Introduction

September 9, 2022 8:21 PM

Optimization: single decision-maker optimizes a single objective function Game theory: multiple agents

Game

- Setup: a number of players/agents, $I = \{1, ..., N\}$.
- Each player $i \in I$ has a number of actions, $u_i \in \Omega_i$ (acton set), $u = (u_1, ..., u_N)$ is the players' action profile.
- Each player has individual payoff U_i or cost function J_i .
- Each player takes an action to maximize its payoff or minimize the loss
 - $\circ~$ Each player's success in making decisions depends on the decisions of the others.

Forms

- Tree
- Normal (matrix)

Features

- Competitive
 - Non-cooperative (exists competition)
 - Coordination (what's good for one is good for all)
 - Constant-sum (zero-sum or opposing interest)
 - Games of conflicting interests
- Repetition
 - One shot: interact for only a single round
 - Repeated games: each time the same game
 - Dynamic games: characterized by a state, game changes when players interact repeatedly
- Knowledge information
 - $\circ~$ Costs of other players
 - Own cost/payoff matrix/function, actions and costs of other players

Solution

- A set of rules to decide how to play the game
- Player is rational if he makes choices that optimizes his expected utility
- Minimax solution
 - Minimizes the player's maximum (worst) expected cost
 - Security strategy
- Best response
 - $\circ~$ Play the strategy that gives the lowest cost given your opponents' strategies
 - If each player plays a BR to the strategy of all others, we get Nash equilibrium
 - No regret

Classical game theory

- Equilibrium analysis based on Nash equilibrium
- Alternative justification
 - As the limit point of a repeated play in which less than fully rational players myopically update their behavior

Learning

- Adaptive: best response, fictitious play
- Evolutionary dynamics
 - Selection of strategies according to performance against the aggregate and random

mutations

• Bayesian learning

For 2 × 2 matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $A^{-1} = \frac{1}{\det A} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

2-payer games

September 13, 2022 5:56 PM

2-player zero-sum games (finite)

- Players $I = \{1, 2\}$.
- Player 1 P_1 .
 - Decision u_1 .
 - $\circ \quad M_1 = \big\{1, \dots, j, \dots, m\big\}.$
 - *m* is the number of possible actions.
 - j is the jth element of P_1 .

• Alternatively, use unit vector, $e_j = \begin{pmatrix} 0 \\ ... \\ 1 \\ ... \\ 0 \end{pmatrix}$, 1 at jth position.

- Player 2 P_2 .
 - Decision u_2 .
 - $\circ \quad M_2=\{1,\ldots,k,\ldots,n\}.$
 - *n* is the number of possible actions.
 - k is the jth element of P_2 .

• Alternatively, use unit vector,
$$e_k = \begin{pmatrix} 0 \\ ... \\ 1 \\ ... \\ 0 \end{pmatrix}$$
, 1 at kth position.

(0)

- Cost function
 - For player 1, $J_1(u_1, u_2)$, e.g. $J_1(e_j, e_k)$.
 - For player 2, $J_2(u_1, u_2)$.

Def: Game *G* is a zero sum game if $J_1(u_1, u_2) + J_2(u_1, u_2) = 0$, $\forall u_1, u_2$, or equivalently, $J_2(u_1, u_2) = -J_1(u_1, u_2)$.

Objectives

- P_1 minimizes J_1 .
- P_2 minimizes $J_2 = -J_1$ or equivalently maximizes J_1 .
- Let $J = J_1$ and use a single cost function, P_1 wants to min it, P_2 wants to max it.
- $J(e_i, e_k) = a_{jk}$ (scalar) is the cost when P_1 selects jth action and P_2 selects kth action.

• Cost matrix:
$$A = \begin{pmatrix} \cdots & \cdots & \cdots \\ \cdots & a_{jk} & \cdots \\ \cdots & \cdots & \cdots \end{pmatrix}$$
.
 $\circ I(e_{i}, e_{k}) = e_{i}^{T} A e_{k} = a_{ik}$.

• P_1 select rows, P_2 select cols.

Security strategy

Def: P₁ minimizes its worst cost, i.e., in each row, he computes max_k a_{jk} and picks the row j^{*} such that ∀j ∈ M₁, max_k a_{j*k} ≤ max_k a_{jk}. i.e. j^{*} = arg min_j max_k a_{jk} is the security strategy for P₁.

• Associated cost is $J_u = J_{ceiling} = \min_j \max_k a_{jk}$.

- Similarly for P₂, in each col k, he finds min_j a_{jk} and selects col k* such that ∀k ∈ M₂, min_j a_{jk*} ≥ min_j a_{jk}, i.e. k* = arg max_k min_j a_{jk} is the security strategy for P₂.
 Associated cost is J_L = J_{floor} = max_k min_j a_{jk}.
- When both P₁ and P₂ use their security strategy, we get a security solution (j*, k*) and the corresponding outcome is J₀ = a_{j*k*} = J(e_{j*}, e_{k*}).

• Note: $J_L \leq J_0 \leq J_u$ (not always equal).

Regret

- If neither P_1 nor P_2 regret their choice, then (j^*, k^*) is an equilibrium.
- A saddle point equilibrium (j^{*}, k^{*}) such that (max in row) a_{j*k} ≤ a_{j*k*} ≤ a_{jk*} (min in col).
 At this moment only, J_L = J_u = J₀.

Examples

•
$$A = \begin{pmatrix} 5 & 3 & -3 \\ 1 & 2 & 0 \\ 3 & 4 & 1 \end{pmatrix}$$
.
• P_1 chooses $j^* = 2$, because $2 = \min\{5,2,4\}$ (min of max in each row), $J_u = 2$.
• P_2 chooses $k^* = 2$, because $2 = \max\{1,2,-3\}$ (max of min in each col), $J_L = 2$.
• Security strategy is $(j^*, k^*) = (2,2)$ and $J_0 = 2$, P_1 will not regret.
• $A = \begin{pmatrix} 4 & 0 & -1 \\ 0 & -1 & 3 \\ 1 & 2 & 1 \end{pmatrix}$.
• P_1 chooses $j^* = 3$, because $2 = \min\{4,3,2\}$, $J_u = 2$.

- P_2 chooses $k^* = 1$, because $0 = \max\{0, -1, -1\}$, $J_L = 0$.
- Security strategy is $(j^*, k^*) = (3,1)$ and $J_L = 0 \le J_0 = 1 \le J_u = 2$
- After knowing P_2 's choice, P_1 regrets and may choose j = 2.

Matching-penny game

•
$$A = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}.$$

- The security strategies are $(j^*, k^*) = (1,1), (2,2), (1,2), (2,1).$
- For any of the 4 cases, one of P_1 , P_2 regrets. There is no saddle point equilibrium in this case.

Mixed strategies

• Let P_1, P_2 randomize their choices, x_i be the probability that P_1 selects jth action, y_k be the

probability that P_2 selects kth action, $x_j, y_k \in [0,1]$. Let $x = \begin{pmatrix} x_1 \\ \vdots \\ x_j \\ \vdots \\ x_n \end{pmatrix}$ be the probability vector for

$$P_1, y = \begin{pmatrix} y_1 \\ \vdots \\ y_j \\ \vdots \\ y_n \end{pmatrix} \text{ be the probability vector for } P_2, \sum_{j=1}^m x_j = \sum_{k=1}^n y_k = 1.$$

- x is the mixed strategy of P_1 , y is the mixed strategy of P_2 .
- If $x_j = 1$, $x = e_j$ is the pure strategy.
- Simplex $x \in \Delta \subset \mathbb{R}^m$, represented by $\sum_{j=1}^m x_j = 1$.
- Since outcomes (costs) are no longer deterministic, expected value of cost is $E(J) = \overline{J}(x, y) = \sum_{k=1}^{n} \sum_{j=1}^{m} a_{jk} x_j y_k = x^T A y$.

• If
$$x = e_j$$
, $y = e_k$, $\overline{J}(e_j, e_k) = e_j^T A e_k = a_{jk}$.

- Def: x^* is a mixed security strategy for P_1 if $x^* = \arg \min_{x \in \Delta_1} \max_{y \in \Delta_2} x^T Ay$ with \overline{J}_U , y^* is a mixed security strategy for P_2 if $x^* = \arg \max_{y \in \Delta_2} \min_{x \in \Delta_1} x^T Ay$ with \overline{J}_L .
- Def: (x^*, y^*) is a saddle point equilibrium in mixed strategy if $\forall x \in \Delta_1, y \in \Delta_2, \frac{(x^*)^T A y \le (x^*)^T A y^*}{(x^*)^T A y^*} \le x^T A y^*$.
 - If $x^* = e_{j^*}$, $y^* = e_{k^*}$, we recover pure strategy saddle point.
- Von Neumann theorem: in any 2 player zero sum finite game, $\overline{J_L} = \overline{J_U} = \overline{J}(x^*, y^*)$ and any such game has a saddle point equilibrium (no regret) in mixed strategy.

Computing mixed-strategy security strategies and saddle point strategy

- Graphical method for $A_{2\times 2}$ and can be extended to $2 \times n$.
- In general, a mixed strategy $x = \begin{pmatrix} x_1 \\ \cdots \\ x_m \end{pmatrix} = \sum_{j=1}^m x_j e_j \in \Delta_1$ is a linear combination of pure strategies.
- $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$. • For P_1 , $V_1(x) = \min_{x \in \Delta_1} \max_{k \in \{1,2\}} x^T A e_k = \min_{x_1 \in [0,1]} \max \begin{cases} (a_{11} - a_{21}) x_1 + a_{21} \\ (a_{12} - a_{22}) x_1 + a_{22} \end{cases}$. • $x_1^* = \arg\min_{x_1 \in [0,1]} \max \begin{cases} (a_{11} - a_{21})x_1 + a_{21} \\ (a_{12} - a_{22})x_1 + a_{22} \end{cases}, x_2^* = 1 - x_1^*.$ • For P_2 , $V_2(y) = \max_{y \in \Delta_2} \min_{j \in \{1,2\}} e_j^T Ay = \max_{y_1 \in [0,1]} \min \begin{cases} (a_{11} - a_{12})y_1 + a_{12} \\ (a_{21} - a_{22})y_1 + a_{22} \end{cases}$. • $y_1^* = \arg \max_{y_1 \in [0,1]} \min \begin{cases} (a_{11} - a_{12})y_1 + a_{12} \\ (a_{21} - a_{22})y_1 + a_{22} \end{cases}$, $y_2^* = 1 - y_1^*$.
- For the matching penny game

•
$$x_1^* = x_2^* = y_1^* = y_2^* = \frac{1}{2}$$
.

Dominated strategies

- $A_{m \times n}$ cost matrix.
- For P_1 , strategy j dominates r if $a_{jk} \leq a_{rk}$, $\forall k \in M_2$ and $a_{jk} < a_{rk}$ for at least one $k \in M_2$.
- For P_2 , strategy k dominates q if $a_{jk} \ge a_{jq}$, $\forall j \in M_1$ and $a_{jk} > a_{jq}$ for at least one $j \in M_1$.
- Prop: In a matrix game A, assume strategy $j_1, ..., j_l$ are dominated, then P_1 has an optimal strategy $x_{j_1} = \cdots = x_{j_l} = 0$. Any optimal strategy after removing these from the game will be optimal for the original game

• e.g.
$$A = \begin{pmatrix} 2 & 1 & 4 \\ 0 & 2 & 1 \\ 1 & 5 & 3 \\ 4 & 3 & 2 \end{pmatrix}$$
 can be reduced to $A = \begin{pmatrix} 1 & 4 \\ 2 & 1 \end{pmatrix}$.
• $x^* = \begin{pmatrix} x_1^* \\ x_2^* \\ 0 \\ 0 \end{pmatrix}, y^* = \begin{pmatrix} 0 \\ y_2^* \\ y_3^* \end{pmatrix}$.

2 player nonzero sum games

- Everything carries through from zero sum games except that we cannot use a single cost function (matrix).
- P_1 has cost J_1 , P_2 has cost J_2 , $J_1 + J_2 \neq 0$.

Prisoner's dilemma game

- $A = \begin{pmatrix} 5 & 0 \\ 15 & 1 \end{pmatrix}, B = \begin{pmatrix} 5 & 15 \\ 0 & 1 \end{pmatrix}.$ • *i* for row, *k* for col
- Security strategy: optimum (min cost) in worst case scenario.
 - $j^* = \arg\min_{i \in \{1,2\}} \max_{k \in \{1,2\}} e_i^T A e_k = \arg\min_{i \in \{1,2\}} \{5,15\} = 1$ (confess).
 - $k^* = \arg\min_{k \in \{1,2\}} \max_{j \in \{1,2\}} e_j^T Be_k = \arg\min_{j \in \{1,2\}} \{5,15\} = 1$ (confess).
 - \circ $(j^*, k^*) = (1, 1).$
- No-regret
 - After P_1 knowing P_2 selects $k^* = 1$ (first col in A), P_1 will not regret as 5 < 15.
 - After P_2 knowing P_1 selects $j^* = 1$ (first row in *B*), P_2 will not regret as 5 < 15.
 - There is an equilibrium

No-regret equation for nonzero sum games

• With security strategy (j^*, k^*) .

- For $P_1, e_{i^*}^T A e_{k^*} \le e_i^T A e_{k^*}, \forall j \in \{1, ..., n\}.$
- For P_2 , $e_{i^*}^T B e_{k^*} \le e_{i^*}^T B e_k$, $\forall k \in \{1, ..., m\}$.

Chicken game

- $A = \begin{pmatrix} 0 & 1 \\ -1 & 10 \end{pmatrix}, B = \begin{pmatrix} 0 & -1 \\ 1 & 10 \end{pmatrix}.$
- $j^* = \arg\min_{i \in \{1,2\}} \max_{k \in \{1,2\}} e_i^T A e_k = \arg\min_{i \in \{1,2\}} \{1,10\} = 1$ (swerve).
- $k^* = \arg\min_{k \in \{1,2\}} \max_{i \in \{1,2\}} e_i^T A e_k = \arg\min_{i \in \{1,2\}} \{1,10\} = 1$ (swerve).
- After P_1 knows P_2 selects $k^* = 1$, P_1 will regret and selct j = 2 to get cost -1.

Extension to mixed strategies on 2PZS games

- P_1 : minimum expected cost $\overline{J}_1(x, y) = x^T A y$ w.r.t. $x \in \Delta_1$.
- P_2 : minimum expected cost $\overline{J}_2(x, y) = x^T B y$ w.r.t. $y \in \Delta_2$.
- Nash equilibrium: (x^*, y^*) is a no-regret (Nash) equilibrium if:
 - $\circ (x^*)^T A y^* \leq x^T A y^* \text{ for all } x \in \Delta_1.$
 - $\circ (x^*)^T B y^* \leq (x^*)^T B y \text{ for all } y \in \Delta_2.$
 - Note: for zero sum games, B = -A, so $(x^*)^T A y \le (x^*)^T A y^* \le x^T A y^*$.

Best Response strategy

- P_1 's best response strategy $\xi \in \Delta_1$ is made up of a set of strategies obtained as follows
 - Given P_2 strategy $y \in \Delta_2$, $BR_1(y) = \{\xi \in \Delta_1 : \xi^T A y \le x^T A y, \forall x \in \Delta_1\}$.
 - $BR_1(y) : \Delta_2 \rightrightarrows \Delta_1$ is a set valued map.
 - $BR_1(y) = \arg \min_{x \in \Delta_1} x^T A y$ for given $y \in \Delta_2$.
- P₂'s best response strategy η ∈ Δ₂ is made up of a set of strategies obtained as follows
 BR₂(x) = {η ∈ Δ₂ : x^TBη ≤ x^TBy, ∀y ∈ Δ₂}.
 - $= DR_2(x) = \{ \eta \in \Delta_2 : x \ D\eta \leq x \ Dy, \forall y \in \Omega \}$
 - $BR_2(y) : \Delta_1 \rightrightarrows \Delta_2$ is a set valued map.
 - $BR_2(y) = \arg \min_{y \in \Delta_2} x^T A y$ for given $x \in \Delta_1$.
- For the NE definition
 - $P_1: x^* \in BR_1(y^*), P_2: y^* \in BR_2(x^*)$ iff (x^*, y^*) is a Nash equilibrium.
 - NE lies at the intersection of their BR strategy maps.

Graphical computation of NE in 2×2 games

•
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}.$$

• $x = \begin{pmatrix} x_1 \\ 1 - x_1 \end{pmatrix} \in \Delta_1, y = \begin{pmatrix} y_1 \\ 1 - y_1 \end{pmatrix} \in \Delta_2, x_1, y_1 \in [0,1].$
• $\xi = \begin{pmatrix} \xi_1 \\ 1 - \xi_1 \end{pmatrix} \in \Delta_1, \eta = \begin{pmatrix} \eta_1 \\ 1 - \eta_1 \end{pmatrix} \in \Delta_2, \xi_1, \eta_1 \in [0,1].$
• $BR_1(y) = \left\{ \begin{pmatrix} \xi_1 \\ 1 - \xi_1 \end{pmatrix} : (\xi_1, 1 - \xi_1) \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} y_1 \\ 1 - y_1 \end{pmatrix} \right\} :$
• $arg \min_{x_1 \in [0,1]} x_1 (\tilde{a}y_1 - \tilde{c_1})$ where $\begin{cases} \tilde{a} = a_{11} - a_{12} - a_{21} + a_{22} \\ \tilde{c_1} = a_{22} - a_{12} \end{cases}$.
• $arg \min_{x_1 \in [0,1]} x_1 (\tilde{a}y_1 - \tilde{c_1}) = 0.$
1, if $\tilde{a}y_1 - \tilde{c_1} > 0$
• $BR_2(x) = \arg \min_{y_1 \in [0,1]} y_1 (\tilde{b}x_1 - \tilde{d_2})$ where $\begin{cases} \tilde{b} = b_{11} - b_{12} - b_{21} + b_{22} \\ \tilde{d_2} = b_{22} - b_{21} \end{cases}$.

$$(1, if \ \tilde{b}x_1 - \tilde{d}_2 <$$

• Plotting them on the same graphs, the NE will be the intersections.

0

ECE1657 Page 6

• E.g. NE for chicken games.

$$\begin{array}{l} \circ & \left\{ \tilde{a} = 10 \\ \tilde{c_1} = 9' \right\} \left\{ \tilde{b} = 10 \\ \tilde{d_2} = 9' \end{array} \right. \\ \circ & BR_1(y_1) = \begin{cases} 0, if \ y_1 > \frac{9}{10} \\ [0,1], if \ y_1 = \frac{9}{10} \\ 1, if \ y_1 < \frac{9}{10} \\ 0, if \ x_1 > \frac{9}{10} \\ [0,1], if \ x_1 = \frac{9}{10} \\ 1, if \ x_1 < \frac{9}{10} \\ 1, if \ x_1 < \frac{9}{10} \end{array} \right.$$

• Three intersections

- $(0,1): (x^*, y^*) = (\begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}), P_1$ doesn't swerve, P_2 swerves, no regret $J_1 = -1$,
- (1,0): $(x^*, y^*) = (\binom{1}{0}, \binom{0}{1}), P_1$ swerves, P_2 doesn't swerve, no regret $J_1 = 1$, $J_2 = -1$.
- $\left(\frac{9}{10}, \frac{9}{10}\right)$: $\left(x^*, y^*\right) = \left(\left(\frac{9}{10}\\\frac{1}{10}\right), \left(\frac{9}{10}\\\frac{1}{10}\right)\right), P_1, P_2$ both swerve with 90% probability, no

N-player games

October 11, 2022 6:20 PM

N-player finite games $(A_1, A_2, ..., A_N)$

- Setup: $I = \{1, \dots, N\}$ set of players P_1, \dots, P_N .
- P_i =player $i, i \in I$.
- Ω_i =finite action set with $|\Omega_i| = m_i$.
- Δ_i =mixed strategy set.
- $x_i = \begin{pmatrix} x_i \\ \cdots \\ x_{ij} \\ \cdots \\ x_{im_i} \end{pmatrix} \in \mathbb{R}^{m_i}$ with x_{ij} =probability of choosing jth action in $\{1, \dots, m_i\}$.

$$\sum_{j=1}^{m_i} x_{ij} = 1, x_{ij} \ge 0$$

- Let N-tuple of all mixed strategies be $x = (x_1, ..., x_i, ..., x_N) \in \Delta = \Delta_1 \times \cdots \Delta_N$
 - $x_{-i} = (x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_N)$ is mixed strategy of everyone except P_i .
 - Write $x = (x_i, x_{-i})$.

Note: when
$$N = 2$$
, $x = (x_1, x_2) = (x_1, x_{-1}) = (x_2, x_{-2})$ with $x_{-1} = x_2, x_1 = x_{-2}$.

• Expected cost of P_i given x_{-i} , $\overline{J_i}(x_i, x_{-i}) = \sum_{i=1}^{m_i} J_i(e_{ij}, x_{-i}) x_{ij}$ (linear in x_i).

Nash Equilibrium for N-player

- $x^* = (x_1^*, \dots, x_i^*, \dots, x_N^*) = (x_i^*, x_{-i}^*) \in \Delta$, such that $\forall i \in [m], \bar{J}_i(x_i^*, x_{-i}^*) \leq \bar{J}_i(x_i, x_{-i}^*), \forall x_i \in \Delta_i$.
- $\frac{\overline{\mathsf{BR}}}{\operatorname{\mathsf{BR}}}\operatorname{\mathsf{map}}\operatorname{\mathsf{of}} P_i: BR_i(x_{-i}) = \{\xi_i \in \Delta_i : \overline{J_i}(\xi_i, x_{-i}) \leq \overline{J_i}(x_i, x_{-i}), \forall x_i \in \Delta_i\} = \arg\min_{x_i \in \Delta_i} \overline{J_i}(x_i, x_{-i}).$
- Note: $x_i^* \in BR_i(x_{-i}^*), \forall i = 1, ..., N$ or equivalently $x^* \in BR(x^*)$ where $BR(x^*) = \begin{pmatrix} BR_1(x_{-1}^*) \\ ... \\ BR_N(x_{-N}^*) \end{pmatrix}$.

 $\circ x^*$ is a fixed point of BR map.

Nash theorem:

- Any N-player finite game has at least 1 NE in mixed strategy
- Proving the existence of a fixed point of BR map
 - Apply Kakutani's theorem for $\Phi = BR$, $S = \Delta = \Delta_1 \times \cdots \times \Delta_N$.

Mathematics background:

- Graph of a function:
 - Point valued: $Graph(f) = \{(y, x) : y = f(x), x \in dom(f)\} = dom(f) \times Range(f)$.
 - Set valued: $Graph(f) = \{(y, x) : y \in f(x), x \in S\} \subset S^2$.
- A closed set contains all its limit points.
 - $\forall x$ such that $\exists \{x_n\} \in S$ such that $\lim_{n \to \infty} x_n = x$, then $x \in S$.
- A set is compact if its closed and bounded.
- A set is convex if $\forall x, y \in S, \alpha, \beta \in [0,1], \alpha + \beta = 1$, then $\alpha x + \beta y \in S$.

2 fixed point theorems:

- Brower's fixed point theorem: Let S be a compact convex set in ℝⁿ, f: S → S a continuous function, then ∃x ∈ S such that x = f(x).
- Kakutani's fixed point theorem: Let S be a compact convex set in \mathbb{R}^n and $\Phi : S \rightrightarrows S$ (set valued) with the image of $x \in S$ denoted $\Phi(x) \subset S$ such that:
 - $\Phi(x)$ is nonempty and convex for any $x \in S$.
 - Φ has a closed graph for any $x \in S$.

• Then there exists at least one $x \in S$ such that $x \in \Phi(x)$.

Dominated strategies for N player non-cooperate game

- A strategy $z_i \in \Delta_i$ weakly dominates strategy $x_i \in \Delta_i$, if $J_i(z_i, x_{-i}) \leq J_i(x_i, x_{-i})$, $\forall x_{-i} \in \Delta_{-i}$.
- A strategy x_i is undominated if no such z_i exists.
- If $J_i(z_i, x_{-i}) < J_i(x_i, x_{-i}) \forall x_{-i} \in \Delta_{-i}$, then z_i strictly dominates x_i .
- If we replace Δ_i and Δ_{-i} with pure strategy set, we get the same definition as before
 - $\circ J_i(x,y) = x^T A y.$
 - When y is a pure strategy, it chooses a column of A.
 - When x is a pure strategy, it chooses a row.

• e.g.
$$A = \begin{pmatrix} 2 & 0 \\ 0 & 2 \\ \frac{3}{2} & \frac{3}{2} \end{pmatrix}$$

- No row dominates another row.
- However, for $x_1 = (\frac{1}{2}, \frac{1}{2}, 0)$, $J_1(x_1, y) = y_1 + y_2 = 1$ for all $y \in \Delta_y$.
- For $x_2 = (0,0,1)$, $J_1(x_2, y) = \frac{3}{2}(y_1 + y_2) = \frac{3}{2}$.
- x_1 strictly dominates x_2 .

Support characterization of NE

• Def: for a mixed strategy $x_i \in \Delta_i$, we define its support or carrier as the set of pure strategies that are assigned positive probabilities.

$$\circ \operatorname{supp}(x_i) = \{j \in M_i : x_{i,j} > 0\}.$$

• e.g.

$$x_i^1 = \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \operatorname{supp}(x_i^1) = \{1\}.$$

$$x_i^2 = \begin{pmatrix} 0.5\\0.5\\0 \end{pmatrix}, \operatorname{supp}(x_i^2) = \{1,2\}.$$

$$x_i^3 = \begin{pmatrix} 1/3\\1/3\\1/3 \end{pmatrix}, \operatorname{supp}(x_i^3) = \{1,2,3\}.$$

• e.g.

5.
• 2PZSG, where
$$A = \begin{pmatrix} 1 & 3 & 5 \\ 4 & 2 & 3 \\ 6 & 1 & 4 \end{pmatrix}$$
.
• NE is $(x^*, y^*) = \begin{pmatrix} \begin{pmatrix} 1/5 \\ 4/5 \\ 0 \end{pmatrix}, \begin{pmatrix} 2/5 \\ 0 \\ 3/5 \end{pmatrix} \end{pmatrix}, J_1(x^*, y^*) = \frac{17}{5}$.
• $\operatorname{supp}(x^*) = \{1, 2\}$.
• $\operatorname{supp}(y^*) = \{1, 3\}$.

$$\circ \quad Ay^* = \begin{pmatrix} 17/5\\17/5\\24/5 \end{pmatrix}, Ax^* = \begin{pmatrix} 17/5\\11/5\\17/5 \end{pmatrix}.$$

• For player 1 with supported action *j*, we have $J_1(e_1, y^*) = J_1(x^*, y^*)$.

- Support characterization theorem: let $x^* = (x_i^*, x_{-i}^*) \in \Delta_x$. Then $x^* \in NE(G)$ is a mixed strategy NE if and only if $\forall i \in N, \forall j \in \text{supp}(x_i^*), J_i(e_{ij}, x_{-i}^*) = \min_{w_i \in \Delta_i} J_i(w_i, x_{-i}^*)$.
 - Proof (\Leftarrow): let $x_i^* \in \Delta_i, x^* \in \Delta_x$.
 - $\forall j \in \text{supp}(x_i^*), J_i(e_{ij}, x_{-i}^*) \leq J_i(w_i, x_{-i}^*), \forall w_i \in \Delta_i, w_i \text{ is any point in the set of mixed strategies.}$
 - $J_i(x_i^*, x_{-i}^*) = \sum_{j \in \text{supp}(x_i^*)} J_i(e_{ij}, x_{-i}^*) x_{ij}^*.$

- $\leq \sum_{j \in \text{supp}(x_i^*)} J_i(w_i, x_{-i}^*) x_{ij}^*.$ $= J_i(w_i, x_{-i}^*) \sum_{j \in \text{supp}(x_i^*)} x_{ij}^* = J_i(w_i, x_{-i}^*).$
- So x^* is an NE.
- Proof (\Rightarrow): let $x^* = (x_i^*, x_{-i}^*)$ be an NE.
 - $J_i(x_i^*, x_{-i}^*) \leq J_i(w_i, x_{-i}^*), \forall w_i \in \Delta_i.$
 - $J_i(x_i^*, x_{-i}^*) \le J_i(e_{ij}, x_{-i}^*), \forall j \in M_i.$
 - Let $J_i(e_{ij}, x_{-i}^*) = J_i(x_i^*, x_{-i}^*) + \epsilon_{ij}, \epsilon_{ij} \ge 0.$
 - $J_i(x_i^*, x_{-i}^*) = \sum_{j \in \text{supp}(x_i^*)} J_i(e_{ij}, x_{-i}^*) x_{ij}^*$.
 - = $\sum_{j} (J_i(x_i^*, x_{-i}^*) + \epsilon_{ij}) x_{ij}^*$.
 - $\bullet = J_i(x_i^*, x_{-i}^*) + \sum_j \epsilon_{ij} x_{ij}^*.$
 - So $\sum_{i} \epsilon_{ij} x_{ij}^* = 0.$
 - And thus, $\forall j \in \operatorname{supp}(x_i^*), J_i(e_{ij}, x_{-i}^*) = J_i(x_i^*, x_{-i}^*) = \min_{w_i \in \Delta_i} J_i(w_i, x_{-i}^*).$

Repeated games

October 18, 2022 6:12 PM

N-player game: P_i chooses its mixed strategy $x_i^k \in \Delta_i$ at iteration k of the play

- let e_i^k be the action of P_i at time k.
- $P(e_i^k = e_j) = x_{ij}^k$.
- $E(e_i^k) = \sum_{j=1}^{m_i} e_j x_{ij}^k = x_i^*.$

Let x_{-i}^k be the mixed strategy of the others at iteration k, expected cost of P_i at iteration k is $\overline{j}_i(x_i^k, x_{-i}^k)$.

Goal: use an iterative process to update their own strategy such that in the long run, $x^k = (x_i^k, x_{-i}^k)$ converges to a NE, $\lim_{k\to\infty} x^k = x^*$, where $x^* = (x_i^*, x_{-i}^*)$.

Recall:
$$\forall i \in I, \overline{J_i}(x_i^*, x_{-i}^*) \leq \overline{J_i}(x_i, x_{-i}^*) \ \forall x_i \in \Delta_i \Leftrightarrow \forall i \in I, x_i^* \in BR_i(x_{-i}^*) = \arg\min_{x_i \in \Delta_i} J_i(x_i, x_{-i}^*)$$

 $\Leftrightarrow x^* \in BR(x^*) = \begin{pmatrix} \vdots \\ BR_i(x_{-i}^*) \\ \vdots \end{pmatrix}.$

Note: in general, each P_i will have

- Some info ω_i : its own cost J_i , x_{-i}^k , $x_{i'}^k$ for some $i' \in I$, action $e_{i'}^k$, $i' \in I$.
- Internal state $Z_i^k \in \mathbb{R}^{q_i}$: update based on the ω_i^k and the play. They will map this internal state into a strategy to use

$$\circ x_i^k = \sigma_i(z_i^k) \text{ where } \sigma_i : \mathbb{R}^{q_i} \to \Delta_i.$$

$$\circ z_i^{k+1} = z_i^k + \alpha_k f(z_i^k, \omega_i^k).$$

• Iterative process of
$$P_i: \Sigma_i = \begin{cases} z_i^k \\ x_i^{k'} \\ z_i^{k'} \end{cases} = \begin{cases} z_{-i}^k \\ x_{-i}^{k'} \end{cases}$$

$$\circ \ \Sigma = \begin{cases} z^k \\ x^k \end{cases}.$$

• It gives a feedback, interconnected discrete time dynamical system

BR-play

- $\omega_i^k \to J_i, x_{-i}^k$, at next iteration $(k + 1), P_i$ sets $x_i^{k+1} \in BR_i(x_{-i}^k)$.
- In the limit, $x_i^{k+1} = x_i^k = \overline{x_i}, x_{-i}^{k+1} = x_{-i}^k = \overline{x_{-i}}$, so $\overline{x_i} \in BR_i(\overline{x_{-i}}), \forall i \in I$. • For 2 players, $\overline{x_1} \in BR_1(\overline{x_2}), \overline{x_2} \in BR_2(\overline{x_1})$.
- $\overline{x} = (\overline{x_i}, \overline{x_{-i}})$ is a NE.

Smooth (perturbed) BR-play

- BR = arg min_{xi∈Δi} J_i(x_i, x_{-i}) − εv_i(x_i), for small ε > 0, v_i strictly convex in x_i.
 Example v_i: softmax, softmin.
- Algorithm: $x_i^{k+1} = \widetilde{BR}_i(x_{-i}^k)$ since \widetilde{BR}_i is not set-valued with perturbation.
- Limit point: $\overline{x_i} = \widetilde{BR}_i(\overline{x_{-i}})$, for all *i*.
 - $\overline{x_i}$ is a perturbed NE (logit equilibrium/Nash distribution).

Relaxed BR-play

- $x_i^{k+1} = \alpha_k \widetilde{BR}_i(x_{-i}^k) + (1 \alpha_k) x_i^k$ with $0 < \alpha_k < 1$.
- Limit point: $\overline{x_i} = \widetilde{BR}_i(\overline{x_{-i}})$, for all *i*.

Fictitious play

• $\omega_i^k \to J_i, e_{i'}^k, \forall i' \in I.$ • $e_{i'}^k$ is the action used by player i' at previous play k.

- Idea: use empirical frequency of an action as approximation of probability of using that action.
 - For player *i*, for $i' \in I$, $\widehat{x_{i'}^k} = \frac{1}{k} \sum_{k'=0}^{k-1} e_{i'}^{k'}$ is the estimation of mixed strategy of $P_{i'}$.
- For all $i' \in I$, $i' \neq i$, we need to build $\widehat{x_{-i}^k}$ as the state Z_i^k .
- Set $x_i^k = \widetilde{BR}_i\left(\widehat{x_{-i}^k}\right)$, i.e. best response to a fictitious strategy.
- To find Z_i^{k+1} iteratively:

$$\widehat{x_{i}^{k+1}} = \frac{1}{k+1} \sum_{k'=0}^{k} e_{i'}^{k'} = \frac{1}{k+1} \left(\frac{k}{k} \sum_{k'=0}^{k-1} e_{i'}^{k'} + e_{i'}^{k} \right) = \frac{1}{k+1} \left(e_{i'}^{k} - \widehat{x_{i'}^{k}} \right) + \widehat{x_{i'}^{k}}.$$

$$\sum_{i}^{k+1} Z_{i}^{k} = Z_{i}^{k} + \frac{1}{k+1} \left(e_{-i'}^{k} - Z_{-i}^{k} \right).$$

Tutorial content

- Definition:
 - Play same game multiple times
 - Each agent tries to improve their cost/update action
- Perspectives
 - Design an algorithm to perform well in certain games
 - Create a model of how players perform and analyze outcome
 - e.g. population game, predator/prey dynamics
- Agents
 - Goal: minimize cost in the game
 - Learn a strategy to minimize cost
 - If we get to a point where all agents stop updating their strategies, because they cannot improve their cost, then we are at an NE.
 - $\circ J_i(x_i^k, x_{-i}^k) \leq J_i(y_i, x_{-i}^k), \forall y_i.$
- How do agents update their strategies
 - *w_i* observations from the environment.
 - Cost, other players' actions.
 - Affect the potential algorithm
 - $\circ z_i$ internal state.
 - $\circ x_i$ strategy.
- Player i's process

$$\circ \quad z_i^{k+1} = z_i^k + \gamma_k f_i(z_i^k, w_i^k) = \tilde{f}_i(z_i^k, w_i^k).$$

- $x_i^{k+1} = \sigma(z_i^{k+1})$ is the action.
- $\circ \gamma_k$ is the learning rate.
- Best response dynamics

$$\circ \quad w_i^k = J_i, x_i^k, x_{-i}^k.$$

$$z_i^{k+1} = \widetilde{f}_i(z_i^k, w_i^k) = x_{-i}^k$$
 (other players' BR).

$$\circ \quad z_i^{k+1} = \widetilde{f}_i(z_i^k, w_i^k) = x_{-i}^k \text{ (other}$$

$$\circ \quad x_i^{k+1} = BR_i(z_i^{k+1}) = BR_i(x_{-i}^k).$$

For rock-paper-scissors: NE =
$$\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$$
 (completely randomly).

- Fictitious play (finite action game)
 - $w_i^k = e_{-i}^k$ (realized pure strategy at iteration k).

$$\circ \ \ z_i^{k+1} = \frac{k}{k+1} z_i^k + \frac{1}{k+1} e_{-i}^k$$

- measure the frequency of pure strategy
- Estimate of the mixed strategies of other players

$$\circ \quad x_i^{k+1} = BR_i(z_i^{k+1})$$

- Reinforcement learning (fictitious play)
 - w_i^k = u_i(x_i^k, x_{-i}^k) = −J(x_i^k, x_{-i}^k) (assuming u_i ≥ 0).

 z_i^{k+1} = z_i^k + π_i^k e_i^k.

$$\sum Z_i^{n+1} = Z_i^n + \pi_i^n e_i^n$$

• $[x_i^{k+1}]_m = \frac{[z_i^{k+1}]_m}{\sum_p [z_i^{k+1}]_n}$ where $[\cdot]_m$ is the mth element of the vector.

Infinite action games

October 25, 2022 6:29 PM

N player infinite action (continuous kernel) game

- $I = \{1, 2, ..., N\}.$
- Each P_i has continum action set Ω_i .
 - Ω_i is convex, non-empty and compact set in \mathbb{R}^{n_i} .
 - e.g. $\Omega_i = [a, b]$.
 - $\circ \quad \Omega = \Omega_1 \times \cdots \times \Omega_N.$
- Cost: $J_i : \Omega \to \mathbb{R}$.
 - Jointly continuous in its arguments
- Let $u_i \in \Omega_i$ be one action of P_i , the action profile is $u = (u_i, u_{-i})$.

NE in CK game

- $u^* = (u_i^*, u_{-i}^*)$ is a NE of game if $J_i(u_i^*, u_{-i}^*) \le J_i(u_i, u_{-i}^*), \forall u_i \in \Omega_i, \forall i.$
- $BR_i(u_{-i}) = \arg\min_{u_i \in \Omega_i} J_i(u_i, u_{-i}).$ • u^* is a NE if $u_i^* \in BR_i(u_{-i}^*), \forall i \in I$ (intersection of all BRs).

For 2 player zero sum game, we still want to have:

- P_1 , $\min_{u_1} \max_{u_2} J$.
- P_2 , $\max_{u_2} \min_{u_1} J$.
- However, we may be able to solve them separately using partial gradients.

Note: we can also have mixed-strategy, but we don't need it in general Existence of a NE is guaranteed under relatively mild assumption

DFG theorem:

- Consider a CK game where $\Omega_i \in \mathbb{R}^{n_i}$ is non-empty, convex, compact. J_i is jointly continuous on its argument and convex in u_i . Then the game admits at least one NE in pure strategies
- Possible relaxation of Ω_i : convex and closed if J_i is assumed to be radially unbounded.
 - i.e. as $||u_i|| \to \infty$, $J_i(u_i, u_{-i}) \to \infty$ for all given u_{-i} .

Optimization

- $f: \Omega \to \mathbb{R}$ continuous.
- f is convex if $\forall u, v \in \Omega, \alpha \in [0,1], f(\alpha u + (1 \alpha)v) \le \alpha f(u) + (1 \alpha)f(v).$
- When f is C^1 , f is convex if $f(v) f(u) \ge \nabla f^T(u)(v-u)$, $\forall u, v \in \Omega$.

○
$$\nabla f(u)$$
 is monotone, $(\nabla f(v) - \nabla f(u))^T (v - u) \ge 0$.

- When f is C^2 , f is convex if $\nabla^2 f(u) \ge 0$, $\forall u \in \Omega$.
- Normal cone:
 - $\circ \quad N_{\Omega}(u^*) = \{v : v^T(u u^*) \le 0, \forall u \in \Omega\}.$
 - If $u^* \in int(\Omega)$, $\nabla f(u^*) = 0$.
 - If $u^* \in \partial \Omega$, $\nabla f(u^*)$ should point into Ω .
- Minimization of a convex function
 - $\circ \ u^* = \arg\min_{u \in \Omega} f(u).$

• If f is C^1 , u^* is a minimizer if $\nabla f(u^*)^T(u-u^*) \ge 0$, $\forall u \in \Omega \Leftrightarrow -\nabla f(u^*) \in N_{\Omega}(u^*)$.

- Euclidean projection.
 - $T_{\Omega}(y) = \arg \min_{x \in \Omega} ||x y||^2$ is the Euclidean projection of y to a set Ω .
 - \circ If Ω is convex, $T_{\Omega}(y)$ is unique: $y T_{\Omega}(y)$ ⊥tangent plane to Ω.
 - u^* is a min of f if $u^* = T_{\Omega}(u^* \alpha \nabla f(u^*)), \forall \alpha > 0.$
 - $T_{\Omega}(u^* + \alpha N_{\Omega}(u^*)) = u^*$.

Partial gradient

- Assume J_i is C^1 and convex in u_i , define $\nabla_{u_i} J_i = \frac{\partial J_i}{\partial u_i} (u_i, u_{-i})$.
- Stacked partial gradient (pseudo gradient) of the game: $F(u) = \begin{pmatrix} \nabla_{u_1} J_1 \\ \vdots \\ \nabla_{u_N} J_N \end{pmatrix}$.
- Not a true gradient unless $J_1 = J_2 = \cdots = J_N$ (potential games)
- Then $BR_i(u_i) = \arg \min_{u_i \in \Omega_i} J_i(u_i, u_{-i})$ is equivalent to the following:

$$\circ \left(\nabla_{u_i} J_i(u^*) \right)^I \left(u_i - u_i^* \right) \ge 0, \forall i \in I.$$

$$\circ \sum_{i=1}^N \left(\nabla_{u_i} J_i(u^*) \right)^T \left(u_i - u_i^* \right) \ge 0 \Leftrightarrow F(u^*)^T (u - u^*) \ge 0, \forall u \in \Omega.$$

$$\circ -F(u^*) \in N_{\Omega}(u^*).$$

$$\circ u^* \in T_{\Omega} \left(u^* - \alpha F(u^*) \right), \forall \alpha > 0.$$

• This is the characterization of the NE.

Note: if $u^* \in int(\Omega)$, $F(u^*) = 0$ u^* is an inner NE. If $\Omega = \mathbb{R}$, $f(u^*) = 0$ always.

BR-play

- At iteration k, given other players' actions u^k_{-i}, then at next iteration k + 1, P_i can play a BR_i to these actions: u^{k+1}_i = BR_i(u^k_{-i}).
- It is equivalent to solving a minimization at each iteration
- Variants: $u_i^{k+1} = (1 \alpha_i)u_i^k + \alpha_i BR(u_{-i}^k)$ with $\alpha_i \in (0,1)$, $\forall i \in I$.

Projected gradient play/better-response play

•
$$u_i^{k+1} = T_{\Omega_i} \left(u_i^k - \alpha \nabla_{u_i} J_i \left(u_i^k, u_{-i}^k \right) \right).$$

- Cheaper computationally, since only gradient is calculated
- If $\Omega_i = \mathbb{R}$, then $u_i^{k+1} = u_i^k \alpha \nabla_{u_i} J_i(u_i^k, u_{-i}^k), \forall i \in I$.

Dynamics

- $\dot{x} = Ax$ is asymptotically stable iff eigenvalues of A are in the open left half plane, $Re(\lambda) < 0$.
- $x^{k+1} = Ax^k$ is asymptotically stable iff $|\lambda| < 1$.

Example (2 player quadratic game)

- $P_1: J_1(u_1, u_2) = 2u_1^2 2u_1 u_1u_2.$ $\circ \nabla^2_{u_1} J_1 = 4, J_1 \text{ is convex w.r.t. } u_1.$
- $P_2: J_2(u_1, u_2) = u_2^2 \frac{1}{2}u_2 u_1u_2.$ $\circ \nabla^2_{u_2}J_2 = 2, J_2 \text{ is convex w.r.t. } u_2.$
- $\Omega_1 = \Omega_2 = \mathbb{R}.$
- J_1, J_2 are radially unbounded, so there is a NE.
- Gradient play

$$\nabla_{u_1} J_1 = 4u_1 - 2 - u_2, \nabla_{u_2} J_2 = 2u_2 - \frac{1}{2} - u_1.$$

$$F(u) = \begin{pmatrix} 4u_1 - 2 - u_2 \\ 2u_2 - \frac{1}{2} - u_1 \end{pmatrix}.$$

• Note: for a NE,
$$u^* \in int(\Omega)$$
, $F(u^*) = 0 \Rightarrow \begin{cases} 4u_1^* - 2 - u_2^* = 0\\ 2u_2^* - \frac{1}{2} - u_1^* = 0 \end{cases}$.

$$\begin{array}{l} \circ & \begin{cases} u_1^{k+1} = u_1^k - \alpha (4u_1^k - 2 - u_2^k) \\ u_2^{k+1} = u_2^k - \alpha \left(2u_2^k - \frac{1}{2} - u_1^k \right), & \alpha \in (0,1). \end{cases} \\ \circ & \text{ Consider the limit point, } \begin{cases} \overline{u_1} = \overline{u_1} - \alpha (4\overline{u_1} - 2 - \overline{u_2}) \\ \overline{u_2} = \overline{u_2} - \alpha \left(2\overline{u_2} - \frac{1}{2} - \overline{u_1} \right) \end{cases} \Rightarrow \begin{cases} \overline{u_1} = u_1^* \\ \overline{u_2} = u_2^* \end{cases}$$

• Check the convergence

• Let
$$\begin{cases} \widetilde{u_1^k} = \overline{u_1} - u_1^* \\ \widetilde{u_2^k} = \overline{u_2} - u_2^* \end{cases}$$
, then
$$\begin{cases} \widetilde{u_1^{k+1}} = (1 - 4\alpha)\widetilde{u_1^k} + \alpha \widetilde{u_2^k} \\ \widetilde{u_2^{k+1}} = \alpha \widetilde{u_1^k} + (1 - 2\alpha)\widetilde{u_2^k} \end{cases}$$
.
• $\widetilde{u^{k+1}} = \begin{pmatrix} 1 - 4\alpha & \alpha \\ \alpha & 1 - 2\alpha \end{pmatrix} \widetilde{u^k}$.
• $A = \begin{pmatrix} 1 - 4\alpha & \alpha \\ \alpha & 1 - 2\alpha \end{pmatrix}, |\lambda_A| \le 1$ gives condition on α .

Projected gradient play

- Algorithm to compute NE
- · Each agent does a projected gradient descent

•
$$x_{i,k+1} = P_{\Omega_i} \left(x_{i,k} - \alpha_k \nabla_i J_i(x_i, x_{-i}) \right).$$

• If agent *i*'s action $x_i \in \Omega_i$.

• For all agents, $x_{k+1} = P_{\Omega}\left(x_k - \alpha_k F(x_k)\right)$, where $F(x) = \begin{pmatrix} \vdots \\ \nabla J_i(x_i, x_{-i}) \\ \vdots \end{pmatrix}$.

- $\circ P_{\Omega}(x) = \arg \min_{\omega \in \Omega} ||x \omega||^2.$
- $\min_{\omega \in \Omega} f(x) = \frac{1}{2} ||\omega x||^2$, with $\nabla f(\omega) = \omega x$. For $x^* = \arg\min f(x)$, $\nabla f(x^*)^T (y x^*) \ge 0$, $\forall y \in \Omega$.
- Namely $\nabla f(\omega^*)^T(y-\omega^*) \ge 0, \forall y \in \Omega$.
- $\circ (\omega^* x)^T (y \omega^*) \ge 0, \forall y \in \Omega.$
- $\circ (P_{\Omega}(x) x)^{T} (y P_{\Omega}(x)) \ge 0, \forall y \in \Omega.$
- $\circ \left(P_{\Omega}(x) x\right)^{T} \left(P_{\Omega}(y) P_{\Omega}(x)\right) \ge 0, \text{ since } P_{\Omega}(y) = y.$
- $\circ \left(P_{\Omega}(y)-y\right)^{T}\left(P_{\Omega}(y)-P_{\Omega}(x)\right) \geq 0.$

$$\circ (x-y)^T \left(P_{\Omega}(y) - P_{\Omega}(x) \right) \ge \left\| P_{\Omega}(x) - P_{\Omega}(y) \right\|^2.$$

- $\circ ||x y|| \ge ||P_{\Omega}(x) P_{\Omega}(y)|| \text{ (no expansive).}$
- Assumption
 - F(x) is strongly monotone, $(F(x) F(y))^T (x y) \ge \mu ||x y||^2$, $\mu > 0$. • F(x) is Lipschitz continuous, $||F(x) - F(y)|| \le L ||x - y||, L \ge 0.$

• So
$$\mu \le \frac{|F(x) - F(y)|}{|x - y|} \le L.$$

• Convergence (As $k \to \infty$, what happenes to the distance between x_{k+1} and x^*):

$$\|x_{k+1} - x^*\|^2 = \|P_{\Omega}(x_k - \alpha_k F(x_k)) - P_{\Omega}(x^* - \alpha_k F(x^*))\|^2.$$

$$\leq \|x_k - \alpha_k F(x_k) - x^* + \alpha_k F(x^*)\|^2.$$

$$= \|(x_k - x^*) - \alpha_k (F(x_k) - F(x^*))\|^2.$$

$$= \|x_k - x^*\|^2 + \alpha_k^2 \|F(x_k) - F(x^*)\|^2 - 2\alpha_k (x_k - x^*)^T (F(x_k) - F(x^*)).$$

$$\leq \|x_k - x^*\|^2 + \alpha_k^2 L^2 \|x_k - x^*\|^2 - 2\alpha_k \mu \|x_k - x^*\|^2.$$

$$= (1 + \alpha_k^2 L^2 - 2\alpha_k \mu) \|x_k - x^*\|^2.$$

$$Assume \alpha_k = \alpha.$$

$$\|x_{k+1} - x^*\|^2 \leq (1 + \alpha^2 L^2 - 2\alpha\mu)^{k+1} \|x_0 - x^*\|^2.$$

$$If we want \|x_{k+1} - x^*\|^2 \to 0 \text{ as } k \to \infty, \text{ we need } |1 + \alpha^2 L^2 - 2\alpha\mu| < 1, \alpha \in (0, \frac{2\mu}{L^2})$$

- Then the algorithm converges.
 When α = μ/L², minimizes 1 + α²L² 2αμ, fastest convergence.
 If F(x) is merely monotone, μ = 0, we might not get convergence.

$$\circ F(x) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \Omega = \mathbb{R}^2.$$

$$\circ x_{k+1} = x_k - \alpha \begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix} x_k = \begin{pmatrix} 1 \\ -1 & 2 \end{pmatrix}$$

- $x_{k+1} = x_k \alpha \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} x_k = \begin{pmatrix} 1 & -\alpha \\ \alpha & 1 \end{pmatrix} x_k.$ Eigenvalues are $\{1 \pm \alpha_i\}, \|1 + \alpha_i\| \ge 1$, doesn't converge.
- But it may converge in $\Omega = \left\{ x : \left\| x \begin{pmatrix} 0.5 \\ 0 \end{pmatrix} \right\| \le 0.5 \right\}.$

Continuous time nonlinear systems

November 15, 2022 7:08 PM

Let $\dot{x} = f(x)$,

- $x \in \mathbb{R}^n$ is the state vector.
- *f* is Lipschitz continuous (differentiable).
- Then $\dot{x} = f(x)$ has unique solution $x(t) \in \mathbb{R}^n$ for any given initial condition $x(0) = x_0$.
- Trajectory: $\phi(t, x_0) = x(t)$.
 - f(x) is tangent to the trajectory.

Equilibrium

- An equilibrium of $\dot{x} = f(x)$ is a set $\{x_{eq} : f(x_{eq}) = 0\}$.
- If $x_0 = x_{eq}$, then $x(t) = x_{eq}$.
- If $x(0) \neq x_{eq}$.
 - Stable: x_{eq} is a stable equilibrium if when starting sufficiently close from x_{eq} , the trajectory stays arbitrarily close to x_{eq}
 - $\forall \epsilon > 0, \exists \delta > 0 \text{ s.t. } \forall x(0) \in B_{\delta}(x_{eq}), x(t) \in B_{\epsilon}(x_{eq}).$
 - Asymptotically stable: if in addition, $x(t) \rightarrow x_{eq}$ as $t \rightarrow \infty$.
 - Unstable: if x_{eq} is not stable.
 - $\exists \epsilon > 0, \forall \delta > 0, x(0) \in B_{\delta}(x_{eq})$, exists *T* finite s.t. $x(t) \notin B_{\epsilon}(x_{eq}), \forall t \ge T$.

Linearization method for testing stability

- Compute the Jacobian matrix $A_L = Df(x)\Big|_{x=x_{eq}} = \frac{\partial f}{\partial x}\Big|_{x=x_{eq}} \in \mathbb{R}^{n \times n}$.
- Let $z = x x_{eq}$,
- $\dot{z} = \dot{x} = f(x) \approx f(x_{eq}) + \frac{\partial f}{\partial x}(x_{eq})(x x_{eq}) + \dots = f(x_{eq}) + A_L z.$
- So the linearization of $\dot{x} = f(x)$ around x_{eq} is $\dot{z} = A_L z$.
 - \circ $\,$ Continuous time linear system $\,$
 - Equilibrium point is at z = 0.
- Stability of $\dot{z} = A_L z$ based on $eig(A_L)$
 - If $\forall i, Re(\lambda_i) < 0$, then z = 0 is stable.
 - If $\exists i, Re(\lambda_i) > 0$, then z = 0 is unstable.
 - If $Re(\lambda_i) = 0$, then can be stable (oscillating) or unstable.
- Hartmon-Grobman theorem: if all $eig(A_L)$ have $Re(\lambda_i) \neq 0$, then any stability/unstability of z = 0 for $\dot{z} = A_L z$ is equivalent to any stability/unstability of x_{eq} for $\dot{x} = f(x)$.
 - Note: if $Re(\lambda_i) = 0$, we cannot say anything based on linearization.

e.g. $\dot{x} = ax^3$, $a \neq 0$, $a \in \mathbb{R}$ a parameter.

- $f(x) = ax^3 = 0$ gives $x_{eq} = 0$.
- Let z = x.
- $A_L = 3ax^2 |_{x=0} = 0$, so $\dot{z} = 0$, z(t) = z(0) = const.
- Linearization fails
- Consider $V(x) = \frac{1}{2}x^2$, $V(x) \ge 0$, $\forall x, V(0) = 0$.
- $\dot{V} = \frac{dV}{dx}\frac{dx}{dt} = ax^4.$
 - If a < 0, $\dot{V}(x) < 0 \forall x$, $\dot{V}(0) = 0$, V is strictly decreasing in time along trajectory of $\dot{x} = f(x)$ towards 0. Hence, $x(t) \rightarrow 0$ as $t \rightarrow \infty$, x = 0 is stable.
 - If a > 0, $\dot{V}(x) > 0 \forall x$. *V* is strictly increasing in time, so x = 0 is unstable.

Lyapunov Theorem

• Let $V : \mathbb{R}^n \to \mathbb{R}$ be C^1 (continuously differentiable), such that the following holds, then x_{eq} is an asymptotically stable equilibrium for $\dot{x} = f(x)$.

- *V* is positive definite at x_{eq} , i.e. V(x) > 0, $\forall x \neq x_{eq}$ and $V(x_{eq}) = 0$.
- \dot{V} is negative definite at x_{eq} , i.e. $\dot{V}(x) < 0$, $\forall x \neq x_{eq}$ and $\dot{V}(x_{eq}) = 0$.
- If \dot{V} is negative semidefinite, i.e. $\dot{V}(x) \le 0 \forall x \ne x_{eq}$ at x_{eq} , then x_{eq} is a stable equilirbium for $\dot{x} = f(x)$.
- If $\dot{V}(x)$ is positive definite, i.e. $\dot{V}(x) > 0 \forall x \neq x_{eq}$, then x_{eq} is unstable.
- Potential choices for V

•
$$V(x) = \frac{1}{2} ||x - x_{eq}||^2$$
.
• $V(x) = \frac{1}{2} (x - x_{eq})^T M (x - x_{eq})$ with $M \ge 0$.

Example: continuous time gradient play

•
$$\dot{x} = -f(x)$$
.
• $f(x) = \begin{pmatrix} \frac{\partial J_i}{\partial x_i}(x_i, x_{-i}) \\ \vdots \end{pmatrix}$ is the partial gradient.

• $x^* = 0$ is equivalent to $f(x^*) = 0$.

- Consider $J_1 = J_2 = \cdots = J_N = P$, i.e. f(x) is the true gradient.
- $f(x) = \nabla P(x)$ is a potential game.
- Assume P(x) is strictly convex, let $V(x) = P(x) P(x^*)$.
 - For x^* , $\nabla P(x^*) = 0$, $P(x^*)$ is the minimum.
 - $V(x) = P(x) P(x^*) > 0$, $\forall x \neq x^*$, V is positive definite at x^* .
 - $\dot{V}(x) = (\nabla V(x))^T (-\nabla P(x)) = -\nabla P(x)^T \nabla P(x) = -\|\nabla P(x)\|^2 \le 0, \dot{V}$ is negative semidefinite, $\dot{V}(x^*) = -\|\nabla P(x^*)\|^2 = 0.$
- By Lyapunov theorem, x^* is a stable equilibrium.
- $\dot{V}(x) = 0 \Leftrightarrow ||\nabla P(x)|| = 0 \Leftrightarrow \nabla P(x) = 0 \Leftrightarrow x = x^*.$
- Here x^* is asymptotically stable.

Population games (Evolutionary games)

November 2, 2022 8:29 AM

A large population of agents with a finite number of strategies, $M = \{1, ..., j, ..., m\}$. Let x_j =fraction (population) of agents that use strategy $j \in M$ (frequency)

- $\forall j \in M, x_j \ge 0, \sum_{j=1}^m x_j = 1.$ • Let $x = \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix}, x \in \Delta$ (simplex).
- This is similar to mixed strategy in finite N-player games, but here it is the distribution of strategies in the population of agents, call it population state.

• Note:
$$x = \begin{pmatrix} 1 \\ \vdots \\ 0 \end{pmatrix}$$
 means all agents use strategy 1.

Canonical example of population games

- Agents are paired randomly to play a (symmetric) matrix game
 - i.e. if an agent uses jth strategy (jth strategist) is paired with a kth strategist, then the payoff/cost is $A = [a_{ik}]$.
- Assume: the success of a strategy depends on how many are using it
- Let $J_j(x)$ denote the expected cost of a jth strategist when in population state x.

•
$$J_j(x) = \sum_{k=1}^m x_k a_{jk} = (Ax)_{jth row}$$
.
• $J(x) = \begin{pmatrix} J_1(x) \\ \vdots \\ J_m(x) \end{pmatrix} = Ax$ is the vector of expected cost of all strategies when in population state x .

• J(x) is linear in x.

Nash equilibrium

- NE state is $x^* \in \Delta$ s.t. $(x^*)J(x^*) \le y^T J(x^*) = \sum_j y_j J_j(x^*), \forall y \in \Delta$.
 - Equivalently, $(x^*)Ax^* \leq y^TAx^*, \forall y \in \Delta$.
- Recall, for 2 player finite game (A, B), $NE = (x^*, y^*)$.
 - For symmetric game, $B = A^T$, (A, A^T) .
 - If we have $y^* = x^*$, the game is symmetric (x^*, x^*) .

Evolutionary stable state (ESS)

- A population state $x^* \in \Delta$ is an ESS if
 - ESS-1: $(x^*)J(x^*) \le y^T J(x^*), \forall y \in \Delta$ (NE).
 - ESS-2: if $(x^*)J(x^*) = y^T J(x^*)$, then $(x^*)J(y) < y^T J(y)$ (refinement).
 - y is an alternative best response to x*.
 - $y^T J(y)$ is the average cost of the population when in state y.
- Note: ESS-1 and ESS-2 are equivalent to $\exists 0 < \epsilon_y < 1$, $\forall 0 < \epsilon < \epsilon_y$, $(x^*)^T J(w) \le y^T J(w)$, where $w = (1 \epsilon)x^* + \epsilon y = x^* + \epsilon (y x^*)$, $\forall y \in x$, i.e. x^* is robust to invasion (perturbation).
- Note: if x^* is a strict NE, $(x^*)^T J(x^*) < y^T J(x^*)$, then x^* is ESS.

Revision protocols and mean dynamics (\dot{x})

- Assume agents can revise the strategies they use and switch to another one i.e. from jth strategy to kth strategy
- Assume:
 - Agents have an internal clock and revision instances follow Poisson distribution with rate *R*

- i.e. over [0, *t*], the mean number of revisions is *Rt*.
- At a particular revision instance an agent switches from jth to kth strategy with a conditional switch rate p_{jk} , with condition $\max_x \sum_{j,k} p_{jk}(x) \le R$ (the probability of switching is proportional to $p_{jk}(x)$).
- $\circ~$ Revision of all agents are independent.
- Look at rate of change in fraction (frequency) that uses jth strategy $\dot{x}_j = \frac{dx_j}{dt}$.
 - $\forall j \in M$, \dot{x} is the mean dynamics.
- Consider *dt* interval of time, mean number of revisions is *Rdt*, and the mean number of revisions for jth strategist is *x_jRdt*.
 - Expected number of switches from jth to kth strategy is $\frac{p_{jk}}{R}x_jRdt = p_{jk}x_jdt$
 - Expected number of switches from kth to jth is $p_{jk}x_k dt$.
 - Expected change in x_j over dt, denoted dx_j is $dx_j = \sum_{k=1}^m p_{kj} x_k dt \sum_{k=1}^m p_{jk} x_j dt$. • $\dot{x}_j = \sum_{k=1}^m x_k p_{kj} - x_j \sum_{k=1}^m p_{jk}, \forall j \in [m]$. • $\dot{x} = f(x) = \begin{pmatrix} \dot{x}_1 \\ \vdots \\ \dot{x}_m \end{pmatrix}$ is the mean dynamics is a set of nolinear ODEs.
- Different revision protocols \Rightarrow different $p_{jk} \Rightarrow$ different mean dynamics with different properties and stable points

E.g. pairwise imitation protocol

- $p_{jk} = x_k [J_j(x) J_k(x)]_+$ where $[v]_+ = \begin{cases} v, v \ge 0\\ 0, v < 0 \end{cases}$.
 - If $J_k < J_j$, switch to k, proportional to the difference.
 - If more people are using k (x_k is high), higher chance of switching.
- Mean dynamics

Replicator Dynamics (RD)

- The mean dynamic for pairwise-imitation protocol in a population game
- $\dot{x}_j = x_j \left[x^T J(x) J_j(x) \right], \forall j \in [m].$
- If J(x) = Ax (a symetric matrix game $A = A^T$), $\dot{x}_j = x_j \left[x^T A x (Ax)_{jth row} \right]$, $\dot{x} = f(x)$ is nonlinear.

• For
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
, $x = (x_1, x_2)^T$, $x_1 + x_2 = 1$.
 $\circ \dot{x_1} = -(a_1x_1 - a_2x_2)x_1x_2$. (combine $a_{11}x_1^2 + a_{21}x_1x_2$ and $a_{22}x_2^2 + a_{12}x_1x_2$)
 $\circ \dot{x_2} = (a_1x_1 - a_2x_2)x_1x_2$. (since $\dot{x_2} = -\dot{x_1}$)
 \circ Where $a_1 = a_{11} - a_{21}$, $a_2 = a_{22} - a_{12}$.
 \circ Note: $\dot{x_2} = -\dot{x_1}$, $x_2 = 1 - x_1$.

e.g. $A = \begin{pmatrix} 5 & 0 \\ 15 & 1 \end{pmatrix}, x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \Delta = \{x \in \mathbb{R}^2 : x_1 + x_2 = 1, x_1 \ge 0, x_2 \ge 0\} = \{x \in \mathbb{R}^2 : x_{1,2} \ge 0, 1^T x - 1 = 0\}.$

- RD: $\dot{x} = f(x) = \begin{pmatrix} \dot{x_1} \\ \dot{x_2} \end{pmatrix} = \begin{pmatrix} x_1 x_2 (10x_1 + x_2) \\ -x_1 x_2 (10x_1 + x_2) \end{pmatrix}.$
- Eq points: $x_1 = 0$ or $x_2 = 0$ or $10x_1 + x_2 = 0$. $x_{eq}^1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, x_{eq}^2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.
- Tangent set to Δ : $T_{\Delta} = \{ y \in \mathbb{R}^2 : 1^T y = 0 \}.$
 - Same for higher dimensions. $\Delta = \{x \in \mathbb{R}^3 : x_{1,2,3} \ge 0, 1^T x 1 = 0\}, T_\Delta = \{y \in \mathbb{R}^3 : x_{1,2,3} \ge 0, 1^T x 1 = 0\}$

- Since $1^T f(x) = 0$, $f(x) \in T_{\Delta}$. • Thus, $\frac{d}{dt}(x_1 + x_2) = 0$, $x_1 + x_2 = const$, $\forall t$.
- Since $x(0) \in \Delta$, $x_1(0) + x_2(0) = 1$, then $x_1(t) + x_2(t) = 1$, $x(t) \in \Delta$, $\forall t$. • Δ is invariant in time under RD.
- Use linearization method to check stability of $x_{eq}^1 = e_1$, $x_{eq}^2 = e_2$.

$$\circ \quad A_L = \frac{\partial f}{\partial x} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{pmatrix} = \begin{pmatrix} 20x_1x_2 + x_2^2 & 2x_1x_2 + 10x_1^2 \\ -20x_1x_2 - x_2^2 & -2x_1x_2 - 10x_1^2 \end{pmatrix}.$$

• We only need to consider the eigenvectors in the tangent set T_{Δ} , as that's the only direction we can move.

$$A_{L}^{1} = \frac{\partial f}{\partial x}\Big|_{x=e_{1}} = \begin{pmatrix} 0 & 10 \\ 0 & -10 \end{pmatrix}.$$

• $\dot{z} = A_{L}^{1}z$ with $z = x - x_{eq}^{1} \in T_{\Delta}$ $(1^{T}z = 1^{T}x - 1^{T}x_{eq}^{1} = 1 - 1 = 0).$
• $\lambda = \{0, -10\}, v_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \notin T_{\Delta}, v_{2} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \in T_{\Delta}, x_{eq}^{1}$ is stable since -10 is in the

$$\{x : Re(x) < 0\}.$$

$$\circ A_L^2 = \frac{\partial f}{\partial x}\Big|_{x=e_2} = \begin{pmatrix} 1 & 0\\ -1 & 0 \end{pmatrix}.$$

$$\bullet \dot{z} = A_L^2 z \text{ with } z = x - x_{eq}^2 \in T_{\Delta}.$$

$$\bullet \lambda = \{0,1\}, v_1 = \begin{pmatrix} 0\\ 1 \end{pmatrix} \notin T_{\Delta}, v_2 = \begin{pmatrix} 1\\ -1 \end{pmatrix} \in T_{\Delta}, x_{eq}^2 \text{ is unstable since 1 is in the}$$

$$\{x: Re(x) > 0\}.$$

- Recall for a PD game NE= (e_1, e_1) (confess, confess), $x_{NE}^* = e_1$.
 - $\circ~$ RD finds the NE, no matter from what initial condition.

General properties of the RD

- Δ is invariant under the RD, $\forall x(0) \in \Delta, x(t) \in \Delta, \forall t \in \mathbb{R}$.
- $\{e_1, \dots, e_j, \dots, e_m\}$ (vertices in \mathbb{R}^m) are equilibria points of RD.
 - If x^* is NE state $((x x^*)^T J(x^*) \ge 0, \forall x \in \Delta)$, then x^* is an eq point of RD.
 - Note: it is not true that any eq point of RD is an NE (x^*) .
- If x_{eq} is asymptotically stable eq point of RD, then x_{eq} is NE (proof by contradiction).
 - Note: not true that any NE is an asymptotically stable eq point of RD.
 - However, there are special classes of population games that the reverse is also true
 - Potential population games $J(x) = \nabla P(x)$, true gradients of potential function
 - $(A = A^T \text{ for matrix game}).$
 - Strictly stable games:
 - $\Box (x-y)^T (J(x)-J(y)) > 0, \forall x \neq y \in \Delta.$
 - □ If matrix games, $(x y)^T (A + A^T)(x y) > 0$, $\forall x \neq y$ with $A + A^T > 0$ on T_{Δ} .
- If x^* is ESS, then it is an asymptotically stable eq of RD.
 - For the PD example above, $x^* = e_1$ is ESS.
 - Note both 4 and reverse of 3 in strictly stable games can be shown using Lyapunov method.

Lyapunov function candidates for RD

- Quadratic form: $V(x) = (x x_{eq})^T P(x x_{eq})$.
- V(x) is PD at x_{eq} , so P is a PD matrix.
- $\dot{V}(x) = \nabla V(x)^T f(x) < 0, \forall x \neq x_{eq}.$
 - $\dot{V}(x) = 2(x x_{eq})^T Pf(x)$, doesn't quite work for RD.
- An appropriate Lyapunov function is the relative entropy: $V(x) = \sum_{j \in \text{supp } x^*} x_j^* \ln\left(\frac{x_j^*}{x_i}\right)$.
 - V(x) is PD, $\forall x \neq x^*$, using Jenson's inequality.

Rock paper scissor game

•
$$x^* = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$$
 no matter what formation.
• Standard: $A = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}$.
• $A + A^T = 0$, not a strictly stable game, but a stable game.
• Modified: $= \begin{pmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}$.

•
$$A + A^T > 0$$
, strictly stable, RD converges to x^* .

Learning in games

November 29, 2022 6:14 PM

2 types of algo for N-player repeated finite action game

- BR-play and variants
 - $\circ x_i(k+1) = \widetilde{BR}_i(x_{-i}(k)).$
 - $x_{-i}(k)$ is mixed strategies of all others
 - \widetilde{BR}_i softmax of some cost functions J_i .
- Fictitious-play and variants
 - z_i : internal variable of P_i that is estimate of x_{-i} .
 - Updated by simply averaging history: $z_i^{k+1} = \frac{k}{k+1} z_i^k + \frac{1}{k+1} e_{-i}^k$.
 - $\circ \ x_i(k) = \widetilde{BR}_i(z_i(k)).$
 - Still require a cost function (structure info)

Relax the info that players have

- $\pi_i^k = -J_i(e_i^k, e_{-i}^k) \in \mathbb{R}$, received or realized payoff at iteration k of game.
- How to update internal variable z_i^k using this info?
- How to map internal variable into a mixed strategy x_i^k ?

Erev-Roth algo (payoff based)

- z_i^k : a vector with #components = #actions of $P_i = m_i$.
- z_{ij}^k : a score variable for action $j, j \in [m_i]$.
- $e_i^k = e_i$ when P_i uses jth action.
- At iteration *k*:
 - If $e_i^k = e_j, z_{ij}^{k+1} = z_{ij}^k + \pi_i^k$. Else, $z_{ij}^{k+1} = z_{ij}^k$.
 - Lise, z_{ij} = z_{ij}.
 For j = 1, ..., m_i, z_i^{k+1} = z_i^k + π_i^k e_i^k.
 Adds a corresponding payoff if using a strategy.
- To map z_i^k to $x_i^k \in \Delta_i$ $(x_{ij}^k \ge 0, \sum_i x_{ij}^k = 1)$.

$$x_{ij}^{k} = \frac{z_{ij}^{k}}{\sum_{j=1}^{m_{i}} z_{ij}^{k}} \text{ (assuming } z_{ij}^{k} \ge 0 \text{).}$$

$$x_{i}^{k} = \frac{z_{i}^{k}}{\sum_{j=1}^{m_{i}} z_{ij}^{k}}.$$

• The algorithm is two simple functions

$$\circ \quad z_i^{k+1} = z_i^k + \pi_i^k e_i^k$$

$$\circ \quad x_i^k = \frac{z_i^k}{\sum_{i=1}^{m_i} z_{ij}^k}.$$

- The behavior of the stochastic algo can be analyzed based on its mean dynamics (deterministic CT set of ODEs) that have a function similar to RD.
- Similar convergence results can be obtained.