
Growth of functions - Asymptotics
Notations: .•
 -nonation:

 .○

 is an upper bound of , bounds from above.○

E.g.
 , since for .▪

 , since

 holds for

 .▪

 .▪

 , since .▪

 , since .▪

 .
Assume exists, , for all .□

▪

○

•

 -notation:

 .○

e.g.

 ,▪

 .

 .

Take ,

 .□

▪

○

•

 -notation

 .○

Thm: iff and .○

e.g.

 .▪

 .

 since

 .□

 . Consider

 ,

□

 , so

 , .

▪

 .

Need to find such that for all
 .

□

 if .□

Also,

 , if .□

We get

 .□

Raise to power of , we get

 .□

, , .□

▪

○

•

 -notation:

 .○

Equivalently,

 .○

 , .○

•

 -notation:

 .○

Equivalently,

 .

•

Background
January 8, 2023 6:15 PM

 ECE1762 Page 1

Equivalently,

 .○

 , .○

Properties

Transitivity: , , then .

True for .▪

○

Reflexivity: .

True for .▪

○

Symmetry: iff .○

Transpose symmetry:

 iff .▪

 iff .▪

○

•

Theorem: if , , then

 .○

 .○

•

Polynomial-bounded functions

A function is polynomial bouned if .•

 iff .

Proof: () Assume .○

Then , for .

 for constant .

() assume .

Then .

 .

 .

•

Limit method

 .•

 .•

 .•

More precisely

 .○

 .○

 .○

 .○

 .○

•

L'Hopital's rule
If or .○

 .○

•

Log of limits and limits of logs

 .•

e.g.
, .

 .○

 .○

Then

 , so . ○

•

e.g. , .

 .

•

 ECE1762 Page 2

 .○

 .○

Then

 , so .○

 .

 .•

e.g.

.

 .○

•

 .
Log both sides and take the limit.○

•

since .•

 .•

 .•

.•

Summations

 .•

 .•

 .

 .○

•

 .•

 .•

For ,

 .

For ,

 .○

Differentiation gives

 .○

•

 .

 .○

•

Telescoping

 .○

 .○

•

 .•

Logarithm

.•

 .•

 .•

e.g.
 .○

 .○

 .○

 .○

 is the slowest besides constant.○

•

Stirling approximation:

 .

 ECE1762 Page 3

Stirling approximation:

 .

Proofs
Induction

Predicates (proposition).
e.g. .○

•

 .•

e.g. prove the sum of first odd positive integers is .
Base: for , sum is .○

Induction Hypothesis: assume .○

Induction step: .○

•

e.g. Show that every board with single tile removed can be tiled with L-shaped 3 piece
segment of tiles.

Base: ○

IH: suppose for some , board with single tile removed can be tiled
with L-shape segment of tiles.

○

Induction: when , split into 4 boards. For each of them, can be tiled
by I.H. Center segment can be tiled by single L-shaped piece.

○

•

Strong induction

 .•

e.g. every integer can be written as a product of primes
Base: is true since is a product of itself.○

IH: Assume true for some .○

IS: for .
If is prime, then done.▪

If is composite with .▪

Then by IH, , , with primes.

 is then a product of primes, then is true.

○

•

Contradiction
To prove , assume by contradiction, is true.•
 some proposition known to be false, then is true.•

E.g.

is irrational.

Assume

is rational, then

 where have no common factors.○

 is even is even, .
 is even.
Contradiction.

•

Other proof techniques
Direct proof•
Proof by counter example•
Contrapositive:

 .○

•

Permutations and combinations
Rule of product: If event can happen in ways and event can happen in ways, then and

 ECE1762 Page 4

Rule of product: If event can happen in ways and event can happen in ways, then and
can happen in ways
Rule of sum: If event can happen in ways and event can happen in ways, then and can
happen in ways

Permutations

 : the way to arrange objects out of objects where order matters.•

e.g. # ways people can be seated in a round table.
For linear, .○

For a ring, shifting doesn't affect the order, .○

•

If not all items are distinct, but we have of type 1, of ype 2,… of type , then the

permutation is

 .

•

e.g. 5 dashes and 8 dots can be arranged in

 ways.•

e.g. show that Is divisible by , .
Consider objects, of type 1, of ype 2,…, of type .○

ways to arrange these objects:

 is an integer.○

•

Combinations
Relative order does not matter•

 .•

How many diagonals in a decagon?

 .•

e.g. 11 scientists are working on a recent project. They want to lock documents in a vault such
that vault opens if at least 6 scientists are present. What is the smallest number of locks
required? What is the smallest number of keys each scientist should have?

Every group of 5 scientists, there should be 1 lock that cannot be opened○

For every 2 or more groups of 5, this lock must be different, otherwise there would be a
group of 6 scientist that cannot open the vault

○

 groups of 5, 1 lock cannot be opened

 locks at least.○

Every time a new scientist join a group of 5, they have the key that the others don't.○

#keys=how many scientists can be formed out of the rest 10 scientists.○

#keys

 keys at least.○

•

Combinatorial argument: (argument based on counting)
Given some equation, prove using the following method•
Question: ask some counting question.•
LHS: argue why the LHS answers the question.•
RHS: argue why the RHS answers the question.•

E.g.

 .

Question: how many ways can you select objects from total objects without
replacement?

○

LHS: True by definition.○

RHS: Instead of choosing object, I choose objects to eliminate, leaving me with
objects.

○

•

e.g.

 .

Question: I have black balls and red balls. How many ways can I select balls out of
the total?

○

RHS: True by definition.○

LHS: fix to be the number of black balls chosen, then is the number of red balls.

There are

 ways to choose black balls, and

 ways to choose

 red balls.

AND event,

is the number of ways to choose black and red.

○

•

 ECE1762 Page 5

AND event,

is the number of ways to choose black and red.

 disjoint, OR event, adding them gives

 .

e.g.

 .

Question: # ways to select objects from objects.○

LHS: True by definition.○

RHS: consider some particular object in the set.
If is in the objects we selected, we choose objects from the rest

 .

▪

If is not in the set of objects we selected, we choose from the rest,

 .▪

Disjoint, so addition.▪

○

•

e.g. word length from alphabet .

 .○

RHS: proof by induction, if length has odd number of zeros (

 ways), append a

single 0, otherwise (

 ways), we can append 1 or 2 only.

○

•

e.g.

 .

Total balls, select balls from them first, put back and select balls.○

RHS: first select balls that will be in both the first and second set. Then select
balls from balls to form the ball group. Select balls from the rest
balls. Sum up over .

○

•

e.g.

 .

Question: string of length , one blank position, alphabet of size . How many ways are
there to create such string.

○

LHS: ways to choose a single position for the blank. Then there are ways to assign
4 alphabets to the rest positions.

○

RHS: choose positions from to assign the rest 3 alphabets, then ways to
choose a specific position for the blank. Fill in the rest with the final alphabet.

○

•

Probability
Experiment•
Sample Space

e.g. two fare coin .○

•

Axioms
 , ○

 , ○

 ,○

 if independent.○

•

e.g. Flip fair coins times, there are outcomes uniformly distributed.

 .○

•

Bayes theorem:

 .

e.g. 1 fair coin, 1 biased (always H),

 .○

•

Discrete random variables
For an r.v. ,

 .•

Expected value:
 .•

e.g. flip two coins win $3 for H, lose $2 for T.

 .○

•

Properties:
 .

•

 ECE1762 Page 6

 .○

 .○

Graphs and trees
 .

 set of vertices.○

 : set of edges.○

Directed/undirected○

Weighted/unweighted.○

Representation
Adjacency list▪

Adjacency matrix▪

○

Path○

Edge○

Simple path○

Cycle○

Vertex degree
Undirected: = # all edges connected to .▪

Directed: in-degree, out-degree.▪

○

Neighborhood: all vertices directly connected to .○

For undirected
 .○

•

A tree is a connected, acyclic and undirected graph
Terminology: root, children, parent, internal nodes, leaves, subtree rooted at .○

Binary/k-ary tree: tree with nodes with at most or children.○

Complete tree: all leaves have the same depth, all nodes have children.○

Depth at node : length of path from root to .
 .▪

○

Height of node : #edges in longest path from node down to a leaf.○

•

Recurrence
Motivating example: Mergesort

Mergesort○

If :

 ,

Mergesort()
Mergesort()
Merge().

Split to single element, then merge into a ordered manner○

Runtime:

 .

Recurrence is for # subproblems and size of subproblem.▪

 is for conquer part.▪

Base case omitted since we are only interested in asymptotic runtime.

 .□

▪

○

•

Master's theorem for , , .

Case 1: if for , then .

e.g.

 , , , , ,

 .

▪

○

Case 2: if , then .

e.g. , , , ,

 .

▪

○

Case 3: if for and

 for , then

 .

e.g. , , , ,

 and

 .

▪

○

•

 ECE1762 Page 7

 and

 .□

 .□

Substitution
We guess a solution to and use strong induction to prove guess was correct○

 .

Guess , assume , .▪

Then

 .▪

We have

 , for .

▪

○

Erroneous guess
 gives , .▪

 , not equivalent to since we

are not explicitly proving the IH.

▪

○

•

Recursion tree
Helps find a good working guess for substitution

Longest path gives upper bound▪

Shortest path gives lower bound▪

○

e.g.

 .

Imbalanced tree, longest path (height) is determined by the

 path.▪

Consider the longest path:

Size at level :

 .□

At max level:

 , gives .□

▪

For shortest path,

 , stil .▪

Total work: cost/level, .▪

Need strong induction proof▪

Lower bound, still .▪

○

Generally,
 .○

 .

Base case if , where .▪

 .▪

○

•

Let be an undirected graph, all of the following is equivalent.
 is a free tree (connected, acyclic).•
Any two vertices in are connected by a unique simple path.•
 is connected, but if you remove any edge, it becomes disconnected.•
 is connected and .•
 is acyclic and .•
 is acyclic and adding any edge to creates a cycle.•
Proofs

(1) (2): since is connected, there must be at least one path.○

Assume by contradiction that a second path exits, , ,
 forms a

cycle, but should be acyclic.
(2) (3): since only one path exists between any 2 nodes, removing an edge must
disconnect something.

○

(3) (4): by induction on , same applies for .○

Basis: , then , .
IH: if , then .
Induction: suppose is any graph with .
Remove some vertex to get , remove all edges connecting to to get .

 of size , so .

Now , , so .

•

 ECE1762 Page 8

Now , , so .
(4) (5): assume by contradiction that contains a cycle .○

Add vertices to , one at a time, each vertex also adds at least 1 edge.

 , , then and ,

contradiction, since .
(5) (6): has connected components. Each connected component is a free tree, so
(1) to (5) is true.

○

 , ,

 , so , is fully

connected.
 is a free tree means that adding any edges must create a cycle.
(6) (1): Consider any pair of nodes and .○

Adding edge cause a cycle between and .
Now remove which leaves a path from to .
 is connected, so is a free tree.

 ECE1762 Page 9

Heap (binary)
It is a tree•
Full except maybe at the bottom level, leaves must be starting from left•
Heap order property

Key(parent) key(children) is max heap.○

Key(parent) key(children) is min heap.○

•

Heap as an array: Given index ,

Parent:

 .○

Left child: .○

Right child: .○

•

e.g. .

○

•

Max-Heapify: enforce the heap order property if it is violated
Compare with and .•
Swap if smaller, .•
Continue downwards swapping if necessary until either property not violated or you hit a leaf node.•

Runtime: because of the balanced property.•

Build-Max-Heap():

For

 :

Do Max-Heapify()

e.g. .
Start with 16, do nothing.•
Then at , , , , violated, swap with 14.

 .○

•

 , , , swap with 10.
 .○

•

 , , , , swap with 16.
Then also need to swap with 7.○

 .○

•

 , , , , swap with 16.
Then also need to swap with 14 and 8.○

 .○

•

Runtime for Build-Max-Heap:

Simple: (for loop cost at Heapify).•

Proper:
Time to run Max-Heapify is linear in the height of the node it is run on and most node have small
height.

○

Lemma 1: at height , there are at most

 nodes.○

Lemma 2: height of heap is .○

Runtime

 .

•

Sorting
January 17, 2023 9:27 PM

 ECE1762 Page 10

Runtime

 .

Apply

 for

 , we get .▪

○

Heapsort()
Build-Max-Heap()
For :

Swap .
Max-Heapify().

E.g. .
 .•

Runtime for Heapsort: .

Priority Queue implementation using heaps
Treat each element in the heap array as a pointer to an object in the priority queue.•
Each element has a key value .•
Insert(): inserts the element with key into the set .

 .○

•

Maximum(): returns the element of with the largest key.
 .○

•

Extract-Max(): removes and returns the element of with the largest key.

 .○

•

Increase-Key(): increases the value of element 's key to the new value which is assumed to be at
least as large as 's current key value.

 .○

•

 ECE1762 Page 11

Quicksort
Sort in place•

Constant in runtime are small•

But only in expected case.•

 in worst case.•

Partition()
 (pivot is the right most element in the array).
 .
For to .

If :

 .

Swap .

Swap .
Return .

Runtime: .

e.g. .
Initially, , , .•
 , , skip.•
 , , , swap , get .•
 , skip.•
 , , swap , get .•
Finally, get a partial ordering .

Left elements smaller than the pivot.○

Right elements larger than the pivot○

•

Quicksort()
If :

 Partition().
Quicksort()
Quicksort()

Initial call: Quicksort().

Performance of quicksort:
Worst case: when input is already sorted, pivot is always the largest/smallest element. Every time, we get
an empty array and an array of size .

•

 ECE1762 Page 12

an empty array and an array of size .

 .○

Best case: pivot always median

 .•

Balanced case: , where , .•

Randomized quicksort
We can randomly shuffle input or choose pivot to reduce the chance of getting the worst case scenario•

The worst case scenario is still , but the chance is lower.•

Randomized-Partition
 RAND();
 ;
Return Partition().

Worst case analysis (applies to both versions)

 .•

We guess , and prove by induction.•

Assume for some and all .•

Then

 .•

obtains max at and .

 .○

•

 . Choose such that dominates .•

 .•

Can also show that , .•

Expected case analysis

 .•

 .

Guess for .•

Use

and

 .•

.•

 for .

So .•

Lower bounds for sorting
Consider comparison-based sorting only

Only operation to determine order info about a sequence of elements is pairwise comparison○

•

Trivial: to examine all elements.•
Claim: is lower bound for comparison based sorting in the worst case.•

Decision tree
Abstraction of comparison-based sorting•
Every tree is for one sorting algorithm on inputs of a given size•
No control flow, no data movements are modeled•
We count only comparisons as cost•
e.g. .•

 ECE1762 Page 13

Observation: decision tree must have at least one leaf for every permutation of input sequence
Number of leaves: .•

Height: , we need to show .•

Lemma: any binary tree of height has leaves (proof by induction on).•

 , , , (by Stirling).•

 .•

Since represents worst case execution trace, any comparison-based sorting takes in worst

case.

•

Sorting in linear time
Only algos that use operations other than pairwise comparisons•
Counting, radix, bucket sort.•

Stable sort: sorting that preserves the relative order of the same value in the previous step

Counting sort

Input: , (are parameters).•

Output: sorted (not in place).•
Auxiliary array: .•
Algo:•
CountingSort()

For , .

For , .

For , (accumulation).
For ,

 .

 .

Example: .
First for loop: .○

Second for loop: .○

Third for loop: .○

Sorted: .○

•

Total time: .
Linear if and only if .○

•

Auxiliary array can be used to do Range Query in .
e.g. to find number of elements in , do , in do .

•

 ECE1762 Page 14

e.g. to find number of elements in , do , in do .○

Radix sort
Key idea: sort LSD (least significant digit first)•
RadixSort()

For ,
Stable sort to sort on digit . (relative order in previous step is preserved. e.g. Counting sort)

•

Example:•

initial Right middle left

326 690 704 326

453 751 608 435

608 453 326 453

835 704 835 608

751 835 435 690

435 435 751 704

704 326 453 751

690 608 690 835

Time: passes, each pass .

 if , then we get .○

•

Suppose we have words, bits/word, and use -bit digits.

 , .○

Plug into the time, get

 .○

When ,

 . (balanced)○

When ,

 . (worst)○

When , no improvement.○

•

BucketSort()
For ,

Insert into (is a list of buckets).

e.g. with , 0.5 and 0.505 goes to , 0.51 goest to .
For ,

Sort with insertion sort.
Concat .
Return concatenated .

Correctness

Consider , WLOG, assume .•

Then .•

Two cases
 in the same bucket as , then insertion sort imposes the correct order within the bucket.○

 in a bucket with smaller index than 's bucket, after concatenation, order is preserved.○

•

Runtime in expected case
Define r.v. # elements placed in .•

 .•

 .•

Claim:

 , .

Proof: define indicator r.v.s

.○

, since the values are uniformly distributed.

•

 ECE1762 Page 15

 , since the values are uniformly distributed.○

 .○

 ,○

 .○

 .○

Since , are independent,

 .○

Then

 .○

Hence

 .•

Order statistics
Given , interested in finding ith order statistics.

Element in , s.t. elements are smaller than it.○

•

1st order statistic: min.•
Nth order statistic: max.•
Lower/upper median, etc.•

Simultaneous min and max requires at most

 comparisons.•

Selection in expected linear time
Randomized-Select()

If : return
 Randomized-Partition().
 .
If : return (pivot is the ith order statistic).
If : return Randomized-Select() (We have more elements than needed).
Else: return Randomized-Select() (We have fewer elements than needed).

e.g. , .

6 is the 4th order statistics in this case

Worst case: .

Expected runtime:
 .

 ECE1762 Page 16

Expected runtime:
 .

 ,•

 ,•

Note:

.•

If is even, terms from

 to appear twice.•

If is odd, terms also appear twice except

 which appears once.•

Then

 .•

Replace with , guess for .•

 .•

 .•

 .•

Thus for

 or

 .•

E.g. sort an array of integers in worst case time

Insertion sort ()•

Merge sort ()•

Heap sort ()•

Randomized quicksort ()•

Counting sort ()
 can be larger than , assume all integers in .○

•

Radix sort ()•

Bucket sort ()

Worst case when all numbers in the same bucket○

•

e.g. sort an array of integers ranging from -100 to 100 in time worst case.
Shift all integers by +100•
Sort the array by counting sort•
Shift output by -100•

e.g. sort the above array using bucket sort, in expected time.

 ,

 •

Sort using bucket sort.•
Then , .•

e.g. sort integers ranging from 0 to in time.
Counting sort won't work, since , .•
Any number can be written as for .•
Run radix sort base .•

 .

 is given by the base (), is given by number of digits (#).○

•

e.g. weighted medians
Let be distinct (unsorted) elements, each with positive edge weight s.t.

 ,

the weighted (lower) median is the element s.t.

 ,

 .

•

Show that the weighted median is the same as the median if

 , .•

Find the weighted median in time using sorting.

Sort using heapsort/mergesort.

•

 ECE1762 Page 17

Sort using heapsort/mergesort.
 .
For ,

 . (

)

If

 and

 .

Return .
Find the weighted median in expected time using selection.

Modify the Randomized Selection algorithm
Let be the randomly chosen partition.

Let

 .

Partition the input array by and compute

 ,

 .

If , then recurse on the left side with .
Else if , then recurse on the right side with .
Else return .

•

e.g. merge sorted list where each list is size .

Method 1: concatenate and run merge sort .•

Method 2:
initialize a pointer in these lists, starting at the first elements.○

Each iteration, finds the min of the elements, then increment the corresponding pointer.○

There is a total of iterations.○

Time: .○

•

Method 3:
initialize a pointer in these lists, starting at the first elements.○

Build a heap containing all pointer values .○

Extract min pointer, .○

Insert the next pointer, .○

Do this times, get .○

•

Method 4:

Merge the arrays 1 by 1,

 .○

Pairwise merge,
 .○

•

Selection in worst-case linear time
Idea: guarantee good split (using median)•
Select algo:

Divide the elements into groups of 5. Get

 groups (

 with 5 elements, possibly 1 with mod 5

elements) time.

○

Find median of each group .
Insertion sort on each group .▪

Take median from each group .▪

○

Find lower median of the

 medians from step 2 using recursive call to Select,

 .○

Partition by using as pivot. Assume is th element

, .○

If , return .○

If , recurse on lower side.○

If , recurse on greater side, searching for .○

•

After insertion sort, we will be able to find medians sorted in increasing order.
 .○

Medians are .○

Lower median of them is .○

•

For the final 3 if statements
Take the lower median of medians, then and ,... .○

So at least half of medians (pivot).○

Groups with medians contribute exactly 3 elements , except s group and the leftover

•

 ECE1762 Page 18

Groups with medians contribute exactly 3 elements , except s group and the leftover
grpup wich contribute less.

○

Ignore these 2 groups, we have

 contributing with 3 elements .

At least

 elements.▪

○

Symmetrically, at least

 elements .○

In step 5, worst case, we recurse on partition size

 .○

.

Guess for .○

 .○

 if

 or

 .○

For ,

 , so choosing gives

 .○

Could work for with .○

•

 ECE1762 Page 19

Binary search trees (BST)
Tree: .•
Root: .•
Each node has key, left, right, parent.•

BST property:

If is in the left subtree of , then .•

If is in the right subtree of , then .•

Traversals
In-order: A,B,D,F,H,K.•
Pre-order: F,B,A,D,H,K.•
Post-order: A,D,B,K,H,F.•

Min: leftmost node, .
Max: rightmost node, .
Successor: next element in in-order walk (min of right subtree)
Predecessor: previous element in in-order walk (max of left subtree, in case of empty left subtree,
find whose successor is)

Basic operations
Tree-min: .•
Tree-max: .•
Predecessor: .•
Successor: .•
Insert: .

Search and place new node as a leaf○

•

Delete: .
Case 1: is a leaf, make the parent point to null.○

Case 2: has one child, make parent point to 's child.○

Case 3: has 2 children, swap the value of with its predecessor or successor, then
delete the successor/predecessor by case 1 or 2.

○

•

Build a BST

Worst case: (insertion into a chain).○

Expected case: (based on lower bound of sorting).○

•

Red black trees (RBTs)

Motivation: want guaranteed in worst case.•

RBT properties
BST property assumed•
Every node is either red or black (0/1 bit).•
The root is black•
Every leaf is black•
If node is red, then both children black•

Trees
2023年2月2日 18:12

 ECE1762 Page 20

If node is red, then both children black•
For each node, all path from that node to descendant leaves contain the same number of
black nodes

•

Heights
 : heights.•
 : black height, number of black nodes from this node to leaf, excluding start node.•

•

Claim 1: any node of height has black height .

Proof: by property 4, at most nodes on the path can be red, so

 black nodes.•

Claim 2: the subtree rooted at node contains internal nodes.
Proof by induction on height of .•

Basis: if height of is zero, then it is leaf bh(x)= , .•
I.H.: true for height where is height of .•
I.S.: height of is , say black height is .•
Any child of has height and black height if child is black or if child is red.•

By IH, each child has internal nodes.•

So subtree at contains internal nodes.•

Lemma: RBT with internal nodes has height .

Claim 1+2 gives

 .•

i.e. height of RBT is .•

Operations:
Search, max, min, predecessor/successor are same as in BST•
Insert, delete need special case•
Rotation

Runtime .○

○

•

RB-Insert(T,z)
Search for .•
Insert as leaf•
Color it red•
Use RB-Insert-fixup(T,z) to fix violated properties.

 .○

•

Properties that might be violated by 3
Property 2: if is root, violation, but easy to fix by recoloring.•
Property 4: If p(z) is red, violation.•

 ECE1762 Page 21

Property 4: If p(z) is red, violation.•

Fixup:
Assume p[z] is left child (right child is symmetric)•
Let be p[z]'s sibling.•
Case 1: is red (is left/right child of p[z]), not now p[p[z]] is black.

Color p[z] and black, p[p[z]] red, call RB-Insert-Fixup(T,p[p[z]]).○

○

•

Case 2: is black is right child.
Left rotate(T, p[z]). Now the original p[z] becomes z. We get case 3○

•

Case 3: is black, is left child
Make p[z] black, p[p[z]] red.○

Right rotate on p[p[z]].○

No further calls○

○

•

 ECE1762 Page 22

Dynamic programming
Optimal substructure•
Overlapping subproblems: memorization exploits this redundancy•

Steps:
Optimal substructure•
subproblems•
Recursion•
Memorization: store a table and implement recursion using the table•

e.g. Fibonacci numbers
 , , .•
Easy to compute recursively, but lots of redundancies•
To get by recursion, requires solving 3 times•
Memorization would store intermediate results and reuse•

Problem 1: Matrix-chain multiplication (matrix parenthesization)

e.g. , , , calculate .

Option 1: , #multiplication= (final matrix size multiplications

needed for each cell).

○

Option 2: , #multiplication= .○

•

Goal: fully parenthesize matrices while minimizing total number of multiplications•
Input: .•
Brute force: enumerate all possible parenthesizations

 .○

•

Key idea: an optimal parenthesization for involves optimal parenthesization for : , and :
 for some .

•

Proof of optimality: suppose is not optimal, then exists some other such that is more optimal, and
total number of multiplication is smaller.

•

subproblems , since we require optimal on any subsequence .•

Recurrence
Let be a matrix with dimension .○

 be the optimal value (minimized cost) for sub problem .

 is the entire problem we want to solve.▪

○

.○

•

Memorization
A naïve recursive implementation and is inefficient (you do not expect redundancy).○

Use a table to store intermediate results○

e.g. , , , , , .

▪

 (top) is what we want to get.▪

To get , we need , .▪

○

The dependence dictates the order in which the table must be filled○

•

Runtime: .•

DP & Greedy
February 9, 2023 7:35 PM

 ECE1762 Page 23

Runtime: .•

Problem 2: longest common subsequence (LCS)
Given sequences , , find a subsequence common to both such that the subsequence
length is maximal, not necessarily consecutive.

•

e.g. X=springtime, Y=pioneer, result=pine.•
Brute force runtime: .•
Theorem: suppose is LCS of and .

If , then and is LCS of and .

If not, can find a
 such that

 .▪

○

If , then is LCS of and .○

If , then is LCS of and .○

•

Recurrence:

Let be the optimal length of LCS of and , is the optimal value for the problem.○

. ○

•

Pseudo Code•
LCS(X,Y,m,n)

For : .

For : .

For
For

If , then , tag with arrow pointing to .

Else if , then , tag with .

Else , tag with .

Runtime: .•

Greedy Algorithm
Idea: when making a choice, take the one that looks the best right now

Locally optimal leads to globally optimal (need to prove)○

•

Greedy is not always optimal, but good as approximation algorithms•
Steps

Find optimal substructure○

Prove Greedy Choice Property○

•

Problem 1: activity selection

Inputs: set of activities: .

Each needs resource during period where is the start time, is the finish time.○

•

Goal: select the largest possible set of mutually compatible activities.•
e.g. , , , , , , , ,
 , .

 .○

 (not unique).○

•

Greedy: at each step, from compatible activities, choose the one with smallest finish time.•
Optimal structure:

Let activities that start after finishes and finish before starts.○

 .○

 .○

 .○

•

Greedy Choice property:

Let and be activity in with earliest finish time, .○

 is used in some max-size(optimal) subset of compatible activities of .

Let be max size set of compatible activities in .▪

Order activities in in increasing order of finish time.▪

Let be the first one in .▪

○

•

 ECE1762 Page 24

Let be the first one in .▪

If , done.▪

If , then construct
 .

 .□

▪

Activities in
 are still compatible, since if the first in to finish, but (and

is min finish time in).

▪

 doesn't overlap with .▪

 is optimal for , i.e. greedy is optimal.▪

 .
Suppose .▪

 , then , contradiction.▪

○

Runtime: .•

Huffman coding (data compression)

A B C D E F

 45 13 12 16 9 5

 (fixed length coding) 000 001 010 011 100 101

 (variable) 0 101 100 111 1100 1101

•

Must be prefix codes•

•

 (number of bits needed to encode given input).•

Goal: to find that minimizes .•
Greedy algorithm•

HuffmanCoding
Unite/merge the 2 lowest frequency characters, represent them as nodes in the tree•
Create new char in vocabulary representing the two chars merged•
Repeat until vocabulary is single char•

Greedy Choice property:
Consider 2 smallest frequency chars (x and y), show there exists optimal code tree in which x and y are max-depth
siblings

•

Proof:
Let T be any optimal prefix code tree with b and c the two siblings at max depth, assume .○

If , done.○

If , then and .○

We know that b and c are deepest, and .○

First swap b with x to get ,

 .▪

 .▪

 .▪

So .▪

○

Swap c with y to get , similary, we can show .○

So .○

•

Optimal structure + Greedy

 ECE1762 Page 25

Optimal structure + Greedy
Let be any tree that satisfies greedy choice property.•
Let be the tree that results from replacing the two lowest frequency char and their parent with a single leaf

with frequency . We show that .

•

Proof: Let denote the depth of in , is in depth in .

 ,○

 ,○

 .○

•

 ECE1762 Page 26

Let be the universe, a set of keys, a table of size with indices .
A hash function hashes key into index .

Desired from hashing scheme
Simple uniform hashing•
Good mechanism for collision resolution

Chaining: if , are in the same list, (delete is easy).○

Open addressing: if collision, use a probing sequence to find an empty slot (delete is not
trivial).

Linear probing: when hashing key for th time.▪

Quadratic: .▪

Double hashing: .▪

○

•

Hashing design
Multiplication: , constant.•
Division: .•

Analysis of chaining
 elements.•
 #slots.•

Load factor:

 .•

If we assume simple uniform hashing (a key if equally likely to hash into any slot)
Worst case: single list of element.○

Expected case: , denote length of by ,

then .▪

 , also assume to compute .▪

○

•

Expected cost of search
Case 1: unsuccessful search , compute the hash and search to end of list, taking
 .

○

Case 2: successful search.
elements examined during successful for key is one more than the number of
elements before in 's list=#elements that hash to same slot as after is
hashed into slot.

▪

For , let be the th element inserted into the table and is key().▪

 , define .▪

Simple uniform hashing

 .▪

 .

 is # elements after that collides with .□

▪

 .▪

○

•

For any , if then there is set of elements that all hash to same slot.
Proof: contrapositive, if every slot had at most element of hashing to it, then
 .

•

Universal hashing
A randomized algorithm for constructing hash function is universal if

 , it holds that

 .

•

Theorem: if is universal, then with , , the expected number of

collision between and other elements in

.

•

Hashing
2023年2月16日 19:16

 ECE1762 Page 27

collision between and other elements in

 .

Corollary: if is universalm, any sequence of operations (insert, search, delete) has
expected total cost .

•

Construction of universal hash family (matrix based)

Assume keys are bits long, table size is power of 2, index is bits ().•
Algo: choose to be a random 0/1 matrix and have , where addition is mod
2.

•

Claim: ,

 .

In worst case, only 1 bit is different, select the column in the matrix.○

 combinations, each of them creates different output.○

•

 ECE1762 Page 28

Unlike best/worst/expected case for single operations. Here we care about average cost/operation
in sequence of operations

Aggregate: simple to understand/calculate for simple data structure.•
Accounting: identify cheap/expensive operations. Use cheap operations to justify expensive
cost

Charge $k for each operation (amount is amortized cost for each operation)○

Goal is to maintain a credit invariant○

If amortized cost > actual cost, remain difference in deposit○

If amortized cost < actual cost, use credit stored to compensate (pay) for difference○

Should never end up with negative credit (if not enough, bump up the deposit)○

•

Potential (not used)•

Stack

Actual cost Amortized cost

Push(x) O(1) 2

Pop() O(1) 0

Multipop(k) O(k) 0

•

Sequence of push/pop/multipop operations (operations)•
Naïve:

 total, so average. Wrong since to have multiple, we must have pushed
times.

○

•

Aggregate
You never pop more than you push.○

 total, so average.○

•

Accounting
Charge $2 for each push. $1 for actual cost of push, $1 stays as credit.○

Charge $0 for each pop. $1 credit in pushed elements pays for cost of pop○

Charge $0 for multipop. $k credit in pushed elements pay for the cost○

•

if multipop(k) is , need to consider .•

Queue is the same•

Counter
k-bit counter , is the least significant bit.•
Increment()

 ,
While and :

 ,
 .

If : .

•

Naïve: per operation.•

Cost A

0 0:000

1 1:001

3 2:010

4 3:011

7 4:100

8 5:101

•

Amortized Analysis
March 3, 2023 8:01 PM

 ECE1762 Page 29

10 6:110

11 7:111

LSB flips everytime•

 th bit flips

 times.•

Aggregate:

 .

 total, amortized.○

•

Accounting method
Charge $2 for every 1 we set ().○

Every increment costs $2 because there's only one single flip○

Every flip is paid for by the $1 credit left after the flip○

For operations, per operation.○

•

Binary counter with reset

Operation Actual cost Amortized cost

increment $3

reset $0

○

The number of bits used by the counter will be less than the number of increment
operations.

○

If not, charge $4 for increment and $1 for reset○

$1 pays for flipping 0 to 1, $1 saved for flipping 1 to 0.○

$1 to update max, $1 to pay for flipping to a 0 during reset.○

•

Ternary counter (increment by 3)
Charge $3 per increment.○

Invariant: A trit with value 0 has $0 credit, value 1 has $2 credits, value 2 has $1 credit.○

At most one 0-1 flip, $1 from the charge pays for the flip. Remaining $2 stored as credit.○

Increment changes states in the order 0-1-2-0. Credit used to do 1-2 and 2-0.○

•

Dynamic hash table
Insert

○

Aggregate:

Cost of th insert

.▪

 .▪

Amortized on average.▪

○

Accounting:
Charge $3 on insert.▪

$1 used for insert.▪

$1 store as credit.▪

$1 stored for

 items already in the table.▪

Each $1 pay for it to be reinserted during the expansion.▪

○

•

Delete
Shrink the table size when .○

•

Amortized cost of each operation is bounded above by a constant. The actual time for any
sequence of operations on a dynamic table is .

•

 ECE1762 Page 30

Splay tree

Weighted dictionary problems: given keys and frequencies , the goal is

to minimize cost of accessing high frequency elements.
If known a priori, then we can build a static optimal tree using dynamic programming

in .

○

If not known, splay tree, average cost for insert/delete/search.○

•

Properties
No explicit balancing conditions.○

BST property holds.○

Pre-emptively rotate element that is accessed until it becomes the root.○

•

SPLAY(x)•
While is not the root:

If is the root: rotate ,

Else if , both left or right children: rotate , then rotate .

Else: rotate , then rotate at new .

•

Cost of splay
Let be the number of nodes in subtree rooted at plus itself.○

Define .○

Credit invariant: every node has credit on it.○

We need to show that every SPLAY operation can be paid with additional

credit to account for rotations and maintain the invariant.

○

Claim: every operation in while loop costs except for

 root case, which needs credit.
Proof: ▪

Case 2 and 3

□

Compare with .□

 , , , .□

 .□

Amount charged covers this cost.□
If , more than half of tree nodes were under . Otherwise its
rank would have incresed

Less than half of the nodes are in and .

 is reduced by at least 1.

Leftover credit on pays for costs of rotations. 

□

▪

Case 1: ▪

○

•

 ECE1762 Page 31

Case 1:

 , .□

 .□

If , we don't know if 's rank is affected/reduced.□
Pay $1 for the rotation.□

□

▪

Let ,…, be the sequence of ranks for until becomes root. We need

 .

○

But , so credit required , which is amortized. ○

Average cost: mean over all possible inputs
Expected cost: assume uniform, then same as average
Amortized cost: average over a particular sequence of inputs.

Worst cast upper bound: , .

Amortized upper bound:

 , .

Aggregate analysis

Given an operation and a sequence , let be the cost of .•

Compute

 .•

Amortized cost:

 .•

Accounting method
Declare that will be charged per operation•
Describing a procedure for how we use .•
Assert a credit invariant (some claim about the stored credit in the data structure).•
Argue that the credit invariant is true.•
Use the credit invariant to argue why the credit is never negative.•

E.g. (array doubling) suppose has cost

.

Aggregate method:

 .○

Amortized cost:

 .○

•

Accounting method
Charge $3 for each operation○

If , use $1 to pay for operation and store $2○

If , store $2, and use the stored $x to pay for the operation.○

Credit invariant: when , all elements in the range have $2 stored.

True by construction▪

○

 , since , we have exactly enough, so never go negative.○

Amortized cost is .○

•

 ECE1762 Page 32

Graph , size .
Representation

Adjacency list:
Space: .○

Check edge .○

•

Adjacency matrix:

Space: .○

Check edge .○

•

Breadth-First-Search (BFS)
Input: directed/undirected, source vertex .•
Output:

 : distance from to , .○

 : 's predecessor.○

•

Idea: start at , and in each iteration , visit nodes that are edges away from .•
BFS(V,E,s)

For each :
 .

 .
 (FIFO).
Enqueue(Q,s).
While :

 Dequeue(Q)
For each :

If :
 ;
 ;
Enqueue(Q,v);

•

BFS may not reach all vertices•
Runtime: .•

•

Depth-First-Search (DFS)
Input: directed/undirected.•
Output:

 : discovery time.○

 : finishing time.○

•

Idea: as soon as we discover a vertex, we explore from it. Every vertex has one of three colors as DFS progresses
White: undiscovered○

Gray: discovered but not done exploring from○

Black: finished○

•

DFS(G)
For each :

Color[u]=white
Time=0;
For each :

If color[u]==white:
DFS-VISIT(G,u)

•

DFS-Visit(G,u)
Time=time+1
 time
Color[u]=gray
For each :

If color[v]==white:
DFS-Visit(G,v)

•

Graph Algorithms
March 3, 2023 8:01 PM

 ECE1762 Page 33

DFS-Visit(G,v)
Color[u]=black
Time=time+1
 time

Runtime: .•
Edge classification

Tree edge: edges in the depth first forest found when exploring .○

Back edge: where is descendant of .○

Note: is a descendant of if and only if at time , consisting of only white vertices.
 is discovered first while none of the vertices on is discovered.▪

○

Forward edge: where is descendant of , but not tree edge.○

Cross edge: any other edge.○

•

Parenthesis theorem: , the following cannot happen: .
 must finish before .○

•

Theorem: in DFS of undirected graph, there are only T and B edges.•

•

Topological sort
Works on directed acyclic graphs (DAGs). DAGs model partial order

 and .○

But may have and such that neither nor .○

•

Topo sort produces a total order that respects partial order•
Lemma: a directed graph is acyclic if and only if DFS yields no back edges.

Proof (): if that is a back edge, then path and is a cycle.○

() suppose contains a cycle. Let be the first vertex discovered in that cycle, and let be preceding edge in the cycle.○

At time , vertices of the cycle form a white path .
By white path theorem, is descendant of , is a back edge.

•

Topo-sort(G):
DFS(G) gives .
Output vertices in order of decreasing finish time

•

Runtime: .•
Correctness proof: show if , then .

When we explore , what are colors of .○

 is gray.○

 cannot be gray, otherwise would be ancester of , is a back edge, and we get a cycle (contradiction).○

 can be white, is the decendant of in DFS tree, .○

 can be black (finished), .○

•

Strongly Connected Components (SCCs)
Given directed .•
SCC of is a maximal set such that , both and exists.•

•

Definition

 =transpose of , such that .

 and have the same SCCs.▪

Runtime: .▪

○

 component graph.

 has one vertex per SCC.▪

 has edge if edges between components.▪

○

•

 ECE1762 Page 34

○

 is DAG.
Proof: let be distinct SCCs and , and suppose . Then we show there is n .○

Suppose , then there is , so are reachable from each other.○

 not maximal, contradiction.○

•

SCC(G):
DFS(G) and compute .
Compute .
DFS(), but in main loop, visit nodes in decreasing order of .
Output vertices of each DFS() tree as separate SCCs.

•

Runtime: .•

Minimum spanning trees (MSTs)
Input: undirected , weight for each edge .•
Goal: find a tree such that connects all vertices and

 is minimized.•

•

MST facts
 edges.○

No cycles○

Not necessarily unique○

•

Generic-MST(G,w):
 ;
While is not a spanning tree:

Find safe edge .
 .

Return .

•

Proof:
 : set of edges (initially empty).○

Expanding by maintaining loop invariant (is a subset of some MST).○

Edges that maintain invariant:
If MST, is safe if and only if MST.▪

○

•

Definitions:
Cut(S,V-S) is a partition of into disjoint sets , .○

Edges crosses cut(S,V-S) if one of is in and the other in .○

Cut respects if and only if no edge in crosses the cut.○

An edge is light edge crossing cut if and only if its weight is minimum across all edges crossing the cut.○

•

Theorem: let MST, cut respecting and light edge crossing , then is safe for .
Proof: let be MST that includes .○

If contains , done.○

Assume does not contain , we will construct that includes .○

 is MST, then exists unique path from u to v.○

Path must cross (S,V-S) at least once. Let be the edge of that cross the cut.○

We choose to be light, so .○

Since cut(S,V-S) respects , then .○

To form from , remove to break into 2 components, then add to combine.○

 , , , is MST.○

Need to show that is safe for .○

 and , so .○

 , since is MST, MST.○

•

If weights of edges are all unique, then there is only one MST. Reverse doesn't hold.•

Kruskal's
Each vertex is its own component initially.•
Merge 2 components by choosing light edge, scanning edges in monotonically non-decreasing order.•
Uses disjoint set data structure to ensure edges cross different components.•
Runtime: .•

Prim's
Expands a tree (is always a tree).•

 ECE1762 Page 35

Expands a tree (is always a tree).•
Each step, find light edge crossing (), where is the set of vertices is incident on.•
Use a priority queue .

Each element corresponds to a vertex in .○

Key[] is min weight of any edge () such that .○

•

Prim(V,E,w,r).
is an arbitrary root.
 .
Foreach :

Key[u]= ;
 ;
Insert(Q,u);

Decrease-key(Q,r,0) # set key[r]=0
While :

 =Extract-min(Q);
For :

If and :
 ;
Decrease-key(Q,v,w(u,v));

•

Runtime
Assume is a binary heap.○

Initialization: .○

Decrease-key: .○

While loop.

Extract-min times: .▪

Decrease-key times: .▪

○

Total: .

 if Fibonacci heaps.▪

○

•

Shortest path
Input: directed , weight function .•
Def:

Weight of path is

 .○

Shortest path weight from to is

.○

•

•

Optimal solution (shortest path tree) is not unique•
Variants

Single source.○

Single destination.○

Single pair○

All pairs shortest path .○

•

Negative weight edges
OK as long as no neg-weight cycle reachable from source○

Some algorithms only work with positive weight edges.○

•

Cycles: Algorithms will not output shortest path with cycles•
Output:

for each , .

Initially, , reduces as algorithm progresses.▪

○

 predecessor of in shortest path tree.○

•

Init-single-source(V,s)
For each :

 ;
 ;

 .

•

Relax(u,v,w):
If :

 ;
 .

•

Properties
Optimal substructure: any subpath of a shortest path is a shortest path

If is shortest path, then , , are shortest path for on .▪

Proof similar to Greedy, DP cut based approach.▪

○

Triangle inequality: , .

•

 ECE1762 Page 36

Triangle inequality: , .
Proof: is the shortest path, must be shorter than , by definition.▪

○

Upper bound property: always have , . Once , it never changes.
Proof: initially true. Assume s.t. and WLOG, assume is the first vertex for which this happens.▪

Let be the vertex that causes to change.▪

Then , .▪

Since is not a violator, . Then , contradiction.▪

Once , the assertion in Relax will be false. ▪

○

No-path property: if , then (because of upper bound property).○

Convergence property: If is a shortest path, and call Relax(u,v,w), then afterwards.
After relaxation, by optimal substructure.▪

Since by upper bound property, then .▪

○

Path relaxation property: Let be a shortest path from to . If we relax in the order , , …,

even mixed with other relaxation. Then .

Apply convergence property from iteratively.▪

○

Bellman-Ford
Allows neg-weight cycles•
Returns True if no neg-weight cycle reachable from , False otherwise. Can also compute the shortest path from to any other vertex in the
graph.

•

Bellman-Ford(V,E,w,s)
Init-single-source(v,s)
For :

For each edge :
Relax(u,v,w)

For each edge :
If :

Return False.
Return True

•

Runtime: .•
Proof of correctness

For , path relaxation property.○

For True/False
No neg-weight cycle: .

Returns True□
▪

If there is a neg-weight cycle with , reachable from ,

 .

Assume it returns True, then , .□

Sum around ,

 .□

Since

 ,

 , but

 for a cycle, contradiction.□

▪

○

•

Example

○

Edge order (r,x) (x,y) (y,r) (y,z) (r,y) (s,z) (s,r) (r,z)

Iter 1 0 0 0 0 0 1 1 1

Iter 2 1 1 0 0 0 0 0 0

Iter 3 0 0 0 0 0 0 0 0

○

0 means no update, 1 means update○

•

Single Source Shortest Paths in Direct Acyclic Graphs (SSSPs in DAGs)
DAG-Shortest-Paths(V,E,w,s)

Topological sort ()
Init-Single-Source(V,s) ()
Foreach in topological order: ()

Foreach :
Relax(u,v,w).

•

Runtime: .•

 ECE1762 Page 37

•

Dijkstra's algorithm
No negative-weight edges•
Idea:

Maintain a priority queue , with keys= estimates.○

 =vertices where final shortest path distance is determined.○

 .○

•

Dijstra(V,E,w,s)•
Init-Single-Source(V,s)
 ;
 ;
While :

 =Extract-min();
 ;
Foreach :

Relax(u,v,w) (Requires Decrease-Key)

•

Proof of correctness
Need to show that when is added to .○

Assume such that . WLOG, let be the first vertex for which this happens when is added to .

 , , , .▪

 is reachable from , otherwise . (there exists a shortest path from to)▪

○

Just before is added to , path connects a vertex in to a vertex in .○

Let be the first vertex along that is in , be the predecessor○

Let , , .○

Claim: when is added to .

 and is the first vertex such that , then .▪

○

Relax at that time, then by convergence property.○

 is on shortest path , and all edge weights are positive.

Then .▪

○

So .○

Observe and were in when we choose , thus , thus .○

 , contradiction.○

•

Runtime: .•

Difference constraints
Build constraint graph (weighted, directed)•

 : one vertex per variable, is pseudo-start.•

 .•

 .•

 if .•

Theorem:

If has no negative weight cycle, then is a feasible soltuion.○

If has a neg-weight cycle, then no solution.○

•

 is equivalent to .•

Build graph and run Bellman-Ford.
Runtime: .○

•

Maximum flow
 directed, each edge has a capacity .•
Source vertex , sink vertex , and assume , .•

 ECE1762 Page 38

Source vertex , sink vertex , and assume , .•

In the graph: , , even there is no edge .○

For ,
 .

Input =4 from , output=4 to . ▪

○

 (output from , input to).○

•

Net flow: such that
Capacity constraint: , .○

Skew symmetry: , .○

Flow conservation: ,
 .○

•

Value of flow :
 = total flow out from .

Value comes from goes to .○

•

Cancellation:
5 units with 0 units is equivalent to 8 units , 3 units .○

•

Maximum flow problem:

Given , find that is maximum.•

Implicit summation: if are sets of vertices

 .•

Flow conservation: , .•
Lemma: for any flow in .

 , .○

 , .

Proof:

 .▪

○

 such that , , .○

•

Lemma: .

Proof: ○

(i) show .
 , , so (sum up on), then by skew symmetry.▪

○

 .

Since .▪

○

Cut:
A cut of is a partition of into , such that , .•
For flow , net flow across , capacity of .•

e.g. in the same graph above, let , .

 .○

 (directional, only consider the path from to). ○

•

Lemma: for any cut , .•

Corollary: the value of any flow capacity of any cut ().

Max flow capacity of min cut○

•

Residual network
Given flow in , residual capcity: .•

Residual network where .•

E.g.

○

Note: , , .○

 .○

 .○

 .○

•

Flow sum of , : .•

If is flow in , then is flow in with value .•

Augmenting path:

 ECE1762 Page 39

Augmenting path:
A path in .•

Can push flow from to along this path, with .•

e.g. , .

Updated original:○

•

Lemma: given flow net , and augmenting path in , define as flow in with value , then is flow in with value

 .

•

Theorem (maxflow-mincut): the following 3 are equivalent:
 is max flow.•
 admits no augmenting path.•

 for some cut .•

(The maximum value of an s-t flow is equal to the minimum capacity over all s-t cuts.)•

Ford-Fulkerson(V,E,s,t)
Foreach :

 ;
While augmenting path :

Augment by ;

Runtime: assume integer capacity, and max flow , .

Not polynomial, since is not an input size.•

Edmonds-Karp
Do Ford-Fulkerson, but compute augmenting path by BFS in (shortest path with least number of edges).

Runtime: .

Proof: Let be the shortest path distance in .•

Lemma: , increases monotonically with every augmentaion.

Proof: assume such that exists flow augmentation making decrease.○

Let be flow before and flow after. Let be a vertex with minimum whose distance was decreased ().○

Let be shortst path in , and .○

So .○

This implies (cannot be one of vertices whose distance is decreased, otherwise will be chosen).○

Claim: .

If , then contradiction, since .▪

○

Thus and .○

Augmentation increases flow .○

Shortest path in has as last edge.○

 .○

Contradiction to .○

•

Theorem: Edmonds-Karp does augmentation.

Proof: is augmenting path, . Call edge critical in .○

At least 1 critical edge per augmenting path.○

We show that each of edes become critical at most

 times.○

Assume s.t. or or both.○

Since augmenting path are shortest path, become critical means that .○

Augmenting disappears, can reappear if flow decreases.○

 is on augmenting path in , .○

Using the lemma, .○

Every time an edge become critical, increases at least by 2.○

Longest number of edges .○

In the worst case, become critical

 times.○

Have pairs of nodes critical edges augmentations.○

 total time (augmenting BFS).○

•

e.g. find the min weight cycle in in time (assume no neg wight cycle).

Foreach :
Let ;
Bellman-Ford() gives shortest path;

Take min of each cycle;

 ECE1762 Page 40

e.g. Find the min weight cycle in time.

For : ()

Dijkstra(G,v);
Store results in matrix ;

// Now .

Compute ().

Bellman-Ford will be .

e.g. Maximum-bottleneck path
Let be a directed weighted path with positive edge weights. Imagine each edge weight represents width of the edge. The bottleneck

of a path is the minimum edge width on a path. We want the maximum bottleneck path from , computed in time.

•

Modify Dijkstra:
In Relax:

 .▪

Record the parent accordingly, (if :).▪

○

In Init-Single-Source:
 , .▪

 .▪

○

•

 ECE1762 Page 41

Theory of computation
Alphabet (): finite set of symbols, nonempty, ordered
String: possibly infinite sequence of symbols from alphabet
e.g. ={a,..,z}, ={0,...,9}.

abc is a string on .•
123 is a string on .•
a1b is not a string of or .•

Empty string: .

Conventions:
Concatenate: 01 with 011 gives 01011.•
Self-concatenation: , then , , .•
Reverse: is the reverse of .•
 : Set of all strings in .•
 : Set of all strings in with .•

Language ():
 is a possibly infinite subset of .•
 is language over , then each element in is string of the language.•
e.g.

{0,11,0011}, { ,10} are languages over {0,1} (all subsets of).○

•

With languages and :
Union: .○

Intersection: .○

Subtraction: (in but not in).○

•

 : concatenate copies of the language.
 .○

e.g. ,
 .○

•

Kleene closure: .•

Regular languages
A regular expression (RE) over is defined with the following rules:

 is RE.○

 , is RE.○

If R,S are RE, then R+S (R or S) is a RE.○

If R,S are RE, then RS (concatenation) is a RE.○

If R is RE, then is RE (is infinite copies of).○

If R is RE, then (R) is RE (parenthesize).○

•

e.g.
 .○

 .○

 .○

 {any string ending with 1}.○

 {any string with even number of 0s}.○

 {any string over {a,b,c} that do not contain substring ac}.○

•

Deterministic finite automata (DFA)
Language recognition devices: given string as input, does or ?•
Given finite number of states , with some terminal state, if a string ends in a terminal state, we accept it, otherwise, reject.•
Theorem: a language is regular if and only if it is recognized (accepted) by some DFA.•
e.g.

○

 is terminal state.○

 is accepted.○

 is rejected.○

Accepts all .○

•

Non-deterministic finite automata (NFA)
A single input can cause the state transition towards more than 1 state.•
When we reach a non-deterministic state, we go to all possible next state to check.•
e.g. •

NP-Completeness
March 3, 2023 8:03 PM

 ECE1762 Page 42

○

Accepts all on that ends with 01.○

Theorem: for each NFA, there exists equivalent DFA.•

All the following are not regular languages, and cannot be recognized by DFAs
{ : p is a prime}.•
 .•

 .•

Issue: no memory•

Context-free languages(CFLs)
They rise from production rule.•
 : string in language.•
e.g.

 , gives .○

 gives .○

•

Nondeterministic Pushdown automata (NPDA)

•

Push when 0, pop when 1, stack empty then accept: .•

Turing machine
Finite state machine•
Infinite length tape•
Can read/write tape•
Can leave an answer on the tape•
Special state: halting state

Finished computation○

Read tape: 0 for yes, 1 for no.○

•

Can enter infinite loop•
A Turing machine T accepts language L if T accepts and rejects or enters infinite loop for .•
A Turing machine T decides a language L if:

Yes: .○

No: .○

There should be no infinite loop○

•

Universal Turing Machine
A Universal Turing Machine takes in an input , it simulates a Turing Machine on an input .•
Let be the Turing machine with specification , it simulates on input .•

•

Algorithm=Turing Machine=hardware=computer.•
Theorem: There always exists universal Turing machine such that such that if halts within steps, then
halts within steps where constant depends on the alphabet size, number of tapes etc of .

•

Uncomputability
Theorem: There is uncomputable functions not computed by any Turing machine.

Define as follows, :
If (accept), then .▪

If (reject), then .▪

○

Proof: Assume UC is computable, i.e. there exists Turing machine such that , .○

Then contradiction, because by definition, iff .

•

Halting problem:
Define HALT()=1 if halts. HALT is uncomputable.

Proof: Assume there exists Turing machine , then use to compute function.○

To build machine on ():
On input , runs HALT().▪

○

•

 ECE1762 Page 43

On input , runs HALT().▪

If HALT()=0 (does not halt on), then .▪

If HALT()=1, then run universal Turing machine on , get result .
If , output 0.□
If , output 1.□

▪

However, this is not computable, contradiction.▪

Decision v.s. optimization
Decision: Is there a path which is at most -edges?

HAM-CYCLE: Is there a simple cycle traversing all vertices of G?○

•

Optimization: What's the shortest path between vertices and ?•
Decision problems optimization problems.

If we solve an optimization problem, we have the solution to the corresponding decision problem.○

•

Complexity class P
 { : poly time algorithms that decides in poly time}.•

Def: Algorithm verifies a problem if and only if given instance , certificate (or witness, candidate solution) such that .

The language verified is .○

e.g. in HAM-CYCLE, is a graph, is a proposed solution of HAM-CYCLE.○

•

Complexity class NP
Informally: all problems verified in poly-time.•

Formally: if there exists poly-time algorithm and constant such that { : certificate where such that

 and runs in poly-time}.

The size of certificate (solution) must be polynomial to the size of the input.○

•

Hierarchy
 : problems that can be solved in polynomial time can be verified in polynomial time.•
Co-NP: co-NP.

e.g. NP=all graphs that have HAM-CYCLE, co-NP=problems that are:
Not a graph▪

A graph without HAM-CYCLE▪

○

•

Theorem: P is closed under complement that is P=co-P.
 (simply reverse the problem and solution).○

•

PSPACE: problems that can be solved by Turing machine using poly space•

•

Open problems
NP=co-NP?•
P=NP co-NP? (primality checking is NP co-NP)•
P=NP?•

Poly-reducibility
Informally: if an instance of problem can be transformed in poly-time to an instance of problem such that a solution to provides a solution to
 .

i.e. is not harder than , .○

•

Formal: language (problem) is poly-reducible to denoted as if and only if poly-time algorithm such that if and only if

 .

•

Theorem: if and , then .

Given , reduce to in poly-time, check is poly-time, map back to is poly time.○

•

NP Complete (NPC)
A problem is NPC if

 (verified in poly time)○

 , (if only this property is satisfied, then is NP-hard)○

•

Theorem:
If and , then .○

NP=co-NP if and only if such that .

 : easy since NP and co-NP now overlaps.▪

 : pick , show that .
Since , , equivalently, .□

Since , then .□

▪

○

•

Methodology: Given , to prove .
Prove (verified in polytime).

Provide a certificate: the evidence that the solution is an instance of .
•

 ECE1762 Page 44

Provide a certificate: the evidence that the solution is an instance of .
e.g. for SAT, assignment, for Ham-Cycle: a ham-cycle.▪

○

Select known and:
Find algorithm that given instance , if and only if .

Show the transformation▪

Then prove the if and only if equivalence▪

○

Show takes poly time, i.e. .○

•

If for some , then , .•

Circuit SAT is NPC
Is there an assignment to primary inputs , making ?•

Circuit SAT SAT 3-CNF-SAT

.•

•

Reduce circuit SAT to formula SAT
Formula SAT: is a formula of -boolean variables and connections , , , (), , .

e.g. .○

•

Decision version: Is there a 0/1 assignment to variables such that ? .•

Formula SAT NP:
Number of connections is poly in , given a solution, it takes polytime to evaluate and verify.○

•

Circuit-SAT Formula SAT.

Given a single output circuit , create a formula such that has satisfying assignment is equivalent to , s.t. .○

If , the corresponding must give in the circuit.○

If has satisfying assignment, by construction .○

Reduction is polynomial time, since number of gates is polynomial in .○

•

3-CNF-SAT
CNF: a conjunction of disjunction of clauses with any number of boolean variables

 .○

•

3-CNF: a conjunction of disjunction of clauses with exactly 3 boolean variables

 .○

•

Literal: variable or complement of a variable•
Clauses: each is a clause.•
Disjunction: connected by .•
Conjunction: clauses connected by .•
Decision version: Given with # variables, # clauses, does it have a satisfying assignment?•
Side note:

2.4-SAT : if each clause have 2.4 literals on average, then it is .○

2.41 NPC.○

•

3-CNF-SAT is NP: given assignment , it takes poly time to plug in clauses to check.•
Circuit-SAT 3-CNF-SAT.

Given a circuit, it has a satisfying input assignment some 3-CNF-SAT is satisfiable.○

○

Consider a gate , it has a characteristic function:

 And

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

▪

 e e
 ▪

 . (complement everything)▪

○

The overall circuit can be represented by .

Note: the final 4 terms is equivalent to .▪

○

•

 ECE1762 Page 45

Note: the final 4 terms is equivalent to .▪

If there exists satisfying assignment to the circuit, then is satisfiable.○

If is satisfiable, we use the same input, and must be 1.○

 (transformation) takes poly-time, since we just translate clauses to gates.•

Clique
A clique is a graph that every vertex is connected with all other vertices.

K4: ○

○

•

Both the clique and approximating clique are NPC.•
Decision version: Does G have a clique of size ?•
Clique is NP: given the vertices, check if they are pair-wise connected takes poly time .•
3-SAT clique

Consider .

▪

○

 has a satisfying assignment some G has a clique of size = # clauses.○

Reduction procedure:
For each clause, introduce 3 vertices.▪

Connect vertices from different clauses if and only if they are not complement of themselves.▪

○

Given a satisfying assignment to , the connection in is a clique.○

Given a clique in G, the vertex assignment satisfies .○

•

Given , we create a graph is polynomial time.•

Vertex cover
Given a graph , a vertex cover is one that , or or both in .•
Decision version: Does there exist a vertex cover of size ?•

Vertex cover is NP: Iterate through the vertices , check if all edges are adjacent to , .•

Clique Vertex-Cover

G has a clique of size k has a vertex cover of size .○

 is the complement graph, with the same vertices, if .○

○

Assume they are not vertex cover, there is an additional edge in not covered, then there is no clique of size in .○

Assume there is no clique, then there will be an additional edge in , the vertex cover has a larger size.○

•

Transformation from to is polynomial time.•

Travelling Salesman Problem
Informal: a salesman needs to go to every city only once to sell his merchandise and wants to minimize the mileage•
Formally: Given a complete, undirected, weighted graph, find a Ham-Cycle of minimum weight.•
Decision version: Does G have a TSP with weight k?•
TSP is NP: Iterate through the given solution, check if it is weight k and Ham-Cycle. Poly-time•
Ham-Cycle TSP

Assign unit weight to all edges in the original Ham-cycle graph .○

Make G a complete graph by assigning infinite weight to the additional edges.○

The transformation is poly-time, since we add edges.○

Is there a TSP with ?○

•

Suppose :

If , then .•
If , then (can use 's verification procedure).•
If , cannot conclude on .•
If (NP-hard), then NP-Hard.•

Half-Vertex-Cover

A=Half-Vertex-Cover={ : G has even number of vertices and a vertex cover of size

 }.•

 =k-vertex cover.•
 :

Certificate: .
•

 ECE1762 Page 46

Certificate: .○

Verification: check that

 and check that , either or , takes .○

 .

Given and , construct that has vertex cover of size

 . ○

case 1:

 , nothing to do.○

Case 2:

 .

Transformation: let , given and , construct by adding new vertices to that are
disconnected and contain self-loops. .

▪

Claim: k-VC Half-VC.

 Let be the k-vertex cover of G, , consider , which is a vertex cover of . □

Notice

 .

 let be a vertex cover of , notice otherwise we miss the self loop. Consider .□

 is a k-vertex cover of .

▪

○

Case 3:

 .

Transformation: Let , given and , construct by adding new vertices to that are

disconnected, . .

▪

Claim: k-VC Half-VC.

 Let be the k-vertex cover of G, , consider ,

 .□

 let be the half-vertex cover of . Let .□

 , so .

If , add any vertex until

▪

○

•

 ECE1762 Page 47

Approximation algorithm with approximation ratio (or a -approximation)
 , often constant, can be abbreviated to -approx.•

Minimization:

 , is approximation, is optimal.•

Maximization:

 .•

If algorithm is poly-time, then we have poly-time -approximation.•

Vertex cover
Optimization: find vertex cover of minimum size•
2-approximation algorithm in poly time•
Approx-Vertex-Cover(G)

 ;
 (copy edges);
While :

Choose arbitrarily;
 ;
Remove from , every edge incident on or ;

Return .

•

e.g.

○

 .○

 .○

 .○

 .○

Optimal: .○

•

Proof: the algorithm is 2-approximation of optimal vertex cover
Observations:

 is a vertex cover.▪

Need to create a bound for .▪

○

Let denote set of edges the algorithm picks.○

An optimal vertex cover is a vertex cover, must cover at least one endpoint of each
edge in , and each edge in .

○

No 2 edges in share common endpoints no 2 edges in are covered by the same
vertex in .

○

 .○

Also, , thus .○

•

Travelling salesman in 2D plane
Complete undirected and integer cost for each .•
Denote

 .•

TSP in 2D edge costs satify triangle inequality because edge costs are the ordinary Euclidean
distance between nodes.

 .○

•

Approximation Algorithms
March 3, 2023 8:03 PM

 ECE1762 Page 48

○

Approx-TSP-Tour(G,c)
Select vertex to to be some root vertex
Compute MST T of G from root r using MST-Prim(G,c,r)
Let H be a list of vertices ordered according to first visit in preorder walk of .
Return Hamiltonian cycle .

•

e.g.

 .○

Preorder walk of : .○

Only count first visit: .○

H: (direct shortest path straight line).○

•

Proof: let be the optimal tour if remove any single edge from that tour , get a spanning
tree.

 .○

A full walk of traverses every edge in preorder walk of exactly twice.○

Let be the full walk, .○

From to walk that only uses first visit of each vertex, we are deleting from
between and .

○

By triangle inequality, , .○

•

Theorem: if , then for any constant , there does not exist poly-time
approximation algorithm with approximation ratio for the general TSP problem (triangle
inequality does not hold).

Proof (by contradiction): Ham-Cycle TSP-opt.○

Reduction from to , where is the completion of ,

is the

cost function, where is the approxmiation rate, # vertices.

○

TSP tour have total cost using Ham-Cycle edges.○

For sub optimal, total cost will be at least .○

This will tell if there exists a Ham-Cycle in G in polynomial time.○

•

 ECE1762 Page 49

	Background
	Sorting
	Trees
	DP & Greedy
	Hashing
	Amortized Analysis
	Graph Algorithms
	NP-Completeness
	Approximation Algorithms

