
Nuts and bolts view:
Host (end-system): devices which the apps are running on. Edge of the Internet•
Packet switches: forward packets (e.g. routers, switches)•
Communication links: fiber, copper, radio, satellite

Transmission rate is called bandwidth○

•

Networks are collections of above
The Internet is network of networks

ISP (Internet Service Providers): provide access to the Internet to the hosts▪

○

•

Internet standards:
IETF (Internet Engineering Task Force): proposes RFCs (request for comments) as
standards

○

•

Service view:
Infrastructure:

provide services to applications
E.g. web, streaming video▪

○

Provide programming interface to distributed applications○

•

Network edges: host (end system)
Access network and physical media○

•

Access:
DSL (digital subscriber line)

Use existing telephone line to connect○

Downstream: 24-52 Mbps○

Upstream 3.5-16 Mbps○

ADSL (asymmetric DSL)○

•

Cable
Use FDM to divide frequency bands for different purposes○

HFC (hybrid fiber coax)
Combining optical and coaxial cable▪

Asymmetric transmission rate
Downstream: 40 Mbps-1.2Gbps□
Upstream: 30-100 Mbps□

▪

○

•

Ethernet
Wired access at 100 Mbps, 1 Gbps, 10 Gbps○

•

Wireless (WiFi)
802.11b/g/n/ac: 11,54,450,>1000 Mbps○

•

3G/4G/5G
10's Mbps○

•

Home share access network:
Network of cable, fiber attaches home to ISP router, has security issue○

•

Links: physical media:
Bit: propagates between transmitter/receiver pairs•
Physical link: lies between transmitter/receiver•
Guided media: copper, fiber, coax•
Unguided media: radio•
Twisted pair (TP): reduce interference•

The Internet is a packet switched network

Chapter 1
September 22, 2020 4:20 PM

 ELEC331 Page 1

The Internet is a packet switched network
Because original Internet applications need to send bursty data, and the packet switched
network can handle it better with statistical multiplexing

•

However, it may have excessive congestion•
Hosts: break application layer messages into packets•
Router: forward packets across links on path from source to destination•
Store-and-forward: entire packet must arrive at the router before it can be transmitted on
next link

Avoid corruption○

•

Packet queueing and loss:
Happens when arrival rate to link exceeds transmission rate of link

○

Packets will queue, waiting to be transmitted○

If memory in router fills up, packets can be lost○

•

Key network-core functions
Forwarding: move input to appropriate router output link

Local action○

•

Routing: determine source-destination path
Global action○

•

Circuit switching:
End-to-end resources allocated and reserved for call between source and destination•
Dedicated, idle if not in use•

Multiplexing methods
FDM (frequency division multiplexing)

Divide frequency into specific chunks○

Each person always get the same frequency domain and same bandwidth○

May be wasted if not in use○

Hard to divide frequency○

•

TDM (Time division multiplexing)
Divide time into slots○

In each time slot, a user can get full bandwidth○

Better use of resources○

•

Performance and delay
For any nodal, there are four sources of delay

 : hardware dependent and usually small○

 : statistical, depends on congestion level of router

Traffic intensity

 is the average packet arrival rate□
 is packet length□
 is link bandwidth□

▪

When traffic intensity ~ 0: queuing delay is small▪

When traffic intensity 1: queuing delay increases▪

When traffic intensity >1: queuing delay ▪

○

 ○

 ○

Total delay ○

•

Throughput: rate(

) at which bits are sent from sender to receiver

Can be either instantaneous or average○

If the link is sender- -router- -receiver
If , average = ▪

○

•

 ELEC331 Page 2

If , average = ▪

If , average = ▪

This is called the bottleneck link▪

Malware:
Virus: receiving/executing triggered•
Worm: passively triggered by receiving•
Spyware malware: record keystrokes, websites visited•
Infected host can become a botnet used for spam/DDoS attack•

Common attacks
Denial of Service:

Make resources unavailable to legitimate traffic by overwhelming resource with bogus
traffic

○

Types:
Vulnerability attack: send messages to a vulnerable application or OS▪

Bandwidth flooding: sends a deluge of packets to the targeted host▪

Connection flooding: establish a large number of connection to the host▪

○

•

Packet interception(sniffing):
Reads/records all packets passing by○

•

Fake identity (IP spoofing): send packet with false source address•

Layers
Each layer implements a service via its own internal-layer actions•
Rely on services provided by layer below•
As message is passed to the lower layers, additional info (header) is added•
Good for dealing with complex systems•
May have trouble when going beyond the defined layers•

Protocols define format and order of messages exchanged, actions to be taken
Different layers of the internet have different protocols (Internet Protocol Stack)

Application: SMTP, HTTP
This include the functionality of presentation and session layers▪

Protocols that are part of a distributed network application▪

○

Transport: TCP, UDP
Transfer of data between one process and another process (on different hosts)▪

○

Network: IP, routing protocols
Delivery of datagrams from a source to a destination▪

○

Link: Ethernet
Transfer of data between neighboring network devices▪

○

Physical: bits on wire
Transfer of bit into and out of a transmission media▪

○

•

5. Protocol layers:

(a) What are the five protocol layers, from top to bottom, in the Internet?

Ans: application, transport, network, link, physical

(b) For each of the five layers, what is the name of the packets processed at the layer?

Ans: Application layer: message; Transport layer: segment; Network layer: datagrams; Link layer:
frames; Physical layer deals with individual bits within frame.

(c) An end-system processes up to which layer?

Ans: it processes all five layers (up through the application layer)

(d) A router processes up to which layer?

Ans: it processes network, link and physical layers (up through the network layer)

 ELEC331 Page 3

Ans: it processes network, link and physical layers (up through the network layer)

(e) A link-layer switch processes up to which layer?

Ans: it processes link and physical layers (up through the link layer)

Network security
Digital signatures: used to detect tampering/changing of message contents•
Encryption: provides confidentiality by encoding contents•
Firewall: specialized middleboxes filtering of blocking traffic, inspecting packet contents
inspections

•

Access control: limiting use of resources or capabilities to given users•
Authentication: proving you are who you say you are•

Internet structure: network of networks
Use internet exchange point or peering link to connect different (regional/global) ISPs•

 ELEC331 Page 4

Transmission delay: (M+K-1)L/R

Create a network app
Write programs that run on different end systems, communicate over network
No need to write software for network-core devices

Network core devices do not run user applications•
Applications on end systems allows rapid app development and propagation•

Client-server paradigm
Eg. HTTP, IMAP, FTP•
Server

Always-on host○

Permanent IP address○

Often in data centers○

•

Clients
Contact with server○

May be intermittently connected○

May have dynamic IP address○

Do not communicate directly with each other○

•

Peer-peer (P2P) architecture
E.g. P2P file sharing•
Characteristic

No always-on server○

Arbitrary end systems directly communicate○

Peers send request and provide services one to another
Self scalability▪

○

Peers are intermittently connected and change IP addresses
Complex management▪

○

•

Processes communicating
Process: program running within a host•
Inter-process communication: within the same host•
Exchanging messages: in different hosts•
Applications with P2P architectures have both client and server processes

Client process: initiates communication○

Server process: waits to be contacted○

•

Sockets
Used to identify the process and send/receive messages•

Addressing processes
To receive messages, process must have identifier•
Identifier: IP address + port number•

An application-layer protocol defines:
Types of messages exchanged•
Message syntax•
Message semantics•
Rules for when and how processes send & respond to messages•

Chapter 2
September 22, 2020 10:33 AM

 ELEC331 Page 5

An app need transport service:
Data integrity

100% reliable data transfer○

•

Timing
Require low delay○

•

Throughput
Require minimum amount of throughput○

Elastic: make use of whatever throughput they get○

•

Security
encryption○

•

Internet transport protocol services
TCP

Reliable transport○

Flow control○

Congestion control○

No timing, minimum throughput guarantee, security○

Connection-oriented○

•

UDP
Unreliable data transfer○

No control, no other things○

But faster and higher capacity○

•

Securing TCP
Vanilla TCP & UDP sockets

No encryption○

Cleartext passwords sent into socket traverse Internet in cleartext○

•

Transport Layer Security (TLS)
Provide encrypted TCP connections○

Data integrity

•

 ELEC331 Page 6

Data integrity○

End-point authentication○

Web and HTTP
URL: protocal name://host name/path name

Path name could be case sensitive depending on the system○

•

HTTP: hypertext transfer protocol (pull)
Client/server model

Browser requests/receives and displays web objects▪

Web server sends objects in response to requests▪

○

Uses TCP, port 80○

HTTP is stateless
Does not maintain past client requests▪

So the protocol is simple▪

○

RTT: time for a small packet to travel from client to server and back○

Two types
Non-persistent (need multiple TCPs for different requests)

At most one request□
Response time (per object)=2RTT + file transmission time
(),

transmission delay is not included, because the packet is very small

□

▪

Persistent (only 1 TCP segment)
Multiple requests over the same server□

▪

○

Request messages
Request, response▪

Request message:

□

▪

Response message:
May be empty, when (304 not modified)□

▪

○

•

Cookies:
HTTP GET/response is stateless•
We use cookies to maintain user/server state between transactions•
Components

Cookie header line of HTTP response message○

Cookie header line in next HTTP request message○

Cookie file kept on user's host, managed by user's browser○

Back-end database at website○

•

Used for
Authorization○

Shopping carts○

Recommendations○

User session state○

•

Challenges
Protocol endpoints: maintain state at sender/receiver over multiple transactions○

Cookies: HTTP messages carry state○

•

Web caches (proxy servers)
Goal: satisfy client request without involving origin sever•
User configures browser to point to a web cache•

 ELEC331 Page 7

User configures browser to point to a web cache•
Browser sends all HTTP requests to cache

If object in cache, cache returns the object○

Else, cache request from origin server○

•

Cache acts as client and server•
Reason:

Reduce response time○

Reduce traffic on institution's access link○

Internet is dense with cache○

Using less bandwidth○

•

Conditional GET
Send HTTP request to see if the cached object has changed

If not changed, 304 not modified, use cached object▪

Else, get the new object▪

○

•

Example calculation
No cache:

When access link utilization is close to 1, will have large delays, but faster access
link is expensive

▪

○

With cache:

▪

○

•

HTTP versions
1.1: introduced multiple, pipelined GETs over single TCP connection

Mostly is 1.1○

•

2: increased flexibility at server in sending objects to client
Divides large objects into frames, frame transmission interleaved○

Allows objects in a persistent connection to be sent in a client-specified priority order○

Mitigate HOL (head-of-line) blocking○

•

3: adds security, error and congestion control over UDP•

DNS: domain name system
Distributed database implemented in hierarchy of many name servers

Root
Important Internet function, implemented as application-layer protocol▪

○

Top level domain (TLD)
Responsible for .com. .org, .net, TLD country domains .cn, .uk, and .edu▪

○

Authoritative
Organization's own DNS servers▪

Can be maintained by organization of service provider▪

○

Local DNS:
Does not strictly belong to hierarchy▪

Each ISP has one DNS▪

When host makes DNS query, query is sent to the local DNS▪

○

•

DNS service
Hostname to IP address translation○

Host aliasing

•

 ELEC331 Page 8

Host aliasing
Host with a complicated hostname as its canonical hostname can have one or
more alias names. DNS can be invoked to obtain the canonical hostname for an
alias hostname

▪

○

Mail server aliasing
Similar to above but for the mail server▪

○

Load distribution
Load distribution among replicated servers. A host can have a set of IP addresses.
The DNS server responds to DNS queries with the entire set of IP addresses, but
rotates the ordering of the addresses within in each reply

▪

○

No centralized DNS
Single point of failure○

Traffic volume○

Distant centralized DNS○

Maintenance○

Doesn't scale○

•

DNS name resolution
Iterated query

Do whatever iteration is needed to get the IP▪

▪

○

Recursive query

▪

○

•

DNS caching
Once the name server learns mapping, it caches it○

•

DNS resource records (RR)
Format (name, value, type, ttl)○

Type A
Name is hostname▪

Value is IP address▪

○

Type NS

Name is domain▪

Value is hostname of authoritative name server for this domain▪

○

Type CNAME
Name is alias name for some canonical name▪

Value is canonical name▪

○

Type MX
Value is name of mail server associated with name▪

○

•

DNS messages
Query and reply messages are the same format○

Header:

•

 ELEC331 Page 9

Header:
Identification: 16 bits number for query, reply with the same number▪

Flags: query/reply, recursion desired, recursion available, reply is authoritative▪

○

○

Inserting records
Register name at DNS registrar

Provide names, IP addresses of authoritative name server▪

Registrar inserts NS, A RRs into TLD server▪

○

Create authoritative server locally with DNS IP address○

•

DNS security
DDoS attacks (root servers (not successful), TLD servers (more dangerous))○

Redirect attacks○

Exploit DNS for DDoS○

•

Email, SMTP, IMAP
SMTP Major components

User agent
apps such as outlook▪

Outgoing, incoming messages stored on server▪

○

Mail servers
e.g. @ece.ubc.ca, @hotmail.com▪

Mailbox contains incoming messages for user▪

Message queue for outgoing mails▪

SMTP protocol between servers to send email messages
Client: sending mail server□
Server: receiving mail server□

▪

○

Simple mail transfer protocol: SMTP (makes Email work)
SMTP is only push▪

Multiple objects sent in multipart message▪

Uses persistent connections▪

Requires message to be in 7-bit ASCII▪

Server uses CRLF.CRLF to determine end of message▪

○

RFC
Uses TCP port 25 to transfer message

Message must be 7-bit ASCII□
▪

Direct transfer (sending server to receiving server)▪

Three phases
Handshaking□
Transfer□
Closure□

▪

Command/response interaction
Commands: ASCII text□
Response: status code and phrase□

▪

○

Message format○

•

 ELEC331 Page 10

▪

Can use persistent TCP•
Mail access protocols

SMTP only sends and stores messages○

Use IMAP to retrieve from server (HTTP for web-based interface)○

•

Peer-to-peer (P2P) architecture
Characteristics

No always-on server, end systems directly communicate○

Self-scalable○

E.g. P2P file sharing (BitTorrent), streaming (KanKan), VoIP (Skype)○

Peer upload/download capacity is limited○

•

File distribution time
Client server model

Server transmission (sequentially send N file copies)

Time to send one copy

 (u_s is the upload capacity)□

Time to send N copies

 □

▪

Client: each client must download file copy
 =minimum client download rate□

Maximum client download time:

 □

▪

Time to distribute F to N clients using client-server approach

 □

▪

○

P2P, mostly similar
But for multiple clients, max upload rate is ▪

So

 ▪

○

○

•

E.g. BitTorrent
File divided into 256Kb chunks○

Torrent: group of peers exchanging chunks of a file

Peers in torrent send/receive file chunks▪

Tracker: tracks peers participating in torrent▪

Churn: peers may come and leave
Once peer has entire file, it may leave or remain in torrent □

▪

○

Requesting chunks

•

 ELEC331 Page 11

Requesting chunks
At any given time, different peers have different subsets of file chunks▪

Requests missing chunks from peers, rarest first▪

○

Sending chunks
Send chunks to those who is sending the chunks at highest rate▪

Every 30 sec, randomly select another peer, and starts sending chunk▪

○

Video streaming and CDNs
Challenge: Large traffic, scale, different users have different capabilities (heterogeneity)•
Manifest: a file containing the location and encoding rate of files corresponding to video
segments in a video

•

Solution: distributed, application-level infrastructure•
Video: sequence of images displayed at constant rate

Digital image: array of pixels, each pixel represented by bits○

Coding: use redundancy within and between images to decrease # bits used to encode
image

Spatial (within image)
Send only color and number of repeated values□

▪

Temporal (between images)
Send only differences from frame for frame □

▪

○

CBR (constant bit rate): video encoding rate fixed○

VBR (variable bit rate): video encoding rate changes as amount of spatial, temporal
coding changes

Most commonly used▪

○

•

Streaming video
Challenges:

sever-to-client bandwidth will vary due to congestion levels▪

Packet loss and delay causing poor video quality▪

○

Continuous playout constraint: once client playout begins, playback must match original
timing

But network delays are variable, we need client-side buffer to match requirements
Buffering and playout delay compensate for network-added delay□

▪

○

Other challenges
Client interactivity: pause, fast-forward, rewind▪

Video packets may be lost, retransmitted▪

○

•

Streaming multimedia DASH
DASH: dynamic adaptive streaming over HTTP○

Server:
Divide video into multiple chunks▪

Store, encode at different rates▪

Manifest file provides URLs for different chunks▪

○

Client determines
When to request chunk▪

What encoding rate to request▪

Where to request▪

○

•

Streaming video = encoding + DASH + playout buffering•

CDN (content distribution networks):
Challenge: how to stream content to hundreds of thousands of simultaneous users•
Solutions

Single, large mega-server
Doesn't scale▪

○

Store/serve multiple copies of videos at multiple geographically distributed sites (CDN)
Enter deep (close to users): push CDN servers deep into many access networks▪

Bring home: smaller number of larger clusters in POPs near access networks▪

○

•

CDNs stores copies of content at CDN nodes
Subscriber requests content from CDN

•

 ELEC331 Page 12

Subscriber requests content from CDN○

Over the top (OTT): Internet host-host communication as a service
Challenges: coping with a congested network○

•

Socket programing
Socket: door between application process and end-end-transport protocol•
UDP: unreliable datagram

No connection between client and server○

Transmitted data may be lost or received our-of-order○

Can receive data from different clients on the same socket○

SOCK_DGRAM○

Sender explicitly attaches IP destination address and port number to each packet○

•

TCP
Client must contact server

Create TCP socket▪

Client TCP establishes connection to server TCP▪

When contacted by client, server TCP creates new socket for server process to
communicate with the client

▪

Server can perform an accept
Binds the server and client together so that the server can identify the
receiver

□
▪

Client uses connect to explicitly bind its socket to specific server▪

○

•

Port numbers
22: SSH•
25: SMTP (push, TCP)•
53: DNS (TCP+UDP)•
80: HTTP (pull)•
143: IMAP (pull)•

 ELEC331 Page 13

Transport layer (together with the network layer) is the heart of the protocol hierarchy of the
Internet.

Provides process-to-process or application-to-application delivery

TCP and UDP are most important protocols in Transport layer

Transport layer actions
Sender

Passed an application layer message○

Determines segment header fields values○

Creates segment○

Passes segment to IP (network layer)○

•

Receiver
Receives segment from IP○

Checks header values○

Extracts application-layer message○

Demultiplexes message to application via socket○

•

Transport layer provides logical communication between application processes running on different
hosts
Network layer provides logical communication between hosts

Protocols
TCP: Transmission Control Protocol

Reliable, in-order delivery○

Congestion control
If the network is already congested▪

Deals with the network▪

○

Flow control
Don't overwhelm the network▪

Deals with two ends only▪

○

Connection setup (connection-oriented)
Started with creating a connection, then transfer data▪

Three way handshaking▪

○

•

UDP: User Datagram Protocol
Unreliable, unordered delivery○

No-frills extension of "best-effort" IP○

Connectionless
No handshaking is needed▪

○

•

Multiplexing/demultiplexing
Multiplexing/demultiplexing happen at all layers•
Multiplexing: (at sender) gather data chunks at the source host from different sockets,
encapsulate data to create segments and pass segments to network layer

•

Demultiplexing: (at receiver) delivering the data in a transport-layer segment to the correct
socket.

Host use IP addresses and port numbers to direct segment to appropriate socket○

Host receives IP datagrams
Source/destination IP address▪

One datagram carries one transport-layer segment▪

Each segment has source/destination port number▪

○

•

Chapter 3
October 6, 2020 10:13 AM

 ELEC331 Page 14

Each segment has source/destination port number▪

Connectionless demultiplexing
When creating datagram to send into UDP socket, we must specify destination IP
address, port number

▪

When receiving UDP segment, checks destination port number and direct the
segment to the specific port

▪

IP datagram with same destination port number will always be directed to the
same socket at receiving host

▪

Demultiplexing using destination port number only▪

○

Connection-oriented demultiplexing
TCP socket identified by 4-tuple

Source IP address□
Source port number□
Destination IP address□
Destination port number□

▪

Receiver needs to use all four values to direct the segment to appropriate socket▪

Server may support multiple simultaneous TCP sockets▪

○

UDP (User Datagram Protocol)
UDP segments may be lost, delivered out-of-order•
Advantages

Connectionless, reduce RTT delay○

simple○

Smaller header size○

No congestion control
Can be as fast as desired▪

But bad for congestions if misuse▪

○

•

UDP used in DNS, streaming multimedia apps, SNMP, HTTP/3
If reliable transfer needed over UDP (HTTP/3)

Add needed reliability/congestion control at application layer▪

○

•

UDP layer actions
Sender:

Passed an application layer message▪

Determines UDP segment header▪

Create UDP segment▪

Pass segment to network layer (IP)▪

○

Receiver
Receives segment from network layer (IP)▪

Checks UDP checksum header value
Detect errors□

□

Checksum (16bit)
Checksum is computed over the entire segment, except the checksum
field, but includes the IP sender and receiver address fields

Sender adds the segment content and put the sum in the field

Needs to wrap around the overflow and flip the bits

□

▪

○

•

 ELEC331 Page 15

◊

Receiver compute checksum of received segment, check if the
checksum equals to provided value

If not equal, there is an error◊

A single flipped bit in one of the numbers will always result in a
changed checksum

A single flipped bit in both of the two numbers may not lead to a
changed checksum

Extracts application-layer message▪

Demultiplexes message up to application layer▪

Principles of reliable data transfer
With a reliable data transfer, no transferred data bits are corrupted or lost, and all are
delivered in the order in which they were sent

•

A packet that is received in error will be retransmitted by the sender•
ARQ (automatic repeat request)

For ARQ we need:
Error detection▪

Receiver feed back
ACK: (acknowledgements) receiver explicitly tells the sender that packet
received is OK

□

NAK: (negative acknowledgements) receiver explicitly tells sender that
packet had errors

□

▪

Retransmission▪

○

Stop-and-wait: the simplest ARQ

Sender waits until it is sure that the receiver has correctly received the current
packet, then send the new ones

▪

○

Countdown timer: time-based retransmission mechanism
Interrupt the sender after timeout▪

Do not wait forever▪

○

Recover from errors
Resends the packet, but have duplicate packets▪

Put a sequence number▪

○

•

Reliable data transfer (rdt) interface
Use finite state machine to specify sender, receiver

Separate FSMs for sender, receiver○

Send data by underlying channels○

Rdt2.0

▪

ACK/NAK are corrupted▪

Duplicates
Using sequence number □

▪

○

Rdt2.1
Sender▪

○

•

 ELEC331 Page 16

Sender

□

Sequence number (0 or 1) added to the packet□
Must check if received ACK/NAK is corrupted□
State must remember whether expected packet should have sequence
number of 0 or 1

□

▪

Receiver

□

Must check if received packet is duplicated (whether 0 or 1 is expected
packet sequence number)

□

▪

Rdt2.2: similar to 2.1 but NAK-free (TCP uses this)
Instead of NAK, receiver sends ACK for last packet received OK (explicitly include
sequence number)

▪

Duplicate ACK at sender results in same action as NAK▪

▪

○

Rdt3.0: channels with errors and loss
Stop and wait for reasonable amount of time for ACK

Retransmits if no ACK received in this time□
Using a countdown at sender□
Receiver must specify sequence number of packet being ACK□

▪

○

 ELEC331 Page 17

▪

Performance of rdt3.0

 : utilization-fration of time sender busy sending

Usually very low

□

Performance is bad□

▪

Pipeline
Sender allows multiple in-flight, yet-to-be-acknowledged packets□

▪

In rdt2.0-2.2 we assume underlying channel perfectly reliable
No bit errors○

No loss of packets○

May flip bits in packet○

Use ACK, NAK to tell the sender the packet received are OK or not
Retransmit if NAK▪

○

•

Stop and wait
Sender sends one packet, then waits for receiver response○

•

Pipelined
Allows multiple, "in-flight", yet-to-be-acknowledged packets○

Performance

 , is the pipelined packet number○

•

Go back N (GBN)
Sender transmit multiple packets without waiting for an acknowledgement

Cumulative ACK: ACKs all packets up to, including sequence number
On receiving, move window forward to begin at □

▪

Timer for oldest in-flight packet▪

Timeout: retransmit packet n and all higher sequence number packets in window▪

○

Constrained to have no more than some maximum allowable number N of
unacknowledged packets in the pipeline

○

Receiver
Ack-only, send ACK for correctly-received packet so far, with highest in-order
sequence number

▪

Receiving out of order packet
Discard or buffer

Discard because the sender will resend the packet anyway, and the
implementation at the receiver is simpler

Buffer because it is perfectly well-received, but next transmission may
be corrupted

□

Re-ACK with highest in order sequence number□

▪

○

•

Selective repeat
Avoid unnecessary retransmission, only retransmit the error received packets○

Sender: times out/ retransmits individually for un-ACK packets
Maintains timer for each un-ACK packet▪

○

•

 ELEC331 Page 18

Maintains timer for each un-ACK packet
If time out, resend packet and restart timer□

▪

Receive ACK for in
Mark packet n as received□
If n smallest un-ACK packet, advance window base to next un-ACK sequence
number

□

▪

Receiver individually acknowledges all correctly received packets
Buffers packets for eventual in-order delivery to upper layer▪

If packet is within
Send ACK□
Out-of-order packets go in buffer□
In order buffer delivered to higher layer□

▪

If packet is in previous receive base
Only send ACK□

▪

Otherwise ignore▪

Cannot receive a packet with a sequence number larger than the window size N▪

○

Sender window
N consecutive sequence number▪

Limit sequence number of sent, un-ACK packets▪

○

May have problem when sequence number base is greater than window size
E.g. sequence number = 0,1,2,3 with window size 3▪

○

TCP
Point to point: one sender, one receiver•
Reliable: in order byte stream

No message boundaries○

•

Full duplex data
Bi-directional data flow in the same connection○

MSS: maximum segment size○

•

Cumulative ACKs
The acknowledgment field has the sequence number of the next byte expected from the
other side

○

•

Pipelining
TCP congestion and flow control set window size○

•

Connection oriented
Handshaking initializes sender, receiver state before data exchange○

Before data transfer: Three-way handshake

Agree to establish connection▪

Agree on connection parameters (e.g. starting sequence numbers)▪

SYN, SYNACK, ACK▪

2-way handshake may not always work in network
Variable delays□
Retransmitted messages (request connection) due to message loss□
Message reordering□
Can't see other side□

▪

○

Closing a connection
Client and server close their side of connection

Send TCP with FIN bit = 1□
▪

Respond to received FIN with ACK
Can be combined with own FIN□

▪

Simultaneous FIN exchanges can be handled▪

○

•

Flow controlled
Sender will not overwhelm receiver○

Receiver advertises free buffer space in rwnd field (receive window) in TCP header
Receive buffer size set via socket options (default is 4096 bytes)▪

Many OS adjust the size automatically▪

○

Sender limits amount of NACK (in flight) data to rwnd○

Guarantees receive buffer will not overflow

•

 ELEC331 Page 19

Guarantees receive buffer will not overflow○

TCP segment structure

No length for payload
Calculated by total length - IP header length - TCP header length▪

○

Header length is 4 bit
But minimum value is 5: 20 bytes header▪

Maximum value is 15: maximum for 4 bit▪

○

•

Sequence number
Used to identify the byte stream number of the first byte in the segment data○

•

TCP timeout, use estimated TCP RTT

Exponential Weighted Moving Average▪

Influence of past sample decreases exponentially fast▪

Typically ▪

○

We will plus a safety margin to the estimated RTT for timeout interval

 ▪

Timeout interval = ▪

○

•

Simplified sender
Event: data received from application

Create segment with sequence number▪

Sequence number is byte-stream number of first data byte in segment▪

Start timer if not already running
Timer: for oldest NACK segment□
Expiration interval: timeout interval□

▪

○

Event: timeout
Retransmit segment that caused timeout▪

Restart timer▪

○

Event: ACK received
Update what is known to be ACK▪

Start timer if there are still NACK segment▪

○

•

Simplified receiver
Event: arrival of in-order segment with expected sequence number and all data up to
this already ACK

Delayed ACK. Wait up to 500ms for next segment, if no next segment, send ACK▪

○

Event: arrival of in-order segment with expected sequence number, but one other
segment has ACK pending

Immediately send single cumulative ACK for both in-order segments▪

○

Event: arrival of out-of-order segment higher than expected sequence number
Immediately send duplicate ACK, indicating sequence number of next expected
byte

▪

○

Event: arrival of segment that partially or completely fills the gap
Immediately send ACK, provided that segment starts at lower end of gap▪

○

Always send the highest in-order ACK○

•

Fast retransmit
If sender receives 3 additional ACKs for the same data (triple duplicate ACKs), resend
NACK segment with smallest sequence number

○

•

 ELEC331 Page 20

NACK segment with smallest sequence number

Congestion Control
Congestion: too much data (sender) too fast for network to handle

Long delays (queuing)○

Packet loss (buffer overflow)○

•

Flow: too much data for the receiver to handle•
End-end congestion control

No explicit feedback from network○

Congestion inferred from end-system observed loss, delay○

Approach taken by TCP○

•

Network-assisted congestion control
Routers provide feedback to end system○

Not currently in use○

•

TCP congestion control: AIMD
Additive Increase: increase sending rate by 1 maximum segment size every RTT until loss
detected

•

Multiplicative Decrease: cut sending rate in half at each loss event
Cut in half on loss detected by triple duplicate ACK (TCP Reno)○

Cut to 1 MSS (maximum segment size) when loss detected by timeout (TCP Tahoe)○

•

Optimize congested flow rates network-wide•
Have desirable stability properties•
Sending behavior:

Send cwnd (congestion window size) bytes, wait RTT for ACKs, then send more bytes

 bytes/sec▪

○

TCP sender limits transmission:
 ▪

○

Cwnd is dynamically adjusted in response to observed network congestion
 handles both flow
control and congestion control

▪

rwnd (receive window size)▪

○

•

TCP slow start
When connection begins, increase rate exponentially until first loss event

Initial cwnd = 1 MSS▪

Double cwnd every RTT for every ACK received▪

Or we can say cwnd is increased by 1MSS for every first ACK▪

○

•

Congestion avoidance (when hits ssthresh)
Switch to linear increase, when cwnd gets to 1/2 of its value before timeout (ssthresh)○

On a loss event due to triple duplicate ACK
Cwnd set to 1/2 of original cwnd (+3 to account for the triple duplicate ACKs)
before loss event, also continues to increase linearly (fast recovery)

▪

○

On a loss event due to timeout
Cwnd set to 1, ssthresh set to 1/2 cwnd, restart slow start▪

○

○

•

 ELEC331 Page 21

○

TCP detecting reacting to loss
Loss due to timeout:

Cwnd set to 1 MSS▪

Then follows slow start▪

○

Loss due to triple duplicate ACK:
TCP RENO:

Fast recovery□
Cwnd is cut in half, then grows linearly□

▪

TCP Tahoe:
Always set cwnd to 1□

▪

○

•

TCP CUBIC

•

Better way than AIMD to probe for usable bandwidth•
 : sending rate at which congestion loss was detected•
Congestion state of bottleneck link hasn't changed much•
After cutting rate/window in half on loss, initially grow faster, then slowly•
K: point in time when TCP window size reaches •
Increase W as a function of the cube of the distance between current time and K

Larger increases when further away from K○

Smaller increases when nearer K○

•

Bottleneck link
Packet loss occurs at some router's output, the router is the bottleneck link•
Delay-based control:

Keep sender-to-receiver pipe busy transmitting, but avoid high delays/buffering○

 - minimum observed RTT (uncongested path)○

Uncongested throughput with congestion window cwnd is

If measured throughput close to uncongested throughput (RTT is small), increase
cwnd linearly

▪

If measured throughput far below uncongested throughput (RTT is large),
decrease cwnd linearly

▪

○

Congestion control without inducing/forcing loss

•

 ELEC331 Page 22

Congestion control without inducing/forcing loss○

Maximizing throughput, while keeping delay low○

Explicit congestion notification (ECN):
Network-assisted congestion control

Two bits in IP header marked by network router to indicate congestion
Policy to determine marking chosen by network operator▪

○

Congestion indication carried to destination○

Destination sets ECE bit on ACK segment to notify sender of congestion○

Involves both IP (ECN bit) and TCP (C, E bits)○

•

TCP fairness
If K TCP sessions share same bottleneck link of bandwidth R, each should have average rate of

•

TCP is fair under idealized assumptions
Same RTT○

Fixed number of sessions only in congestion avoidance○

•

Fairness and parallel TCP connections
Application can open multiple parallel connections between two hosts○

Web browser do this
E.g. link of rate R with 9 existing connections

New app asks for 1 TCP, gets rate R/10□
New app asks for 11 TCPs, gets R/2□

▪

○

•

Fairness and UDP:
Multimedia apps often do not use TCP

Do not want rate throttled by congestion control○

•

Use UDP
Send audio/video at constant rate, tolerate packet loss○

•

No policing use of congestion control•

HTTP/3: QUIC (Quick UDP Internet Connections):
Moving transport-layer functions to application layer, on top of UDP•
Application-layer protocol, increase performance of HTTP•
Error and congestion control•
Connection establishment•
Multiple application-level streams multiplexed over single QUIC connection

Separate reliable data transfer, security○

Common congestion control○

•

Connection establishment
Can establish all connection parameters in just one handshake rather than in two○

○

•

As an application layer protocol QUIC can be updated/modified at app frequency rather than
at the frequency of operating system updates

•

 ELEC331 Page 23

Network layer services and protocols
Transport segment from sending to receiving host

Sender: encapsulates segments into datagrams pass to link layer○

Receiver: delivers segment to transport layer○

•

Network layer protocols in every internet device(hosts and routers)•

Network-layer functions:
Forwarding: local action of moving packets from a router's input link to appropriate router
output link

•

Routing: global action of determining route taken by packets from source to destination
(provides forwarding table)

•

Data plane and control plane
Data plane:

Local, per-router function○

Determines how datagram arriving on router input port is forwarded to router output
port

○

Looking up address bits in an arriving datagram header in the forwarding table○

Moving an arriving datagram from a router's input port to output port○

Dropping a datagram due to a congested output buffer○

•

Control plane:
Network-wide○

Determines how datagram is routed among routers along end-end path from source
host to destination host

○

Computing the contents of the forwarding table○

Monitoring and managing the configuration and performance of an IP device○

Two approaches
Traditional routing algorithms: implemented in routers (per-router model)

Individual routing algorithm components in each and every router interact in
the control plane

□

Routers send information about their incoming and outgoing links to other
routers in the network

□

▪

Software-defined networking (SDN): implemented in servers
Remote controller computes, installs forwarding tables in routers□

▪

In both ways:
A router uses its forwarding table to determine the appropriate outgoing
link for an arriving datagram

□

A router receives an incoming datagram from a directly attached host□

▪

○

•

Network service models
For individual datagrams

Guaranteed delivery in some time delay○

•

For a flow of datagrams
In-order datagram delivery○

Guaranteed minimum bandwidth○

Restrictions on changes in inter-packet spacing○

•

Internet best effort services has no guarantees on
Successful datagram delivery to destination○

Timing or order of delivery○

Bandwidth available to end-end flow○

•

Reflections on Internet best-effort service
Simplicity of mechanism allows Internet to be widely deployed

•

Chapter 4
October 29, 2020 9:51 AM

 ELEC331 Page 24

Simplicity of mechanism allows Internet to be widely deployed○

Sufficient provisioning of bandwidth allows performance of real-time applications○

Replicated, application-layer distributed services allow services to be provided from
multiple locations

○

Congestion control of elastic services○

Router architecture
Input port functions (match + action)

Line termination: physical layer bit level reception○

Link layer protocol: link layer○

Lookup, forwarding, queuing: decentralized switching
Using header field values, lookup output port using forwarding table in input port
memory

▪

Need to complete input port processing at line speed▪

Input port queuing: if datagrams arrive faster than forwarding rate into switch
fabric

▪

Destination-based forwarding (traditional): forward based only on destination IP
address

Longest prefix match: when looking for forwarding table entry for given
destination address, use longest address prefix that matches destination
address

Often used Ternary Content Addressable Memories (TCAMs)

Content addressable: Retrieve address in one clock cycle,
regardless of table size

◊

□

▪

Generalized forwarding: forward based on any set of header field values▪

○

•

Switching fabrics:
Transfer packet from input link to appropriate output link•
Switching rate: rate at which packets can be transfer from inputs to outputs

Measured as multiple of input/output line rate
N inputs: NR (R is the line rate desirable)▪

○

•

Types
Memory

▪

Traditional computers with switching under direct control of CPU▪

Packet copied to system's memory▪

Speed limited by memory bandwidth▪

2 bus crossing per datagram▪

○

Bus

▪

Datagram from input port to output port memory via a shared bus▪

Speed limited by bus bandwidth▪

32 Gbps bus: sufficient speed for access routers▪

○

Interconnection network○

•

 ELEC331 Page 25

▪

Crossbar, clos network, other interconnection nets initially developed to connect
processors in multiprocessor

▪

Multistage switch: switch from multiple stages of smaller switches▪

Exploiting parallelism
Fragment datagram into fixed length cells on entry□
Switch cells through the fabric reassemble datagram at exit□

▪

Scaling, using multiple switching planes in parallel
Speed up, scale up via parallelism□

▪

Cisco CRS router
Basic unit: 8 switching planes□
Each plane: 3-stage interconnection network□
Up to 100's Tbps switching capacity□

▪

Input, output port queuing
Input queuing:

Switch fabric slower than input ports combined causes queuing delay and input buffer
overflow

○

Head-of-the-Line (HOL) blocking: queued datagram at front of queue prevents others in
queue from moving forward

○

•

Output queuing:
Buffering required when datagrams arrive from fabric faster than link transmission rates○

Scheduling discipline chooses among queued datagrams for transmission
Prioritize who gets best performance, network neutrality ▪

○

•

Buffering:
RFC 3439: average buffering equal to typical RTT (250 msec) times link capacity C•

With N flows, buffering equal to

 •

Too much buffering can increase delay
Long RTTs○

We need to keep bottleneck link just full enough but not fuller○

•

Buffer management
Drop when buffer is full

Tail drop: drop arriving packet▪

Priority: drop/remove based on priority▪

○

Marking: which packets to mark to signal congestion (ECN, RED bits)○

•

Packet scheduling
Deciding which packet to send next on link•
Methods:

First come fist serve (FCFS/FIFO)
Packets transmitted in order of arrival▪

○

Priority
Arriving traffic classified, queued by class

Any header fields can be used for classification□
▪

Send packet from highest priority queue that has buffered packets
FCFS within the queue□

▪

○

Round robin
Arriving traffic classified, queued by class▪

Server cyclically, repeatedly scans class queues, sending one complete packet from
each class in turn

▪

○

•

 ELEC331 Page 26

each class in turn
Weighted fair queuing

Generalized round robin▪

Each class has weight , and gets weighted amount of service

 in each cycle▪

Minimum bandwidth guarantee (per-traffic-class) ▪

○

Network neutrality:
Technical: how an ISP should share/allocate its resources

Packet scheduling, buffer management are the mechanisms○

•

Social, economic principles
Protect free speech○

Encourage innovation, competition○

•

Enforced legal rules and policies
No blocking○

No throttling○

No paid prioritization○

•

IP Protocol:
Datagram format•
Addressing•
Packet handling conventions•

ICMP protocol:
Error reporting•
Router signaling•

IP datagram:

Identification (ID) field is a 16-bit value that is unique for every datagram for a given
source address, destination address, and protocol, such that it does not repeat within
the maximum datagram lifetime

○

•

IP address: 32-bit identifier associated with each host or router interface
Interface: connection between host/router and physical link

Routers typically have multiple interfaces▪

Host typically has one or two interfaces (wired, wireless)▪

IP addresses associated with each interface▪

○

•

Subnet
Device/ device interfaces that can physically reach each other without passing through
an intervening router

○

IP address structure
Subnet part: devices in the same subnet have common high order bits▪

Host part: remaining low order bits (max number of host =)▪

Subnet mask: /n is the subnet mask indicating that the left most 24 bits define the
subnet address

▪

○

Each isolated network (isolated by routers) is a subnet○

•

 ELEC331 Page 27

There are 6 subnets▪

○

CIDR (Classless InterDomain Routing)
Subnet can have an arbitrary length○

Format a.b.c.d/x, where x is the number of bits in subnet portion○

Broadcast address is the last IP in the range○

Ending address is broadcast address-1○

Previously less flexible (classful addressing)
Class A similar to /8▪

Class B similar to /16▪

Class C similar to /24▪

Causes poor utilization of addresses and rapid depletion of classes▪

Though class C is still used▪

○

•

DHCP (Dynamic Host Configuration Protocol)
Host dynamically obtains IP address from network server when it joins network

Plug and play: no manual configuration▪

Can renew its lease on address in use▪

Allows reuse of address (only hold address while connected)▪

Support for mobile users▪

Provide IP address, deliver the address of first-hop router, the name and IP of DNS
server and the network mask

▪

○

Overview
Host broadcasts DHCP discover message (optional when already know which
network to join)

▪

DHCP server responds with DHCP offer message (optional when already know
which network to join)

▪

Host requests IP address: DHCP request message▪

DHCP server sends address: DHCP ack message ▪

○

○

•

 ELEC331 Page 28

○

○

DHCP uses UDP○

Hierarchical addressing
Route aggregation: allows efficient advertisement of routing information•
More specific routes•

ICANN (Internet Corporation for Assigned Names and Numbers)
ICANN allocated addresses through 5 regional registries•
Manages DNS root zone, including delegation of individual TLD management•
ISP get blocks of addresses by ICANN•

Last chunk of IPv4 addresses were allocated to RRs in 2011
NAT helps IPv4 address space exhaustion
IPv6 has 128-bit address space

NAT (network address translation):
All devices in local network share just one IPv4 address as far as outside world is concerned•
All datagrams leaving local network have the same source NAT IP address•
Datagrams with source or destination within the network have a private IP address

10/8, 172.16/12, 192.168/16 can only be used in local network○

•

Advantages
Just one IP address needed from provider ISP for all local devices○

Can change addresses of host in local network without notifying outside world○

Can change ISP without changing addresses of devices in local network○

Security: devices inside local net not directly addressable, visible by outside world○

•

Implementation: NAT router
Outgoing datagrams: replace source IP address, port number of every outgoing
datagram to NAT IP address and port number

Remote clients/servers respond using NAT IP address▪

○

•

 ELEC331 Page 29

Remote clients/servers respond using NAT IP address▪

Remember (in translation table) every translation pair○

Incoming datagrams: replace destination fields with corresponding local IP, port in NAT
table

○

16-bit port number field can store more than 60000 simultaneous connections with single
LAN-side address

•

Extensively used in home/institutional nets, 4G/5G cellular nets•
Problems

Routers should only process up to layer 3 (network layer)○

Address shortage solved by IPv6○

Violates end-to-end argument (port number manipulation)○

NAT traversal (want to skip the NAT to connect to the server behind it)○

•

IPv6:
Motivation: 32-bit IPv4 address space would be completely allocated

Use 128-bit IP addresses instead○

Additional motivation:
New header format helps speed processing/forwarding

40-byte fixed length header□
▪

Enable different network-layer treatment of flows▪

○

•

Datagram

○

•

Transition from IPv4 to IPv6
Not all routers can be upgraded simultaneously, network operates with mixed IPv4 and
IPv6

○

Tunneling
IPv6 datagram carried as payload in IPv4 datagram among IPv4 routers packet
within a packet)

▪

▪

○

•

Generalized forwarding: match plus action:
Each router contains a forwarding table (flow table)•
Match plus action abstraction: match bits in arriving packet, take action

Destination-based forwarding: forward based on destination IP address○

Generalized forwarding:
Many header fields can determine action▪

Many action possible: drop/copy/modify/log packet▪

○

•

 ELEC331 Page 30

Many action possible: drop/copy/modify/log packet▪

Flow table abstraction
Flow: defined by header field values○

Generalized forwarding: simple packet-handing rules
Match: pattern values in packet header fields▪

Actions: for matched packet: drop, forward, modify, matched packet or send
matched packet to controller

▪

Priority: disambiguate overlapping patterns▪

Counters: number of bytes and packets▪

○

Match-able values:
IP source/destination address□
IP type of service□
Upper layer protocol field□
Source/destination port number□

▪

○

•

Open flow abstraction
Match + action: abstraction unifies different kinds of devices○

Router:
Match: longest destination IP prefix▪

Action: forward out a link▪

○

Firewall:
Match: IP addresses and TCP/UDP port numbers▪

Action: permit or deny▪

○

Switch:
Match: destination MAC address▪

Action: forward or flood▪

○

NAT:
Match: IP address and port▪

Action: rewrite address and port▪

○

○

•

Summary:
Match plus action abstraction: match bits in arriving packet headers in any layers, take
action

○

•

 ELEC331 Page 31

action
Matching over many fields (link, network, transport)▪

Local actions: drop, forward, modify, or send matched packet to controller▪

Program network-wide behaviors▪

Simple form of network programmability
Programmable, per-packet processing▪

Historical roots: active networking▪

○

Middle boxes

Initially: proprietary hardware solutions•
Move towards white box hardware implementing open API

Move away from proprietary hardware solutions○

Programmable local actions via match + action○

Move towards innovation/differentiation in software○

•

SDN: centralized control and configuration management often in private/public cloud•
Network functions virtualization (NFV): programmable services over white box networking,
computation, storage

•

Middle boxes added to waist (NAT, caching, NFV, Firewalls)•

Middle boxes: NAT, HTTP cache, HTTP load balancer
NAT: home, cellular, institutional•
Application specific: service providers, institutional, CDN•
Firewalls, IDS: corporate, institutional, service providers, ISPs•
Load balancers•

Router is not a middle box

Architectural principles of the Internet
Simple connectivity•
IP protocol•
Intelligence, complexity at network edge•

 ELEC331 Page 32

Intelligence, complexity at network edge•

End-end argument
Some network functionality (reliable data transfer, congestion) can be implemented in
network, or at network edge

•

The end-to-end argument advocates placing functionality at the network edge because some
functionality cannot be completely and correctly implemented in the network, and so needs to
be placed at the edge in any case, making in-network implementation redundant

•

The end-to-end argument allows that some redundant functionality might be placed both in-
network and at the network edge in order to enhance performance

•

 ELEC331 Page 33

Control plane: routing

Routing protocols:
Goal: determine good paths/routes, from sending hosts to receiving host, through network of
routers

Path: sequence of routers packets to traverse from given initial source host to final
destination host

○

Least cost, fastest, least congested○

Very challenging○

•

Graph abstraction: link costs

•

Routing algorithm classification

•

Dijkstra's Link state (shortest path) algorithms:
Centralized: network topology, link costs known to all nodes

Accomplished by link state broadcast○

All nodes have same info○

•

Computes least cost paths from one node to all other nodes
Gives forwarding table for that node○

•

Iterative: after k iterations, know least cost path to k destinations•
Algorithms

Notations
 : direct link cost from node x to y, ∞ if not direct neighbors▪

 : current estimate of cost of least cost path from source to destination▪

 : predecessor node along path from source to v▪

 : set of nodes whose least cost path definitively known▪

○

•

Chapter 5
November 5, 2020 10:37 AM

 ELEC331 Page 34

○

Complexity: n nodes

 comparisons: O() complexity○

More efficient implementation possible: O()○

•

Message complexity
Each router must broadcast its link state information to other n routers○

Efficient broadcast algorithms: O(n) link crossings to disseminate a broadcast message
from one source

○

Each router's message crosses O(n) links, overall message complexity O()○

•

When link costs depend on traffic volume, route oscillations possible•

Distance vector algorithm
Based on Bellman-Ford(BF) equation (dynamic programming):

Only consider the neighbor, immediate cost○

 is the cost of least cost path from x to y

 is v's estimated least cost path cost to y▪

 is direct cost of link from x to v▪

○

○

•

Key idea:
From time to time, each node sends its own distance vector estimate to neighbors○

When x receives new estimate from any neighbor, it updates its own distance vector
using B-F equation

○

Under minor, natural conditions, the estimate converge to the actual least cost

○

•

 ELEC331 Page 35

○

Link cost changes:
Node detects local link cost change○

Updates routing info, recalculates local distance vector○

If the distance vector changes, notify neighbors○

Good news travels fast○

Bad news travels slow (count to infinity problem)○

•

Comparison of link-state and distance-vector algorithms
Message complexity

LS: n router, O() messages○

DV: convergence time varies (exchange between neighbors)○

•

Speed of convergence
LS: O(), may have oscillations○

DV: time varies, may have routing loops and count-to-infinity problem○

•

Robustness
LS:

router can advertise incorrect link cost▪

Each router computes its own table▪

○

DV:
Can advertise incorrect path cost: black holing▪

Each router's table used by others, error propagates through the network▪

○

•

Problem with idealized routing:
Scalability

Can't store all destinations in routing table○

Routing table exchange would swamp links○

•

Administrative autonomy
Each network admin may want to control routing in its own network○

•

Autonomous systems (AS, domain)
To achieve scalable routing, aggregate routers into regions know as domain•
Intra-AS (intra-domain): routing within same AS

All routers in AS run same intra-domain protocol○

Routers in different AS scan run different intra-domain protocols○

Gateway router: at edge of its own AS, has link to routers in other AS○

Protocols
RIP (routing information protocol)

Classic DV: DVs exchanged every 30 second□
No longer widely used□

▪

EIGRP (enhanced interior gateway routing protocol)
DV based□
Formerly Cisco-proprietary for decades□

▪

OSPF (open shortest path first)▪

○

•

 ELEC331 Page 36

OSPF (open shortest path first)
Link-state routing□
IS-IS protocol (ISO standard) essentially same as OSPF□
Open: publicly available□
Classic link-state

Each router floods OSPF link-state advertisements to all other routers
in entire AS directly over IP (no use of TCP or UDP)

Multiple link costs metrics: bandwidth, delay

Each router has full topology, uses Dijkstra's algorithm to compute
forwarding table

□

Security: all OSPF messages authenticated□
Hierarchical OSPF in large domains

Two level hierarchy: local area, backbone

Link-state advertisements flooded only in area, or backbone◊

Each node has detailed area topology, only knows direction to
reach other destinations

◊

□

▪

Inter-AS (inter-domain): routing among AS
Gateways perform inter-domain routing○

Forwarding table configured by both the intra and inter-AS routing algorithms

Intra-AS routing determine entries for destinations within AS▪

Inter-AS and intra-AS determine entries for external destinations▪

○

BGP (Border Gateway protocol)
Allows subnet to advertise its existence and the destinations it can reach to rest of
the Internet

▪

eBGP (external): obtain subnet reachability information from neighboring Ases
(usually edge routers)

▪

iBGP (internal): propagate reachability information to all AS-internal routers
(usually internal routers)

□

▪

BGP session: two BGP routers exchange BGP messages over semi-permanent TCP
connection

▪

BGP advertised route: prefix + attributes
Prefix: destination being advertised□
Two important attributes:

AS-PATH: list of AS through which prefix advertisement has passed

NEXT-HOP: indicates specific internal-AS router to next-hop AS

□

Policy-based routing
Gateway receiving route advertisement uses import policy to
accept/decline path

AS policy also determines whether to advertise path to other
neighboring AS

□

▪

○

•

 ELEC331 Page 37

□

□

BGP messages
OPEN: opens TCP connection to remote BGP peer

UPDATE: advertises new path

KEEPALIVE: keeps connection alive in absence of UPDATES, ACKs OPEN
request

NOTIFICATION: reports errors in previous message, close connection

□

Comparing intra-, inter-AS routing:
Policy

Inter-AS: admin wants control over how its traffic routed, who routes through its
network

○

Intra-AS: single admin, so policy less of an issue○

•

Scale
Hierarchical routing saves table size, reduced update traffic○

•

Performance:
Intra-AS: can focus on performance○

Inter-AS: policy dominates over performance○

•

Hot potato routing: choose local gateway that has least intra-domain cost, don't worry about inter-
domain cost

BGP route selection: router may learn about more than one route to destination AS, selects route
based on

Local preference value attribute: policy decision•
Shortest AS-PATH•
Closest NEXT-HOP router: hot potato routing•
Additional criteria•

Software defined networking(SDN):
Per-router control plane: individual routing algorithm components in each and every router
interact in the control plane to computer forwarding tables

Traffic engineering is difficult
Need to re-define link weights to update the routing▪

Cannot do load balancing▪

Cannot have different routes with the same destination.▪

○

•

 ELEC331 Page 38

Cannot have different routes with the same destination.▪

SDN: Remote controller computes, installs forwarding tables in routers
Generalized flow-based forwarding○

Control, data plane separation○

Control plane functions (loading balance, routing, access control, etc.) external to data-
plane switches

○

Programmable control applications (routing)○

•

Logically centralized control plane:
Easier network management○

Table-based forwarding allows programming routers
Centralized programming is easier (compute tables centrally and distribute)▪

Distributed programming is more difficult (compute tables as result of distributed
algorithm implemented in each and every router)

▪

○

Open implementation of control plane○

•

Data-plane switches
Fast, simple, commodity switches implementing generalized data-plane forwarding in
hardware

○

Flow table computed, installed under controller supervision○

API for table-based switch control○

Protocol for communicating with controller○

•

SDN controller (network OS):
Maintain network state information○

Interacts with network control application above via northbound API○

Interacts with network switches below via southbound API○

Implemented as distributed system for performance, scalability, fault-tolerance,
robustness

○

○

•

 ELEC331 Page 39

○

Network-control apps
Brains of control: implement control functions using lower-level services, API provided
by SDN controller

○

Unbundled: can be provided by 3rd party, distinct from vendor or SDN controller○

•

Open Flow protocol
Operates between controller, switch○

Use TCP to exchange messages○

Three classes of Open Flow messages
Controller to switch

Features: controller queries switch, switch replies□
Configure: controller queries/sets switch configuration parameters□
Modify-state: add, delete, modify flow entries in the open flow table□
Packet-out: controller can send the packet our of specific switch port□

▪

Asynchronous (switch to controller)
Packet-in: transfer packet to controller□
Flow-removed: flow table entry deleted at switch□
Port status: inform controller of a change on a port□

▪

Symmetric▪

Note: network operators don't program switches by creating/sending open flow
messages directly. Instead use higher-level abstraction at controller

▪

○

Distinct from Open Flow API
API used to specify generalized forwarding actions▪

○

•

example controllers
Open Daylight (ODL)

Service abstraction layer: interconnects internal, external applications and services▪

○

ONOS
Control apps separate from controller▪

Intent framework: high-level specification of service▪

Considerable emphasis on distributed core: service reliability, replication
performance scaling

▪

○

•

SDN challenges
Hardening the control plane: dependable, reliable, performance-scalable, secure
distributed system

○

Networks, protocols meeting mission-specific requirements○

Internet-scaling: beyond a single AS○

•

ICMP: internet control message protocol
Mostly used for error reporting or echo request/reply•
ICMP messages are carried in IP datagrams•
ICMP message: type, code plus first 8 bytes of IP datagram causing error•
Traceroute and ICMP•

 ELEC331 Page 40

Traceroute and ICMP
Source sends sets of UDP segments to destination

1st set has TTL=1, 2nd has TTL=2…▪

○

Datagram in nth set arrives to nth router
Router discards datagram and sends source ICMP message (type 11, code 0 TTL
expired)

▪

ICMP message possibly includes name of router and IP address▪

○

When ICMP arrives at source, record RTTs○

Stopping criteria:
UDP segment arrives at destination host▪

Destination returns ICMP message port unreachable (type3, code 3)▪

Source stops▪

○

•

Network management
Components

Managing server: application, typically with the network managers (human) in the loop○

Network management protocol: used by managing server to query, configure, manage
device. Used by devices to inform managing server of data, events

○

Managed device: equipment with manageable, configurable hardware, software
component

○

Data: device state, configuration data, operational data, device statistics○

•

Approaches:
CLI: operator issues direct to individual devices○

SNMP/MIB: operator queries/sets devices data (MIB) using Simple Network
Management Protocol (SNMP)

○

NETCONF/YANG:
More abstract, network-wide, holistic▪

Emphasis on multi-device configuration management▪

YANG: data modeling language▪

NETCONF: communicate YANG-compatible actions/data to/from/among remote
devices

▪

○

•

SNMP protocol

•

Message types
Get: manager-to-agent○

Set: manager-to-agent, set MIB value○

Response: agent-to-manager, value, response to request○

Trap: agent-to-manager, inform manager of exceptional event○

•

 ELEC331 Page 41

•

Management Information Base(MIB)
Managed device's operational (some configuration) data○

Gathered into device MIB module○

Structure of Management Information (SMI): data definition language ○

Usually using UDP○

•

NETCONF
Goal: actively manage/configure devices network-wide•
Operates between managing server and managed network devices

Actions: retrieve, set, modify, activate configurations○

Atomic-commit actions over multiple devices○

Query operational data and statistics○

Subscribe to notifications from devices○

•

Remote procedure call (RPC) paradigm
NETCONF protocol messages encoded in XML○

Exchanged over secure, reliable transport protocol○

•

YANG
Data modeling language used to specify structure, syntax, semantics of NETCONF
network management data

Built-in data types similar to SMI▪

○

XML document describing device, capabilities can be generated from YANG description○

Can express constraints among data that must be satisfied by a valid NETCONF
configuration

○

Ensure NETCONF configurations satisfy correctness, consistency constraints○

•

TCPs used in this chapter:
BGP•
YANG•
OPEN FLOW•

UDPs used:
MIB•
ICMP•

 ELEC331 Page 42

Link layer services
Basic: move a datagram from one node (host/router) to an adjacent node over a single
communication link

•

Framing, link access•
Reliable delivery between adjacent nodes (usually on wireless links)

TCP is end-to-end, certain link has high error rates, we want to know the error as soon as
possible

○

•

Error detection•
Error correction•
Flow control•
Half-duplex and full-duplex

Half-duplex: nodes at both ends of link can transmit but not at same time○

Links are full duplex A-to-C and C-to-A can happen at the same time.○

•

Implemented in:
Each and every host•
Network interface card (NIC) or on a chip

Ethernet, WiFi card or chip○

•

Attaches into host's system buses•
Combination of hardware, software, firmware•

Error detection:
Forward error detection (FEC): sender encodes the data using an error-correcting code (ECC)
prior to transmission. Additional information (redundancy) added by the code is used by the
receiver to detect errors and possibly recover the original data

EDC: error detection and correction bits (redundancy)○

D: data protected by error checking, may include header fields○

○

Error detection not 100% reliable
Protocol may miss some error▪

Larger EDC field yields better detection and correction▪

○

•

Parity check
Single bit parity: detect single bit errors

Even parity: set parity bit so there is an even number of 1s▪

○

Two-dimensional bit parity: detect and correct single bit errors

▪

○

•

Internet checksum•
Cyclic redundancy check (CRC)

More powerful error-detection coding○

•

Chapter 6
November 5, 2020 10:37 AM

 ELEC331 Page 43

○

We want

 ○

Multiple access links, protocols
Two types of links

Point-to-point
Point-to-point link between Ethernet switch, host▪

PPP for dial-up access▪

○

Broadcast (shared wire or medium)
Cabled Ethernet▪

Upstream HFC in cable-based access network▪

802.11 wireless LAN, 4G/satellite ▪

○

•

Protocols:
Single shared broadcast channel○

Two or more simultaneous transmissions by nodes:
Collision if node receives two or more signals at the same time▪

○

Ideal protocol for multiple access channel (MAC) of rate R bps
When one node wants to transmit, it can send at rate R▪

When M nodes want to transmit, each can send at average rate R/M▪

Fully decentralized
No special node to coordinate transmissions□
No synchronization of clocks, slots□

▪

Simple▪

○

Three broad classes
Channel partitioning

TDMA (time division multiple access)□
FDMA (frequency division multiple access)□

▪

Take turns
Similar to TDMA, but one can have longer time interval than others□

▪

Random access (common)
When node has packet to send, transmit at full channel data rate R, no
coordination among nodes

□

Two or more transmitting nodes: collision□
Random access MAC protocol specifies

How to detect collisions

How to recover from collisions

□

Examples: ALOHA, slotted ALOHA, CSMA, CSMA/CD (Ethernet),
CSMA/CA(WiFi)

□

▪

○

•

Slotted ALOHA
Assumptions

All frames are of the same size○

Time divided into equal size slots (time to transmit 1 frame)○

Nodes start to transmit only at the beginning of a slot○

Nodes are synchronized○

If 2 or more nodes transmit in the same slot, all nodes detect collision○

•

Operation:
When node obtains fresh frame, transmits in next slot

•

 ELEC331 Page 44

When node obtains fresh frame, transmits in next slot○

If collision: node transmits frame in each subsequent slot with probability p until success
The probability gives randomization▪

○

Pros
Simple○

Highly decentralized: only slots in nodes need to be in sync○

Single active node can continuously transmit at full rate of channel○

•

Cons:
Collisions and idle slots waste slots○

Nodes may be able to detect collision faster than transmitting packet○

Need synchronization○

•

Efficiency: long run fraction of successful slots
Max efficiency 1/e=0.37○

○

At best channel used for useful transmission 37% of time○

•

Pure ALOHA
Unslotted, simpler, no synchronization

When frame first arrives, transmit immediately○

•

Collision probability increases with no synchronization (frame sent at collides with other
frames sent in)

•

Max Efficiency: 18%•

•

CSMA: carrier sense multiple access
Simple CSMA: listen before transmit

If channel sensed idle: transmit entire frame○

If channel sensed busy: defer transmission○

Analogy: don't interrupt others○

•

Collisions: entire packet transmission time wasted
Propagation delay: two nodes may not hear each other's just started transmission○

Distance & propagation delay play role in determining collision probability○

•

CSMA/CD: CSMA with collision detection
Collisions detected within short time

Easy in wired LANs○

Difficult in wireless LANs: received signal strength overwhelmed by local transmission
strength

○

•

Colliding transmissions aborted, reducing channel wastage•
Collision handling

when a node performs collision detection, it ceases transmission as soon as it detects a
collision

○

Stop transmission at the bar

•

Analogy: polite conversationalist •
Algorithm:

NIC receives datagram from network layer, create frame○

If NIC senses channel:

•

 ELEC331 Page 45

If NIC senses channel:
Idle, start frame transmission▪

Busy, wait until idle, then transmit▪

○

If NIC transmits entire frame without collision, NIC is done with this frame○

If NIC detects another transmission while sending, abort and send jam signal○

After aborting, NIC enters binary (exponential) back off:
After mth collision, NIC chooses K at random from , ▪

wait for , return to step 2
More collisions means longer back off interval▪

○

Efficiency:

 =maximum propagation delay between 2 nodes in LAN○

 =time to transmit max-size frame○

Efficiency goes to 1 as goes to 0 or goes to infinity○

Better performance than ALOHA and simple, cheap, decentralized○

•

Channel partitioning MAC protocols:
Share channel efficiently and fairly at high load•

Inefficient at low load: delay in channel access,

 bandwidth allocated even if there is only 1

active node.

•

Random access MAC protocols:
Efficient at low load: single node can fully utilize channel•
High load: collision overhead•

Taking turns protocols:
Look for best of both high and low loads•
Polling from central site:

Master node invites other nodes to transmit in turn○

Typically used with dumb devices○

Problems:
Polling overhead▪

Latency▪

Single point of failure at master▪

○

•

Token passing
Control token passes from one node to next sequentially○

Token message○

Problems:
Token overhead▪

Latency▪

Single point of failure at token▪

○

•

Cable access network: FDM + TDM + random access
Multiple downstream (broadcast) FDM channel

Single CMTS (cable modem termination system) transmits into channels○

•

Multiple upstream channels
Multiple access: all users contend (random access) for certain upstream channel time
slots, others assigned TDM

○

•

DOCSIS (data over cable service interface specification)
FDM over upstream, downstream frequency channels○

TDM upstream, some slots assigned, some have contention
Downstream MAP frame: assigns upstream slots▪

Request for upstream slots transmitted random access in selected slots▪

○

•

MAC (LAN, physical, Ethernet) address:
Used locally to get frame from one interface to another physically-connected interface (same
subnet, in IP-addressing sense)

•

 ELEC331 Page 46

subnet, in IP-addressing sense)
48-bit MAC address default in NIC ROM, sometimes software settable•
Each interface on LAN

Unique 48-bit MAC address○

Locally unique 32-bit IP address○

•

MAC address allocation administered by IEEE•
Analogy:

MAC address: social security number○

IP address: postal address○

•

MAC flat address: portability
Can move interface from one LAN to another○

IP address not portable○

•

ARP(address resolution protocol)
Determine interface's MAC address, knowing its IP address•
ARP table: each IP node (host, router) on LAN has this table

IP/MAC address mappings for some LAN nodes: <IP address; MAC address; TTL>○

TTL: time after which address mapping will be forgotten (typically 20 min)○

•

A sends datagram to B in the same subnet, MAC address of B not in A's ARP table
A broadcasts ARP query, containing B's IP address

Destination MAC address: FF:FF:FF:FF:FF:FF▪

All nodes on LAN receive ARP query▪

○

B replies to A with ARP response, giving its MAC address
Only seen by B and A▪

○

A receives B's reply, adds B entry into its local ARP table○

•

Routing to another subnet: A sends a datagram to B via R
Assumes that

A knows B's IP address▪

A knows IP address of first hop router, R (from DHCP)▪

A knows R's MAC address (they are in the same subnet, just send an ARP
broadcast)

▪

○

A creates IP datagram with IP source A, destination B○

A creates link-layer frame containing A-to-B IP datagram
R's MAC address is frame's destination▪

○

Frame sent to R○

R receives the frame, datagram removed, passed up to IP○

R determines outgoing interface, passes datagram with IP source A, destination B to link
layer

○

R creates link-layer frame containing A-to-B IP datagram, with destination address being
B's MAC address

○

•

Ethernet:
Dominant wired LAN technology

First widely used○

Simpler, cheap○

Kept up with speed race○

Single chip, multiple speeds○

•

Bus: popular in 90s
All nodes in same collision domain○

○

•

Switched (star): used now
Active link-layer 2 switch in center○

Each spoke runs a separate protocol (nodes do not collide with each other)

•

 ELEC331 Page 47

Each spoke runs a separate protocol (nodes do not collide with each other)○

○

Frame structure:
Sending interface encapsulates IP datagram in Ethernet frame○

○

Preamble: 7 byte with 10101010 followed by one byte 10101011
Used to synchronize receiver, sender clock rates▪

○

Address: MAC addresses
If adapter receives frame with matching destination address, or with broadcast
address, it passes data in frame to network layer protocol

▪

Otherwise, adapter discards frame▪

○

Type: indicate upper layer protocol
Mostly IP▪

Used to demultiplex up at receiver▪

○

CRC: cyclic redundancy check at receiver
If error detected, the frame is dropped▪

○

Payload:
Ethernet MTU is 1,500 bytes

If IP datagram exceeds MTU, datagram has to be fragmented□
▪

Minimum size is 46 bytes
If less than 46 bytes, the data field has to be appended to fill out to 46 bytes□
Receiver uses the length field in the IP datagram to remove the appending□

▪

○

•

Ethernet is unreliable and connectionless
Unreliable: NIC doesn't send ACKs or NAKs, data in dropped frames recovered only if
initial sender uses higher layer rdt (TCP)

○

No handshaking between sender and receiver○

•

Ethernet's MAC protocol: unslotted CSMA/CD with binary back off•

•

Ethernet switch
Store, and selectively forward Ethernet frames to one-or-more outgoing links•
Transparent: hosts unaware of presence of switches•
Plug-and-play, self-learning

Switches do not need to be configured○

•

Multiple simultaneous transmissions•

 ELEC331 Page 48

Multiple simultaneous transmissions
Hosts have dedicated, direct connection to switch○

Switches buffer packets○

Ethernet protocol used on each incoming link
No collisions, full duplex▪

Each link is its own collision domain▪

○

Switching: A-to-A' and B-to-B' can transmit simultaneously, without collisions
But A-to-A' and C-to-A' cannot happen simultaneously▪

○

•

Each switch has a switch table
Entry: MAC address + interface to reach host + time stamp○

Looks like a routing table○

•

Switch learns which hosts can be reached through which interface
When frame received, switch learns location of sender○

Records sender/location pair in switch table○

Frame destination unknown: flooding send○

Frame destination known: selectively send on just one link○

•

Switches vs. routers
Both are store and forward:

Routers: network-layer device, examine network-layer headers▪

Switches: link-layer device, examine link-layer headers▪

○

Both have forwarding tables
Routers: compute tables using routing algorithms, IP addresses▪

Switches: learn forwarding table using flooding, learning, MAC addresses▪

○

•

Virtual LAN (VLAN): switches supporting VLAN capabilities can be configured to define multiple
virtual LANS over single physical LAN infrastructure

Motivation
To have one physical switch with multiple virtual switches○

Single broadcast domain:
Scaling: all layer-2 broadcast traffic (ARP, DHCP, unknown MAC) must cross entire
LAN

○

Efficiency, security, privacy issues○

○

Administrative issues
Physically attached to one switch but wants to remain logically attached to
another switch

○

○

•

Port-based VLANs
Switch ports grouped by switch management software so that single physical switch
operates as multiple virtual switches

○

Traffic isolation: frames to/from ports 1-8 can only reach ports 1-8
Can also define VLAN based on MAC addresses rather than switch port○

○

Dynamic membership: ports can be dynamically assigned among VLANs○

Forwarding between VLANs: done via routing as with separate switches○

•

VLANS spanning multiple switches•

 ELEC331 Page 49

○

Trunk port: carries frame between VLANS defined over multiple physical switches
Frames forwarded within VLAN between switches must carry VLAN ID info○

802.1q protocol adds/removes additional header fields for frames forwarded
between trunk ports

○

○

Multiprotocol label switching (MPLS)
Goal: high-speed IP forwarding among network of MPLS-capable routers, using fixed length
label (instead of shortest prefix matching)

Faster lookup using fixed length identifier○

Borrowing ideas from Virtual Circuit (VC) approach○

IP datagram still keeps IP address○

•

MPLS capable routers
Forward packets to outgoing interface based only on label value (don't inspect IP
address)

MPLS forwarding table distinct from IP forwarding tables○

○

Flexibility: MPLS forwarding decisions can differ from those of IP
Use destination and source addresses to route flows to same destination
differently (traffic engineering)

○

Re-route flows quickly if link fails: pre-computed backup paths○

○

•

MPLS versus IP paths
IP routing: path to destination determined by destination address alone○

MPLS routing: path to destination can be based on source and destination address
Generalized forwarding○

Fast reroute: precompute backup routes in case of link failure○

○

•

MPLS signaling
Modify OSPF, IS-IS link-state flooding protocols to carry info used by MPLS routing○

Entry MPLS router uses RSVP-TE signaling protocol to set up MPLS forwarding at
downstream routers

○

•

 ELEC331 Page 50

•

Datacenter networks
10's to 100's of thousands of hosts, often closely coupled, in close proximity•
Challenges:

Multiple applications, each serving massive numbers of clients○

Reliability○

Managing/balancing load, avoiding processing, networking, data bottlenecks○

•

Network elements
Border routers: connections outside datacenter○

Tier-1 switches: connecting to ~16 T-2 switches○

Tier-2 switches: connecting to ~16 TOR switches○

Top of Rack (TOR) switches: one per rack, 40-100Gbps Ethernet to blades○

Server racks: 20-40 server blades as hosts○

•

Rich interconnection among switches, racks:
Increased throughput between racks (multiple routing paths possible)○

Increased reliability via redundancy○

•

Load balancer: application-layer routing
Receives external client requests○

Directs workload within data center○

Returns results to external client (hiding data center internals from clients)○

•

Protocol innovations
Link layer:

RoCE: remote DMA (RDMA) over Converged Ethernet○

○

Transport layer
ECN (explicit congestion notification) used in transport-layer congestion control
(DCTCP, DCQCN)

○

Experimentation with hop-by-hop (backpressure) congestion control○

○

Routing, management
SDN widely used within/among organizations' datacenters○

Place related services, data as close as possible to minimize tier-2, tier-1
communicatioN

○

○

•

 ELEC331 Page 51

	Ch1 Introduction to Computer Networking
	Ch2 Application Layer
	Ch3 Transport Layer
	Ch4 Network Layer: Data Plane
	Ch5 Network Layer: Control Plane
	Ch6 The Link Layer and LANs

