \sum_{i=1}^p \tilde{\nu}_i h_i(\tilde{x}) = f_0(\tilde{x}).$ \Box Since $\widetilde{\lambda}_i f_i(\widetilde{x}) = 0$ by CS, $h_i(\widetilde{x}) = 0$.
		- So strong duality holds.
		- Note, \tilde{x} is also primal feasible by KKT(2).
- o Summary
	- $g(\lambda,\tilde{\nu})$ is a lower bound on $f_0(x)$, $\forall x$ primal feasible and \tilde{x} meets bound with equality, so \tilde{x} is primal optimal.
	- $f_0(\tilde{x})$ is an upper bound on $g(\lambda,\nu)$, $\forall \lambda,\nu$ dual feasible and $(\lambda,\tilde{\nu})$ meets bound with equality,s o dual optimal.
- Combine two theorems
	- Class of optimization problems that are differentiable, so KKT condition exists.
	- Convex, so have sufficiency via B
	- Strong duality holds, so necessity via A
	- If differentiable, convex, satisfies Slater's, then KKT is necessary and sufficient

Water-filling for additive white Gaussian noise channels

$$
\times \rightarrow \bigoplus_{i=1}^{k} \rightarrow y_{i}
$$

- $z_i \sim N(0, N_i)$. \circ $N_i \geq 0$: noise variance of channel *i*.
- $P_i \geq 0$: power over channel *i*.
- Total power constraint: $P_T \geq \sum_{i=1}^n P_i$.
- Problem

$$
\max_{P_i} \sum_{i=1}^n \log \left(1 + \frac{P_i}{N_i} \right) \text{(equivalently, min} - \sum_{i=1}^n \log \left(1 + \frac{P_i}{N_i} \right)),
$$
s.t. $P_i \ge 0, i \in [n]$,

$$
\sum_{i=1}^n P_i \le P_T.
$$

•
$$
L(P, \lambda, \mu) = \sum_{i=1}^{n} -\log \left(1 + \frac{P_i}{N_i} \right) + \lambda \left(\sum_{i=1}^{n} P_i - P_T \right) - \sum_{i=1}^{n} \mu_i P_i.
$$

• KKT conditions

$$
\circ \ \frac{\partial L}{\partial P_i} = -\frac{1}{1 + \frac{P_i}{N_i}} \frac{1}{N_i} + \lambda - \mu_i = 0, \forall i \in [n].
$$

$$
\circ \quad P_i \geq 0, \, \sum_{i=1}^n P_i = P_T.
$$

- $0, \lambda \geq 0, \mu_i \geq 0, \forall i \in [n].$
- φ $\mu_i P_i = 0$, if $P_i > 0$, then $\mu_i = 0$.
- $\circ \quad \lambda\big(\sum_{i=1}^n P_i P_T\big) = 0$, if $\sum P_i < P_T$, then $\lambda = 0$, if $\sum P_i = P_T$, then $\lambda \geq 0$. Since objective is monotone increasing in each P_i , will use total budget, $\sum P_i = P_T$.
- By 1, $P_i + N_i = \frac{1}{1}$ • By 1, $P_i + N_i = \frac{1}{\lambda - \mu_i}$. If $P_i > 0$, then $\mu_i = 0$, $P_i + N_i = \frac{1}{2}$ ○ If $P_i > 0$, then $\mu_i = 0$, $P_i + N_i = \frac{1}{\lambda}$ (power+noise=const for active channels). $1 \t1$

$$
\circ \quad \text{If } P_i = 0 \text{, then } N_i = \frac{1}{\lambda - \mu_i} \ge \frac{1}{\lambda}.
$$

- $\mathbf{1}$ • $\frac{1}{\lambda}$ is water-filling parameter.
	- If $N_i < \frac{1}{3}$ \circ If $N_i < \frac{1}{\lambda'}$, we add power to channel i.
	- If $N_i \geq \frac{1}{2}$ \circ If $N_i \geq \frac{1}{\lambda'}$, no need to make it active.
- For any fixed λ , $P_i = \max\left\{\frac{1}{2}\right\}$ • For any fixed λ , $P_i = \max\left\{\frac{1}{\lambda} - N_i, 0\right\}$.
- By sorting (by noise level), identify $n^* \leq n$ active channels.

$$
\begin{aligned}\n&\circ \quad \sum_{i=1}^{n^*} (P_i + N_i) = \sum_{i=1}^{n^*} \frac{1}{\lambda^*} \\
&\circ \quad P_T + \sum_{i=1}^{n^*} N_i = \frac{n^*}{\lambda^*} \\
&\circ \quad \frac{1}{\lambda^*} = \frac{1}{n^*} \Big(P_T + \sum_{i=1}^{n^*} N_i \Big). \n\end{aligned}
$$

- Perturb power budget from P_T to $P_T + \epsilon$.
	- Assume n^* active channel, each gets $\frac{\epsilon}{n^*}$ extra power, what's the benefit?
	- $\log\left(1+\frac{P_i^*+\epsilon/n^*}{N}\right)$ $\frac{P_i^* + \epsilon/n^*}{N_i}$ - $\log\left(1 + \frac{P_i^*}{N_i}\right)$ \circ $\log\left(1+\frac{r_i+e/n}{N_i}\right)-\log\left(1+\frac{r_i}{N_i}\right),$

$$
= \log\left(\frac{P_i^* + N_i + \epsilon/n^*}{P_i^* + N_i}\right) = \log\left(1 + \frac{\epsilon/n^*}{P_i^* + N_i}\right),
$$

= log\left(1 + \frac{\epsilon/n^*}{1/\lambda^*}\right),
≈ $\frac{\epsilon/n^*}{1/\lambda^*} = \frac{\epsilon \lambda^*}{n^*}$ is the rate increase for each channel *i*.
Orotal rate is increased by $\epsilon \lambda^*$.

Geometric interpretation of KKT

• min $f_0(x)$,

- s.t. $f_i(x) \leq 0, i \in [m],$ $h_i(x) = 0, i \in [p].$
- At optimum x^* , some $f_i(x) < 0$ inactive, consider the following problem only $\min f_0(x)$,

$$
s.t. f_i(x) = 0, \{i: f_i \text{ active}\},
$$

- $h_i(x) = 0, i \in [p].$
- For equality constraints

$$
\min f_0(x),
$$

s.t. $Ax = b$.

- \circ Perturb x^* while staying feasible
	- $A(x^* + \Delta x) = Ax^* + A\Delta x = b.$
	- A feasible perturbation satisfies $A\Delta x = 0$.

e.g.
$$
A = (2,1), b = 1, 2x_1 + x_2 = 1.
$$

$$
\Box \quad \Delta x = \left\{ \alpha \begin{pmatrix} -1 \\ 2 \end{pmatrix}, \alpha \in \mathbb{R} \right\}.
$$

\n• Generally, $A \Delta x = \begin{pmatrix} a_1^T \\ \vdots \\ a_p^T \end{pmatrix} \Delta x = 0$ gives $a_i \perp \Delta x$, $\forall i \in [p]$, $\Delta x \in N(A)$.

• A point
$$
x^* \in C
$$
 for a convex opt problem is optimal iff $\forall y \in C$, $\nabla f_0(x^*)^T (y - x^*) \ge 0$.

- \Box If $\nabla f_0(x^*)^T \Delta x \geq 0$, $\forall \Delta x \in N(A)$, then $-\Delta x \in N(A)$.
- \Box For optimality, need $\nabla f_0(x^*)^T \Delta x = 0$, $\forall \Delta x \in N(A)$.
- \Box In other words, $\nabla f_0(x^*)^T \perp N(A)$, i.e. $\nabla f_0(x^*)^T \in N(A)^\perp = R\bigl(A^T\bigr).$
	- \Box Hence, can write $\nabla f_0(x^*) = A^T \alpha$.
- Optimum criteria for equality constrained optimization problem
	- A point x is optimal iff $\nabla f_0(x)^T \Delta x = 0$, $\forall x$, s.t. $A\Delta x = 0$.
- Connect to KKT
	- $L(x, v) = f_0(x) + v^T (Ax b).$

$$
\bullet \quad \nabla_x L = \nabla f_0(x) + A^T \nu = 0, \nabla f_0(x) = A^T(-\nu) \in R(A^T).
$$

- e.g. $\min \frac{1}{2}(x_1^2 + x_2^2)$, s.t. χ $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 1, x^* = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ **•** e.g. min $\frac{1}{2}(x_1^2 + x_2^2)$, s.t. $(2,1)\binom{x_1}{x_2} = 1$, $x^* = \binom{2}{1/5}$. $\nabla f_0(x^*) = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ $\binom{2}{1/5}$, $A^T = \binom{2}{1}$ $\binom{2}{1}$, $-\nu = \frac{1}{5}$ $\nabla f_0(x^*) = \left(\begin{array}{c} 2/3 \\ 1/5 \end{array}\right), A^T = \left(\begin{array}{c} 2 \\ 1 \end{array}\right), -\nu = \frac{1}{5}.$
- The KKT condition represent balance of force
	- $\nabla f_0(x) = -\sum_{i=1}^m \lambda_i \nabla f_i(x) \sum_{i=1}^p \nu_i \nabla h_i(x)$ $\circ \ \nabla f_0(x) = -\sum_{i=1}^m \lambda_i \nabla f_i(x) - \sum_{i=1}^p \nu_i \nabla h_i(x).$
- Why Slater's?
	- \circ We need some $\{\lambda_i\}$ to make $\nabla f_0(x) = -\sum_{i=1}^m \lambda_i \nabla f_i(x)$.
	- o e.g. min $x_1 + x_2$, s.t. $(x_1 + 1)^2 + x_2^2 \le 1$, $(x_1 2)^2 + x_2^2 \le 4$.
		- Only one feasible point $x^* = (0,0)$, Slater's doesn't hold.

•
$$
\nabla f_0(x) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \nabla f_1(x) = \begin{pmatrix} 2x_1 + 2 \\ 2x_2 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \nabla f_2(x) = \begin{pmatrix} 2x_1 - 4 \\ 2x_2 \end{pmatrix} = \begin{pmatrix} -4 \\ 0 \end{pmatrix}.
$$

Cannot pick λ to have $\nabla f_0(x) = -\lambda_1 \nabla f_1(x) - \lambda_2 \nabla f_2(x)$.

Algorithms

September 12, 2022 12:56 PM

Unconstrained optimization

- min $f_0(x)$, f_0 is convex and twice differentiable
- Idea: produce a sequence x^k , $k = 1,2,3, ...$ such that cost decreases at each step and $f_0(x^k) \to p^* = \min f_0(x)$.
- Descent method:
	- \circ $x^{k+1} = x^k + t^k \Delta x^k$, t is step size, Δx is direction.
	- \circ Need $f_0(x^{k+1}) < f_0(x^k)$.
- Steepest/gradient descent:
	- \circ Pick Δx^k to align with direction of most negative gradient $\Delta x^k = -\nabla f_0\big(x^k\big).$
	- \circ Since $f(x)$ is convex, $f_0(y) \ge f_0(x) + \nabla f_0(x)^T (y x)$. Set $f_0(y) = f_0(x^{k+1}), f_0(x) = f_0(x^k), (y - x) = \Delta x^k$.
	- For choice in steep descent, $f_0(x^{k+1}) \ge f_0(x^k) ||\nabla f_0(x^k)||_2^2$ ○ For choice in steep descent, $f_0(x^{k+1}) \ge f_0(x^k) - ||\nabla f_0(x^k)||^2$.
	- \circ But just picking direction as above and step size $t=1$ does not guarantee progress
	- \circ Algorithm: given $x \in dom(f_0)$.
		- Repeat:
			- □ Choose $\Delta x = -\nabla f_0(x)$.
			- \Box Choose $t > 0$.
			- \Box Update $x + t\Delta x$.
		- **Until** $\left\|\nabla f_0(x)\right\|^2 < \epsilon$.
- Choosing t .
	- Exact line search:
		- Set $t = \arg \min_{t>0} f_0(x + t\Delta x)$.
		- 1D convex optimization problem.
	- Backtracking line search:
		- Parameters:
			- $\alpha \in (0, 0.5)$: used to identify a good step size.
			- \Box $\beta \in (0,1)$: multiplicative step size search parameter.
		- Algorithm: start with $t=\frac{1}{\rho}$ ■ Algorithm: start with $t = \frac{1}{\beta}$.
			- □ Repeat:
				- \bullet Set $t = \beta t$ (reduce step size).

$$
\Box \text{ Until } f_0(x + t\Delta x) < f_0(x) + \alpha t \nabla f_0(x)^T \Delta x.
$$

- Newton's method:
	- Improved direction
		- In steepest descent, fit a hyperplane to $f_0(x)$, first order method.
		- In Newton's method, fit a second order approximation to determine direction

$$
\circ \quad f_0(x + \Delta x) \approx f_0(x) + \nabla f_0(x)^T \Delta x + \frac{1}{2} \Delta x^T \nabla^2 f_0(x) \Delta x.
$$

- Minimize $f_0(x)$ w.r.t. Δx to find direction.
	- ∂ • $\frac{\partial}{\partial \Delta x} (f_0(x + \Delta x)) = \nabla f_0(x) + \nabla^2 f_0(x) \Delta x = 0.$
	- $\Delta x = -(\nabla^2 f_0(x))^{-1} \nabla f_0(x)$ if Hessian is invertible.
- \circ Algorithm: given $x \in dom(f_0)$.
	- Repeat:
		- \Box Choose $\Delta x_{nt} = -(\nabla^2 f_0(x))^{-1} \nabla f_0(x)$.
		- \Box Choose $t > 0$.
		- □ Update $x = x + t\Delta x_{nt}$. ÷
	- Until $\sqrt{\nabla f_0(x)^T (\nabla^2 f_0(x))}^{-1} \nabla f_0(x)$ ■ Until $\sqrt{\nabla f_0(x)^T (\nabla^2 f_0(x))}$ $\sqrt{\nabla f_0(x)} < \epsilon$.
- Exit condition: since $f_0(x+t\Delta x_{nt}) \approx f_0(x) \left(t \frac{t^2}{2}\right)$ \circ Exit condition: since $f_0(x+t\Delta x_{nt}) \approx f_0(x) - \left(t-\frac{t^2}{2}\right) \nabla f_0(x)^T \left(\nabla^2 f_0(x)\right)^{-1} \nabla f_0(x).$

• Example:

$$
\circ f_0(x) = \frac{1}{2} (x_1^2 + \gamma x_2^2), \gamma > 1.
$$

\n
$$
\circ x = {x_1 \choose x_2}, x^* = {0 \choose 0}, \nabla f_0(x) = {x_1 \choose \gamma x_2}, \nabla^2 f_0(x) = {1 \choose 0, \gamma}.
$$

\n
$$
\circ \Delta x_{nt} = -(\nabla^2 f_0(x))^{-1} \nabla f_0(x) = -{1 \choose 0, \gamma} {x_1 \choose \gamma x_2} = -{x_1 \choose x_2}.
$$

Equality constrained minimization

- min $f_0(x)$,
	- s.t. $Ax = b$.
- KKT conditions:
	- $L(x, v) = f_0(x) + v^T (Ax b).$
	- $\circ \ \nabla_x L(x,v) = \nabla f_0(x) + A^T v = 0.$
	- \circ $Ax = b$.
- Idea is to solve sequentially while continually satisfying primal feasibility
	- \circ $x^{k+1} = x^k + t \Delta x$, $Ax^{k+1} = b$.
	- \circ t Δx must be selected to satisfy primal feasibility.
- $\min \nabla f_0(x)v + \frac{1}{2}$ • $\min \nabla f_0(x)v + \frac{1}{2}v^T \nabla^2 f_0(x)v,$
	- s.t. $A(x + v) = b$ (since $Ax = b$, we simply need $Av = 0$).
- Solve for v .
	- $L(\nu,\mu) = \nabla f_0(x)^T \nu + \frac{1}{2} \nu^T \nabla^2 f_0(x) \nu + \mu^T (A \nu).$ $\overline{\mathbf{c}}$
	- \circ KKT gives: $\nabla_{v}L = \nabla f_{0}(x) + \nabla^{2} f_{0}(x)v + A^{T}\mu = 0, Av = 0.$

$$
\circ \begin{pmatrix} \nabla^2 f_0(x) & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} \nu \\ \mu \end{pmatrix} = \begin{pmatrix} -\nabla f_0(x) \\ 0 \end{pmatrix}.
$$

- The matrix is called KKT matrix.
- Solution:
	- **·** Invert KKT matrix to find v .
	- **Back substitution if only** $\nabla^2 f_0(x)$ **is invertible. If not invertible, can still deal with** that by making it PSD. Now consider the invertible case
- Back substitution

$$
\circ \ \ v + (\nabla^2 f_0(x))^{-1} A^T \mu = -(\nabla^2 f_0(x))^{-1} \nabla f_0(x).
$$

- \circ $Av + A(\nabla^2 f_0(x))^{-1} A^T \mu = -A(\nabla^2 f_0(x))^{-1} \nabla f_0(x).$
- \circ Since $Av = 0$, $\mu = -\left(A(\nabla^2 f_0(x))^{-1} A^T\right)^{-1} A(\nabla^2 f_0(x))^{-1} \nabla f_0(x)$.
- Substitute μ back into ν equation, $\nu = -\nabla^2 f_0(x)^{-1} (\nabla f_0(x) + A^T \mu)$.
	- Note $A^T\mu$ adds the constraint.
- Algorithm: given $x^0 \in dom(f_0)$ such that $Ax^0 = b$.
	- Repeat:
		- Compute v as above.
		- **•** Set $\Delta x_{nt} = v$.
		- **E** Line search for t .
		- $x^{t+1} = x^t + t\Delta x_{nt}$ (since $Av = 0$, $Atv = 0$, doesn't affect feasibility).

$$
\circ \quad \text{Until } \Delta x_{nt}^T \left(\nabla^2 f_0(x) \right)^{-1} \Delta x_{nt} < \epsilon^2.
$$

• Infeasible start Newton

$$
\begin{aligned}\n&\circ \quad \min f_0(x^0) + \nabla f_0(x^0)^T v + \frac{1}{2} v^T \nabla^2 f_0(x^0) v, \\
&\text{s.t. } A(x^0 + v) = b. \\
&\circ \quad \begin{pmatrix} \nabla^2 f_0(x) & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} v \\ \mu \end{pmatrix} = \begin{pmatrix} -\nabla f_0(x) \\ -\left(Ax^0 - b\right) \end{pmatrix} . \\
&\circ \quad \text{If use step size } t = 1, \text{ get a feasible } x^1.\n\end{aligned}
$$

- Can be used in the algorithm above.
- Interpretation of infeasible start as a primal dual algorithm
	- \circ Update both primal variable x and dual variable v in order to approximately statisfy KKT.
	- \circ min $f_0(x)$, s.t. $Ax = b$.

• KKT:
$$
\nabla f_0(x) + A^T v = 0
$$
, $Ax = b$.
\n• Let $y = \begin{pmatrix} x \\ v \end{pmatrix}$, residue $r(y) = \begin{pmatrix} \nabla f_0(x) + A^T v \\ Ax - b \end{pmatrix}$.
\n• Goal: drive $||r(y)|| \rightarrow 0$, stop when $||r(y)|| < \epsilon$.
\n• Start at $y = \begin{pmatrix} x \\ v \end{pmatrix}$, move to $y + \Delta y = \begin{pmatrix} x \\ v \end{pmatrix} + \begin{pmatrix} \Delta x \\ \Delta v \end{pmatrix}$.
\n• $r(y + \Delta y) = r(y) + Dr(y)\Delta y = r(y) + \begin{pmatrix} \nabla^2 f_0(x) & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} \Delta x \\ \Delta v \end{pmatrix} = 0$.
\n• $\begin{pmatrix} \nabla f_0(x) + A^T v \\ Ax - b \end{pmatrix} + \begin{pmatrix} \nabla^2 f_0(x) & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} \Delta x \\ \Delta v \end{pmatrix} = 0$.
\n• $\begin{pmatrix} \nabla^2 f_0(x) & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} \Delta x \\ \Delta v \end{pmatrix} = -\begin{pmatrix} \nabla f_0(x) + A^T v \\ Ax - b \end{pmatrix}$.
\n• Equivalently, $\begin{pmatrix} \nabla^2 f_0(x) & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} \Delta x \\ v + \Delta v \end{pmatrix} = -\begin{pmatrix} \nabla f_0(x) \\ Ax - b \end{pmatrix}$.

Inequality constrained problems

• min $f_0(x)$, s.t. $Ax = b$, $f_i(x) \le 0, i \in [m].$

- Idea (interior point): build a barrier at edge of feasible set so that always stay strictly feasible.
- Log barrier •

\n- \n
$$
\circ
$$
 Adds a parameter $t > 0$, $-\frac{1}{t} \log(-u)$.\n
\n- \n \circ As $t \to \infty$, get $\begin{cases} 0, u < 0 \\ \infty, u = 0 \end{cases}$.\n
\n

$$
\cos \theta u = 0
$$

- Modify problem using log barrier
	- $\min f_0(x) \frac{1}{t}$ o $\min f_0(x) - \frac{1}{t} \sum_{i=1}^m \log(-f_i(x)),$ s.t. $Ax = b$.
	- \circ Often do min $tf_0(x) \sum_{i=1}^m \log(-f_i(x))$, s.t. $Ax = b$.
- Algorithm (Barrier method)
	- o Initialize x^0 feasible, $t^0 = 10$.
	- Repeat:
		- Solve min $tf_0(x) \sum_{i=1}^m \log(-f_i(x))$, s.t. $Ax = b$ using equality constrained algorithms.
		- Update $x^{k+1} = x^*(t^k)$.
		- Increment $t^{k+1} = \gamma t^k$ (typically $\gamma = 10$ ~20).
	- \circ Until $\frac{m}{t} < \epsilon$, where m is the number of inequality constraints.
- Note: 2 loops
	- \circ Outer: update t.
	- Inner: solve an optimization problem.
		- Requires Newton's method, since both $tf_0(x)$ and $\sum_{i=1}^{m} \log(-f_i(x))$ are large.
- Central path:
	- \circ Trajectory of x^k , stays in the feasible set, moving towards the boundary.

Log barrier cont

\n- \n
$$
\phi(x) = -\sum \log(-f_i(x)).
$$
\n
\n- \n
$$
\nabla \phi = \sum -\frac{1}{f_i(x)} \nabla f_i(x).
$$
\n
\n- \n
$$
\nabla^2 \phi = \sum \frac{1}{(f_i(x))^2} \nabla f_i(x) \nabla f_i(x)^T + \sum \frac{1}{-f_i(x)} \nabla^2 f_i(x).
$$
\n
\n

Phase I: find a feasible x^0

- Solve a feasibility problem
	- \circ mins,
		- s.t. $f_i(x) \leq s$, $i \in [m]$, $Ax = b$.
- $s^* < 0$, x^* is in interior, use as x^0 .
- $s^* > 0$, feasible set is empty.
- To initialize phase I, need a strictly feasible (s, x) .
	- \circ Pick any $x \in \mathbb{R}^n$ (actually $\cap_i^m \text{ dom}(f_i)$).
	- \circ Set $s = \max f_i(x) + \epsilon$.

Stopping criteria

- Consider a point $x^*(t)$ on central path $x^*(t) = \arg \min_{Ax=b} tf_0(x) \sum \log(-f_i(x)).$
	- \circ Any such $x^*(t)$ is strictly feasible.
	- \circ $Ax^*(t) = b.$
	- \circ $f_i(x^*(t)) < 0.$
- Lagrangian: $\tilde{L}(x,\mu) = tf_0(x) \sum log(-f_i(x)) + \mu^T(Ax b).$
- Since x^* is optimum, must satisfy KKT: $t\nabla f_0(x^*) + \sum_{-\infty}^{-1}$ • Since x^* is optimum, must satisfy KKT: $t\nabla f_0(x^*) + \sum \frac{1}{-f_i(x^*)}\nabla f_i(x^*) + A^T\mu = 0$.

$$
\circ \ \nabla f_0(x^*) + \sum \frac{1}{-tf_i(x^*)} \nabla f_i(x^*) + A^T \left(\frac{\mu}{t}\right) = 0.
$$

- For original problem
	- \circ min $f_0(x)$, s.t. $f_i(x) \leq 0$, $Ax = b$. $L(x, \lambda, \nu) = f_0(x) + \sum \lambda_i f_i(x) + \nu^T (Ax - b).$
- $\lambda_i^* = \frac{1}{\sqrt{1 + \frac{1}{n}} \sqrt{1 \frac{1}{n}} \sqrt{1 \frac{1}{n}} \sqrt{1 \frac{1}{n}} \sqrt{1 \frac{1}{n}}$ $\frac{1}{-tf_i(x^*(t))} > 0, v^* = \frac{\mu}{t}$ • $\lambda_i^* = \frac{1}{-tf_i(x^*(t))} > 0, \nu^* = \frac{\mu}{t}.$
- $L(x, \lambda^*, v^*) = f_0(x) + \sum \lambda_i^* f_i(x) + v^{*T}(Ax b).$
- Note: $L(x, \lambda^*, v^*)$ is convex in x.
- $\arg\min_{x} L(x, \lambda^*, v^*) = x$ such that $\nabla_x L(x, \lambda^*, v^*) = 0$.
- $\nabla_x L(x, \lambda^*, v^*) = \nabla f_0(x) + \sum \lambda_i^* \nabla f_i(x) + A^T v^* = 0.$
- $x^*(t) = \arg \min_x L(x, \lambda^*, v^*)$.
- $g(\lambda^*, v^*) = \min_x L(x, \lambda^*, v^*) = L(x^*, \lambda^*, v^*) \leq \max_{\lambda \geq 0} g(\lambda, v) = d^* = p^*.$

•
$$
p^* \ge g(\lambda^*, v^*) = L(x^*, \lambda^*, v^*) = f_0(x^*) + \sum \frac{1}{-tf_i(x^*)} f_i(x^*) + (v^*)^T (Ax^* - b) = f_0(x^*) - \frac{m}{t}
$$

$$
\bullet \ \frac{m}{t} \ge f_0(x^*) - p^* \ge 0.
$$

• To apply equality constrained Newton to P_1 , solve

$$
\circ \begin{pmatrix} t\nabla^2 f_0(x) & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} \Delta x \\ v \end{pmatrix} = - \begin{pmatrix} t\nabla f_0(x) + \nabla \phi(x) \\ Ax - b \end{pmatrix}.
$$

Inequality-constrained SDPs

- min $c^T x$, s.t. $x_1 F_1 + \cdots x_n F_n + G \leq 0$.
- Let $F(x) = x_1 F_1 + \dots + x_n F_n + G$.
- $\phi(x) = -\sum \log(-f_i(x)) = -\log(-\prod f_i(x)) = -\log \det (diag(-f_i(x)))$ for ordinary problems.
- Barriers for SDPs: $\phi(X) = -\log \det(-F(X)).$
- \circ ∇ log det $X = X^{-1}$. • Start with an $F(X)$ in interior, $-F(X) \in S^m_+$.
	- \circ $-F(X) > 0$, $\det(-F(X)) > 0$.
- As an eigenvalue approaches boundary, $eig(-F(X)) \to 0$, $det(-F(X)) \to 0$, $-\log \det(-F(X)) \to \infty$.
- $\min c^{T} x + \phi(x) = \min c^{T} x \frac{1}{t}$ • $\min c^T x + \phi(x) = \min c^T x - \frac{1}{t} \log \det(-F(X)).$