
Examples of two-level systems
Spin of a single electron•
Conformation of molecules•

Vector spaces
Complex vector space(  ): the space of n-tuples of complex numbers           .•

The vector elements of the space are column matrices  

  
  
 
  

 .•

Closure under addition
Adding two vectors in   produces another vector in   .○

•

Closure under scalar multiplication
Multiplication of a vector in   by a complex scalar gives another vector in   .○

•

A vector space contains a zero vector denoted by  .
Note:    has a different meaning.○

         .○

    for any    .○

•

Ket vector    :
Standard shorthand in quantum mechanics for a vector in the vector space  (Dirac's notation).•

Basis vectors
Definition: let     ,        be the set spanning the vector space•
Any vector    can be written as a linear combination of     .

           
 
 ,     .○

•

Spanning set for   :       
 
 
 ,       

 
 
 .

In ket form:                  where     .○

In column vector form:      
  
  
 in the          basis.○

Phase bases      
 
 
 ,      

 
 
 .○

•

Second spanning set:      
 

  
      

 
 
 ,      

 

  
      

 
  

 .

Consider      
  
  
 in the          basis, write the vector in     basis.○

    
     

  
             

     

  
            .○

•

Linear independence
A set of non-zero vectors     are linearly dependent if there exists a set of complex 
coefficients   with     for at least one value of  , such that        

 
   .

•

A set of vectors is linearly independent if and only if it is not linearly dependent•
Any two sets of linearly independent vectors which span a vector space  contain the same 
number of elements and such a set is a basis for  .

  always have two elements in the basis.○

•

E.g.  
 
  

 ,  
 
 
 ,  

 
 
 are linearly dependent.•

Dimension of vector space
Definition: The number of elements in the basis for  is called the dimension of  .

The use of the space   with  finite restricts us to finite dimensional vector spaces.○

•

For  qubits,     .•
Quantum physics has infinite dimension•

Linear algebra
2021年9月7日 7:40
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Quantum physics has infinite dimension•

Linear operators
Definition: A linear operator between vector spaces  (dimension  ) and  (dimension  ) is 
defined to be a map      which is linear in its input.

Linearity means:          
 
           

 
 .

E.g.                         .▪

○

Usually write              . ○

•

A linear operator  on a vector space  is a linear operator from  to  •
Definition: There exists two operators, the identity  , and the zero operator  

Identity:         ○

Zero:       .○

•

Definition: The composition of two linear operations  and  is written as   .
Suppose      are vector spaces and we have      and      .○

                     .○

Note:      .○

•

Equivalence of linear operators to matrices
Application of a linear operator      to a vector    is equivalent to multiplication 
of a    complex matrix  with the column vector   representing the coefficients of 
the vector    in the basis     .

○

The matrix representation of  is specific to both the basis     and     and is governed 

by               
 
 .

○

•

E.g.  is a vector space with basis    and    and  is a linear operator such that         
and         .

   
  
  

 .○

•

   
  
  

 ,    
  
  

 .•

Pauli matrices

      
  
  

 .•

      
  
  

 .•

      
   
  

 .•

      
  
   

 .•

    
  
   

 .•

    
   
   

 .•

         .•

Inner product
Definition: A inner product takes two vectors    and    , each of which belongs to the same 
vector space  ,  to a complex scalar.

Notation      .○

    denotes the adjoint of the vector where  is the adjoint operator.

        .▪

○

•

A finite dimensional vector space is called a Hilbert space if it has an inner product•
Properties

Linearity:           
 
            

 
 .○

Complex conjugate:             .○

•

The inner product of    with    is a measure of the projection of    on    in the vector 
space.

The measure is in an abstract space○

         
    

     
 

  
  
 
  

   
   

 
 .

•
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 .○

Norm

Definition: the norm      is an inner product of the vector with itself             
      

.•

The norm             
  

 

      
 

is a measure of the square length of the vector in the abstract 

space

•

       and        if any only if      .•

Unit vector        .•

Orthogonality

Definition: two vectors    ,    are orthogonal if their inner product is        .•

Orthonormality: a basis is said to be orthonormal if and only if          .•

Gram-Schmidt procedure: generate an orthonormal basis     in which            from a 

basis     .

Define (normalize vector)      
    

       
    .○

For    to    , define        
                     

 
   

                      
 
    

                   .

         
     

     
     ,                 

   
   ▪

○

This is subtracting off the projection of vectors 1 to k onto vector k+1 from vector k+1, 
then it is orthonormal to vectors 1 to k

○

•

Completeness
Definition: let    be any orthonormal basis for a vector space  . Then an arbitrary vector    
can be written as           

 
 where         . This is the completeness relation

•

Proof:         
   .

         
                

        
 
      .○

•

Representation of linear operator: a linear operator can be written in a basis     as 

            
 
   with              .

     , so             
 
             

 
             

 
                    

 
   .○

•

Dirac (bra-ket) notation

 
  
  

               .○

 
  
   

               .○

 
   
  

                  .○

•

Eigenvectors and eigenvalues
Eigenvectors      and complex eigenvalues  of a linear operator  satisfy the relation 
         .

Applying the operator  to an eigenvector returns the same eigenvector○

•

Eigenvalues  are the roots   of the characteristic polynomial               .•

Eigenvectors   of eigenvalue     are found by solving for   in             .•

An operator of dimension  has   eigenvectors and eigenvalues and some eigenvalues can be 
repeated

Fundamental theorem of algebra: a polynomial of degree  has  complex roots, some 
of which can have the same value.

○

•

Eigenspace corresponding to the eigenvalue  is the set of vectors    that have the same 
eigenvalue  

•

Spectral decomposition: Operator  can be expressed in terms of its eigenvalues and 
eigenvetors            .

•
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eigenvetors            .
Matrix  in the basis of the eigenvectors is          .○

If eigenspace is more than 1-dimensional, it is called degenerate with a degeneracy of 
the size of the subspace

○

E.g.    
  
  

 in the basis        ,    
  
   

 in eigenbases.○

Adjoint
Definition: Suppose  is a linear operator on a Hilbert space  . There exists a unique linear 

operator   on  such that for any        in  ,                  
 
   

Equivalently,                       .○

  is the adjoint or Hermitian conjugate of  ○

        ○

      
 
      ○

•

          •

        
 
       .•

Adjoint is given by complex conjugate followed by a transpose (        )•

Hermitian

An operator  that is the same as its adjoint   (Hermitian conjugate) is called Hermitian•
Hermitian operators  can be written as            

 
 in a well-defined basis.

  are real numbers.○

   is the eigenvectors of  with eigenvalue   .○

It is called the spectral decomposition of  .○

•

Unitary

An operator  is Unitary if          .•
Inner products are invariant to transformation by the Unitary matrix  .

                             .○

•

   EECE571S Page 4    



State space
State needs to be described in a way that allows for fundamental uncertainty present in quantum 
mechanical systems

•

Postulate 1: associated to any physical system is a complex vector space with an inner product 
(Hilbert space) known as the state space of the system. The system state is specified by its state 
vector (   ), a unit vector in the system's state space

Do not assign definite values to properties like position, momenta, angular momenta○

•

The simplest quantum mechanical system is described by a state vector with dimension 2 (   ,    ).
They can represent any aspect of the system we wish and they span the vector space

A particle being at two positions▪

A particle having two energies▪

A particle having an intrinsic angular momentum  
 

 
 .▪

○

•

State of two-level systems can be written as quantum superposition              of the two 

states    ,    .

Equivalently,      
 
  .○

It is a special aspect of quantum mechanics○

This axiom permits the system to simultaneously be in the state    and    .○

•

The state is a unit vector                
 

          
 

  .

           
 

 
 
.○

•

Unitary evolution

Time evolution of a state       is described by a unitary linear operator  . The state        at time 

  is related to the state        by         . 

                       .○

If we know the initial state and the unitary matrix, we can predict the final state.○

•

The operations that manipulate information in quantum computers are all unitary operators
Pauli matrices     (bit flip),     and     (phase flip),  (identity).

Phase flip: changes the relative phase of    and    by 180.▪

○

Hadamard gate     
 

 
  
  
   

 .

     
 

  
              .▪

     
 

  
              .▪

Tells the relative phase▪

○

Phase gate    
  
  

 .

    ▪

Advances state of    .▪

○

T gate    
  
      

 .

    .▪

Any quantum algorithm that only works with the previous three gates can be efficiently 
implemented on classical computers

▪

○

•

Information encoded in quantum mechanical degrees of freedom is manipulated using unitary 
operators

•

Schrodinger equation
Evolution of the state       of an isolated quantum system obeys the Schrodinger equation 

  
     

  
      

•

Quantum mechanics
2021年9月10日 20:35
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               is the reduced Planck's constant,     ○

    is the Hamiltonian of the system, a Hermitian operator whose classical equivalent is the 
total energy of the system

○

E.g.   
   

 
              

     
     

 gives                     
   

 
    .•

The dynamics of the state of a classical system specified by   and   can be solved using the classical 
Hamiltonian     .

   

  
     

     

   
    , 

   

  
    

     

   
    .○

  
  

  
        ,  and  do not commute.

                (Heisenberg Uncertainty principal).▪

○

•

There exists a basis    where            
 .

 are real-valued energies of the isolated system○

The corresponding eigenvectors    are the energy eigen states○

Time-dependence of an energy eigenstate    is              
         

 
               .○

•

If              
 
 , then the time evolution of the state is                

   

 
        

 .•

More generally,               
         

 
               

   

 
            

 .•

Measurement postulate
The action of measurement of a quantum state    is described by a collection     of 
measurement operators

A measurement performed on a system in a state    will yield the result  with probability 

          
      .

Inner product of      with itself.▪

○

If the measurement outcome is  , then the state of the system after the measurement is 

     
     

       
       .

○

Measurement operators satisfy an operator completeness relation    
   

 
   .○

•

Finding measurement operators
For two-level systems, every operators can be made from four basis operators            .○

Projection onto Bloch sphere○

Outer product of the basis○

•

      
   The sum of the probabilities of each possible measurement outcome  is unity.•

For a state              ,          ,         
 

.•

Distinguishing quantum states

Case 1: the states are orthonormal            .

Define measurement operators            , one for each sate  and an additional 
measurement operator               

 
   .

○

Then                    .○

Note that   
     , for all  .○

It is possible to distinguish orthonormal states     .○

•

Case 2: the states are non-orthonormal

               contains a non-zero component parallel to      and a component 

orthogonal to     .

○

When applying the measurement operators, we get          , so the state     is detected 
sometimes.

○

The non-orthogonal states cannot be distinguished○

•

Projective measurement (special case of measurement)
The most common types of measurements in quantum physics•
Projector: suppose  is a d-dimensional vector subspace spanned by an orthonormal basis    with •
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Projector: suppose  is a d-dimensional vector subspace spanned by an orthonormal basis    with 
       , and  is a k-dimensional subspace spanned by an orthonormal basis    with        ,

where    . The projector onto the subspace W is           
   .

 takes a vector  in and brings it into the subspace  .○

     is a projector onto the space spanned by          .○

•

E.g. project from            
 
   to            

 
   .

             
                              .○

•

A projective measurement is described by an observable  , a Hermitian operator. The observable  
has a spectral decomposition       

 
 where   is the projector onto the eigenstates of  with 

eigenvalue  
             .○

Given   occured, the state of the quantum system immediately after the measurement is  
     

     
          .

○

The possible outcomes  are the eigen values of the observable              
  
   

 
 .

Recall that             
  
   where     are the eigenvectors with the same 

eigenvalue  .

▪

○

•

Measurement is fundamentally probabilistic•
The only thing that evolves with certainty is the state•
Measurement changes the state of the system in general.•
If an eigenvalue is repeated, we can have the state after measurement as superposition of the 
eigenstates

•

Measurement statistics and examples

Average value of projective measurement:             
             .•

Standard deviation:       
       

            
             

           
            

,                     .

If    is an eigenvector of  , then        for    .○

•

Observable                     where        
 

 
 
         .

Projectors             .○

•

Operator                   .•
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Quantum bits
Bit is the fundamental concept in classical information•
Quantum bit/qubit: analogous in quantum information•

Qubit state can be in a linear superposition of    and    ,              .•

Since         
 
  ,             

 

 
             

 

 
      for real  ,  ,  .

Phase pre-factor    : does not influence the measurement statistics.○

        
 

 
             

 

 
     . (if consider only one qubit)○

•

Bloch sphere

Geometric representation of the state         
 

 
             

 

 
     to spherical coordinates.

North pole    :    .▪

South pole    :    .▪

 
 
 

 
          :   

 

 
 ,    . (positive  axis)▪

 
 
 

 
           :   

 

 
 ,   

 

 
 . (positive  axis)▪

○

It transforms the concept of quantum superposition into a point on spherical coordinates○

•

Information encoded
Information can only be obtained by measurement○

From one measurement, we obtain one bit of information○

If we do not measure the qubit
The state of the qubit contains a considerable amount of information▪

Amount of information and the rate of growth are high▪

○

•

State of two quantum bits

                                   .•

Equivalently             
 
         .•

We form the state of multiple qubits by concatenating the vector spaces of individual qubits together to form larger 
vector spaces

•

Tensor product  
If  and  are vector spaces of  and  respectively, then    is an   dimensional vector space•
The elements of    are tensor products of the elements    and    of spaces  and  respectively•
If    and    are orthonormal bases for  and  , then        is a basis for    •
                   .•
Properties

   ,            ,                                 .○

           ,      ,                                  .○

     ,            ,                                  .○

•

If  operates on  and  operates on  , then the tensor product allows for    operates on    .

                        .○

                   
 
                    

 
   . (linearity)○

•

Inner product on    :               
 
    

 

        
      

   
        

                   
 
   .•

Operators property 
              .○

              .○

              .○

•

Quantum registers
Described by states in a vector space that is the tensor product of the vector spaces of many individual qubits•
Linear operators on the space are defined as operators that are the tensor product of operators on the individual 
qubits

•

Quantum information
2021年9月10日 20:35
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qubits
Inner product is defined on the tensor product space so it is also a Hilbert space•

Matrix representation of tensor product

Let            
 
   with dimension  ,            

 
   with dimension  . Then         

 

 

   
   
 

    

 with 

dimenstion   .

•

Let       with representation    and dimensions    ,       with    and dimensions    . Then the 

tensor product:     

 

 

             
             
    

              

 .

•

   
  

denotes the state    tensor with itself  times.

E.g.                   ,    
  

 

 

 
 
 
 
 
 

 
 
  

 
 

 
 

  
 

 
 
 

  
 

 
 
  

 
 

 
 

  
 

 
 
 
 

 
 
 
 

 

 
  

 
 
 
 

  
 

 
                      .○

•

Apply the Hadamard operator to each bit in an  qubit register, denoted as    .

  
 

  
      
  
   

  
 

  
                       

 
    

 
    

.○

                        
   where          

 
   ,              ,              .○

•

Commutators
The commutator of two operators  and  is defined to be            

If        , we say  commutes with  ○

•

The anti-commutator of two operators  and  is defined to be                    
If        , we say  anti-commutes with  ○

•

Simultaneous eigenvectors
Suppose  and  are Hermitian operators. Then        if and only if there exists an orthonormal basis 
such that both  and  are diagonal with respect to that basis. We say that  and  are simultaneously 
diagonalizable

○

Then there is a basis of eigenvectors    such that            
 
 and            

 
 .○

•

         ,          ,          .

When we have multiple different qubits               (if they are applying on different qubits, they 

commute).

○

•

Uncertainty relations
Suppose  and  are two Hermitian operators with corresponding physical observables and    is a quantum state, 

then             
 

  
              

 
. 

•

Uncertainty principal for          
      

,          
      

,       
 

  
              .•

If we prepare many quantum systems in identical states, then performing measurements of an observable  on 
some states and of  on the other states, the statistics of     will satisfy the inequality

•

If        , and it is possible that measurements of  and  can be obtained on the same state, we call  and  
compatible or simultaneous observables.

Same state means they should have the same eigenstates (same eigenvalues and eigenvectors)○

Usually, Heisenberg uncertainty works for the sequence: prepare-measure-prepare-..., but for compatible 
observables, we can do prepare-measure-measure-....

○

•

If        then        .•

Entanglement
Entanglement is a property of quantum states that is connected to what gives quantum computers enhanced 
computational power

•

If a state cannot be written as a tensor product of states, then it is entangled.

An  particle state is unentangled if it can be written as a tensor product of states                .○

•

Bell states

    
 
 

        ,     
 
 

        .

•
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           ,        

 

 
 
           .○

       
 

 
 
           ,        

 

 
 
           .○

None of these states can be written as a single tensor product○

All of the states are entangled.○

If a state       
 

 
 
                   is prepared,  measures   , then  measures   .•

Bell inequalities
Provide a means to distinguish a quantum mechanical version of reality from any version of reality where there is 
no fundamental uncertainty, only hidden variables

•

Classical:                          .
With     ,     ,     ,     .○

•

Quantum:                        
   

Quantum state:       
 

 
 
           .○

Measurements:     ,     ,     
 

 
         ,     

 

 
        .

Note that  and  are orthogonal (along x and z axis),  and  are orthogonal (but along 135 and -135 
degree lines).

▪

If we change the relative angle of the axis   and   , the output is different. This set provides the 
largest violation (largest sum of expected values)

▪

We can also have a probabilistic state preparation▪

○

If properties            have definite values        independent of observation, then our theory has 

realism.

○

If A performing measurement does not influence the result of B's measurement, our theory has locality○

•

Nature is neither local or real•
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Reversible single classical bit operations
Identity:    .•
NOT (inverter):     .•

Single qubit operations:
Operation must preserve the norm of the vector (unitary matrix)•
Pauli matrices (rotation by  )

Rotation around  :    
  
  

  .○

Rotation around  :    
   
  

 .○

Rotation around  :    
  
   

 .○

•

Hadamard:     
 

 
  
  
   

 .•

Phase:    
  
  

 

    
  
   

 .○

•

T-gate (
 

 
 gate):    

  

     
  

 
      

  

 
    

 
  

 
   

  
  

 
  
 •

    
 

 
      .•

    .•

Rotation matrices
                     ,     .•

           
   

 
         

 

 
         

 

 
   .•

           
   

 
         

 

 
         

 

 
   .•

           
   

 
         

 

 
         

 

 
   .•

Rotation operator:            
    

 
.

Quantum circuits
2021年9月10日 20:35
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Rotation operator:                
        

 
    .

Rotates a qubit state represented by a vector   on the Bloch sphere by an angle  about the axis   .○

•

Arbitrary rotation:
Suppose  is a unitary operation on a single qubit. Then there exist real numbers        such that   

                  .

○

Any single qubit gate can be written as                     where  and  are non-parallel unit 

vectors

○

We only need to be able to rotate a qubit along two non-parallel axes to be able to implement any single qubit 
gate

○

•

Suppose  is a unitary gate on a single qubit. Then there exist unitary operators      on a single qubit such that 

     and           

          
 

 
  ,       

 

 
      

   

 
    ,      

   

 
    .○

Note       ,    are Pauli    matrices.○

              .○

     .○

      .○

     .○

•

Multi-bit classical gates
AND•
OR•
XOR•
NAND•
NOR•

Multi-qubit gates
When the gate has two or more inputs, they are called multi-qubit gates•
CNOT: controlled-NOT gate

Inputs: 
Control qubit:    .▪

Target qubit:    .▪

○

If control bit is 0, target bit is unchanged○

If control bit is 1, apply  gate to the target qubit○

               .
i.e. It is similar to an XOR gate▪

○

           

    
    
    
    

   
  
  

 .

Qubit 2 is the control qubit and qubit 1 is the target qubit▪

In Dirac notation (with basis                    ),                                      
        .

▪

○

•

Controlled  gate: 
Inputs:

1 control qubit▪

 target qubits.▪

○

If the control bit is 0, the target qubits are unchanged○

If the control bit is 1, the unitary  is applied to the target qubit○

               .○

•

CZ gate: controlled-Z gate
If the control bit is 0, the target qubit is unchanged○

If the control bit is 1, we apply a  gate to the target qubit○

         

    
    
    
     

   
  
  

 .

Qubit 2 is the control qubit and qubit 1 is the target qubit▪

In Dirac notation (with basis                    ),                                    
        .

▪

○

•

Swap gate: 
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Swap gate:  

    
    
    
    

 

         ,          .○

•

Quantum circuit diagrams
The horizontal axis refers to time•

•

Controlled-X can be implemented by                  since      

    means hadamard applied on qubit 1.•

Identities
Let            •
         •
         •
       •
       •
         •
         •
                 •

                 •

Controlled-Unitary implementation
Step 1: controlled application of      to the target qubit

Achieved by                               .○

•

Step 2: controlled application of         to the target qubit

Can be achieved by applying  
  
        

 to the control qubit.○

Note: when control bit is 0, we are not adding phase to the target; when control bit is 1, we add a phase to the 
target. That's why we apply the gate to the control qubit

○

•

•

Conditioning on multiple qubits
Define operation      that performs a controlled  operation if all n control qubits are 1 in the following way: 

                            
          .

Where        in the exponent of  is the product of the bits           .○

•

From top to bottom        ○

     ,     .○

             0 (apply V if 
    )

1 (flip   if 
    )

2 (apply   if 
    )

3 (flip   if     ) 4 (apply  
if     )

•
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○

E.g. Toffoli gate (     ).
It is a controlled NOT with 2 inputs○

               ,     .○

•

Logic can be conditioned from multiple qubits
To define new basic gates that might hep in compilation of a quantum algorithm into gates○

•

Measurement
The circuit symbol for measurement in the computational basis    and    is a meter

○

•

Measurement is irreversible because information contained in the measured bit is lost. The output of measurement 
is always classical

•

Single/multi qubit operations are unitary operations that are reversible•
Principle of deferred measurement

Measurements can always be moved from an intermediate stage of a quantum circuit to the end of the circuit.○

If the measurement results are used at any stage of the circuit, then classically controlled operations can be 
replaced by conditional quantum operations

○

Important: often measurements are made at an intermediate stage○

State changes, but the possible outcomes don't○

•

Principle of implicit measurement
Any qubits that remain unmeasured at the end of an algorithm can be considered to be measured○

If a measurement is performed on qubit 2, this does not influence the un-conditioned statistics of the 
measurement of qubit 1

○

•

In certain situations, measurement of a qubit need not throw information away information in the other qubits
Quantum teleportation○

Quantum error correction○

•

Quantum teleportation
The procedure that allows quantum information to be moved from A to B, even when a quantum channel for 
transmitting information is absent

A and B share a Bell State:        
 

 
            ○

A has an unknown qubit state              ○

A can only send classical information to B○

•

The shared Bell state is what allows B to obtain    through only transmission of a small amount of classical 
information

                 
 
 
                                   ▪

       
 

 
                                     

 

 
                            

      .

If measurement outcome is     ,             , we directly get              .□

If measurement outcome is     ,             , we apply  (flip the bit) to get    .□
If measurement outcome is     ,             , we apply  (flip the phase) to get    .□
If measurement outcome is     ,             , we apply both  and  to get    .□

▪

○

Interacting the qubit with A's half of the Bell state

•
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Interacting the qubit with A's half of the Bell state○

Applying a Hadamard on the qubit○

Measuring A's qubits in the computational basis○

Sending that results to B○

Conditional operations on B's half of the EPR state○

Observations
Without classical information transmission, no information is transmitted○

No clone of the state has been created. The state    disappeared from A side when A measured the state○

Quantum teleportation is intimately related to the properties of quantum error correction codes○

•

Measuring a Hermitian Unitary
Suppose we have a single qubit operator  with eigenvalues   so that  is both Hermitian (observable) and 
unitary (a quantum gate)

•

The circuit                applied to         followed by measurement of qubit 2 in the computational basis 

implements measurement of the observable  on the state    .

○

   is the ancilla qubit.○

 allows qubit 1 and 2 to be entangled, then we can measure qubit 2 to get info about qubit 1.○

                  
 

 
                           

 

 
                      

 

 
                

              .

○

Calculate probability of outcomes   and   for observable        on qubit 2.○

Calculate probability of outcomes 0 and 1 for qubit 1.○

•

Universal quantum gates
Classical: A set of gates is called universal for classical computation if we can implement an arbitrary logic operation 
exactly using that set

NAND is universal: it can be used to obtain AND, XOR, and NOT○

•

Quantum: a set of gates is called universal for quantum computation if we can implement an unitary operation to 
arbitrary accuracy using that set

Hadamard, Phase, CNOT and T is such a set○

•

Approximating a unitary operator
Using a discrete set of gates, we can only approximate the continuous space of possible unitary operators•

Error when a unitary operator  is approximated by a different unitary operator  as                     .

Maximum is over all normalized quantum states in the state space (worst case error)○

When the error is small, any measurement performed on the state     gives approximately the same 
measurement statistics as     

○

•

Solovay-Kitaev Theorem (efficiency): Convergence to the desired gate can be guaranteed rather quickly. An arbitrary 
single-qubit gate can be approximated to an accuracy of order  using of order        gates from the universal set 
with    .

The overhead of increasing accuracy is low.○

•

A circuit with  CNOTs and single qubit unitary can be approximated to accuracy  with            gates•
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Computational process in the gate model
Start with a set of quantum states. Define:

An input state  in an  -qubit register     .○

An output state     in an  -qubit register    
 

.○

This gives    qubits ignoring intermediate steps (ancilla)○

•

Computation is performed by performing a reversible transformation   on the combination of the 

input and output states

             
            

 
.○

 is the exclusive-OR that is obtained using the CNOT gate.○

If output is initialized to     , then                         .

The answer is contained in the output register▪

○

•

Can initialize all input qubits to    , and apply a Hadamard gate to each of the output qubits.

           .○

This produces an input state that is a super position over all of the possible input states○

        
 

    
        

    
   .

e.g.    ,      ,      ,…,      ▪

○

Then the input state to the computational process is:                    .○

•

Apply   once to the superposition, we get 
 

    
               

    
   .

Result of the computation is described by a state whose structure cannot be explicitly 
specified without knowing the result of all   evaluations of the function  .

○

This is quantum parallelism○

•

Quantum parallelism

     
                    

 

    
                

    

   

•

Describing the final state requires an exponentially growing number of function evaluations as the 
number of bits in the input register grows linearly

•

However, the result of calculation might not be   evaluations of  .•
The outcome of a projective measurement of the registers in the computational basis will be

Input: a random value of  equally distributed between  and     .○

Output: the function     for the value  in the input register○

•

The random selection of  , for which     can be learned is made after the calculation is carried 
out

•

However, cannot get values of     for several different random  due to no-cloning•
To exploit quantum parallelism

Apply additional unitary gates to one or both of the input and output registers before and/or 
applying   .

○

We can learn the relationships between different values of     for several different values 
of  all at once, but not the values for any particular value of  due to uncertainty principle

○

•

No cloning theorem
Copying a quantum state is prohibited in quantum mechanics•
Assume we have an operator  that clones quantum states    and    by transforming the output 
state to the input state, leaving the input state unaffected

                (cloning    to output register)○

                (cloning    to output register)○

•

Then                                                           

                 .

By linearity,                                

•

Quantum computation
2021年9月10日 20:35
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By linearity,                                                      ○

They are equal if one of  or  is zero or if        .○

A given cloning procedure will only be effective at cloning a single state     , not a general state 
A unitary transformation can approximately clone two states only if they are nearly the same 

(       )

○

•

Deutsch's problem
How a trade-off can be made that sacrifices particular information about a function     for 
relational information

•

Let both input and output registers contain only a single qubit and                       .

       ,        .○

       ,        .○

       ,        .○

       ,        .○

•

Problem: Suppose we are given a black box that executes the function   for one of the four 

functions      , but are not told which value of  . Objective is to learn if  is constant (     
    )

It shows how a quantum computer can do this in one run of the unitary   .○

However, we will learn nothing about the individual values of     and     .○

•

Function evaluation quantum circuit

For the following, assume qubit numbering         .○

For        ,          ,           (        ),      .○

For        ,              .○

                 .○

        .○

•

Overall circuit

To learn if  is constant (         ) using a Unitary such that                       .○

                  
 

 
                      .

The outcome will be randomly 1 or 0 in the input bit and     or     in the output bit▪

Need to run this at least twice to determine if          .▪

○

Inverting both the input and output and applying Hadamard gave more useful result

              
 

 
                              .▪

○

Applying   , we get     
 

 
                                            . ○

If          , then     
 

 
                          , Hadamard gives    .○

If           , then     
 

 
                          , Hadamard gives    .○

Append    to the end.

If          , we get                         .▪

If          , we get                         .▪

○

•
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Discrete Fourier transform
Converts a function in a spatial or temporal coordinates to frequency or spatial frequency coordinates•

   
 

  
         

     

 
       

   .•

Quantum Fourier Transform
An operator    that acts on a particular basis state    in a basis              yielding a state summed over all 
states in the basis with certain complex amplitudes

                                       .○

              
     

 
          

   .○

Equivalently,          
   
          

   
   where    

 

  
         

     

 
       

   is the discrete Fourier transform.

This is an extension to vectors▪

○

•

Bit strings: we are working in the computational basis    of a quantum computer with  qubits so the quantities  and  
are integers that can be represented as strings of bits         and          

      
    

   .○

      
    

   .○

•

QFT applied to the basis      state produces the same as the    on      .

           
 

 
        

   .○

This is only true for the      state and not general input states    .○

•

Tensor product representation (    )

                   
            

       
 
    

 
    

   
 

 
      

            
  
    .

Binary representation of  ▪

○

Define  as a reversed bit-string,       
    

   .

         
 

 
      

                  
      

            .▪

○

Equivalently,          
 

 
                                                                    .○

•

Quantum circuit for QFT

The controlled phase 
  

  
  is the key controlled-unitary for implementing the QFT together with single-qubit Hadamard 

gates, so we can use     
  

     
   

  
    

 .

  is a controlled rotation gate.○

•

Qubit 1 has a single 1-qubit gate and    2-qubit controlled   gates.○

Qubit 2 has a single 1-quibit gate and    2-qubit controlled   gates.○

Qubit n has a single 1-quibit gate and 0 2-qubit controlled   gates.○

A total of  H gates, 
      

 
     controlled phase gates, compared to      gates in classical computing○

•

Phase estimation algorithm

The eigen vectors    of a unitary operator  have eigenvalues with norm 1, so              .•
Algorithm: the phase estimation algorithm is an algorithm to determine the phase of an eigenvector

Approximate the eigenvalues of a unitary operator○

•

Ingredients
Assume we have a quantum circuit that can prepare a state    or at least similar to    ○

Assume we have a quantum circuit that can efficiently evaluate controlled-    operators○

An inverse QFT circuit○

•

Plausibility argument
A system represented by  qubits has a unitary matrix dimension    where     

•

Quantum Fourier transform
2021年9月10日 20:35
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A system represented by  qubits has a unitary matrix dimension    where     ○

Calculating the eigenvalue for an operator  and eigenvector    requires     operations○

The unitary matrix and circuit for estimating the phase can be efficiently represented by a polynomial number 
qubit manipulations

○

Qubit required
Input register initialized to zero with t qubits○

Output register with as many qubits as needed to store the vector○

•

Stages

Controlled    operators for          

Apply H gates to all inputs▪

Controlled    on the second register where  acts on the entire state▪

State at the end:       
 

 
            

                       
 
        .▪

Can express  in base 2 using  bits   (either 0 or 1),   
  

 
   

  

 
     

  

    
   .

Then       
 

 
                                             □

▪

○

Implements the inverse of QFT (Hermitian conjugate    
 ).

     
 

 
     

 
     

 
       

   .▪

End result: The inverse quantum Fourier transform to the stage 1 output is the state 

   
    

 

 
                  

            .

▪

By measuring the input state, we obtain a binary representation   for the phase of the eigenvalue▪

○

•

Errors
The fraction representation            is not exact because of the finite representation in  bits.

Integer representation      (remove the highest zero).▪

○

To bound the error  on the measured value  of the phase at the end of the phase estimation algorithm, let  be 

a  -bit integer in the range 0 to     , error is given by     
 

  
  

○

           
 

      
     .○

If we need to approximate  to an accuracy    , choose         and      qubits, then the probability 

that the accuracy is worse than    is                 
 

       
      .

○

The error is exponentially suppressed by adding more bits to the phase register○

•

How to get the eigenvectors of  ? Suppose we prepare an input state that is a superposition over all eigen states      

               
 
 where               

Output state:           
 
 where            

 
 .

    may be a superposition of all the eigenstates▪

○

The probability to get an eigen value is            
  

     
○

•

Phase estimation is exact when the  -bit representation is exact•

Order finding problem
For positive integers  and  ,    , with no common factors, the order of  modulo  is the least positive integer  
such that           

         .○

•

Quantum algorithm: phase estimation algorithm applied to the unitary transformation  that implements

               .○

 is an   bit number○

For an input state    where    , the transformation maps the input state    to           ○

For    where         , the transformation returns    .○

The eigenvectors of  satisfies                                 
   .

                                           
                                 .

Note:                      
 

 
           □

▪

○

    is an eigenvector of  with eigenvalue      
    

 
    , the phase estimation will enable us to obtain  .○

To prepare     ,  
 
 

 
      

   
       .

Use                
 

  
    for the number of qubits in the phase to obtain an answer accurate to 

    bits with a probability of success of at least    .

▪

Can initialize the vector to    .▪

○

•

Errors
Continued fractions algorithm

We know   
 

 
up to     bits.

○

•
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We know   
 

 
 up to     bits.▪

We know a priori that  is a rational number.▪

If we can compute the nearest fraction to  , we can get  .▪

Suppose 
 

 
 is a rational number such that  

 

 
     

 

   
   . Then 

 

 
 is convergent of the continued fraction for  and 

thus   and   with no common factor such that 
 

 
  

  

  
  can be computed in     operations using the continued 

fractions algorithm for large  

○

Failing conditions

The phase estimation procedure might produce a bad estimation to 
 

 
 , but this occurs with probability at 

most  that can be improved exponentially by adding a few qubits

▪

Because the values of  and  obtained are probabilistic, the values  and  might have a common factor, so 
  and   from the continued fractions algorithm might not be equal to  and  . Thre are many ways to 
correct this, with the most expensive being    overhead, and the least being    .

▪

○

Factoring
Suppose   is an  bit composite number, and  is a non-trivial solution to the equation           in the range   
   , and neither          or               . Then at least one of           and           is a 

non-trivial factor of  that can be computed using      operations

•

Suppose     
     

  is the prime factorization of an odd composite positive integer. Let  be an integer chosen 

uniformly at random, subject to        and  is co-prime to  . Let  be the order of  mod  .

Then                                       .○

All of the steps of the algorithms can be performed efficiently on a classical computer except the order finding○

A quantum computer provides an efficient subroutine for order finding○

•
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Problem: find the index of the record in the database
Assume index:        .•
Assume     so the index can be stored in  bits•
Assume that there are  solutions where      •

Suppose we have a function     that takes the index          
If  is a solution, then       ,       otherwise•

Quantum oracle
Assume we have a circuit for the function that can recognize solutions to the problem by 

implementing a quantum oracle circuit   which accomplishes:                     .

The oracle can be implemented efficiently in a quantum circuit if it can be implemented 
in a classical circuit because a quantum circuit can be implemented using reversible logic 
in a number of operations that is within a factor of 2 of a classical irreversible logic

○

The register    is a single qubit. If it is initialized to    , the oracle is flipped when 
      , and not flipped when       .

If       , then                .▪

If       , then                 .▪

○

If       
 

 
          , then       

 
 

 
                        

 

 
          .○

•

If there are  entries and  solutions, Grover will do the search in      
      oracle 

evaluations.

•

Grover search algorithm
Initialization

Establishes an equal superposition of all input states using    for the input register    

for the oracle                        
   where     .

○

•

Grover Iteration  

Apply the oracle to the register    ,                  .○

Apply the Hadamard transformation    to the register.○

Perform a conditional phase shift                  .○

Apply the Hadamard transform    to    .○

○

It can be written as                                       .○

It is described by the unitary transformation consisting of the composition of the oracle 
  and a second unitary

The oracle   implements                  where       if  is a solution 
to the problem

▪

Second unitary:          where            
   .▪

○

•

Geometric interpretation

Let                    
   where are not in the solution space,       

 

 
      

 where 

   are in the solution space.

•

     
   

 
    
    

 
     

 

 
  
  

 
    .•

Grove algorithm is broken into two reflections•

Quantum search
2021年9月10日 20:35
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Grove algorithm is broken into two reflections
The oracle performs a reflection about the vector    in the plane defined by    and 
   .

○

The operator          performs a reflection about the vector    in the plane 
defined by    and    .

○

Let     
 

 
    

   

 
    
    

 
,     

 

 
    

 

 
  
  

 
so that         

 

 
          

 

 
     , then  is a 

rotation    
         
        

 .

                                                         .▪

○

•

Applying Grover iteration  times swings towards the  axis where the solutions to the 
problem lie

          
    

 
              

    

 
         .○

If the final state is equal or close to    , measurement will reveal a solution with a high 

probability. (equivalently, 
    

 
      

 

 
 )

○

Asymptotic: using     
 

 
    

 

 
  
  

 
, we get   

 

 
     

      .○

•
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Physical implementation of a quantum computer
A system of quantum bits•
A physical apparatus that we use to manipulate and measure the system of quantum bits•
Invariably, aspects of the apparatus that we don't have direct control

Introduces difficulty because of decoherence from environment○

•

Decoherence
Def: A physical process that interferes with our manipulation of quantum systems

Quantum computers rely on logic operations that generate quantum superpositions○

Decoherence interferes with out quantum superpositions, and quantum algorithms○

It is a process that turns quantum uncertainty into classical uncertainty○

•

Decoherence comes from unwanted interactions of quantum systems with elements in the environment that we 
have little knowledge of or control over

•

Qubits that tend to have long coherence times tend to be hidden from the environment hence hard to manipulate 
with single-qubit and two-qubit logic gates

•

Density matrix
A tool in statistical quantum physics to study decoherence•
It is useful to describe a quantum system in terms of a subsystem

We can control and measure○

The environment that we do not control or measure but interacts with a controllable or measurable 
subsystem

○

•

It describes quantum mechanical and classical uncertainty•
Suppose a quantum system is in a state    with classical probability   , where    

 
   . The density matrix   

         
 
 .

•

For a pure state    ,         .•

If the state    evolves with time as                  , then the density matrix of the system evolves as      

             . 

•

For density matrix  , the mean value of the measurement of an observable  is           where       

         
 is the trace (the sum of the diagonal elements) and the sum is over all basis elements    .

So               
 
                

 
 .○

•

If a density matrix can be written in the form         , then it is a pure state. If not, it is a mixed state
A system in a pure state is in a quantum state    with a certainty 100%○

A system in a mixed state is not in a well defined quantum state○

•

Reduced density matrix
The reduced density matrix   of a subsystem in a subspace  within a larger system defined by the space  and  , 

   is given by                             
 
    

 
    

.

       is an element in space  .○

                      .○

•

Turns quantum uncertainty (superposition) into classical uncertainty (ignorance)
Decoherence: the process that turns quantum uncertainty into classical uncertainty○

•

Quantum operations
Quantum operations formalism is a tool for describing the dynamics of quantum systems in a wide variety of 
circumstances.

•

The density evolution under a quantum operation is given by        .
 is the quantum operation○

 is initial density operator (qubit status) of subsystem○

  is the qubits after the operation○

Useful because the environment density matrix is not in it.○

•

Simple examples with no environment

Unitary evolution:           ○

Measurement:          
      .

•

Decoherence, implementation
2021年9月10日 20:35
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Measurement:             
       .○

The quantum operator for a subsystem  that interacts with its environment     via a unitary operator  obeys 
the following circuit

○

                       .○

One way that the subsystem and environment can be prepared into a tensor product initial state is by 
measuring the subsystem

○

•

            use subsystem to impact the environment, so that the environment learns about the subsystem 

qubit

       
                            

 
. ○

                                        .○

•

Operator sum representation

Assuming the environment is in a pure state              , we can cast the quantum operator     into the 

operator sum on the density matrix

                        
     

 
        

  
 , where             .○

•

The action is equivalent to

Randomly placing  by 
     

 

        
 
 

        ○

The replacement occurs with probability         
  ○

•

Bit flip and phase flip channel errors

Operator sum of   and   :         
       

 .•
Bit flip channels: assume a bit flip occurs with a probability    over an interval of time

     
    (does not flip),        

       (flip),               .○

•

Phase flip channels: assume a phase flip on 1 occurs with a probability    over an interval of time

     
    ,        

       ,               .○

•

Depolarizing channel

It takes qubits and maps them into completely mixed states      
 

 
 .•

Assume the depolarization occurs with a probability    over an interval of time•

The state of principal quantum system after the noise is              
 

 
 .•

Fidelity: the similarity of a density matrix and a quantum state.
Bit flip error may or may not affect a state•
Two kinds of flip (bit, phase) have different impact on a single state•

Di Vincenzo Criteria
A set of criteria for physical realization of quantum computers:

A scalable physical system with well defined quantum bits○

The ability to measure qubits○

A universal set of quantum gates
To approximate any unitary gates▪

○

The ability to initialize the qubits to a well-defined state○

Long coherence times of qubit superposition states compared to gate and measurement times○

•
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Current number of qubits
Superconducting loop: 53○

Trapped ion: 20○

Silicon (spin): 4
Industrially easy to build▪

○

•

Spin-based qubits
Angular momentum (     ): a particle in motion can have an angular momentum dependent on position ( ) 
and momentum ( )

•

Elementary particles posses an intrinsic angular momentum
It is the angular momentum possessed by an elementary particle even when it is not spinning in space○

Stern-Gerlach experiment is the first to show that an electron possesses an intrinsic angular momentum○

The intrinsic angular momentum of an electron can take one of two values when measured ( 
 

 
 )○

•

Particles can be categorized based on the magnitude of their intrinsic angular momentum (in units  )

Fermions: particles with 
    

 
    spin ( 

 

 
   

  

 
  ,...) ○

Bosons: particles with integer spin (         ○

•

In addition to spin, elementary particles possess an orbital degree of freedom due to their motion and the quantum 
analog of  is the orbital angular momentum

•

Spin-based quantum bits are quantum bits where the two levels that form the computational subspace derive from 
the spin degree of freedom of an elementary particle

•

They are distinguished by a few different properties
Method of confinement for particles: electrostatic, impurity, impurity complex○

Type of particles involved: conduction band (electron,   
 

 
 ), valence band (hole,    ,      dut to    

coupling)

○

Number of particles to make a single qubit

1 electron:   
 

 
 .▪

○

Material host of particle: silicon, germanium, gallium arsenide
Different environment, vastly different coherence properties▪

Silicon: low error, long coherence time▪

Germanium: easy to scale▪

Gallium arsenide: no stable nuclei, short coherence time▪

○

•

Spin-based qubits in solids

Qubits composed of a single charged particle with a spin   
 

 
 are very promising•

Model for an isolated single particle in a magnetic field    is the Zeeman Hamiltonian:   
 

 
          .

 : Lande g-factor (material dependent).○

  : Bohr magneton.○

•

In static magnetic field, the eigenvalues of the Hamiltonian give the energies of the spin up and down states•
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In static magnetic field, the eigenvalues of the Hamiltonian give the energies of the spin up and down states

   
    

 
    .○

•

Measurement of spin qubits in solids
Detecting the intrinsic angular momentum is hard•
Spin to charge conversion: the process by which the spin of a particle is measured by detecting a change in the 
charge configuration of a system

The motion of a charge can depend on the value of the spin○

It is relatively easy to measure a small fraction of the charge of an electron quickly○

Fast charge measurement: single electron transistor, quantum point contact, nanowire○

•

Energy selective tunneling (spin to charge conversion)
Suppose we have a reservoir into which electron tunneling is possible that is filled up to the Fermi energy   

Spin up is unable to tunnel to the reservoir (detectable by a charge measurement)▪

○

The energy of the qubit levels must be tuned using an electrical voltage applied to a gate electrode so that 
they straddle the Fermi energy

○

•

Spin selective tunneling
Suppose we have an isolated electron whose spin is known and a spin qubit whose state is not known○

It requires more energy to tunnel from right to left when the spins are parallel
Pauli exclusion principal: at most one electron can occupy any given energy level▪

If the electrons have the same spin on the same site, one electron must be in an excited orbital▪

○

•

Rabi model
The simplest methods available to control qubits

Two level system driven by a time-varying electromagnetic field that causes a transition between two states○

•

Application of a time-varying magnetic field                     allows to manipulate a spin-1/2 system and 
ultimately to perform quantum logic gates

With a static magnetic field     , we can have rotations,          
  

   
   if     .○

•

Adding the time-varying magnetic field           to the static magnetic field:   
 

 
                       .

   
  

 
       

   

 
           ,          ,         .

  

 
  is the Zeeman energy.▪

   

 
        is the term that flips 0 to 1▪

○

We want      , then the equations can be solved by representing the state as a time-dependent sum in 
the computational basis.

○

•

This gives              
 
    

  
             

    

  
      .

If there is no driving force,      ,      will be constant.○

•

Let     
  

 
  and     

   

 
   . (driving frequency)•

Ignoring the dynamics at a frequency           is called the rotating wave approximation (RWA).•

Define Rabi frequency            
 
    

 
               

 
, we get         

   

  
     

         

 
              

   

 
    .

Probability:        
   

  
    

 

     
   

 
    .○

•

When      , it is called being on resonance, because the energy of the radiation matches the energy of the 
transition.

On resonance, the system oscillates from 0 to 1 and back to 0 with a frequency        
     

 
     .○

Off resonance, the system oscillates with a reduced amplitude, but at a higher frequency       for the 
same value of   .

○

•

Single qubit logic

For a single   
 

 
 qubit

  field comes from a static magnetic field oriented along the  direction. The static field causes the spin to 
rotate around the  axis.

○

Rotation about the  axis on the Bloch sphere is implemented by an oscillating magnetic field along the  
directions in space.

○

Rotation about the  axis on the Bloch sphere can also be implemented by an oscillating magnetic field along 
the  direction in space (change the phase)

Can also point the magnetic field along  direction, but not necessary.▪

○

•
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Can also point the magnetic field along  direction, but not necessary.▪

Implement  and  .
Change reference frame.○

Adjust phase by the third method○

•

The amount of rotation is set by the time spent with the oscillating magnetic field on
High-precision microwave○

•

Two qubit logic
Two-qubit entangling gates are possible via spin-dependent interactions between qubits•
The wave-like behavior of an electron means that its spatial position is blurred out into a cloud-like orbital•

When the orbitals overlap in space, we get exchange interaction:                       

    
     
     
    

 .•

Exchange on its own can be used to yield a SWAP-like interaction for  •
A CNOT gate can be obtained by combining the SWAP interaction with single qubit rotations•
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Error correcting codes
Error correction works by adding redundant information such that if the amount of corruption 
is small, we can still process the information

000 is logical 0, 111 is logical 1.○

•

Suppose 001 is received, each bit flips with an error  .

                 
 

,                   .○

•

Majority vote:
Where the decoded output is the value 0 or 1 that occurs more in the value○

•

Probability of incorrect vote:

The probability that two or more bit are flipped is                 .○

Without encoding, the probability of error is  .○

•

Break even:

Encoding is better when              (  
 

 
 )○

•

Quantum error correcting codes
Three fundamental differences between classical and quantum error correction

No cloning: creating redundancy by copying the qubit state is forbidden▪

Measurement destroys quantum information: observation generally destroys the 
quantum state

▪

Continuous errors: an error can manifest as an arbitrarily small perturbation in the 

coefficients    of a single qubit              .

▪

○

•

3-qubit Bit flip code
Suppose a qubit in a state    can be corrupted by bit flips with probability  to     and is 
untouched with probability    , where     .

A valid qubit state:                  .○

•

Syndromes   : projective measurement operators
                        ,                         .○

                        ,                         ○

The measurement does not change the state of the system that has been acted on by a 
single bit flip error

○

The four possible syndromes tell us how to correct the state.
If    , do nothing.▪

If    , flip bit  .▪

○

•

Syndrome operators     and     where the subscripts refer to the qubit measured.
Rules:                  .○

Assume 1 error only○

○

•

It cannot protest against phase flip errors•
Circuits•

Error correction
2021年9月10日 20:35
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○

Ancilla qubits are needed in circuits that calculate syndromes, since measurement of the 
qubits that encode information themselves causes information to be lost irreversibly

○

If    and    , no flip.▪

If    and    ,   flip, we flip   again.▪

If    and    ,   flip.▪

If    and    ,   flip.▪

○

Only              works,              is not allowed.○

e.g. start with                              ,         .

If bit 2 is flipped,                   ,            .○

•

e.g. bit flip:                        applied to                  .

 

        
 
             

 
           

 

   

                                   

 

   

○

        
 
                  .

•

No threshold•

3-qubit phase flip code
Suppose a qubit    can be corrupted by phase flips with probability  to     and is 
untouched with probability    .

          ,           . (Use subscript  to denote logic state)○

      
 

 
          and         .○

•

Syndromes:     and     .
Rules:         ,          .○

○

•

This cannot correct bit flip errors•
No threshold•

Steane code
7-qubit code that has simple and appealing properties•
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7-qubit code that has simple and appealing properties
Can correct phase flip and bit flip errors

Up to 1 phase flip + up to 1 bit flip at 6 ancilla qubits▪

Option 1: no error, 1 way▪

Option 2: 1 phase flip, 0 bit flip, 7 ways▪

Option 3: 1 bit flip, 0 phase flip, 7 ways▪

Option 4: 1 bit flip, 1 phase flip, 49 ways ▪

4 options give a total of 64 ways of errors, can be fixed by 6 qubits (  ).▪

○

Operations on the coded states are simple○

Can be described using stabilizers○

•

Stabilizers: 
A state that is an eigenvector of an operator  with eigenvalue  is said to be stabilized
by the operator  .  

For     
 

  
                ,                    ,    is stablized by these 

two operators.

▪

○

Many quantum states can be more easily described by working with the operators that 
stabilize them rather than the states themselves

We measure the operator by measuring ancilla▪

e.g. measurement of a Hermitian unitary operator  can be achieved by 
                  .

▪

Then, we measure the ancilla qubit    .

○

•

Steane code stabilizers
It uses six mutually commuting operators to diagnose the error syndrome

           ,            ,            .▪

           ,            ,            .▪

All 6 operators square to the identity▪

  trivially commute with each other▪

  traivially commute with each other▪

  commute with   ▪

○

Valid an invalid codewords of Steana code qubits are distinguished by the combinations 
of eigenvalues of these operators

○

•

Steane code syndrome
A Hermitian unitary operator can be obtained from a circuit                   
with a controlled-A operation and Hadamard gates

If     , then it becomes      
          

    .▪

○

A measurement outcome of the first qubit results in the state of the other qubit 
becoming the projection of    onto the subspace of eigenvalue   of the operator  . 

○

6 ancilla qubits implement:
                   .▪

                   .▪

○

The 7-qubit code-words are defined by

       
 

 
 
                      .▪

       
 

 
                    

      .▪

○

•

Small rotation with error correction

If there is a small angle error         .○

We apply the error correction circuit.○

If ancilla is 1, we get              . (We can detect and correct the error)○

If ancilla is 0, we get         . (There is no error)○

•

There is an        threshold•

Fault-tolerance
Arbitrarily accurate quantum computation can be achieved with logic gates that introduce 
errors provided the errors are below a certain threshold

•

Errors occur: 
While states are encoded○

While quantum logic is being carried out

•
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While quantum logic is being carried out○

While states are being measured○

To provide error correction
Replace each qubit in the original circuit with an encoded block of qubits○

Replace each gate with a gate on encoded states○

Perform error correction periodically on the encoded states with a separate set of 
circuits

○

•

Fault tolerance: 
Considers accumulation and propagation of errors in quantum circuit design○

Definition: If only one component in the procedure fails, then the failure causes at most 
one error in each encoded block of qubits output from the procedure.

Component means: gates, measurements, quantum quiescent time evolution▪

○

Performing error-correction alone is not sufficient for fault-tolerance because encoded 
gates can cause errors to propagate. Errors in the encoded control qubit can cause 
errors in the encoded target qubits

○

Fault tolerant gates: failure in any physical qubit's operation in the procedure for 
performing the encoded gate produces errors in a small number of physical qubits in the 
encoded data

          can all be contructed using fault-tolerant procedures.▪

The complete set can be implemented with arbitrarily high precision▪

○

The action of error correction is to obtain a probability of error of    where  is the 
probability of failure of individual components in the circuit

We want      , i.e.   
 

 
 .▪

○

•

Concatenation: 
When we recursively apply the error correction procedure. That is, make all of the 
physical qubits, in the first stage of encoding logical qubits

○

Example
Basic qubit:        .▪

Level 1:            ▪

Level 2 concatenation:            ,            (9 physical qubits to make 1 
logical qubit).

▪

○

If the error rate of logical qubits is  , then the failure rate after error correction is at 

most    . Concatenating the code once yields an error probability of       
 
 

    
 
  

○

After  levels of concatenation, the error probability is     
  

  .

The overhead is poly-logarithmic.▪

○

•

Threshold theorem
Suppose we wish to achieve an accuracy of  in our algorithm which contains     gates 

where     is a polynomial in  . To accomplish this, each gate must have an accuracy of 
 

    
   , 

and the number of concatenations required is 
     

 

 
      

 

    
   , provided that          , 

such a  exists.
Let   be the probability of error for a single operation○

               for one operation.○

                                     , error for     operations is       .○

•

For errors below the threshold, the error is reduced exponentially with the number of qubits 
in the concatenated code   , when      .

•

The value of the threshold depends on the code used and the architecture which includes 
considerations such as connectivity

•

Most common now:        (Steane code) on 2D nearest neighbor, with threshold        .

Can only do 2 qubit logic if and only if the 2 qubits are the nearest neighbor.○

•

Current revolution: topological cluster, surface code, color code•

Surface code
A topological error correction code which has low connectivity and tolerates a lot of errors•
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A topological error correction code which has low connectivity and tolerates a lot of errors•
Code is implemented using stabilizers (on superconducting qubits, spin qubit…)

            .

     four qubits surrounding each face,   eigenstates of the operator   .▪

○

            .

      four qubits surrounding each vertex,   eigenstates of the operator   .▪

○

An    lattice defined by horizontal and vertical lines contains   qubits▪

A clean surface with no errors has   eigenvalues for all stabilizers▪

○

•

The code is desirable because
It requires only nearest neighbor two-qubit gates○

It tolerates a large error up to 1% for each gate○

•

Introducing errors

○

(a),  is the error, red part has eigenvalue -1.○

c, errors in one line is more likely.○

When we get to edges, things may get complicated○

•

Surface code cannot detect two bit flip in one small region due to the stabilizer•
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