
ECE1647 Introduction to Nonlinear Systems

Introduction

• Goal: to analyze (not model or design/control) a nonlinear system

• Caveate: to perform a rigorous mathematical analysis, generally the system has to have a reasonable
dimension and/or be a structured model

Dynamic systems of the form

ẋ1 = f(x1, ..., xn)

· · ·
ẋn = f(x1, ..., xn),

where x1(t), ..., xn(t) ∈ R are the states and each fi : Rn → R is a nonlinear map. Each equation is an
autonomous ODE. More generally, ẋi = fi(t, x1, ..., xn) is a non-autonomous nonlinear ODE.

Introduce the state vector x(t) =

x1(t)...
xn(t)

, f(t, x) =

f1(t, x1, ..., xn)...
fn(t, x1, ..., xn)

. Then we write ẋ = f(x) or

ẋ = f(t, x). At times, we consider ẋ = f(x, u), where u ∈ Rm is the control input.

A special form of nonlinear control system is called control affine system

ẋ = f(x) + g(x)u,

where f : Rn → Rn, x ∈ Rn, g : Rm → Rn, u ∈ Rm. Even more ubiquitous is LTI systems:

ẋ = Ax+Bu.

A third class of models is for mechanical systems (e.g. robotic manipulation):

m(q)q̈ + c(q, q̇)q̇ + g(q) = u

Note: this model is nonlinear, but not presented as a state model. To convert to a state model, we must

define states. The states for a mechanical system are x =

[
q
q̇

]
, q ∈ RN . The system is

ẋ1 = x2

ẋ2 = m(q)−1[−c(q, q̇)q̇ − g(q) + u] = m(x1)
−1[−c(x1, x2)x2 − g(xq) + u]

Why nonlinear models?
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• Nonlinear models arise in significant applications

• Nonlinear phenomena (distinct from linear systems)

– Finite escape time

– Multiple isolated equilibrium

– Limit cycles

– Chaos

0.1 Nonlinear Analysis

A. Existence and Uniqueness of Solutions
Example: ẋ = −x, x(t) = x(0)e−t is exponentially stable.
ẋ = −x2 has finite escape time.
Key concept: Lipschitz continuity.

B. Invariant Sets
Key concept: Nagumo Theorem

C. Stability
Type of stability: Globally Exponential Stability, Asymptotic Stability, Stability

Key concept: Lyapunov analysis
Suppose for ẋ = f(x), f(0) = 0, then x = 0 is an equilibrium. We want to study stability of the equilib-
rium.

Define a Lyapunov function V : Rn → R, Compute the Lie derivative: dV (x(t))
dt = ∂V

∂x

∣∣
x=x(t)

· dxdt =
∂V
∂x (x(t))f(x(t)). We want V̇ ≤ 0 or more preferrably V̇ ≤ αV .

0.2 Examples

Pendulum Model
Using Newton’s 2nd law:

mlθ̈ = −mg sin θ − klθ̇

Define the state x1 = θ, x2 = θ̇. Then the state model is

ẋ1 = x2

ẋ2 = −g
l
sin(x1)−

k

m
x2

It has the form: ẋ = f(x) where x =

[
x1
x2

]
. Let f(x) = 0 and solve for x, we get (x1, x2) = (kπ, 0).

Van der Pol Equation

V̈ − ϵ(1− V 2)V̇ + V = 0, ϵ > 0

Define x1 = V , x2 = V̇ , then

ẋ1 = x2

ẋ2 = −x1 + ϵ(1− x21)x2
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If ϵ = 0, then ẋ = Ax, with A =

[
0 1
−1 0

]
. It is an oscillator.

Otherwise, ϵ > 0, we get a limit cycle.

(a) ϵ = 0 (b) ϵ > 0

Figure 1: Phase Plots for Van der Pol Equation

Adaptive Control

ẋ = Ax+Bu−Bd

e = cx,

where d = ϕTw, where w is a known regressor, ϕ is an unknown parameter.
The standard solution in adaptive control is

u = kx+ ϕ̂Tw

The gradient law for parameter adaptation is

˙̂
ϕ = −γew.

Then we get ẋ = (A+Bk)x+B(ϕ̂Tw − ϕTw).

Let ϕ̃ = ϕ̂− ϕ, ẋ = (A+Bk)x+Bϕ̃w, with ϕ̃ = −γew.

0.3 Phase Portraits

Consider a second-order linear system ẋ = Ax, x ∈ R2. Depending on the eigenvalues of A, the real Jordan
has one of these forms

1.
[
λ1 0
0 λ2

]
, λ1, λ2 ∈ σ(A).

2.
[
λ ∗
0 λ

]
, ∗ ∈ {0, 1}.

3.
[
α −β
β α

]
, λ1, λ2 = α± iβ.

3



Case 1: Two real distinct eigenvalues λ1 ̸= λ2 ̸= 0.
If λ1 < 0, λ2 > 0. This is a saddle point.
If λ1 < 0, λ2 < 0. This is a stable node. It is exponentially stable equilibrium
If λ1 > 0, λ2 > 0. This is unstable.

Case 2: λ1,2 = α± iβ.
If α > 0, unstable focus
If α = 0, center (oscillator)
If α < 0, stable focus.
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1 Mathematical Background

Definition: 1.1: Norm

A norm of Rn is a function ∥·∥ : Rn → R satisfying:
• ∥x∥ ≥ 0, ∥x∥ = 0 ⇔ x = 0, ∀x ∈ Rn
• ∥λx∥ = |λ| ∥x∥, ∀x ∈ Rn, λ ∈ R
• ∥x+ y∥ ≤ ∥x∥+ ∥y∥, ∀x, y ∈ Rn

Examples:

• Euclidean Norm: ∥x∥2 = (xTx)1/2

• p-Norm: ∥x∥p =

(
n∑
i=1

|xi|p
)1/p

• ∞-Norm: ∥x∥∞ = maxi |xi|

The notion of a norm is a generalization of the length of a vector.

If we take a vector space X, equipped with a norm ∥·∥, denoted (X, ∥·∥) is called a normed vector
space.

1.1 Sequences

Definition: 1.2: Limit of a Sequence

Consider a sequence {xn} of vectors in (X, ∥·∥). We say {xn} converges to an element x∗ ∈ X if
∥xn − x∗∥ → 0 as n→ ∞. Equivalently, ∀ϵ > 0, ∃N(ϵ) > 0 s.t. if n ≥ N(ϵ), then ∥xn − x∗∥ < ϵ.
Notation: lim

n→∞
xn = x∗ or xn → x∗ as n→ ∞.

This definition is hard to work with in practice, because we have to already know x∗.

Definition: 1.3: Monotonic Sequence

A sequence {xn} of real numbers is monotonically increasing if xn ≤ xn+1,∀n, monotonically de-
creasing if xn ≥ xn+1,∀n.

Theorem: 1.1: Convergence of Monotonic Sequence

Suppose {xn} is monotonic. Then {xn} converges if and only if it is bounded.

Definition: 1.4: Cauchy Sequence

A sequence {xn} in a normed linear space (X, ∥·∥) is said to be a Cauchy sequence if ∀ϵ > 0,
∃N(ϵ) > 0 s.t. if n,m ≥ N(ϵ), then ∥xn − xm∥ < ϵ.

Lemma 1. Every convergent sequence in a normed linear space is a Cauchy sequence.

Proof. Suppose {xn} is a convergent sequence with a limit x∗. To prove it is Cauchy, suppose ϵ > 0 is
given.
By definition of a convergent sequence, we can select N(ϵ) > 0 s.t. n ≥ N(ϵ), then ∥xn − x∗∥ < ϵ

2 .
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Consider p, q ≥ N(ϵ), ∥xp − xq∥ ≤ ∥xp − x∗∥+ ∥xq − x∗∥ < ϵ
2 + ϵ

2 = ϵ.
Hence, {xn} is Cauchy.

Definition: 1.5: Banach Space

A normed linear space is called a Banach space if every Cauchy sequence converges.

Similarly for functions f : X → Y , we write lim
x→x0

f(x) = y0, if ∀ϵ > 0, ∃δ > 0, s.t. ∥x− x0∥ < δ ⇒
∥f(x)− y0∥ < ϵ

1.2 Continuous Functions

Definition: 1.6: Continuous Functions

A function f : Rn → Rm is continuous at x0 ∈ Rn if ∀ϵ > 0, ∃δ(ϵ, x0) > 0 s.t. ∥x− x0∥ < δ ⇒
∥f(x)− f(x0)∥ < ϵ. Equivalently, lim

x→x0
f(x) = f(x0).

Definition: 1.7: Uniform Continuous

f : Rn → Rm is uniformly continuous if it is continuous and δ(ϵ) does not depend on x0.

Often, continuity is characterized in terms of sequences

Theorem: 1.2:

Let f : X → Y . Then lim
x→x0

f(x) = y0 if and only if lim
n→∞

f(xn) = y0 for every sequence {xn} s.t.

xn ̸= x0, lim
n→∞

xn = x0.

It shows the close relationship between sequences and continuity.
Let {xn} s.t. lim

k→∞
xk = x0. Let f : X → Y be continuous at x0, yk = f(xk), y0 = f(x0).

Then we can write y0 = f(x0) = f( lim
k→∞

xk) = lim
k→∞

f(xk) = lim
k→∞

yk = y0.

A key property of continuous functions requres their boundedness properties on certain sets.

Definition: 1.8: Compact Set

Ω ⊂ X is compact if it is closed and bounded.

Theorem: 1.3: Bounded Functions

Let f : X → Y be continuous at every x ∈ X. Let Ω ⊂ X be a compact set in X. Then f is bounded
on Ω. i.e. ∃M > 0 s.t. ∀x ∈ Ω, ∥f(x)∥ ≤M .

Theorem: 1.4:

Let f : X → R be continuous and Ω ⊂ X is compact. Then ∃xmin, xmax s.t. f(xmin) = inf
x∈Ω

f(x),

f(xmax) = sup
x∈Ω

f(x)
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Definition: 1.9: Lipschitz Continuous

A function f : Rn → Rm is Lipschitz continuous at x0 ∈ Rn if ∃δ, L > 0 s.t. ∀x, y ∈ Rn with
x, y ∈ Bδ(x0), ∥f(x)− f(y)∥ ≤ L ∥x− y∥.
Let Ω ⊂ Rn, f is locally Lipschitz on Ω if f is Lipschitz at every x ∈ Ω.
Let Ω ⊂ Rn, f is globally Lipschitz on Ω if ∃L > 0 s.t. ∀x, y ∈ Ω, ∥f(x)− f(y)∥ ≤ L ∥x− y∥.

Note that for locally Lipschitz, the choice of L depends on x0.

Theorem: 1.5:

Let Ω ⊂ Rn be compact. If f : Rn → Rm is locally Lipschitz on Ω, then it is globally Lipschitz on Ω.

Example: f(x) = x2 is locally Lipschitz on R, but it is not globally Lipschitz on R.

Proof. Locally Lipschitz:
Let x0 ∈ R, choose δ > 0, L = 2(δ + ∥x0∥).
Let x, y ∈ Bδ(x0), then we have

∥∥x2 − y2
∥∥ = ∥x− y∥ ∥x+ y∥ ≤ ∥x− y∥ [∥x∥+ ∥y∥].

Since x ∈ Bδ(x0), ∥x∥ ≤ ∥x− x0∥+ ∥x0∥ ≤ δ + ∥x0∥. Similarly, ∥y∥ ≤ δ + ∥x0∥.
Therefore,

∥∥x2 − y2
∥∥ ≤ ∥x− y∥ 2(δ + ∥x0∥) = L ∥x− y∥.

Globally Lipschitz:
Assume ∃L > 0 s.t. ∀x, y ∈ R, ∥f(x)− f(y)∥ ≤ L ∥x− y∥.
Choose x = 0, y = 2L, we get

∥∥4L2
∥∥ = 2L ∥x− y∥ > L ∥x− y∥. Contradiction.

1.3 Matrix Norms

Consider a norm ∥·∥ on Rn. Let A ∈ Rn×n be a square matrix. Define ∥A∥ = sup
x̸=0,x∈Rn

∥Ax∥
∥x∥

=

sup
∥x∥=1

∥Ax∥.

Lemma 2. ∥A∥ is a norm.

Proof. The first two conditions are trivial.
For the triangle inequality,

∥A+B∥ = sup
∥x∥=1

∥(A+B)x∥ = sup
∥x∥=1

∥Ax+Bx∥ ≤ sup
∥x∥=1

∥Ax∥+ sup
∥x∥=1

∥Bx∥ = ∥A∥+ ∥B∥

Note: ∥Ax∥ = ∥Ax∥ ∥x∥
∥x∥ =

∥∥∥A x
∥x∥

∥∥∥ ∥x∥ ≤ ∥A∥ ∥x∥.

1.4 Existence and Uniqueness of Solutions of ODEs

Definition: 1.10: Fixed Point

Let (X, ∥·∥) be a Banach space. Let P : X → X be a map on X. An element x∗ ∈ X is a fixed point
of P if P (x∗) = x∗.
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Theorem: 1.6: Contraction Mapping Thereom

Let P : X → X be a map for which there exists ρ ∈ (0, 1) s.t. ∥P (x)− P (y)∥ ≤ ρ ∥x− y∥ , ∀x, y ∈ X.
Then

1. There exists a unique x∗ s.t. P (x∗) = x∗

2. ∀x ∈ X, the sequence defined by x0 = x, xn+1 = P (xn) converges to x∗

3. Moreover, ∥x∗ − xn∥ ≤ ρn

1−ρ ∥P (x0)− x0∥

Proof. Let x ∈ X, we show that {xn} forms a Cauchy sequence.
For each n ≥ 0, we have ∥xn+1 − xn∥ ≤ ρ ∥xn − xn−1∥ ≤ · · · ≤ ρn ∥x1 − x0∥.
Let m = n+ r, r ≥ 0. Then

∥xm − xn∥ = ∥xn+r − xn∥ ≤
r−1∑
i=0

∥xn+i−1 − xn+i∥ (Triangle Inequality)

≤
r−1∑
i=0

ρn+i ∥x1 − x0∥ ≤
∞∑
i=0

ρn+i ∥x1 − x0∥

=
ρn

1− ρ
∥x1 − x0∥

Since ρ ∈ (0, 1), we can make ∥xm − xn∥ small by choosing n sufficiently large. Therefore {xn} is a Cauchy
sequence. Because X is Banach, ∥xn∥ converges to some xk ∈ X.
Apply Definition 1.7, ∥P (x)− P (y)∥ ≤ ρ ∥x− y∥ to show P (x) is uniformly continuous.
Then P (x∗) = P ( lim

n→∞
xn) = lim

n→∞
P (xn) = lim

n→∞
xn+1 = x∗. Hence x∗ is a fixed point.

To show that x∗ is unique, suppose y∗ ̸= x∗ is a fixed point.

∥x∗ − y∗∥ = ∥P (x∗)− P (y∗)∥ ≤ ρ ∥x∗ − y∗∥ ⇒ ∥x∗ − y∗∥ = 0

Therefore, x∗ = y∗.

To prove 3, we use the fact that ∥·∥ is a continuous function. We have

∥x∗ − xn∥ =
∥∥∥ lim
m→∞

xm − xn

∥∥∥ = lim
m→∞

∥xm − xn∥ ≤ ρn

1− ρ
∥x1 − x0∥

Consider a non-linear ODE

ẋ = f(x) (1)
x(0) = x0

where x(t) ∈ Rn is the state and f : Rn → Rn. Consider a time interval [0, T ] and denote Cn[0, T ] the set
of all continuous functions mapping [0, T ] to Rn. Define a norm ∥·∥C = max

t∈[0,T ]
∥x(t)∥.

Proof. Triangle Inequaliy: Let x, y ∈ Cn[0, T ]. Then

∥x+ y∥C = max
t∈[0,T ]

∥x(t) + y(t)∥ ≤ max
t∈[0,T ]

(∥x(t) + y(t)∥)

≤ max
t∈[0,T ]

∥x(t)∥+ max
t∈[0,T ]

∥y(t)∥ = ∥x∥C + ∥y∥C
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Fact: (Cn[0, T ], ∥·∥C) is a Banach space.

Definition: 1.11: Solution of ODE

A solution of a nonlinear ODE over [0, T ] is an element x(·) ∈ Cn[0, T ] s.t.
1. ẋ(t) is defined almost everywhere (a.e.)
2. Equation (1) holds at every t where ẋ is defined.

Remark 1. If x(t) is a solution of (1) over [0, T ], then x(t) also satisfies

x(t) = x0 +

∫ t

0
f(x(τ))dτ (2)

Conversely, if x(·) ∈ Cn[0, T ] satisfies (2), then x is differentiable and satisfies (1). Every solution of (1) is
a solution of (2) and vice versa.

Theorem: 1.7: Peano

If f : Rn → Rn is continuous, then for each x0 ∈ Rn, there exists at least one solution.

Example: ẋ = x1/3, x(0) = 0 has two solutions: x(t) = 0 and x(t) =
(
2
3 t
)3/2

Example: ẋ =
√

|x| has infinitely many solutions x(t) =

{
0, t ≤ c

− (c−t)2
2 , t > c

Lemma: 1.1: Bellman-Gronwall

Let y : [0, T ] → R be a nonnegative continuous function. Let C ≥ 0 and L ≥ 0 s.t. y(t) ≤

C +

∫ t

0
Ly(τ)dτ . Then y(t) ≤ C exp(Lt),∀t ∈ [0, T ].

Proof. Let r(t) = C +

∫ t

0
Ly(τ)dτ , then y(t) ≤ r(t),∀t ∈ [0, T ].

Also ṙ(t) = Ly(t) ≤ Lr(t). ṙ(t)− Lr(t) ≤ 0, ∀t ∈ [0, T ].
Using integration factor, r(t) exp(−Lt) ≤ r(0) = C.
Therefore, y(t) ≤ r(t) ≤ C exp(Lt),∀t ∈ [0, T ].

Theorem: 1.8: Picard-Lindelof

Consider ẋ = f(x), x(0) = x0. Suppose f : Rn → Rn is globally Lipschitz, i.e. ∃L > 0 s.t.
∥f(x)− f(y)∥ ≤ L ∥x− y∥. Then the ODE has exactly one solution over [0, T ] for any T ∈ [0,∞]
and x0 ∈ Rn.
Note: this version uses a more restrictive globally Lipschitz condition, which can be replaced by
locally Lipschitz.

Proof. Fix T < ∞. Define a mapping P : Cn[0, T ] → Cn[0, T ] (Picard iteration) s.t. (Px)(t) = x0 +∫ t

0
f(x(τ))dτ .

Define xk = (P kx0)(·) We show that {xk}k is a Cauchy sequence.
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Note x1(t)− x0(t) =

∫ t

0
f(x0(τ))dτ .

∥x1(t)− x0(t)∥ ≤
∫ t

0
∥f(x0(τ))∥ dτ (Triangle Inequality of Integrals)

≤
∫ t

0
L ∥x0(τ)∥ dτ (Lipschitz)

≤ mt for some constant m

∥x2(t)− x1(t)∥ ≤ L

∫ t

0
∥x1(τ)− x0(τ)∥ dτ

≤ Lm
t2

2
...

∥xk+1(t)− xk(t)∥ ≤
∫ t

0
∥f(xk(τ))− f(xk−1(τ))∥ dτ

≤ L

∫ t

0
∥xk(τ)− xk−1(τ)∥ dτ

Iteratively, we get ∥xk+1(t)− xk(t)∥ ≤ Lk−1M tk

k! , where k! comes from the interation of t, t2, .... Therefore,

∥xk+p(t)− xk(t)∥ ≤
p−1∑
i=0

∥xk+i+1(t)− xk+i(t)∥ ≤
p−1∑
i=0

MLk+i
tk+i+1

(k + i+ 1)!

∥xk+p − xk∥C = max
t∈[0,T ]

∥xk+p(t)− xk(t)∥ ≤
k+p∑
i=k+1

MLi−1T
i

i!
≤

∞∑
i=k+1

MLi−1T
i

i!

Consider the sequence

{
k∑
i=0

MLi−1T
i

i!

}∞

k=1

=

{
k∑
i=0

M

L

(LT )i

i!

}∞

k=1

→ M

L
exp(LT ) as k → ∞.

Then
∞∑

i=k+1

MLi−1T
i

i!
=
M

L
exp(LT )−

k∑
i=0

MLi−1T
i

i!
→ 0 as k → ∞.

Hence xk is Cauchy in Cn[0, T ], so it converges to x∗ ∈ Cn[0, T ].

Now we show that x∗ is a solution of (2).

Let z1, z2 ∈ Cn[0, T ]. Then (Pz1)(t) − (Pz2)(t) =

∫ t

0
f(z1(τ)) − f(z2(τ))dτ . By Lipschitz and bounded

time:

∥(Pz1)(t)− (Pz2)(t)∥ ≤
∫ t

0
∥f(z1(τ))− f(z2(τ))∥ dτ ≤ LT ∥z1 − z2∥C

Therefore, ∥Pz1 − Pz2∥C ≤ LT ∥z1 − z2∥C .
If {xk} converges to x∗, then (Px∗) = P ( lim

k→∞
xk) = lim

k→∞
(Pxk) = lim

k→∞
xk+1 = x∗. Therefore x∗ satisfies

(2).

Next we show x∗ is unique. Let y∗ satisfy (2).

∥x∗(t)− y∗(t)∥ ≤
∫ t

0
∥f(x∗(τ))− f(y∗(τ))∥ dτ ≤ L

∫ t

0
∥x∗(τ)− y∗(τ)∥ dτ

By Lemma 1.1, ∥x∗(t)− y∗(t)∥ = 0, x∗ = y∗
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1.5 Differentiability

Definition: 1.12: Differentiability (Scalar)

A function f : R → R is differentiable at x0 ∈ R if the limit exists

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h

Notation: dfx0h = f ′(x0)h.

Rewrite as lim
h→0

|f(x0 + h)− f(x0)− dfx0h|
h

= 0.

Definition: 1.13: Differentiability (General)

A function f : Rn → Rm is differentiable at x0 ∈ Rn if

lim
∥v∥→0

∥f(x0 + v)− f(x0)− dfx0v∥
∥v∥

= 0

f is differentiable if f is differentiable at every x0 ∈ Rn. The matrix dfx0 ∈ Rm×n is called the
derivative, differential, or Jacobian.
A function f ∈ C1 (continuously differentiable) if f is differentiable and dfx0 is continuous as a
function of x0.

Theorem: 1.9:

If f : Rn → Rm is differentiable at x0, then the partial derivatives ∂fi
∂xj

∣∣∣
x0

exist and moreover are the

elements of dfx0 , (dfx0)ij =
∂fi
∂xj

∣∣∣
x0

.

Theorem: 1.10:

f : Rn → Rm is C1 if and only if ∂fi
∂xj

exist and are continuous functions.

Theorem: 1.11:

If f : Rn → Rm is C1, then f is locally Lipschitz.

1.6 Comparison, Continuity and Finite Escape Time

Lemma: 1.2: Comparison Lemma

Consider the ODE ẋ = f(x), x(0) = x0, where f : R → R and f is locally Lipschitz on R. Suppose we
have a solution x(t) on time interval [0, T ]. Let w(t) be a C1 function s.t. ẇ(t) ≤ f(w(t)), w(0) ≤ x0,
∀t ∈ [0, T ]. Then w(t) ≤ x(t), ∀t ∈ [0, T ].

Example: Consider the ODE ẏ = −(1 + y2)y, y(0) = y0. We can verify that it has a unique solution on
[0, δ] since f(y) = −(1 + y2)y is locally Lipschitz.
Define w(t) = y2(t). Then ẇ(t) = 2yẏ = −2y2(1 + y2) = −2w(1 + w) = −2w − 2w2 < −2w, w(0) = y20.
Consider ẋ = −2x, x(0) = y20.
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It has solution: x(t) = y20 exp(−2t).
By Lemma 1.2, y2(t) = w(t) ≤ x(t) = y20 exp(−2t), then |y(t)| ≤ |y0| exp(−t).

Remark 2. Lemma 1.2 is often used in stability proof.

Theorem: 1.12: Continuity w.r.t. Initial Condition

Suppose f : Rn → Rn is globally Lipschitz, with Lipschitz constant L > 0. Consider x(t), x′(t) two
solutions of ẋ = f(x) for t ∈ [0, T ]. Then ∀t ∈ [0, T ], ∥x(t)− x′(t)∥ ≤ ∥x(0)− x′(0)∥ exp(Lt).

Proof. Define y(t) = ∥x(t)− x′(t)∥ ≥ 0 for t ∈ [0, T ]. We know that

x(t)− x′(t) = x(0)− x′(0) +

∫ t

0
(f(x(τ))− f(x′(τ)))dτ

Then, y(t) =
∥∥x(t)− x′(t)

∥∥ ≤
∥∥∥∥x(0)− x′(0) +

∫ t

0

∥∥f(x(τ))− f(x′(τ))
∥∥ dτ∥∥∥∥

≤ y(0) +

∫ t

0
L
∥∥x(τ)− x′(τ)

∥∥ dτ (By Lipschitz)

= y0 +

∫ t

0
L ∥y(τ)∥ dτ.

By Lemma 1.1, y(t) ≤ y(0) exp(Lt).

Theorem: 1.13: Finite Escape Time

If f : Rn → Rn is globally Lipschitz, then solutions exist for all t ≥ 0 for each x0 ∈ Rn.
If f : Rn → Rn is locally Lipschitz, then Theorem 1.8 gives a solution x(t) for t ∈ (−δ, δ).

Example: ẋ = x2, f(x) = x2 is not globally Lipschitz, but locally Lipschitz.
x(t) = x0

1−x0t . It has maximum existence time of Tx0 = [0, 1
x0
).

Note: globally Lipschitz is not a necessary condition for solution to exist on Tx0 = [0,∞)

12



2 Dynamic Systems

For this section, we always consider ẋ = f(x), x ∈ Rn, where f is Lipschitz.

2.1 Invariant Set

Equilibria and closed orbits (periodic solutions) are examples of invariant sets.

Definition: 2.1: Invariant

A set Ω ⊂ Rn is invariant under ẋ = f(x) if ∀x0 ∈ Ω, the solution starting at x(0) = x0 satisfies
x(t) ∈ Ω, ∀t ∈ Tx0 (domain on which the solution exists)
Notation: Write ϕ(t, x0) to denote the solution x(t) starting at x0.

Definition: 2.2: Positively/Negatively Invariant

A set Ω ⊂ Rn is positively invariant if ∀x0 ∈ Ω, t ∈ T+
x0 =forward time domain, ϕ(t, x0) ∈ Ω.

Similarly, Ω ⊂ Rn is negatively invariant if ∀x0 ∈ Ω, t ∈ T−
x0 , ϕ(t, x0) ∈ Ω.

Example: For the Van der Pol oscillator, the limit cycle Ω0, equilibrium point Ω1 = {(0, 0)}, Ω2 =
{region enclosed by Ω0} and Ω3 = {region outside Ω0} are invariant.

Example: ẋ1 = x1, ẋ2 = −x2. Ω1 = {(x, 0) : x ∈ R}, Ω2 = {(0, y) : y ∈ R}, and the span of any eienvector

of A =

[
1 0
0 −1

]
are invariant.

2.2 Nagumo Theorem

Problem: Given a non-empty and closed set Ω ⊂ Rn and an ODE ẋ = f(x). Find conditions of f(x) s.t.
Ω is positively invariant.

Intuition: In order for ϕ(t, x0) to stay inside Ω, f(x) should point inside Ω at x ∈ ∂Ω.

Technical difficulty arise in defining the correct notion of pointing inside.

Special case: suppose Ω = {x ∈ Rn : ψ(x) ≤ c} where c ∈ R is a constant and ψ : Rn → R. Assume ψ is
a C1 function.

Example: ψ(x) = x21 + x22, Ω =
{
x ∈ R2 : ψ(x) ≤ 1

}
is the unit ball.

We want ψ(x) to decrease along solutions of ẋ = f(x). Thus we want d
dtψ(ϕ(t, x0))|t=0 ≤ 0 for x0 ∈

∂Ω.

By chain rule, d
dtψ(ϕ(t, x0)) =

∂ψ
∂x

∣∣∣
ϕ(t,x0)

· dϕ(t,x0)dt , where ∂ψ
∂x = dψ(x) =

(
∂ψ
∂x1

, ..., ∂ψ∂xn

)
is the differential or

derivative of ψ. Also ∇ψ(x) =
(
∂ψ
∂x

)T
is the gradient of ψ. Since ϕ(t, x0) satisfies ẋ = f(x), d

dtϕ(t, x0) =

f(ϕ(t, x0)).

Hence d
dtϕ(ϕ(t, x0)) = ∂ψ

∂x

∣∣∣
ϕ(t,x0)

f(ϕ(t, x0)). Evaluating at t = 0, d
dtϕ(ϕ(t, x0))

∣∣
t=0

= ∂ψ
∂x (x0)f(x0) =

∇ψ(x0)T f(x0) ≤ 0.

13



Theorem: 2.1: Special Nagumo I

Let f : Rn → Rn be locally Lipschitz, ψ : Rn → R be C1. Define Ω = {x ∈ Rn : ψ(x) ≤ 0} ≠ ∅.
Suppose dψ(x) = ∂ψ

∂x ̸= 0,∀x ∈ ∂Ω. Then Ω is positively invariant under ẋ = f(x) if and only if
∂ψ
∂x f(x) ≤ 0, ∀x ∈ ∂Ω.

Notation: We write Lfψ(x) = ∂ψ
∂x (x) · f(x), the Lie derivative of ψ along f .

Theorem: 2.2: Special Nagumo II

Let f : Rn → Rn be locally Lipschitz, ψ : Rn → Rm be C1 with m ≤ n. Define Ω =
{x ∈ Rn : ψ(x) = 0} ̸= ∅. Suppose rank(dψ(x)) = m,∀x ∈ ∂Ω. Then Ω is positively invariant
under ẋ = f(x) if and only if Lfψ(x) = 0, ∀x ∈ ∂Ω.

Example: Consider ẋ = Ax with x ∈ Rn. Given V ⊂ Rn a subspace. Suppose V is A-invariant. i.e if
x ∈ V , then Ax ∈ V . (Notation AV ⊂ V ). Claim: V is an invariant set.

V = {x ∈ Rn : h1x = h2x = · · · = hmx = 0} = {x ∈ Rn : ψ(x) = 0}, where ψ(x) =

h1x...
hmx

 =

h
T
1
...
hTm

x =

Hx. dψ(x) = ∂ψ
∂x = H.

Then Lfψ(x) = dψ(x) · f(x) = HAx. If x ∈ V , then Ax ∈ V and HAx = 0.

Example: ẋ1 = 1, ẋ2 = 1, ψ(x) = x21 + x22.
dψ(x) = (2x1, 2x2). Clearly, Ω =

{
x ∈ R2 : ψ(x) ≤ 0

}
= {(0, 0)} is not positively invariant. However,

Lfψ(x) = dψ(x)f(x) = 0. The problem is that dψ(x) = 0 for x ∈ Ω.

Definition: 2.3: Bouligand Tangent Cone

Given a set Ω ⊂ Rn, define the point to set distance dΩ(x) = inf
z∈Ω

∥x− z∥. This function is globally

Lipschitz but not differentiable.
Let Ω ⊂ Rn be a nonempty closed set. Let x ∈ Rn. The Bouligand tangent cone to Ω at x is

TΩ(x) =

{
v ∈ Rn : lim inf

ϵ↘0

dΩ(x+ ϵv)

ϵ
= 0

}

For x ∈ Ω, TΩ(x) = Rn. For x /∈ Ω, TΩ(x) = ∅. For x ∈ ∂Ω, TΩ(x) = {vectors pointing into Ω}.

Let Ω ⊂ Rn be closed and non-empty. Consider ẋ = f(x). We want if x0 ∈ Ω, then ϕ(t, x0) ∈ Ω, ∀t ≥ 0.
That is dΩ(ϕ(t, x0)) = 0, ∀t ≥ 0.

Theorem: 2.3:

Let h : R → R be a continuous function, define the lower right Dini derivative:

Dh(t) = lim inf
ϵ↘0

h(t+ ϵ)− h(t)

ϵ

The continuous function h : R → R is decreasing if and only if Dh(t) ≤ 0, ∀t ∈ R.

Apply this to our problem, h(t) = dΩ(ϕ(t, x0)) is decreasing if and only if

Dh(t)|t=0 = lim inf
ϵ↘0

dΩ(ϕ(t, x0))− dΩ(x0)

ϵ
≤ 0

14



Note if x0 ∈ Ω, dΩ(x0) = 0. Also by Taylor expansion, ϕ(ϵ, x0) = x0 + ϵf(x0) + o(ϵ), where lim
ϵ→0

o(ϵ)

ϵ
= 0,

we get

Dh(t)|t=0 = lim inf
ϵ↘0

dΩ(x0 + ϵf(x0) + o(ϵ))

ϵ

Since dΩ is globally Lipschitz with Lipschitz constant L > 0,

|dΩ(x0 + ϵf(x0) + o(ϵ))− dΩ(x0 + ϵf(x0))| ≤ Lo(ϵ)

Therefore,

Dh(t)|t=0 = lim inf
ϵ↘0

dΩ(x0 + ϵf(x0) + o(ϵ))− dΩ(x0 + ϵf(x0)) + dΩ(x0 + ϵf(x0))

ϵ

= lim inf
ϵ↘0

dΩ(x0 + ϵf(x0))

ϵ
≤ 0

Since the distance function can never go negative, it is equivalent to lim inf
ϵ↘0

dΩ(x0 + ϵf(x0))

ϵ
= 0.

Theorem: 2.4: Nagumo

Consider ẋ = f(x), where f : Rn → Rn is locally Lipschitz. Let Ω ⊂ Rn be a closed non-empty set.
Then the following are equivalent:

1. f(x) ∈ TΩ(x), ∀x ∈ Ω
2. Ω is positively invariant.

2.3 Poincare Bendixson Theorem

Limit sets are a special type of invariant sets that capture the steady-state response of a non-linear sys-
tem.

Definition: 2.4: Limit Sets

Let x0 ∈ Rn. A point p ∈ Rn is a positive limit point of x0 if Tx0 = [0,∞) and there exists a sequence
of times {ti}, ti > 0 with ti → ∞ such that ϕ(ti, x0) → p. The set of all positive limit points of x0
is the positive limit set of x0, denoted L+(x0). Analogously, we can define the negative limit set of
x0, L−(x0).

Example: Van der Pol oscillator. Let x0 ∈ Rn and p ∈ Ω, the limit cycle. L+(x0) = Ω.

Notation: positive orbit through x0, O+(x0) =
{
ϕ(t, x0) : t ∈ T+

x0

}
Theorem: 2.5: Birkhoff’s Theorem

Consider ẋ = f(x). Assume f : Rn → Rn is C1. For any x0 ∈ Rn, L+(x0) and L−(x0) are closed
invariant sets. Moreover, O+(x0) ⊂ K ⊂ Rn, where K is a compact, then L+(x0) is non-empty,
compact, connected, invariant and d(ϕ(t, x0), L+(x0)) → 0 as t→ ∞, t ≥ 0. An analogues statement
can be made about L−(x0).

As an application, we consider limit sets of planar nonlinear systems. This gives the Poincare-Bendixson
theory. Consider

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2),
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x ∈
[
x1
x2

]
∈ R2. Assume f : R2 → R2 is C1. We know from Theorem 2.5 that if O+(x0) is bounded, then

L+(x0) ̸= ∅. Moreover, L+(x0) is compact, connected, invariant and ϕ(t, x0) → L+(x0).

Q: When is L+(x0) a closed orbit?
A: In R2, the answer is easy by below. In Rn for n ≥ 3, one of Hilbert’s problem.

Theorem: 2.6: Poincare-Bendixson

A non-empty compact positive or negative limit set of ẋ = f(x), which contains no equilibrium is a
closed orbit.

Example: Show that the annulus Ω =
{
x ∈ R2 : 1

2 ≤ x21 + x22 ≤ 3
2

}
contains a closed orbit.

ẋ1 = x1 + x2 − x1(x
2
1 + x22)

ẋ2 = −2x2 + x2 − x2(x
2
1 + x22)

Proof. Note that Ω is compact and it contains no equilibria (The only equilibria is origin).
We can write Ω = Ω1 ∩ Ω2, where Ω1 =

{
x : x21 + x22 − 3

2 ≤ 0
}
, and Ω2 =

{
x : 1

2 − x21 − x22 ≤ 0
}
.

Apply Theorem 2.1 to Ω1.

Lfψ =
∂ψ

∂x
f(x) = (2x1, 2x2)

[
x1 + x2 − x1(x

2
1 + x22)

−2x1 + x2 − x2(x
2
1 + x22)

]∣∣∣∣
x21+x

2
2=

3
2

= 2(x21 + x22)(1− x21 − x22)− 2x1x2|x21+x22= 3
2

Apply Young’s inequality to the cross term, −x21 − x22 ≤ 2x1x2 ≤ x21 + x22. Then

Lfψ ≤ 2(x21 + x22)(1− x21 − x22) + (x21 + x22)|x21+x22= 3
2
= 2

3

2

(
−1

2

)
+

3

2
= −3

2
+

3

2
= 0 ≤ 0

Similarly for Ω2,

Lfψ2 =
∂ψ2

∂x
= −2(x21 + x22)(1− x21 − x22) + 2x1x2|∂Ω2 ≤ 0

Then we apply Theorem 2.5 to show L+(x0) is compact, non-empty. By Theorem 2.6, we can deduce that
L+(x0) is a closed orbit.

2.3.1 Non-trivial Consequences

Theorem: 2.7:

Let Ω be a compact positively invariant set for ẋ = f(x). If Ω contains no equilibrium, then ∀x0 ∈ Ω,
O+(x0) is either a closed orbit or a curve spiralling towards a closed orbit.

Theorem: 2.8:

Let γ be a closed orbit of ẋ = f(X), and let Ω be the bounded open set whose boundary is γ. Then
Ω contains an equilibrium.

Example: Limit cycles in glycolysis biochemical process used by living cells to extract energy by burning
sugar.

ẋ1 = −x1 + ax2 + x21x2

ẋ2 = b− ax2 + x21x2,
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where x1, x2 are concentrations. We study the nullclines where ẋ1 = 0 or ẋ2 = 0.
ẋ1 = 0 ⇒ x2 =

x1
a+x21

, ẋ2 = 0 ⇒ x2 =
b

a+x21
.

Figure 2: Limit Cycles

Theorem: 2.9: Bendixson Criterion

If divf = ∂f1
∂x1

+ ∂f2
∂x2

is not identically zero and does not change sign on a simply connected set D,
then there are no closed orbits of ẋ = f(x) entirely in D.

Example: Consider the Van der Pol oscillator:

ẋ1 = x2

ẋ2 = −x1 + ϵ(1− x21)x2

. Take D =
{
x ∈ R2 : ∥x∥ < 1

}
. ∂f1
∂x1

= 0, ∂f2
∂x2

= ϵ(1 − x21). div(f) = ∂f1
∂x1

+ ∂f2
∂x2

= ϵ(1 − x21) > 0 on D.
Therefore, there is no closed orbit in D.
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3 Lyapunov Stability Theory

Consider the nonlinear system ẋ = f(x), where x(t) ∈ Rn is the true state vector, f : Rn → Rn locally
Lipschitz.

Definition: 3.1: Equilibrium

x∗ ∈ Rn is an equilibrium if f(x∗) = 0.
Note: if we have a solution x(t) with x(0) = x∗, then x(t) = x∗, ∀t ≥ 0.

Definition: 3.2: Stability

Consider ẋ = f(x) with equilibrium x∗ = 0. We say x∗ = 0 is stable if ∀ϵ > 0, ∃δ > 0 s.t. if
∥x(0)∥ < δ, then ∥x(t)∥ < ϵ for all t > 0. If not, then x∗ is unstable.
In Logic notation: (∀ϵ > 0)(∃δ > 0) ∥x(0)∥ < δ ⇒ ∥x(t)∥ < ϵ,∀t ≥ 0.

Remark 3. Instability does not imply unboundedness.

Example: Van der Pol oscillator. The equilibrium x = 0 is unstable, but the solutions are attracted to
the limit cycle, thus bounded.

Definition: 3.3: Asymptotic Stability

Consider ẋ = f(x) with f(0) = 0, x∗ = 0 is asymptotically stable if
1. It is stable
2. It is attractive: ∃δ0 > 0 s.t. if ∥x(0)∥ < δ0, then x(t) → 0 as t→ ∞.

Remark 4. 1. Stability does not imply attractivity. e.g.

{
ẋ1 = −x2
ẋ2 = x1

. 0 is stable, but not attractive.

2. Attractivity does not imply stability.

Definition: 3.4: Exponential Stability

Consider ẋ = f(x) with f(0) = 0. We say x∗ = 0 is exponentially stable if there exists c, α, δ > 0
s.t. ∀x(0) ∈ Bδ(0), ∥x(t)∥ ≤ c ∥x(0)∥ e−αt, ∀t ≥ 0.

Remark 5. If asymptotic stability or exponential stability hold for any x(0), then we say globally asymptotic
stability (GAS) or globally exponential stability (GES).

Consider ẋ = f(x) with f(0) = 0 and f : Rn → Rn be Lipschitz. A domain D ⊂ Rn is an open connected
set. Assume 0 ∈ D. Let V : D → R be continuously differentiable (C1) on D. Recall the notion of Lie
derivative or derivative of V along ẋ = f(x) or along solutions of ẋ = f(x):

V̇ (x) =
∂V

∂x
ẋ(t) =

∂V

∂x
f(x)

=

[
∂V

∂x1
, ...,

∂V

∂xn

]f1(x)...
fn(x)


=

n∑
i=1

∂V

∂xi
fi(x) = LfV (x)
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Notice: if ϕ(t, x0) is a solution of ẋ = f(x), then

V̇ (x0) =
d

dt
V (ϕ(t, x0))

∣∣∣∣
t=0

=
∂V

∂x
(ϕ(t, x0))

dϕ(t, x0)

dt

∣∣∣∣
t=0

=
∂V

∂x
(x0)f(x0)

If V̇ (x) < 0, then V will decrease along solutions of ẋ = f(x). i.e. ∀x0 ∈ Rn, V (ϕ(t, x0)) is a decreasing
function of time.

Theorem: 3.1: Lyapunov’s First Theorem

Consider ẋ = f(x) with f(0) = 0, and f is locally Lipschitz. Let D ⊂ Rn be a domain containing 0.
Let V : D → R be C1, satisfying:

1. V is positive definite at 0. i.e. V (0) = 0 and V (x) > 0 ∀x ∈ D \ {0}.
2. V̇ is negative semi-definite, i.e. V̇ (x) ≤ 0, ∀x ∈ D.

Then x∗ = 0 is stable.
Moreover, if V̇ is negative definite, i.e. V̇ (x) < 0, ∀x ∈ D \{0}, then x∗ = 0 is asymptotically stable.

Proof. Suppose 1, 2 hold.

Step 1: Find a sublevel set of V inside D.
Let ϵ > 0, reduce ϵ as necessary s.t. Bϵ(0) ⊂ D. Let cmin = min

∥x∥=ϵ
V (x). cmin exists because V is C1 and

{x : ∥x∥ = ϵ} is compact. Also cmin > 0 by 1.
Choose c ∈ (0, cmin), and define the sublevel set of V , Ωc =

{
x ∈ Bϵ(0) : V (x) ≤ c

}
.

Claim: Ωc ⊂ Bϵ(0), the interior of Bϵ(0).
Suppose not. Suppose ∃p ∈ Ωc s.t. ∥p∥ = ϵ. Then V (p) ≥ cmin > c. Contradiction.

Step 2: Establish that Ωc is positively invariant.
V̇ (x) = LfV (x) ≤ 0, ∀x ∈ ∂Ωc by 2. This then follows Theorem 2.4

Step 3: ∃δ > 0 s.t. Bδ(0) ⊂ Ωc.
Since V is continuous and V (0) = 0 by 1. ∃δ > 0, ∥x∥ < δ ⇒ V (x) ≤ c. i.e. Bδ ⊂ Ωc ⊂ Ωϵ.

Since this construction works for any ϵ > 0, we have proved ∥x(0)∥ < δ ⇒ ∥ϕ(t, x0)∥ < ϵ,∀t ≥ 0, i.e.
x∗ = 0 is stable.

Example: ẋ1 = −x2, ẋ2 = −x1 − x2, ẋ = Ax where A =

[
0 −1
−1 −1

]
.

Proof. Solve a Lyapunov equation ATP + PA = −Q, where Q > 0, i.e. xTQx > 0,∀x ̸= 0, Q = QT , for
unknown P = P T , P > 0.

Choose V (x) = xTPx,

V̇ = 2xTPẋ = 2xTPAx = xTATPx+ xTPAx = −xTQx < 0, ∀x ̸= 0

Therefore, x∗ = 0 is asymptotically stable.

Example: Pendulum with friction
[
ẋ1
ẋ2

]
=

[
x2

−g
l sin(x1)−

k
ml2

x2

]
.

Proof. V (x) = 1
2ml

2x22 +mgl(1− cosx1), V̇ = −kx22 ≤ 0. Only negative semi-definite.
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Question: How to Lyapunov’s theorem to characterize globally asymptotic stability?
Note: The previous Theorem 3.1 cannot be used to characterize GAS in the following example:

ẋ1 =
−6x1

(1 + x21)
2
+ 2x2

ẋ2 =
−2(x1 + x2)

(1 + x21)
2

Choose the Lyapunov function V (x) =
x21

1+x21
+ x22. V (x) is p.d. at x = 0 and n.s.d. at x = 0.

However, not all level sets of V are bounded, ∃c∗ > 0 s.t. Ωc∗ is not compact, and we cannot characterize
the GAS.

There is a simple fix to ensure every sublevel set of V is compact: V (x) → ∞ as ∥x∥ → ∞. That is V (x)
is radially unbounded.

Theorem: 3.2: Barbashin-Krasovskii

Consider ẋ = f(x) with f : Rn → Rn locally Lipschitz, and f(0) = 0. Let V : Rn → R be a C1

function s.t.
1. V is p.d. at 0: V (0) = 0, and V (x) > 0,∀x ̸= 0.
2. V̇ is n.d. at 0: V̇ (0) = 0, and V̇ (x) < 0,∀x ̸= 0.
3. V is radially unbounded: V (x) → ∞ as ∥x∥ → ∞.

Then x∗ = 0 is globally asymptotically stable (GAS).

Proof. The stability part does not change. It remains to show that ∀x(0) ∈ Rn, x(t) → 0.
To the end, consider any x(0) ∈ Rn and let c = V (x(0)). 3 ⇒ ∀c > 0,∃r > 0 s.t. V (x) > c if ∥x∥ > r.
Therefore, Ωc ⊂ Br(0), the closed ball of radius r centered at 0. Ωc is bounded.
We can reapply the attracting argument for all x(0) ∈ Rn, V (x(t)) → 0.
Since V (x(t)) is decreasing and converges, V (x(t)) → ϵ > 0, V̇ < −γ, then

V (x(t)) = V (x(0)) +

∫ t

0
V̇ (x(τ))dτ ≤ V (x(0))− γt

Therefore, by continuity, x(t) → 0.

3.1 Stability of LTI Systems

ẋ = Ax, x(t) ∈ Rn

Theorem: 3.3:

x∗ = 0 is asymptotically stable ⇔ σ(A) ⊂ C− (spectrum of A lies in the Re < 0 half plane). i.e. A
is Hurwitz.

We seek a Lyapunov characterization. Consider a quadratic Lyapunov function V (x) = xTPx, where
P = P T and p.d. i.e. xTPx > 0, x ̸= 0 and xTPx = 0 for x = 0.

V̇ = ẋTPx+ xTPẋ = 2xTPẋ

= 2xTPAx = xT (ATP + PA)x

= −xTQx, for some Q = QT

We need to solve ATP + PA = −Q, the Lyapunov equation.
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Theorem: 3.4:

A is Hurwitz (σ(A) ⊂ C−) if and only if for any Q = QT p.d., there exists a unique P = P T p.d.
s.t. ATP + PA = −Q.

Example:

{
ẋ1 = x2

ẋ2 = −x1 − x2
, Q =

[
1 0
0 1

]

Proof. Parametrize P =

[
p11 p12
p12 p22

]
. ATP + PA = −Q gives three equations, and solving the equations

gives P =

[
3
2

1
2

1
2 1

]
, which is p.d.

Indirect methods we can use the linear system approach to analyze a nonlinear system

1. Linearize about an equilibrium x∗

2. Use the linear theorems

3. Deduction about stability of x∗ for the nonlinear system.

3.2 Exponential Stability

Recall Definition 3.4. What is the Lyapunov characterization?

Theorem: 3.5: Exponential Stability

Consider ẋ = f(x), f locally Lipschitz, f(0) = 0, and let D be a domain containing 0 and V : D → R
is a C1 function. Suppose ∃γ1, γ2 > 0, β > 0, k > 0 s.t. ∀x ∈ D

1. γ1 ∥x∥k ≤ V (x) ≤ γ2 ∥x∥k
2. V̇ (x) = LfV (x) ≤ −β ∥x∥k

Then x∗ = 0 is exponentially stable. Moreover, if D = Rn, then x∗ = 0 is globally exponentially
stable.

Proof. Let ϵ > 0 be s.t. Bϵ(0) ⊂ D. Let c0 > 0 be s.t. Ωc0 =
{
x ∈ Bϵ(0) : V (x) ≤ c0

}
⊂ Bϵ(0). This is

always doable by 1. Now consider any x ∈ D by 1 and 2,

LfV (x) ≤ −β ∥x∥k ≤ − β

γ2
V (x)

Therefore, for all x0 ∈ Ωc0 ,

d

dt
V (ϕ(t, x0)) = LfV (ϕ(t, x0)) ≤ − β

γ2
V (ϕ(t, x0)), ∀t ≥ 0

Integrate both sides,

V (ϕ(t, x0)) ≤ V (x0)−
β

γ2

∫ t

0
V (ϕ(τ, x0))dτ

By Lemma 1.1, V (ϕ(t, x0)) ≤ V (x0) exp
(
− β
γ2
t
)
. Now use 1,

γ1 ∥ϕ(t, x0)∥k ≤ V (ϕ(t, x0)) ≤ V (x0) exp

(
− β

γ2
t

)
≤ γ2 ∥x0∥k exp

(
− β

γ2
t

)
Therefore, ∥ϕ(t, x0)∥ ≤

(
γ2
γ1

)1/k
∥x0∥ exp

(
− β
γ2
t
)
. Hence x∗ = 0 is exponentially stable.
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3.3 Converse Theorem; LaSalle Invariance Principle; Barbalat’s Lemma

Theorem: 3.6: Massera (Converse Theorem)

Let x∗ be an asymptotically stable equilibrium of ẋ = f(x) where f is locally Lipschitz. Then there
exists a ball Br(x∗) and a C1 function V : Br(x

∗) → R s.t. V is p.d. at x∗ and LfV (x) is n.d. at
x∗. If x∗ is GAS, then additionally V : Rn → R is p.d. at x∗, LfV (x) is n.d. at x∗.

Example: Consider a pendulum with friction

{
ẋ1 = x2

ẋ2 = −a sinx1 − bx2, b > 0
. Find a Lyapunov function

based on the total energy V (x) = a(1− cosx1) +
1
2x

2
2.

V (x) is p.d. at x∗ = 0 over −π
2 < x1 <

π
2 . LfV (x) = −bx22 ≤ 0 n.s.d.

Question: Do we need to find another Lyapunov function?
No. Notice that LfV (x) < 0 except at x2 = 0, where LfV (x) = 0. Solutions move along decreasing level
sets of V . Then the solutions remain trapped, approaching points where LfV (x) = 0. LfV (x) = 0 gives
x2 = 0, ẋ2 = 0, and ẋ1 = 0. Solutions can maintain LfV (x) = 0 only at x∗ = 0. Thus as V (x) → 0, x→ 0,
x∗ = 0 is asymptotically stable.

These observations can be formalized in Lasalle Invariance Principle.

Theorem: 3.7: LaSalle Invariance Principle

Consider the nonlinear system ẋ = f(x) where f(0) = 0 and f is locally Lipschitz. Let D ⊂ R
be a domain containing 0 and let Ω be a compact, positively invariant set under the system. Let
V : D → R be a C1 function s.t. ∀x ∈ Ω, LfV (x) ≤ 0. Define E = {x ∈ Ω : LfV (x) = 0}. Let m be
the largest positively invariant set in E. Then ∀x0 ∈ Ω, ϕ(t, x0) → m as t→ ∞.

Proof. Let x0 ∈ Ω. We claim ∃c0 ∈ R s.t. lim
t→∞

V (ϕ(t, x0)) = c0.
We know LfV (x) ≤ 0,∀x ∈ Ω, so V (ϕ(t, x0)) is non-increasing. Also, V is continuous, and Ω is compact,
so V achieves its minimum on Ω. Since V (ϕ(t, x0)) is a non-increasing function bounded from below, it has
a limit c0 as t→ ∞.

Claim: the positive limit set L+(x0) ̸= ∅ and ∀x ∈ L+(x0), V (x) = c0.
This is because ϕ(t, x0) is bounded. Since x0 ∈ Ω and Ω is compact and positively invariant. ϕ(t, x0) ∈
Ω,∀t ≥ 0.
Apply Theorem 2.5, L+(x0) ̸= 0, it is compact and invariant. Let p ∈ L+(x0). This means ∃ {tk}k with
tk → ∞ s.t. ϕ(tk, x0) → p.
By continuity of V , V (ϕ(tk, x0)) → V (p) as tk → ∞. But we also know that V (ϕ(t, x0)) → c0, so V (p) = c0.

Claim: L+(x0) ⊂ E = {x ∈ Ω : LfV (x) = 0} ⊂ Ω.
∀p ∈ L+(x0) and ∀t ≥ 0, ϕ(t, p) ∈ L+(x0), because L+(x0) is invariant.
Then we have that V (ϕ(t, p)) = c0,∀t ≥ 0, V is constant, d

dtV (ϕ(t, p)) = 0,∀t ≥ 0.
In particular, d

dtV (ϕ(t, p))
∣∣
t=0

= LfV (p) = 0.
Also, x0 ∈ Ω and Ω is compact, L+(x0 ∈ Ω). Taken together, these statements imply p ∈ E.

Claim: L+(x0) ⊂ m.
L+(x0) ⊂ E by previous step. L+(x0) is positively invariant. By Theorem 2.5, L+(x0) ⊂ m, which is the
largest positively invariant set in E.

Claim: ϕ(t, x0) → m as t→ ∞.
By Theorem 2.5, ϕ(t, x0) → L+(x0) as t→ ∞, but L+(x0) ⊂ m.
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Remark 6. In practice, we want m to be a single point which is the equilibrium.

Back to the example: V (x) = a(1 − cosx1) +
1
2x

2
2. Ω =

{
x ∈ R2 : V (x) ≤ c

}
is compact, positively

invariant for sufficiently small c. LfV (x) = −bx22, E = {x : x2 = 0}, m = {x : x1 = x2 = 0} = {0}. From
Theorem 3.7, x∗ is asymptotically stable.

Fact: Let f : R → R be a differentiable function.

1. ḟ(t) → 0 ̸⇒ f converges to a constant. e.g. f(t) = sin(log(t)), ḟ(t) = cos(log(t))1t → 0 as t → ∞,
but f(t) does not converge.

2. f(t) converges as t→ ∞ ̸⇒ ḟ(t) → 0. e.g. f(t) = e−t sin e2t, ḟ(t) is unbounded.

3. If f is bounded from below. i.e. ∃c ∈ R s.t. f(t) ≥ c and f is non-increasing. i.e. f(t) ≤ 0, then f
converges as t→ ∞, i.e. lim

t→∞
f(t) = c′ for some c′ ≥ c.

Definition: 3.5: Uniform Continuous (Formal)

A function g : R → R is uniformly continuous if ∀ϵ > 0, ∀t, t′ ≥ 0, |t− t′| < δ ⇒ |g(t)− g(t′)| < ϵ.

Remark 7. A sufficient condition for g to be uniformly continous is that its derivative is bounded.

Lemma: 3.1: Barbalat’s Lemma

If the differentiable function f : R → R has a finite limit as t→ ∞ and if ḟ(t) is uniformly continuous,
then ḟ(t) → 0 as t→ ∞.

Corollary 1. If the differentiable function f : R → R has a finite limit as t→ ∞ and if f̈(t) exists and is
bounded, then ḟ(t) → 0 as t→ ∞.

Theorem: 3.8: Lyapunov-Like

Consider a C1 function V : Rn × R → R satisfying
1. V is lower bounded
2. V̇ (x, t) is negative semi-definite at 0
3. V̇ (x, t) is uniformly continuous in t

Then V̇ (x, t) → 0 as t→ ∞.

Adaptive Control Consider a LTI system

{
ẋ = Ax+Bu

y = Cx
, where x ∈ Rn is the state, u ∈ R is the

input and y ∈ R is the output. We assume x, u, y are available for measurement. Given r(t) a reference
signal, find a controller s.t. y(t) → r(t), assuming A,B,C are unknown.
Define the error e = r − y, assume r(t) is generated by a linear exogenous system ẇ = Sw, r = Ew.
Define the error model: e = Ew − Cx,

ė = Eẇ − Cẋ

= Esw − C(Ax+Bu)

= −CBu+ ESw − CAx

= −βu+ βψϕ,

where β = CB ∈ R and sgn(β) is known, ψ = − 1
β (CA,CB) is a row vector of unknown parameters,

ϕ =

[
x
w

]
is called the regressor, and is known.
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Now we have a scalar error model ė = −βu + βψϕ. We want e(t) → 0. Choose a controller u = ke + ψ̂ϕ,
where ke is for the closed-loop stability, ψ̂ϕ is to achieve tracking (internal model principle), ψ̂ is an
estimation of the unknown ψ.

Define the parameter estimation error ψ̃ = ψ − ψ̂, then the closed-loop error model is ė = −βke − βψ̃ϕ.
Consider the Lyapunov function V = 1

2e
2 + 1

2 |β|ψ̃ψ̃
T . V is p.d. at (e∗, ψ̃∗) = 0.

V̇ = LfV = eė+ |β|ψ̃ ˙̃
ψT

= e[−βke− βψ̃ϕ] + |β|ψ̃ ˙̃
ψT

= −βke2 − βeψ̃ϕ+ |β|ψ̃ ˙̃
ψT .

Since βk > 0, −βke2 is n.d. Choose ˙̃
ψT = sgn(β)eϕ to cancel out the remaining terms.

Since ψ̃ = ψ − ψ̂, ˙̃
ψ = ψ̇ − ˙̂

ψ = − ˙̂
ψ, we get ˙̂

ψ = −sgn(β)eϕT .

We now have V̇ = −βke2 ≤ 0. At this point, we have V p.d. at (0, 0) and V̇ ≤ 0. So from Theorem 3.1,
we can conclude the equilibrium (e∗, ψ̃∗) = (0, 0) is stable.
Notice V is radially unbounded, so e(t) and ψ̃(t) are bounded. We can also assume that w(t) is bounded.
Then we know ϕ(t) is bounded. Then ė = −βke − βψ̃ϕ is bounded. Then V̈ = −2βkeė is bounded.
Therefore V̇ is uniformly continous. By Lemma 3.1, V̇ (t) → 0 along solution. But V̇ = −βke2, we
conclude e(t) → 0 as t→ ∞.

Remark 8. Notice we don’t conclude ψ̃(t) → ∞ from this method. Parameter convergence requires an extra
condition called persistency of excitation.

3.4 Stability of Perturbed Systems

Consider the system

ẋ = f(x) + g(t, x),

where f : Rn → Rn is locally Lipschitz, g : R× Rn → Rn is continuous in t and locally Lipschitz in x. We
regard g(t, x) as a perturbation term.

First suppose x = 0 is GES of unperturbed system

ẋ = f(x)

Assume g(t, 0) = 0 for all t. Using converse Lyapunov theorems (Khalil Theorem 4.14), there exists
V : Rn → R for ẋ = f(x) satisfying

1. c1 ∥x∥2 ≤ V (x) ≤ c2 ∥x∥2

2. V̇ (x) ≤ −c3 ∥x∥2

3.
∥∥∂V
∂x

∥∥ ≤ c4 ∥x∥ for some c1, c2, c3, c4 > 0.

Suppose the perturbation satisfies a linear growth bound ∥g(t, x)∥ ≤ γ ∥x∥ for t ≥ 0, x ∈ Rn and γ ≥ 0 a
constant.

Note any function g with g(t, 0) = 0 and g locally Lipschitz, uniformly in t, in a bounded neighborhood of
0 will satisfy ∥g(t, x)∥ ≤ γ ∥x∥ on that neighborhood.
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Now consider V̇ along solutions of ẋ = f(x) + g(t, x),

V̇ =
∂V

∂x
ẋ =

∂V

∂x
(f(x) + g(t, x))

≤ −c3 ∥x∥2 +
∂V

∂x
g(t, x)

≤ −c3 ∥x∥2 +
∥∥∥∥∂V∂x

∥∥∥∥ ∥g(t, x)∥
≤ −c3 ∥x∥2 + c4 ∥x∥ γ ∥x∥
= −(c3 − γc4) ∥x∥2

If γ < c3
c4

, then c3 − γc4 > 0, V̇ ≤ −(c3 − γc4) ∥x∥2 ≤ 0 n.d.

Lemma: 3.2: Khalil 9.1

Consider the system ẋ = f(x) + g(t, x) and x = 0 is GES for ẋ = f(x). Let V (x) be a Lyapunov
function for ẋ = f(x) satisfying Khalil 4.14, and g(t, x) satisfies ∥g(t, x)∥ ≤ γ ∥x∥ with γ < c3

c4
. Then

x = 0 is exponentially stable for ẋ = f(x) + g(t, x).

Remark 9. In practice, we often do not know cis. Then we write for γ > 0 sufficiently small.

The Lemma is conceptually important, because it highlights that ES is robust to perturbations.

Example: Consider ẋ = Ax + g(t, x), where A ∈ Rn×n is Hurwitz and ∥g(t, x)∥ ≤ γ ∥x∥, ∀t ≥ 0, x ∈ Rn.
There exists P = P T p.d. solving the Lyapunov equation ATP + PA = −Q with Q = QT p.d. For
the nominal system ẋ = Ax, we choose the Lyapunov function V = xTQx. This Lyapunov function
satisfies

1. λmin(P ) ∥x∥2 ≤ V (x) ≤ λmax(P ) ∥x∥2

2. V̇ = −xTQx ≤ −λmin(Q) ∥x∥2

3.
∥∥∂V
∂x

∥∥ =
∥∥2xTP∥∥ ≤ 2 ∥P∥ ∥x∥ ≤ 2λmax(P ) ∥x∥2

Now consider V̇ for ẋ = Ax+ g(t, x). Compute

V̇ = 2xTPẋ = 2xTP (Ax+ g(t, x))

= xT (ATP + PA)x+ 2xTPg(t, x) = −xTQx+ 2xTPg(t, x)

≤ −λmin(Q) ∥x∥2 + 2
∥∥xTP∥∥ ∥g(t, x)∥

≤ −λmin(Q) ∥x∥2 + 2 ∥P∥ ∥x∥ γ ∥x∥
≤ −λmin(Q) ∥x∥2 + 2λmax(P )γ ∥x∥2

= −(λmin(Q)− 2γλmax(P )) ∥x∥2 .

We want γ < λmin(Q)
2λmax(P ) .

Note P depends on the choice of Q. The best of Q for least restrictive bound is Q = I.

Example:

{
ẋ1 = x2

ẋ2 = −4x1 − 2x2 + βx32
, where β > 0 is unknown.

Rewrite as a perturbed system ẋ = f(x) + g(t, x), where f(x) =
[
0 1
−4 −2

]
x, g(x) =

[
0
βx32

]
. The solution
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of the Lyapunov equation ATP + PA = −I is P =

[
3/2 1/8
1/8 5/16

]
. The conditions hold with c3 = 1,

c4 = 2λmax(P ) = 3.026.

Now look at ∥g(x)∥ = β ∥x2∥3 = β ∥x2∥2 ∥x2∥ ≤ β ∥x2∥2 ∥x∥ ≤ βk22 ∥x∥, which holds for all ∥x2∥ ≤ k2. We
don’t know if such a bound on x2 holds. Consider ẋ = f(x) + g(x),

V̇ =
∂V

∂x
(f(x) + g(x))(f(x) + g(x))

≤ −∥x∥2 + c4 ∥x∥βk22 ∥x∥
≤ −∥x∥2 + 3.026βk22 ∥x∥

2

V̇ ≤ 0 if β < 1
3.026k22

Denote Ωc =
{
x ∈ R2 : V (x) ≤ c

}
closed and bounded. The boundary is ∂Ωc ={

x : V (x) = 3
2x

2
1 +

1
4x1x2 +

5
16x

2
2

}
. We need the largest x2 on ∂Ω. Take V (x) = c, derivative w.r.t. x1, set

to 0, solve for x2. This gives x1 = −3
4x2. x

2
2 = 96c

29 . ∀x ∈ Ωc, |x2| < k2, k22 <
96c
29 , β ≤ 0.1

c . This gives a
region of attraction.

Lemma: 3.3: Non-Vanishing Perturbation

Let x = 0 be an equilibrium of ẋ = f(x). Let V : Rn → R be a Lyapunov function for the system
satisfying Khalil 4.14 holding Br(0), Consider ẋ = f(x) + g(t, x). Suppose ∥g(t, x)∥ ≤ δ < c3

c4

√
c1
c2
θr,

where 0 < θ < 1. If ∥x(0)∥ <
√

c2
c1
r, then ∥x(t)∥ ≤ c4

c3

√
c2
c1
δ
θ .

Proof.

V̇ =
∂V

∂x
(f(x) + g(x)) ≤ −c3 ∥x∥2 +

∥∥∥∥∂V∂x
∥∥∥∥ ∥g(x)∥

≤ −c3 ∥x∥2 + c4 ∥x∥ δ = −c3 ∥x∥2 +
c4
c3
δ + θc3 ∥x∥2 − θc3 ∥x∥2

= −(1− θ)c3 ∥x∥2 − θc3 ∥x∥2 + c4δ ∥x∥
= −(1− θ)c3 ∥x∥2 − (θc3 ∥x∥ − c4δ) ∥x∥

If ∥x∥ ≥ δc4
θc3

, then V̇ ≤ −(1− θ)c3 ∥x∥2.

Most Common Tricks/Techniques:

1. Cauchy-Schwarz: uT v ≤ ∥u∥ ∥v∥

2. Matrix norm: ∥Ax∥ ≤ ∥A∥ ∥x∥

3. Young’s Inequality: 2 ∥a∥ ∥b∥ ≤ ∥a∥2 + ∥b∥2; 2 ∥a∥2 ≤ ∥a∥2 + 1

4. ab ≤ a2

2ϵ +
ϵb2

2

5. Comparison Lemma: Consider ẏ = f(t, y), y(t0) = y0. Suppose V̇ ≤ f(t, V ), and V (t0) ≤ y0. Then
V (t) ≤ y(t), ∀t ≥ t0, V̇ ≤ −γV .
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Theorem: 3.9:

Consider the perturbed system

ẋ = f(t, x) + g(t),

where f is locally Lipschitz in x and piecewise-continuousin t. Suppose x = 0 is GES for ẋ = f(t, x).
Suppose g(t) → 0 exponentially. Then x = 0 is stable for the perturbed system.

Proof. By Theorem 4.14 of Khalil, ∃V1 : Rn → R s.t.

1. c1 ∥x∥2 ≤ V1(t, x) ≤ c2 ∥x∥2

2. ∂V1
∂t + ∂V1

∂x f(t, x) ≤ −c3 ∥x∥2

3.
∥∥∥∂V1∂x

∥∥∥ ≤ c4 ∥x∥

for some c1, c2, c3, c4 > 0.
Since g(t) → 0 exponentially, ∃(c2, A2) s.t. ν̇ = A2ν and ∥g(t)∥ ≤ ∥c2ν∥.
Notice that A2 is Hurwitz, so ∃P2 = P T2 s.t. AT2 P2 + P2A2 = I.

Let V (t, x, ν) = V1(t, x) + c5ν
TA2ν where c5 > 0 TBD. Then

V̇ = V̇1 + c52ν
TP2ν̇ =

∂V1
∂t

+
∂V1
∂x

(f(t, x) + g(t)) + c52ν
TP2A2ν

≤ −c3 ∥x∥2 +
∂V1
∂x

g(t) + c5ν
T (AT2 P2 + P2A2)ν

= −c3 ∥x∥2 +
∂V1
∂x

g(t)− c5 ∥ν∥2

≤ −c1 ∥x∥2 +
∥∥∥∥∂V∂x

∥∥∥∥ ∥g(t)∥ − c5 ∥ν∥2

≤ −c3 ∥x∥2 + c4 ∥x∥ c2 ∥ν∥ − c5 ∥ν∥2

Also ∥x∥ ∥ν∥ ≤ ∥x∥2
2ϵ + ϵ∥ν∥2

2 for ϵ > 0 TBD. Then

≤ −c3 ∥x∥2 + c2c4

[
∥x∥2

2ϵ
+
ϵ ∥ν∥2

2

]
− c5 ∥ν∥2

≤ −
[
c3 −

c2c4
2ϵ

]
∥x∥2 −

[
c5 −

ϵc2c4
2

]
∥ν∥2

Choose ϵ > 0 s.t. c3 > c2c4
2ϵ and c5 > ϵc2c4

2 .
We have V̇ ≤ −γ1 ∥x∥2 − γ2 ∥ν∥2 ≤ −γV .

Now we can apply Lemma 1.2 to get V (t) ≤ exp(−γt)V (0), (x(t), ν(t)) → 0 exponentially. Therefore, x = 0
is GES.

3.5 Input-to-State Stability

Consider the control system

ẋ = f(x, u),

where f : Rn × Rn → Rn is locally Lipschitz in x and u. Suppose u(t) ∈ Rn is a piecewise continuous
bounded function of t. Suppose we know the unforced system ẋ = f(x, 0) has an equilibrium at x = 0 that
is GAS.
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Example: Consider the linear system ẋ = Ax+Bu, x(t) ∈ Rn, u(t) ∈ Rn. Suppose A ∈ Rn×n is Hurwitz.
We know the solution is

x(t) = eAtx(0) +

∫ t

0
eA(t−τ)Bu(τ)dτ.

Since A is Hurwitz, ∃(C, λ), λ > 0 s.t.
∥∥eAt∥∥ ≤ Ce−λt, for all t ≥ 0.

∥x(t)∥ ≤
∥∥eAt∥∥ ∥x(0)∥+ ∫ t

0

∥∥∥eA(t−τ)∥∥∥ ∥B∥ ∥u(τ)∥ dτ

≤ Ce−λt ∥x(0)∥+
∫ t

0
Ce−λ(t−τ) ∥B∥ ∥u(τ)∥ dτ

≤ Ce−λt ∥x(0)∥+ Ce−λt
∫ t

0
eλτ ∥B∥ dτ sup

τ∈[0,t]
∥u(τ)∥

≤ Ce−λt ∥x(0)∥+ C ∥B∥
λ

sup
τ∈[0,t]

∥u(τ)∥

This shows bounded input implies bounded state. We want to generalize this property to nonlinear sys-
tems.

Definition: 3.6: Class κ Functions

A function α : [0, T ] → [0,∞) belongs to class κ if it is strictly increasing and α(0) = 0. It belongs
to κ∞ if T = ∞ and α(r) → ∞ as r → ∞.

Definition: 3.7: Class κL Functions

A continuous function β : [0, T ]× [0,∞] → [0,∞) belongs to class κL if for each fixed s, the mapping
β(·, s) belongs to class κ and for each fixed r, β(r, ·) is decreasing and β(r, s) → 0 as s→ ∞.

Definition: 3.8: Input-to-State Stability

A system ẋ = f(x, u) is Input-to-State Stable (ISS) if there exists a class κL function β and class κ
function γ s.t. ∀x(0) and any piecewise continuous bounded input u(t), x(t) exists and

∥x(t)∥ ≤ β(∥x(0)∥ , t) + γ

(
sup
τ∈[0,t]

∥u(τ)∥

)

Remark 10. For ISS, bounded input implies bounded states. ISS implies x = 0 is GAS for ẋ = f(x, 0).

Theorem: 3.10:

Let V : Rn → R be a C1 function satisfying α(∥x∥) ≤ V (x) ≤ α(∥x∥) with α1, α2 in class κ∞.
V̇ (x) = ∂V

∂x f(x, u) ≤ −w(x), for all ∥x∥ ≥ ρ(∥x∥) > 0 where ρ is class κ and w(x) is a continuous
positive definite (at x = 0) function. Then ẋ = f(x, u) is ISS.

Example: ẋ = −x3 + u. Note x = 0 is GAS for ẋ = −x3.
Try Lyapunov function V = 1

2x
2.

V̇ = xẋ = x(−x3 + u) = −x4 + xu

= −(1− θ)x4 − θx4 + xu for 0 < θ < 1

≤ −(1− θ)x4
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for all |x| ≥
(
|u|
θ

)1/3
. The system is ISS.

Lemma: 3.4:

Consider ẋ = f(x, u) and f(x, u) is C1 and globally Lipschitz in x and u. If x = 0 is GES for
ẋ = f(x, 0), then ẋ = f(x, u) is ISS.

Theorem: 3.11: Cascade System

Consider the cascade system

ẋ1 = f1(x1, x2)

ẋ2 = f2(x2)

Suppose x2 = 0 is GAS for ẋ2 = f2(x2), ẋ1 = f1(x1, x2) is ISS with input x2, then x = (0, 0) is GAS.
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