
Growth of functions - Asymptotics
Notations:          .•
 -nonation:

                                             .○

    is an upper bound of     ,     bounds     from above.○

E.g.
          , since          for       .▪

 

 
            , since 

 

 
          holds for   

 

 
 .▪

                       .▪

              , since         .▪

          , since          .▪

         .
Assume       exists,         ,     for all     .□

▪

○

•

 -notation:

                                             .○

e.g.

              
 

 
    

 

 
        ,▪

  
 

 
    

 

 
      

 

 
    

 

 
      

 

 
       

 

 
   

 

 
   

  

 
        .

 

 
            .

Take     ,   
 

  
  .□

▪

○

•

 -notation

                                                         .○

Thm:          iff             and             .○

e.g.

             
      

 
           .▪

         
           .

            since          
      

              .□

            . Consider           
            

          
 

     ,

□

   
 

 
  

 
 
  

    

      , so      
    

        ,             .

▪

            .

Need to find           such that                   for all 
    .

□

            if      .□

Also,           
 

 
  , if       .□

We get   
 

 
         .□

Raise to power of  , we get    
 

 
  

 
              .□

    
 

 
  

 
,      ,        .□

▪

○

•

 -notation:

                                                .○

Equivalently,       
    

    
     .○

          ,         .○

•

 -notation:

                                                .○

Equivalently,       
  

  
  .

•

Background
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Equivalently,       
    

    
     .○

          ,         .○

Properties

Transitivity:             ,             , then             .

True for        .▪

○

Reflexivity:             .

True for    .▪

○

Symmetry:             iff             .○

Transpose symmetry:

            iff             .▪

            iff             .▪

○

•

Theorem: if              ,              , then

                      .○

                             .○

•

Polynomial-bounded functions

A function     is polynomial bouned if           .•

          iff                  .

Proof: ( ) Assume           .○

Then          , for     .

                                      for constant   .

( ) assume                  .

Then                 .

                  .

        .

•

Limit method

   
    

    
                  .•

   
    

    
                        .•

   
    

    
                  .•

More precisely

   
    

    
                  .○

   
    

    
                        .○

   
    

    
                        .○

   
    

    
                        .○

   
    

    
                  .○

•

L'Hopital's rule
If                        or   .○

      
    

    
          

     

     
    .○

•

Log of limits and limits of logs

                               .•

e.g.         
,        .

          
    

    
               

    

    
                  

       .○

                   .○

Then       
    

    
     , so             . ○

•

e.g.          ,        .

         
    

  
          

    

  
                    .

•
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                          .○

                .○

Then       
    

    
     , so             .○

                       
 

 
                                .

      .•

e.g.

                
 

.

              .○

•

           .
Log both sides and take the limit.○

•

               
    

since            .•

             .•

                             
       

          
   
 

    
  .•

            
    
.•

Summations

               
 
       

 
   

 
   .•

         
            

    .•

   
    

      

 
           .

        
         .○

•

    
    

            

 
          .•

    
    

        

 
       .•

For    ,     
    

      

   
      .

For      ,     
  

 

   
   .○

Differentiation gives      
  

 

           .○

•

 
 

 
  

            .

         
 

 
  

         .○

•

Telescoping

           
         .○

 
 

      
        

      
 

 
 .○

•

       
 
           

 
   .•

Logarithm

            
 

.•

                   .•

                        .•

e.g.
       .○

       .○

                         .○

          .○

     is the slowest besides constant.○

•

Stirling approximation:    
  

 

 
       

  

 

  
 

   
             .
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Stirling approximation:     
     

 
 

 
  

 
        

     
 

 

 
  

  
 

   
    

               .

Proofs
Induction

Predicates     (proposition).
e.g.             .○

•

                                 .•

e.g. prove the sum of first  odd positive integers is   .
Base: for    , sum is     .○

Induction Hypothesis: assume                .○

Induction step:                               .○

•

e.g. Show that every      board with single tile removed can be tiled with L-shaped 3 piece 
segment of tiles.

Base:    ○

IH: suppose for some      ,      board with single tile removed can be tiled 
with L-shape segment of tiles.

○

Induction: when      , split into 4      boards. For each of them, can be tiled 
by I.H. Center segment can be tiled by single L-shaped piece.

○

•

Strong induction

                                    .•

e.g. every integer    can be written as a product of primes
Base:     is true since  is a product of itself.○

IH: Assume                 true for some    .○

IS: for    .
If    is prime, then done.▪

If    is composite        with        .▪

Then by IH,          ,          , with      primes.

   is then a product of primes, then       is true.

○

•

Contradiction
To prove     , assume by contradiction,      is true.•
      some proposition known to be false, then     is true.•

E.g.   
   

is irrational.

Assume   
   

is rational, then   
   

 
 

 
 where    have no common factors.○

         is even   is even,     .
                 is even.
Contradiction.

•

Other proof techniques
Direct proof•
Proof by counter example•
Contrapositive:

         .○

•

Permutations and combinations
Rule of product: If event  can happen in  ways and event  can happen in  ways, then  and   
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Rule of product: If event  can happen in  ways and event  can happen in  ways, then  and   
can happen in   ways
Rule of sum: If event  can happen in  ways and event  can happen in  ways, then  and   can 
happen in    ways

Permutations

       
  

      
     : the way to arrange  objects out of  objects where order matters.•

e.g. # ways  people can be seated in a round table.
For linear,          .○

For a ring, shifting doesn't affect the order,       .○

•

If not all items are distinct, but we have   of type 1,   of  ype 2,…   of type  , then the 

permutation is 
  

          
       .

•

e.g. 5 dashes and 8 dots can be arranged in 
   

    
   ways.•

e.g. show that      Is divisible by           ,   .
Consider     objects,  of type 1,  of  ype 2,…,  of type       .○

# ways to arrange these objects: 
     

       
      

     

                 is an integer.○

•

Combinations
Relative order does not matter•

       
      

  
      

  

        
                 

 
 
 .•

How many diagonals in a decagon?  
  
 

    .•

e.g. 11 scientists are working on a recent project. They want to lock documents in a vault such 
that vault opens if at least 6 scientists are present. What is the smallest number of locks 
required? What is the smallest number of keys each scientist should have?

Every group of 5 scientists, there should be 1 lock that cannot be opened○

For every 2 or more groups of 5, this lock must be different, otherwise there would be a 
group of 6 scientist that cannot open the vault

○

  groups of 5, 1 lock cannot be opened   
  
 

     locks at least.○

Every time a new scientist join a group of 5, they have the key that the others don't.○

#keys=how many scientists can be formed out of the rest 10 scientists.○

#keys   
  
 

     keys at least.○

•

Combinatorial argument: (argument based on counting)
Given some equation, prove using the following method•
Question: ask some counting question.•
LHS: argue why the LHS answers the question.•
RHS: argue why the RHS answers the question.•

E.g.  
 
 
   

 
   

 .

Question: how many ways can you select  objects from  total objects without 
replacement? 

○

LHS: True by definition.○

RHS: Instead of choosing  object, I choose    objects to eliminate, leaving me with  
objects.

○

•

e.g.   
 
 
 

 
 
     

  
 

 .

Question: I have  black balls and  red balls. How many ways can I select  balls out of 
the   total?

○

RHS: True by definition.○

LHS: fix  to be the number of black balls chosen, then    is the number of red balls.

There are  
 
 
 ways to choose black balls, and  

 
   

   
 
 
 ways to choose   

 red balls.

AND event, 
 
 

 
is the number of ways to choose  black and    red.

○

•
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AND event,  
 
 
 

 
is the number of ways to choose  black and    red.

       disjoint, OR event, adding them gives   
 
 
 

 
 
   .

e.g.  
 
 
   

   
   

   
   

 
 .

Question: # ways to select  objects from  objects.○

LHS: True by definition.○

RHS: consider some particular object  in the set.
If  is in the  objects we selected, we choose    objects from the rest 

 
   
   

 .

▪

If  is not in the set of objects we selected, we choose  from the rest,  
   

 
 .▪

Disjoint, so addition.▪

○

•

e.g. word length  from alphabet        .

 
 
 
       

 
 
      

    

 
    .○

RHS: proof by induction, if length  has odd number of zeros (
    

 
    ways), append a 

single 0, otherwise (
    

 
    ways), we can append 1 or 2 only.

○

•

e.g.  
   

 
  

   
 

    
   

 
  

     
   

  
 

   
  

 .

Total    balls, select  balls from them first, put back and select  balls.○

RHS: first select  balls that will be in both the first and second set. Then select    
balls from      balls to form the  ball group. Select    balls from the rest  
balls. Sum up over  .

○

•

e.g.         
 
 
         

   .

Question: string of length  , one blank position, alphabet of size  . How many ways are 
there to create such string.

○

LHS:  ways to choose a single position for the blank. Then there are     ways to assign 
4 alphabets to the rest    positions.

○

RHS: choose  positions from  to assign the rest 3 alphabets, then    ways to 
choose a specific position for the blank. Fill in the rest with the final alphabet.

○

•

Probability
Experiment•
Sample Space  

e.g. two fare coin                .○

•

Axioms
         , ○

       , ○

                           ,○

                  if independent.○

•

e.g. Flip fair coins  times, there are   outcomes uniformly distributed.

            
      

       .○

•

Bayes theorem:         
       

     
       

            

                           
                    .

e.g. 1 fair coin, 1 biased (always H),                    
  

 

 
 

 

 
    

 

 
  

 

 
  

         
 

 
 .○

•

Discrete random variables
For an r.v.  ,                

            .•

Expected value:                
   .•

e.g. flip two coins win $3 for H, lose $2 for T.

     
 

 
   

 

 
      

 

 
    .○

•

Properties:
          .

•
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                .○

           .○

Graphs and trees
       .

  set of vertices.○

 : set of edges.○

Directed/undirected○

Weighted/unweighted.○

Representation
Adjacency list▪

Adjacency matrix▪

○

Path○

Edge○

Simple path○

Cycle○

Vertex degree
Undirected:       = # all edges connected to  .▪

Directed: in-degree, out-degree.▪

○

Neighborhood:     all vertices directly connected to  .○

For undirected              
 .○

•

A tree is a connected, acyclic and undirected graph
Terminology: root, children, parent, internal nodes, leaves, subtree rooted at  .○

Binary/k-ary tree: tree with nodes with at most  or  children.○

Complete tree: all leaves have the same depth, all nodes have  children.○

Depth at node  : length of path from root to  .
             .▪

○

Height of node  : #edges in longest path from node  down to a leaf.○

•

Recurrence
Motivating example: Mergesort

Mergesort○

If    :

   
   

 
    ,

Mergesort(       )
Mergesort(     )
Merge(       ).

Split to single element, then merge into a ordered manner○

Runtime:         
 

 
       

 

 
        .

Recurrence is for # subproblems and size of subproblem.▪

    is for conquer part.▪

Base case omitted since we are only interested in asymptotic runtime.

        
 

 
       .□

▪

○

•

Master's theorem for                  ,    ,    .

Case 1: if                 for    , then               .

e.g.          
 

 
    ,    ,    ,          ,               , 

          .

▪

○

Case 2: if                    , then                      .

e.g.                  ,      ,         ,          ,      

     .

▪

○

Case 3: if                 for    and    
 

 
        for      , then 

            .

e.g.                   ,    ,    ,            , 

                and  
 

 
   

 

 
 

 

 
     .

▪

○

•
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                    and  
 

 
     

 

 
   

 

 
      .□

             .□

Substitution
We guess a solution to     and use strong induction to prove guess was correct○

         
 

 
     .

Guess              , assume           ,     .▪

Then          
 

 
      

 

 
  .▪

We have         
 

 
      

 

 
       

 

 
    

 

 
                  

      , for    .

▪

○

Erroneous guess
         gives        ,    .▪

        
 

 
                , not equivalent to          since we 

are not explicitly proving the IH.

▪

○

•

Recursion tree
Helps find a good working guess for substitution

Longest path gives upper bound▪

Shortest path gives lower bound▪

○

e.g.        
 

 
     

  

 
     .

Imbalanced tree, longest path (height) is determined by the 
  

 
  path.▪

Consider the longest path: 

Size at level  :  
 

 
  

 
 .□

At max level:  
 

 
  

 
   , gives          .□

▪

For shortest path,  
 

 
  

  

   , stil           .▪

Total work:   cost/level,         .▪

Need strong induction proof▪

Lower bound, still         .▪

○

Generally,             
   .○

                           .

Base case if          , where        .▪

               
     
   .▪

○

•

Let        be an undirected graph, all of the following is equivalent.
 is a free tree (connected, acyclic).•
Any two vertices in  are connected by a unique simple path.•
 is connected, but if you remove any edge, it becomes disconnected.•
 is connected and          .•
 is acyclic and          .•
 is acyclic and adding any edge to  creates a cycle.•
Proofs

(1) (2): since  is connected, there must be at least one path.○

Assume by contradiction that a second path exits,        ,       ,      
  forms a 

cycle, but  should be acyclic.
(2) (3): since only one path exists between any 2 nodes, removing an edge must 
disconnect something.

○

(3) (4):          by induction on    , same applies for          .○

Basis:      , then      ,        .
IH: if      , then        .
Induction: suppose  is any graph with        .
Remove some vertex to get         , remove all edges connecting to  to get   .

          of size       , so            .

Now       ,       , so      .

•
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Now           ,           , so          .
(4) (5): assume by contradiction that  contains a cycle              .○

Add vertices to   , one at a time, each vertex also adds at least 1 edge.

          ,           , then      and      , 

contradiction, since          .
(5) (6):  has  connected components. Each connected component is a free tree, so 
(1) to (5) is true.

○

           ,   ,          
 
          

         , so    ,  is fully 

connected.
 is a free tree means that adding any edges must create a cycle.
(6) (1): Consider any pair of nodes  and  .○

Adding edge      cause a cycle between  and  .
Now remove      which leaves a path from  to  .
 is connected, so  is a free tree.
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Heap (binary)
It is a tree•
Full except maybe at the bottom level, leaves must be starting from left•
Heap order property

Key(parent)  key(children) is max heap.○

Key(parent)  key(children) is min heap.○

•

Heap as an array: Given index  ,

Parent:  
 

 
  .○

Left child:   .○

Right child:     .○

•

e.g.                           .

○

•

Max-Heapify: enforce the heap order property if it is violated
Compare     with      and        .•
Swap if     smaller,                        .•
Continue downwards swapping if necessary until either property not violated or you hit a leaf node.•

Runtime:        because of the balanced property.•

Build-Max-Heap(   ):

For    
 

 
    :

Do Max-Heapify(     )

e.g.                           .
Start with 16, do nothing.•
Then at    ,       ,         ,          , violated, swap with 14.

                          .○

•

   ,       ,        ,             swap with 10.
                          .○

•

   ,       ,         ,           , swap with 16.
Then also need to swap with 7.○

                          .○

•

   ,       ,         ,           , swap with 16.
Then also need to swap with 14 and 8.○

                          .○

•

Runtime for Build-Max-Heap:

Simple:         (for loop  cost at Heapify).•

Proper:
Time to run Max-Heapify is linear in the height of the node it is run on and most node have small 
height.

○

Lemma 1: at height  , there are at most  
 

        nodes.○

Lemma 2: height of heap is               .○

Runtime  
 

    

    

         
 

  

    

   .

•

Sorting
January 17, 2023 9:27 PM
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Runtime    
 

        
      

             
 

    
      

    .

Apply      
  

 

      
     for   

 

 
 , we get     .▪

○

Heapsort(   )
Build-Max-Heap(   )
For      :

Swap          .
Max-Heapify(       ).

E.g.              .
                                                .•

Runtime for Heapsort:                       .

Priority Queue implementation using heaps
Treat each element in the heap array as a pointer to an object in the priority queue.•
Each element has a key value         .•
Insert(     ): inserts the element  with key  into the set  .

       .○

•

Maximum( ): returns the element of  with the largest key.
    .○

•

Extract-Max( ): removes and returns the element of  with the largest key.

       .○

•

Increase-Key(     ): increases the value of element  's key to the new value  which is assumed to be at 
least as large as  's current key value.

       .○

•
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Quicksort
Sort in place•

Constant in         runtime are small•

But         only in expected case.•

     in worst case.•

Partition(     )
      (pivot is the right most element in the array).
     .
For    to    .

If       :

     .

Swap          .

Swap            .
Return    .

Runtime:     .

e.g.                    .
Initially,    ,    ,    .•
   ,          , skip.•
   ,              ,    , swap          , get                  .•
   ,            skip.•
   ,              ,    swap          , get                  .•
Finally, get a partial ordering                  .

Left elements smaller than the pivot.○

Right elements larger than the pivot○

•

Quicksort(     )
If    :

  Partition(     ).
Quicksort(       )
Quicksort(       )

Initial call: Quicksort(     ).

Performance of quicksort:
Worst case: when input is already sorted, pivot is always the largest/smallest element. Every time, we get 
an empty array and an array of size    .

•
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an empty array and an array of size    .

                      .○

Best case: pivot always median         
 

 
                .•

Balanced case:                      , where      ,              .•

Randomized quicksort
We can randomly shuffle input or choose pivot to reduce the chance of getting the worst case scenario•

The worst case scenario is still      , but the chance is lower.•

Randomized-Partition
  RAND(   );
         ;
Return Partition(     ).

Worst case analysis (applies to both versions)

                                     .•

We guess           , and prove by induction.•

Assume         for some  and all    .•

Then                               
 
      .•

            
 

obtains max at    and      .

                         
 
         .○

•

                             . Choose  such that        dominates     .•

          .•

Can also show that           ,           .•

Expected case analysis

     
 

 
                    

       .•

       
 

 
         

   .

Guess            for    .•

Use         
           

 

 
and          

 

 
  

 

 
         

   

 
   .•

           
 

 
           

        
 

 
          

 

 
.•

       
 

 
  

 

 
        

   

 
    

 

 
         for    .

So              .•

Lower bounds for sorting
Consider comparison-based sorting only

Only operation to determine order info about a sequence of elements is pairwise comparison○

•

Trivial:     to examine all elements.•
Claim:         is lower bound for comparison based sorting in the worst case.•

Decision tree
Abstraction of comparison-based sorting•
Every tree is for one sorting algorithm on inputs of a given size•
No control flow, no data movements are modeled•
We count only comparisons as cost•
e.g.         .•
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Observation: decision tree must have at least one leaf for every permutation of input sequence
Number of leaves:     .•

Height:  , we need to show           .•

Lemma: any binary tree of height  has    leaves (proof by induction on  ).•

       ,     ,        ,             (by Stirling).•

                      .•

Since  represents worst case execution trace, any comparison-based sorting takes         in worst 

case.

•

Sorting in linear time
Only algos that use operations other than pairwise comparisons•
Counting, radix, bucket sort.•

Stable sort: sorting that preserves the relative order of the same value in the previous step

Counting sort

Input:       ,               (   are parameters).•

Output:       sorted (not in place).•
Auxiliary array:       .•
Algo:•
CountingSort(       )

For      ,       .

For      ,                  .

For      ,                 (accumulation).
For      , 

               .

                 .

Example:                           .
First for loop:                .○

Second for loop:                .○

Third for loop:                .○

Sorted:                          .○

•

Total time:       .
Linear if and only if       .○

•

Auxiliary array can be used to do Range Query in     .
e.g. to find number of elements in    , do          , in    do        .

•
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e.g. to find number of elements in      , do            , in      do            .○

Radix sort
Key idea: sort LSD (least significant digit first)•
RadixSort(   )

For      ,
Stable sort to sort  on digit  . (relative order in previous step is preserved. e.g. Counting sort)

•

Example:•

initial Right middle left

326 690 704 326

453 751 608 435

608 453 326 453

835 704 835 608

751 835 435 690

435 435 751 704

704 326 453 751

690 608 690 835

Time:  passes, each pass       .

         if       , then we get      .○

•

Suppose we have  words,  bits/word, and use  -bit digits.

   
 

 
  ,       .○

Plug into the time, get   
 

 
        .○

When       ,   
 

    
             

  

    
     . (balanced)○

When        ,   
 

     
               

   

    
     . (worst)○

When       , no improvement.○

•

BucketSort(   )
For      , 

Insert     into           ( is a list of buckets).

e.g. with      , 0.5 and 0.505 goes to      , 0.51 goest to      .
For        , 

Sort     with insertion sort.
Concat              .
Return concatenated  .

Correctness

Consider          , WLOG, assume          .•

Then                .•

Two cases
    in the same bucket as     , then insertion sort imposes the correct order within the bucket.○

    in a bucket with smaller index than     's bucket, after concatenation, order is preserved.○

•

Runtime in expected case
Define r.v.    # elements placed in     .•

               
     

   .•

                    
     

                 
      

                
      

   .•

Claim:     
     

 

 
 ,           .

Proof: define indicator r.v.s                   
                        

      
.○

        
 

 
, since the values are uniformly distributed.

•
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 , since the values are uniformly distributed.○

       
 
   .○

    
          

 
    

 
        

  
             

 
     

   
    ,○

       
   

                 
     

   
   .○

     
                                   

 

 
 .○

Since    ,    are independent,                        
 

    .○

Then     
    

 

 
  

       
 

     
     

   
       

 

      
 
 
    

 

 
 .○

Hence                     
 

 
      

                  .•

Order statistics
Given         , interested in finding ith order statistics.

Element in  , s.t.    elements are smaller than it.○

•

1st order statistic: min.•
Nth order statistic: max.•
Lower/upper median, etc.•

Simultaneous min and max requires at most   
 

 
  comparisons.•

Selection in expected linear time
Randomized-Select(       )

If    : return     
  Randomized-Partition(     ).
       .
If    : return     (pivot is the ith order statistic).
If    : return Randomized-Select(         ) (We have more elements than needed).
Else: return Randomized-Select(         ) (We have fewer elements than needed).

e.g.                      ,    .

6 is the 4th order statistics in this case

Worst case:      .

Expected runtime:                  
      .
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Expected runtime:                           
        .

                                 
        ,•

  
 

 
                    

        ,•

Note:               
       

 

 
  

       
 

 
  

.•

If  is even, terms from    
 

 
   to       appear twice.•

If  is odd, terms also appear twice except    
 

 
   which appears once.•

Then         
 

 
            

   
 

 
   

     .•

Replace     with   , guess        for    .•

        
 

 
       

   
 

 
   

    
  

 
        

      
 
 

 
     

   
    .•

 
  

 
   

      

 
      

 
 

 
      

 

 
     

 
             .•

     
  

 
   

 

 
     .•

Thus           for 
  

 
   

 

 
      or   

  

    
    .•

E.g. sort an array of integers in worst case         time

Insertion sort (     )•

Merge sort (        )•

Heap sort (        )•

Randomized quicksort (     )•

Counting sort (      )
 can be larger than  , assume all integers in      .○

•

Radix sort (         )•

Bucket sort (     )

Worst case when all numbers in the same bucket○

•

e.g. sort an array of integers ranging from -100 to 100 in     time worst case.
Shift all integers by +100•
Sort the array by counting sort•
Shift output by -100•

e.g. sort the above array using bucket sort, in     expected time.

    ,   
     

   
     •

Sort using bucket sort.•
Then      ,           .•

e.g. sort  integers ranging from 0 to     in     time.
Counting sort won't work, since       ,                 .•
Any number           can be written as             for               .•
Run radix sort base  .•

                   .

 is given by the base ( ),  is given by number of digits (#   ).○

•

e.g. weighted medians
Let        be  distinct (unsorted) elements, each with positive edge weight        s.t.    

 
     , 

the weighted (lower) median is the element   s.t.    
 
     

 
 

 
 ,    

 
     

 
 

 
 .

•

Show that the weighted median is the same as the median if    
 

 
 ,         .•

Find the weighted median in         time using sorting.

Sort using heapsort/mergesort.

•
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Sort using heapsort/mergesort.
    .
For      ,

          . (      
 
   )

If      
 

 
 and        

 

 
 .

Return   .
Find the weighted median in     expected time using selection.

Modify the Randomized Selection algorithm
Let  be the randomly chosen partition.

Let     
 

 
 .

Partition the input array by  and compute      
 
    ,      

 
    .

If    , then recurse on the left side with      .
Else if    , then recurse on the right side with      .
Else return  .

•

e.g. merge  sorted list where each list is size    .

Method 1: concatenate and run merge sort                       .•

Method 2: 
initialize a pointer in these  lists, starting at the first elements.○

Each iteration, finds the min of the  elements, then increment the corresponding pointer.○

There is a total of  iterations.○

Time:      .○

•

Method 3:
initialize a pointer in these  lists, starting at the first elements.○

Build a heap containing all pointer values     .○

Extract min pointer,        .○

Insert the next pointer,        .○

Do this  times, get         .○

•

Method 4:

Merge the arrays 1 by 1,    
      

 
         

         .○

Pairwise merge,          
            .○

•

Selection in worst-case linear time
Idea: guarantee good split (using median)•
Select algo:

Divide the  elements into groups of 5. Get  
 

 
  groups ( 

 

 
  with 5 elements, possibly 1 with  mod 5 

elements)     time.

○

Find median of each group     .
Insertion sort on each group     .▪

Take median from each group     .▪

○

Find lower median  of the  
 

 
  medians from step 2 using recursive call to Select,    

 

 
   .○

Partition by using  as  pivot. Assume  is  th element  
        

           
,     .○

If    , return  .○

If    , recurse on lower side.○

If    , recurse on greater side, searching for    .○

•

After insertion sort, we will be able to find medians sorted in increasing order.
                                                                         .○

Medians are                        .○

Lower median of them is    .○

•

For the final 3 if statements
Take the lower median of medians, then                        and        ,...    .○

So at least half of medians   (pivot).○

Groups with medians   contribute exactly 3 elements   , except   s group and the leftover 

•
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Groups with medians   contribute exactly 3 elements   , except   s group and the leftover 
grpup wich contribute less.

○

Ignore these 2 groups, we have  
 

 
  

 

 
     contributing with 3 elements   .

At least    
 

 
  

 

 
       

  

  
    elements.▪

○

Symmetrically, at least 
  

  
    elements   .○

In step 5, worst case, we recurse on partition size  
  

  
    .○

      
          

   
 

 
      

  

  
                

.

Guess        for    .○

       
 

 
     

  

  
              

  

  
         .○

   if  
  

  
          or       

 

    
     .○

For      , 
 

    
      , so choosing      gives       

 

    
     .○

Could work for     with       .○

•
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Binary search trees (BST)
Tree:  .•
Root:        .•
Each node has key, left, right, parent.•

BST property:

If  is in the left subtree of  , then              .•

If  is in the right subtree of  , then              .•

Traversals
In-order: A,B,D,F,H,K.•
Pre-order: F,B,A,D,H,K.•
Post-order: A,D,B,K,H,F.•

Min: leftmost node,     .
Max: rightmost node,     .
Successor: next element in in-order walk (min of right subtree)
Predecessor: previous element in in-order walk (max of left subtree, in case of empty left subtree, 
find  whose successor is  )

Basic operations
Tree-min:     .•
Tree-max:     .•
Predecessor:     .•
Successor:     .•
Insert:     .

Search and place new node as a leaf○

•

Delete:     .
Case 1:  is a leaf, make the parent point to null.○

Case 2:  has one child, make parent point to  's child.○

Case 3:  has 2 children, swap the value of  with its predecessor or successor, then 
delete the successor/predecessor by case 1 or 2.

○

•

Build a BST

Worst case:      (insertion into a chain).○

Expected case:         (based on lower bound of sorting).○

•

Red black trees (RBTs)

Motivation: want          guaranteed in worst case.•

RBT properties
BST property assumed•
Every node is either red or black (0/1 bit).•
The root is black•
Every leaf is black•
If node is red, then both children black•

Trees
2023年2月2日 18:12

   ECE1762 Page 20    



If node is red, then both children black•
For each node, all path from that node to descendant leaves contain the same number of 
black nodes

•

Heights
 : heights.•
  : black height, number of black nodes from this node to leaf, excluding start node.•

•

Claim 1: any node of height  has black height     .

Proof: by property 4, at most    nodes on the path can be red, so  
 

 
 black nodes.•

Claim 2: the subtree rooted at node  contains          internal nodes.
Proof by induction on height of  .•

Basis: if height of  is zero, then it is leaf  bh(x)= ,          .•
I.H.: true for height   where  is height of  .•
I.S.: height of  is  , say black height is        .•
Any child of  has height     and black height    if child is black or  if child is red.•

By IH, each child has        internal nodes.•

So subtree at  contains                  internal nodes.•

Lemma: RBT with  internal nodes has height           .

Claim 1+2 gives         
 

 
          

 

 
              .•

i.e. height of RBT is        .•

Operations:
Search, max, min, predecessor/successor are same as in BST•
Insert, delete need special case•
Rotation

Runtime     .○

○

•

RB-Insert(T,z)
Search for  .•
Insert as leaf•
Color it red•
Use RB-Insert-fixup(T,z) to fix violated properties.

       .○

•

Properties that might be violated by 3
Property 2: if  is root, violation, but easy to fix by recoloring.•
Property 4: If p(z) is red, violation.•
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Property 4: If p(z) is red, violation.•

Fixup:
Assume p[z] is left child (right child is symmetric)•
Let  be p[z]'s sibling.•
Case 1:  is red ( is left/right child of p[z]), not now p[p[z]] is black.

Color p[z] and  black, p[p[z]] red, call RB-Insert-Fixup(T,p[p[z]]).○

○

•

Case 2:  is black  is right child.
Left rotate(T, p[z]). Now the original p[z] becomes z. We get case 3○

•

Case 3:  is black,  is left child
Make p[z] black, p[p[z]] red.○

Right rotate on p[p[z]].○

No further calls○

○

•
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Dynamic programming
Optimal substructure•
Overlapping subproblems: memorization exploits this redundancy•

Steps:
Optimal substructure•
# subproblems•
Recursion•
Memorization: store a table and implement recursion using the table•

e.g. Fibonacci numbers
    ,     ,             .•
Easy to compute recursively, but lots of redundancies•
To get   by recursion, requires solving   3 times•
Memorization would store intermediate results and reuse•

Problem 1: Matrix-chain multiplication (matrix parenthesization)

e.g.           ,          ,         , calculate       .

Option 1:         , #multiplication=                     (final matrix size  multiplications 

needed for each cell).

○

Option 2:         , #multiplication=                        .○

•

Goal: fully parenthesize  matrices while minimizing total number of multiplications•
Input:           .•
Brute force: enumerate all possible parenthesizations

                   
      

  

        .○

•

Key idea: an optimal parenthesization for        involves optimal parenthesization for  :        , and  : 
         for some  .

•

Proof of optimality: suppose  is not optimal, then exists some other       such that  is more optimal, and 
total number of multiplication is smaller.

•

# subproblems      , since we require optimal on any subsequence        .•

Recurrence
Let   be a matrix with dimension        .○

      be the optimal value (minimized cost) for sub problem        .

      is the entire problem we want to solve.▪

○

        
     

                                        
.○

•

Memorization
A naïve recursive implementation and is inefficient (you do not expect redundancy).○

Use a table to store intermediate results○

e.g.         ,         ,        ,        ,         ,         .

▪

      (top) is what we want to get.▪

To get       , we need                     ,                     .▪

○

The dependence dictates the order in which the table must be filled○

•

Runtime:                                               .•

DP & Greedy
February 9, 2023 7:35 PM
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Runtime:                                                         .•

Problem 2: longest common subsequence (LCS)
Given sequences         ,         , find a subsequence common to both such that the subsequence 
length is maximal, not necessarily consecutive.

•

e.g. X=springtime, Y=pioneer, result=pine.•
Brute force runtime:       .•
Theorem: suppose         is LCS of   and   .

If      , then         and     is LCS of        and        .

If not, can find a     
 such that      

                   .▪

○

If      , then           is LCS of     and   .○

If      , then           is LCS of   and     .○

•

Recurrence:

Let       be the optimal length of LCS of   and   ,       is the optimal value for the problem.○

        

            

                  

                            

. ○

•

Pseudo Code•
LCS(X,Y,m,n)

For      :         .

For      :         .

For      
For      

If       , then                    , tag with arrow pointing to          .

Else if                  , then                , tag with  .

Else                , tag with  .

Runtime:      .•

Greedy Algorithm
Idea: when making a choice, take the one that looks the best right now

Locally optimal leads to globally optimal (need to prove)○

•

Greedy is not always optimal, but good as approximation algorithms•
Steps

Find optimal substructure○

Prove Greedy Choice Property○

•

Problem 1: activity selection

Inputs: set of activities:             .

Each   needs resource during period        where   is the start time,   is the finish time.○

•

Goal: select the largest possible set of mutually compatible activities.•
e.g.         ,         ,         ,         ,         ,         ,          ,          ,    
       ,           .

           .○

                  (not unique).○

•

Greedy: at each step, from compatible activities, choose the one with smallest finish time.•
Optimal structure:

Let                        activities that start after   finishes and finish before   starts.○

                  .○

                                           .○

                .○

•

Greedy Choice property:

Let      and   be activity in    with earliest finish time,                  .○

  is used in some max-size(optimal) subset of compatible activities of    .

Let    be max size set of compatible activities in    .▪

Order activities in    in increasing order of finish time.▪

Let   be the first one in    .▪

○

•
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Let   be the first one in    .▪

If      , done.▪

If      , then construct    
               .

    
                  .□

▪

Activities in    
 are still compatible, since   if the first in    to finish, but      (     and   

is min finish time in    ).

▪

  doesn't overlap with         .▪

   
 is optimal for    , i.e. greedy is optimal.▪

     .
Suppose        .▪

              , then      , contradiction.▪

○

Runtime:         .•

Huffman coding (data compression)

A B C D E F

    45 13 12 16 9 5

     (fixed length coding) 000 001 010 011 100 101

     (variable) 0 101 100 111 1100 1101

•

Must be prefix codes•

•

               
 (number of bits needed to encode given input).•

Goal: to find  that minimizes     .•
Greedy algorithm•

HuffmanCoding
Unite/merge the 2 lowest frequency characters, represent them as nodes in the tree•
Create new char in vocabulary representing the two chars merged•
Repeat until vocabulary is single char•

Greedy Choice property:
Consider 2 smallest frequency chars (x and y), show there exists optimal code tree in which x and y are max-depth 
siblings

•

Proof:
Let T be any optimal prefix code tree with b and c the two siblings at max depth, assume          .○

If            , done.○

If            , then          and          .○

We know that b and c are deepest,            and            .○

First swap b with x to get   , 
                

                         .▪

                 
                         .▪

                                     .▪

So           .▪

○

Swap c with y to get    , similary, we can show             .○

So            .○

•

Optimal structure + Greedy
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Optimal structure + Greedy
Let   be any tree that satisfies greedy choice property.•
Let     be the tree that results from replacing the two lowest frequency char and their parent with a single leaf  

with frequency               . We show that                   .

•

Proof: Let  denote the depth of    in   ,  is in depth    in     .

                                                         ,○

                               ,○

                                     .○

•

   ECE1762 Page 26    



Let  be the universe,    a set of keys,  a table of size  with indices            .
A hash function              hashes key  into index     .

Desired from hashing scheme
Simple uniform hashing•
Good mechanism for collision resolution

Chaining: if          ,    are in the same list, (delete is easy).○

Open addressing: if collision, use a probing sequence to find an empty slot (delete is not 
trivial).

Linear probing:                       when hashing key  for  th time.▪

Quadratic:                              .▪

Double hashing:                           .▪

○

•

Hashing design
Multiplication:              ,        constant.•
Division:             .•

Analysis of chaining
   elements.•
  #slots.•

Load factor:   
 

 
  .•

If we assume simple uniform hashing (a key if equally likely to hash into any slot)
Worst case: single list of  element.○

Expected case:            , denote length of     by   , 

then            .▪

      
 

 
  , also assume     to compute  .▪

○

•

Expected cost of search
Case 1: unsuccessful search       , compute the hash and search to end of list, taking 
    .

○

Case 2: successful search.
# elements examined during successful for key  is one more than the number of 
elements before  in  's list=#elements that hash to same slot as  after  is 
hashed into slot.

▪

For          , let   be the  th element inserted into the table and   is key(  ).▪

    , define                   .▪

Simple uniform hashing                  
 

 
          

 

 
  .▪

  
 

 
         

 
       

     
 

 
      

 

 
   

       
      

   

  
   .

    
 
     is # elements after  that collides with  .□

▪

   
 

 
  

 

  
         .▪

○

•

For any  , if             then there is set  of  elements that all hash to same slot.
Proof: contrapositive, if every slot had at most    element of  hashing to it, then     
      .

•

Universal hashing
A randomized algorithm  for constructing hash function              is universal if 

      , it holds that               
 

 
  .

•

Theorem: if  is universal, then     with      ,     , the expected number of 

collision between  and other elements in   
 

 
.

•

Hashing
2023年2月16日 19:16
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collision between  and other elements in   
 

 
  .

Corollary: if  is universalm, any sequence of  operations (insert, search, delete) has 
expected total cost     .

•

Construction of universal hash family (matrix based)

Assume keys are  bits long, table size  is power of 2, index is  bits (    ).•
Algo: choose  to be a random    0/1 matrix and have         , where addition is mod 
2.

•

Claim:    ,               
 

 
   

 

    .

In worst case, only 1 bit is different, select the column in the matrix.○

  combinations, each of them creates different output.○

•
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Unlike best/worst/expected case for single operations. Here we care about average cost/operation 
in sequence of operations

Aggregate: simple to understand/calculate for simple data structure.•
Accounting: identify cheap/expensive operations. Use cheap operations to justify expensive 
cost

Charge $k for each operation (amount is amortized cost for each operation)○

Goal is to maintain a credit invariant○

If amortized cost > actual cost, remain difference in deposit○

If amortized cost < actual cost, use credit stored to compensate (pay) for difference○

Should never end up with negative credit (if not enough, bump up the deposit)○

•

Potential (not used)•

Stack

Actual cost Amortized cost

Push(x) O(1) 2

Pop() O(1) 0

Multipop(k) O(k) 0

•

Sequence of push/pop/multipop operations ( operations)•
Naïve:

     total, so     average. Wrong since to have multiple, we must have pushed  
times.

○

•

Aggregate
You never pop more than you push.○

    total, so     average.○

•

Accounting
Charge $2 for each push. $1 for actual cost of push, $1 stays as credit.○

Charge $0 for each pop. $1 credit in pushed elements pays for cost of pop○

Charge $0 for multipop. $k credit in  pushed elements pay for the cost○

•

if multipop(k) is      , need to consider      .•

Queue is the same•

Counter
k-bit counter           ,     is the least significant bit.•
Increment(   )

   ,
While    and        :

      ,
     .

If    :       .

•

Naïve:     per operation.•

Cost A

0 0:000

1 1:001

3 2:010

4 3:011

7 4:100

8 5:101

•

Amortized Analysis
March 3, 2023 8:01 PM

   ECE1762 Page 29    



10 6:110

11 7:111

LSB flips everytime•

 th bit flips 
 

    times.•

Aggregate:          
 

        
      

 

       
      

 

  
 

 
 

      .

    total,     amortized.○

•

Accounting method
Charge $2 for every 1 we set (   ).○

Every increment costs $2 because there's only one single    flip○

Every    flip is paid for by the $1 credit left after the    flip○

For  operations,     per operation.○

•

Binary counter with reset

Operation Actual cost Amortized cost

increment     $3

reset     $0

○

The number of bits used by the counter will be less than the number of increment 
operations.

○

If not, charge $4 for increment and $1 for reset○

$1 pays for flipping 0 to 1, $1 saved for flipping 1 to 0.○

$1 to update max, $1 to pay for flipping to a 0 during reset.○

•

Ternary counter (increment by 3)
Charge $3 per increment.○

Invariant: A trit with value 0 has $0 credit, value 1 has $2 credits, value 2 has $1 credit.○

At most one 0-1 flip, $1 from the charge pays for the flip. Remaining $2 stored as credit.○

Increment changes states in the order 0-1-2-0. Credit used to do 1-2 and 2-0.○

•

Dynamic hash table
Insert

○

Aggregate:

Cost of  th insert     
        

      
.▪

   
 
               

           .▪

Amortized     on average.▪

○

Accounting:
Charge $3 on insert.▪

$1 used for insert.▪

$1 store as credit.▪

$1 stored for 
 

 
  items already in the table.▪

Each $1 pay for it to be reinserted during the expansion.▪

○

•

Delete
Shrink the table size when               .○

•

Amortized cost of each operation is bounded above by a constant. The actual time for any 
sequence of  operations on a dynamic table is     .

•
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Splay tree

Weighted dictionary problems: given keys          and frequencies          , the goal is 

to minimize cost of accessing high frequency elements.
If   known a priori, then we can build a static optimal tree using dynamic programming 

in      .

○

If   not known, splay tree,        average cost for insert/delete/search.○

•

Properties
No explicit balancing conditions.○

BST property holds.○

Pre-emptively rotate element that is accessed until it becomes the root.○

•

SPLAY(x)•
While  is not the root:

If     is the root: rotate     ,

Else if     ,  both left or right children: rotate        , then rotate     .

Else: rotate     , then rotate at new     .

•

Cost of splay
Let     be the number of nodes in subtree rooted at  plus  itself.○

Define                    .○

Credit invariant: every node has        credit on it.○

We need to show that every SPLAY operation can be paid with        additional 

credit to account for rotations and maintain the invariant.

○

Claim: every operation in while loop costs                         except for 

     root case, which needs   credit.
Proof: ▪

Case 2 and 3

□

Compare                  with                  .□

           ,            ,            ,            .□

                                                  .□

Amount charged covers this cost.□
If            , more than half of tree nodes were under  . Otherwise its 
rank would have incresed

Less than half of the nodes are in  and  .

       is reduced by at least 1.

Leftover credit on  pays for costs of rotations. 

□

▪

Case 1: ▪

○

•
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Case 1: 

           ,            .□

                                   .□

If            , we don't know if  's  rank is affected/reduced.□
Pay $1 for the rotation.□

□

▪

Let      ,…,      be the sequence of ranks for  until  becomes root. We need   

                                                  . 

○

But             , so credit required         , which is        amortized. ○

Average cost: mean over all possible inputs
Expected cost: assume uniform, then same as average
Amortized cost: average over a particular sequence of inputs.

Worst cast upper bound:         ,   .

Amortized upper bound: 
 

 
     

  
 

 
       

 
   ,   .

Aggregate analysis

Given an operation     and a sequence          , let      be the cost of      .•

Compute            
 
   .•

Amortized cost: 
    

 
   .•

Accounting method
Declare that    will be charged per operation•
Describing a procedure for how we use   .•
Assert a credit invariant (some claim about the stored credit in the data structure).•
Argue that the credit invariant is true.•
Use the credit invariant to argue why the credit is never negative.•

E.g. (array doubling) suppose     has cost       
      

      
.

Aggregate method:

      
 
       

        
              

                    .○

Amortized cost: 
    

 
        .○

•

Accounting method
Charge $3 for each operation○

If     , use $1 to pay for operation and store $2○

If     , store $2, and use the stored $x to pay for the operation.○

Credit invariant: when     , all elements in the range          have $2 stored.

True by construction▪

○

            , since     , we have exactly enough, so never go negative.○

Amortized cost is          .○

•
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Graph        , size        .
Representation

Adjacency list:
Space:       .○

Check edge               .○

•

Adjacency matrix:

Space:      .○

Check edge          .○

•

Breadth-First-Search (BFS)
Input:        directed/undirected, source vertex    .•
Output:

    : distance from  to  ,     .○

    :  's predecessor.○

•

Idea: start at  , and in each iteration  , visit nodes that are  edges away from  .•
BFS(V,E,s)

For each        :
      .

      .
   (FIFO).
Enqueue(Q,s).
While    :

  Dequeue(Q)
For each         : 

If       :
           ;
      ;
Enqueue(Q,v);

•

BFS may not reach all vertices•
Runtime:       .•

•

Depth-First-Search (DFS)
Input:        directed/undirected.•
Output:

    : discovery time.○

    : finishing time.○

•

Idea: as soon as we discover a vertex, we explore from it. Every vertex has one of three colors as DFS progresses
White: undiscovered○

Gray: discovered but not done exploring from○

Black: finished○

•

DFS(G)
For each    :

Color[u]=white
Time=0;
For each    :

If color[u]==white:
DFS-VISIT(G,u)

•

DFS-Visit(G,u)
Time=time+1
     time
Color[u]=gray
For each         :

If color[v]==white:
DFS-Visit(G,v)

•

Graph Algorithms
March 3, 2023 8:01 PM
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DFS-Visit(G,v)
Color[u]=black
Time=time+1
     time

Runtime:       .•
Edge classification

Tree edge: edges in the depth first forest found when exploring      .○

Back edge:      where  is descendant of  .○

Note:  is a descendant of  if and only if at time     ,     consisting of only white vertices.
 is discovered first while none of the vertices on    is discovered.▪

○

Forward edge:      where  is descendant of  , but not tree edge.○

Cross edge: any other edge.○

•

Parenthesis theorem:     , the following cannot happen:                    .
 must finish before  .○

•

Theorem: in DFS of undirected graph, there are only T and B edges.•

•

Topological sort
Works on directed acyclic graphs (DAGs). DAGs model partial order

   and        .○

But may have  and  such that neither    nor    .○

•

Topo sort produces a total order that respects partial order•
Lemma: a directed graph  is acyclic if and only if DFS yields no back edges.

Proof ( ): if       that is a back edge, then  path    and      is a cycle.○

( ) suppose  contains a cycle. Let  be the first vertex discovered in that cycle, and let      be preceding edge in the cycle.○

At time     , vertices of the cycle form a white path    .
By white path theorem,  is descendant of  ,      is a back edge.

•

Topo-sort(G):
DFS(G) gives       .
Output vertices in order of decreasing finish time

•

Runtime:       .•
Correctness proof: show if        , then      .

When we explore      , what are colors of    .○

 is gray.○

 cannot be gray, otherwise  would be ancester of  ,      is a back edge, and we get a cycle (contradiction).○

 can be white,  is the decendant of  in DFS tree,            .○

 can be black (finished),         .○

•

Strongly Connected Components (SCCs)
Given directed        .•
SCC of  is a maximal set    such that       , both    and    exists.•

•

Definition

  =transpose of  ,          such that                   .

  and   have the same SCCs.▪

Runtime:       .▪

○

                component graph.

    has one vertex per SCC.▪

    has edge if  edges between components.▪

○

•
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○

    is DAG.
Proof: let     be distinct SCCs and      ,        and suppose        . Then we show there is n     .○

Suppose      , then there is            , so     are reachable from each other.○

    not maximal, contradiction.○

•

SCC(G):
DFS(G) and compute      .
Compute   .
DFS(  ), but in main loop, visit nodes in decreasing order of   .
Output vertices of each DFS(  ) tree as separate SCCs.

•

Runtime:       .•

Minimum spanning trees (MSTs)
Input: undirected        , weight       for each edge        .•
Goal: find a tree    such that  connects all vertices and              

       is minimized.•

•

MST facts
     edges.○

No cycles○

Not necessarily unique○

•

Generic-MST(G,w):
   ;
While  is not a spanning tree:

Find safe edge      .
           .

Return  .

•

Proof:
 : set of edges (initially empty).○

Expanding  by maintaining loop invariant ( is a subset of some MST).○

Edges that maintain invariant:
If   MST,       is safe if and only if           MST.▪

○

•

Definitions:
Cut(S,V-S) is a partition of  into disjoint sets  ,    .○

Edges        crosses cut(S,V-S) if one of      is in  and the other in    .○

Cut respects  if and only if no edge in  crosses the cut.○

An edge is light edge crossing cut if and only if its weight is minimum across all edges crossing the cut.○

•

Theorem: let   MST, cut       respecting  and      light edge crossing        , then      is safe for  .
Proof: let  be MST that includes  .○

If  contains      , done.○

Assume  does not contain      , we will construct   that includes          .○

 is MST, then exists unique path  from u to v.○

Path  must cross (S,V-S) at least once. Let      be the edge of  that cross the cut.○

We choose       to be light, so              .○

Since cut(S,V-S) respects  , then        .○

To form   from  , remove      to break  into 2 components, then add      to combine.○

                    ,                         ,           ,   is MST.○

Need to show that      is safe for  .○

   and        , so     .○

            , since   is MST,           MST.○

•

If weights of edges are all unique, then there is only one MST. Reverse doesn't hold.•

Kruskal's
Each vertex is its own component initially.•
Merge 2 components by choosing light edge, scanning edges in monotonically non-decreasing order.•
Uses disjoint set data structure to ensure edges cross different components.•
Runtime:         .•

Prim's
Expands a tree ( is always a tree).•
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Expands a tree ( is always a tree).•
Each step, find light edge crossing (       ), where   is the set of vertices  is incident on.•
Use a priority queue  .

Each element corresponds to a vertex in     .○

Key[ ] is min weight of any edge (   ) such that     .○

•

Prim(V,E,w,r).
#  is an arbitrary root.
   .
Foreach    :

Key[u]= ;
        ;
Insert(Q,u);

Decrease-key(Q,r,0) # set key[r]=0
While    :

 =Extract-min(Q);
For         :

If    and              :
      ;
Decrease-key(Q,v,w(u,v));

•

Runtime
Assume  is a binary heap.○

Initialization:         .○

Decrease-key:        .○

While loop.

Extract-min  times:         .▪

Decrease-key  times:         .▪

○

Total:         .

          if Fibonacci heaps.▪

○

•

Shortest path
Input: directed        , weight function      .•
Def:

Weight of path               is            
 
   .○

Shortest path weight from  to  is         
                   

           
.○

•

•

Optimal solution (shortest path tree) is not unique•
Variants

Single source.○

Single destination.○

Single pair○

All pairs shortest path         .○

•

Negative weight edges
OK as long as no neg-weight cycle reachable from source○

Some algorithms only work with positive weight edges.○

•

Cycles: Algorithms will not output shortest path with cycles•
Output: 

for each    ,            .

Initially,       , reduces as algorithm progresses.▪

○

     predecessor of  in shortest path tree.○

•

Init-single-source(V,s)
For each    :

      ;
        ;

      .

•

Relax(u,v,w):
If                 :

                ;
      .

•

Properties
Optimal substructure: any subpath of a shortest path is a shortest path

If    is shortest path, then    ,    ,    are shortest path for    on    .▪

Proof similar to Greedy, DP cut based approach.▪

○

Triangle inequality:       ,               .

•
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Triangle inequality:         ,                     .
Proof:       is the shortest path, must be shorter than      ,   by definition.▪

○

Upper bound property: always have            ,   . Once            , it never changes.
Proof: initially true. Assume   s.t.            and WLOG, assume  is the first vertex for which this happens.▪

Let  be the vertex that causes     to change.▪

Then                 ,                          .▪

Since  is not a violator,            . Then                 , contradiction.▪

Once            , the assertion in Relax will be false. ▪

○

No-path property: if         , then       (because of upper bound property).○

Convergence property: If      is a shortest path,            and call Relax(u,v,w), then            afterwards.
After relaxation,                                      by optimal substructure.▪

Since            by upper bound property, then            .▪

○

Path relaxation property: Let               be a shortest path from   to   . If we relax in the order        ,        , …,          

even mixed with other relaxation. Then               .

Apply convergence property from    iteratively.▪

○

Bellman-Ford
Allows neg-weight cycles•
Returns True if no neg-weight cycle reachable from  , False otherwise. Can also compute the shortest path from  to any other vertex in the 
graph.

•

Bellman-Ford(V,E,w,s)
Init-single-source(v,s)
For          :

For each edge        :
Relax(u,v,w)

For each edge        :
If                 :

Return False.
Return True

•

Runtime:      .•
Proof of correctness

For    , path relaxation property.○

For True/False
No neg-weight cycle:                                      .

Returns True□
▪

If there is a neg-weight cycle               with      , reachable from  ,            
 
     .

Assume it returns True, then                         ,         .□

Sum around  ,       
 
             

               
 
   .□

Since            
 
     ,       

 
             

   , but       
 
             

   for a cycle, contradiction.□

▪

○

•

Example

○

Edge order (r,x) (x,y) (y,r) (y,z) (r,y) (s,z) (s,r) (r,z)

Iter 1 0 0 0 0 0 1 1 1

Iter 2 1 1 0 0 0 0 0 0

Iter 3 0 0 0 0 0 0 0 0

○

0 means no update, 1 means update○

•

Single Source Shortest Paths in Direct Acyclic Graphs (SSSPs in DAGs)
DAG-Shortest-Paths(V,E,w,s)

Topological sort (      )
Init-Single-Source(V,s) (    )
Foreach  in topological order: (    )

Foreach         :
Relax(u,v,w).

•

Runtime:       .•
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•

Dijkstra's algorithm
No negative-weight edges•
Idea:

Maintain a priority queue  , with keys=    estimates.○

 =vertices where final shortest path distance is determined.○

     .○

•

Dijstra(V,E,w,s)•
Init-Single-Source(V,s)
   ;
   ;
While    :

 =Extract-min( );
       ;
Foreach         :

Relax(u,v,w) (Requires Decrease-Key)

•

Proof of correctness
Need to show that            when  is added to  .○

Assume   such that            . WLOG, let  be the first vertex for which this happens when  is added to  .

   ,              ,    ,    .▪

 is reachable from  , otherwise              . (there exists a shortest path from  to  )▪

○

Just before  is added to  , path      connects a vertex in  to a vertex in    .○

Let  be the first vertex along  that is in    ,  be the predecessor○

Let       ,       ,              .○

Claim:            when  is added to  .

   and  is the first vertex such that            , then            .▪

○

Relax      at that time, then            by convergence property.○

 is on shortest path    , and all edge weights are positive.

Then              .▪

○

So                        .○

Observe  and  were in  when we choose  , thus          , thus          .○

                       , contradiction.○

•

Runtime:             .•

Difference constraints
Build constraint graph (weighted, directed)•

              : one vertex per variable,   is pseudo-start.•

                                                             .•

          .•

           if         .•

Theorem: 

If  has no negative weight cycle, then                                 is a feasible soltuion.○

If  has a neg-weight cycle, then no solution.○

•

        is equivalent to                     .•

Build graph and run Bellman-Ford.
Runtime:      .○

•

Maximum flow
       directed, each edge      has a capacity         .•
Source vertex  , sink vertex  , and assume         ,     .•
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Source vertex  , sink vertex  , and assume         ,     .•

In the graph:         ,          , even there is no edge      .○

For  ,         
                                                         .

Input =4 from    , output=4 to      . ▪

○

     (output from    , input to    ).○

•

Net flow:        such that
Capacity constraint:       ,              .○

Skew symmetry:       ,               .○

Flow conservation:           ,         
     .○

•

Value of flow  :             
   = total flow out from  .

Value comes from  goes to  .○

•

Cancellation:
5 units    with 0 units    is equivalent to 8 units    , 3 units    .○

•

Maximum flow problem:

Given        , find    that is maximum.•

Implicit summation: if    are sets of vertices                 
   

 
   .•

Flow conservation:         ,           .•
Lemma: for any flow in        .

    ,         .○

      ,               .

Proof:                 
 

 
            

 
 
            

 
 
         .▪

○

        such that      ,                       ,                       .○

•

Lemma:                  .

Proof: ○

(i) show             .
        ,           , so             (sum up on      ), then             by skew symmetry.▪

○

                                                                      .

Since                    .▪

○

Cut:
A cut      of  is a partition of  into  ,      such that    ,    .•
For flow  , net flow across             , capacity of             .•

e.g. in the same graph above, let          ,          .

                                   .○

                      (directional, only consider the path from  to  ).  ○

•

Lemma: for any cut      ,           .•

Corollary: the value of any flow  capacity of any cut (                 ).

Max flow  capacity of min cut○

•

Residual network
Given flow  in        , residual capcity:                        .•

Residual network          where                         .•

E.g.

○

Note:          ,         ,            .○

                              .○

                               .○

                               .○

•

Flow sum of   ,   :      .•

If   is flow in   , then     is flow in  with value                .•

Augmenting path:
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Augmenting path:
A path      in   .•

Can push      flow from  to  along this path, with                           .•

e.g.                ,        .

Updated original:○

•

Lemma: given flow net  , and  augmenting path in   , define   as flow in   with value      , then        is flow in  with value      

             .

•

Theorem (maxflow-mincut): the following 3 are equivalent:
 is max flow.•
 admits no augmenting path.•

          for some cut      .•

(The maximum value of an s-t flow is equal to the minimum capacity over all s-t cuts.)•

Ford-Fulkerson(V,E,s,t)
Foreach        :

               ;
While  augmenting path     :

Augment  by      ;

Runtime: assume integer capacity, and max flow   ,         .

Not polynomial, since     is not an input size.•

Edmonds-Karp
Do Ford-Fulkerson, but compute augmenting path by BFS in   (shortest path    with least number of edges).

Runtime:       .

Proof: Let        be the shortest path distance    in   .•

Lemma:           ,        increases monotonically with every augmentaion.

Proof: assume           such that exists flow augmentation making        decrease.○

Let  be flow before and   flow after. Let  be a vertex with minimum         whose distance was decreased (                ).○

Let      be shortst path in    ,          and                    .○

So                  .○

This implies                 ( cannot be one of vertices whose distance is decreased, otherwise  will be chosen).○

Claim:         .

If         , then                                      contradiction, since                 .▪

○

Thus          and         .○

Augmentation increases flow    .○

Shortest path    in   has      as last edge.○

                                       .○

Contradiction to                 .○

•

Theorem: Edmonds-Karp does      augmentation.

Proof:  is augmenting path,              . Call edge      critical in   .○

At least 1 critical edge per augmenting path.○

We show that each of    edes become critical at most 
   

 
    times.○

Assume      s.t.        or        or both.○

Since augmenting path are shortest path,      become critical means that                  .○

Augmenting       disappears, can reappear if flow    decreases.○

      is on augmenting path in    ,                    .○

Using the lemma,                                                         .○

Every time an edge become critical,  increases at least by 2.○

Longest number of edges       .○

In the worst case, become critical 
     

 
     

   

 
    times.○

Have     pairs of nodes       critical edges       augmentations.○

       total time (augmenting  BFS).○

•

e.g. find the min weight cycle in        in       time (assume no neg wight cycle).

Foreach        :
Let                 ;
Bellman-Ford(    ) gives         shortest path;

Take min of each cycle;
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e.g. Find the min weight cycle in          time.

For    : (         )

Dijkstra(G,v);
Store results in matrix  ;

// Now              .

Compute                      (     ).

Bellman-Ford will be       .

e.g. Maximum-bottleneck path
Let        be a directed weighted path with positive edge weights. Imagine each edge weight represents width of the edge. The bottleneck

of a path is the minimum edge width on a path. We want the maximum bottleneck path from    , computed in             time.

•

Modify Dijkstra:
In Relax: 

                               .▪

Record the parent accordingly, (if                      :       ).▪

○

In Init-Single-Source:
       ,     .▪

      .▪

○

•
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Theory of computation
Alphabet ( ): finite set of symbols, nonempty, ordered
String: possibly infinite sequence of symbols from alphabet
e.g.   ={a,..,z},   ={0,...,9}.

abc is a string on   .•
123 is a string on   .•
a1b is not a string of   or   .•

Empty string:  .

Conventions:
Concatenate: 01 with 011 gives 01011.•
Self-concatenation:     , then     ,      ,        .•
Reverse:   is the reverse of  .•
  : Set of all strings in  .•
  : Set of all strings in  with  .•

Language ( ):
 is a possibly infinite subset of   .•
 is language over   , then each element in  is string of the language.•
e.g. 

{0,11,0011}, { ,10} are languages over {0,1} (all subsets of       ).○

•

With languages   and   :
Union:      .○

Intersection:      .○

Subtraction:      (in   but not in   ).○

•

  : concatenate  copies of the language.
      .○

e.g.           ,   
                     .○

•

Kleene closure:         .•

Regular languages
A regular expression (RE) over  is defined with the following rules:

 is RE.○

    ,  is RE.○

If R,S are RE, then R+S (R or S) is a RE.○

If R,S are RE, then RS (concatenation) is a RE.○

If R is RE, then   is RE (  is infinite copies of  ).○

If R is RE, then (R) is RE (parenthesize).○

•

e.g. 
        .○

                           .○

                  .○

           {any string ending with 1}.○

               {any string with even number of 0s}.○

             
 
  {any string over {a,b,c} that do not contain substring ac}.○

•

Deterministic finite automata (DFA)
Language recognition devices: given string  as input, does    or    ?•
Given finite number of states            , with some terminal state, if a string ends in a terminal state, we accept it, otherwise, reject.•
Theorem: a language is regular if and only if it is recognized (accepted) by some DFA.•
e.g. 

○

  is terminal state.○

      is accepted.○

      is rejected.○

Accepts all           .○

•

Non-deterministic finite automata (NFA)
A single input can cause the state transition towards more than 1 state.•
When we reach a non-deterministic state, we go to all possible next state to check.•
e.g. •

NP-Completeness
March 3, 2023 8:03 PM
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○

Accepts all  on       that ends with 01.○

Theorem: for each NFA, there exists equivalent DFA.•

All the following are not regular languages, and cannot be recognized by DFAs
{  : p is a prime}.•
                                .•

              .•

Issue: no memory•

Context-free languages(CFLs)
They rise from production rule.•
 : string in language.•
e.g.

   ,      gives            .○

           gives               .○

•

Nondeterministic Pushdown automata (NPDA)

•

Push when 0, pop when 1, stack empty then accept:       .•

Turing machine
Finite state machine•
Infinite length tape•
Can read/write tape•
Can leave an answer on the tape•
Special state: halting state

Finished computation○

Read tape: 0 for yes, 1 for no.○

•

Can enter infinite loop•
A Turing machine T accepts language L if T accepts    and rejects or enters infinite loop for    .•
A Turing machine T decides a language L if:

Yes:    .○

No:    .○

There should be no infinite loop○

•

Universal Turing Machine
A Universal Turing Machine  takes in an input      , it simulates a Turing Machine  on an input  .•
Let   be the Turing machine with specification  , it simulates   on input  .•

•

Algorithm=Turing Machine=hardware=computer.•
Theorem: There always exists universal Turing machine such that                         such that if      halts within  steps, then       
halts within       steps where constant  depends on the alphabet size, number of tapes etc of   .

•

Uncomputability
Theorem: There is uncomputable functions                 not computed by any Turing machine.

Define   as follows,          :
If        (accept), then        .▪

If        (reject), then        .▪

○

Proof: Assume UC is computable, i.e. there exists Turing machine  such that           ,          .○

Then           contradiction, because by definition,       iff        .

•

Halting problem:
Define HALT(   )=1 if      halts. HALT is uncomputable.

Proof: Assume there exists Turing machine       , then use       to compute   function.○

To build machine on   (   ):
On input  ,    runs HALT(   ).▪

○

•
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On input  ,    runs HALT(   ).▪

If HALT(   )=0 (  does not halt on  ), then      .▪

If HALT(   )=1, then run universal Turing machine  on      , get result  .
If    , output 0.□
If    , output 1.□

▪

However, this is not computable, contradiction.▪

Decision v.s. optimization
Decision: Is there a path    which is at most  -edges?

HAM-CYCLE:  Is there a simple cycle traversing all vertices of G?○

•

Optimization: What's the shortest path between vertices  and  ?•
Decision problems  optimization problems.

If we solve an optimization problem, we have the solution to the corresponding decision problem.○

•

Complexity class P
  {        :  poly time algorithms that decides  in poly time}.•

Def: Algorithm  verifies a problem  if and only if given instance    ,  certificate (or witness, candidate solution)  such that         . 

The language verified is                                    .○

e.g. in HAM-CYCLE,  is a graph,  is a proposed solution of HAM-CYCLE.○

•

Complexity class NP
Informally: all problems verified in poly-time.•

Formally:     if there exists poly-time algorithm  and constant  such that   {        :  certificate  where            such that 

        and  runs in poly-time}.

The size of certificate (solution) must be polynomial to the size of the input.○

•

Hierarchy
    : problems that can be solved in polynomial time can be verified in polynomial time.•
Co-NP:         co-NP.

e.g. NP=all graphs that have HAM-CYCLE, co-NP=problems that are:
Not a graph▪

A graph without HAM-CYCLE▪

○

•

Theorem: P is closed under complement that is P=co-P.
        (simply reverse the problem and solution).○

•

PSPACE: problems that can be solved by Turing machine using poly space•

•

Open problems
NP=co-NP?•
P=NP co-NP? (primality checking is NP co-NP)•
P=NP?•

Poly-reducibility
Informally: if an instance of problem  can be transformed in poly-time to an instance of problem   such that a solution to   provides a solution to 
 .

i.e.  is not harder than   ,     .○

•

Formal: language (problem)   is poly-reducible to   denoted as       if and only if  poly-time algorithm    such that     if and only if 

       .

•

Theorem: if       and     , then     .

Given  , reduce  to     in poly-time, check        is poly-time, map back to  is poly time.○

•

NP Complete (NPC)
A problem is NPC if 

    (verified in poly time)○

      ,      (if only this property is satisfied, then  is NP-hard)○

•

Theorem: 
If      and    , then     .○

NP=co-NP if and only if       such that      .

 : easy since NP and co-NP now overlaps.▪

 : pick      , show that       .
Since      ,      , equivalently,        .□

Since      , then       .□

▪

○

•

Methodology: Given  , to prove      .
Prove     (verified in polytime).

Provide a certificate: the evidence that the solution is an instance of  .
•
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Provide a certificate: the evidence that the solution is an instance of  .
e.g. for SAT, assignment, for Ham-Cycle: a ham-cycle.▪

○

Select known       and:
Find algorithm  that given instance  ,     if and only if       .

Show the transformation▪

Then prove the if and only if equivalence▪

○

Show  takes poly time, i.e.      .○

•

If      for some       , then        ,           .•

Circuit SAT is NPC
Is there an assignment to primary inputs      , making    ?•

Circuit SAT SAT 3-CNF-SAT  
                   
             

.•

•

Reduce circuit SAT to formula SAT
Formula SAT:  is a formula of  -boolean variables and connections  ,  ,  , (),  ,  .

e.g.                                 .○

•

Decision version: Is there a 0/1 assignment to variables such that    ?      .•

Formula SAT NP:
Number of connections is poly in  , given a solution, it takes polytime to evaluate and verify.○

•

Circuit-SAT  Formula SAT.

Given a single output circuit  , create a formula  such that  has satisfying assignment is equivalent to            , s.t.    .○

If    , the corresponding      must give    in the circuit.○

If  has satisfying assignment, by construction    .○

Reduction is polynomial time, since number of gates is polynomial in  .○

•

3-CNF-SAT
CNF: a conjunction of disjunction of clauses with any number of boolean variables

                     .○

•

3-CNF: a conjunction of disjunction of clauses with exactly 3 boolean variables

                                               .○

•

Literal: variable or complement of a variable•
Clauses: each    is a clause.•
Disjunction: connected by  .•
Conjunction: clauses connected by  .•
Decision version: Given  with   # variables,      # clauses, does it have a satisfying        assignment?•
Side note:

2.4-SAT  : if each clause have 2.4 literals on average, then it is  .○

2.41 NPC.○

•

3-CNF-SAT is NP: given assignment        , it takes poly time to plug in     clauses to check.•
Circuit-SAT   3-CNF-SAT.

Given a circuit, it has a satisfying input assignment  some 3-CNF-SAT  is satisfiable.○

○

Consider a gate      , it has a characteristic function:

   And

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

▪

  e     e           
                                          ▪

                                           . (complement everything)▪

○

The overall circuit can be represented by                                                      .

Note: the final 4 terms is equivalent to    .▪

○

•
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Note: the final 4 terms is equivalent to    .▪

If there exists satisfying assignment to the circuit, then  is satisfiable.○

If  is satisfiable, we use the same input, and  must be 1.○

 (transformation) takes poly-time, since we just translate     clauses to     gates.•

Clique
A clique is a graph that every vertex is connected with all other vertices.

K4: ○

○

•

Both the clique and approximating clique are NPC.•
Decision version: Does G have a clique of size  ?•
Clique is NP: given the  vertices, check if they are pair-wise connected takes poly time       .•
3-SAT   clique

Consider                                            .

▪

○

 has a satisfying assignment  some G has a clique of size = # clauses.○

Reduction procedure:
For each clause, introduce 3 vertices.▪

Connect vertices from different clauses if and only if they are not complement of themselves.▪

○

Given a satisfying assignment to  , the connection in  is a clique.○

Given a clique in G, the vertex assignment satisfies  .○

•

Given  , we create a graph is polynomial time.•

Vertex cover
Given a graph  , a vertex cover     is one that         ,  or  or both in   .•
Decision version: Does there exist a vertex cover of size  ?•

Vertex cover is NP: Iterate through the vertices   , check if all edges are adjacent to   ,      .•

Clique  Vertex-Cover

G has a clique of size k    has a vertex cover of size      .○

  is the complement graph, with the same vertices, if         .○

○

Assume they are not vertex cover, there is an additional edge in   not covered, then there is no clique of size  in  .○

Assume there is no clique, then there will be an additional edge in   , the vertex cover has a larger size.○

•

Transformation from  to   is polynomial time.•

Travelling Salesman Problem
Informal: a salesman needs to go to every city only once to sell his merchandise and wants to minimize the mileage•
Formally: Given a complete, undirected, weighted graph, find a Ham-Cycle of minimum weight.•
Decision version: Does G have a TSP with weight k?•
TSP is NP: Iterate through the given solution, check if it is weight k and Ham-Cycle. Poly-time•
Ham-Cycle  TSP

Assign unit weight to all edges in the original Ham-cycle graph  .○

Make G a complete graph by assigning infinite weight to the additional edges.○

The transformation is poly-time, since we add      edges.○

Is there a TSP with      ?○

•

Suppose     :

If    , then    .•
If      , then     (can use  's verification procedure).•
If    , cannot conclude on  .•
If      (NP-hard), then   NP-Hard.•

Half-Vertex-Cover

A=Half-Vertex-Cover={   : G has even number of vertices and a vertex cover of size 
   

 
  }.•

 =k-vertex cover.•
    :

Certificate:    .
•
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Certificate:    .○

Verification: check that     
   

 
  and check that         , either    or    , takes          .○

    .

Given  and  , construct  that has vertex cover of size 
   

 
  . ○

case 1:   
   

 
  , nothing to do.○

Case 2:     
   

 
  .

Transformation: let         , given        and  , construct            by adding        new vertices to  that are 
disconnected and contain self-loops.                  .

▪

Claim:       k-VC       Half-VC.

 Let    be the k-vertex cover of G,      , consider                  , which is a vertex cover of   . □

Notice                           
    

 
   .

 let      be a vertex cover of   , notice           otherwise we miss the self loop. Consider               .□

           
    

 
           

          

 
                 is a k-vertex cover of  .

▪

○

Case 3: 
   

 
        .

Transformation: Let         , given        and  , construct            by adding        new vertices to  that are 

disconnected,                   .                  .

▪

Claim:       k-VC       Half-VC.

 Let    be the k-vertex cover of G,      , consider     ,            
   

 
  .□

 let      be the half-vertex cover of   . Let               .□

                
    

 
     , so      .

If      , add any vertex until      

▪

○

•
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Approximation algorithm with approximation ratio     (or a     -approximation)
      , often constant, can be abbreviated to  -approx.•

Minimization: 
 

         ,  is approximation,   is optimal.•

Maximization: 
  

 
       .•

If algorithm is poly-time, then we have poly-time     -approximation.•

Vertex cover
Optimization: find vertex cover of minimum size•
2-approximation algorithm in poly time•
Approx-Vertex-Cover(G)

   ;
      (copy edges);
While     :

Choose         arbitrarily;
         ;
Remove from   , every edge incident on  or  ;

Return  .

•

e.g.

○

   .○

       .○

           .○

               .○

Optimal:        .○

•

Proof: the algorithm is 2-approximation of optimal vertex cover
Observations:

 is a vertex cover.▪

Need to create a bound for   .▪

○

Let  denote set of edges the algorithm picks.○

An optimal vertex cover   is a vertex cover, must cover at least one endpoint of each 
edge in  , and each edge in  .

○

No 2 edges in  share common endpoints  no 2 edges in  are covered by the same 
vertex in   .

○

        .○

Also,         , thus          .○

•

Travelling salesman in 2D plane
Complete undirected        and integer cost       for each        .•
Denote              

       .•

TSP in 2D  edge costs satify triangle inequality because edge costs are the ordinary Euclidean 
distance between nodes.

                    .○

•

Approximation Algorithms
March 3, 2023 8:03 PM
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○

Approx-TSP-Tour(G,c)
Select vertex    to to be some root vertex
Compute MST T of G from root r using MST-Prim(G,c,r)
Let H be a list of vertices ordered according to first visit in preorder walk of  .
Return Hamiltonian cycle  .

•

e.g.

                                             .○

Preorder walk of  :                              .○

Only count first visit:                .○

H:                  ( direct shortest path straight line).○

•

Proof: let   be the optimal tour if remove any single edge from that tour   , get a spanning 
tree.

          .○

A full walk of  traverses every edge in preorder walk of  exactly twice.○

Let  be the full walk,                       .○

From  to walk that only uses first visit of each vertex, we are deleting  from  
between  and  .

○

By triangle inequality,          ,            .○

•

Theorem: if     , then for any constant    , there does not exist poly-time 
approximation algorithm with approximation ratio  for the general TSP problem (triangle 
inequality does not hold).

Proof (by contradiction): Ham-Cycle  TSP-opt.○

Reduction from  to     , where   is the completion of  ,    
         
           

is the 

cost function, where  is the approxmiation rate,     # vertices.

○

TSP tour have total cost    using Ham-Cycle edges.○

For sub optimal, total cost will be at least         .○

This will tell if there exists a Ham-Cycle in G in polynomial time.○

•
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