ECE1647 Introduction to Nonlinear Systems

Introduction

- Goal: to analyze (not model or design/control) a nonlinear system
- Caveate: to perform a rigorous mathematical analysis, generally the system has to have a reasonable dimension and/or be a structured model

Dynamic systems of the form

$$\dot{x}_1 = f(x_1, ..., x_n)$$

...
 $\dot{x}_n = f(x_1, ..., x_n),$

where $x_1(t), ..., x_n(t) \in \mathbb{R}$ are the states and each $f_i : \mathbb{R}^n \to \mathbb{R}$ is a nonlinear map. Each equation is an

autonomous ODE. More generally, $\dot{x}_i = f_i(t, x_1, ..., x_n)$ is a non-autonomous nonlinear ODE. Introduce the state vector $x(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix}$, $f(t, x) = \begin{bmatrix} f_1(t, x_1, ..., x_n) \\ \vdots \\ f_n(t, x_1, ..., x_n) \end{bmatrix}$. Then we write $\dot{x} = f(x)$ or $\dot{x} = f(t, x)$. At times, we consider $\dot{x} = f(x, u)$, where $u \in \mathbb{R}^m$ is the control input

A special form of nonlinear control system is called **control affine system**

$$\dot{x} = f(x) + g(x)u,$$

where $f : \mathbb{R}^n \to \mathbb{R}^n, x \in \mathbb{R}^n, g : \mathbb{R}^m \to \mathbb{R}^n, u \in \mathbb{R}^m$. Even more ubiquitous is **LTI systems**:

$$\dot{x} = Ax + Bu.$$

A third class of models is for mechanical systems (e.q. robotic manipulation):

$$m(q)\ddot{q} + c(q,\dot{q})\dot{q} + g(q) = u$$

Note: this model is nonlinear, but not presented as a state model. To convert to a state model, we must define states. The states for a mechanical system are $x = \begin{bmatrix} q \\ \dot{q} \end{bmatrix}$, $q \in \mathbb{R}^N$. The system is

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = m(q)^{-1} [-c(q, \dot{q})\dot{q} - g(q) + u] = m(x_1)^{-1} [-c(x_1, x_2)x_2 - g(x_q) + u]$$

Why nonlinear models?

- Nonlinear models arise in significant applications
- Nonlinear phenomena (distinct from linear systems)
 - Finite escape time
 - Multiple isolated equilibrium
 - Limit cycles
 - Chaos

0.1Nonlinear Analysis

A. Existence and Uniqueness of Solutions

Example: $\dot{x} = -x$, $x(t) = x(0)e^{-t}$ is exponentially stable. $\dot{x} = -x^2$ has finite escape time. Key concept: Lipschitz continuity.

B. Invariant Sets

Key concept: Nagumo Theorem

C. Stability

Type of stability: Globally Exponential Stability, Asymptotic Stability, Stability

Key concept: Lyapunov analysis

Suppose for $\dot{x} = f(x), f(0) = 0$, then x = 0 is an equilibrium. We want to study stability of the equilibrium.

Define a Lyapunov function $V: \mathbb{R}^n \to \mathbb{R}$, Compute the Lie derivative: $\frac{dV(x(t))}{dt} = \frac{\partial V}{\partial x}\Big|_{x=x(t)} \cdot \frac{dx}{dt} =$ $\frac{\partial V}{\partial x}(x(t))f(x(t))$. We want $\dot{V} \leq 0$ or more preferrably $\dot{V} \leq \alpha V$.

Examples 0.2

Pendulum Model

Using Newton's 2nd law:

$$ml\ddot{\theta} = -mg\sin\theta - kl\dot{\theta}$$

Define the state $x_1 = \theta, x_2 = \dot{\theta}$. Then the state model is

$$\begin{aligned} x_1 &= x_2 \\ \dot{x}_2 &= -\frac{g}{2} \sin(x_1) \end{aligned}$$

$$\dot{x}_2 = -\frac{g}{l}\sin(x_1) - \frac{k}{m}x_2$$

It has the form: $\dot{x} = f(x)$ where $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$. Let f(x) = 0 and solve for x, we get $(x_1, x_2) = (k\pi, 0)$.

Van der Pol Equation

$$\ddot{V} - \epsilon (1 - V^2)\dot{V} + V = 0, \epsilon > 0$$

Define $x_1 = V, x_2 = \dot{V}$, then

$$\dot{x}_1 = x_2$$

 $\dot{x}_2 = -x_1 + \epsilon (1 - x_1^2) x_2$

If $\epsilon = 0$, then $\dot{x} = Ax$, with $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$. It is an oscillator. Otherwise, $\epsilon > 0$, we get a limit cycle.

Figure 1: Phase Plots for Van der Pol Equation

Adaptive Control

$$\dot{x} = Ax + Bu - Bd$$
$$e = cx,$$

where $d = \phi^T w$, where w is a known regressor, ϕ is an unknown parameter. The standard solution in adaptive control is

$$u = kx + \hat{\phi}^T w$$

The gradient law for parameter adaptation is

$$\dot{\hat{\phi}} = -\gamma ew.$$

Then we get $\dot{x} = (A + Bk)x + B(\hat{\phi}^T w - \phi^T w).$ Let $\tilde{\phi} = \hat{\phi} - \phi, \ \dot{x} = (A + Bk)x + B\tilde{\phi}w$, with $\tilde{\phi} = -\gamma ew$.

0.3 Phase Portraits

Consider a second-order linear system $\dot{x} = Ax$, $x \in \mathbb{R}^2$. Depending on the eigenvalues of A, the real Jordan has one of these forms

1.
$$\begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$
, $\lambda_1, \lambda_2 \in \sigma(A)$.
2. $\begin{bmatrix} \lambda & * \\ 0 & \lambda \end{bmatrix}$, $* \in \{0, 1\}$.
3. $\begin{bmatrix} \alpha & -\beta \\ \beta & \alpha \end{bmatrix}$, $\lambda_1, \lambda_2 = \alpha \pm i\beta$.

Case 1: Two real distinct eigenvalues $\lambda_1 \neq \lambda_2 \neq 0$. If $\lambda_1 < 0, \lambda_2 > 0$. This is a **saddle point**. If $\lambda_1 < 0, \lambda_2 < 0$. This is a **stable node**. It is exponentially stable equilibrium If $\lambda_1 > 0, \lambda_2 > 0$. This is unstable.

Case 2: $\lambda_{1,2} = \alpha \pm i\beta$. If $\alpha > 0$, unstable focus If $\alpha = 0$, center (oscillator) If $\alpha < 0$, stable focus.

1 Mathematical Background

Definition: 1.1: Norm

A norm of \mathbb{R}^n is a function $\|\cdot\| : \mathbb{R}^n \to \mathbb{R}$ satisfying:

- $||x|| \ge 0, ||x|| = 0 \Leftrightarrow x = 0, \forall x \in \mathbb{R}^n$
- $\|\lambda x\| = |\lambda| \|x\|, \forall x \in \mathbb{R}^n, \lambda \in \mathbb{R}$
- $||x + y|| \le ||x|| + ||y||, \forall x, y \in \mathbb{R}^n$

Examples:

- Euclidean Norm: $||x||_2 = (x^T x)^{1/2}$
- *p*-Norm: $||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$
- ∞ -Norm: $||x||_{\infty} = \max_i |x_i|$

The notion of a norm is a generalization of the length of a vector.

If we take a vector space X, equipped with a norm $\|\cdot\|$, denoted $(X, \|\cdot\|)$ is called a normed vector space.

1.1 Sequences

Definition: 1.2: Limit of a Sequence

Consider a sequence $\{x_n\}$ of vectors in $(X, \|\cdot\|)$. We say $\{x_n\}$ converges to an element $x^* \in X$ if $\|x_n - x^*\| \to 0$ as $n \to \infty$. Equivalently, $\forall \epsilon > 0, \exists N(\epsilon) > 0$ s.t. if $n \ge N(\epsilon)$, then $\|x_n - x^*\| < \epsilon$. Notation: $\lim_{n \to \infty} x_n = x^*$ or $x_n \to x^*$ as $n \to \infty$.

This definition is hard to work with in practice, because we have to already know x^* .

Definition: 1.3: Monotonic Sequence

A sequence $\{x_n\}$ of real numbers is monotonically increasing if $x_n \leq x_{n+1}, \forall n$, monotonically decreasing if $x_n \geq x_{n+1}, \forall n$.

Theorem: 1.1: Convergence of Monotonic Sequence

Suppose $\{x_n\}$ is monotonic. Then $\{x_n\}$ converges if and only if it is bounded.

Definition: 1.4: Cauchy Sequence

A sequence $\{x_n\}$ in a normed linear space $(X, \|\cdot\|)$ is said to be a Cauchy sequence if $\forall \epsilon > 0$, $\exists N(\epsilon) > 0$ s.t. if $n, m \ge N(\epsilon)$, then $\|x_n - x_m\| < \epsilon$.

Lemma 1. Every convergent sequence in a normed linear space is a Cauchy sequence.

Proof. Suppose $\{x_n\}$ is a convergent sequence with a limit x^* . To prove it is Cauchy, suppose $\epsilon > 0$ is given.

By definition of a convergent sequence, we can select $N(\epsilon) > 0$ s.t. $n \ge N(\epsilon)$, then $||x_n - x^*|| < \frac{\epsilon}{2}$.

Consider $p, q \ge N(\epsilon)$, $||x_p - x_q|| \le ||x_p - x^*|| + ||x_q - x^*|| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$. Hence, $\{x_n\}$ is Cauchy.

Definition: 1.5: Banach Space

A normed linear space is called a Banach space if every Cauchy sequence converges.

Similarly for functions $f: X \to Y$, we write $\lim_{x \to x_0} f(x) = y_0$, if $\forall \epsilon > 0$, $\exists \delta > 0$, s.t. $||x - x_0|| < \delta \Rightarrow ||f(x) - y_0|| < \epsilon$

1.2 Continuous Functions

Definition: 1.6: Continuous Functions

A function $f : \mathbb{R}^n \to \mathbb{R}^m$ is continuous at $x_0 \in \mathbb{R}^n$ if $\forall \epsilon > 0$, $\exists \delta(\epsilon, x_0) > 0$ s.t. $||x - x_0|| < \delta \Rightarrow$ $||f(x) - f(x_0)|| < \epsilon$. Equivalently, $\lim_{x \to x_0} f(x) = f(x_0)$.

Definition: 1.7: Uniform Continuous

 $f: \mathbb{R}^n \to \mathbb{R}^m$ is uniformly continuous if it is continuous and $\delta(\epsilon)$ does not depend on x_0 .

Often, continuity is characterized in terms of sequences

Theorem: 1.2:

Let $f: X \to Y$. Then $\lim_{x \to x_0} f(x) = y_0$ if and only if $\lim_{n \to \infty} f(x_n) = y_0$ for every sequence $\{x_n\}$ s.t. $x_n \neq x_0$, $\lim_{n \to \infty} x_n = x_0$.

It shows the close relationship between sequences and continuity. Let $\{x_n\}$ s.t. $\lim_{k\to\infty} x_k = x_0$. Let $f: X \to Y$ be continuous at $x_0, y_k = f(x_k), y_0 = f(x_0)$. Then we can write $y_0 = f(x_0) = f(\lim_{k\to\infty} x_k) = \lim_{k\to\infty} f(x_k) = \lim_{k\to\infty} y_k = y_0$.

A key property of continuous functions requires their boundedness properties on certain sets.

Definition: 1.8: Compact Set

 $\Omega \subset X$ is compact if it is closed and bounded.

Theorem: 1.3: Bounded Functions

Let $f: X \to Y$ be continuous at every $x \in X$. Let $\Omega \subset X$ be a compact set in X. Then f is bounded on Ω . *i.e.* $\exists M > 0$ s.t. $\forall x \in \Omega$, $\|f(x)\| \leq M$.

Theorem: 1.4:

Let $f: X \to \mathbb{R}$ be continuous and $\Omega \subset X$ is compact. Then $\exists x_{min}, x_{max}$ s.t. $f(x_{min}) = \inf_{x \in \Omega} f(x)$, $f(x_{max}) = \sup_{x \in \Omega} f(x)$

Definition: 1.9: Lipschitz Continuous

A function $f : \mathbb{R}^n \to \mathbb{R}^m$ is Lipschitz continuous at $x_0 \in \mathbb{R}^n$ if $\exists \delta, L > 0$ s.t. $\forall x, y \in \mathbb{R}^n$ with $x, y \in B_{\delta}(x_0), \|f(x) - f(y)\| \leq L \|x - y\|$. Let $\Omega \subset \mathbb{R}^n$, f is locally Lipschitz on Ω if f is Lipschitz at every $x \in \Omega$. Let $\Omega \subset \mathbb{R}^n$, f is globally Lipschitz on Ω if $\exists L > 0$ s.t. $\forall x, y \in \Omega, \|f(x) - f(y)\| \leq L \|x - y\|$.

Note that for locally Lipschitz, the choice of L depends on x_0 .

Theorem: 1.5:

Let $\Omega \subset \mathbb{R}^n$ be compact. If $f : \mathbb{R}^n \to \mathbb{R}^m$ is locally Lipschitz on Ω , then it is globally Lipschitz on Ω .

Example: $f(x) = x^2$ is locally Lipschitz on \mathbb{R} , but it is not globally Lipschitz on \mathbb{R} .

Proof. Locally Lipschitz: Let $x_0 \in \mathbb{R}$, choose $\delta > 0$, $L = 2(\delta + ||x_0||)$. Let $x, y \in B_{\delta}(x_0)$, then we have $||x^2 - y^2|| = ||x - y|| ||x + y|| \le ||x - y|| [||x|| + ||y||]$. Since $x \in B_{\delta}(x_0)$, $||x|| \le ||x - x_0|| + ||x_0|| \le \delta + ||x_0||$. Similarly, $||y|| \le \delta + ||x_0||$. Therefore, $||x^2 - y^2|| \le ||x - y|| 2(\delta + ||x_0||) = L ||x - y||$.

Globally Lipschitz: Assume $\exists L > 0$ s.t. $\forall x, y \in \mathbb{R}$, $||f(x) - f(y)|| \le L ||x - y||$. Choose x = 0, y = 2L, we get $||4L^2|| = 2L ||x - y|| > L ||x - y||$. Contradiction.

1.3 Matrix Norms

Consider a norm $\|\cdot\|$ on \mathbb{R}^n . Let $A \in \mathbb{R}^{n \times n}$ be a square matrix. Define $\|A\| = \sup_{x \neq 0, x \in \mathbb{R}^n} \frac{\|Ax\|}{\|x\|} = \sup_{x \neq 0, x \in \mathbb{R}^n} \frac{\|Ax\|}{\|x\|}$

 $\sup_{\|x\|=1} \|Ax\|.$

Lemma 2. ||A|| is a norm.

Proof. The first two conditions are trivial. For the triangle inequality,

$$||A + B|| = \sup_{||x||=1} ||(A + B)x|| = \sup_{||x||=1} ||Ax + Bx|| \le \sup_{||x||=1} ||Ax|| + \sup_{||x||=1} ||Bx|| = ||A|| + ||B||$$

Note: $||Ax|| = ||Ax|| \frac{||x||}{||x||} = \left||A\frac{x}{||x||}\right| ||x|| \le ||A|| ||x||.$

1.4 Existence and Uniqueness of Solutions of ODEs

Definition: 1.10: Fixed Point

Let $(X, \|\cdot\|)$ be a Banach space. Let $P : X \to X$ be a map on X. An element $x^* \in X$ is a fixed point of P if $P(x^*) = x^*$.

Theorem: 1.6: Contraction Mapping Thereom

Let $P: X \to X$ be a map for which there exists $\rho \in (0, 1)$ s.t. $||P(x) - P(y)|| \le \rho ||x - y||, \forall x, y \in X$. Then

1. There exists a unique x^* s.t. $P(x^*) = x^*$

2. $\forall x \in X$, the sequence defined by $x_0 = x$, $x_{n+1} = P(x_n)$ converges to x^*

3. Moreover, $||x^* - x_n|| \le \frac{\rho^n}{1-\rho} ||P(x_0) - x_0||$

Proof. Let $x \in X$, we show that $\{x_n\}$ forms a Cauchy sequence. For each $n \ge 0$, we have $||x_{n+1} - x_n|| \le \rho ||x_n - x_{n-1}|| \le \cdots \le \rho^n ||x_1 - x_0||$. Let $m = n + r, r \ge 0$. Then

$$||x_m - x_n|| = ||x_{n+r} - x_n|| \le \sum_{i=0}^{r-1} ||x_{n+i-1} - x_{n+i}|| \quad \text{(Triangle Inequality)}$$
$$\le \sum_{i=0}^{r-1} \rho^{n+i} ||x_1 - x_0|| \le \sum_{i=0}^{\infty} \rho^{n+i} ||x_1 - x_0||$$
$$= \frac{\rho^n}{1 - \rho} ||x_1 - x_0||$$

Since $\rho \in (0,1)$, we can make $||x_m - x_n||$ small by choosing *n* sufficiently large. Therefore $\{x_n\}$ is a Cauchy sequence. Because X is Banach, $||x_n||$ converges to some $x^k \in X$.

Apply Definition 1.7, $||P(x) - P(y)|| \le \rho ||x - y||$ to show P(x) is uniformly continuous. Then $P(x^*) = P(\lim_{n \to \infty} x_n) = \lim_{n \to \infty} P(x_n) = \lim_{n \to \infty} x_{n+1} = x^*$. Hence x^* is a fixed point.

To show that x^* is unique, suppose $y^* \neq x^*$ is a fixed point.

 $||x^* - y^*|| = ||P(x^*) - P(y^*)|| \le \rho ||x^* - y^*|| \Rightarrow ||x^* - y^*|| = 0$

Therefore, $x^* = y^*$.

To prove 3, we use the fact that $\|\cdot\|$ is a continuous function. We have

$$\|x^* - x_n\| = \left\|\lim_{m \to \infty} x_m - x_n\right\| = \lim_{m \to \infty} \|x_m - x_n\| \le \frac{\rho^n}{1 - \rho} \|x_1 - x_0\|$$

Consider a non-linear ODE

$$\dot{x} = f(x) \tag{1}$$
$$x(0) = x_0$$

where $x(t) \in \mathbb{R}^n$ is the state and $f : \mathbb{R}^n \to \mathbb{R}^n$. Consider a time interval [0, T] and denote $C^n[0, T]$ the set of all continuous functions mapping [0, T] to \mathbb{R}^n . Define a norm $\|\cdot\|_C = \max_{t \in [0, T]} \|x(t)\|$.

Proof. Triangle Inequality: Let $x, y \in C^n[0, T]$. Then

$$\begin{split} \|x+y\|_{C} &= \max_{t \in [0,T]} \|x(t)+y(t)\| \leq \max_{t \in [0,T]} (\|x(t)+y(t)\|) \\ &\leq \max_{t \in [0,T]} \|x(t)\| + \max_{t \in [0,T]} \|y(t)\| = \|x\|_{C} + \|y\|_{C} \end{split}$$

	_

Fact: $(C^n[0,T], \|\cdot\|_C)$ is a Banach space.

Definition: 1.11: Solution of ODE

A solution of a nonlinear ODE over [0, T] is an element $x(\cdot) \in C^n[0, T]$ s.t.

- 1. $\dot{x}(t)$ is defined almost everywhere (a.e.)
- 2. Equation (1) holds at every t where \dot{x} is defined.

Remark 1. If x(t) is a solution of (1) over [0,T], then x(t) also satisfies

$$x(t) = x_0 + \int_0^t f(x(\tau)) d\tau$$
(2)

Conversely, if $x(\cdot) \in C^n[0,T]$ satisfies (2), then x is differentiable and satisfies (1). Every solution of (1) is a solution of (2) and vice versa.

Theorem: 1.7: Peano

If $f : \mathbb{R}^n \to \mathbb{R}^n$ is continuous, then for each $x_0 \in \mathbb{R}^n$, there exists at least one solution.

Example: $\dot{x} = x^{1/3}, x(0) = 0$ has two solutions: x(t) = 0 and $x(t) = \left(\frac{2}{3}t\right)^{3/2}$

Example: $\dot{x} = \sqrt{|x|}$ has infinitely many solutions $x(t) = \begin{cases} 0, t \leq c \\ -\frac{(c-t)^2}{2}, t > c \end{cases}$

Lemma: 1.1: Bellman-Gronwall

Let $y : [0,T] \to \mathbb{R}$ be a nonnegative continuous function. Let $C \ge 0$ and $L \ge 0$ s.t. $y(t) \le C + \int_0^t Ly(\tau)d\tau$. Then $y(t) \le C \exp(Lt), \forall t \in [0,T]$.

Proof. Let $r(t) = C + \int_0^t Ly(\tau)d\tau$, then $y(t) \le r(t), \forall t \in [0, T]$. Also $\dot{r}(t) = Ly(t) \le Lr(t)$. $\dot{r}(t) - Lr(t) \le 0, \forall t \in [0, T]$. Using integration factor, $r(t) \exp(-Lt) \le r(0) = C$. Therefore, $y(t) \le r(t) \le C \exp(Lt), \forall t \in [0, T]$.

Theorem: 1.8: Picard-Lindelof

Consider $\dot{x} = f(x), x(0) = x_0$. Suppose $f : \mathbb{R}^n \to \mathbb{R}^n$ is globally Lipschitz, *i.e.* $\exists L > 0$ s.t. $\|f(x) - f(y)\| \leq L \|x - y\|$. Then the ODE has exactly one solution over [0, T] for any $T \in [0, \infty]$ and $x_0 \in \mathbb{R}^n$. **Note:** this version uses a more restrictive globally Lipschitz condition, which can be replaced by locally Lipschitz.

Proof. Fix $T < \infty$. Define a mapping $P : C^n[0,T] \to C^n[0,T]$ (Picard iteration) s.t. $(Px)(t) = x_0 + \int_0^t f(x(\tau))d\tau$.

Define $x_k = (P^k x_0)(\cdot)$ We show that $\{x_k\}_k$ is a Cauchy sequence.

Note
$$x_1(t) - x_0(t) = \int_0^t f(x_0(\tau)) d\tau$$
.

$$\|x_1(t) - x_0(t)\| \leq \int_0^t \|f(x_0(\tau))\| d\tau \text{ (Triangle Inequality of Integrals)}$$

$$\leq \int_0^t L \|x_0(\tau)\| d\tau \text{ (Lipschitz)}$$

$$\leq mt \text{ for some constant } m$$

$$\|x_2(t) - x_1(t)\| \leq L \int_0^t \|x_1(\tau) - x_0(\tau)\| d\tau$$

$$\leq Lm \frac{t^2}{2}$$

$$\vdots$$

$$\|x_{k+1}(t) - x_k(t)\| \leq \int_0^t \|f(x_k(\tau)) - f(x_{k-1}(\tau))\| d\tau$$

$$\leq L \int_0^t \|x_k(\tau) - x_{k-1}(\tau)\| d\tau$$

Iteratively, we get $||x_{k+1}(t) - x_k(t)|| \le L^{k-1}M\frac{t^k}{k!}$, where k! comes from the interation of t, t^2, \dots . Therefore,

$$\|x_{k+p}(t) - x_k(t)\| \le \sum_{i=0}^{p-1} \|x_{k+i+1}(t) - x_{k+i}(t)\| \le \sum_{i=0}^{p-1} ML^{k+i} \frac{t^{k+i+1}}{(k+i+1)!}$$
$$\|x_{k+p} - x_k\|_C = \max_{t \in [0,T]} \|x_{k+p}(t) - x_k(t)\| \le \sum_{i=k+1}^{k+p} ML^{i-1} \frac{T^i}{i!} \le \sum_{i=k+1}^{\infty} ML^{i-1} \frac{T^i}{i!}$$

 $\begin{array}{l} \text{Consider the sequence } \left\{\sum_{i=0}^{k} ML^{i-1} \frac{T^{i}}{i!}\right\}_{k=1}^{\infty} = \left\{\sum_{i=0}^{k} \frac{M}{L} \frac{(LT)^{i}}{i!}\right\}_{k=1}^{\infty} \rightarrow \frac{M}{L} \exp(LT) \text{ as } k \rightarrow \infty. \end{array}$ $\begin{array}{l} \text{Then } \sum_{i=k+1}^{\infty} ML^{i-1} \frac{T^{i}}{i!} = \frac{M}{L} \exp(LT) - \sum_{i=0}^{k} ML^{i-1} \frac{T^{i}}{i!} \rightarrow 0 \text{ as } k \rightarrow \infty. \end{array}$ $\text{Hence } x_{k} \text{ is Cauchy in } C^{n}[0,T], \text{ so it converges to } x^{*} \in C^{n}[0,T]. \end{array}$

Now we show that x^* is a solution of (2).

Let $z_1, z_2 \in C^n[0,T]$. Then $(Pz_1)(t) - (Pz_2)(t) = \int_0^t f(z_1(\tau)) - f(z_2(\tau))d\tau$. By Lipschitz and bounded time:

$$\|(Pz_1)(t) - (Pz_2)(t)\| \le \int_0^t \|f(z_1(\tau)) - f(z_2(\tau))\| \, d\tau \le LT \, \|z_1 - z_2\|_C$$

Therefore, $||Pz_1 - Pz_2||_C \leq LT ||z_1 - z_2||_C$. If $\{x_k\}$ converges to x^* , then $(Px^*) = P(\lim_{k \to \infty} x_k) = \lim_{k \to \infty} (Px_k) = \lim_{k \to \infty} x_{k+1} = x^*$. Therefore x^* satisfies (2).

Next we show x^* is unique. Let y^* satisfy (2).

$$\|x^*(t) - y^*(t)\| \le \int_0^t \|f(x^*(\tau)) - f(y^*(\tau))\| d\tau \le L \int_0^t \|x^*(\tau) - y^*(\tau)\| d\tau$$

By Lemma 1.1, $||x^*(t) - y^*(t)|| = 0, x^* = y^*$

1.5 Differentiability

Definition: 1.12: Differentiability (Scalar)

A function $f : \mathbb{R} \to \mathbb{R}$ is differentiable at $x_0 \in \mathbb{R}$ if the limit exists

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Notation: $df_{x_0}h = f'(x_0)h$.

Rewrite as
$$\lim_{h \to 0} \frac{|f(x_0 + h) - f(x_0) - df_{x_0}h|}{h} = 0.$$

Definition: 1.13: Differentiability (General)

A function $f : \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $x_0 \in \mathbb{R}^n$ if

$$\lim_{\|v\|\to 0} \frac{\|f(x_0+v) - f(x_0) - df_{x_0}v\|}{\|v\|} = 0$$

f is differentiable if f is differentiable at every $x_0 \in \mathbb{R}^n$. The matrix $df_{x_0} \in \mathbb{R}^{m \times n}$ is called the *derivative, differential, or Jacobian.*

A function $f \in C^1$ (continuously differentiable) if f is differentiable and df_{x_0} is continuous as a function of x_0 .

Theorem: 1.9:

If $f : \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at x_0 , then the partial derivatives $\frac{\partial f_i}{\partial x_j}\Big|_{x_0}$ exist and moreover are the elements of df_{x_0} , $(df_{x_0})_{ij} = \frac{\partial f_i}{\partial x_j}\Big|_{x_0}$.

Theorem: 1.10:

 $f: \mathbb{R}^n \to \mathbb{R}^m$ is C^1 if and only if $\frac{\partial f_i}{\partial x_i}$ exist and are continuous functions.

Theorem: 1.11:

If $f : \mathbb{R}^n \to \mathbb{R}^m$ is C^1 , then f is locally Lipschitz.

1.6 Comparison, Continuity and Finite Escape Time

Lemma: 1.2: Comparison Lemma

Consider the ODE $\dot{x} = f(x), x(0) = x_0$, where $f : \mathbb{R} \to \mathbb{R}$ and f is locally Lipschitz on \mathbb{R} . Suppose we have a solution x(t) on time interval [0, T]. Let w(t) be a C^1 function s.t. $\dot{w}(t) \leq f(w(t)), w(0) \leq x_0$, $\forall t \in [0, T]$. Then $w(t) \leq x(t), \forall t \in [0, T]$.

Example: Consider the ODE $\dot{y} = -(1+y^2)y, y(0) = y_0$. We can verify that it has a unique solution on $[0, \delta]$ since $f(y) = -(1+y^2)y$ is locally Lipschitz.

Define $w(t) = y^2(t)$. Then $\dot{w}(t) = 2y\dot{y} = -2y^2(1+y^2) = -2w(1+w) = -2w - 2w^2 < -2w, w(0) = y_0^2$. Consider $\dot{x} = -2x, x(0) = y_0^2$. It has solution: $x(t) = y_0^2 \exp(-2t)$. By Lemma 1.2, $y^2(t) = w(t) \le x(t) = y_0^2 \exp(-2t)$, then $|y(t)| \le |y_0| \exp(-t)$.

Remark 2. Lemma 1.2 is often used in stability proof.

Theorem: 1.12: Continuity w.r.t. Initial Condition

Suppose $f : \mathbb{R}^n \to \mathbb{R}^n$ is globally Lipschitz, with Lipschitz constant L > 0. Consider x(t), x'(t) two solutions of $\dot{x} = f(x)$ for $t \in [0, T]$. Then $\forall t \in [0, T], ||x(t) - x'(t)|| \le ||x(0) - x'(0)|| \exp(Lt)$.

Proof. Define $y(t) = ||x(t) - x'(t)|| \ge 0$ for $t \in [0, T]$. We know that

$$x(t) - x'(t) = x(0) - x'(0) + \int_0^t (f(x(\tau)) - f(x'(\tau)))d\tau$$

Then,
$$y(t) = ||x(t) - x'(t)|| \le ||x(0) - x'(0) + \int_0^t ||f(x(\tau)) - f(x'(\tau))|| d\tau|$$

 $\le y(0) + \int_0^t L ||x(\tau) - x'(\tau)|| d\tau \text{ (By Lipschitz)}$
 $= y_0 + \int_0^t L ||y(\tau)|| d\tau.$

By Lemma 1.1, $y(t) \leq y(0) \exp(Lt)$.

Theorem: 1.13: Finite Escape Time

If $f : \mathbb{R}^n \to \mathbb{R}^n$ is globally Lipschitz, then solutions exist for all $t \ge 0$ for each $x_0 \in \mathbb{R}^n$. If $f : \mathbb{R}^n \to \mathbb{R}^n$ is locally Lipschitz, then Theorem 1.8 gives a solution x(t) for $t \in (-\delta, \delta)$.

Example: $\dot{x} = x^2$, $f(x) = x^2$ is not globally Lipschitz, but locally Lipschitz. $x(t) = \frac{x_0}{1-x_0t}$. It has maximum existence time of $T_{x_0} = [0, \frac{1}{x_0})$.

Note: globally Lipschitz is not a necessary condition for solution to exist on $T_{x_0} = [0, \infty)$

2 Dynamic Systems

For this section, we always consider $\dot{x} = f(x), x \in \mathbb{R}^n$, where f is Lipschitz.

2.1 Invariant Set

Equilibria and closed orbits (periodic solutions) are examples of invariant sets.

Definition: 2.1: Invariant

A set $\Omega \subset \mathbb{R}^n$ is invariant under $\dot{x} = f(x)$ if $\forall x_0 \in \Omega$, the solution starting at $x(0) = x_0$ satisfies $x(t) \in \Omega, \forall t \in T_{x_0}$ (domain on which the solution exists)

Notation: Write $\phi(t, x_0)$ to denote the solution x(t) starting at x_0 .

Definition: 2.2: Positively/Negatively Invariant

A set $\Omega \subset \mathbb{R}^n$ is positively invariant if $\forall x_0 \in \Omega$, $t \in T^+_{x_0}$ =forward time domain, $\phi(t, x_0) \in \Omega$. Similarly, $\Omega \subset \mathbb{R}^n$ is negatively invariant if $\forall x_0 \in \Omega$, $t \in T^-_{x_0}$, $\phi(t, x_0) \in \Omega$.

Example: For the Van der Pol oscillator, the limit cycle Ω_0 , equilibrium point $\Omega_1 = \{(0,0)\}, \Omega_2 = \{\text{region enclosed by } \Omega_0\}$ and $\Omega_3 = \{\text{region outside } \Omega_0\}$ are invariant.

Example: $\dot{x}_1 = x_1, \dot{x}_2 = -x_2$. $\Omega_1 = \{(x, 0) : x \in \mathbb{R}\}, \Omega_2 = \{(0, y) : y \in \mathbb{R}\}$, and the span of any eienvector of $A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ are invariant.

2.2 Nagumo Theorem

Problem: Given a non-empty and closed set $\Omega \subset \mathbb{R}^n$ and an ODE $\dot{x} = f(x)$. Find conditions of f(x) s.t. Ω is positively invariant.

Intuition: In order for $\phi(t, x_0)$ to stay inside Ω , f(x) should point inside Ω at $x \in \partial \Omega$.

Technical difficulty arise in defining the correct notion of pointing inside.

Special case: suppose $\Omega = \{x \in \mathbb{R}^n : \psi(x) \leq c\}$ where $c \in \mathbb{R}$ is a constant and $\psi : \mathbb{R}^n \to \mathbb{R}$. Assume ψ is a C^1 function.

Example: $\psi(x) = x_1^2 + x_2^2$, $\Omega = \left\{ x \in \mathbb{R}^2 : \psi(x) \le 1 \right\}$ is the unit ball.

We want $\psi(x)$ to decrease along solutions of $\dot{x} = f(x)$. Thus we want $\frac{d}{dt}\psi(\phi(t,x_0))|_{t=0} \leq 0$ for $x_0 \in \partial\Omega$.

By chain rule, $\frac{d}{dt}\psi(\phi(t,x_0)) = \frac{\partial\psi}{\partial x}\Big|_{\phi(t,x_0)} \cdot \frac{d\phi(t,x_0)}{dt}$, where $\frac{\partial\psi}{\partial x} = d\psi(x) = \left(\frac{\partial\psi}{\partial x_1}, \dots, \frac{\partial\psi}{\partial x_n}\right)$ is the differential or derivative of ψ . Also $\nabla\psi(x) = \left(\frac{\partial\psi}{\partial x}\right)^T$ is the gradient of ψ . Since $\phi(t,x_0)$ satisfies $\dot{x} = f(x), \frac{d}{dt}\phi(t,x_0) = f(\phi(t,x_0))$.

Hence $\frac{d}{dt}\phi(\phi(t,x_0)) = \frac{\partial\psi}{\partial x}\Big|_{\phi(t,x_0)} f(\phi(t,x_0))$. Evaluating at t = 0, $\frac{d}{dt}\phi(\phi(t,x_0))\Big|_{t=0} = \frac{\partial\psi}{\partial x}(x_0)f(x_0) = \nabla\psi(x_0)^T f(x_0) \le 0$.

Theorem: 2.1: Special Nagumo I

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be locally Lipschitz, $\psi : \mathbb{R}^n \to \mathbb{R}$ be C^1 . Define $\Omega = \{x \in \mathbb{R}^n : \psi(x) \le 0\} \neq \emptyset$. Suppose $d\psi(x) = \frac{\partial \psi}{\partial x} \neq 0, \forall x \in \partial \Omega$. Then Ω is positively invariant under $\dot{x} = f(x)$ if and only if $\frac{\partial \psi}{\partial x} f(x) \le 0, \forall x \in \partial \Omega$.

Notation: We write $L_f \psi(x) = \frac{\partial \psi}{\partial x}(x) \cdot f(x)$, the Lie derivative of ψ along f.

Theorem: 2.2: Special Nagumo II

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be locally Lipschitz, $\psi : \mathbb{R}^n \to \mathbb{R}^m$ be C^1 with $m \leq n$. Define $\Omega = \{x \in \mathbb{R}^n : \psi(x) = 0\} \neq \emptyset$. Suppose rank $(d\psi(x)) = m, \forall x \in \partial\Omega$. Then Ω is positively invariant under $\dot{x} = f(x)$ if and only if $L_f\psi(x) = 0, \forall x \in \partial\Omega$.

Example: Consider $\dot{x} = Ax$ with $x \in \mathbb{R}^n$. Given $V \subset \mathbb{R}^n$ a subspace. Suppose V is A-invariant. *i.e* if $x \in V$, then $Ax \in V$. (Notation $AV \subset V$). Claim: V is an invariant set.

 $V = \{x \in \mathbb{R}^n : h_1 x = h_2 x = \dots = h_m x = 0\} = \{x \in \mathbb{R}^n : \psi(x) = 0\}, \text{ where } \psi(x) = \begin{bmatrix} h_1 x \\ \vdots \\ h_m x \end{bmatrix} = \begin{bmatrix} h_1^t \\ \vdots \\ h_m^T \end{bmatrix} x = \begin{bmatrix} h_1 x \\ \vdots \\ h_m x \end{bmatrix} = \begin{bmatrix} h_1 x \\ \vdots \\ h_m^T \end{bmatrix} x = \begin{bmatrix} h_1 x \\ \vdots \\ h_m x \end{bmatrix} = \begin{bmatrix} h_1 x \\ \vdots \\ h_m^T \end{bmatrix} x = \begin{bmatrix} h_1 x \\ \vdots \\ h_m x \end{bmatrix} = \begin{bmatrix} h_1 x \\ \vdots \\ h_m x \end{bmatrix} = \begin{bmatrix} h_1 x \\ \vdots \\ h_m x \end{bmatrix} x = \begin{bmatrix} h_1 x \\ \vdots \\ h_m x \end{bmatrix} = \begin{bmatrix} h_1 x \\ \vdots \\ h_m x \end{bmatrix} = \begin{bmatrix} h_1 x \\ \vdots \\ h_m x \end{bmatrix} x = \begin{bmatrix} h_1 x \\ \vdots \\ h_m x \end{bmatrix} = \begin{bmatrix} h_1 x \\ \vdots \\ h_m x \end{bmatrix} x = \begin{bmatrix} h_1 x \\ \vdots \\ h_m x \end{bmatrix} = \begin{bmatrix} h_1 x \\ \vdots \\ h_m x \end{bmatrix} x = \begin{bmatrix} h_1 x \\ \vdots \\ h_m$

 $\begin{array}{l} Hx. \ d\psi(x)=\frac{\partial\psi}{\partial x}=H.\\ \text{Then } L_f\psi(x)=d\psi(x)\cdot f(x)=HAx. \ \text{If } x\in V, \ \text{then } Ax\in V \ \text{and } HAx=0. \end{array}$

Example: $\dot{x}_1 = 1, \dot{x}_2 = 1, \psi(x) = x_1^2 + x_2^2$. $d\psi(x) = (2x_1, 2x_2)$. Clearly, $\Omega = \{x \in \mathbb{R}^2 : \psi(x) \le 0\} = \{(0, 0)\}$ is not positively invariant. However, $L_f\psi(x) = d\psi(x)f(x) = 0$. The problem is that $d\psi(x) = 0$ for $x \in \Omega$.

Definition: 2.3: Bouligand Tangent Cone

Given a set $\Omega \subset \mathbb{R}^n$, define the point to set distance $d_{\Omega}(x) = \inf_{z \in \Omega} ||x - z||$. This function is globally Lipschitz but not differentiable.

Let $\Omega \subset \mathbb{R}^n$ be a nonempty closed set. Let $x \in \mathbb{R}^n$. The Bouligand tangent cone to Ω at x is

$$T_{\Omega}(x) = \left\{ v \in \mathbb{R}^n : \liminf_{\epsilon \searrow 0} \frac{d_{\Omega}(x + \epsilon v)}{\epsilon} = 0 \right\}$$

For $x \in \Omega$, $T_{\Omega}(x) = \mathbb{R}^n$. For $x \notin \Omega$, $T_{\Omega}(x) = \emptyset$. For $x \in \partial \Omega$, $T_{\Omega}(x) = \{$ vectors pointing into $\Omega \}$.

Let $\Omega \subset \mathbb{R}^n$ be closed and non-empty. Consider $\dot{x} = f(x)$. We want if $x_0 \in \Omega$, then $\phi(t, x_0) \in \Omega$, $\forall t \ge 0$. That is $d_{\Omega}(\phi(t, x_0)) = 0$, $\forall t \ge 0$.

Theorem: 2.3:

Let $h : \mathbb{R} \to \mathbb{R}$ be a continuous function, define the lower right Dini derivative:

$$Dh(t) = \liminf_{\epsilon \searrow 0} \frac{h(t+\epsilon) - h(t)}{\epsilon}$$

The continuous function $h : \mathbb{R} \to \mathbb{R}$ is decreasing if and only if $Dh(t) \leq 0, \forall t \in \mathbb{R}$.

Apply this to our problem, $h(t) = d_{\Omega}(\phi(t, x_0))$ is decreasing if and only if

$$Dh(t)|_{t=0} = \liminf_{\epsilon \searrow 0} \frac{d_{\Omega}(\phi(t, x_0)) - d_{\Omega}(x_0)}{\epsilon} \le 0$$

Note if $x_0 \in \Omega$, $d_{\Omega}(x_0) = 0$. Also by Taylor expansion, $\phi(\epsilon, x_0) = x_0 + \epsilon f(x_0) + o(\epsilon)$, where $\lim_{\epsilon \to 0} \frac{o(\epsilon)}{\epsilon} = 0$, we get

$$Dh(t)|_{t=0} = \liminf_{\epsilon \searrow 0} \frac{d_{\Omega}(x_0 + \epsilon f(x_0) + o(\epsilon))}{\epsilon}$$

Since d_{Ω} is globally Lipschitz with Lipschitz constant L > 0,

$$|d_{\Omega}(x_0 + \epsilon f(x_0) + o(\epsilon)) - d_{\Omega}(x_0 + \epsilon f(x_0))| \le Lo(\epsilon)$$

Therefore,

$$Dh(t)|_{t=0} = \liminf_{\epsilon \searrow 0} \frac{d_{\Omega}(x_0 + \epsilon f(x_0) + o(\epsilon)) - d_{\Omega}(x_0 + \epsilon f(x_0)) + d_{\Omega}(x_0 + \epsilon f(x_0))}{\epsilon}$$
$$= \liminf_{\epsilon \searrow 0} \frac{d_{\Omega}(x_0 + \epsilon f(x_0))}{\epsilon} \le 0$$

Since the distance function can never go negative, it is equivalent to $\liminf_{\epsilon \searrow 0} \frac{d_{\Omega}(x_0 + \epsilon f(x_0))}{\epsilon} = 0.$

Theorem: 2.4: Nagumo

Consider $\dot{x} = f(x)$, where $f : \mathbb{R}^n \to \mathbb{R}^n$ is locally Lipschitz. Let $\Omega \subset \mathbb{R}^n$ be a closed non-empty set. Then the following are equivalent:

1. $f(x) \in T_{\Omega}(x), \forall x \in \Omega$

2. Ω is positively invariant.

2.3 Poincare Bendixson Theorem

Limit sets are a special type of invariant sets that capture the steady-state response of a non-linear system.

Definition: 2.4: Limit Sets

Let $x_0 \in \mathbb{R}^n$. A point $p \in \mathbb{R}^n$ is a positive limit point of x_0 if $T_{x_0} = [0, \infty)$ and there exists a sequence of times $\{t_i\}$, $t_i > 0$ with $t_i \to \infty$ such that $\phi(t_i, x_0) \to p$. The set of all positive limit points of x_0 is the positive limit set of x_0 , denoted $L^+(x_0)$. Analogously, we can define the negative limit set of $x_0, L^-(x_0)$.

Example: Van der Pol oscillator. Let $x_0 \in \mathbb{R}^n$ and $p \in \Omega$, the limit cycle. $L^+(x_0) = \Omega$.

Notation: positive orbit through x_0 , $O^+(x_0) = \{\phi(t, x_0) : t \in T_{x_0}^+\}$

Theorem: 2.5: Birkhoff's Theorem

Consider $\dot{x} = f(x)$. Assume $f : \mathbb{R}^n \to \mathbb{R}^n$ is C^1 . For any $x_0 \in \mathbb{R}^n$, $L^+(x_0)$ and $L^-(x_0)$ are closed invariant sets. Moreover, $O^+(x_0) \subset K \subset \mathbb{R}^n$, where K is a compact, then $L^+(x_0)$ is non-empty, compact, connected, invariant and $d(\phi(t, x_0), L^+(x_0)) \to 0$ as $t \to \infty$, $t \ge 0$. An analogues statement can be made about $L^-(x_0)$.

As an application, we consider limit sets of planar nonlinear systems. This gives the Poincare-Bendixson theory. Consider

$$\dot{x}_1 = f_1(x_1, x_2)$$

 $\dot{x}_2 = f_2(x_1, x_2),$

 $x \in \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2$. Assume $f : \mathbb{R}^2 \to \mathbb{R}^2$ is C^1 . We know from Theorem 2.5 that if $O^+(x_0)$ is bounded, then $L^+(x_0) \neq \emptyset$. Moreover, $L^+(x_0)$ is compact, connected, invariant and $\phi(t, x_0) \to L^+(x_0)$.

Q: When is $L^+(x_0)$ a closed orbit?

A: In \mathbb{R}^2 , the answer is easy by below. In \mathbb{R}^n for $n \geq 3$, one of Hilbert's problem.

Theorem: 2.6: Poincare-Bendixson

A non-empty compact positive or negative limit set of $\dot{x} = f(x)$, which contains no equilibrium is a closed orbit.

Example: Show that the annulus $\Omega = \left\{ x \in \mathbb{R}^2 : \frac{1}{2} \le x_1^2 + x_2^2 \le \frac{3}{2} \right\}$ contains a closed orbit.

$$\dot{x}_1 = x_1 + x_2 - x_1(x_1^2 + x_2^2)$$
$$\dot{x}_2 = -2x_2 + x_2 - x_2(x_1^2 + x_2^2)$$

Proof. Note that Ω is compact and it contains no equilibria (The only equilibria is origin). We can write $\Omega = \Omega_1 \cap \Omega_2$, where $\Omega_1 = \{x : x_1^2 + x_2^2 - \frac{3}{2} \le 0\}$, and $\Omega_2 = \{x : \frac{1}{2} - x_1^2 - x_2^2 \le 0\}$. Apply Theorem 2.1 to Ω_1 .

$$L_f \psi = \frac{\partial \psi}{\partial x} f(x) = (2x_1, 2x_2) \begin{bmatrix} x_1 + x_2 - x_1(x_1^2 + x_2^2) \\ -2x_1 + x_2 - x_2(x_1^2 + x_2^2) \end{bmatrix} \Big|_{x_1^2 + x_2^2 = \frac{3}{2}}$$
$$= 2(x_1^2 + x_2^2)(1 - x_1^2 - x_2^2) - 2x_1x_2 \Big|_{x_1^2 + x_2^2 = \frac{3}{2}}$$

Apply Young's inequality to the cross term, $-x_1^2 - x_2^2 \le 2x_1x_2 \le x_1^2 + x_2^2$. Then

$$L_f \psi \le 2(x_1^2 + x_2^2)(1 - x_1^2 - x_2^2) + (x_1^2 + x_2^2)|_{x_1^2 + x_2^2 = \frac{3}{2}} = 2\frac{3}{2}\left(-\frac{1}{2}\right) + \frac{3}{2} = -\frac{3}{2} + \frac{3}{2} = 0 \le 0$$

Similarly for Ω_2 ,

$$L_f \psi_2 = \frac{\partial \psi_2}{\partial x} = -2(x_1^2 + x_2^2)(1 - x_1^2 - x_2^2) + 2x_1 x_2|_{\partial \Omega_2} \le 0$$

Then we apply Theorem 2.5 to show $L^+(x_0)$ is compact, non-empty. By Theorem 2.6, we can deduce that $L^+(x_0)$ is a closed orbit.

2.3.1 Non-trivial Consequences

Theorem: 2.7:

Let Ω be a compact positively invariant set for $\dot{x} = f(x)$. If Ω contains no equilibrium, then $\forall x_0 \in \Omega$, $O^+(x_0)$ is either a closed orbit or a curve spiralling towards a closed orbit.

Theorem: 2.8:

Let γ be a closed orbit of $\dot{x} = f(X)$, and let Ω be the bounded open set whose boundary is γ . Then Ω contains an equilibrium.

Example: Limit cycles in glycolysis biochemical process used by living cells to extract energy by burning sugar.

$$\dot{x}_1 = -x_1 + ax_2 + x_1^2 x_2$$
$$\dot{x}_2 = b - ax_2 + x_1^2 x_2,$$

where x_1, x_2 are concentrations. We study the nullclines where $\dot{x}_1 = 0$ or $\dot{x}_2 = 0$. $\dot{x}_1 = 0 \Rightarrow x_2 = \frac{x_1}{a+x_1^2}, \ \dot{x}_2 = 0 \Rightarrow x_2 = \frac{b}{a+x_1^2}.$

Figure 2: Limit Cycles

Theorem: 2.9: Bendixson Criterion

If $\operatorname{div} f = \frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2}$ is not identically zero and does not change sign on a simply connected set D, then there are no closed orbits of $\dot{x} = f(x)$ entirely in D.

Example: Consider the Van der Pol oscillator:

$$\dot{x}_1 = x_2$$

 $\dot{x}_2 = -x_1 + \epsilon (1 - x_1^2) x_2$

. Take $D = \{x \in \mathbb{R}^2 : \|x\| < 1\}$. $\frac{\partial f_1}{\partial x_1} = 0$, $\frac{\partial f_2}{\partial x_2} = \epsilon(1 - x_1^2)$. $\operatorname{div}(f) = \frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} = \epsilon(1 - x_1^2) > 0$ on D. Therefore, there is no closed orbit in D.

3 Lyapunov Stability Theory

Consider the nonlinear system $\dot{x} = f(x)$, where $x(t) \in \mathbb{R}^n$ is the true state vector, $f : \mathbb{R}^n \to \mathbb{R}^n$ locally Lipschitz.

Definition: 3.1: Equilibrium

 $x^* \in \mathbb{R}^n$ is an equilibrium if $f(x^*) = 0$. Note: if we have a solution x(t) with $x(0) = x^*$, then $x(t) = x^*, \forall t \ge 0$.

Definition: 3.2: Stability

Consider $\dot{x} = f(x)$ with equilibrium $x^* = 0$. We say $x^* = 0$ is stable if $\forall \epsilon > 0$, $\exists \delta > 0$ s.t. if $||x(0)|| < \delta$, then $||x(t)|| < \epsilon$ for all t > 0. If not, then x^* is unstable. In Logic notation: $(\forall \epsilon > 0)(\exists \delta > 0) ||x(0)|| < \delta \Rightarrow ||x(t)|| < \epsilon, \forall t \ge 0$.

Remark 3. Instability does not imply unboundedness.

Example: Van der Pol oscillator. The equilibrium x = 0 is unstable, but the solutions are attracted to the limit cycle, thus bounded.

Definition: 3.3: Asymptotic Stability

Consider $\dot{x} = f(x)$ with f(0) = 0, $x^* = 0$ is asymptotically stable if

- 1. It is stable
- 2. It is attractive: $\exists \delta_0 > 0$ s.t. if $||x(0)|| < \delta_0$, then $x(t) \to 0$ as $t \to \infty$.

Remark 4. 1. Stability does not imply attractivity. *e.g.* $\begin{cases} \dot{x}_1 = -x_2 \\ \dot{x}_2 = x_1 \end{cases}$. 0 is stable, but not attractive.

2. Attractivity does not imply stability.

Definition: 3.4: Exponential Stability

Consider $\dot{x} = f(x)$ with f(0) = 0. We say $x^* = 0$ is exponentially stable if there exists $c, \alpha, \delta > 0$ s.t. $\forall x(0) \in B_{\delta}(0), ||x(t)|| \leq c ||x(0)|| e^{-\alpha t}, \forall t \geq 0.$

Remark 5. If asymptotic stability or exponential stability hold for any x(0), then we say globally asymptotic stability (GAS) or globally exponential stability (GES).

Consider $\dot{x} = f(x)$ with f(0) = 0 and $f : \mathbb{R}^n \to \mathbb{R}^n$ be Lipschitz. A domain $D \subset \mathbb{R}^n$ is an open connected set. Assume $0 \in D$. Let $V : D \to \mathbb{R}$ be continuously differentiable (C^1) on D. Recall the notion of Lie derivative or derivative of V along $\dot{x} = f(x)$ or along solutions of $\dot{x} = f(x)$:

$$\dot{V}(x) = \frac{\partial V}{\partial x} \dot{x}(t) = \frac{\partial V}{\partial x} f(x)$$
$$= \left[\frac{\partial V}{\partial x_1}, ..., \frac{\partial V}{\partial x_n}\right] \begin{bmatrix} f_1(x) \\ \vdots \\ f_n(x) \end{bmatrix}$$
$$= \sum_{i=1}^n \frac{\partial V}{\partial x_i} f_i(x) = L_f V(x)$$

Notice: if $\phi(t, x_0)$ is a solution of $\dot{x} = f(x)$, then

$$\dot{V}(x_0) = \left. \frac{d}{dt} V(\phi(t, x_0)) \right|_{t=0}$$
$$= \left. \frac{\partial V}{\partial x}(\phi(t, x_0)) \left. \frac{d\phi(t, x_0)}{dt} \right|_{t=0} = \left. \frac{\partial V}{\partial x}(x_0) f(x_0) \right|_{t=0}$$

If $\dot{V}(x) < 0$, then V will decrease along solutions of $\dot{x} = f(x)$. *i.e.* $\forall x_0 \in \mathbb{R}^n$, $V(\phi(t, x_0))$ is a decreasing function of time.

Theorem: 3.1: Lyapunov's First Theorem

Consider x̂ = f(x) with f(0) = 0, and f is locally Lipschitz. Let D ⊂ ℝⁿ be a domain containing 0.
Let V : D → ℝ be C¹, satisfying:

V is positive definite at 0. *i.e.* V(0) = 0 and V(x) > 0 ∀x ∈ D \ {0}.
V is negative semi-definite, *i.e.* V(x) ≤ 0, ∀x ∈ D.

Then x* = 0 is stable.
Moreover, if V is negative definite, *i.e.* V(x) < 0, ∀x ∈ D \ {0}, then x* = 0 is asymptotically stable.

Proof. Suppose 1, 2 hold.

Step 1: Find a sublevel set of V inside D.

Let $\epsilon > 0$, reduce ϵ as necessary s.t. $B_{\epsilon}(0) \subset D$. Let $c_{\min} = \min_{\|x\|=\epsilon} V(x)$. c_{\min} exists because V is C^1 and $\{x : \|x\| = \epsilon\}$ is compact. Also $c_{\min} > 0$ by 1.

Choose $c \in (0, c_{\min})$, and define the sublevel set of V, $\Omega_c = \left\{ x \in \overline{B_{\epsilon}(0)} : V(x) \le c \right\}$.

Claim: $\Omega_c \subset B_{\epsilon}(0)$, the interior of $\overline{B_{\epsilon}(0)}$. Suppose not. Suppose $\exists p \in \Omega_c$ s.t. $\|p\| = \epsilon$. Then $V(p) \ge c_{\min} > c$. Contradiction.

Step 2: Establish that Ω_c is positively invariant. $\dot{V}(x) = L_f V(x) \leq 0, \forall x \in \partial \Omega_c$ by 2. This then follows Theorem 2.4

Step 3: $\exists \delta > 0$ s.t. $B_{\delta}(0) \subset \Omega_c$.

Since V is continuous and V(0) = 0 by 1. $\exists \delta > 0, ||x|| < \delta \Rightarrow V(x) \le c$. *i.e.* $B_{\delta} \subset \Omega_c \subset \Omega_{\epsilon}$.

Since this construction works for any $\epsilon > 0$, we have proved $||x(0)|| < \delta \Rightarrow ||\phi(t, x_0)|| < \epsilon, \forall t \ge 0$, *i.e.* $x^* = 0$ is stable.

Example: $\dot{x}_1 = -x_2, \dot{x}_2 = -x_1 - x_2, \dot{x} = Ax$ where $A = \begin{bmatrix} 0 & -1 \\ -1 & -1 \end{bmatrix}$.

Proof. Solve a Lyapunov equation $A^T P + PA = -Q$, where Q > 0, *i.e.* $x^T Qx > 0, \forall x \neq 0, Q = Q^T$, for unknown $P = P^T$, P > 0.

Choose $V(x) = x^T P x$,

$$\dot{V} = 2x^T P \dot{x} = 2x^T P A x = x^T A^T P x + x^T P A x = -x^T Q x < 0, \forall x \neq 0$$

Therefore, $x^* = 0$ is asymptotically stable.

Example: Pendulum with friction $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ -\frac{g}{l}\sin(x_1) - \frac{k}{ml^2}x_2 \end{bmatrix}$.

Proof. $V(x) = \frac{1}{2}ml^2x_2^2 + mgl(1 - \cos x_1), \dot{V} = -kx_2^2 \le 0$. Only negative semi-definite.

Question: How to Lyapunov's theorem to characterize globally asymptotic stability? **Note**: The previous Theorem 3.1 cannot be used to characterize GAS in the following example:

$$\dot{x}_1 = \frac{-6x_1}{(1+x_1^2)^2} + 2x_2$$
$$\dot{x}_2 = \frac{-2(x_1+x_2)}{(1+x_1^2)^2}$$

Choose the Lyapunov function $V(x) = \frac{x_1^2}{1+x_1^2} + x_2^2$. V(x) is p.d. at x = 0 and n.s.d. at x = 0. However, not all level sets of V are bounded, $\exists c^* > 0$ s.t. Ω_{c^*} is not compact, and we cannot characterize the GAS.

There is a simple fix to ensure every sublevel set of V is compact: $V(x) \to \infty$ as $||x|| \to \infty$. That is V(x) is radially unbounded.

Theorem: 3.2: Barbashin-Krasovskii

Consider $\dot{x} = f(x)$ with $f : \mathbb{R}^n \to \mathbb{R}^n$ locally Lipschitz, and f(0) = 0. Let $V : \mathbb{R}^n \to \mathbb{R}$ be a C^1 function s.t.

1. *V* is p.d. at 0: V(0) = 0, and $V(x) > 0, \forall x \neq 0$.

2. V is n.d. at 0: V(0) = 0, and $V(x) < 0, \forall x \neq 0$.

- 3. V is radially unbounded: $V(x) \to \infty$ as $||x|| \to \infty$.
- Then $x^* = 0$ is globally asymptotically stable (GAS).

Proof. The stability part does not change. It remains to show that $\forall x(0) \in \mathbb{R}^n, x(t) \to 0$. To the end, consider any $x(0) \in \mathbb{R}^n$ and let c = V(x(0)). $3 \Rightarrow \forall c > 0, \exists r > 0$ s.t. V(x) > c if ||x|| > r. Therefore, $\Omega_c \subset \overline{B}_r(0)$, the closed ball of radius r centered at 0. Ω_c is bounded. We can reapply the attracting argument for all $x(0) \in \mathbb{R}^n, V(x(t)) \to 0$. Since V(x(t)) is decreasing and converges, $V(x(t)) \to \epsilon > 0, \dot{V} < -\gamma$, then

$$V(x(t)) = V(x(0)) + \int_0^t \dot{V}(x(\tau)) d\tau \le V(x(0)) - \gamma t$$

Therefore, by continuity, $x(t) \to 0$.

3.1 Stability of LTI Systems

 $\dot{x} = Ax, x(t) \in \mathbb{R}^n$

Theorem: 3.3:

 $x^* = 0$ is asymptotically stable $\Leftrightarrow \sigma(A) \subset \mathbb{C}^-$ (spectrum of A lies in the Re < 0 half plane). *i.e.* A is Hurwitz.

We seek a Lyapunov characterization. Consider a quadratic Lyapunov function $V(x) = x^T P x$, where $P = P^T$ and p.d. *i.e.* $x^T P x > 0, x \neq 0$ and $x^T P x = 0$ for x = 0.

$$\dot{V} = \dot{x}^T P x + x^T P \dot{x} = 2x^T P \dot{x}$$
$$= 2x^T P A x = x^T (A^T P + P A) x$$
$$= -x^T Q x, \text{ for some } Q = Q^T$$

We need to solve $A^T P + P A = -Q$, the Lyapunov equation.

Theorem: **3.4**:

A is Hurwitz $(\sigma(A) \subset \mathbb{C}^-)$ if and only if for any $Q = Q^T$ p.d., there exists a unique $P = P^T$ p.d. s.t. $A^T P + PA = -Q$.

Example: $\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -x_1 - x_2 \end{cases}, Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Proof. Parametrize $P = \begin{bmatrix} p_{11} & p_{12} \\ p_{12} & p_{22} \end{bmatrix}$. $A^T P + P A = -Q$ gives three equations, and solving the equations gives $P = \begin{bmatrix} \frac{3}{2} & \frac{1}{2} \\ \frac{1}{2} & 1 \end{bmatrix}$, which is p.d.

Indirect methods we can use the linear system approach to analyze a nonlinear system

- 1. Linearize about an equilibrium x^*
- 2. Use the linear theorems
- 3. Deduction about stability of x^* for the nonlinear system.

3.2 Exponential Stability

Recall Definition 3.4. What is the Lyapunov characterization?

Theorem: 3.5: Exponential Stability

Consider $\dot{x} = f(x)$, f locally Lipschitz, f(0) = 0, and let D be a domain containing 0 and $V : D \to \mathbb{R}$ is a C^1 function. Suppose $\exists \gamma_1, \gamma_2 > 0, \beta > 0, k > 0$ s.t. $\forall x \in D$ 1. $\gamma_1 \|x\|^k \leq V(x) \leq \gamma_2 \|x\|^k$ 2. $\dot{V}(x) = L_f V(x) \leq -\beta \|x\|^k$ Then $x^* = 0$ is exponentially stable. Moreover, if $D = \mathbb{R}^n$, then $x^* = 0$ is globally exponentially stable.

Proof. Let $\epsilon > 0$ be s.t. $B_{\epsilon}(0) \subset D$. Let $c_0 > 0$ be s.t. $\Omega_{c_0} = \{x \in \overline{B}_{\epsilon}(0) : V(x) \leq c_0\} \subset B_{\epsilon}(0)$. This is always doable by 1. Now consider any $x \in D$ by 1 and 2,

$$L_f V(x) \le -\beta \|x\|^k \le -\frac{\beta}{\gamma_2} V(x)$$

Therefore, for all $x_0 \in \Omega_{c_0}$,

$$\frac{d}{dt}V(\phi(t,x_0)) = L_f V(\phi(t,x_0)) \le -\frac{\beta}{\gamma_2}V(\phi(t,x_0)), \forall t \ge 0$$

Integrate both sides,

$$V(\phi(t, x_0)) \le V(x_0) - \frac{\beta}{\gamma_2} \int_0^t V(\phi(\tau, x_0)) d\tau$$

By Lemma 1.1, $V(\phi(t, x_0)) \leq V(x_0) \exp\left(-\frac{\beta}{\gamma_2}t\right)$. Now use 1,

$$\gamma_1 \|\phi(t, x_0)\|^k \le V(\phi(t, x_0)) \le V(x_0) \exp\left(-\frac{\beta}{\gamma_2}t\right) \le \gamma_2 \|x_0\|^k \exp\left(-\frac{\beta}{\gamma_2}t\right)$$

Therefore, $\|\phi(t, x_0)\| \leq \left(\frac{\gamma_2}{\gamma_1}\right)^{1/k} \|x_0\| \exp\left(-\frac{\beta}{\gamma_2}t\right)$. Hence $x^* = 0$ is exponentially stable.

3.3Converse Theorem; LaSalle Invariance Principle; Barbalat's Lemma

Theorem: **3.6**: Massera (Converse Theorem)

Let x^* be an asymptotically stable equilibrium of $\dot{x} = f(x)$ where f is locally Lipschitz. Then there exists a ball $B_r(x^*)$ and a C^1 function $V: B_r(x^*) \to \mathbb{R}$ s.t. V is p.d. at x^* and $L_f V(x)$ is n.d. at x^* . If x^* is GAS, then additionally $V: \mathbb{R}^n \to \mathbb{R}$ is p.d. at $x^*, L_f V(x)$ is n.d. at x^* .

Example: Consider a pendulum with friction $\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -a \sin x_1 - b x_2, b > 0 \end{cases}$. Find a Lyapunov function based on the total energy $V(x) = a(1 - \cos x_1) + \frac{1}{2}x_2^2$ V(x) is p.d. at $x^* = 0$ over $-\frac{\pi}{2} < x_1 < \frac{\pi}{2}$. $L_f V(x) = -bx_2^2 \le 0$ n.s.d.

Question: Do we need to find another Lyapunov function? No. Notice that $L_f V(x) < 0$ except at $x_2 = 0$, where $L_f V(x) = 0$. Solutions move along decreasing level sets of V. Then the solutions remain trapped, approaching points where $L_f V(x) = 0$. $L_f V(x) = 0$ gives $x_2 = 0$, $\dot{x}_2 = 0$, and $\dot{x}_1 = 0$. Solutions can maintain $L_f V(x) = 0$ only at $x^* = 0$. Thus as $V(x) \to 0$, $x \to 0$, $x^* = 0$ is asymptotically stable.

These observations can be formalized in Lasalle Invariance Principle.

Theorem: 3.7: LaSalle Invariance Principle

Consider the nonlinear system $\dot{x} = f(x)$ where f(0) = 0 and f is locally Lipschitz. Let $D \subset \mathbb{R}$ be a domain containing 0 and let Ω be a compact, positively invariant set under the system. Let $V: D \to \mathbb{R}$ be a C^1 function s.t. $\forall x \in \Omega, L_f V(x) \leq 0$. Define $E = \{x \in \Omega : L_f V(x) = 0\}$. Let m be the largest positively invariant set in E. Then $\forall x_0 \in \Omega, \phi(t, x_0) \to m \text{ as } t \to \infty$.

Proof. Let $x_0 \in \Omega$. We claim $\exists c_0 \in \mathbb{R}$ s.t. $\lim_{t \to \infty} V(\phi(t, x_0)) = c_0$. We know $L_f V(x) \leq 0, \forall x \in \Omega$, so $V(\phi(t, x_0))$ is non-increasing. Also, V is continuous, and Ω is compact, so V achieves its minimum on Ω . Since $V(\phi(t, x_0))$ is a non-increasing function bounded from below, it has a limit c_0 as $t \to \infty$.

Claim: the positive limit set $L^+(x_0) \neq \emptyset$ and $\forall x \in L^+(x_0), V(x) = c_0$.

This is because $\phi(t, x_0)$ is bounded. Since $x_0 \in \Omega$ and Ω is compact and positively invariant. $\phi(t, x_0) \in$ $\Omega, \forall t \geq 0.$

Apply Theorem 2.5, $L^+(x_0) \neq 0$, it is compact and invariant. Let $p \in L^+(x_0)$. This means $\exists \{t_k\}_k$ with $t_k \to \infty$ s.t. $\phi(t_k, x_0) \to p$.

By continuity of $V, V(\phi(t_k, x_0)) \to V(p)$ as $t_k \to \infty$. But we also know that $V(\phi(t, x_0)) \to c_0$, so $V(p) = c_0$.

Claim: $L^+(x_0) \subset E = \{x \in \Omega : L_f V(x) = 0\} \subset \Omega.$ $\forall p \in L^+(x_0) \text{ and } \forall t \geq 0, \ \phi(t,p) \in L^+(x_0), \text{ because } L^+(x_0) \text{ is invariant.}$ Then we have that $V(\phi(t,p)) = c_0, \forall t \ge 0, V$ is constant, $\frac{d}{dt}V(\phi(t,p)) = 0, \forall t \ge 0.$ In particular, $\frac{d}{dt}V(\phi(t,p))\Big|_{t=0} = L_f V(p) = 0.$ Also, $x_0 \in \Omega$ and Ω is compact, $L^+(x_0 \in \Omega)$. Taken together, these statements imply $p \in E$.

Claim: $L^+(x_0) \subset m$.

 $L^+(x_0) \subset E$ by previous step. $L^+(x_0)$ is positively invariant. By Theorem 2.5, $L^+(x_0) \subset m$, which is the largest positively invariant set in E.

Claim: $\phi(t, x_0) \to m$ as $t \to \infty$. By Theorem 2.5, $\phi(t, x_0) \to L^+(x_0)$ as $t \to \infty$, but $L^+(x_0) \subset m$. Remark 6. In practice, we want m to be a single point which is the equilibrium.

Back to the example: $V(x) = a(1 - \cos x_1) + \frac{1}{2}x_2^2$. $\Omega = \{x \in \mathbb{R}^2 : V(x) \le c\}$ is compact, positively invariant for sufficiently small c. $L_f V(x) = -bx_2^2$, $E = \{x : x_2 = 0\}$, $m = \{x : x_1 = x_2 = 0\} = \{0\}$. From Theorem 3.7, x^* is asymptotically stable.

Fact: Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function.

- 1. $\dot{f}(t) \to 0 \not\Rightarrow f$ converges to a constant. *e.g.* $f(t) = \sin(\log(t)), \ \dot{f}(t) = \cos(\log(t))\frac{1}{t} \to 0$ as $t \to \infty$, but f(t) does not converge.
- 2. f(t) converges as $t \to \infty \not\Rightarrow \dot{f}(t) \to 0$. e.g. $f(t) = e^{-t} \sin e^{2t}$, $\dot{f}(t)$ is unbounded.
- 3. If f is bounded from below. *i.e.* $\exists c \in \mathbb{R}$ s.t. $f(t) \geq c$ and f is non-increasing. *i.e.* $f(t) \leq 0$, then f converges as $t \to \infty$, *i.e.* $\lim_{t \to \infty} f(t) = c'$ for some $c' \geq c$.

Definition: 3.5: Uniform Continuous (Formal)

A function $g: \mathbb{R} \to \mathbb{R}$ is uniformly continuous if $\forall \epsilon > 0, \forall t, t' \ge 0, |t - t'| < \delta \Rightarrow |g(t) - g(t')| < \epsilon$.

Remark 7. A sufficient condition for g to be uniformly continuous is that its derivative is bounded.

Lemma: 3.1: Barbalat's Lemma

If the differentiable function $f : \mathbb{R} \to \mathbb{R}$ has a finite limit as $t \to \infty$ and if $\dot{f}(t)$ is uniformly continuous, then $\dot{f}(t) \to 0$ as $t \to \infty$.

Corollary 1. If the differentiable function $f : \mathbb{R} \to \mathbb{R}$ has a finite limit as $t \to \infty$ and if $\ddot{f}(t)$ exists and is bounded, then $\dot{f}(t) \to 0$ as $t \to \infty$.

Theorem: 3.8: Lyapunov-Like

Consider a C^1 function $V : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$ satisfying

1. V is lower bounded

2. $\dot{V}(x,t)$ is negative semi-definite at 0

3. $\dot{V}(x,t)$ is uniformly continuous in t

Then $\dot{V}(x,t) \to 0$ as $t \to \infty$.

Adaptive Control Consider a LTI system $\begin{cases} \dot{x} = Ax + Bu\\ y = Cx \end{cases}$, where $x \in \mathbb{R}^n$ is the state, $u \in \mathbb{R}$ is the input and $y \in \mathbb{R}$ is the output. We assume x, u, y are available for measurement. Given r(t) a reference signal, find a controller s.t. $y(t) \to r(t)$, assuming A, B, C are unknown. Define the error e = r - y, assume r(t) is generated by a linear exogenous system $\dot{w} = Sw, r = Ew$. Define the error model: e = Ew - Cx,

$$\dot{e} = E\dot{w} - C\dot{x}$$

= $Esw - C(Ax + Bu)$
= $-CBu + ESw - CAx$
= $-\beta u + \beta \psi \phi$,

where $\beta = CB \in \mathbb{R}$ and $\operatorname{sgn}(\beta)$ is known, $\psi = -\frac{1}{\beta}(CA, CB)$ is a row vector of unknown parameters, $\phi = \begin{bmatrix} x \\ w \end{bmatrix}$ is called the regressor, and is known. Now we have a scalar error model $\dot{e} = -\beta u + \beta \psi \phi$. We want $e(t) \to 0$. Choose a controller $u = ke + \hat{\psi}\phi$, where ke is for the closed-loop stability, $\hat{\psi}\phi$ is to achieve tracking (internal model principle), $\hat{\psi}$ is an estimation of the unknown ψ .

Define the parameter estimation error $\tilde{\psi} = \psi - \hat{\psi}$, then the closed-loop error model is $\dot{e} = -\beta k e - \beta \tilde{\psi} \phi$. Consider the Lyapunov function $V = \frac{1}{2}e^2 + \frac{1}{2}|\beta|\tilde{\psi}\tilde{\psi}^T$. V is p.d. at $(e^*, \tilde{\psi}^*) = 0$.

$$\begin{split} \dot{V} &= L_f V = e\dot{e} + |\beta|\tilde{\psi}\dot{\tilde{\psi}}^T \\ &= e[-\beta ke - \beta\tilde{\psi}\phi] + |\beta|\tilde{\psi}\dot{\tilde{\psi}}^T \\ &= -\beta ke^2 - \beta e\tilde{\psi}\phi + |\beta|\tilde{\psi}\dot{\tilde{\psi}}^T. \end{split}$$

Since $\beta k > 0$, $-\beta k e^2$ is n.d. Choose $\dot{\psi}^T = \operatorname{sgn}(\beta) e \phi$ to cancel out the remaining terms. Since $\tilde{\psi} = \psi - \hat{\psi}$, $\dot{\tilde{\psi}} = \dot{\psi} - \dot{\tilde{\psi}} = -\dot{\tilde{\psi}}$, we get $\dot{\tilde{\psi}} = -\operatorname{sgn}(\beta) e \phi^T$.

We now have $\dot{V} = -\beta k e^2 \leq 0$. At this point, we have V p.d. at (0,0) and $\dot{V} \leq 0$. So from Theorem 3.1, we can conclude the equilibrium $(e^*, \tilde{\psi}^*) = (0,0)$ is stable.

Notice V is radially unbounded, so e(t) and $\psi(t)$ are bounded. We can also assume that w(t) is bounded. Then we know $\phi(t)$ is bounded. Then $\dot{e} = -\beta ke - \beta \tilde{\psi} \phi$ is bounded. Then $\ddot{V} = -2\beta ke\dot{e}$ is bounded. Therefore \dot{V} is uniformly continuous. By Lemma 3.1, $\dot{V}(t) \to 0$ along solution. But $\dot{V} = -\beta ke^2$, we conclude $e(t) \to 0$ as $t \to \infty$.

Remark 8. Notice we don't conclude $\tilde{\psi}(t) \to \infty$ from this method. Parameter convergence requires an extra condition called persistency of excitation.

3.4 Stability of Perturbed Systems

Consider the system

$$\dot{x} = f(x) + g(t, x),$$

where $f : \mathbb{R}^n \to \mathbb{R}^n$ is locally Lipschitz, $g : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ is continuous in t and locally Lipschitz in x. We regard g(t, x) as a perturbation term.

First suppose x = 0 is GES of unperturbed system

$$\dot{x} = f(x)$$

Assume g(t,0) = 0 for all t. Using converse Lyapunov theorems (Khalil Theorem 4.14), there exists $V : \mathbb{R}^n \to \mathbb{R}$ for $\dot{x} = f(x)$ satisfying

1. $c_1 ||x||^2 \le V(x) \le c_2 ||x||^2$

2.
$$\dot{V}(x) \leq -c_3 \|x\|^2$$

3. $\left\|\frac{\partial V}{\partial x}\right\| \le c_4 \|x\|$ for some $c_1, c_2, c_3, c_4 > 0$.

Suppose the perturbation satisfies a linear growth bound $||g(t,x)|| \leq \gamma ||x||$ for $t \geq 0$, $x \in \mathbb{R}^n$ and $\gamma \geq 0$ a constant.

Note any function g with g(t, 0) = 0 and g locally Lipschitz, uniformly in t, in a bounded neighborhood of 0 will satisfy $||g(t, x)|| \le \gamma ||x||$ on that neighborhood.

Now consider \dot{V} along solutions of $\dot{x} = f(x) + g(t, x)$,

$$\dot{V} = \frac{\partial V}{\partial x} \dot{x} = \frac{\partial V}{\partial x} (f(x) + g(t, x))$$

$$\leq -c_3 \|x\|^2 + \frac{\partial V}{\partial x} g(t, x)$$

$$\leq -c_3 \|x\|^2 + \left\| \frac{\partial V}{\partial x} \right\| \|g(t, x)\|$$

$$\leq -c_3 \|x\|^2 + c_4 \|x\| \gamma \|x\|$$

$$= -(c_3 - \gamma c_4) \|x\|^2$$

If $\gamma < \frac{c_3}{c_4}$, then $c_3 - \gamma c_4 > 0$, $\dot{V} \le -(c_3 - \gamma c_4) \|x\|^2 \le 0$ n.d.

Lemma: 3.2: Khalil 9.1

Consider the system $\dot{x} = f(x) + g(t, x)$ and x = 0 is GES for $\dot{x} = f(x)$. Let V(x) be a Lyapunov function for $\dot{x} = f(x)$ satisfying Khalil 4.14, and g(t, x) satisfies $||g(t, x)|| \le \gamma ||x||$ with $\gamma < \frac{c_3}{c_4}$. Then x = 0 is exponentially stable for $\dot{x} = f(x) + g(t, x)$.

Remark 9. In practice, we often do not know c_i s. Then we write for $\gamma > 0$ sufficiently small.

The Lemma is conceptually important, because it highlights that ES is robust to perturbations.

Example: Consider $\dot{x} = Ax + g(t, x)$, where $A \in \mathbb{R}^{n \times n}$ is Hurwitz and $||g(t, x)|| \leq \gamma ||x||, \forall t \geq 0, x \in \mathbb{R}^n$. There exists $P = P^T$ p.d. solving the Lyapunov equation $A^T P + PA = -Q$ with $Q = Q^T$ p.d. For the nominal system $\dot{x} = Ax$, we choose the Lyapunov function $V = x^T Qx$. This Lyapunov function satisfies

1. $\lambda_{\min}(P) ||x||^2 \le V(x) \le \lambda_{\max}(P) ||x||^2$

2.
$$\dot{V} = -x^T Q x \le -\lambda_{\min}(Q) \|x\|^2$$

3. $\left\|\frac{\partial V}{\partial x}\right\| = \left\|2x^T P\right\| \le 2 \left\|P\right\| \left\|x\right\| \le 2\lambda_{\max}(P) \left\|x\right\|^2$

Now consider \dot{V} for $\dot{x} = Ax + g(t, x)$. Compute

$$\begin{split} \dot{V} &= 2x^{T} P \dot{x} = 2x^{T} P (Ax + g(t, x)) \\ &= x^{T} (A^{T} P + PA) x + 2x^{T} P g(t, x) = -x^{T} Q x + 2x^{T} P g(t, x) \\ &\leq -\lambda_{\min}(Q) \|x\|^{2} + 2 \|x^{T} P\| \|g(t, x)\| \\ &\leq -\lambda_{\min}(Q) \|x\|^{2} + 2 \|P\| \|x\| \gamma \|x\| \\ &\leq -\lambda_{\min}(Q) \|x\|^{2} + 2\lambda_{\max}(P) \gamma \|x\|^{2} \\ &= -(\lambda_{\min}(Q) - 2\gamma\lambda_{\max}(P)) \|x\|^{2} \,. \end{split}$$

We want $\gamma < \frac{\lambda_{\min}(Q)}{2\lambda_{\max}(P)}$.

Note P depends on the choice of Q. The best of Q for least restrictive bound is Q = I.

Example:
$$\begin{cases} \dot{x_1} = x_2 \\ \dot{x_2} = -4x_1 - 2x_2 + \beta x_2^3 \end{cases}$$
, where $\beta > 0$ is unknown.

Rewrite as a perturbed system $\dot{x} = f(x) + g(t, x)$, where $f(x) = \begin{bmatrix} 0 & 1 \\ -4 & -2 \end{bmatrix} x$, $g(x) = \begin{bmatrix} 0 \\ \beta x_2^3 \end{bmatrix}$. The solution

of the Lyapunov equation $A^T P + PA = -I$ is $P = \begin{bmatrix} 3/2 & 1/8 \\ 1/8 & 5/16 \end{bmatrix}$. The conditions hold with $c_3 = 1$, $c_4 = 2\lambda_{\max}(P) = 3.026$.

Now look at $||g(x)|| = \beta ||x_2||^3 = \beta ||x_2||^2 ||x_2|| \le \beta ||x_2||^2 ||x|| \le \beta k_2^2 ||x||$, which holds for all $||x_2|| \le k_2$. We don't know if such a bound on x_2 holds. Consider $\dot{x} = f(x) + g(x)$,

$$\dot{V} = \frac{\partial V}{\partial x} (f(x) + g(x))(f(x) + g(x))$$

$$\leq - \|x\|^2 + c_4 \|x\| \beta k_2^2 \|x\|$$

$$\leq - \|x\|^2 + 3.026\beta k_2^2 \|x\|^2$$

 $\dot{V} \leq 0$ if $\beta < \frac{1}{3.026k_2^2}$ Denote $\Omega_c = \left\{x \in \mathbb{R}^2 : V(x) \leq c\right\}$ closed and bounded. The boundary is $\partial\Omega_c = \left\{x : V(x) = \frac{3}{2}x_1^2 + \frac{1}{4}x_1x_2 + \frac{5}{16}x_2^2\right\}$. We need the largest x_2 on $\partial\Omega$. Take V(x) = c, derivative w.r.t. x_1 , set to 0, solve for x_2 . This gives $x_1 = -\frac{3}{4}x_2$. $x_2^2 = \frac{96c}{29}$. $\forall x \in \Omega_c$, $|x_2| < k_2$, $k_2^2 < \frac{96c}{29}$, $\beta \leq \frac{0.1}{c}$. This gives a region of attraction.

Lemma: 3.3: Non-Vanishing Perturbation

Let x = 0 be an equilibrium of $\dot{x} = f(x)$. Let $V : \mathbb{R}^n \to \mathbb{R}$ be a Lyapunov function for the system satisfying Khalil 4.14 holding $B_r(0)$, Consider $\dot{x} = f(x) + g(t,x)$. Suppose $||g(t,x)|| \le \delta < \frac{c_3}{c_4} \sqrt{\frac{c_1}{c_2}} \theta r$, where $0 < \theta < 1$. If $||x(0)|| < \sqrt{\frac{c_2}{c_1}} r$, then $||x(t)|| \le \frac{c_4}{c_3} \sqrt{\frac{c_2}{c_1}} \frac{\delta}{\theta}$.

Proof.

$$\dot{V} = \frac{\partial V}{\partial x} (f(x) + g(x)) \le -c_3 \|x\|^2 + \left\| \frac{\partial V}{\partial x} \right\| \|g(x)\|$$

$$\le -c_3 \|x\|^2 + c_4 \|x\| \delta = -c_3 \|x\|^2 + \frac{c_4}{c_3} \delta + \theta c_3 \|x\|^2 - \theta c_3 \|x\|^2$$

$$= -(1 - \theta)c_3 \|x\|^2 - \theta c_3 \|x\|^2 + c_4 \delta \|x\|$$

$$= -(1 - \theta)c_3 \|x\|^2 - (\theta c_3 \|x\| - c_4 \delta) \|x\|$$

If $||x|| \ge \frac{\delta c_4}{\theta c_3}$, then $\dot{V} \le -(1-\theta)c_3 ||x||^2$.

Most Common Tricks/Techniques:

- 1. Cauchy-Schwarz: $u^T v \leq ||u|| ||v||$
- 2. Matrix norm: $||Ax|| \le ||A|| ||x||$
- 3. Young's Inequality: $2 ||a|| ||b|| \le ||a||^2 + ||b||^2$; $2 ||a||^2 \le ||a||^2 + 1$

4.
$$ab \leq \frac{a^2}{2\epsilon} + \frac{\epsilon b^2}{2}$$

5. Comparison Lemma: Consider $\dot{y} = f(t, y)$, $y(t_0) = y_0$. Suppose $\dot{V} \leq f(t, V)$, and $V(t_0) \leq y_0$. Then $V(t) \leq y(t), \forall t \geq t_0, \dot{V} \leq -\gamma V$.

Theorem: 3.9:

Consider the perturbed system

$$\dot{x} = f(t, x) + g(t),$$

where f is locally Lipschitz in x and piecewise-continuous nt. Suppose x = 0 is GES for $\dot{x} = f(t, x)$. Suppose $g(t) \to 0$ exponentially. Then x = 0 is stable for the perturbed system.

Proof. By Theorem 4.14 of Khalil, $\exists V_1 : \mathbb{R}^n \to \mathbb{R}$ s.t.

1. $c_1 ||x||^2 \le V_1(t, x) \le c_2 ||x||^2$ 2. $\frac{\partial V_1}{\partial t} + \frac{\partial V_1}{\partial x} f(t, x) \le -c_3 ||x||^2$ 3. $\left\| \frac{\partial V_1}{\partial x} \right\| \le c_4 ||x||$

for some $c_1, c_2, c_3, c_4 > 0$.

Since $g(t) \to 0$ exponentially, $\exists (\overline{c_2}, A_2)$ s.t. $\dot{\nu} = A_2 \nu$ and $||g(t)|| \le ||\overline{c_2}\nu||$. Notice that A_2 is Hurwitz, so $\exists P_2 = P_2^T$ s.t. $A_2^T P_2 + P_2 A_2 = I$.

Let $V(t, x, \nu) = V_1(t, x) + c_5 \nu^T A_2 \nu$ where $c_5 > 0$ TBD. Then

$$\begin{split} \dot{V} &= \dot{V}_{1} + c_{5} 2\nu^{T} P_{2} \dot{\nu} = \frac{\partial V_{1}}{\partial t} + \frac{\partial V_{1}}{\partial x} (f(t, x) + g(t)) + c_{5} 2\nu^{T} P_{2} A_{2} \nu \\ &\leq -c_{3} \|x\|^{2} + \frac{\partial V_{1}}{\partial x} g(t) + c_{5} \nu^{T} (A_{2}^{T} P_{2} + P_{2} A_{2}) \nu \\ &= -c_{3} \|x\|^{2} + \frac{\partial V_{1}}{\partial x} g(t) - c_{5} \|\nu\|^{2} \\ &\leq -c_{1} \|x\|^{2} + \left\| \frac{\partial V}{\partial x} \right\| \|g(t)\| - c_{5} \|\nu\|^{2} \\ &\leq -c_{3} \|x\|^{2} + c_{4} \|x\| \overline{c_{2}} \|\nu\| - c_{5} \|\nu\|^{2} \end{split}$$

Also $||x|| ||\nu|| \le \frac{||x||^2}{2\epsilon} + \frac{\epsilon ||\nu||^2}{2}$ for $\epsilon > 0$ TBD. Then

$$\leq -c_3 \|x\|^2 + \overline{c_2}c_4 \left[\frac{\|x\|^2}{2\epsilon} + \frac{\epsilon \|\nu\|^2}{2}\right] - c_5 \|\nu\|^2$$
$$\leq -\left[c_3 - \frac{\overline{c_2}c_4}{2\epsilon}\right] \|x\|^2 - \left[c_5 - \frac{\epsilon\overline{c_2}c_4}{2}\right] \|\nu\|^2$$

Choose $\epsilon > 0$ s.t. $c_3 > \frac{\overline{c_2}c_4}{2\epsilon}$ and $c_5 > \frac{\epsilon\overline{c_2}c_4}{2}$. We have $\dot{V} \leq -\gamma_1 \|x\|^2 - \gamma_2 \|\nu\|^2 \leq -\gamma V$.

Now we can apply Lemma 1.2 to get $V(t) \leq \exp(-\gamma t)V(0), (x(t), \nu(t)) \to 0$ exponentially. Therefore, x = 0 is GES.

3.5 Input-to-State Stability

Consider the control system

 $\dot{x} = f(x, u),$

where $f : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ is locally Lipschitz in x and u. Suppose $u(t) \in \mathbb{R}^n$ is a piecewise continuous bounded function of t. Suppose we know the unforced system $\dot{x} = f(x, 0)$ has an equilibrium at x = 0 that is GAS.

Example: Consider the linear system $\dot{x} = Ax + Bu$, $x(t) \in \mathbb{R}^n$, $u(t) \in \mathbb{R}^n$. Suppose $A \in \mathbb{R}^{n \times n}$ is Hurwitz. We know the solution is

$$x(t) = e^{At}x(0) + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$$

Since A is Hurwitz, $\exists (C, \lambda), \lambda > 0$ s.t. $\left\| e^{At} \right\| \le C e^{-\lambda t}$, for all $t \ge 0$.

$$\begin{split} \|x(t)\| &\leq \left\| e^{At} \right\| \|x(0)\| + \int_0^t \left\| e^{A(t-\tau)} \right\| \|B\| \|u(\tau)\| \, d\tau \\ &\leq C e^{-\lambda t} \|x(0)\| + \int_0^t C e^{-\lambda(t-\tau)} \|B\| \|u(\tau)\| \, d\tau \\ &\leq C e^{-\lambda t} \|x(0)\| + C e^{-\lambda t} \int_0^t e^{\lambda \tau} \|B\| \, d\tau \sup_{\tau \in [0,t]} \|u(\tau)\| \\ &\leq C e^{-\lambda t} \|x(0)\| + \frac{C \|B\|}{\lambda} \sup_{\tau \in [0,t]} \|u(\tau)\| \end{split}$$

This shows bounded input implies bounded state. We want to generalize this property to nonlinear systems.

Definition: 3.6: Class κ Functions

A function $\alpha : [0,T] \to [0,\infty)$ belongs to class κ if it is strictly increasing and $\alpha(0) = 0$. It belongs to κ_{∞} if $T = \infty$ and $\alpha(r) \to \infty$ as $r \to \infty$.

Definition: 3.7: Class κL Functions

A continuous function $\beta : [0,T] \times [0,\infty] \to [0,\infty)$ belongs to class κL if for each fixed s, the mapping $\beta(\cdot,s)$ belongs to class κ and for each fixed r, $\beta(r,\cdot)$ is decreasing and $\beta(r,s) \to 0$ as $s \to \infty$.

Definition: 3.8: Input-to-State Stability

A system $\dot{x} = f(x, u)$ is Input-to-State Stable (ISS) if there exists a class κL function β and class κ function γ s.t. $\forall x(0)$ and any piecewise continuous bounded input u(t), x(t) exists and

$$||x(t)|| \le \beta(||x(0)||, t) + \gamma\left(\sup_{\tau \in [0,t]} ||u(\tau)||\right)$$

Remark 10. For ISS, bounded input implies bounded states. ISS implies x = 0 is GAS for $\dot{x} = f(x, 0)$.

Theorem: 3.10:

Let $V : \mathbb{R}^n \to \mathbb{R}$ be a C^1 function satisfying $\alpha(||x||) \leq V(x) \leq \alpha(||x||)$ with α_1, α_2 in class κ_{∞} . $\dot{V}(x) = \frac{\partial V}{\partial x} f(x, u) \leq -w(x)$, for all $||x|| \geq \rho(||x||) > 0$ where ρ is class κ and w(x) is a continuous positive definite (at x = 0) function. Then $\dot{x} = f(x, u)$ is ISS.

Example: $\dot{x} = -x^3 + u$. Note x = 0 is GAS for $\dot{x} = -x^3$. Try Lyapunov function $V = \frac{1}{2}x^2$.

$$\dot{V} = x\dot{x} = x(-x^3 + u) = -x^4 + xu$$
$$= -(1 - \theta)x^4 - \theta x^4 + xu \text{ for } 0 < \theta < 1$$
$$\leq -(1 - \theta)x^4$$

for all $|x| \ge \left(\frac{|u|}{\theta}\right)^{1/3}$. The system is ISS.

Lemma: 3.4:

Consider $\dot{x} = f(x, u)$ and f(x, u) is C^1 and globally Lipschitz in x and u. If x = 0 is GES for $\dot{x} = f(x, 0)$, then $\dot{x} = f(x, u)$ is ISS.

Theorem: 3.11: Cascade System

Consider the cascade system

$$\dot{x}_1 = f_1(x_1, x_2)$$

 $\dot{x}_2 = f_2(x_2)$

Suppose $x_2 = 0$ is GAS for $\dot{x}_2 = f_2(x_2)$, $\dot{x}_1 = f_1(x_1, x_2)$ is ISS with input x_2 , then x = (0, 0) is GAS.