Background

January 8, 2023 6:15 PM

Growth of functions - Asymptotics

- Notations: O , Ω , θ , o , ω .
- \bullet O -nonation:
	- $O(g(n)) = {f(n) : \exists c > 0, n_0, s.t. 0 \le f(n) \le cg(n), \forall n \ge n_0}.$
	- \circ $g(n)$ is an upper bound of $f(n)$, $g(n)$ bounds $f(n)$ from above.
	- E.g.
		- **13** $n + 7 \in O(n)$, since $13n + 7 \le 14n$ for $n \ge n_0 = 7$.
		- $\mathbf{1}$ $\frac{1}{2}n^2 - 3n \in O\big(n^2\big)$, since $\frac{1}{2}n^2 - 3n \le cn^2$ holds for $c \ge \frac{1}{2}$ ■ $\frac{1}{2}n^2 - 3n \in O(n^2)$, since $\frac{1}{2}n^2 - 3n \le cn^2$ holds for $c \ge \frac{1}{2}$.
		- $n! = 1 \cdot 2 \cdots n \le n \cdot n \cdots n = n^n \in O(n^n).$
		- $\log n! \in O(n \log n)$, since $n! \in O(n^n)$.
		- $2^{n+1} \in O(2^n)$, since $2^{n+1} = 2 \cdot 2^n$.
		- \bullet 2²ⁿ $\notin O(2^n)$.

□ Assume
$$
c, n_0 > 0
$$
 exists, $2^{2n} \le c \times 2^n$, $c \ge 2^n$ for all $n \ge n_0$.

 \bullet Ω -notation:

$$
\circ \ \Omega(g(n)) = \{f(n) : \exists c > 0, n_0, \text{s.t. } 0 \le cg(n) \le f(n), \forall n \ge n_0\}.
$$

○ e.g.

$$
f(n) = 1 + 2 + \dots + n \ge \left[\frac{n}{2}\right] + \left[\frac{n}{2} + 1\right] + \dots + n,
$$

\n
$$
\ge \left[\frac{n}{2}\right] + \left[\frac{n}{2}\right] + \dots + \left[\frac{n}{2}\right] = \left[\frac{n}{2}\right]\left(n - \left[\frac{n}{2}\right] + 1\right) \ge \left[\frac{n}{2}\right]\left[\frac{n}{2}\right] = \frac{n^2}{4} \in \Omega(n^2).
$$

\n■ Take $n_0 = 7$, $c = \frac{1}{14}$.

 \bullet θ -notation

$$
\circ \ \theta\big(g(n)\big) = \{f(n) : \exists c_1, c_2 > 0, n_0, \text{s.t. } 0 \le c_1 g(n) \le f(n) \le c_2 g(n), \forall n \ge n_0\}.
$$

- \circ Thm: $f(n) = \theta(n)$ iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.
- e.g.

$$
f(n) = 1 + 2 + \dots + n = \frac{n(n+1)}{2} \in \theta(n^2).
$$

- $f(n) = \sum_{i=1}^{n} i^{k} \in \theta(n^{k+1}).$
	- □ $f(n) \in O(n^{k+1})$ since $f(n) = \sum i^k \leq \sum n^k = n \cdot n^k \in O(n^{k+1})$.
	- $\Box\;\; f(n)\in \Omega\big(n^{k+1}\big).$ Consider $2f(n)=\Sigma\,i^k+\Sigma(n-i+1)^k=\Sigma\,i^k$ $(i+1)^k$,

$$
\geq \sum \left[\frac{n}{2}\right]^k = \frac{n^{k+1}}{2^k}, \text{ so } f(n) \geq \frac{n^{k+1}}{2^{k+1}}, f(n) \in \Omega(n^{k+1}).
$$

- $(n+a)^b = \theta(n^b)$.
	- □ Need to find $c_1, c_2, n_0 > 0$ such that $0 \le c_1 n^b \le (n+a)^b \le c_2 n^b$ for all $n \geq n_0$.
	- \Box $n + a \leq n + |a| \leq 2n$ if $n \geq |a|$.
	- Also, $n + a \ge n |a| \ge \frac{1}{2}$ □ Also, $n + a \ge n - |a| \ge \frac{1}{2}n$, if $n \ge 2|a|$.
	- We get $0 \leq \frac{1}{2}$ □ We get $0 \leq \frac{1}{2}n \leq n + a \leq 2n$.
	- Raise to power of b, we get $0 \leq (\frac{1}{2})$ □ Raise to power of *b*, we get $0 \leq (\frac{1}{2})^b n^b \leq (n+a)^b \leq 2^b n^b$.

$$
c_1 = \left(\frac{1}{2}\right)^b, c_2 = 2^b, n_0 = 2|a|.
$$

- o-notation:
	- $o(g(n)) = {f(n) : \forall c > 0, \exists n_0 > 0, \text{s.t. } 0 \le f(n) < cg(n), \forall n \ge n_0}.$
	- Equivalently, $\lim_{n\to\infty}\frac{f}{a}$ **Equivalently,** $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$.

$$
\circ n^{1.9} \in o(n^2), n^2 \notin o(n^2).
$$

- \bullet ω -notation:
	- \circ $\omega(g(n)) = \{f(n) : \forall c > 0, \exists n_0 > 0, \text{s.t.} 0 \le cg(n) < f(n), \forall n \ge n_0\}.$
- Equivalently, $\lim_{n\to\infty}\frac{f}{a}$ ○ Equivalently, $\lim_{n\to\infty}\frac{f(n)}{g(n)} = \infty$.
- \circ $n^{2.1} \in \omega(n^2)$, $n^2 \notin \omega(n^2)$.
- Properties
	- \circ Transitivity: $f(n) = \theta(g(n)), g(n) = \theta(h(n)),$ then $f(n) = \theta(g(n)).$ ■ True for O, Ω, ω, o .
	- \circ Reflexivity: $f(n) = \theta(f(n)).$
		- True for O, Ω .
	- \circ Symmetry: $f(n) = \theta(g(n))$ iff $g(n) = \theta(f(n)).$
	- Transpose symmetry:
		- $f(n) = O(g(n))$ iff $g(n) = \Omega(f(n))$.
		- $f(n) = o(g(n))$ iff $g(n) = \omega(f(n))$.
- Theorem: if $f(n) \in O(f'(n))$, $g(n) \in O(g'(n))$, then
	- \circ $f(n)g(n) \in O(f'(n)g'(n)).$
	- \circ $f(n) + g(n) \in O(\max\{f'(n), g'(n)\}).$

Polynomial-bounded functions

- A function $f(n)$ is polynomial bouned if $f(n) = O(n^k)$.
- $f(n) = O(n^k)$ iff $log(f(n)) = O(log n)$. \circ Proof: (\Rightarrow) Assume $f(n) = O(n^k)$. Then $f(n) \leq c_1 n^k$, for $n \geq n_0$. $\log(f(n)) \leq \log(c_1 n^k) = \log c_1 + k \log n \leq c_2 \log n$ for constant c_2 . (←) assume $log(f(n)) = O(log n)$. Then $\log(f(n)) \leq c_3 \log n$. $\log(f(n)) \leq \log(n^{c_3}).$ $f(n) \leq n^{c_3}.$

Limit method

- $\lim \frac{f(n)}{g(n)} = 0 \Rightarrow f(n) = O(g(n)).$
- $\lim_{g(n)} \frac{f(n)}{g(n)} = c \in (0, \infty) \Rightarrow f(n) = \theta(g(n)).$
- $\lim \frac{f(n)}{g(n)} = \infty \Rightarrow f(n) = \Omega(g(n)).$
- More precisely

$$
\lim_{g(n)} \frac{f(n)}{g(n)} = 0 \Rightarrow f(n) = o(g(n)).
$$

\n
$$
\lim_{g(n)} \frac{f(n)}{g(n)} = c \in [0, \infty) \Rightarrow f(n) = O(g(n)).
$$

\n
$$
\lim_{g(n)} \frac{f(n)}{g(n)} = c \in (0, \infty) \Rightarrow f(n) = \theta(g(n)).
$$

\n
$$
\lim_{g(n)} \frac{f(n)}{g(n)} = c \in (0, \infty) \Rightarrow f(n) = \Omega(g(n)).
$$

\n
$$
\lim_{g(n)} \frac{f(n)}{g(n)} = \infty \Rightarrow f(n) = \omega(g(n)).
$$

L'Hopital's rule •

\n- ∘ If
$$
\lim_{x \to c} f(x) = \lim_{x \to c} g(x) = 0
$$
 or $\pm \infty$.
\n- ∴ $\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$.
\n

Log of limits and limits of logs

• $\log(\lim_{x\to c} g(x)) = \lim_{x\to c} \log(g(x)).$ • e.g. $f(n) = 2^{n^2}$, $g(n) = 3^n$. $\log(\lim_{n\to\infty}\frac{f}{a})$ $\left(\frac{f(n)}{g(n)}\right) = \lim_{n \to \infty} \log \left(\frac{f}{g}\right)$ \circ $\log\left(\lim_{n\to\infty}\frac{f(n)}{g(n)}\right) = \lim_{n\to\infty}\log\left(\frac{f(n)}{g(n)}\right) = \lim_{n\to\infty}\left(\log 2^{n^2} - \log 3^n\right).$ \circ = $\lim_{n\to\infty} (n^2 - n \log 3) = \infty$. Then $\lim_{n\to\infty}\frac{f}{a}$ \circ Then $\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty$, so $f(n)=\Omega(g(n)).$ • e.g. $f(n) = 2^{n+1}$, $g(n) = 4^n$.

$$
\log\left(\lim_{n\to\infty}\frac{f(n)}{g(n)}\right) = \lim_{n\to\infty}\log\left(\frac{f(n)}{g(n)}\right) = \lim_{n\to\infty}\left(\log 2^{n+1} - \log 4^n\right).
$$

\n
$$
\log\left(\lim_{n\to\infty}\frac{f(n)}{g(n)}\right) = 0, \text{ so } f(n) = O(g(n)).
$$

\nThen
$$
\lim_{n\to\infty}\frac{f(n)}{g(n)} = 0, \text{ so } f(n) = O(g(n)).
$$

 $1 \ll \log^* n \ll \log^{(k)} n \ll \log^k n \ll n^{\frac{1}{2}}$ $\frac{1}{2} \ll a^{\log n} \ll n \ll n \log n \ll n^{1+c} \ll n^2 \ll n^k \ll c^n \ll n!$. • 2ⁿ $\ll 10^n$.

e.g.

- $\log(n!) \ll n (\log n)^2$. \circ $\log n! = O(n \log n)$.
- $n^3 \ll n^{\log \log n}$.
	- Log both sides and take the limit.
- $n^{\log \log n} \equiv (\log n)^{\log n}$ since $x^{\log y} = y^{\log x}$.
- $\log x \ll \log y \Leftrightarrow x \ll y$.
- $\log_{\log n} n \ll \log(n \log n) \ll (\log \log n)^{\log \log n} \ll 2^{\log n} \ll (\sqrt{2})^{\log n} \ll n$.
- $2^{\log n} \ll (\log n)^{\log n}$.

Summations

•
$$
\sum_{k=1}^{n} (ca_k + b_k) = c \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k
$$
.
\n• $\sum_{k=1}^{n} \theta(f(k)) = \theta(\sum_{k=1}^{n} f(k))$.

•
$$
\sum_{k=1}^{n} k = \frac{n(n+1)}{2} = \theta(n^2).
$$

 $\circ \sum_{k=1}^{n} (a + bk) = \theta(n^2).$

•
$$
\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.
$$

•
$$
\sum_{k=0}^{n} k^3 = \frac{n^2(n+1)^2}{4}.
$$

• For
$$
x \neq 1
$$
, $\sum_{k=0}^{n} x^{k} = \frac{x^{n+1}-1}{x-1}$.
\n• For $|x| < 1$, $\sum x^{k} = \frac{1}{1-x}$.
\n• Differentiation gives $\sum kx^{k} = \frac{x}{(1-x)^{2}}$.

•
$$
\sum_{k=1}^{n} \frac{1}{k} = \ln n + O(1).
$$

$$
\sup \ln(n+1) \le \sum_{k=1}^{n} \frac{1}{k} \le \ln n + 1.
$$

• Telescoping

$$
\circ \sum_{k=1}^{n} (a_k - a_{k-1}) = a_n - a_0.
$$

\circ \sum_{k=1}^{n-1} \frac{1}{k(k+1)} = 1 - \frac{1}{n}

• $\log(\prod_{k=1}^{n} a_k) = \sum_{k=1}^{n} \log a_k$.

Logarithm

•
$$
\log^k n = (\log n)^k.
$$

- $\log^{(k)} n = \log \log ... \log n$.
- $\log^* n = \min\{i \geq 0 : \log^{(i)} n \leq 1\}.$
- e.g.
	- $\log^* 2 = 1$.
	- $\log^* 4 = 2$.
	- $\log^* 256 = \log^* 8 + 1 = \log^* 3 + 2 = 4.$
	- $\log^* 2^{256} = 5.$
	- \circ log^{*} *n* is the slowest besides constant.

Stirling approximation: $\sqrt{2\pi n}\left(\frac{n}{a}\right)$ $\left(\frac{n}{e}\right)^n \leq n! \leq \sqrt{2\pi n} \left(\frac{n}{e}\right)$ $\left(\frac{n}{e}\right)^{n+\frac{1}{12}}$ $\frac{1}{12n} \Rightarrow \log n! = \theta(n \log n).$

Proofs

Induction

- Predicates $P(n)$ (proposition).
	- \circ e.g. $P(n): n < 2^n, \forall n$.
- $[P(base) \land \forall n(P(n) \Rightarrow P(n+1))] \Rightarrow \forall n P(n).$
- e.g. prove the sum of first n odd positive integers is n^2 .
	- \circ Base: for $n = 1$, sum is $1 = 1^2$.
	- o Induction Hypothesis: assume $1+3+5+\cdots+2n-1=n^2$.
	- o Induction step: $1 + 3 + \dots + 2n 1 + 2n + 1 = n^2 + 2n + 1 = (n + 1)^2$.
- e.g. Show that every $2^n \times 2^n$ board with single tile removed can be tiled with L-shaped 3 piece segment of tiles.
	- O Base: 2×2

- IH: suppose for some $n = k \geq 1$, $2^k \times 2^k$ board with single tile removed can be tiled with L-shape segment of tiles.
- Induction: when $n = k + 1$, split into 4 $2^k \times 2^k$ boards. For each of them, can be tiled by I.H. Center segment can be tiled by single L-shaped piece.

Strong induction

- $[P(1) \land \forall n(P(1) \land \cdots P(n)) \Rightarrow P(n+1)] \Rightarrow \forall n, P(n).$
- e.g. every integer $n \geq 2$ can be written as a product of primes
	- \circ Base: $P(2)$ is true since 2 is a product of itself.
	- \circ IH: Assume $P(2)$, $P(3)$, ..., $P(n)$ true for some $n > 2$.
	- \circ IS: for $n+1$.
		- If $n + 1$ is prime, then done.
		- If $n + 1$ is composite $n + 1 = a \cdot b$ with $a, b < n + 1$. Then by IH, $a = p_1 p_2 ... p_i$, $b = q_1 q_2 ... q_j$, with p_k , q_k primes. $n + 1$ is then a product of primes, then $P(n + 1)$ is true.

Contradiction

- To prove $P(n)$, assume by contradiction, $\neg P(n)$ is true.
- $\bullet \quad \neg P(n) \Rightarrow$ some proposition known to be false, then $P(n)$ is true.
- E.g. $\sqrt{2}$ is irrational.
	- Assume $\sqrt{2}$ is rational, then $\sqrt{2} = \frac{a}{b}$ ○ Assume $\sqrt{2}$ is rational, then $\sqrt{2} = \frac{a}{b}$ where *a*, *b* have no common factors. $a^2 = 2b^2 \Rightarrow a^2$ is even \Rightarrow a is even, $a = 2c$. \Rightarrow 4 $c^2 = 2b^2 \Rightarrow b^2 = 2c^2 \Rightarrow b$ is even. Contradiction.

Other proof techniques

- Direct proof
- Proof by counter example
- Contrapositive:
	- \circ $A \Rightarrow B \Leftrightarrow \neg B \Rightarrow \neg A$.

Permutations and combinations

Rule of product: If event A can happen in m ways and event B can happen in n ways, then A and B can happen in mn ways

Rule of sum: If event A can happen in m ways and event B can happen in n ways, then A and B can happen in $m + n$ ways

Permutations

- $P(n,r) = \frac{n}{r}$ • $P(n,r) = \frac{n!}{(n-r)!}$: the way to arrange r objects out of n objects where order matters.
- e.g. # ways n people can be seated in a round table.
	- \circ For linear, $P(n,n) = n!$.
	- \circ For a ring, shifting doesn't affect the order, $(n-1)!$.
- If not all items are distinct, but we have q_1 of type 1, q_2 of type 2,... q_t of type t, then the permutation is $\frac{n!}{q_1!q_2!...q_t!}$.
- e.g. 5 dashes and 8 dots can be arranged in $\frac{137}{5!8!}$ ways.
- e.g. show that $(k!)!$ is divisible by $(k!)^{(k-1)!}$, $\forall k$.
	- \circ Consider (k!) objects, k of type 1, k of type 2,..., k of type $(k-1)!$.
	- # ways to arrange these objects: $\frac{(k!)!}{k! \cdot ... \cdot k!} = \frac{(k)!}{(k)!}$ \circ # ways to arrange these objects: $\frac{(k!)!}{k!...k!} = \frac{(k!)!}{(k!)^{(k-1)!}}$ is an integer.

Combinations

• Relative order does not matter

•
$$
C(n,r) = \frac{P(n,r)}{r!} = \frac{n!}{(n-r)!r!} = C(n, n-r) = {n \choose r}.
$$

- How many diagonals in a decagon? $\left(\frac{1}{2} \right)$ • How many diagonals in a decagon? $\binom{10}{2}$ – 10.
- e.g. 11 scientists are working on a recent project. They want to lock documents in a vault such that vault opens if at least 6 scientists are present. What is the smallest number of locks required? What is the smallest number of keys each scientist should have?
	- Every group of 5 scientists, there should be 1 lock that cannot be opened
	- For every 2 or more groups of 5, this lock must be different, otherwise there would be a group of 6 scientist that cannot open the vault
	- \Rightarrow \forall groups of 5, 1 lock cannot be opened \Rightarrow $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ ○ ⇒ \forall groups of 5, 1 lock cannot be opened ⇒ $\binom{11}{5}$ = 462 locks at least.
	- Every time a new scientist join a group of 5, they have the key that the others don't.
	- #keys=how many scientists can be formed out of the rest 10 scientists.

$$
\circ \quad \text{#keys} = \binom{10}{5} = 252 \text{ keys at least.}
$$

Combinatorial argument: (argument based on counting)

- Given some equation, prove using the following method
- Question: ask some counting question.
- LHS: argue why the LHS answers the question.
- RHS: argue why the RHS answers the question.

• E.g.
$$
\binom{n}{k} = \binom{n}{n-k}
$$
.

- \circ Question: how many ways can you select k objects from n total objects without replacement?
- LHS: True by definition.
- \circ RHS: Instead of choosing k object, I choose $n k$ objects to eliminate, leaving me with objects.

• e.g.
$$
\sum_{k=0}^{n} {n \choose k}^2 = {2n \choose n}.
$$

- \circ Question: I have n black balls and n red balls. How many ways can I select n balls out of the $2n$ total?
- RHS: True by definition.
- \circ LHS: fix k to be the number of black balls chosen, then $n-k$ is the number of red balls. There are $\binom{n}{k}$ $\binom{n}{k}$ ways to choose black balls, and $\binom{n}{n-1}$ $\binom{n}{n-k} = \binom{n}{k}$ $\binom{n}{k}$ ways to choose k red balls.

AND event, $\binom{n}{k}$ $\binom{n}{k}^2$ is the number of ways to choose k black and $n-k$ red.

 $k\in[0,n]$ disjoint, OR event, adding them gives $\sum_{k=0}^n{n\choose k}$ $\binom{n}{k=0}$ $\binom{n}{k}^2$.

• e.g.
$$
\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}
$$
.

 \circ Question: # ways to select k objects from n objects.

- LHS: True by definition.
- \circ RHS: consider some particular object x in the set.
	- If x is in the k objects we selected, we choose $k-1$ objects from the rest $\binom{n}{k}$
		- $\binom{n}{k-1}$.
	- If x is not in the set of objects we selected, we choose k from the rest, $\binom{n}{k}$ ■ If x is not in the set of objects we selected, we choose k from the rest, $\binom{n-1}{k}$.
	- Disjoint, so addition.
- e.g. word length n from alphabet $\{0,1,2\}$.

$$
\circ \ \binom{n}{0} 2^n + \dots + \binom{n}{r} 2^{n-r} = \frac{3^{n+1}}{2}.
$$

RHS: proof by induction, if length k has odd number of zeros ($\frac{3^k}{2^k}$ ○ RHS: proof by induction, if length k has odd number of zeros $\left(\frac{3}{2} - \frac{1}{2} \right)$ ways), append a

single 0, otherwise $\left(\frac{3}{2}\right)$ $\frac{3}{2}$ ways), we can append 1 or 2 only.

.

e.g.
$$
\binom{n+m}{n}\binom{n+m}{m} = \sum_{i=1}^{n} \binom{n+m}{i}\binom{n+m-i}{n-i}\binom{m}{m-i}
$$

- \circ Total $n + m$ balls, select n balls from them first, put back and select m balls.
- \circ RHS: first select i balls that will be in both the first and second set. Then select balls from $n + m - i$ balls to form the n ball group. Select $m - i$ balls from the rest m balls. Sum up over i .

• e.g.
$$
n4^{n-1} = \sum_{k=0}^{n} {n \choose k} 3^k (n-k)
$$

- \circ Question: string of length n , one blank position, alphabet of size 4. How many ways are there to create such string.
- \circ LHS: n ways to choose a single position for the blank. Then there are 4^{n-1} ways to assign 4 alphabets to the rest $n-1$ positions.
- \circ RHS: choose k positions from n to assign the rest 3 alphabets, then $n k$ ways to choose a specific position for the blank. Fill in the rest with the final alphabet.

Probability

•

- Experiment
- Sample Space
	- \circ e.g. two fare coin $S = \{HH, HT, TH, TT\}$.
- Axioms
	- \circ Pr($a \in S$) ≥ 0 ,
	- \circ Pr(S) = 1,
	- \circ $\Pr(A \cup B) = \Pr(A) + \Pr(B) \Pr(A \cap B)$,
	- \circ Pr(A \cap B) = Pr(A) Pr(B) if independent.
- e.g. Flip fair coins n times, there are 2^n outcomes uniformly distributed.

$$
\circ \ \Pr(k \ heads) = \frac{c(n,k)}{2^n}.
$$

• Bayes theorem:
$$
\Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)} = \frac{\Pr(B|A) \Pr(B)}{\Pr(A) \Pr(B|A) + \Pr(\overline{A}) \Pr(B|\overline{A})}.
$$

○ e.g. 1 fair coin, 1 biased (always H), Pr(*biased*|2 *heads*) =
$$
\frac{1\cdot\frac{1}{2}}{\frac{1}{2}\cdot1+\frac{1}{2}(\frac{1}{2})^2} = \frac{4}{5}.
$$

Discrete random variables

- For an r.v. X, $Pr(X = x) = \sum_{\{s \in S, X(S) = x\}} Pr(s)$.
- Expected value: $E(X) = \sum_{x \in X} x \Pr(X = x)$.
- e.g. flip two coins win \$3 for H, lose \$2 for T.

$$
\circ \quad E(X) = \frac{1}{4}6 + \frac{1}{4}(-4) + \frac{1}{2}1 = 1.
$$

• Properties:

- $E(X + Y) = E(X) + E(Y)$.
- $E(aX) = aE(X)$.
- Graphs and trees
	- $G = (V, E)$.
		- \circ V: set of vertices.
		- \circ E : set of edges.
		- Directed/undirected
		- Weighted/unweighted.
		- Representation
			- Adjacency list
			- Adjacency matrix
		- Path
		- Edge
		- Simple path
		- Cycle
		- Vertex degree
			- Undirected: $deg(u) = #$ all edges connected to u .
			- Directed: in-degree, out-degree.
		- \circ Neighborhood: $N(u)$ all vertices directly connected to u .
		- \circ For undirected $2|E| = \sum \text{deg}(u)$.
	- A tree is a connected, acyclic and undirected graph
		- \circ Terminology: root, children, parent, internal nodes, leaves, subtree rooted at v .
		- \circ Binary/k-ary tree: tree with nodes with at most 2 or k children.
		- \circ Complete tree: all leaves have the same depth, all nodes have k children.
		- \circ Depth at node u : length of path from root to u .
			- \blacksquare depth(root) = 0.
		- \circ Height of node u : #edges in longest path from node u down to a leaf.

Recurrence

• Motivating example: Mergesort

$$
\circ \quad \text{Mergesort}
$$

If p

$$
\langle r: \begin{aligned} q &= \left\lfloor \frac{p+r}{2} \right\rfloor, \\ \text{Mergesort}(A, q+1, r) \\ \text{Mergesort}(A, p, q) \\ \text{Merge}(A, p, q, r). \end{aligned}
$$

- Split to single element, then merge into a ordered manner
- Runtime: $T(n) = T\left(\frac{n}{2}\right)$ $\left(\frac{n}{2}\right)$ + $T\left(\left[\frac{n}{2}\right]$ ○ Runtime: $T(n) = T\left(\left|\frac{n}{2}\right|\right) + T\left(\left|\frac{n}{2}\right|\right) + \theta(n).$
	- Recurrence is for # subproblems and size of subproblem.
	- $\theta(n)$ is for conquer part.
	- Base case omitted since we are only interested in asymptotic runtime.

$$
\Box T(n) = 2T\left(\frac{n}{2}\right) + \theta(n).
$$

- Master's theorem for $T(n) = aT(n/b) + f(n)$, $a \ge 1$, $b > 1$.
	- \circ Case 1: if $f(n) = O(n^{\log_b a \epsilon})$ for $\epsilon > 0$, then $T(n) = \theta(n^{\log_b a})$.
		- e.g. $T(n) = 9T\left(\frac{n}{2}\right)$ • e.g. $T(n) = 9T(\frac{n}{3}) + n$, $a = 9$, $b = 3$, $n^{\log_b a} = n^2$, $f(n) = n = O(n^{2-\epsilon})$, $T(n) = \theta(n^2).$
	- \circ Case 2: if $f(n) = \theta\left(n^{\log_{\text{b}} a} \log^k n\right)$, then $T(n) = \theta\left(n^{\log_{\text{b}} a} \log^{k+1} n\right)$.
		- e.g. $T(n) = 2T(n/2) + \theta(n)$, $a = b = 2$, $n^{\log_b a} = n$, $f(n) = \theta(n)$, $n \log n$.
	- Case 3: if $f(n) = \Omega(n^{\log_b a + \epsilon})$ for $\epsilon > 0$ and $af\left(\frac{n}{b}\right)$ ○ Case 3: if $f(n) = Ω(n^{\log_b a + ε})$ for $ε > 0$ and $af\left(\frac{n}{b}\right) ≤ cf(n)$ for $0 < c < 1$, then $T(n) = \theta(f(n)).$
		- e.g. $T(n) = 3T(n/4) + n \log n$, $a = 3$, $b = 4$, $n^{\log_b a} \approx n^{0.8}$,

ECE1762 Page 7

- $f(n) = n \log n = \Omega(n^{0.8+\epsilon})$ and 3 $\frac{n}{4}$ $\frac{n}{4}$ log $\left(\frac{n}{4}\right)$ $\left(\frac{n}{4}\right) \leq \frac{3}{4}$ \Box $f(n) = n \log n = \Omega(n^{0.8+\epsilon})$ and $3\frac{n}{4} \log(\frac{n}{4}) \leq \frac{3}{4}n \log n$. $T(n) = \theta(n \log n)$.
- Substitution
	- \circ We guess a solution to $T(n)$ and use strong induction to prove guess was correct

$$
\circ \quad T(n) = 2T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n.
$$

- **•** Guess $T(n) = O(n \log n)$, assume $T(k) \leq k \log k$, $\forall k < n$.
- Then $T(n/2) \leq c \left| \frac{n}{2} \right|$ $\frac{n}{2}$ log $\frac{n}{2}$ **Then** $T(n/2) \leq c \left\lfloor \frac{n}{2} \right\rfloor \log \left\lfloor \frac{n}{2} \right\rfloor$.
- We have $T(n) = 2c \left| \frac{n}{2} \right|$ $\frac{n}{2}$ log $\frac{n}{2}$ ■ We have $T(n) = 2c \left[\frac{n}{2} \right] \log \left[\frac{n}{2} \right] + n \leq 2c \frac{n}{2} \log \frac{n}{2}$ cn $\log n$, for $c \geq 1$.
- Erroneous guess
	- $T(n) = O(n)$ gives $T(k) \le ck, k < n$.
	- $T(n) = 2c \left| \frac{n}{2} \right|$ ■ $T(n) = 2c \left[\frac{n}{2} \right] + n \le cn + n = (c + 1)n$, not equivalent to $T(n) = O(n)$ since we are not explicitly proving the IH.
- Recursion tree
	- Helps find a good working guess for substitution
		- Longest path gives upper bound
		- **E** Shortest path gives lower bound

e.g. $T(n) = T\left(\frac{n}{4}\right)$ $\left(\frac{n}{4}\right) + T\left(\frac{2}{3}\right)$ ○ e.g. $T(n) = T(\frac{n}{4}) + T(\frac{2n}{3}) + n$.

- **I** Imbalanced tree, longest path (height) is determined by the $\frac{2\pi}{3}$ path.
- Consider the longest path:

□ Size at level *i*:
$$
\left(\frac{2}{3}\right)^i n
$$
.
□ At max level: $\left(\frac{2}{3}\right)^h n = 1$, gives $h = O(\log n)$.

- For shortest path, $\left(\frac{1}{4}\right)$ $\left(\frac{1}{4}\right)^{h'}$ For shortest path, $\left(\frac{1}{4}\right)^n n = 1$, stil $h' = O(\log n)$.
- Total work: $h \times \text{cost/level}$, $O(n \log n)$.
- Need strong induction proof
- **•** Lower bound, still $\Omega(n \log n)$.
- \circ Generally, $\sum_{i=0}^{h} cost/level$.
- \circ $F(n) = F(|\log n|) + \log n = \Theta(\log n).$
	- **Base case if** $\left|\log^{\mathrm{u}} n\right| = 0$ **, where** $u = \log^* n$ **.**
	- $F(n) = \sum_{i=1}^{n}$ $F(n) = \sum_{i=1}^{\log} \binom{n}{\log^{(i)} n}$.

Let $G = (V, E)$ be an undirected graph, all of the following is equivalent.

- G is a free tree (connected, acyclic).
- Any two vertices in G are connected by a unique simple path.
- G is connected, but if you remove any edge, it becomes disconnected.
- G is connected and $|E| = |V| 1$.
- G is acyclic and $|E| = |V| 1$.
- G is acyclic and adding any edge to E creates a cycle.
- Proofs
	- \circ (1) \Rightarrow (2): since G is connected, there must be at least one path. Assume by contradiction that a second path exits, $P_1: s \to t$, $P_2: t \to s$, P_1 , P_2^{-1} forms a cycle, but G should be acyclic.
	- \circ (2) \Rightarrow (3): since only one path exists between any 2 nodes, removing an edge must disconnect something.
	- (3) \Rightarrow (4): $|E| \geq |V| 1$ by induction on $|V|$, same applies for $|E| \leq |V| 1$. Basis: $|V| = 1$, then $|E| = 0$, $0 \ge 1 - 1 = 0$. IH: if $|V| = n$, then $|E| \ge n - 1$.

Induction: suppose G is any graph with $|V| = n + 1$.

Remove some vertex to get $V' = V - \{v\}$, remove all edges connecting to v to get E'. $G' = (V', E')$ of size $|V'| = n$, so $|E'| \ge |V'| - 1$.

Now $|V| = |V'| + 1$, $|E| \ge |E'| + 1$, so $|E| \ge |V| - 1$.

- (4) \Rightarrow (5): assume by contradiction that G contains a cycle $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_k \rightarrow v_1$. Add vertices to G_k , one at a time, each vertex also adds at least 1 edge. $|V_{k+i}| = k + i, |E_{k+i}| \ge k + i$, then $|V| = n$ and $|E| \ge n$, contradiction, since $|E| = |V| - 1$.
- (5)⇒(6): G has k connected components. Each connected component is a free tree, so (1) to (5) is true.

 $|E_i| = |V_i| - 1$, $\forall i$, $|E| = \sum |E_i| = \sum_{i=1}^{k} |V_i| - 1 = |V| - k$, so $k = 1$, G is fully connected.

 G is a free tree means that adding any edges must create a cycle.

 \circ (6) \Rightarrow (1): Consider any pair of nodes s and t. Adding edge (u, v) cause a cycle between s and t. Now remove (u, v) which leaves a path from s to t. G is connected, so G is a free tree.

Sorting

January 17, 2023 9:27 PM

Heap (binary)

- It is a tree
- Full except maybe at the bottom level, leaves must be starting from left
- Heap order property
	- \circ Key(parent) \geq key(children) is max heap.
	- \circ Key(parent) \leq key(children) is min heap.
- Heap as an array: Given index i ,
	- Parent: $\left|\frac{i}{2}\right|$ \circ Parent: $\left[\frac{1}{2}\right]$.
	- \circ Left child: 2i.
	- \circ Right child: $2i + 1$.

• e.g.
$$
A = [16,14,10,8,7,9,3,2,4,1]
$$
.

Max-Heapify: enforce the heap order property if it is violated

- Compare $A[i]$ with $A[2i]$ and $A[2i + 1]$.
- Swap if $A[i]$ smaller, $A[i] \leftrightarrow \max(A[2i], A[2i + 1]).$
- Continue downwards swapping if necessary until either property not violated or you hit a leaf node.
- Runtime: $O(\log n)$ because of the balanced property.

Build-Max-Heap (A, n) :

For $i \leftarrow \left\lfloor \frac{n}{2} \right\rfloor$ $\frac{n}{2}$: 1:

Do Max-Heapify (A, i, n)

e.g. $A = \begin{bmatrix} 4.1.3.2.16.9.10.14.8.7 \end{bmatrix}$.

- Start with 16, do nothing.
- Then at $i = 4$, $A[i] = 2$, $A[2i] = 14$, $A[2i + 1] = 8$, violated, swap with 14. $\circ A = [4,1,3,14,16,9,10,2,8,7].$
- $i = 3$, $A[i] = 3$, $A[2i] = 9$, $A[2i + 1] = 10$ swap with 10.
	- \circ $A = [4,1,10,14,16,9,3,2,8,7].$
- $i = 2$, $A[i] = 1$, $A[2i] = 14$, $A[2i + 1] = 16$, swap with 16. ○ Then also need to swap with 7.
	- $\circ A = [4, 16, 10, 14, 7, 9, 3, 2, 8, 1].$
- $i = 1, A[i] = 4, A[2i] = 16, A[2i + 1] = 10$, swap with 16.
	- Then also need to swap with 14 and 8.
	- \circ $A = [16, 14, 10, 8, 7, 9, 3, 2, 4, 1].$

Runtime for Build-Max-Heap:

- Simple: $O(n \log n)$ (for loop \times cost at Heapify).
- Proper:
	- Time to run Max-Heapify is linear in the height of the node it is run on and most node have small height.
	- Lemma 1: at height h, there are at most $\left[\frac{n}{2h}\right]$ \circ Lemma 1: at height h, there are at most $\left|\frac{n}{2^{h+1}}\right|$ nodes.
	- \circ Lemma 2: height of heap is $|\log n| = O(\log n)$.

Runtime . Apply for ▪ , we get . ○

Heapsort (A, n)

Build-Max-Heap(A, n)

For $i \leftarrow n: 2:$

Swap $A[1] \leftrightarrow A[i]$.

Max-Heapify(A , 1, $i - 1$).

E.g. $A = [7,4,3,1,2]$. • $[7,4,3,1,2] \rightarrow [2,4,3,1,7] \rightarrow [4,2,3,1,7] \rightarrow [1,2,3,4,7] \rightarrow$.

Runtime for Heapsort: $O(n) + O(n \log n) = O(n \log n)$.

Priority Queue implementation using heaps

- Treat each element in the heap array as a pointer to an object in the priority queue.
- Each element has a key value $A[i]$. key .
- Insert(S, x, k): inserts the element x with key k into the set S. \circ $O(\log n)$.
- Maximum(S): returns the element of S with the largest key. \circ $\Theta(1)$.
- Extract-Max(S): removes and returns the element of S with the largest key. \circ $O(\log n)$.
- Increase-Key(S, x, k): increases the value of element x's key to the new value k which is assumed to be at least as large as x 's current key value.

 \circ $O(\log n)$.

```
MAX-HEAP-MAXIMUM(A)
```

```
1 if A. heap-size < 1
```
 \overline{c} error "heap underflow"

```
3 return A[1]
```
MAX -HEAP-EXTRACT-MAX (A)

```
1 max = MAX-HEAP-MAXIMUM(A)
```

```
2 A[1] = A[A \cdot \text{heap-size}]
```

```
3 A.heap-size = A.heap-size - 1
```
- 4 MAX-HEAPIFY $(A, 1)$
- 5 return max

 MAX -HEAP-INCREASE-KEY (A, x, k)

```
1 if k < x. key
```
error "new key is smaller than current key" 2°

```
3 x.key = k
```
- 4 find the index i in array A where object x occurs
- 5 while $i > 1$ and $A[PART(i)]$, $key < A[i]$, key
- exchange $A[i]$ with $A[PARENT(i)]$, updating the information that maps 6 priority queue objects to array indices
- $7⁷$ $i = PARENT(i)$

```
MAX-HEAP-INSERT(A, x, n)
```
- 1 if A.heap-size $== n$
- error "heap overflow" $\overline{2}$
- 3 A.heap-size = $A.$ heap-size + 1
- 4 $k = x \cdot key$
- 5 $x.key = -\infty$
- 6 $A[A \cdot \text{heap-size}] = x$
- 7 map x to index *heap-size* in the array
- 8 MAX-HEAP-INCREASE-KEY (A, x, k)

```
Quicksort
```
- Sort in place
- Constant in $\theta(n \log n)$ runtime are small
- But $\theta(n \log n)$ only in expected case.
- $O(n^2)$ in worst case.

```
Partition(A, p, r)
```
 $x \leftarrow A[r]$ (pivot is the right most element in the array). $i \leftarrow p-1$. For $j \leftarrow p$ to $r - 1$. If $A[j] \leq x$: $i \leftarrow i + 1$. Swap $A[i] \leftrightarrow A[j]$. Swap $A[i + 1] \leftrightarrow A[r]$. Return $i + 1$.

```
Runtime: \theta(n).
```

```
e.g. A = [8,1,6,4,0,3,9,5].
```
- Initially, $p = 1, r = 8, i = 0$.
- $j = 1, A[1] > A[r]$, skip.
- $j = 2$, $A[2] = 1 \le 5 = A[r]$, $i = 1$, swap $A[1]$, $A[2]$, get $[1,8,6,4,0,3,9,5]$.
- $j = 3$, $A[3] = 6 > A[r]$ skip.
- $j = 4$, $A[4] = 4 \le 5 = A[r]$, $i = 2$ swap $A[2]$, $A[4]$, get $[1,4,6,8,0,3,9,5]$.
- Finally, get a partial ordering $[1,4,0,3,5,8,9,6]$.
	- Left elements smaller than the pivot.
	- Right elements larger than the pivot

```
Quicksort(A, p, r)
```
If $p < r$: $q \leftarrow$ Partition(A, p, r). Quicksort $(A, p, q - 1)$ Quicksort $(A, q + 1, r)$

Initial call: Quicksort $(A, 1, n)$.

Performance of quicksort:

Worst case: when input is already sorted, pivot is always the largest/smallest element. Every time, we get •

an empty array and an array of size $p-1$.

 $T(n) = T(n-1) + \theta(n) = \theta(n^2).$

- Best case: pivot always median $T(n) = 2T\left(\frac{n}{2}\right)$ Best case: pivot always median $T(n) = 2T(\frac{n}{2}) + \theta(n) = \theta(n \log n)$.
- Balanced case: $T(n) = T(an) + T(bn) + \theta(n)$, where $a + b = 1$, $T(n) = \theta(n \log n)$.

Randomized quicksort

- We can randomly shuffle input or choose pivot to reduce the chance of getting the worst case scenario
- The worst case scenario is still $O(n^2)$, but the chance is lower.

Randomized-Partition

 $i \leftarrow$ RAND (p, r) ; $A[r] \leftrightarrow A[i];$ Return Partition(A, p, r).

Worst case analysis (applies to both versions)

- $T(n) = \max_{q \in [0, n-1]} \{T(q) + T(n q + 1)\} + \theta(n).$
- We guess $T(n) = O(n^2)$, and prove by induction.
- Assume $T(k) \le ck^2$ for some c and all $k < n$.
- Then $T(n) \leq \max_{q \in [0, n-1]} \left\{cq^2 + c(n q 1)^2\right\} + \theta(n).$
- $cq^2 + c(n-q-1)^2$ obtains max at $q = 0$ and $q = n-1$. o max_{q ϵ [0,n-1]} $\{cq^2 + c(n-q-1)^2\} \leq c(n-1)^2$.
- $T(n) \le c(n-1)^2 c(2n-1) + \theta(n) \le cn^2$. Choose c such that $c(2n-1)$ dominates $\theta(n)$.

•
$$
T(n) = O(n^2).
$$

• Can also show that $T(n) = \Omega(n^2)$, $T(n) = \theta(n^2)$.

Expected case analysis

- $T(n) = \frac{1}{n}$ • $T(n) = \frac{1}{n} \sum_{i=0}^{n-1} (T(i) - T(n-i-1)) + n - 1.$ $=(n-1)+\frac{2}{n}$ $\frac{2}{n} \sum_{i=1}^{n-1} T(i)$.
- Guess $T(i) \leq ci \log i$ for $i < n$.
- Use $\sum_{i=1}^{n-1} f(i) \leq \int_1^n f(x) dx$ and $\int cx \log x dx = \left(\frac{c}{2}\right)^n$ $\left(\frac{c}{2}\right)x^2 \log x - \frac{cx^2}{4}$ • Use $\sum_{i=1}^{n-1} f(i) \leq \int_1^n f(x) dx$ and $\int cx \log x dx = \left(\frac{c}{2}\right) x^2 \log x - \frac{cx}{4}$.

•
$$
T(n) \le (n-1) + \frac{2}{n} \sum_{i=1}^{n-1} ci \log i \le n - 1 + \frac{2}{n} \int_{1}^{n} cx \log x \, dx.
$$

= $(n-1) + \frac{2}{n} \left(\frac{c}{2} n^2 \log n - \frac{cn^2}{4} + \frac{c}{4} \right) \le cn \log n$ for $n = 2$.

• So
$$
T(n) = O(n \log n)
$$
.

Lower bounds for sorting

- Consider comparison-based sorting only •
- Only operation to determine order info about a sequence of elements is pairwise comparison
- Trivial: $\Omega(n)$ to examine all elements.
- Claim: $\Omega(n \log n)$ is lower bound for comparison based sorting in the worst case.

Decision tree

- Abstraction of comparison-based sorting
- Every tree is for one sorting algorithm on inputs of a given size
- No control flow, no data movements are modeled
- We count only comparisons as cost
- e.g. $A[1,2,3]$.

Observation: decision tree must have at least one leaf for every permutation of input sequence

- Number of leaves: $l \geq n!$.
- Height: h, we need to show $h = \Omega(n \log n)$.
- Lemma: any binary tree of height h has $\leq 2^h$ leaves (proof by induction on h).
- $n! \leq l \leq 2^h$, $2^h \geq n$, $h \geq \log n!$, $h \geq \log(n^n/e^n)$ (by Stirling).
- $h \ge n \log n n \log e = \Omega(n \log n)$.
- Since h represents worst case execution trace, any comparison-based sorting takes $\Omega(n\log n)$ in worst case.

Sorting in linear time

- Only algos that use operations other than pairwise comparisons
- Counting, radix, bucket sort.

Stable sort: sorting that preserves the relative order of the same value in the previous step

Counting sort

- Input: $A[1 \dots n]$, $A[j] \in \{0,1,\dots,k\}$ (n, k are parameters).
- Output: $B[1 \dots n]$ sorted (not in place).
- Auxiliary array: $C[0...k]$.
- Algo:

```
CountingSort(A, B, n, k)For i \leftarrow 0: k, c[i] \leftarrow 0.
        For j \leftarrow 1: n, C |A|j|| \leftarrow C |A|j|| + 1.
        For i \leftarrow 1: k, C[i] \leftarrow C[i] + C[i-1] (accumulation).
        For j \leftarrow n: 1,
                 B[C[A[j]]] \leftarrow A[j].C |A|j|| \leftarrow C |A|j|| - 1.
```
- Example: $A[2_1, 5_1, 3_1, 0_1, 2_1, 3_2, 0_2, 3_3]$.
	- \circ First for loop: $C = [0,0,0,0,0,0].$
	- Second for loop: $C = [2,0,2,3,0,1].$
	- \circ Third for loop: $C = [2, 2, 4, 7, 7, 8].$
	- Sorted: $[0₁, 0₂, 2₁, 2₂, 3₁, 3₂, 3₃, 5₁].$
- Total time: $\theta(n+k)$.
	- \circ Linear if and only if $k = \theta(n)$.
- Auxiliary array can be used to do Range Query in $O(1)$.

○ e.g. to find number of elements in [a, b], do $c[b] - c[a-1]$, in (a, b) do $c[b-1] - c[a]$.

Radix sort

- Key idea: sort LSD (least significant digit first)
- RadixSort (A, d)
	- For $i \leftarrow 1:d$,

Stable sort to sort A on digit i . (relative order in previous step is preserved. e.g. Counting sort)

• Example:

• Time: d passes, each pass $\theta(n+k)$.

 Θ $\Theta(d(n+k))$ if $k = \theta(n)$, then we get $\theta(dn)$.

• Suppose we have n words, b bits/word, and use r -bit digits.

- $d = \left[\frac{b}{a}\right]$ $0 \quad d = \left| \frac{b}{r} \right|, k = 2^r - 1.$
- Plug into the time, get $\theta\left(\frac{b}{r}\right)$ \circ Plug into the time, get $\theta\left(\frac{p}{r}(n+2^r)\right)$.

$$
\circ \quad \text{When } r = \log n, \, \theta\left(\frac{b}{\log n}(n+n)\right) = \theta\left(\frac{bn}{\log n}\right). \text{ (balanced)}
$$

$$
\circ \quad \text{When } r = 2 \log n, \, \theta \left(\frac{b}{2 \log n} \left(n + n^2 \right) \right) = \theta \left(\frac{bn^2}{\log n} \right) \text{. (worst)}
$$

 \circ When $r < \log n$, no improvement.

BucketSort (A, n)

```
For i \leftarrow 1:n,
```
Insert $A[i]$ into $B[|nA[i]|]$ (*B* is a list of buckets). e.g. with $n = 100$, 0.5 and 0.505 goes to $B[50]$, 0.51 goest to $B[51]$. For $i \leftarrow 0$: $n-1$, Sort $B[i]$ with insertion sort. Concat $B[0], ..., B[n-1].$ Return concatenated B .

Correctness

- Consider $A[i], A[j]$, WLOG, assume $A[i] \leq A[j]$.
- Then $|nA[i]| \leq |nA[j]|$.
- Two cases
	- \circ $A[i]$ in the same bucket as $A[j]$, then insertion sort imposes the correct order within the bucket.
	- \circ $A[i]$ in a bucket with smaller index than $A[j]$'s bucket, after concatenation, order is preserved.

Runtime in expected case

- Define r.v. $n_i = \#$ elements placed in $B[i]$.
- $T(n) = \theta(n) + \sum_{i=0}^{n-1} O(n_i^2)$.
- $E[T(n)] = E[\theta(n) + \sum_{i=0}^{n-1} O(n_i^2)] = \theta(n) + \sum_{i=0}^{n-1} E(O(n_i^2)) = \theta(n) + \sum_{i=0}^{n-1} O(E(n_i^2)).$

• Claim:
$$
E(n_i^2) = 2 - \frac{1}{n}, \forall i = 0, ..., n - 1.
$$

Proof: define indicator r.v.s $X_{ij} = I\{A[j] \in B[i]\} = \begin{cases} 1 \end{cases}$ $\boldsymbol{0}$ ○ Proof: define indicator r.v.s $X_{ij} = I\{A[j] \in B[i]\} = \begin{cases} 1, & i \neq j \end{cases}$ and $B[i]$

- $\Pr[A[j] \in B[i]] = \frac{1}{n}$ \circ Pr $[A[j] \in B[i]] = \frac{1}{n'}$ since the values are uniformly distributed. $n_i = \sum_{j=1}^n X_{ij}.$
- $\left[\sum_{i=1}^n X_{ij}\right] = E\left[\left(\sum_{i=1}^n X_{ij}\right)^2\right] = E\left[\sum_{i=1}^n X_{ij}^2 + 2\sum_{j=1}^{n-1} \sum_{k=j+1}^n X_{ij}X_{ik}\right],$
- \circ = $\sum_{j=1}^{n} E[X_{ij}^2] + 2 \sum_{j=1}^{n-1} \sum_{k=j+1}^{n} E[X_{ij}X_{ik}].$
- $E[X_{ij}^2] = 0^2 \Pr(A[j] \notin B[i]) + 1^2 \Pr(A[j] \in B[i]) = \frac{1}{n}$ \circ $E[X_{ij}^2] = 0^2 \Pr(A[j] \notin B[i]) + 1^2 \Pr(A[j] \in B[i]) = \frac{1}{n}$
- \circ Since X_{ij} , X_{ik} are independent, $E\Big[X_{ij}X_{ik}\Big]=E\Big[X_{ij}\Big]E\big[X_{ik}\big]=\frac{1}{n^2}$. o Then $E[n_i^2] = \sum_{j=1}^n \frac{1}{n} + 2 \sum_{j=1}^{n-1} \sum_{k=j+1}^n \frac{1}{n^2} = 1 + 2 \frac{1}{n^2} {n \choose 2} = 2 - \frac{1}{n}$.

$$
\text{When } E[n_i^2] = \sum_{j=1}^n \frac{1}{n} + 2\sum_{j=1}^n \sum_{k=j+1}^n \frac{1}{n^2} = 1 + 2\frac{1}{n^2} \left(\frac{1}{2}\right) = 2 - \frac{1}{n}
$$

• Hence
$$
E[T(n)] = \theta(n) + \sum_{i=0}^{n-1} O\left(E\left(2 - \frac{1}{n}\right)\right) = \theta(n) + O(n) = O(n)
$$
.

Order statistics

- Given $A[1, ..., n]$, interested in finding ith order statistics.
	- \circ Element in A, s.t. $i 1$ elements are smaller than it.
- 1st order statistic: min.
- Nth order statistic: max.
- Lower/upper median, etc.
- Simultaneous min and max requires at most 3 $\frac{n}{3}$ • Simultaneous min and max requires at most $3\left[\frac{n}{2}\right]$ comparisons.

Selection in expected linear time Randomized-Select(A, p, r, i)

If $p = r$: return $A[p]$ $q =$ Randomized-Partition(A, p, r). $k = q - p + 1.$ If $i = k$: return $A[q]$ (pivot is the ith order statistic). If $i < k$: return Randomized-Select($A, p, q - 1, i$) (We have more elements than needed). Else: return Randomized-Select($A, q, r, i - k$) (We have fewer elements than needed).

e.g.
$$
A = [5,11,3,8,6,7,17,2], i = 4.
$$

6 is the 4th order statistics in this case

Worst case: $\theta(n^2)$.

Expected runtime: $T(n) \leq \sum_{k=1}^{n} X_k (T(\max\{k-1, n-k\})) + O(n)$.

- $E[T(n)] \le \sum_{k=1}^{n} E[X_k] E[T(\max\{k-1, n-k\})] + O(n),$ $=\sum_{k=1}^{n}\frac{1}{n}$ • $=\sum_{k=1}^n \frac{1}{n} E[T(\max\{k-1, n-k\})] + O(n),$
- Note: $k - 1, k > \left[\frac{n}{2}\right]$ $\frac{1}{2}$ $n-k, k \leq \left[\frac{n}{2}\right]$ $\frac{1}{2}$ • Note: $\max\{k-1, n-k\} = \{$
- If n is even, terms from $T\left(\left[\frac{n}{2}\right]\right)$ • If *n* is even, terms from $T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)$ to $T(n-1)$ appear twice.
- If n is odd, terms also appear twice except $T\left(\left|\frac{n}{2}\right|\right)$ • If n is odd, terms also appear twice except $T\left(\left[\frac{n}{2}\right]\right)$ which appears once.

• Then
$$
E[T(n)] \leq \frac{2}{n} \sum_{k=\lfloor \frac{n}{2} \rfloor}^{n-1} E[T(k)] + O(n).
$$

- Replace $O(n)$ with αn , guess $T(k) \leq ck$ for $k < n$.
- $E[T(n)] \leq \frac{2}{n}$ $\frac{2}{n} \sum_{k=\frac{n}{2}}^{n-1}$ $\frac{\ln n}{2}$ ck + $\alpha n = \frac{2}{n}$ $rac{2c}{n}$ $\left(\sum_{k=1}^{n}$ $\frac{n}{2}$ $\frac{1}{2}$ • $E[T(n)] \leq \frac{2}{n} \sum_{k=\lfloor n\rfloor}^{n-1} ck + \alpha n = \frac{2c}{n} \left(\sum_{k=1}^{n-1} k - \sum_{k=1}^{\lfloor n\rfloor-1} k \right) + \alpha n.$

$$
\sum_{n=0}^{\infty} \frac{2c}{n} \left(\frac{n(n-1)}{2} - \frac{\left(\frac{n}{2} - 2\right)\left(\frac{n}{2} - 1\right)}{2} \right) + \alpha n.
$$

•
$$
= cn - (\frac{cn}{4} - \frac{c}{2} - \alpha n).
$$

\n• Thus $E[T(n)] \le cn$ for $\frac{cn}{4} - \frac{c}{2} - \alpha n \ge 0$ or $n \ge \frac{2c}{c - 4\alpha}.$

E.g. sort an array of integers in worst case $O(n \log n)$ time

- Insertion sort $(\theta(n^2))$
- Merge sort $(\theta (n \log n))$
- Heap sort $(\theta (n \log n))$
- Randomized quicksort $(O(n^2))$
- Counting sort $(\theta(n+k))$
	- \circ k can be larger than *n*, assume all integers in $[0, k]$.
- Radix sort $(\theta(d(n+k)))$
- Bucket sort $(O(n^2))$
	- Worst case when all numbers in the same bucket

e.g. sort an array of integers ranging from -100 to 100 in $O(n)$ time worst case.

- Shift all integers by +100
- Sort the array by counting sort
- Shift output by -100

e.g. sort the above array using bucket sort, in $O(n)$ expected time.

- $\forall x \in A, y = \frac{x}{x}$ • $\forall x \in A, y = \frac{x}{2}$
- Sort using bucket sort.
- Then $\forall y \in A', x = 201y 100$.

e.g. sort *n* integers ranging from 0 to $n^3 - 1$ in $O(n)$ time.

- Counting sort won't work, since $k = n^3 1$, $\theta(n + k) = \theta(n + n^3 1)$.
- Any number $x \in [0, n^3 1]$ can be written as $= a_2 n^2 + a_1 n + a_0$ for $a_0, a_1, a_2 \in [0, n)$.
- Run radix sort base n .
- $\theta(d(n+k)) = \theta(3(n+n)).$
	- \circ k is given by the base (n), d is given by number of digits (# a_i).

e.g. weighted medians

- Let $x_1, ..., x_n$ be n distinct (unsorted) elements, each with positive edge weight $w_1, ..., w_n$ s.t. $\sum_{i=1}^n w_i = 1$, the weighted (lower) median is the element x_k s.t. $\sum_{x_i < x_k} w_i < \frac{1}{2}$ $\frac{1}{2}$, $\sum_{x_i > x_k} w_i \leq \frac{1}{2}$ $\frac{1}{2}$.
- Show that the weighted median is the same as the median if $w_i = \frac{1}{x}$ • Show that the weighted median is the same as the median if $w_i = \frac{1}{n'} \forall i \in [1, n]$.
- Find the weighted median in $O(n \log n)$ time using sorting.

Sort using heapsort/mergesort. $s_0 = 0.$ For $i = 1:n$, $s_i = s_{i-1} + w_i$. $(s_i = \sum_{j=1}^{i} w_j)$ If $s_{i-1} < \frac{1}{2}$ $\frac{1}{2}$ and $\left(1 - s_i\right) \leq \frac{1}{2}$ $\frac{1}{2}$. Return x_i .

• Find the weighted median in $O(n)$ expected time using selection.

Modify the Randomized Selection algorithm Let X be the randomly chosen partition. Let $l = r = \frac{1}{2}$ $\frac{1}{2}$. Partition the input array by x and compute $a = \sum_{x_i < x} w_i$, $b = \sum_{x_i > x} w_i$. If $a \ge l$, then recurse on the left side with $r = r - b$. Else if $b > r$, then recurse on the right side with $l = l - a$. Else return x .

- e.g. merge k sorted list where each list is size n/k .
	- Method 1: concatenate and run merge sort $O(n) + O(n \log n) = O(n \log n)$.
	- Method 2:
		- \circ initialize a pointer in these k lists, starting at the first elements.
		- \circ Each iteration, finds the min of the k elements, then increment the corresponding pointer.
		- \circ There is a total of *n* iterations.
		- \circ Time: $O(nk)$.
	- Method 3:
		- \circ initialize a pointer in these k lists, starting at the first elements.
		- \circ Build a heap containing all pointer values $O(k)$.
		- \circ Extract min pointer, $O(\log k)$.
		- \circ Insert the next pointer, $O(\log k)$.
		- \circ Do this *n* times, get $O(n \log k)$.
	- Method 4:

$$
\circ \quad \text{Merge the arrays 1 by 1, } \sum_{i=1}^{k-1} O\left(\frac{(i+1)n}{k}\right) = O(nk).
$$

 \circ Pairwise merge, $\sum_{i=1}^{\log k} O(n) = O(n \log k)$.

Selection in worst-case linear time

- Idea: guarantee good split (using median)
- Select algo:
	- Divide the *n* elements into groups of 5. Get $\left[\frac{n}{5}\right]$ $\left(\frac{n}{5}\right)$ groups ($\left|\frac{n}{5}\right|$ ○ Divide the *n* elements into groups of 5. Get $\left|\frac{n}{5}\right|$ groups ($\left|\frac{n}{5}\right|$ with 5 elements, possibly 1 with *n* mod 5 elements) $O(n)$ time.
	- \circ Find median of each group $O(n)$.
		- **E** Insertion sort on each group $O(1)$.
		- **Take median from each group** $O(1)$ **.**
	- Find lower median x of the $\left[\frac{n}{5}\right]$ $\frac{n}{5}$ medians from step 2 using recursive call to Select, $T\left(\left[\frac{n}{5}\right]\right)$ \circ Find lower median x of the $\left|\frac{n}{5}\right|$ medians from step 2 using recursive call to Select, $T\left(\left|\frac{n}{5}\right|\right)$.

 \circ Partition by using x as pivot. Assume x is kth element $\begin{cases} k-1 \, left & \text{if } 0 \leq n \leq n-1 \end{cases}$

- \circ If $i = k$, return x.
- \circ If $i < k$, recurse on lower side.
- \circ If $i > k$, recurse on greater side, searching for $i k$.
- After insertion sort, we will be able to find medians sorted in increasing order.
	- \circ $a_{11}, a_{12}, a_{13}, a_{14}, a_{15}, a_{21}, \ldots, a_{25}, a_{31}, \ldots, a_{35}, a_{41}, \ldots, a_{45}, a_{51}, \ldots, a_{55}, a_{61}, a_{62}, a_{63}$
	- \circ Medians are $a_{13} < a_{23} < a_{33} < a_{43} < a_{53} < a_{62}$.
	- \circ Lower median of them is a_{33} .
- For the final 3 if statements
	- Take the lower median of medians, then $a_{11:3}$, $a_{21:3}$, a_{31} , a_{32} < a_{33} and a_{34} , a_{35} ,...> a_{33} .
	- So at least half of medians $\geq x$ (pivot).
- \circ Groups with medians $\geq x$ contribute exactly 3 elements $> x$, except x' s group and the leftover grpup wich contribute less.
- Ignore these 2 groups, we have $\frac{1}{2}$ $rac{1}{2}$ $\left[\frac{n}{5}\right]$ ○ Ignore these 2 groups, we have $\left|\frac{1}{2}\left|\frac{n}{5}\right|\right| - 2$ contributing with 3 elements $> x$.

• At least
$$
3\left(\left[\frac{1}{2}\left[\frac{n}{5}\right]\right]-2\right) \ge \frac{3n}{10}-6
$$
 elements.

 \circ Symmetrically, at least $\frac{3n}{10}$ – 6 elements $\lt x$.

○ In step 5, worst case, we recursive on partition size ≤
$$
\frac{7n}{10} + 6
$$
.
(*O*(1), *n* < 140

•
$$
T(n) \leq \left\{ T\left(\left[\frac{n}{5}\right]\right) + T\left(\frac{7n}{10} + 6\right) + O(n), n \geq 140 \right\}
$$

\n•
$$
\text{Guess } T(k) \leq ck \text{ for } k < n.
$$

\n•
$$
T(n) \leq c \left[\frac{n}{5}\right] + c\left(\frac{7n}{10} + 6\right) + \alpha n \leq cn + \left(-\frac{cn}{10} + 7c + \alpha n\right).
$$

\n•
$$
\leq cn \text{ if } -\frac{cn}{10} + 7c + \alpha n \leq 0 \text{ or } c \geq 10\alpha \left(\frac{n}{n-70}\right).
$$

- For $n \ge 140$, $\frac{n}{n}$ $\frac{n}{n-70} \leq 2$, so choosing $c \geq 20\alpha$ gives $c \geq 10\alpha \left(\frac{n}{n-7}\right)$ ○ For $n \ge 140$, $\frac{n}{n-70} \le 2$, so choosing $c \ge 20\alpha$ gives $c \ge 10\alpha \left(\frac{n}{n-70}\right)$.
- \circ Could work for $n \geq 71$ with $c \geq 710\alpha$.

Trees

2023年2月2日 18:12

Binary search trees (BST)

- \bullet Tree: T .
- Root: $root(T)$.
- Each node has key, left, right, parent.

BST property:

- If y is in the left subtree of x, then $key(y) \leq key(x)$.
- If y is in the right subtree of x, then $key(y) \geq key(x)$.

Traversals

- In-order: A,B,D,F,H,K.
- Pre-order: F,B,A,D,H,K.
- Post-order: A,D,B,K,H,F.

Min: leftmost node, $O(h)$. Max: rightmost node, $O(h)$. Successor: next element in in-order walk (min of right subtree) Predecessor: previous element in in-order walk (max of left subtree, in case of empty left subtree, find y whose successor is x)

Basic operations

- Tree-min: $O(h)$.
- Tree-max: $O(h)$.
- Predecessor: $O(h)$.
- Successor: $O(h)$.
- Insert: $O(h)$.
	- Search and place new node as a leaf
- Delete: $O(h)$.
	- \circ Case 1: *z* is a leaf, make the parent point to null.
	- \circ Case 2: z has one child, make parent point to z's child.
	- \circ Case 3: z has 2 children, swap the value of z with its predecessor or successor, then delete the successor/predecessor by case 1 or 2.
- Build a BST
	- \circ Worst case: $O(n^2)$ (insertion into a chain).
	- \circ Expected case: $O(n \log n)$ (based on lower bound of sorting).

Red black trees (RBTs)

• Motivation: want $h = O(\log n)$ guaranteed in worst case.

RBT properties

- BST property assumed
- Every node is either red or black (0/1 bit).
- The root is black
- Every leaf is black
- If node is red, then both children black
- For each node, all path from that node to descendant leaves contain the same number of black nodes

Heights

- \bullet h: heights.
- \bullet bh: black height, number of black nodes from this node to leaf, excluding start node.

Claim 1: any node of height h has black height $\geq h/2$.

Proof: by property 4, at most $h/2$ nodes on the path can be red, so $\geq \frac{h}{2}$ • Proof: by property 4, at most $h/2$ nodes on the path can be red, so $\geq \frac{h}{2}$ black nodes.

Claim 2: the subtree rooted at node x contains $\geq 2^{bh(x)} - 1$ internal nodes.

- Proof by induction on height of x .
- Basis: if height of x is zero, then it is leaf \Rightarrow bh(x)=0,2^{bh(x)} 1 = 0.
- I.H.: true for height $\lt h$ where h is height of x.
- I.S.: height of x is h, say black height is $bh(x) = b$.
- Any child of x has height $\leq h-1$ and black height $b-1$ if child is black or b if child is red.
- By IH, each child has $\geq 2^{b-1} 1$ internal nodes.
- So subtree at x contains $\geq 2(2^{b-1}-1)+1=2^b-1$ internal nodes.

Lemma: RBT with *n* internal nodes has height $\leq 2 \log(n + 1)$.

- Claim 1+2 gives $n \geq 2^b 1 \geq 2^{\frac{h}{2}}$ $\frac{h}{2}$ - 1 \Rightarrow n + 1 $\geq 2^{\frac{h}{2}}$ • Claim 1+2 gives $n \ge 2^b - 1 \ge 2^{\frac{n}{2}} - 1 \Rightarrow n + 1 \ge 2^{\frac{n}{2}} \Rightarrow h \le 2 \log(n + 1)$.
- i.e. height of RBT is $O(\log n)$.

Operations:

- Search, max, min, predecessor/successor are same as in BST
- Insert, delete need special case
- Rotation
	- \circ Runtime $O(1)$.

RB-Insert(T,z)

- Search for z .
- Insert as leaf
- Color it red
- Use RB-Insert-fixup(T,z) to fix violated properties. \circ $O(\log n)$.

Properties that might be violated by 3

• Property 2: if z is root, violation, but easy to fix by recoloring.

• Property 4: If p(z) is red, violation.

Fixup:

- Assume p[z] is left child (right child is symmetric)
- Let y be p[z]'s sibling.
- Case 1: y is red (z is left/right child of $p[z]$), not now $p[p[z]]$ is black.
	- \circ Color p[z] and y black, p[p[z]] red, call RB-Insert-Fixup(T,p[p[z]]).

- Case 2: y is black z is right child.
	- Left rotate(T, p[z]). Now the original p[z] becomes z. We get case 3
- Case 3: y is black, z is left child
	- Make p[z] black, p[p[z]] red.
	- Right rotate on p[p[z]].
	- No further calls

DP & Greedy

February 9, 2023 7:35 PM

Dynamic programming

- Optimal substructure
- Overlapping subproblems: memorization exploits this redundancy

Steps:

- Optimal substructure
- # subproblems
- Recursion
- Memorization: store a table and implement recursion using the table

e.g. Fibonacci numbers

- $F_0 = 0, F_1 = 1, F_n = F_{n-1} + F_{n-2}$.
- Easy to compute recursively, but lots of redundancies
- To get F_6 by recursion, requires solving F_3 3 times
- Memorization would store intermediate results and reuse

Problem 1: Matrix-chain multiplication (matrix parenthesization)

- e.g. $A_1 \in \mathbb{R}^{10 \times 100}$, $A_2 \in \mathbb{R}^{100 \times 5}$, $A_3 \in \mathbb{R}^{5 \times 50}$, calculate $A_1 A_2 A_3$.
	- Option 1: $(A_1A_2)A_3$, #multiplication=10 \cdot 5 \cdot 100 + 10 \cdot 50 \cdot 5 = 7500 (final matrix size \times multiplications needed for each cell).
	- Option 2: $A_1(A_2A_3)$, #multiplication= $100 \cdot 50 \cdot 5 + 10 \cdot 50 \cdot 100 = 75000$.
- Goal: fully parenthesize n matrices while minimizing total number of multiplications
- Input: $A_1, A_2, ..., A_n$.
- Brute force: enumerate all possible parenthesizations

$$
P(n) = \sum_{k=1}^{n-1} P(k)P(n-k) = \Omega\left(\frac{4^n}{n^{3/2}}\right).
$$

- Key idea: an optimal parenthesization for $A_1, ..., A_n$ involves optimal parenthesization for L: $A_1, ..., A_k$, and R: A_{k+1}, \ldots, A_n for some k.
- Proof of optimality: suppose L is not optimal, then exists some other $1 \leq k' < k$ such that L is more optimal, and total number of multiplication is smaller.
- # subproblems= $O(n^2)$, since we require optimal on any subsequence $A_1, ..., A_j$.
- Recurrence
	- \circ Let A_i be a matrix with dimension $p_{i-1} \times p_i$.
	- $\phi \in m[i,j]$ be the optimal value (minimized cost) for sub problem $A_i, ..., A_j.$

 \bullet $m[1,n]$ is the entire problem we want to solve.

$$
\circ \ m[i,j] = \begin{cases} 0, i = j \\ \min_{k \in [i,j)} \{m[i,k] + m[k+1,j] + p_{i-1}p_j p_k\}, i < j \end{cases}
$$

- Memorization
	- \circ A naïve recursive implementation and is inefficient (you do not expect redundancy).
	- Use a table to store intermediate results
	- \circ e.g. A_1 : 30 \times 35, A_2 : 35 \times 15, A_3 : 15 \times 5, A_4 : 5 \times 10, A_5 : 10 \times 20, A_6 : 20 \times 25.

- \blacksquare $m[1,6]$ (top) is what we want to get.
- To get $m[2,5]$, we need $m[2,2]$, $m[2,3]$, $m[2,4]$, $m[3,5]$, $m[4,5]$, $m[5,5]$.
- The dependence dictates the order in which the table must be filled

• Runtime: $O(\text{#sub problems}) \times O(\text{time per sub problem}) = O(n^2)O(n) = O(n^3)$.

Problem 2: longest common subsequence (LCS)

- Given sequences $X_m = x_1 ... x_m$, $Y_n = y_1 ... y_n$, find a subsequence common to both such that the subsequence length is maximal, not necessarily consecutive.
- e.g. X=springtime, Y=pioneer, result=pine.
- Brute force runtime: $O(n2^m)$.
- Theorem: suppose $Z_k = z_1 ... z_k$ is LCS of X_m and Y_n .
	- If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is LCS of $x_1 ... x_{m-1}$ and $y_1 ... y_{n-1}$.
		- If not, can find a Z'_{k-1} such that $|Z'_{k-1} \cup \{z_k\}| > |Z_{k-1} \cup \{z_k\}|$.
	- o If $x_m \neq y_n$, then $(z_k \neq x_m) \Rightarrow Z_k$ is LCS of X_{m-1} and Y_n .
	- \circ If $x_m \neq y_n$, then $(z_k \neq y_n) \Rightarrow Z_k$ is LCS of X_m and Y_{n-1} .
- Recurrence:
	- \circ Let $c[i, j]$ be the optimal length of LCS of X_i and Y_j , $c[m, n]$ is the optimal value for the problem.

$$
\circ \ c[i,j] = \begin{cases} 0, i = 0 \text{ or } j = 0 \\ c[i-1, j-1] + 1, x_i = y_j \\ \max\{c[i-1, j], c[i, j-1]\}, x_i \neq y_j \end{cases}.
$$

- Pseudo Code
	- LCS(X,Y,m,n)

```
For i = 1: m: c[i, 0] = 0.
For j = 1: n: c |0, j| = 0.
For i = 1: m
      For j = 1:nIf x_i
```
If
$$
x_i == y_i
$$
, then $c[i, j] = c[i - 1, j - 1] + 1$, tag with arrow pointing to $(i - 1, j - 1)$.
Else if $c[i - 1, j] > c[i, j - 1]$, then $c[i, j] = c[i - 1, j]$, tag with $\hat{ }$.
Else $c[i, j] = c[i, j - 1]$, tag with \leftarrow .

• Runtime: $O(mn)$.

Greedy Algorithm

- Idea: when making a choice, take the one that looks the best right now
	- Locally optimal leads to globally optimal (need to prove)
- Greedy is not always optimal, but good as approximation algorithms
- Steps
	- Find optimal substructure
	- Prove Greedy Choice Property

Problem 1: activity selection

- Inputs: set of activities: $S = \{a_1, \ldots, a_n\}.$
- Each a_i needs resource during period $|s_i, f_i|$ where s_i is the start time, f_i is the finish time.
- Goal: select the largest possible set of mutually compatible activities.
- e.g. $t = [0,16], a_1 = [1,3], a_2 = [2,5], a_3 = [4,7], a_4 = [1,8], a_5 = [5,9], a_6 = [8,10], a_7 = [9,11],$ $[11, 14]$, $a_9 = [13, 16]$.
	- $S = \{a_1, ..., a_9\}.$
	- $S^{opt} = \{a_1, a_3, a_6, a_8\}$ (not unique).
- Greedy: at each step, from compatible activities, choose the one with smallest finish time.
- Optimal structure:
	- \circ Let $S_{ij} = \{a_k \in S : f_i \le s_k \le f_k \le s_j\}$ = activities that start after a_i finishes and finish before a_j starts.
	- \circ A_{ij} = opt sol to s_{ij} .
	- \circ $\{sol\ to\ s_{ij}\} = \{sol\ to\ s_{ik}\} \cup \{a_k\} \cup \{sol\ to\ s_{kj}\}.$
	- $\circ A_{ij} = A_{ik} \cup \{a_k\} \cup A_{ki}.$
- Greedy Choice property:
	- \circ Let $S_{ij} \neq \emptyset$ and a_m be activity in S_{ij} with earliest finish time, $f_m = \min\{f_k : a_k \in S_{ij}\}\$.
	- \circ a_m is used in some max-size(optimal) subset of compatible activities of S_{ij} .
		- Let A_{ij} be max size set of compatible activities in S_{ij} .
		- Order activities in A_{ij} in increasing order of finish time.
- Let a_k be the first one in A_{ij} .
- If $a_k = a_m$, done.
- If $a_k \neq a_m$, then construct $A'_{ij} = A_{ij} \{a_k\} \cup \{a_m\}.$

$$
\Box \left| A'_{ij} \right| = \left| A_{ij} \right| - 1 + 1 = \left| A_{ij} \right|.
$$

- Activities in A'_{ij} are still compatible, since a_k if the first in A_{ij} to finish, but $f_m \le f_k$ ($a_k \ne a_m$ and is min finish time in S_{ij}).
- a_m doesn't overlap with $A_{ij} \{a_k\}.$
- \blacksquare A'_{ij} is optimal for S_{ij} , i.e. greedy is optimal.
- $S_{im} = \emptyset$.
	- **■** Suppose $\exists a_k \in S_{im}$.
	- $f_i \leq s_k < f_k \leq s_m < f_m$, then $f_k < f_m$, contradiction.
- Runtime: $O(n \log n)$.

Huffman coding (data compression)

• Must be prefix codes

- $B(T) = \sum_{c} f(c) d(c)$ (number of bits needed to encode given input).
- Goal: to find T that minimizes $B(T)$.
- Greedy algorithm

HuffmanCoding

- Unite/merge the 2 lowest frequency characters, represent them as nodes in the tree
- Create new char in vocabulary representing the two chars merged
- Repeat until vocabulary is single char

Greedy Choice property:

- Consider 2 smallest frequency chars (x and y), show there exists optimal code tree in which x and y are max-depth siblings
- Proof:
	- \circ Let T be any optimal prefix code tree with b and c the two siblings at max depth, assume $f(b) \leq f(c)$.
	- \circ If $\{x, y\} = \{b, c\}$, done.
	- If $\{x, y\}$ ≠ $\{b, c\}$, then $f(x) \le f(b)$ and $f(y) \le f(c)$.
	- \circ We know that b and c are deepest, $d_T(b) \geq d_T(x)$ and $d_T(c) \geq d_T(y)$.
	- \circ First swap b with x to get T' ,
		- $B(T) = \sum_{c \neq b,x} f(c)d_{T}(c) + f(b)d_{T}(b) + f(x)d_{T}(x)$.
		- $B(T') = \sum_{c \neq b,x} f(c) d_T(c) + f(b) d_T(x) + f(x) d_T(b).$
		- $B(T) B(T') = (f(b) f(x))(d_T(b) d_T(x)) \ge 0.$
		- So $B(T') \leq B(T)$.
	- \circ Swap c with y to get T'', similary, we can show $B(T'') \leq B(T')$.
	- \circ So $B(T'') \leq B(T)$.

Optimal structure + Greedy

- Let T_n be any tree that satisfies greedy choice property.
- Let T_{n-1} be the tree that results from replacing the two lowest frequency char and their parent with a single leaf with frequency $f(z) = f(x) + f(y)$. We show that $B(T_n) = B(T_{n-1}) + f(z)$.
- Proof: Let d denote the depth of x, y in T_n , z is in depth $d-1$ in T_{n-1} .
	- \circ $B(T_n) = B(T_{n-1}) (\text{cost of } z \text{ in } T_{n-1}) + (\text{cost of } x \text{ and } y \text{ in } T_n),$

$$
\circ = B(T_{n-1}) - f(z)(d-1) + (f(x) + f(y))d,
$$

 \circ = $B(T_{n-1}) - f(z)(d-1) + f(z)d = B(T_{n-1}) + f(z)$.

Hashing

2023年2月16日 19:16

Let U be the universe, $K \subset U$ a set of keys, T a table of size m with indices $\{0,1,\ldots,m-1\}$. A hash function $h: U \rightarrow \{0, ..., m-1\}$ hashes key k into index $h(k)$.

Desired from hashing scheme

- Simple uniform hashing
- Good mechanism for collision resolution
	- \circ Chaining: if $h(x) = h(y)$, x, y are in the same list, (delete is easy).
	- Open addressing: if collision, use a probing sequence to find an empty slot (delete is not trivial).
		- **E** Linear probing: $h(k, i) = (h'(k) + i) \mod m$ when hashing key k for ith time.
		- Quadratic: $h(k, i) = (h'(k) + c_1 i + c_2 i^2) \mod m$.
		- **•** Double hashing: $h(k, i) = (h_1(k) + h_2(k)) \mod m$.

Hashing design

- Multiplication: $[n(kA \mod 1)], A \in [0,1]$ constant.
- Division: $h(k) = k \mod n$.

Analysis of chaining

- $n = \text{H}$ elements.
- $m = #$ slots.
- Load factor: $\alpha = \frac{n}{m}$ • Load factor: $\alpha = \frac{n}{m}$.
- If we assume simple uniform hashing (a key if equally likely to hash into any slot)
	- \circ Worst case: single list of *n* element.
	- \circ Expected case: $j = 0, 1, ..., m 1$, denote length of $T(j)$ by n_j ,
		- then $n_0 + \cdots + n_{m-1} = n$.
		- $E[n_i] = \frac{n}{n}$ \bullet $E[n_j] = \frac{n}{m}$, also assume $O(1)$ to compute h.
- Expected cost of search
	- \circ Case 1: unsuccessful search $\theta(1 + \alpha)$, compute the hash and search to end of list, taking $\theta(d)$.
	- Case 2: successful search.
		- \blacksquare # elements examined during successful for key x is one more than the number of elements before x in x's list=#elements that hash to same slot as x after x is hashed into slot.
		- For $i = 1, 2, ..., n$, let x_i be the *i*th element inserted into the table and k_i is key(x_i).
		- $\forall i, j$, define $X_{ij} = 1$ $\{h(k_i) = h(k_j)\}.$
		- Simple uniform hashing \Rightarrow $\Pr(h(k_i) = h(k_i)) = \frac{1}{n}$ $\frac{1}{m} \Rightarrow E[X_{ij}] = \frac{1}{m}$ ■ Simple uniform hashing \Rightarrow Pr $\left(h(k_i)=h(k_j)\right)=\frac{1}{m}$ \Rightarrow $E[X_{ij}]=\frac{1}{m}$.
		- $E\left[\frac{1}{n}\right]$ $\frac{1}{n}\sum_{i=1}^{n} (1 + \sum_{j=i+1}^{n} X_{ij}) = \frac{1}{n}$ $\frac{1}{n} \sum_{i=1}^{n} \left(1 + \sum_{j=i+1}^{n} \frac{1}{n} \right)$ $\binom{n}{i=1} \left(1 + \sum_{j=i+1}^{n} \frac{1}{m} \right)$ \boldsymbol{n} $\frac{n}{2m}$. $\Box \quad \sum_{j=i+1}^{n} X_{ij}$ is # elements after i that collides with $i.$ ▪
		- $= 1 + \frac{a}{2}$ $\frac{\alpha}{2} - \frac{\alpha}{2n}$ $= 1 + \frac{a}{2} - \frac{a}{2n} = \theta(1 + \alpha).$

For any h, if $|U| \ge (n-1)m + 1$ then there is set S of n elements that all hash to same slot.

• Proof: contrapositive, if every slot had at most $n-1$ element of U hashing to it, then $m(n-1)$.

Universal hashing

- A randomized algorithm H for constructing hash function $h: U \rightarrow \{0, ..., m-1\}$ is universal if $\forall x \neq y \in U$, it holds that $Pr[h(x) = h(y)] \leq \frac{1}{\pi}$ $\frac{1}{m}$.
- Theorem: if H is universal, then $\forall S \subset U$ with $|S| = n$, $\forall x \in U$, the expected number of

collision between x and other elements in $S \leq \frac{n}{m}$ $\frac{n}{m}$.

• Corollary: if H is universalm, any sequence of λ operations (insert, search, delete) has expected total cost $O(\lambda)$.

Construction of universal hash family (matrix based)

- Assume keys are u bits long, table size m is power of 2, index is b bits ($m = 2^b$).
- Algo: choose *n* to be a random $b \times u$ 0/1 matrix and have $h(x) = h \cdot x$, where addition is mod 2.
- Claim: $x \neq y$, $Pr[h(x) = h(y)] = \frac{1}{n}$ $\frac{1}{m} = \frac{1}{2^{l}}$ $\frac{1}{2^b}$. •
	- \circ In worst case, only 1 bit is different, select the column in the matrix.
	- \circ 2^b combinations, each of them creates different output.

Amortized Analysis

March 3, 2023 8:01 PM

Unlike best/worst/expected case for single operations. Here we care about average cost/operation in sequence of operations

- Aggregate: simple to understand/calculate for simple data structure.
- Accounting: identify cheap/expensive operations. Use cheap operations to justify expensive cost
	- Charge \$k for each operation (amount is amortized cost for each operation)
	- Goal is to maintain a credit invariant
	- If amortized cost > actual cost, remain difference in deposit
	- If amortized cost < actual cost, use credit stored to compensate (pay) for difference
	- Should never end up with negative credit (if not enough, bump up the deposit)
- Potential (not used)

Stack

- Sequence of push/pop/multipop operations (n operations)
- Naïve:
	- \circ $O(nk)$ total, so $O(k)$ average. Wrong since to have multiple, we must have pushed times.
- Aggregate
	- You never pop more than you push.
	- \circ $O(n)$ total, so $O(1)$ average.
- Accounting
	- Charge \$2 for each push. \$1 for actual cost of push, \$1 stays as credit.
	- Charge \$0 for each pop. \$1 credit in pushed elements pays for cost of pop
	- \circ Charge \$0 for multipop. \$k credit in k pushed elements pay for the cost
- if multipop(k) is $O\big(k^3\big)$, need to consider $O\big(n^2\big)$.
- Queue is the same

Counter

- k-bit counter $A[0, ..., k-1]$, $A[0]$ is the least significant bit.
- Increment (A, k) $i=0$, While $i < k$ and $A[i] == 1$: $A[i] = 0,$ $i = i + 1$. If $i < k$: $A[i] = 1$.
- Naïve: $O(k)$ per operation.

- LSB flips everytime
- *i*th bit flips $\frac{n}{2^i}$ times.
- Aggregate: # $flips = \sum_{i=0}^{k-1} \left| \frac{n}{2} \right|$ $\binom{k-1}{i=0}$ $\frac{n}{2^i}$ $\mathbf{1}$ $\frac{k-1}{i}$ = $\frac{1}{2}$ $\frac{1}{2}$ $\mathbf{1}$ $\frac{1}{1-\frac{1}{2}}$ • Aggregate: # $flips = \sum_{i=0}^{K-1} \left| \frac{n}{2^{i}} \right| \le n \sum_{i=0}^{K-1} \frac{1}{2^{i}} = n \cdot \frac{1}{1-\frac{1}{2}} = 2n$.
	- $O(n)$ total, $O(1)$ amortized.
- Accounting method
	- \circ Charge \$2 for every 1 we set ($0 \rightarrow 1$).
	- \circ Every increment costs \$2 because there's only one single $0 \rightarrow 1$ flip
	- Every $1 \rightarrow 0$ flip is paid for by the \$1 credit left after the $0 \rightarrow 1$ flip
	- \circ For *n* operations, $O(1)$ per operation.
- Binary counter with reset

- \circ The number of bits used by the counter will be less than the number of increment operations.
- If not, charge \$4 for increment and \$1 for reset
- \$1 pays for flipping 0 to 1, \$1 saved for flipping 1 to 0.
- \$1 to update max, \$1 to pay for flipping to a 0 during reset.
- Ternary counter (increment by 3)
	- Charge \$3 per increment.
	- Invariant: A trit with value 0 has \$0 credit, value 1 has \$2 credits, value 2 has \$1 credit.
	- At most one 0-1 flip, \$1 from the charge pays for the flip. Remaining \$2 stored as credit.
	- Increment changes states in the order 0-1-2-0. Credit used to do 1-2 and 2-0.

Dynamic hash table

 \circ

• Insert

- Aggregate:
	- Cost of *i*th insert $c_i = \begin{cases} i, i 1 = 2^k \\ 1, else \end{cases}$.
	- $\sum_{i=1}^{n} c_i \leq n + \sum_{j=0}^{\lfloor \log n \rfloor} 2^j < n + 2n = 3n.$
	- **•** Amortized $O(1)$ on average.
- Accounting:
	- Charge \$3 on insert.
	- \$1 used for insert.
	- \$1 store as credit.
	- **•** \$1 stored for $\frac{m}{2}$ items already in the table.
	- Each \$1 pay for it to be reinserted during the expansion.
- Delete
	- \circ Shrink the table size when T. num \leq T. size/2.
- Amortized cost of each operation is bounded above by a constant. The actual time for any sequence of n operations on a dynamic table is $O(n)$.

Splay tree

- Weighted dictionary problems: given keys $\langle x_1,...,x_n\rangle$ and frequencies $\langle w_1,...,w_n\rangle$, the goal is to minimize cost of accessing high frequency elements.
	- \circ If w_i known a priori, then we can build a static optimal tree using dynamic programming in $O(n^3)$.
	- \circ If w_i not known, splay tree, $O(\log n)$ average cost for insert/delete/search.
- Properties
	- No explicit balancing conditions.
	- BST property holds.
	- Pre-emptively rotate element that is accessed until it becomes the root.
- SPLAY(x)
	- While x is not the root:
		- If $p(x)$ is the root: rotate $p(x)$,

Else if $p(x)$, x both left or right children: rotate $p(p(x))$, then rotate $p(x)$. Else: rotate $p(x)$, then rotate at new $p(x)$.

- Cost of splay
	- \circ Let $w(x)$ be the number of nodes in subtree rooted at x plus x itself.
	- \circ Define $rank(x) = [log(w(x))].$
	- \circ Credit invariant: every node has $rank(x)$ credit on it.
	- \circ We need to show that every SPLAY operation can be paid with $O(\log n)$ additional credit to account for rotations and maintain the invariant.
	- \circ Claim: every operation in while loop costs $3(newrank(x) oldrank(x))$ except for $p(x)$ =root case, which needs +1 credit.
		- Proof:
		- Case 2 and 3

□

- \Box Compare $or(x) + or(p) + or(g)$ with $nr(x) + nr(p) + nr(g)$.
- \Box $nr(p) \leq nr(x)$, $nr(g) \leq nr(p)$, $nr(x) = or(g)$, $or(p) \geq or(x)$.
- \Box $nr(x) + nr(p) + nr(g) or(x) or(p) or(g) \leq 2(nr(x) or(x)).$
- □ Amount charged covers this cost.
- \Box If $nr(x) = or(x)$, more than half of tree nodes were under x. Otherwise its rank would have incresed
	- \bullet Less than half of the nodes are in A and B.
	- \bullet rank (g) is reduced by at least 1.
	- \bullet Leftover credit on g pays for costs of rotations.
- Case 1:
	- \Box or $(x) \leq nr(x)$, or $(p) \geq nr(p)$.
	- \Box $nr(x) + nr(p) or(p) or(x) \leq nr(x) or(x)$.
	- \Box If $nr(x) = or(x)$, we don't know if p's rank is affected/reduced.
	- □ Pay \$1 for the rotation.

- \circ Let $rank_0, ..., rank_k$ be the sequence of ranks for x until x becomes root. We need $3(rank_k - rank_{k-1}) + \cdots + 3(rank_1 - rank_0) = 1 + 3(rank_k - rank_0).$
- But $rank_k$ \leq $\lceil \log n \rceil$, so credit required $\leq 1 + 3 \log n$, which is $O(\log n)$ amortized.

Average cost: mean over all possible inputs Expected cost: assume uniform, then same as average Amortized cost: average over a particular sequence of inputs.

Worst cast upper bound: $\hat{c} \geq c(x_i)$, $\forall i$. Amortized upper bound: $\frac{1}{n}\sum \hat{c} \geq \frac{1}{n}$ $\frac{1}{n} \sum_{i=1}^{n} c(x_i)$, $\forall n$.

Aggregate analysis

- Given an operation $f(x)$ and a sequence $(x_1, ..., x_n)$, let $c(x_i)$ be the cost of $f(x_i)$.
- Compute $T(n) = \sum_{i=1}^{n} c(x_i)$.
- Amortized cost: $\frac{P(n)}{n}$.

Accounting method

- Declare that $\frac{6}{3}$ will be charged per operation
- Describing a procedure for how we use \hat{c} .
- Assert a credit invariant (some claim about the stored credit in the data structure).
- Argue that the credit invariant is true.
- Use the credit invariant to argue why the credit is never negative.

E.g. (array doubling) suppose
$$
f(x)
$$
 has cost $c(x) = \begin{cases} x, x = 2^m \\ 1, else \end{cases}$.

Aggregate method: •

$$
\circ \sum_{x=1}^{n} c(x_i) = \sum_{x \neq 2^m} 1 + \sum_{x=2^m} x = n + \sum_{m=0}^{\log n} 2^m = n + (2n - 1) < 3n = O(n).
$$

- \circ Amortized cost: $\frac{O(n)}{n} = O(1)$.
- Accounting method
	- Charge \$3 for each operation
	- If $x \neq 2^m$, use \$1 to pay for operation and store \$2
	- \circ If $x = 2^m$, store \$2, and use the stored \$x to pay for the operation.
	- \circ Credit invariant: when $x = 2^m$, all elements in the range $(2^{m-1}, 2^m]$ have \$2 stored. ■ True by construction
	- φ \$2 $(2^{m-1}) =$ \$2^m, since $x = 2^m$, we have exactly enough, so never go negative.
	- \circ Amortized cost is $O(3) = O(1)$.

Graph Algorithms

```
March 3, 2023 8:01 PM
Graph G = (V, E), size |V|, |E|.
Representation
   • Adjacency list:
        \circ Space: O(V + E).
         \circ Check edge (u, v) O(deg(u)).
   • Adjacency matrix:
         \circ Space: O(V^2).
         \circ Check edge (u, v) O(1).
Breadth-First-Search (BFS)
   • Input: G = (V, E) directed/undirected, source vertex s \in V.
   • Output:
        \circ d[v]: distance from s to v, \forall v \in V.
         \circ \pi[v]: v's predecessor.
   • Idea: start at s, and in each iteration i, visit nodes that are i edges away from s.
   BFS(V,E,s)
•
            For each u \in V - \{s\}:
                   d[v] = \infty.
            d[s] = 0.Q = \emptyset (FIFO).
            Enqueue(Q,s).
            While Q \neq \emptyset:
                   u =Dequeue(Q)
                   For each v \in adj(u):
                         If d[v] = \infty:
                               d[v] = d[u] + 1;\pi[v] = u;Enqueue(Q,v);
   • BFS may not reach all vertices
   • Runtime: O(V + E).
                                             \zeta
```


Depth-First-Search (DFS)

- Input: $G = (V, E)$ directed/undirected.
- Output:
	- \circ $d[v]$: discovery time.
	- \circ $f[v]$: finishing time.
- Idea: as soon as we discover a vertex, we explore from it. Every vertex has one of three colors as DFS progresses ○ White: undiscovered
	- Gray: discovered but not done exploring from
	- Black: finished
- DFS(G)

For each $u \in V$:

Color[u]=white

Time=0;

For each $u \in V$:

- If color[u]==white: DFS-VISIT(G,u)
- DFS-Visit(G,u)
	- Time=time+1
		- $d[u]$ =time Color[u]=gray For each $v \in adj(u)$:
			- If color[v]==white:

DFS-Visit(G,v)

Color[u]=black

- Time=time+1
- $f[u]$ =time • Runtime: $\theta(V + E)$.
- Edge classification
	- \circ Tree edge: edges in the depth first forest found when exploring (u, v) .
	- \circ Back edge: (u, v) where u is descendant of v.
	- Note: v is a descendant of u if and only if at time $d[u]$, $\exists u \rightarrow v$ consisting of only white vertices. ■ *u* is discovered first while none of the vertices on $u \rightarrow v$ is discovered.
	- \circ Forward edge: (u, v) where v is descendant of u, but not tree edge.
	- Cross edge: any other edge.
- Parenthesis theorem: $\forall u, v$, the following cannot happen: $d[u] < d[v] < f[u] < f[v]$.
- $\circ \nu$ must finish before u .
- Theorem: in DFS of undirected graph, there are only T and B edges.

Topological sort

- Works on directed acyclic graphs (DAGs). DAGs model partial order
	- \circ $a > b$ and $b > c \Rightarrow a > c$.
	- \circ But may have a and b such that neither $a > b$ nor $b > c$.
- Topo sort produces a total order that respects partial order
- Lemma: a directed graph G is acyclic if and only if DFS yields no back edges.
	- Proof (\Rightarrow): if $\exists (u, v)$ that is a back edge, then \exists path $v \rightarrow u$ and $v \rightarrow u v$ is a cycle.
	- \circ \in suppose G contains a cycle. Let v be the first vertex discovered in that cycle, and let (u, v) be preceding edge in the cycle. At time $d[v]$, vertices of the cycle form a white path $v \rightarrow u$.
		- By white path theorem, u is descendant of v , (u, v) is a back edge.
- Topo-sort(G):
	- DFS(G) gives $f[v] \forall v$.
	- Output vertices in order of decreasing finish time
- Runtime: $\theta(V+E)$.
- Correctness proof: show if $(u, v) \in E$, then $f_u > f_v$.
	- \circ When we explore (u, v) , what are colors of u, v .
	- \circ u is gray.
	- \circ v cannot be gray, otherwise v would be ancester of u, (u, v) is a back edge, and we get a cycle (contradiction).
	- $\circ \nu$ can be white, ν is the decendant of u in DFS tree, $d_u < d_v < f_v < f_u$.
	- $\circ \nu$ can be black (finished), $f_{\nu} < d_{\nu} < f_{\nu}$.

Strongly Connected Components (SCCs)

- Given directed $G = (V, E)$.
- SCC of G is a maximal set $C \subset V$ such that $\forall u, v \in C$, both $u \to v$ and $v \to u$ exists.

- Definition
	- $\circ \quad G^T$ =transpose of G , $G^T = (V, E^T)$ such that $E^T = \{(u, v): (v, u) \in E\}.$
		- G^T and G have the same SCCs.
		- Runtime: $\theta(V + E)$.
	- \circ $G^{SCC} = (V^{SCC}, E^{SCC})$ component graph.
		- \bullet V^{SCC} has one vertex per SCC.
		- E^{SCC} has edge if ∃edges between components.

- G^{SCC} is DAG.
	- \circ Proof: let C, C' be distinct SCCs and $u, v \in C$, $u', v' \in C$ and suppose $\exists u \to u' \in G$. Then we show there is n $v' \to v$.
	- Suppose $\exists v' \rightarrow v$, then there is $u \rightarrow u' \rightarrow v' \rightarrow v \rightarrow u$, so u, v' are reachable from each other.
	- \circ C, C' not maximal, contradiction.
- $SCC(G)$:
	- DFS(G) and compute f_u , $\forall u$.
	- Compute G^T .

DFS(G^T), but in main loop, visit nodes in decreasing order of f_u .

- Output vertices of each DFS(G^T) tree as separate SCCs.
- Runtime: $\theta(V + E)$.

Minimum spanning trees (MSTs)

- Input: undirected $G = (V, E)$, weight $w(u, v)$ for each edge $(u, v) \in E$.
- Goal: find a tree $T \subset E$ such that T connects all vertices and $w(T) = \sum_{(u,v) \in T} w(u,v)$ is minimized.

- MST facts
	- \circ $|V|$ 1 edges.
	- No cycles
	- Not necessarily unique
- Generic-MST(G,w):
	- $A = \emptyset;$

While A is not a spanning tree:

- Find safe edge (u, v) .
- $A = A \cup \{(u, v)\}.$
- Return A .
- Proof:
	- \circ A: set of edges (initially empty).
	- \circ Expanding A by maintaining loop invariant (A is a subset of some MST).
	- Edges that maintain invariant:
		- If A ⊂MST, (u, v) is safe if and only if A \cup $\{(u, v)\}\subset MST$.
- Definitions:
	- \circ Cut(S,V-S) is a partition of V into disjoint sets S, $V S$.
	- \circ Edges $(u, v) \in E$ crosses cut(S,V-S) if one of (u, v) is in S and the other in $V S$.
	- \circ Cut respects A if and only if no edge in A crosses the cut.
	- An edge is light edge crossing cut if and only if its weight is minimum across all edges crossing the cut.
- Theorem: let $A \subset MST$, cut($S, V S$) respecting A and (u, v) light edge crossing $(S, V S)$, then (u, v) is safe for A. \circ Proof: let T be MST that includes A.
	- \circ If T contains (u, v) , done.
	- \circ Assume T does not contain (u, v) , we will construct T' that includes $A \cup \{(u, v)\}.$
	- \circ T is MST, then exists unique path p from u to v.
	- Path p must cross (S, V-S) at least once. Let (x, y) be the edge of p that cross the cut.
	- \circ We choose (u, v) to be light, so $w(u, v) \leq w(x, y)$.
	- \circ Since cut(S,V-S) respects A, then $(x, y) \notin A$.
	- $\circ~$ To form T' from T , remove (x,y) to break T into 2 components, then add (u,v) to combine.
	- \circ $T' = T \{(x, y)\} \cup \{(u, v)\}, w(T') = w(T) w(x, y) + w(u, v), w(T') \leq w(T), T'$ is MST.
	- \circ Need to show that (u, v) is safe for A.
	- $\circ A \subset T$ and $(x, y) \notin A$, so $A \subset T'$.
	- $A \cup \{(u, v)\}$ ⊂ T' , since T' is MST, $A \cup \{(u, v)\}$ ⊂MST.
- If weights of edges are all unique, then there is only one MST. Reverse doesn't hold.

Kruskal's

- Each vertex is its own component initially.
- Merge 2 components by choosing light edge, scanning edges in monotonically non-decreasing order.
- Uses disjoint set data structure to ensure edges cross different components.
- Runtime: $O(E \log E)$.
- Expands a tree $(A$ is always a tree).
- Each step, find light edge crossing $(V_A, V V_A)$, where V_A is the set of vertices A is incident on.
- Use a priority queue Q .
	- \circ Each element corresponds to a vertex in $V V_A$.
	- \circ Key[v] is min weight of any edge (u, v) such that $u \in V_A$.
- $Prim(V,E,w,r)$.

r is an arbitrary root. $Q = \emptyset$. Foreach $u \in V$: $Key[u] = \infty;$ $\pi[u] = NIL;$ Insert(Q,u); Decrease-key(Q,r,0) # set key[r]=0 While $Q \neq \emptyset$: u =Extract-min(Q); For $v \in adj(u)$: If $v \in Q$ and $w(u, v) < key[v]$: $\pi[v] = u;$ Decrease-key(Q,v,w(u,v)); • Runtime

- \circ Assume Q is a binary heap.
- \circ Initialization: $O(V \log V)$.
- \circ Decrease-key: $O(\log V)$.
- While loop.
	- **Extract-min V times:** $O(V \log V)$.
	- **•** Decrease-key E times: $O(E \log V)$.
- \circ Total: $O(E \log V)$.
	- \bullet $O(V \log V + E)$ if Fibonacci heaps.

Shortest path

- Input: directed $G = (V, E)$, weight function $w: E \to \mathbb{R}$.
- Def:

•

- \circ Weight of path $p = \langle v_0, v_1, ..., v_k \rangle$ is $\sum_{i=1}^k w(v_{i-1}, v_i)$.
- Shortest path weight from u to v is $\delta(u,v) = \begin{cases} \text{m}^2, & \text{if } \delta(u,v) = 0 \end{cases}$

○ Shortest path weight from *u* to *v* is
$$
δ(u, v) =\begin{cases} \n\min(w(p), v, u) = p(u, v) \\
\infty, otherwise\n\end{cases}
$$
.

- Optimal solution (shortest path tree) is not unique
- Variants
	- Single source.
	- Single destination.
	- Single pair
	- \circ All pairs shortest path $u \to v$, $\forall u, v$.
- Negative weight edges
	- OK as long as no neg-weight cycle reachable from source
	- Some algorithms only work with positive weight edges.
- Cycles: Algorithms will not output shortest path with cycles
- Output:
	- \circ for each $v \in V$, $d[v] = \delta(s, v)$.
	- Initially, $d[v] = \infty$, reduces as algorithm progresses.
	- σ $\pi[v]$ =predecessor of v in shortest path tree.
- Init-single-source(V,s)
	- For each $v \in V$:

 $d[v] = \infty;$

- $\pi[\nu] = NIL;$
- $d[s] = 0.$
- Relax(u,v,w):
	- If $d[v] > d[u] + w(u, v)$:
		- $d[v] = d[u] + w(u, v);$
		- $\pi[v] = u.$
- Properties
	- Optimal substructure: any subpath of a shortest path is a shortest path
		- If p_{uv} is shortest path, then p_{ux} , p_{xy} , p_{yy} are shortest path for x, y on $u \rightarrow v$.
		- Proof similar to Greedy, DP cut based approach.
- \circ Triangle inequality: $\forall (u, v) \in E$, $\delta(s, v) \leq \delta(s, u) + w(u, v)$.
	- **•** Proof: $\delta(s, v)$ is the shortest path, must be shorter than $s \to u \to v$, $\forall u$ by definition.
- Upper bound property: always have $d[v] \geq \delta(s, v)$, $\forall v$. Once $d[v] = \delta(s, v)$, it never changes.
	- Proof: initially true. Assume ∃v s.t. $d[v] < \delta(s, v)$ and WLOG, assume v is the first vertex for which this happens.
	- Let *u* be the vertex that causes $d[v]$ to change.
	- Then $d[v] = d[u] + w(u, v)$, $d[v] < \delta(s, v) \leq \delta(s, u) + w(u, v)$.
	- Since u is not a violator, $d[u] \ge \delta(s, u)$. Then $d[v] < d[u] + w(u, v)$, contradiction.
	- Once $d[v] = \delta(s, v)$, the assertion in Relax will be false.
- \circ No-path property: if $\delta(s, v) = \infty$, then $d[v] = \infty$ (because of upper bound property).
- Convergence property: If $s \to u \to v$ is a shortest path, $d[u]=\delta(s,u)$ and call Relax(u,v,w), then $d[v]=\delta(s,v)$ afterwards.
	- **•** After relaxation, $d[v] \le d[u] + w(u, v) = \delta(s, u) + w(u, v) = \delta(s, v)$ by optimal substructure.
- Since $d[v] \ge \delta(s, v)$ by upper bound property, then $d[v] = \delta(s, v)$. \circ $\;$ Path relaxation property: Let $p=\langle v_0,v_1,...,v_k\rangle$ be a shortest path from v_0 to $v_k.$ If we relax in the order (v_0,v_1) , (v_1,v_2) ,….,(
	- even mixed with other relaxation. Then $d[v_k] = \delta(v_0, v_k)$.
		- **•** Apply convergence property from $i = 1$ iteratively.

Bellman-Ford

- Allows neg-weight cycles
- Returns True if no neg-weight cycle reachable from s , False otherwise. Can also compute the shortest path from s to any other vertex in the graph.
- Bellman-Ford(V,E,w,s)
	- Init-single-source(v,s)
	- For $i = 1$: $|V| 1$:
		- For each edge $(u, v) \in E$:

Relax(u,v,w)

For each edge $(u, v) \in E$:

If $d[v] > d[u] + w(u, v)$: Return False.

Return True

- Runtime: $O(VE)$.
- Proof of correctness
	- \circ For $d = \delta$, path relaxation property.
	- For True/False
		- No neg-weight cycle: $d[v] = \delta(s, v) \leq \delta(s, u) + w(u, v) = d[u] + w(u, v)$.
			- □ Returns True
		- If there is a neg-weight cycle $C = (v_0, v_1, ..., v_k)$ with $v_0 = v_k$, reachable from $s, \sum_{i=1}^k w(v_{i-1}, v_i) < 0$.
			- □ Assume it returns True, then $d[v_i] \leq d[v_{i-1}] + w(v_{i-1}, v_i)$, $\forall i = 1, ..., k$.
			- □ Sum around C , $\sum_{i=1}^{k} d[v_i] \leq \sum_{i=1}^{k} d[v_{i-1}] + \sum_{i=1}^{k} w(v_{i-1}, v_i)$.
			- □ Since $\sum_{i=1}^k w(v_{i-1},v_i) < 0$, $\sum_{i=1}^k d[v_i] < \sum_{i=1}^k d[v_{i-1}]$, but $\sum_{i=1}^k d[v_i] = \sum_{i=1}^k d[v_{i-1}]$ for a cycle, contradiction.
- Example

○ 0 means no update, 1 means update

Single Source Shortest Paths in Direct Acyclic Graphs (SSSPs in DAGs)

```
• DAG-Shortest-Paths(V,E,w,s)
```
Topological sort $(\theta (V + E))$ Init-Single-Source(V,s) $(\theta(V))$ Foreach u in topological order: ($\theta(E)$) Foreach $v \in adj(u)$: Relax(u,v,w). • Runtime: $\theta(V + E)$.

$$
\cdot \frac{5}{0} \div \frac{1}{0} \frac{3}{0} \div \frac{1}{0} \frac{3}{0} \div \frac{1}{0} \frac{3}{0} \div \frac{1}{0}
$$

Dijkstra's algorithm

- No negative-weight edges
- Idea:
	- \circ Maintain a priority queue Q, with keys= $d[*]$ estimates.
	- \circ S =vertices where final shortest path distance is determined.
	- $O = V S$.
- Dijstra(V,E,w,s) Init-Single-Source(V,s)
	- $S = \emptyset$

$$
Q = V;
$$

While $Q \neq \emptyset$:

 u =Extract-min(Q);

 $S = S \cup \{u\};$

Foreach $v \in adj(u)$: Relax(u,v,w) (Requires Decrease-Key)

$$
\begin{array}{r}\n50 \\
\hline\n60 \\
\hline\n14\n\end{array}
$$

- Proof of correctness
	- \circ Need to show that $d[u] = \delta(s, u)$ when u is added to S.
	- \circ Assume $\exists u$ such that $d[u]\neq \delta(s,u).$ WLOG, let u be the first vertex for which this happens when u is added to $S.$
		- $u \neq s$, $d[s] = 0 = \delta(s, s)$, $s \in S$, $s \neq \emptyset$.
		- *u* is reachable from *s*, otherwise $d[u] = \delta(s, u) = \infty$. (there exists a shortest path from *s* to *u*)
	- Just before u is added to S, path $p: s \rightarrow u$ connects a vertex in S to a vertex in $V S$.
	- \circ Let y be the first vertex along p that is in $V S$, x be the predecessor
	- Let p_1 : $s \to x$, p_2 : $y \to u$, $p = p_1 + (x, y) + p_2$.
	- \circ Claim: $d|y| = \delta(s, y)$ when u is added to S.
		- $x \in S$ and u is the first vertex such that $d[u] \neq \delta(s, u)$, then $d[x] = \delta(s, x)$.
	- \circ Relax (x, y) at that time, then $d[y] = \delta(s, y)$ by convergence property.
	- \circ y is on shortest path $s \to u$, and all edge weights are positive.

• Then
$$
\delta(s, y) \leq \delta(s, u)
$$
.

- \circ So $d[y] = \delta(s, y) \leq \delta(s, u) \leq d[u].$
- \circ Observe y and u were in Q when we choose u, thus $d[u] \leq d[y]$, thus $d[u] = d[y]$.
- δ $d[y] = \delta(s, y) = \delta(s, u) = d[u]$, contradiction.
- Runtime: $O((V + E) \log V)$.

Difference constraints

- Build constraint graph (weighted, directed)
- $V = \{v_0, v_1, ..., v_n\}$: one vertex per variable, v_0 is pseudo-start.
- $E = \{(v_i, v_i): x_i x_i \leq b_k \text{ a constraint }\} \cup \{(v_0, v_1), (v_0, v_2), ..., (v_0, v_n)\}.$
- $w(v_0, v_i) = 0$.

•
$$
w(v_i, v_j) = b_k
$$
 if $x_j - x_i \leq b_k$.

- Theorem:
	- If G has no negative weight cycle, then $x = (\delta(v_0, v_1), \delta(v_0, v_2), ..., \delta(v_0, v_n))$ is a feasible soltuion.
	- \circ If G has a neg-weight cycle, then no solution.
- $x_i \leq x_i + b_k$ is equivalent to $d|v_i| \leq d|v_i| + w(v_i, v_i)$.
- Build graph and run Bellman-Ford.
	- \circ Runtime: $O(VE)$.

Maximum flow

- $G = (V, E)$ directed, each edge (u, v) has a capacity $c(u, v) \ge 0$.
- Source vertex s, sink vertex t, and assume $\exists p: s \rightarrow u \rightarrow t$, $\forall u \in V$.

• Source vertex , sink vertex , and assume , .

- \circ In the graph: $f(s, w) = 1$, $f(w, s) = -1$, even there is no edge (w, s) .
- For x , $\sum_{v \in V} f(x, v) = f(x, s) + f(x, y) + f(x, w) + f(x, z) + f(x, t) = 0 + 1 + (-2) + (1 2) + 2 = 0.$ ■ Input =4 from w , z, output=4 to y , z, t.
- $|f| = 3$ (output from $s = 3$, input to $t = 3$).
- Net flow: $f: V \times V \rightarrow \mathbb{R}$ such that
	- \circ Capacity constraint: $\forall u, v \in V$, $f(u, v) \leq c(u, v)$.
	- \circ Skew symmetry: $\forall u, v \in V$, $f(u, v) = -f(v, u)$.
	- Flow conservation: $\forall u \in V \{s, t\}$, $\sum_{v \in V} f(u, v) = 0$.
- Value of flow $f: |f| = \sum_{v \in V} f(s, v)$ = total flow out from s. \circ Value comes from s goes to t.
- Cancellation:

•

 \circ 5 units $u \to v$ with 0 units $v \to u$ is equivalent to 8 units $u \to v$, 3 units $v \to u$.

Maximum flow problem:

- Given G , S , t , c , find $|f|$ that is maximum.
- Implicit summation: if X, Y are sets of vertices $f(X, Y) = \sum_{x \in X} \sum_{y \in Y} f(x, y)$.
- Flow conservation: $f(u, V) = 0$, $\forall u \in V \{s, t\}.$
- Lemma: for any flow in $G = (V, E)$.
- $\circ \forall X \subset V, f(X,X) = 0.$
	- $\circ \forall X, Y \subset V, f(X, Y) = -f(Y, X).$
		- **•** Proof: $f(X,Y) = \sum_{x} \sum_{y} f(x,y) = \sum_{x} \sum_{y} -f(y,x) = -\sum_{y} \sum_{x} f(y,x) = -f(Y,X)$.
	- $\circ \forall X, Y, Z \subset V$ such that $X \cap Y = \emptyset$, $f(X \cup Y, Z) = f(X, Z) + f(Y, Z)$, $f(Z, X \cup Y) = f(Z, X) + f(Z, Y)$.
- Lemma: $|f| = f(s, V) = f(V, t)$.
	- Proof:
- \circ (i) show $f(V, V s t) = 0$.
	- $f(u, V) = 0$, $\forall u \in V \{s, t\}$, so $f(V s t, V) = 0$ (sum up on $V s t$), then $f(V, V s t) = 0$ by skew symmetry. ○ $|f| = f(s, V) = f(V, V) - f(V - s, V) = -f(V - s, V) = f(V, V - s) = f(V, V - s - t) + f(V, t) = f(V, t)$.
		- Since $f(V, V) = f(V, V s t) = 0$.

Cut:

- A cut (S, T) of G is a partition of V into S, $T = V S$ such that $s \in S$, $t \in T$.
- For flow f, net flow across $(S, T) = f(S, T)$, capacity of $(S, T) = c(S, T)$.
- e.g. in the same graph above, let $S = \{s, w, y\}$, $T = \{x, z, t\}$.
	- o $f(S,T) = f(w,x) + f(y,z) + f(y,x) = 2 + 2 1 = 3.$
	- $c(S,T) = c(w,x) + c(y,z) = 5$ (directional, only consider the path from S to T).
- Lemma: for any cut (S, T) , $f(S, T) = |f|$.
- Corollary: the value of any flow \leq capacity of any cut ($|f| \leq c(S,T)$, $\forall S,T,f$). \circ Max flow \leq capacity of min cut •

Residual network

- Given flow f in $G = (V, E)$, residual capcity: $c_f(u, v) = c(u, v) f(u, v) \ge 0$.
- Residual network $G_f = (V, E_f)$ where $E_f = \{(u, v) \in V \times V : c_f(u, v) > 0\}$.
- E.g. •

- Note: $f(w, s) = -1$, $c(w, s) = 0$, $c_f(w, s) = 1 > 0$.
- $c_f(y, s) = c(y, s) f(y, s) = 1 (-2) = 3.$
- $c_f(z, x) = c(z, x) f(z, x) = 3 (2 1) = 2.$
- $c_f(x, z) = c(x, z) f(x, z) = 2 (1 2) = 3.$
- Flow sum of f_1 , f_2 : $f_1 + f_2$.
- If f' is flow in G_f , then $f + f'$ is flow in G with value $|f + f'| = |f| + |f'|$.

Augmenting path:

- A path $p: s \rightarrow t$ in G_f .
- Gan push $c_f(p)$ flow from s to t along this path, with $c_f(p) = \min\{c_f(u, v) : (u, v) \in p\}$.
- e.g. $p = (s, w, y, z, x, t), c_f(p) = 1.$ ○ Updated original:

• Lemma: given flow net G, and p augmenting path in G_f , define f_p as flow in G_f with value $c_f(p)$, then $f' = f + f_p$ is flow in G with value $|f'|$ $|f| + c_f(p) > |f|.$

Theorem (maxflow-mincut): the following 3 are equivalent:

- f is max flow.
- f admits no augmenting path.
- $|f| = c(S, T)$ for some cut (S, T) .
- (The maximum value of an s-t flow is equal to the minimum capacity over all s-t cuts.)

Ford-Fulkerson(V,E,s,t)

Foreach $(u, v) \in E$: $f[u, v] = f[v, u] = 0;$ While \exists augmenting path $p \in G_f$: Augment f by $c_f(p)$;

Runtime: assume integer capacity, and max flow f^* , $O\big(E\big|f^*\big|\big).$

• Not polynomial, since $|f^*|$ is not an input size.

Edmonds-Karp

Do Ford-Fulkerson, but compute augmenting path by BFS in G_f (shortest path $s \to t$ with least number of edges). Runtime: $\mathit{O}\big(VE^2\big)$.

- Proof: Let $\delta_f(u, v)$ be the shortest path distance $u \to v$ in G_f .
- Lemma: $\forall v \in V \{s, t\}, \delta_f(s, v)$ increases monotonically with every augmentaion.
	- Proof: assume $\exists v \in V \{s, t\}$ such that exists flow augmentation making $\delta_f(s, v)$ decrease.
	- \circ Let f be flow before and f' flow after. Let v be a vertex with minimum $\delta_{f'}(s, v)$ whose distance was decreased $(\delta_{f'}(s, v) < \delta_f(s, v))$.
	- \circ Let $s \to u \to v$ be shortst path in $G_{f'}$, $(u, v) \in E_{f'}$ and $\delta_{f'}(s, v) = \delta_{f'}(s, u) + 1$.
	- \circ So $\delta_{f'}(s, u) < \delta_{f'}(s, v)$.
	- This implies $\delta_{f'}(s, u) \geq \delta_f(s, u)$ (u cannot be one of vertices whose distance is decreased, otherwise u will be chosen).
	- \circ Claim: $(u, v) \notin E_f$.

If $(u, v) \in E_f$, then $\delta_f(s, v) \leq \delta_f(s, u) + 1 < \delta_{f'}(s, u) + 1 = \delta_{f'}(s, v)$ contradiction, since $\delta_{f'}(s, v) < \delta_f(s, v)$.

- Thus $(u, v) \in E_{f'}$ and $(u, v) \notin E_f$.
- \circ Augmentation increases flow $v \to u$.
- Shortest path $s \to u$ in G_f has (v, u) as last edge.
- $\delta_F(s, v) = \delta_f(s, u) 1 \leq \delta_{f'}(s, u) 1 = \delta_{f'}(s, v) 2.$
- \circ Contradiction to $\delta_{f'}(s,v) < \delta_f(s,v)$.
- Theorem: Edmonds-Karp does $O(VE)$ augmentation.
	- Proof: p is augmenting path, $c_f(u, v) = c_f(p)$. Call edge (u, v) critical in G_f .
	- At least 1 critical edge per augmenting path.
	- \circ We show that each of |E| edes become critical at most $\frac{|\mathcal{V}|}{2} 1$ times.
	- Assume $u, v \in V$ s.t. $(u, v) \in E$ or $(v, u) \in E$ or both.
	- \circ Since augmenting path are shortest path, (u, v) become critical means that $\delta_f(s, v) = \delta_f(s, u) + 1$.
	- \circ Augmenting \Rightarrow (u, v) disappears, can reappear if flow $u \rightarrow v$ decreases.
	- $\circ \Rightarrow (v, u)$ is on augmenting path in $G_{f'}, \delta_{f'}(s, u) = \delta_{f'}(s, v) + 1$.
	- \circ Using the lemma, $\delta_{f}(s, v) \geq \delta_f(s, v) \Rightarrow \delta_{f'}(s, u) = \delta_{f'}(s, v) + 1 \geq \delta_f(s, v) + 1 = \delta_f(s, u) + 2$.
	- \circ Every time an edge become critical, δ increases at least by 2.
	- \circ Longest number of edges = $|V| 2$.
	- In the worst case, become critical $\frac{|V|-2}{2} = \frac{|V|}{2}$ ○ In the worst case, become critical $\frac{|v| - 2}{2} = \frac{|v|}{2} - 1$ times.
	- Have $O(E)$ pairs of nodes \Rightarrow $O(VE)$ critical edges \Rightarrow $O(VE)$ augmentations.
	- \Rightarrow $O(VE^2)$ total time (augmenting \times BFS).

e.g. find the min weight cycle in $G = (V, E)$ in $O\big(V E^{\, 2}\big)$ time (assume no neg wight cycle).

Foreach $(u, v) \in E$:

Let $G' = (V, E - \{(u, v)\})$; Bellman-Ford(G', v) gives $d[u] = v \rightarrow u$ shortest path; Take min of each cycle;

e.g. Find the min weight cycle in $O(VE \log V)$ time. For $v \in V$: (O(VE log V)) Dijkstra(G,v); Store results in matrix D ; // Now $D[u, v] = \delta(u, v)$. Compute $\min_{u,v \in V} \delta(u,v) + \delta(v,u)$ ($O(V^2)$). Bellman-Ford will be $O(V^2E)$.

e.g. Maximum-bottleneck path

- Let $G=(V,E)$ be a directed weighted path with positive edge weights. Imagine each edge weight represents width of the edge. The bottleneck
	- of a path is the minimum edge width on a path. We want the maximum bottleneck path from $s \in V$, computed in $O((V + E) \log V)$ time.
- Modify Dijkstra: ○ In Relax:
	- $d[v] = \max\{d[v], \min\{d[u], w(u, v)\}\}.$
	- **•** Record the parent accordingly, (if $d[v] < min\{d[u], w(u, v)\}$: $\pi[v] = u$).
	- In Init-Single-Source:

$$
\bullet \quad d[v] = -\infty, \forall v \neq s.
$$

 $d[s] = \infty$.

NP-Completeness

March 3, 2023 8:03 PM

Theory of computation

Alphabet (Σ) : finite set of symbols, nonempty, ordered String: possibly infinite sequence of symbols from alphabet e.g. $\Sigma_1 = \{a, \ldots, z\}, \Sigma_2 = \{0, \ldots, 9\}.$

- abc is a string on Σ_1 .
- 123 is a string on Σ_2 .
- a1b is not a string of Σ_1 or Σ_2 .

Empty string: ϵ .

Conventions:

- Concatenate: 01 with 011 gives 01011.
- Self-concatenation: $a = 01$, then $a^0 = \epsilon$, $a^1 = 01$, $a^2 = 0101$.
- Reverse: a^R is the reverse of a.
- Σ^* : Set of all strings in Σ .
- Σ^+ : Set of all strings in Σ with ϵ .

Language (L) :

- L is a possibly infinite subset of Σ^* .
- L is language over Σ^* , then each element in L is string of the language.
- e.g.
	- \circ {0,11,0011}, { ϵ ,10} are languages over {0,1} (all subsets of {0,1}^{*}).
- With languages L_1 and L_2 :
	- \circ Union: $L_1 \cup L_2$.
	- \circ Intersection: $L_1 \cap L_2$.
	- \circ Subtraction: $L_1 L_2$ (in L_1 but not in L_2).
- L^i : concatenate i copies of the language.
	- $L^0 = {\epsilon}.$
	- $e.g. L_1 = \{\epsilon, 0.1\}, L_1^2 = \{\epsilon, 0.1.00.01.10.11\}.$
- Kleene closure: $L^0 \cup L^1 \cup L^2$.

Regular languages

- A regular expression (RE) over Σ is defined with the following rules:
	- \circ ϵ is RE.
		- $\circ \forall a \in \Sigma$, a is RE.
		- If R,S are RE, then R+S (R or S) is a RE.
		- If R,S are RE, then RS (concatenation) is a RE.
		- \circ If R is RE, then R^* is RE (R^* is infinite copies of R).
		- If R is RE, then (R) is RE (parenthesize).
- e.g.
	- $L(0) = \{0\}.$
	- $L((0+1)(0+1)) = \{00,01,10,11\}.$
	- $L(0^*) = {\epsilon, 0,00,000}.$
	- $\circ L((0+1)^*1)$ ={any string ending with 1}.
	- $\circ L((1^*01^*01^*)^*)$ ={any string with even number of 0s}.
	- \circ $L\left(c^*(a+(bc^*))^*\right)$ ={any string over {a,b,c} that do not contain substring ac}.

Deterministic finite automata (DFA)

- Language recognition devices: given string x as input, does $x \in L$ or $x \notin L$?
- Given finite number of states q_0, q_1, \ldots, q_n , with some terminal state, if a string ends in a terminal state, we accept it, otherwise, reject.
- Theorem: a language is regular if and only if it is recognized (accepted) by some DFA.
- e.g.

- \circ q_1 is terminal state.
- \circ $x = 1011$ is accepted.
- \circ $x = 0110$ is rejected.
- \circ Accepts all $L((0 + 1)^*1)$.

Non-deterministic finite automata (NFA)

- A single input can cause the state transition towards more than 1 state.
- When we reach a non-deterministic state, we go to all possible next state to check.
- e.g.

- \circ Accepts all w on $\{0,1\}^*$ that ends with 01.
- Theorem: for each NFA, there exists equivalent DFA.

All the following are not regular languages, and cannot be recognized by DFAs

- $\{0^p: p \text{ is a prime}\}.$
- $\{0^n1^n : \forall n \in \mathbb{N}\} = \{\epsilon, 01, 0011, 000111, ...\}.$
- $\{ww^R : w \in \{0,1\}^*\}.$
- Issue: no memory

Context-free languages(CFLs)

- They rise from production rule.
- \bullet s: string in language.
- e.g.
	- \circ $s \to \epsilon$, $s \to 0s1$ gives $\{0^n1^n : \forall n \in \mathbb{N}\}.$
	- \circ $s \to 0s0|1s1|\epsilon$ gives $\{ww^R:w \in \{0,1\}^*\}.$

Nondeterministic Pushdown automata (NPDA)

• Push when 0, pop when 1, stack empty then accept: $\{0^n1^n\}$.

Turing machine

- Finite state machine
- Infinite length tape
- Can read/write tape
- Can leave an answer on the tape
- Special state: halting state
	- Finished computation
		- Read tape: 0 for yes, 1 for no.
- Can enter infinite loop
- A Turing machine T accepts language L if T accepts $x \in L$ and rejects or enters infinite loop for $x \notin L$.
- A Turing machine T decides a language L if:
	- \circ Yes: $x \in L$.
	- \circ No: $x \notin L$.
	- There should be no infinite loop

Universal Turing Machine

- A Universal Turing Machine U takes in an input $\langle M, w \rangle$, it simulates a Turing Machine M on an input w.
- Let M_a be the Turing machine with specification a , it simulates M_a on input x .

$$
\frac{a}{\gamma} \sqrt{1-\frac{a}{\gamma}} \sqrt{1-\frac{a}{\gamma}}
$$

- Algorithm=Turing Machine=hardware=computer.
- Theorem: There always exists universal Turing machine such that $\forall x, a \in \{0,1\}^*$, $U(x, a) = M_a(x)$ such that if $M_a(x)$ halts within T steps, then halts within $cT \log T$ steps where constant c depends on the alphabet size, number of tapes etc of M_a . •

Uncomputability

- Theorem: There is uncomputable functions $UC: \{0,1\}^* \to \{0,1\}^*$ not computed by any Turing machine.
	- Define *UC* as follows, $\forall a \in \{0,1\}^*$:
		- If $M_a(a) = 1$ (accept), then $UC(a) = 0$.
		- If $M_a(a) = 0$ (reject), then $UC(a) = 1$.
	- \circ Proof: Assume UC is computable, i.e. there exists Turing machine M such that $M(x) = UC(x)$, $\forall x \in \{0,1\}^*$.
		- Then $M(M) = UC(M)$ contradiction, because by definition, $M(M) = 1$ iff $UC(M) = 0$.

Halting problem:

- Define HALT(a, x)=1 if $M_a(x)$ halts. HALT is uncomputable.
	- Proof: Assume there exists Turing machine TM_{halt} , then use TM_{halt} to compute UC function.
	- \circ To build machine on UC (M_{UC}):
- **•** On input a , M_{UC} runs HALT(a , a).
- **•** If HALT(a, a)=0 (M_a does not halt on a), then $M_{\text{HC}} = 1$.
- $\;\;\dot{ }\;\;\;$ If HALT(a,a)=1, then run universal Turing machine U on $M_a(a)$, get result $b.$
	- \Box If $b = 1$, output 0.
	- \Box If $b = 0$, output 1.
- However, this is not computable, contradiction.

Decision v.s. optimization

- Decision: Is there a path $x \to y$ which is at most k-edges?
	- HAM-CYCLE: Is there a simple cycle traversing all vertices of G?
- Optimization: What's the shortest path between vertices x and y ?
- Decision problems \leq optimization problems.
	- If we solve an optimization problem, we have the solution to the corresponding decision problem.

Complexity class P

- $P = \{L \in \{0,1\}^* : \exists \text{ poly time algorithms that decides } L \text{ in poly time}\}.$
- Def: Algorithm A verifies a problem L if and only if given instance $x \in L$, \exists certificate (or witness, candidate solution) y such that $A(x, y) = 1$.
	- \circ The language verified is $L = \{x \in \{0,1\}^* : \exists y \in \{0,1\}^* \text{ s.t. } A(x,y) = 1\}.$
	- \circ e.g. in HAM-CYCLE, x is a graph, y is a proposed solution of HAM-CYCLE.

Complexity class NP

- Informally: all problems verified in poly-time.
- Formally: $L \in NP$ if there exists poly-time algorithm A and constant c such that $L = \{x \in \{0,1\}^* : \exists \text{ certificate } y \text{ where } |y| = O(|x|^c) \text{ such that }$ $A(x, y) = 1$ and A runs in poly-time}.
	- The size of certificate (solution) must be polynomial to the size of the input.

Hierarchy

- $P \subset NP$: problems that can be solved in polynomial time can be verified in polynomial time.
- Co-NP: $L \in NP \Rightarrow L \in \text{co-NP}.$
	- e.g. NP=all graphs that have HAM-CYCLE, co-NP=problems that are:
		- Not a graph
		- A graph without HAM-CYCLE
- Theorem: P is closed under complement that is P=co-P.
- \circ $L \in P \Rightarrow \overline{L} \in P$ (simply reverse the problem and solution).
- PSPACE: problems that can be solved by Turing machine using poly space

Open problems

- NP=co-NP?
- \bullet P=NP \cap co-NP? (primality checking is NP \cap co-NP)
- P=NP?

Poly-reducibility

- Informally: if an instance of problem Q can be transformed in poly-time to an instance of problem Q' such that a solution to Q' provides a solution to Q.
	- \circ i.e. Q is not harder than $Q', Q \leq Q'.$
- Formal: language (problem) L_1 is poly-reducible to L_2 denoted as $L_1 \leq_p L_2$ if and only if \exists poly-time algorithm $f()$ such that $x \in L_1$ if and only if $f(x) \in L_2$.
- Theorem: if $L_1 \leq_p L_2$ and $L_2 \in P$, then $L_1 \in P$. ○ Given x, reduce x to $f(x)$ in poly-time, check $f(x) \in L_2$ is poly-time, map back to x is poly time.

NP Complete (NPC)

- A problem is NPC if
	- \circ $L \in NP$ (verified in poly time)
	- $\circ \forall L' \in NP$, $L' \leq_p L$ (if only this property is satisfied, then L is NP-hard)
- Theorem:
	- o If $L \in NPC$ and $L \in P$, then $P = NP$.
		- \circ NP=co-NP if and only if $\exists L \in NPC$ such that $\overline{L} \in NP$.
			- \blacksquare \Rightarrow : easy since NP and co-NP now overlaps.
			- \Leftarrow : pick $L' \in NP$, show that $\overline{L'} \in NP$.
				- □ Since $L \in$ NPC , $L' \leq p L$, equivalently, $\overline{L'} \leq p \overline{L}$.
				- □ Since \overline{L} \in NP , then $\overline{L'}$ \in NP .

Methodology: Given L, to prove $L \in NPC$.

• Prove $L \in NP$ (verified in polytime).

- \circ Provide a certificate: the evidence that the solution is an instance of L.
- e.g. for SAT, assignment, for Ham-Cycle: a ham-cycle.
- Select known $L' \in NPC$ and:
	- \circ Find algorithm f that given instance $x, x \in L'$ if and only if $f(x) \in L$.
		- Show the transformation
		- Then prove the if and only if equivalence
	- Show f takes poly time, i.e. $L' \leq_p L$.
- If $L' \leq_p L$ for some $L' \in {\mathit{NPC}}$, then $\forall L'' \in {\mathit{NP}}$, $L'' \leq_p L' \leq_p L$.

Circuit SAT is NPC

- Is there an assignment to primary inputs a, b, c, making $z = 1$?
- Circuit SAT→SAT→3-CNF-SAT→ $\begin{array}{c} \{clique \rightarrow vertex \ cover \} \ \{HAM CYCLE \rightarrow TSP \} \end{array}$

Reduce circuit SAT to formula SAT

- Formula SAT: ϕ is a formula of n-boolean variables and connections \wedge , \vee , \neg , $()$, \Rightarrow , \Leftrightarrow .
	- \circ e.g. $\phi = (x_1 \Leftrightarrow \overline{x_2}) \wedge (\overline{x_4} \Rightarrow (x_1 \vee \overline{x_2})).$
- Decision version: Is there a 0/1 assignment to variables such that $\phi = 1$? $|\phi| = n$.
- Formula SATENP:
	- \circ Number of connections is poly in n, given a solution, it takes polytime to evaluate and verify.
- Circuit-SAT \leq_p Formula SAT.
	- Given a single output circuit C, create a formula ϕ such that C has satisfying assignment is equivalent to $\exists x_1, x_2, ..., x_n$, s.t. $\phi = 1$.
	- If $\phi = 1$, the corresponding a, b, c must give $z = 1$ in the circuit.
	- o If C has satisfying assignment, by construction $\phi = 1$.
	- \circ Reduction is polynomial time, since number of gates is polynomial in n .

3-CNF-SAT

CNF: a conjunction of disjunction of clauses with any number of boolean variables • \circ $\phi = (a \vee b) \wedge (a \vee b \vee c) \wedge (b \vee d).$

- 3-CNF: a conjunction of disjunction of clauses with exactly 3 boolean variables •
- \circ $\phi = (x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (\overline{x_3} \vee x_5 \vee z_7) \wedge (x_1 \vee x_3 \vee \overline{x_7}) \wedge \cdots$
- Literal: variable or complement of a variable
- Clauses: each (i) is a clause.
- \bullet Disjunction: connected by V.
- Conjunction: clauses connected by \wedge .
- Decision version: Given ϕ with $n = \#$ variables, $O(n) = \#$ clauses, does it have a satisfying $x_1, ..., x_n$ assignment? • Side note:
	- 2.4-SAT∈ P : if each clause have 2.4 literals on average, then it is P .
	- 0 2.41 \in NPC.
- 3-CNF-SAT is NP: given assignment $x_1, ..., x_n$, it takes poly time to plug in $O(n)$ clauses to check.
- Circuit-SAT \leq_p 3-CNF-SAT.
	- \circ Given a circuit, it has a satisfying input assignment \Leftrightarrow some 3-CNF-SAT ϕ is satisfiable.

○ Consider a gate $d = a \wedge b$, it has a characteristic function:

- **•** The maxterm is: $\phi_{max}^{and} =$
- $\phi_{and} = (a \vee b \vee \overline{d}) \wedge (a \vee \overline{b} \vee \overline{d}) \wedge (\overline{a} \vee b \vee \overline{d}) \wedge (\overline{a} \vee \overline{b} \vee d)$. (complement everything)
- \circ The overall circuit can be represented by $\phi=\phi_{and}\wedge\phi_{nor}\wedge\phi_{nand}\wedge(w\vee\bar{p}\vee q)\wedge(w\vee p\vee\bar{q})\wedge(w\vee\bar{p}\vee\bar{q})\wedge(w\vee p\vee q)$.
- Note: the final 4 terms is equivalent to $w = 1$.
- \circ If there exists satisfying assignment to the circuit, then ϕ is satisfiable.
- If ϕ is satisfiable, we use the same input, and w must be 1.
- f (transformation) takes poly-time, since we just translate $O(n)$ clauses to $O(n)$ gates.

Clique

- A clique is a graph that every vertex is connected with all other vertices.
	- O K4:

- Both the clique and approximating clique are NPC.
- Decision version: Does G have a clique of size k ?
- Clique is NP: given the k vertices, check if they are pair-wise connected takes poly time $O(V + E)$.
- 3-SAT \leq_p clique

- \circ ϕ has a satisfying assignment \Leftrightarrow some G has a clique of size = # clauses.
- Reduction procedure:
	- For each clause, introduce 3 vertices.
	- Connect vertices from different clauses if and only if they are not complement of themselves.
- \circ Given a satisfying assignment to ϕ , the connection in G is a clique.
- \circ Given a clique in G, the vertex assignment satisfies ϕ .
- Given ϕ , we create a graph is polynomial time.

Vertex cover

- Given a graph G, a vertex cover $V' \subset V$ is one that $\forall (u, v) \in E$, u or v or both in V' .
- Decision version: Does there exist a vertex cover of size k ?
- Vertex cover is NP: Iterate through the vertices V' , check if all edges are adjacent to V' , $O(E^2)$.
- Clique \leq_p Vertex-Cover
	- G has a clique of size $k \Leftrightarrow \bar{G}$ has a vertex cover of size $|V| k$.
	- \overline{G} is the complement graph, with the same vertices, if $e \in E$, $e \notin \overline{E}$.

- \circ Assume they are not vertex cover, there is an additional edge in \bar{G} not covered, then there is no clique of size k in G .
- \circ Assume there is no clique, then there will be an additional edge in \bar{G} , the vertex cover has a larger size.
- Transformation from G to \bar{G} is polynomial time.

Travelling Salesman Problem

- Informal: a salesman needs to go to every city only once to sell his merchandise and wants to minimize the mileage
- Formally: Given a complete, undirected, weighted graph, find a Ham-Cycle of minimum weight.
- Decision version: Does G have a TSP with weight k?
- TSP is NP: Iterate through the given solution, check if it is weight k and Ham-Cycle. Poly-time
- Ham-Cycle \leq_p TSP
	- \circ Assign unit weight to all edges in the original Ham-cycle graph G .
	- Make G a complete graph by assigning infinite weight to the additional edges.
	- \circ The transformation is poly-time, since we add $O(V^2)$ edges.
	- \circ Is there a TSP with $k = |V|$?

Suppose $A \leq_p B$:

- If $B \in P$, then $A \in P$.
- If $B \in NPC$, then $A \in NP$ (can use B 's verification procedure).
- If $A \in P$, cannot conclude on B.
- If $A \in NPC(NP$ -hard), then $B \in NP$ -Hard.

Half-Vertex-Cover

- A=Half-Vertex-Cover={ (G) : G has even number of vertices and a vertex cover of size $\frac{r-1}{2}$.
- \bullet B =k-vertex cover.
- $A \in NP$:
- \circ Certificate: $S \subset V$.
- Verification: check that $|S| = \frac{1}{2}$ \circ Verification: check that $|S| = \frac{|V|}{2}$ and check that $\forall (u, v) \in E$, either $u \in S$ or $v \in S$, takes $O(E) + O(1)$.
- $B \leq_p A$.
	- \circ Given G and k, construct G that has vertex cover of size $\frac{1}{2}$.
	- case 1: $k = \frac{1}{2}$ \circ case 1: $k = \frac{|V|}{2}$, nothing to do.
	- Case 2: $0 \leq k < \frac{1}{2}$ ○ Case 2: $0 \le k < \frac{16}{2}$.
		- Transformation: let $m = |V| 2k$, given $G = (V, E)$ and k, construct $G' = (V', E')$ by adding $v_1, ..., v_m$ new vertices to G that are disconnected and contain self-loops. $O(V + E + m) = O(V + E + k)$.
		- Claim: $\langle G, k \rangle \in k$ -VC $\Leftrightarrow \langle G' \rangle \in$ Half-VC.
			- □ ⇒Let $S \subset V$ be the k-vertex cover of G, $|S| = k$, consider $S' = S \cup \{v_1, v_2, ..., v_m\}$, which is a vertex cover of G' . Notice $|S'| = |S| + m = k + |V| - 2k = |V| - k = \frac{|V'|}{2}$.
			- $□ ⊂let S' ⊂ V' be a vertex cover of G', notice $v_1, ..., v_m \in S'$ otherwise we miss the self loop. Consider $S = S' \{v_1, ..., v_m\}$.$ $|S| = |S'| - m = \frac{|V'|}{2}$ $\frac{|V'|}{2} - |V| + 2k = \frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ is a k-vertex cover of G .
	- Case 3: $\frac{|V|}{2}$ < $k \leq |V|$.
		- Transformation: Let $p = 2k |V|$, given $G = (V, E)$ and k, construct $G' = (V', E')$ by adding $v_1, ..., v_p$ new vertices to G that are disconnected, $|V'| = |V| + 2k - |V| = 2k$. $O(V + E + p) = O(V + E + k)$.
		- Claim: $\langle G, k \rangle \in k$ -VC $\Leftrightarrow \langle G' \rangle \in$ Half-VC.
			- \Rightarrow Let $S \subset V$ be the k-vertex cover of G, $|S| = k$, consider $S' = S$, $|S'| = |S| = k = \frac{1}{2}$ □ ⇒Let $S \subset V$ be the k-vertex cover of G, $|S| = k$, consider $S' = S$, $|S'| = |S| = k = \frac{|V|}{2}$.
			- □ \Leftarrow let $S' \subset V'$ be the half-vertex cover of $G'.$ Let $S = S' \{v_1, ..., v_p\}$.
				- $|S'| p \leq |S| \leq |S'| = \frac{|V'|}{2}$ $\frac{y-1}{2} = k$, so $|S| \leq k$.
				- If $|S| < k$, add any vertex until $|S| = k$

Approximation Algorithms

March 3, 2023 8:03 PM

Approximation algorithm with approximation ratio $\rho(n)$ (or a $\rho(n)$ -approximation)

- $\rho(n) \geq 1$, often constant, can be abbreviated to ρ -approx.
- Minimization: $\frac{c}{c} \leq \rho(n)$, C is approximation, C^* is optimal.
- Maximization: $\frac{C^*}{C}$ • Maximization: $\frac{c}{c} \leq \rho(n)$.
- If algorithm is poly-time, then we have poly-time $\rho(n)$ -approximation.

Vertex cover

- Optimization: find vertex cover of minimum size
- 2-approximation algorithm in poly time
- Approx-Vertex-Cover(G)

$$
C = \emptyset;
$$

\n
$$
E' = G.E \text{ (copy edges)};
$$

\nWhile $E' \neq \emptyset$:
\nChoose $(u, v) \in E'$ arbitrarily;
\n $C = C \cup \{u, v\};$
\nRemove from E' , every edge incident on u or v ;
\nReturn C .

e.g. •

$$
\circ \ \ C = \emptyset.
$$

$$
\circ \ \ C = \{b,c\}.
$$

$$
\circ \quad C = \{b, c, e, f\}.
$$

$$
\circ \quad C = \{b,c,e,f,d,g\}.
$$

- \circ Optimal: $\{b, e, d\}$.
- Proof: the algorithm is 2-approximation of optimal vertex cover
	- Observations:
		- \blacksquare C is a vertex cover.
		- Need to create a bound for C^* .
	- \circ Let A denote set of edges the algorithm picks.
	- \circ An optimal vertex cover C^* is a vertex cover, must cover at least one endpoint of each edge in E , and each edge in A .
	- \circ No 2 edges in A share common endpoints \Rightarrow no 2 edges in A are covered by the same vertex in C^* .
	- \circ $|C^*| \geq |A|.$
	- \circ Also, $|C| = 2|A|$, thus $|C| \le 2|C^*|$.

Travelling salesman in 2D plane

- Complete undirected $G = (V, E)$ and integer cost $C(u, v)$ for each $(u, v) \in E$.
- Denote $c(A) = \sum_{(u,v) \in A} c(u,v)$.
- TSP in 2D \Rightarrow edge costs satify triangle inequality because edge costs are the ordinary Euclidean distance between nodes.
	- $c(u, w) \leq c(u, v) + c(v, w).$

• Approx-TSP-Tour(G,c)

Select vertex $v \in V$ to to be some root vertex Compute MST T of G from root r using MST-Prim(G,c,r) Let H be a list of vertices ordered according to first visit in preorder walk of T . Return Hamiltonian cycle H .

- e.g. •
	- $T = \{(a, b), (b, c), (a, d), (d, e), (e, f), (e, g), (b, h)\}.$
	- \circ Preorder walk of $T: a, b, c, b, h, b, a, d, e, f, e, g, e, d, a$.
	- \circ Only count first visit: a, b, c, h, d, e, f, g.
	- H: $a \rightarrow b \rightarrow c \rightarrow h \rightarrow d \rightarrow e \rightarrow f \rightarrow g \rightarrow a$ (\rightarrow direct shortest path straight line).
- Proof: let H^* be the optimal tour if remove any single edge from that tour H^* , get a spanning tree.
	- $c(T) \leq c(H^*)$.
	- \circ A full walk of T traverses every edge in preorder walk of T exactly twice.
	- \circ Let W be the full walk, $c(W) = 2c(T) \Rightarrow c(W) \le 2c(H^*)$.
	- \circ From W to walk that only uses first visit of each vertex, we are deleting v from between u and w .
	- \circ By triangle inequality, $c(H) \leq c(W)$, $c(H) \leq 2c(H^*)$.
- Theorem: if $P \neq NP$, then for any constant $\rho > 1$, there does not exist poly-time approximation algorithm with approximation ratio ρ for the general TSP problem (triangle inequality does not hold).
	- \circ Proof (by contradiction): Ham-Cycle \leq_n TSP-opt.
	- Reduction from G to G', c, where G' is the completion of G, $c = \begin{cases} 1, (u, v) \in E \\ \rho |V| + 1, else \end{cases}$ is the

cost function, where ρ is the approxmiation rate, $|V| = #$ vertices.

- \circ TSP tour have total cost |V| using Ham-Cycle edges.
- \circ For sub optimal, total cost will be at least $(\rho + 1)|V|$.
- This will tell if there exists a Ham-Cycle in G in polynomial time.