Introduction

September 9, 2022 8:21 PM

Optimization: single decision-maker optimizes a single objective function
Game theory: multiple agents

Game
e Setup: a number of players/agents, I = {1, ...,N}.
e Each player i € I has a number of actions, u; € £; (acton set), u = (ul, ...,uN) is the players
action profile.
e Each player has individual payoff U; or cost function J;.
e Each player takes an action to maximize its payoff or minimize the loss
o Each player's success in making decisions depends on the decisions of the others.

Forms
e Tree
e Normal (matrix)

Features
e Competitive
o Non-cooperative (exists competition)
= Coordination (what's good for one is good for all)
= Constant-sum (zero-sum or opposing interest)
= Games of conflicting interests
e Repetition
o One shot: interact for only a single round
o Repeated games: each time the same game
o Dynamic games: characterized by a state, game changes when players interact
repeatedly
¢ Knowledge information
o Costs of other players
o Own cost/payoff matrix/function, actions and costs of other players

Solution

e Aset of rules to decide how to play the game

¢ Player is rational if he makes choices that optimizes his expected utility

e Minimax solution
o Minimizes the player's maximum (worst) expected cost
O Security strategy

e Best response
o Play the strategy that gives the lowest cost given your opponents' strategies
o If each player plays a BR to the strategy of all others, we get Nash equilibrium
o Noregret

Classical game theory
e Equilibrium analysis based on Nash equilibrium
e Alternative justification
o As the limit point of a repeated play in which less than fully rational players myopically
update their behavior

Learning
e Adaptive: best response, fictitious play
e Evolutionary dynamics
o Selection of strategies according to performance against the aggregate and random
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mutations
* Bayesian learning

For 2 X 2 matrix A = (a b), A1 = _1_< d —b).
c d detA\—c @
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2-payer games

September 13, 2022 5:56 PM

2-player zero-sum games (finite)
e Players] = {1,2}.
e PlayerlP;.
o Decision u;.
o M, = {1, wr )y ,m}
= misthe number of possible actions.
= jisthe jth element of P;.

0
= Alternatively, use unit vector, eg=1|11 1 at jth position.
0
e Player2 P,.
o Decision u,.
e} MZ = {1, ey k, ,n}
= nisthe number of possible actions.
= kisthe jth element of P,.
0
= Alternatively, use unit vector, ¢, = | 1 |, 1 at kth position.
0

e Cost function

o Forplayer1,J; (ul,uz), e.g.]l(ej, ek).
o For player 2, J,(uq,uy).

Def: Game G is a zero sum game if J3(uy, u,) + /o (U1, uz) = 0, Vuy, u,, or equivalently, J,(uy, uy) =
—J1(ug, uz).

Objectives
e P, minimizes J;.
e P, minimizes J, = —J; or equivalently maximizes J;.
Let J = J; and use a single cost function, P; wants to min it, P, wants to max it.

](ej, ek) = ajy, (scalar) is the cost when P, selects jth action and P, selects kth action.

Cost matrix: 4 = ( Qjk >

_ T _
o ](ej,ek) = ej Aek = ajk.
o Pj select rows, P, select cols.

Security strategy
* Def: P; minimizes its worst cost, i.e., in each row, he computes maxy a;, and picks the row j*
such that Vj € M;, maxy a;«) < maxy ajx. i.e. j* = arg min; maxy a; is the security strategy
for P;.
o Associated costis [, = Jceiling = min; maxy ajy.
e Similarly for P,, in each col k, he finds min; aj;, and selects col k™ such that Vk € M,,
min; aj+ = min; ajy, i.e. k* = arg maxy min; a;y is the security strategy for P,.
o Associated costis J; = Jfipor = maxy min; ajy.
e When both P; and P, use their security strategy, we get a security solution (j*, k*) and the

corresponding outcome is Jo = @+ =](ej*, ek*).
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o Note: J; < J, < J,, (not always equal).

Regret
e If neither P; nor P, regret their choice, then (j*, k*) is an equilibrium.
¢ A saddle point equilibrium (j*,k*) such that (max in row) a;=x < a@j++ < a;+ (minin col).
o At this momentonly, J; =], = J,.

Examples
5 3 -3
e A=11 2 O
3 4 1

o P; chooses j* = 2, because 2 = min{5,2,4} (min of max in each row), J,, = 2.
o P, chooses k* = 2, because 2 = max{1,2, —3} (max of min in each col), J;, = 2.
o Security strategy is (j*,k*) = (2,2) and J, = 2, P; will not regret.

4 0 -1
e A=|10 -1 3
1 2 1

P; chooses j* = 3, because 2 = min{4,3,2}, J,, = 2.

P, chooses k* = 1, because 0 = max{0,—1,—1},/, = 0.
Security strategyis (j*,k*) = 3, andJ, =0< Jp,=1<], =2
After knowing P,'s choice, P; regrets and may choose j = 2.

o O O O

Matching-penny game
(-1 1
4= ( 1 —1)'
* The security strategies are (j*, k*) = (1,1), (2,2), (1,2), (2,1).
e Forany of the 4 cases, one of P;, P, regrets. There is no saddle point equilibrium in this case.

Mixed strategies

e Let P;, P, randomize their choices, Xj be the probability that P; selects jth action, y; be the
X1

probability that P, selects kth action, x;, y € [0,1]. Letx = | Xj | be the probability vector for

xn
V1
P,y = Yj |be the probability vector for P,, Z}”:lxj =Yr=1Vk = 1.
Yn
o x is the mixed strategy of P;, y is the mixed strategy of P,.
o Ifx; =1, x = ejis the pure strategy.
e Simplex x € A ¢ R™, represented by Z}”:lxj =1.
 Since outcomes (costs) are no longer deterministic, expected value of costis E(J) = ]_(x, y) =
ko1 X7t ajXiy = xT Ay,
o fx=¢j,y= ek,]_(ej, ek) = e/ Aey = ay,.
 Def: x™ is a mixed security strategy for P; if x* = arg minyea, maxyea, xT Ay with [, y*is a
mixed security strategy for P, if x* = argmax,ea, minyep, xT Ay with J.
e Def: (x*,y*) is a saddle point equilibrium in mixed strategy if Vx € A;, y € A,, (x*)TAy <
(x)TAy* < xTAy*.
o Ifx* = ej*, y* = ey, we recover pure strategy saddle point.

* Von Neumann theorem: in any 2 player zero sum finite game, J, = Jy = J(x*,¥*) and any such
game has a saddle point equilibrium (no regret) in mixed strategy.

Computing mixed-strategy security strategies and saddle point strategy
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* Graphical method for A, and can be extended to 2 X n.
X1

e Ingeneral, a mixed strategy x = - | = Z}"zlxjej € A is a linear combination of pure
xm

strategies.
. A= (a11 a12)
azy Q)
a1 — a1 )x1 +a
. T . ( 11 21) 1t az
o For Py, Vi (x) = minyes, maXyeqy 23 X* Aex = miny ¢[o 1) max .
(a12 - azz)x1 + as;
oo , (a11 - a21)x1 tax| ., .
x] = argminy e[o 1] Max , X5 —
(a12 - azz)x1 + ay;
az1 — ‘122)}’1 + az;
(a11 - a12)3’1 + aqp — 11—y,
(a21 - azz)Y1 +az)

a1 — a12)}’1 +aqz
o For P, V, (y) maXyea, MiNje(y 23 € TAy = maxy, eo,1] mln{ }

. _ .
" Y] = argmax, e[o,1] mm{

e For the matching penny game

* __ * * * __
O X1 =X=Y1=)Y253

Dominated strategies
*  Axn COSt matrix.
 For Py, strategy j dominates r if aj; < ay, Vk € M, and aj; < a, for atleast one k € M.
* For P,, strategy k dominates q if aj, = ajq, Vj € M; and a;, > a;, for at least one j € M.
* Prop: In a matrix game A4, assume strategy ji, ..., j; are dominated, then P; has an optimal
strategy x;, = --- = x;j, = 0. Any optimal strategy after removing these from the game will be
optimal for the original game

2 1 4
(0 2 1 _(1 4
e eg. A= 1 5 3 can be reducedto 4 = (2 1).

4 3 2

X1 0

o x* = Xy ) y* — y;

0 Vi

0 3

2 player nonzero sum games
e Everything carries through from zero sum games except that we cannot use a single cost
function (matrix).
e P, hascost/q, P, hascostJ,, J; + ], # 0.

Prisoner's dilemma game
5 0 5 15

T A= (15 1)B (0 1)'
o jforrow, k for col.

e Security strategy: optimum (min cost) in worst case scenario.
o j* = argminje o) MaXye(q 2} ejTAek = arg minjeq; 23{5,15} = 1 (confess).
o k* = argmingegq 53 MaXje(y,2} ejTBek = argminje(y 23{5,15} = 1 (confess).
o (5 k*)=(1,1).

e No-regret
o After P; knowing P, selects k* = 1 (first col in A), P; will not regretas 5 < 15.
o After P, knowing P; selects j* = 1 (first row in B), P, will not regretas 5 < 15.
o Thereis an equilibrium

No-regret equation for nonzero sum games
e With security strategy (j*, k*).
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e For P, eJEAek* < ejTAek*, vj e {1,..,n}
e ForP,, e}:Bek* < e]EBek, vk € {1,...,m}.

Chicken game
(0 1), (0 -1
T A= (—1 10)' B= (1 10)'
* j* = argminje(y ) MaXge(y 2} ejTAek = argminje(y 23{1,10} = 1 (swerve).

o k" = argminge( 23 Maxje(1 2} €] Aey = argminje(; 23{1,10} = 1 (swerve).
e After P; knows P, selects k* = 1, P; will regret and selct j = 2 to get cost —1.

Extension to mixed strategies on 2PZS games
e P;: minimum expected cost J; (x,y) = xT Ay w.r.t. x € A;.
e P,: minimum expected cost J5(x,y) = xTBy w.r.t.y € A,.
e Nash equilibrium: (x*,y*) is a no-regret (Nash) equilibrium if:
o (x*)TAy* < xTAy*forallx € A;.
o (x)TBy* < (x*)TByforally € A,.
o Note: for zero sum games, B = —A4, so (x*)TAy < (x*)TAy* < xTAy*.

Best Response strategy

e P;'s best response strategy ¢ € A; is made up of a set of strategies obtained as follows
o Given P, strategyy € Ay, BRy(y) = {€ € A, : ETAy < xTAy,vx € A, }.
o BRy(y): A, = A is a set valued map.
o BRy(y) = argminyep, x" Ay for giveny € A,.

e P,'s best response strategy 1 € A, is made up of a set of strategies obtained as follows
o BRy(x) ={n €A, :x"Bn <x"By,vy € A,}.
o BR, (y) : Ay 3 A, is asetvalued map.
o BR, (y) = argminyep, xT Ay for given x € A;.

e Forthe NE definition
o Py :x* € BRi(¥"), P;:y* € BRy(x") iff (x*,y*) is a Nash equilibrium.
o NE lies at the intersection of their BR strategy maps.

Graphical computation of NE in 2 X 2 games
i1 A1z bi1 bia
o A = B — .
(a21 azz)’ <b21 b,
*1 V1
e x = (1 _xl) (S Ap}’ = (1 _yl) € Aer1,y1 € [0’1]

¢ n
P = <1 —151> €hym = (1 —1r,1) €42, ¢$1,m €[0,1].
cor0)={(, 5 ) r-a) (8 (12,) < -

x)<a11 a12)< Y1 )
Y\ay: ax)\1—y1/

. ~ - ada=a1 — a4y —ay +a
0 = argming e[ 1] %1 (ay1 — cl) where { 11 12 21 .

C1 = az; —ag
0,if dy; —¢1 >0
o =11[01],if ay; — ¢ = 0.
1,if dy, —¢1 <0
e BR,(x) = argmin,, [o 1] yl(Exl - El;) where {b - bﬂ_ Py =t 4 bzz.
dy = by — byy
0,if bx, —d, >0
o =<[01],if bx; —d, = 0.
1,if bx; —d, <0
e Plotting them on the same graphs, the NE will be the intersections.
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e E.g. NE for chicken games.
a=10 (b=10
0 4 ~ ;3 — .
C1 == 9 dZ = 9
. 9
0, lf vy > T
. 9
e} BR1(}’1) =A< [0,1], lf Vi = E
. 9
1, lf < T
[ 0if x>
. 9
o BRz(xl) = A [O,l],lf X1 = Ia
. 9
L 1,if x; < m
o Three intersections

= (0,1): (x*,y*) = ((2) , ((1))>, P; doesn't swerve, P, swerves, no regret J; = —1,
J2=1
= (1,0): (x*,y*) = ((é) , 2)) P, swerves, P, doesn't swerve, no regret J; = 1,
J,=—-1
9 9
(;6'120): (x*,y*) = ? ) ? , P, P, both swerve with 90% probability, no
10 10

1
regret/; = J, = o

A BH;I&I_I
1

08

06

BR,{y,)
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N-player games

October 11, 2022 6:20 PM

N-player finite games (44, 45, ..., Ay)
e Setup: I ={1,...,N} set of players Py, ..., Py.
e Pi=playeri,i €l.

Q;=finite action set with |Qi| =m,;.

A;=mixed strategy set.
Xi1

x; =| *ij | € R™ with x;;=probability of choosing jth action in {1, ...,mi}.

ximi
o Y x;:=1,x; =0
j=1"j »Ajj = Y.
Let N-tuple of all mixed strategies be x = (xl, ey Xi, ...,xN) EA=A; X Ay
o x_; = (%1, ., Xi—1, X;41, -, Xy ) is mixed strategy of everyone except P;.
o Writex = (x;,x_;).
o Note:whenN =2, x = (xl,xz) = (xl,x_l) = (xz,x_z) with x_; = x5, X1 = x_5.

Expected cost of P; given x_;, J; (x;, x_;) = Z;.n:ilji(eij, x_i)xi]- (linear in x;).

Nash Equilibrium for N-player
o x* = (x{, s ...,xj(,) = (x{‘,xii) € A, such that Vi € [m],]_l-(xl-*,xii S]_i(xi,xfi), Vx; €
A;.
e BR map OfPiZ_BRi(x_i) = {El € Ai :]_i(fi,x_i) S]_i(xi,x_i),‘v’xi € Al} =
argminyea, Ji (x;, x_;).
* Note:x; € BRi(xii), Vi =1,...,N orequivalently x* € BR(x*) where BR(x") =
BRy(xZ1)
BRy(xy)
o x*is a fixed point of BR map.
Nash theorem:
e Any N-player finite game has at least 1 NE in mixed strategy

* Proving the existence of a fixed point of BR map
o Apply Kakutani's theoremfor ® = BR, S = A = A; X --- X Ay.

Mathematics background:

e Graph of a function:
o Pointvalued: Graph(f) = {(y,x) : y = f(x),x € dom(f)} = dom(f) x Range(f).
o Setvalued: Graph(f) = {(y,x) Yy € f(x),x € 5} c S2.

¢ A closed set contains all its limit points.
O Vx such that El{xn} € S such that lim,,_,,, x,, = x, thenx € §.

e Asetis compact if its closed and bounded.

e AsetisconvexifVx,y € S,a,8 €[0,1],a + 8 =1,thenax + By € S.

2 fixed point theorems:
» Brower's fixed point theorem: Let S be a compact convex setin R™, f: S — S a continuous
function, then 3x € S such that x = f(x).
¢ Kakutani's fixed point theorem: Let S be a compact convex setin R*and @ : § 3 § (set
valued) with the image of x € S denoted ®(x) < S such that:
o ®(x) is nonempty and convex for any x € S.
o @ has aclosed graph forany x € S.
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o Then there exists at least one x € S such that x € ®(x).

Dominated strategies for N player non-cooperate game
* Astrategy z; € A; weakly dominates strategy x; € A, if J;(z;, x_;) < Ji(x;, x_;), Vx_; € A_;.
e Astrategy x; is undominated if no such z; exists.
. If]l-(zl-,x_l-) < ]l-(xl-,x_i) Vx_; € A_;, then z; strictly dominates x;.
e If we replace A; and A_; with pure strategy set,we get the same definition as before
o Ji(x,y) =xTAy.
o When y is a pure strategy, it chooses a column of A.
o When x is a pure strategy, it chooses a row.

2 0
e eg A= (3) g .
2 2

o No row dominates another row.
o However, for x; = (%,%,0),]1(x1,y) =y +y, =1forally € A,.

3 3
o Forx, = (0,0,1),]1(x2,y) = E(yl + yz) =3
O x4 strictly dominates x5.

Support characterization of NE
e Def: for a mixed strategy x; € A;, we define its support or carrier as the set of pure strategies
that are assigned positive probabilities.

o supp(xi) = {j EM;:x;;> O}.

e eg.
1
o x} =|0 | supp(x}) = {1}.
0
0.5
o xZ =05 | supp(x?) = {1,2}.
0
1/3
o x}=1[1/3 ,supp(x?)={1,2,3}.
1/3
e eg
1 3 5
o 2PZSG,whereA=({4 2 3|
6 1 4
175 2/5 17
o NEis(x*,y*)z 4/51,1 0 ,]1(x*,y*)=—5—.
0 3/5
o supp(x”) = {1,2}.
o supp(y*)={1,3}.
17/5 17/5
o Ay*=|17/5 ], Ax* = 11/5 |.
24/5 17/5

o For player 1 with supported action j, we have jl(el,y*) =/ (x*,y*).
e Support characterization theorem: let x* = (x{‘,xii) € A,. Thenx™ € NE(G) is a mixed
strategy NE if and only if Vi € N, Vj € supp(xf),]i(eij,xii) = minwieAi]i(wi,xfi )
o Proof (&):letx; € A;, x* € A,.
" VjE supp(x{‘),]i(eij,xii) < Ji(wy, x%;), Yw; € Ay, w; is any point in the set of
mixed strategies.

* * — * *
* i) = cquppep (00 X0
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"= z:jEsupp(x;‘)]i(Wl"xii)xszj-
- =]i(wi’xii) ZjEsupp(x;‘)x;j =]i(Wi:xii .
* Sox"isan NE.
o Proof (=): let x* = (x;,x*;) be an NE.
" ]i(x;'xii) = ]i(Wi,Xii), Vw; € Ai'
" ]i(xltk,Xii) S]i(eij,xii), Vj € M;.
n Let]i(eij;xii) :]i(x;,xii) + Eijl Eij 2 0
= Ji(xixl) = Zjesupp(x;)]i(eij,xii)xfj.
" =Z](]L(xl*;x1)+€u)xl*j.
" =]i(x£k;xii) +Z]eux:‘]
" SoXjeixi; = 0.

* And thus, Vj € supp(xf),]i(eij,xii) =Ji(xf x%y) = minwieAi]i(wi,xii .
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Repeated games

October 18, 2022 6:12 PM

N-player game: P; chooses its mixed strategy x{‘ € A; atiteration k of the play
o let efbe the action of P; at time k.
J P(eik = ej) = xl’j
k) _ v A
o« E(ef) =Xj% exfj = xi.

Let x’fi be the mixed strategy of the others at iteration k, expected cost of P; at iteration k is
Ji(xf k).

Goal: use an iterative process to update their own strategy such that in the long run, x* = (xf‘,x'_‘i
converges to a NE, limj,_,o x* = x*, where x* = (xlf",xii )

Recall: Vi € I, J;(x;,xZ;) < Ji(x;, x%) Vx; € Ay © Vi € I, x; € BR;(x%;) = argminea, J; (%, x%;

& x* € BR(x") = BRi(xii)

Note: in general, each P; will have
e Some info w;: its own cost J;, x'_‘i, xl.k, for some i’ € I, action el.k,, i" el
¢ Internal state Z{‘ € RY: update based on the w{‘ and the play. They will map this internal
state into a strategy to use
o xk= al-(zl-k) where g; : R% — A;.
o zF*t =z + ap f (2, k).

k zk.

* lterative process of P;: X; = lk, X = I_c‘.
X:
4

k
o x=1%_.
Lo

¢ [t gives a feedback, interconnected discrete time dynamical system

BR-play
o ol > J,x¥, atnext iteration (k + 1), P; sets x}*1 € BRi(x’_‘l-).
o Inthelimit, x}™' = x}f = x;, x¥}* = x¥, =x_;, sox; € BR,(x2;), Vi€ I.

o For 2 players, x; € BRl(x_Z), X, € BRz(x_l).
e % =(x;,x;)isaNE.

Smooth (perturbed) BR-play
e BR=arg minxieAl.]_i(xl-,x_i) — €v; (xi), for small € > 0, v; strictly convexin x;.
o Example v;: softmax, softmin.
e Algorithm: x¥*1 = BR;(x*,) since BR; is not set-valued with perturbation.
e Limit point: X; = BARi(x__i), forall i.
o X;is a perturbed NE (logit equilibrium/Nash distribution).

Relaxed BR-play
. xf‘“ = aklﬁ?i(x’_‘i) + (1 - ak)x{‘ with 0 < o, < 1.
e Limit point: x; = Eﬁi(ﬂ), foralli.

Fictitious play

. a)g‘ —>]i,ei’5, vi' € l.

o ei’f is the action used by player i’ at previous play k.
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¢ |dea: use empirical frequency of an action as approximation of probability of using that action.

o Forplayeri, fori' €1, xf‘, = Z e'f is the estimation of mixed strategy of P;r.

e Foralli’ €1,i’ #i, we needto bUI|d x ; as the state Z-k.
o Setxf = BR; ( ) i.e. best response to a fictitious strategy.
e Tofind ZF*1 |terat|vely'

Sk+1 _ _ k' 1 (k_ "k Kk
o x k+12kr 08’ k+1( )T 08 +e,) k+1(ei, xi,)+xi,.

o) Z{H-l Zk+az( _ir—ZI_{i).
Tutorial content
e Definition:
o Play same game multiple times
o Each agent tries to improve their cost/update action
e Perspectives
o Design an algorithm to perform well in certain games
o Create a model of how players perform and analyze outcome
o e.g. population game, predator/prey dynamics
e Agents
o0 Goal: minimize cost in the game
O Learn a strategy to minimize cost
o If we get to a point where all agents stop updating their strategies, because they cannot
improve their cost, then we are at an NE.
o Ju(xf, x%) < Ji(yi, x51), vy
¢ How do agents update their strategies
O w; observations from the environment.
= Cost, other players' actions.
= Affect the potential algorithm
o z; internal state.
O Xx; strategy.
e Playeri's process
o z{*t =z +yifi(2, wl) = fi(zf wl).
o xf™' =g (zF*")is the action.
O Yy is the learning rate.
e Best response dynamics
k = J;, xk
o zk+1 fi(zE, wl) = x¥; (other players' BR).
o xk+1 BR;(z[*') = BR;(x¥)).
o Forrock-paper-scissors: NE= G,gé) (completely randomly).
e Fictitious play (finite action game)
o W-k = e’_‘i (realized pure strategy at iteration k).
o gttt =K gk 1 ok
= measure the frequency of pure strategy
= Estimate of the mixed strategies of other players
o xf*' = BR(zf*).

e Reinforcement learning (fictitious play)

o wk =u; (xlk,xk ](xl , X ) (assuming u; = 0).
o Zk+1 = zK + ek,
[ k+1]
k+1 %4 ;
o [x ] E—[Kl]— where [-],,, is the mth element of the vector.
pl%i
14
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Infinite action games

October 25, 2022 6:29 PM

N player infinite action (continuous kernel) game
e 1={12,..,N}
e Each P; has continum action set Q;.
o () is convex, non-empty and compact set in R™,
o e.g. Q; =la, bl
o Q=01 X XQy.
e Cost:J; : Q>R
o Jointly continuous in its arguments
e lLetu; € £); be one action of P;, the action profile is u = (ui,u_i .

NE in CK game
o U= (uz‘,uii) is a NE of game if]l-(u;-“,uii) g]i(ui, u*_i), vu; € Q;, Vi.
° BRl(u’—l) = argminuieﬂi]i(ui:u—i .
o u"isaNEifu; € BRi(uii), Vi € I (intersection of all BRs).

For 2 player zero sum game, we still want to have:
* Py, min, max,, /.
* P,, max,, min,_ /.
e However, we may be able to solve them separately using partial gradients.

Note: we can also have mixed-strategy, but we don't need it in general
Existence of a NE is guaranteed under relatively mild assumption

DFG theorem:
e Consider a CK game where ; € R™ is non-empty, convex, compact. J; is jointly continuous on
its argument and convex in u;. Then the game admits at least one NE in pure strategies
* Possible relaxation of £);: convex and closed if J; is assumed to be radially unbounded.
o i.e.as ||ul|| — 00, ]l-(ui, u_l-) — oo for all given u_;.

Optimization
e f :0Q - Rcontinuous.
e fisconvexifvVu,v e Q, a € [0,1], flau+ (1 —a)v) <af(w)+ (1 —a)f(v).
e When fis Ct, fis convexif f(v) — f(w) = VfT(w)(v — u), Vu,v € Q.
o Vf(u)is monotone, (Vf(v) — Vf(u))T(v —u) = 0.
e When fis C2, f is convexif V2f(u) = 0, Vu € Q.
e Normal cone:
o Now*) ={v:vT'(u—u") <0,vuen}
o Ifu*€int(Q),Vf(u*) =0.
o Ifu* € 9Q, Vf(u*) should point into Q.
* Minimization of a convex function
o u* =argming,cq f(w).
o If fisCY, u*isa minimizerif Vf(u*)"(u —u*) = 0, Vu € Q & —Vf(u*) € No(u*).
¢ Euclidean projection.
o TQ(y) = arg minxm”x - y||2 is the Euclidean projection of y to a set ().
o If Qisconvex, Tﬂ(y) is unique: y — Tn(y) ltangent plane to ().
o u*isaminof fifu* = To(u* — aVf(u")), Va > 0.
» To(u"+ aNg(u®)) =u".

Partial gradient
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. . . aJ;
e Assume J; is C* and convex in u;, define Vi = a—i’; (ui,u_l-).
Vu 1

Stacked partial gradient (pseudo gradient) of the game: F(u) =

Vv
e Not a true gradient unless J; = J, = --- = Jy(potential games)
Then BRi(ui) = arg minuiegi]i(ui, u_i) is equivalent to the following:

o (Vui]i(u*))r (ui — u:‘) >0,Viel.
o XX, (Vui]i(U*))T (wi—u}) =20 F)T(u—u*) =0,vu € Q.
o —F(u*) € No(u").

o u*e€ TQ(u* — aF(u*)), Va > 0.
This is the characterization of the NE.

Note: if u* € int(Q), F(u*) = 0 u” is an inner NE.
IfQ =R, f(u") = 0 always.

BR-play
e Atiteration k, given other players' actions ufi, then at next iteration k + 1, P; can play a BR;
to these actions: u¥** = BR;(uk)).

e [tis equivalent to solving a minimization at each iteration
e Variants: uf*! = (1 — a;)uf + a;BR(u*;) witha; € (0,1), Vi € I.

Projected gradient play/better-response play
L4 u;‘“ = Tﬂi (U,i( - aVui]i(uf, U,Ei )
e Cheaper computationally, since only gradient is calculated
o IfQ; =R, thenuf™ =uf —av, J;(uf,u*) viel

Dynamics
e x = Ax is asymptotically stable iff eigenvalues of A are in the open left half plane, Re(1) < 0.
o xk*1 = Axk is asymptotically stable iff |A| < 1.

Example (2 player quadratic game)

L Pllll(ul,uz) = Zu% - Zul —UqUy.

o Vi Ji =4, Jiisconvex w.r.t. u;.

1

Pzzjz(ul,uz) = u% — Eu,z — UqUy.

o Vi ], =2,],isconvex w.r.t. u,.
Ql = QZ = R
J1, ] are radially unbounded, so there is a NE.
Gradient play

1
O Vuljl = 4u1 -2 _uZ,VuZJZ = 2u2 _E_ul.

4u1—2_u2
Flu) = Zuz—%—ul '

O
_ . dui—2—-u; =0
o Note: fora NE, u* € int(Q), Flu*) =0=> {Zuz B % .
ubtt = uf — a(4uf — 2 —uf)
ubtl =uk —« (Zulz"' — % — u’f)' @€ (0D).
o Consider the limit point, e _1 - a(4u_1— - lf) > {E - ui'
Zzuz—a(Zuz———ul) Uz = Uy
o Check the convergence
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K % K+l _ K 4 ok
uy =u; —uj ui™ = (1 - 4a)uf + au;
u

= |et ,then< —__ —_ =Z.
K=y —u; ub*t = quk + (1 - 2a)uk
i 1-4a a %
s . ktl — k
“ ( a 1- 20() w
1—-4a a . .
] = <
A ( “ 1— Za)' |/1A| < 1 gives condition on a.

Projected gradient play
e Algorithm to compute NE
e Each agent does a projected gradient descent

* Xik+1 = Pq; (xi,k — a Vi (x;, % )
e Ifagenti's action x; € ;.

!
Y”ﬂ\

/ m’m[nm‘
NI

LY

e Forallagents, x; 41 = Pq (xk - akF(xk)), where F(x) = (V]i(x;, X_i )

@)

o

Pqo(x) = argmingeq|lx — w|l*.
min,ecq f(x) = %lla) —x||?, with Vf(w) = w — x.

o Forx* =argminf(x), Vf(x)"(y —x*) = 0,vy € Q.
o Namely Vf(w")"(y —w*) = 0,Vy € Q.
o (w—x)T(y—w)=0,Vyeq.

o

o

O

o

o

(Po(x) — x)T(y —Po(x)) =0,Vy € Q.

(Pﬂ(x) — x)T (PQ(y) — Pﬂ(x)) > 0, since Pﬂ(y) =y.
(Pa(y) = )" (Pa(y) = Pat)) = 0.

(x— J’)T (Pﬂ(}’) - Pﬂ(x)) > [|Po(x) - PQ(Y)”Z-

||x - y|| > ||Pn(x) - Pn(y)” (no expansive).

e Assumption

@)

o

o

F(x) is strongly monotone, (F(x) — F(y))T (x — y) > u”x — y||2, u>0.
|F(x) — F(y)” < L||x - y||, L=0.

F(x) is Lipschitz continuous,

So < FOZFON _
lx—y|

e Convergence (As k — oo, what happenes to the distance between x4, and x*):

o

O

o

o

O

o O

o

o

2
tier = 2°[* = || Pa (i — @eF () = Pa(x” — arF(x)||
< |Jxx — arF () —x* + akF(x*)”Z.
= ” (xk — x*) —ay (F(xk) — F(x*))”
= ||xx — x*”2 + a||F(xx) — F(x*) 2 2a(x), — x*)T (F(xk) - F(x*)).
< |l = x°||* + e 2L2||xi — x°||° = 2atsens||ei — x°||"-
= (1 + aZl? = 2app) || — 27|
Assume a;, = a.
|ks1 — x"||2 <(1+a?L*- 2au)k+1||x0 — x*||2.

2
If we want [|xy, —x*[|” > 0 as k — co, we need [1 + a®L? — 2au[ < 1,a € (O,i_’;).

2
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@)

o

Then the algorithm converges.
When a = Lﬂ—z, minimizes 1 + a?L? — 2au, fastest convergence.

e If F(x) is merely monotone, 4 = 0, we might not get convergence.

o

o

o

F(x) = (_01 (1)) Q= R2.

Xpaq =X —a(o 1)x —(1 _a)x
k+1 — Ak -1 0 k — a 1 k-

Eigenvalues are {1 + a;}, ||1 + ;|| = 1, doesn't converge.

But it may converge in () = {x : ||x - (005>” < 0.5}.
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Continuous time nonlinear systems

November 15, 2022 7:08 PM

Let x = f(x),
e x € R"is the state vector.
e fis Lipschitz continuous (differentiable).
e Then x = f(x) has unique solution x(t) € R™ for any given initial condition x(0) = x,.
e Trajectory: ¢(t, xo) = x(t).
o f(x) is tangent to the trajectory.

Equilibrium
e An equilibrium of x = f(x) is a set {xeq : f(xeq) = 0}.
o Ifxg = Xeq, then x(t) = x.q.
o Ifx(0) # xeq.
o Stable: x4 is a stable equilibrium if when starting sufficiently close from x,,, the
trajectory stays arbitrarily close to x.,
" Ve>0,36 >0s.t. vx(0) € Bg(xeq), x(t) € Be(xeq).
o Asymptotically stable: if in addition, x(t) = x4 as t — .
O Unstable: if x, is not stable.
* 3€>0,V38 > 0,x(0) € Bs(xeq), exists T finite s.t. x(t) & Be(xeq), vt >T.

Linearization method for testing stability
€ Rnxn.

X=Xeq

e Compute the Jacobian matrix 4, = Df(x)|x_x = Z—i
=xoq

. Letz=x—xeq,

z=x=f(x) = f(xeq) + Z—i(xeq)(x — xeq) + .= f(xeq) + A,z
So the linearization of X = f(x) around x4 is Z = A, z.

o Continuous time linear system

o Equilibrium pointis at z = 0.
Stability of Z = A,z based on eig(4;)

o IfVi, Re(;) <0, thenz = 0 is stable.

o If 3i, Re(li) > 0, then z = 0 is unstable.

o If Re(li) = 0, then can be stable (oscillating) or unstable.
Hartmon-Grobman theorem: if all eig(AL) have Re(/li) # 0, then any stability/unstability of
z = 0 for z = A,z is equivalent to any stability/unstability of x4 for x = f(x).

o Note: if Re(Ai) = 0, we cannot say anything based on linearization.

e.g. x =ax3,a # 0,a € Raparameter.
o f(x)=ax?®=0givesx,, = 0.
e letz = x.
o A = 3ax2|x=0 =0,502 =0, z(t) = z(0) =const.
e Linearization fails
Consider V(x) = %xz, V(x) =0, Vx, V(0) = 0.
7= WAx _ oy
dx dt . .
o Ifa<0,V(x) <0Vx,V(0) =0,V isstrictly decreasing in time along trajectory of x =
f(x) towards 0. Hence, x(t) - 0 ast — oo, x = 0 is stable.
o Ifa>0,V(x)> 0Vx.V isstrictly increasing in time, so x = 0 is unstable.

Lyapunov Theorem
e LetV : R™ - R be C! (continuously differentiable), such that the following holds, then Xeq IS

an asymptotically stable equilibrium for x = f(x).
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o Vis positive definite at x,4, i.e. V(x) > 0,Vx # x4 and V(xeq) = 0.

o V is negative definite at x,q, i.e. V(x) < 0, Vx # x,q and V(x,,) = 0.
e If V is negative semidefinite, i.e. V(x) < 0 Vx # Xeq at Xqq, then x4 is a stable equilirbium for
e IfV(x) is positive definite, i.e. V(x) > 0 Vx # x4, then x,, is unstable.
* Potential choices for VV

o0 V(@) =3||x —xeq]”

o V(x)= %(x - xeq)TM(x — xeq) with M > 0.

Example: continuous time gradient play

.« &=—f(0).
9] . . . .
o f(x)= Ey (xi,x_i is the partial gradient.

o x* = 0isequivalentto f(x*) = 0.
e ConsiderJ; =J, =+ =]y = P,i.e. f(x) is the true gradient.
o f(x) = VP(x) is a potential game.
e Assume P(x) is strictly convex, let V(x) = P(x) — P(x™).
o Forx*, VP(x*) =0, P(x™) is the minimum.
o V(x)=P(x)—P(x*) > 0,Vx # x*,V is positive definite at x".
o V(x)= (VV(x))T(—VP(x)) = —VP(x)TVP(x) = —||[VP(x)||> < 0, V is negative
semidefinite, V(x*) = —||[VP(x)||* = 0.
e By Lyapunov theorem, x* is a stable equilibrium.
e V(x) =0 |[VPX)||=02VP(x) =0 x =x".
e Here x* is asymptotically stable.
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Population games (Evolutionary games)

November 2, 2022 8:29 AM

A large population of agents with a finite number of strategies, M = {1, ..., j, ..., m}.
Let x; =fraction (population) of agents that use strategy j € M (frequency)
e VjE M,Xj = O,Z;’lej =1.
X1
e letx=| : |, x €A (simplex).
xm
e This is similar to mixed strategy in finite N-player games, but here it is the distribution of
strategies in the population of agents, call it population state.
1
e Note:x =| : | meansall agents use strategy 1.
0

Canonical example of population games
e Agents are paired randomly to play a (symmetric) matrix game
o i.e.if an agent uses jth strategy (jth strategist) is paired with a kth strategist, then the

payoff/costis A = [ajk].
e Assume: the success of a strategy depends on how many are using it
* Let/;(x) denote the expected cost of a jth strategist when in population state x.
o Jij(x) = X1 xkajx = (AX) jth row-
J1(x)
o J(x)= : = Ax is the vector of expected cost of all strategies when in
Jm (%)
population state x.
o J(x)islinearin x.

Nash equilibrium
o NEstateisx* € As.t. (x*)J(x*) < y"J(x") =X, y;/;(x*), Vy € A.
o Equivalently, (x*)Ax* < yTAx*, Vy € A.
e Recall, for 2 player finite game (A, B), NE = (x*,y*).
o For symmetric game, B = AT, (4, A7).
o If we have y* = x*, the game is symmetric (x*, x*).

Evolutionary stable state (ESS)
e A population state x* € A is an ESS if
o ESS-1: (x*)J(x*) < yTJ(x*), Vy € A (NE).
o ESS-2:if (x*)J(x*) = yTJ(x*), then (x*)](¥) < ¥"J(y) (refinement).
» yisan alternative best response to x*.
] yT](y) is the average cost of the population when in state y.

* Note: ESS-1 and ESS-2 are equivalentto 30 < €, < 1,V0 < € < ¢, HTTw) < yTJ(w),
wherew = (1 —¢e)x*+ey =x"+ e(y — x*), Vy € x,i.e. x* is robust to invasion
(perturbation).

o Note: if x* is a strict NE, (x*)TJ(x*) < yTJ(x*), then x* is ESS.

Revision protocols and mean dynamics (x)
e Assume agents can revise the strategies they use and switch to another one i.e. from jth

strategy to kth strategy

e Assume:
o Agents have an internal clock and revision instances follow Poisson distribution with rate

R
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= j.e.over [0,t], the mean number of revisions is Rt.

o At a particular revision instance an agent switches from jth to kth strategy with a
conditional switch rate pjy,, with condition max, };; x pjx (x) < R (the probability of
switching is proportional to pj (x)).

o Revision of all agents are independent.

* Look at rate of change in fraction (frequency) that uses jth strategy x; = %’Q
o Vj € M, x is the mean dynamics.
e Consider dt interval of time, mean number of revisions is Rdt, and the mean number of
revisions for jth strategist is x; Rdt.
o Expected number of switches from jth to kth strategy is E}’;—k xjRdt = pj.x;dt
o Expected number of switches from kth to jth is p ;. x; dt.
o Expected change in x; over dt, denoted dx; is dx; = YL Py jXpdt — Xiiq DjrX;dt.
O Xj = Ykeq1XkPkj — Xj Lk=1Pjk, VJ € [m].
X1
o x=f(x)=| i |isthe mean dynamicsis a set of nolinear ODEs.
xm
* Different revision protocols = different p;; = different mean dynamics with different
properties and stable points

E.g. pairwise imitation protocol
v,v=0

* Djk = xk[]j(x) _]k(x)]+ where [v], = {O,U <0

o If J, <]J;, switch to k, proportional to the difference.
o If more people are using k (xj, is high), higher chance of switching.
e Mean dynamics

© % = TRk 0 () = 100, = 3 By 1500 — 0]
O = Xj ke X (]k(x) _]j(x));

o = x;( Ty i () = J;(0) Tty 21 ),

o =x; (xT](x) —]j(x)) ,Vj € [m]. (replicator dynamics/RD)

7
+

Replicator Dynamics (RD)
¢ The mean dynamic for pairwise-imitation protocol in a population game

o &y =x[xTJ(@) ~ J;(0)] vj € [ml.
o IfJ(x) = Ax (a symetric matrix game A = AT), ¥; = x; [xTAx — (Ax) jen mw], x=f(x)is
nonlinear.

a1 Q2 T
[ ] — — —
For A <a21 Ay, )’ x (xl,xz) , X1 +x =1,

%y = —(a;x; — ayx;)x1%,. (combine ay;x% + ayq %1%, and azx3 + a;,%1 %)
X, = (a1x1 — azxz)xlxz. (since X, = —x;)

Where a; = a1 — a1, Gz = Ay — Q3.

Note: X, = —X;1, x5 = 1 — x4.

O O O O

_(5 0
eg A= (15 1
017x —1=0}.

; x1%2(10x4 + x
« RD:x=f(x)=("1)= 1%(10% +22) |
X2 —X1X; (10x1 + xz)
e Eqgpoints:x; =0orx, =00r10x; +x, = 0.
1 1) 2 0
© Xeq =|g) Xeqa =\ )-
e Tangentsetto A:Tp ={y € R*:17y = 0}.
o Same for higher dimensions. A = {x ER3x,,3>01"Tx—1= 0}, Tp = {y €

X1
),x:(xz),A={xe]R2:x1 +x, =12 20,x, 20} ={x e R%xy, >
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e Since17f(x) =0, f(x) € Th.
o Thus, % (%1 4+ x5) = 0, x; + x, = const, Vt.
e Sincex(0) € A, x;(0) + x,(0) =1, then x, (t) + x,(t) =1, x(t) € A, Vt.
o Aisinvariant in time under RD.
e Use linearization method to check stability of x(}q = ey, xgq = ey.
Oh 0h
_of _[ox x| _ [ 20xyxp + x5 2x1xp + 1047
L7 "0 0f '
dx, 0xy
o We only need to consider the eigenvectors in the tangent set Ty, as that's the only
direction we can move.
af 0 10
o Al == = ( )
L 0 -10
» z=Apzwithz=x—x3, €Tp(1Tz=1Tx —1Tx; =1-1=0).

= 1={0,-10}, v, = (é) € Tp, v, = (_11) € Tp, X4 is stable since —10 is in the
{x : Re(x) < 0}.
2 _of (1 0
° Ar= 0x ly=e, - <—1 0).
» 2= Afzwithz =x —xZ; €T,
» 1={0,1},v; = (2) € Tp, v, = (_11) € Ta, X2, is unstable since 1 is in the

{x : Re(x) > 0}.
e Recall for a PD game NE=(e1, el) (confess, confess), xyg = €;.
o RD finds the NE, no matter from what initial condition.

—20x1x; — X2 —2x;X, — 10x?

0x lx=¢,

General properties of the RD
e Aisinvariant under the RD, Vx(0) € A, x(t) € A,Vt € R.
o {el, e €y e, em} (vertices in R™) are equilibria points of RD.
o If x*is NE state ((x — x*)TJ(x*) > 0, Vx € A), then x* is an eq point of RD.
o Note: it is not true that any eq point of RD is an NE (x*).
* If x¢q is asymptotically stable eq point of RD, then x,, is NE (proof by contradiction).
o Note: not true that any NE is an asymptotically stable eq point of RD.
o However, there are special classes of population games that the reverse is also true
= Potential population games J(x) = VP(x), true gradients of potential function
(A = AT for matrix game).
= Strictly stable games:

o (x —y)T (](x) —](y)) >0,Vx #y €A.

o If matrix games, (x — y)T(A +AT)(x—y) > 0,vx £ywithA+ AT >0
on Ty.
e If x* is ESS, then it is an asymptotically stable eq of RD.
o For the PD example above, x* = e, is ESS.
o Note both 4 and reverse of 3 in strictly stable games can be shown using Lyapunov
method.

Lyapunov function candidates for RD
Quadratic form: V(x) = (x — xeq)TP(x — xeq).
V(x) is PD at X, S0 P is a PD matrix.
V(x) = VW) f(x) <0, Vx # x,q.
o V(x) = Z(x - xeq)TPf(x), doesn't quite work for RD.

e An appropriate Lyapunov function is the relative entropy: V(x) = ZjESupp X+ xj‘ In (%)
J

o V(x)isPD,Vx # x*, using Jenson's inequality.
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© ForRD, V(@) = WO)TF() = Lesuppr 35 a0 = 2= 3.3 (710 = 1,(0)),

==%;% (xTJ () + 2, x7;(x) = =xTJ(x) + ()] (x) = (x* = 0)T] (x).
o ForNE, (x* —x)TJ(x*) < 0.
o V=" =-0TJx) =" =0T +J(x) —J(x)) = (" =) (x*) +
(" =0T (x) =] (x)).
o For strictly stable games, (x* — x)T(](x) —](x*)) < 0,thusV < 0.

Rock paper scissor game

111 .
o x*= (5,5,5) no matter what formation.

0 1 -1
e Standard:A=|—-1 0 1
1 -1 0
o A+ AT = 0, not a strictly stable game, but a stable game.
0 0o -1
e Modified:=[ -1 0 0
0O -1 0

o A+ AT > 0, strictly stable, RD converges to x*.
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Learning in games

November 29, 2022 6:14 PM

2 types of algo for N-player repeated finite action game
¢ BR-play and variants
o xi(k + 1) = BARl(x_l(k))
o x_;(k) is mixed strategies of all others
o BR; softmax of some cost functions J;.
¢ Fictitious-play and variants
O z;:internal variable of P; that is estimate of x_;.

= Updated by simply averaging history: Z{‘“ =K gk + ek

e} xi(k) = BARL(Zl(k))
o Still require a cost function (structure info)

T k+17U T k41 U

Relax the info that players have
o mk= —]L-(el-k,efi) € R, received or realized payoff at iteration k of game.
* How to update internal variable z} using this info?

e How to map internal variable into a mixed strategy xik?

Erev-Roth algo (payoff based)

. Z{‘: a vector with #components = #actions of P;=m;.
. Z{‘j: a score variable for action j, j € [mi].
o ef = ej when P; uses jth action.

e Atiteration k:

o Ifef =e;, z{‘j“ = z{‘j + k.
o Else, le(j+1 = lej
o Forj=1,..,myzF" =zF + nkek.

o Adds a corresponding payoff if using a strategy.

e Tomapzftoxk e (x{‘j > O,ijl?‘j = 1).

k — _Zij ing zk
o Xij = sm (assuming z;; > 0).
j=1%ij
k
N
° X = STk
j=11j

¢ The behavior of the stochastic algo can be analyzed based on its mean dynamics (deterministic
CT set of ODEs) that have a function similar to RD.
e Similar convergence results can be obtained.
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