
Introduction To Functional Analysis

This is mainly from MIT 18.102 Introduction To Functional Analysis (https://ocw.mit.edu/courses/
18-102-introduction-to-functional-analysis-spring-2021/)

1 Normed and Banach Spaces

1.1 Basic Banach Spaces

Definition: 1.1: Vector Space

V is a vector space over R or C or a field K if V has two operations:
• + : V × V → V , (v1, v2) → v1 + v2
• · : K× V → V , (α, v) → αv

Along with some axioms: commutativity, associativity, identity and inverse of addition. Identity of
multiplication and distributivity.

Example: Rn, Cn, C([0, 1]) = {f : [0, 1] → C : f continuous} are vector spaces.

Definition: 1.2: Dimension of Vector Spaces

A vector space V is finite dimensional if every linearly independent set is finite. i.e. ∀E ⊂ V s.t.

∀v1, ..., vN ∈ E,
N∑
i=1

aivi = 0 ⇒ a1 = · · · = aN = 0, then E is finite. V is infinite dimensional if V is

not finite dimensional.

Example: C([0, 1]) is infinite dimensional. E = {fn(x) = xn : n ∈ N ∪ {0}} is a linearly independent
infinite set.

Definition: 1.3: Norm

A norm on a vector space V is a function ∥ · ∥ : V → [0,∞) with the following properties:
1. Definiteness: ∥v∥ = 0 ⇔ v = 0
2. Homogeneity: ∥λv∥ = |λ|∥v∥ for all v ∈ V and λ ∈ K
3. Triangle Inequality: ∥v1 + v2∥ ≤ ∥v1∥+ ∥v2∥.

A semi-norm is a function ∥ · ∥ : V → [0,∞) that satisfies 2 and 3, but not necessarily 1.
A vector space V with a norm ∥ · ∥ is a normed space.
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Definition: 1.4: Metric

Let X be a set. d : X ×X → [0,∞) is a metric if
1. d(x, y) = 0 ⇔ x = y
2. ∀x, y ∈ X, d(x, y) = d(y, x)
3. ∀x, y, z ∈ X, d(x, y) ≤ d(x, z) + d(z, y)

Theorem: 1.1: Metric Induced by Norm

Let ∥ · ∥ be a norm on a vector space V . Then d(v, w) = ∥v − w∥ defines a metric on V called the
metric induced by the norm.

Proof. 1 in Definition 1.3 ⇒ 1 in Definition 1.4.
2: ∥v − w∥∥(−1)(w − v)∥ = | − 1|∥w − v∥ = ∥w − v∥
3 in Definition 1.3 ⇒ 3 in Definition 1.4.

Example: The Euclidean norm of Rn and Cn is given by ∥x∥2 =

(
n∑

i=1

|xi|2
)1/2

. We can also have

∥x∥∞ = max
i

|xi|. In general, for p ≥ 1, ∥x∥p =

(
n∑

i=1

|xi|p
)1/p

.

Example: Let X be a metric space. Define C∞(X) = {f : X → C : f continuous and bounded.}. C∞(X)
is a vector space. ∥u∥∞ = sup

x∈X
|u(x)| is a norm on C∞(X).

Proof. 1, 2 are easily satisfied.
For 3, let u, v ∈ C∞(X), then ∀x ∈ X, |u(x) + v(x)| ≤ |u(x)|+ |v(x)| ≤ ∥u∥∞ + ∥v∥∞.
∥u∥∞+ ∥v∥∞ is an upper bound for |u(x)+ v(x)|. Thus ∥u+ v∥∞ = sup |u(x)+ v(x)| ≤ ∥u∥∞+ ∥v∥∞.

Note that un → u in C∞(X) ⇔ ∥un − u∥ → 0 as n → ∞ ⇔ ∀ϵ > 0, ∃N ∈ N s.t. ∀n ≥ N , ∀x ∈ X,
|un(x)− u(x)| < ϵ ⇔ un → u uniformly on X. i.e. Convergence of functions in a continuous and bounded
space of functions C∞(X) is equivalent to uniform convergence of sequence of functions in X.

Definition: 1.5: lp Spaces

The lp space is the space of sequences lp = {{aj}∞j=1 : ∥a∥p <∞}, where lp-norm is defined by

∥a∥p =


(∑∞

j=1 |aj |p
)1/p

, 1 ≤ p <∞
sup1≤j<∞ |aj |, p = ∞

Example: {1
j }

∞
j=1 ∈ lp for all p > 1, but not in l1 (By p-series test).

Definition: 1.6: Banach Space

A normed space is a Banach space if it is complete w.r.t. the metric induced by the norm. i.e. All
Cauchy sequences converges.

Example: Rn and Cn are complete, thus Banach w.r.t. any of lp norms.
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Theorem: 1.2:

Let X be a metric space, then C∞(X) is Banach space.

Proof. We want to show that C∞(X) is complete, i.e. every Cauchy sequence {un} in C∞(X) converges
in C∞(X).

Firstly, we show that un → u exists and is bounded.
Let {un} be a Cauchy sequence in C∞(X). Then ∃N ∈ N s.t. ∀n,m ≥ N , ∥un − um∥∞ < 1 by definition
of Cauchy sequences and choosing ϵ = 1.
Also ∀n ≥ N0, ∥un∥∞ = ∥un − uN0 + uN0∥∞ ≤ ∥un − uN0∥∞ + ∥uN0∥∞ < 1 + ∥uN0∥∞.
Let B = ∥u1∥∞ + · · ·+ ∥uN0∥∞ + 1. Then ∥un∥∞ ≤ B for all n. ∥un∥∞ is bounded.

Since ∀x ∈ X, |un(x)− um(x)| ≤ sup |un(x)− um(x)| = ∥un − um∥∞, then ∀x ∈ X, {un(x)}∞n=1 is Cauchy
in C.
By Completeness of C, ∀x ∈ X, {un(x)}∞n=1 converges in C. Define u : X → C s.t. u(x) = lim

n→∞
un(x).

Then ∀x ∈ X, |u(x)| = lim
n→∞

|un(x)| ≤ B, Thus sup
x∈X

|u(x)| ≤ B, u is bounded.

Now we show ∥u− un∥ → 0 as n→ ∞.
Let ϵ > 0. Since {un} is Cauchy in C∞(X), ∃N ∈ N s.t. ∀n,m ≥ N , ∥un − um∥∞ < ϵ

2 .
Let x ∈ X, |un(x)−um(x)| ≤ ∥un−um∥∞ < ϵ

2 . Let m→ ∞, then ∀n ≥ N , |un(x)−u(x)| < ϵ
2 . Therefore,

∥un − u∥∞ < ϵ
2 < ϵ. Thus ∥un − u∥∞ → 0. un → u uniformly on X. u is continuous.

Thus u ∈ C∞(X). C∞(X) is complete and therefore a Banach space.

Example: ∀p ≥ 1, lp is a Banach space.

Example: C0 = {a ∈ l∞ : lim
j→∞

aj = 0} is a Banach space with ∥a∥∞ = sup
j

|aj |.

Definition: 1.7: Summable Sequence

Let {vn} ⊂ V be a sequence in V . The series
∑

n vn is summable if

{
m∑

n=1

vn

}∞

m=1

converges and∑
n vn is absolutely summable if

∑
n ∥vn∥ converges.

Theorem: 1.3:

If
∑

n vn is absolutely summable, then

{
m∑

n=1

vn

}∞

m=1

is Cauchy in V .

Proof. Same as in R.

Theorem: 1.4:

V is a Banach space ⇔ every absolutely summable series is summable.
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Proof. (⇒) Suppose V is a Banach space. Let vn be an absolute summable series.

By Theorem 1.3,

{
m∑

n=1

vn

}∞

m=1

is Cauchy in V . By Definition 1.6,

{
m∑

n=1

vn

}∞

m=1

converges, thus it is

summable.

(⇐) Suppose every absolutely summable series is summable. Let {vn}n be a Cauchy sequence in V .
We want to show that {vn} converges in V .
{vn} is Cauchy ⇒ ∀k ∈ N, ∃Nk ∈ N s.t. ∀n,m ≥ Nk, ∥vn − vm∥ < 2−k.
Define nk = N1 + · · ·+Nk. Then Nk ≤ n1 < n2 < · · · .
Thus ∀k ∈ N, ∥vnk+1

− vnk
∥ < 2−k,

∑
k(vnk+1

− vnk
) is absolutely summable and thus

∑
(vnk+1

− vnk
) is

summable.

⇒

{
m∑
k=1

(vnk+1
− vnk

)

}∞

m=1

converges in V . Thus

{
vm =

m−1∑
k=1

(vnk+1
− vnk

) + vn1

}∞

m=1

converges in V .

The subsequence {vnm} converges in V . Thus {vn}n converges in V by metric space theory.

Theorem: 1.5: Holder’s Inequality

Let n ∈ N, ak, bk ∈ R, 1 ≤ k ≤ n, if 1 < p <∞ and 1
p + 1

q = 1, then

n∑
k=1

|akbk| ≤

(
n∑

k=1

|ak|p
)1/p( n∑

k=1

|bk|q
)1/q

Theorem: 1.6: Minkowski’s Inequality

Let n ∈ N, ak, bk ∈ R, 1 ≤ k ≤ n, if 1 ≤ p <∞, then(
n∑

k=1

|ak + bk|p
)1/p

≤

(
n∑

k=1

|ak|p
)1/p( n∑

k=1

|bk|p
)1/p

1.2 Operators and Functionals

Definition: 1.8: Linear Operators

Let V,W be vector spaces, we say a map T : V → W is linear if ∀λ1, λ2 ∈ K, ∀v1, v2 ∈ V ,
T (λ1v1 + λ2v2) = λ1Tv1 + λ2Tv2. T is often called a linear operator.

Example: Let K : [0, 1] × [0, 1] → C be continuous functions. For f ∈ C([0, 1]), define Tf(x) =∫ 1

0
K(x, y)f(y)dy. Then Tf ∈ C([0, 1]) and ∀λ1, λ2 ∈ C, f1, f2 ∈ C([0, 1]), T (λ1f1+λ2f2) = λ1Tf1+λ2Tf2.

T is a linear operator. It is the inverse of differential operator.

Definition: 1.9: Continuous Operators

T : V → W is continuous on V if ∀v ∈ V , ∀{vn} with vn → v ⇒ Tvn → Tv, or equivalently, for all
open sets U ⊂W , T−1(U) = {v ∈ V : Tv ∈ U} is open in V .
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Theorem: 1.7: Bounded Linear Operator

A linear operator T : V →W is continuous if and only if ∃C > 0 s.t. ∀v ∈ V , ∥Tv∥W ≤ C∥v∥V . We
say T is a bounded linear operator.

Note: The image of T is not bounded unless T is the zero map, but bounded subsets of V are always
mapped to bounded subsets of W .

Proof. (⇐) Suppose ∥Tv∥ ≤ C∥v∥.
Let v ∈ V and suppose vn → v. Then ∥Tvn − Tv∥ = ∥T (vn − v)∥ ≤ C∥vn − v∥ → 0 as n→ ∞.
By squeeze theorem, ∥Tvn − Tv∥ → 0, T is continuous by the Definition 1.9 (1).

(⇒) Suppose T is continuous.
Let BW (0, 1) be the ball centered at 0 in W with radius 1. Then T−1(BW (0, 1)) = {v ∈ V : Tv ∈ BW (0, 1)}
is an open set in V by Definition 1.9 (2).
0 ∈ T−1(BW (0, 1)) since T is a linear map T0 = 0. Therefore, ∃r > 0 s.t. BV (0, r) ⊂ T−1(BW (0, 1)).
Let v ∈ V \ {0}. Then

∥∥∥ r
2∥v∥v

∥∥∥ = r
2 < r, r

2∥v∥v ∈ BV (0, r) and T
(

r
2∥v∥v

)
∈ BW (0, 1).∥∥∥T ( r

2∥v∥v
)∥∥∥ < 1 ⇒ ∥Tv∥ < 2

r∥v∥, so we can choose C = 2
r , s.t. ∀v ∈ V , ∥Tv∥W ≤ C∥v∥V .

Example: T : C([0, 1]) → C([0, 1]) given by Tf(x) =
∫ 1

0
K(x, y)f(y)dy, where K(x, y) ∈ C([0, 1]× [0, 1])

is a bounded linear operator.

Proof. Let f ∈ C([0, 1]) and ∥f∥∞ = sup
x∈[0,1]

|f(x)|.

Then for all x ∈ [0, 1],

|Tf(x)| =
∣∣∣∣∫ 1

0
K(x, y)f(y)dy

∣∣∣∣
≤
∫ 1

0
|K(x, y)||f(y)|dy

≤
∫ 1

0
∥K∥∞∥f∥∞dy = ∥K∥∞∥f∥∞

Thus ∥Tf∥∞ ≤ ∥K∥∞∥f∥∞

Definition: 1.10: Operator Norm

Let V,W be normed spaces. Define B(V,W ) to be the space of all bounded linear operators. B(V,W )
is a vector space. Define the operator norm

∥T∥ = sup
∥v∥=1

∥Tv∥

Note: T ∈ B(V,W ) ⇒ ∃C > 0 s.t. ∀v ∈ V , ∥Tv∥ ≤ C∥v∥.

Theorem: 1.8:

The operator norm is a norm, so B(V,W ) is a normed space.
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Proof. Definiteness: Suppose Tv = 0 ∀∥v∥ = 1. Then ∀v ∈ V \ {0}, 0 = T
(

v
∥v∥

)
= 1

∥v∥Tv. Then Tv = 0

for all v ∈ V . T is the zero operator.

Homogeneity: ∥λT∥ = sup
∥v∥=1

∥λTv∥ = |λ| sup
∥v∥=1

∥Tv∥ = |λ|∥T∥.

Triangle inequality: If S, T ∈ B(V,W ), v ∈ V , ∥v∥ = 1.

∥(S+T )(v)∥ By Linearity
= ∥Sv+Tv∥

Triangle inequality of norm
≤ ∥Sv∥+∥Tv∥

Definition of Operator Norm
≤ ∥S∥+∥T∥

Remark 1. If v ̸= 0, then
∥∥∥T ( v

∥v∥

)∥∥∥ ≤ ∥T∥ ⇒ ∥Tv∥ ≤ ∥T∥∥v∥.

Example: For Tf(x) =
∫ 1

0
K(x, y)f(y)dy, ∥T∥ ≤ ∥K∥∞.

Theorem: 1.9:

If W is a Banach space, then B(V,W ) is a Banach space.

Proof. Suppose {Tn}n ⊂ B(V,W ) s.t. C =
∑

n ∥Tn∥ <∞. We want to show that
∑

n Tn is summable.

Let v ∈ V , m ∈ N.
m∑

n=1

∥Tnv∥ ≤
m∑

n=1

∥Tn∥∥v∥ ≤ ∥v∥
∑

∥Tn∥ = C∥v∥

Thus

{
m∑

n=1

∥Tnv∥

}∞

m=1

is bounded,
∑

n ∥Tnv∥ converges.

Thus
∑

n Tnv is absolutely summable in W . Since W is a Banach space, by Theorem 1.4,
∑

n Tnv is
summable in W .

Define T : V →W s.t. Tv = lim
m→∞

m∑
n=1

Tnv. We want to show that T ∈ B(V,W ).

Linearity: ∀λ1, λ2 ∈ K, v1, v2 ∈ V ,

T (λ1v1 + λ2v2) = lim
m→∞

m∑
n=1

Tn(λ1v1 + λ2v2) = λ1 lim
m→∞

m∑
n=1

Tnv1 + λ2 lim
m→∞

m∑
n=1

Tnv2 = λ1Tv1 + λ2Tv2

T ∈ B(V,W ) (Bounded): Let v ∈ V , ∥v∥ = 1.

∥Tv∥ =

∥∥∥∥∥ lim
m→∞

m∑
n=1

Tnv

∥∥∥∥∥ = lim
m→∞

∥∥∥∥∥
m∑

n=1

Tnv

∥∥∥∥∥ ≤ lim
m→∞

m∑
n=1

∥Tnv∥ ≤ lim
m→∞

m∑
n=1

∥Tn∥∥v∥ =
∑
n

∥Tn∥ = C

Thus ∥Tv∥ ≤ C for all v ∈ V , ∥v∥ = 1. ∥Tv∥ ≤ C∥v∥ ∀v ∈ V . Therefore, T ∈ B(V,W ).

Now we show that
m∑

n=1

Tn → T .

Let v ∈ V , ∥v∥ = 1.∥∥∥∥∥Tv −
m∑

n=1

Tnv

∥∥∥∥∥ =

∥∥∥∥∥ lim
m′→∞

m′∑
n=1

Tnv −
m∑

n=1

Tnv

∥∥∥∥∥ =

∥∥∥∥∥ lim
m′→∞

m′∑
n=m+1

Tnv

∥∥∥∥∥
≤ lim

m′→∞

∥∥∥∥∥
m′∑

n=m+1

Tnv

∥∥∥∥∥ ≤ lim
m′→∞

m′∑
n=m+1

∥Tnv∥ ≤ lim
m′→∞

m′∑
n=m+1

∥Tn∥ =
∞∑

n=m+1

∥Tn∥
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Thus,

∥∥∥∥∥T −
m∑

n=1

Tn

∥∥∥∥∥ ≤
∞∑

n=m+1

∥Tn∥ → 0 as m→ ∞. By squeeze theorem,

∥∥∥∥∥T −
m∑

n=1

Tn

∥∥∥∥∥→ 0.

Thus
m∑

n=1

Tn → T , and B(V,W ) is a Banach space.

Definition: 1.11: Dual Space and Functionals

If V is a normed space, V ′ = B(V,K) is the dual space of V . Since K = R or C is complete, V ′ is a
Banach space. An element in V ′ is called a functional.

Example: ∀1 ≤ p < ∞, The dual of lp space is (lp)′ = lp
′ where 1

p′ +
1
p = 1. (l1)′ = l∞, (l2)′ = l2, but

(l∞)′ ̸= l1.

1.3 Quotient Spaces

Definition: 1.12: Subspace

W ⊂ V is a subspace if ∀λ1, λ2 ∈ K, w1, w2 ∈W , λ1w1 + λ2w2 ∈W

Theorem: 1.10: Banach Subspace

A subspace W of a Banach space V is a Banach space if and only if W ⊂ V is closed.

Definition: 1.13: Quotient Space

Let W ⊂ V be a subspace. Define equivalence relation on V by v ∼ v′ ⇔ v − v′ ∈ W . Define
[v] = {v′ ∈ V : v′ ∼ v} to be the equivalence class of v. Usually, we write [v] as v +W .
The quotient space is V/W = {[v] : v ∈ V } the collection of equivalence classes. V/W is a vector
space with (v1 +W ) + (v2 +W ) = (v1 + v2) +W and λ(v +W ) = λv +W .
Note: W = 0 +W = w +W for all w +W .

Theorem: 1.11:

Let ∥·∥ be a semi-norm on V . Then E = {v ∈ V : ∥v∥ = 0} is a subspace of V . Let ∥v+E∥V/E = ∥v∥
∀v + E ∈ V/E. Then ∥v + E∥V/E defines a norm on V/E.

Proof. ∀v1, v2 ∈ E and λ1, λ2 ∈ K, ∥λ1v1 + λ2v2∥ ≤ |λ1|∥v1∥ + |λ2|∥v2∥ by homogeneity and triangle
inequality of semi-norm.
Since ∥v1∥ = ∥v2∥ = 0, ∥λ1v1 + λ2v2∥ = 0, E is a subspace.

We now check that ∥v +E∥V/E = ∥v∥ is well defined. Suppose v +E = v′ +E, i.e. ∃e ∈ E s.t. v = v′ + e.
Then ∥v∥ = ∥v′ + e∥ ≤ ∥v′∥+ ∥e∥ = ∥v′∥. Similarly, ∥v′∥ ≤ ∥v∥. Thus ∥v∥ = ∥v′∥.

Norm: Homogeneity and triangle inequality comes from the semi-norm. Definiteness comes that everything
evaluates to 0 is in the same equivalence class in the quotient space.
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Theorem: 1.12: Baire Category Theorem

If M is a complete metric space and {Cn} is a collection of closed subsets of M s.t. M =
⋂
n∈N

Cn,

then at least one Cn containts an open ball B(x, r) = {y ∈M : d(x, y) < r}.

Proof. Assume that ∃ a collection of closed subsets {Cn} s.t. M =
⋂
n∈N

Cn and none of Cn contains an open

ball.

Since M contains an open ball, but C1 does not, then M ̸= C1, ∃p1 ∈M \ C1.
Since C1 is closed, M \ C1 is open. ∃ϵ1 > 0 s.t. B(p1, ϵ1) ∩ C1 = ∅.
Now, since C2 does not contain an open balls, B(p1,

ϵ
3) ̸⊂ C2, ∃p2 ∈ B(p1,

ϵ
3) s.t. p2 /∈ C2.

Since C2 is closed, ∃0 < ϵ2 <
ϵ1
3 s.t. B(p2, ϵ2) ∩ C2 = ∅.

By induction, we can find a sequence of points {pk}k in M and ϵk ∈ (0, ϵ1) s.t. ∀k, pk ∈ B(pk−1,
ϵk−1

3 ),
B(pk, ϵk) ∩ Ck = ∅.

Now, we show that {pk} is Cauchy.
∀k ∈ N, ∀l ∈ N,

d(pk, pk+l) ≤ d(pk, pk+1) + · · ·+ d(pk+l−1, pk+1)

<
ϵk
3

+ · · ·+ ϵk+l−1

3

<
ϵ1
3k

+ · · ·+ ϵ1
3k+l

< ϵ1

∞∑
m=0

3−m

=
ϵ

2
3−k+1

Thus, {pk} is Cauchy.

Since M is complete, ∃p ∈M s.t. pk → p.
Now ∀k ∈ N,

d(pk+1, pk+1+l) < ϵk+1

(
1

3
+ · · ·+ 1

3k

)
< ϵk+1

∞∑
m=0

3−m = ϵk+1
3

2

Take limit as l → ∞, d(pk+1, p) ≤ 3
2ϵk+1 <

1
2ϵk Thus d(pk, p) ≤ d(pk, pk+1) + d(pk+1, p) <

1
3ϵk +

1
2ϵk < ϵk.

Thus p ∈ B(pk, ϵk), p /∈ Ck for any k. p /∈
⋃
n

Cn =M . Contradiction.

Theorem: 1.13: Uniform Boundedness Theorem

Let B be a Banach space. {Tn} be a sequence in B(B, V ) (a sequence of bounded linear operators).
If ∀b ∈ B, sup

n
∥Tnb∥ <∞, then sup

n
∥Tn∥ <∞.

Proof. Define Ck = {b ∈ B : ∥b∥ ≤ 1 and supn ∥Tnb∥ ≤ k} for k ∈ N.
If {bn} ⊂ Ck and bn → b, then ∥b∥ = lim

n→∞
∥bn∥ ≤ 1 and ∀m ∈ N, ∥Tmb∥ = lim

n→∞
∥Tmbn∥ ≤ k. Thus b ∈ Ck,

Ck is closed.

Since ∀b ∈ B, sup
n

∥Tnb∥ < ∞, we can always find some integer k to bound the sup, {b ∈ B : ∥b∥ ≤ 1} =⋃
k

Ck is a complete metric space as union of closed sets.
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By Theorem 1.12, there exists Ck that contains an open ball B(b0, δ0).
Let b ∈ B(0, δ0), i.e. ∥b∥ < δ0. Then b0 + b ∈ B(b0, δ0), sup

n
∥Tn(b0 + b)∥ ≤ K.

sup
n

∥Tnb∥ = sup
n

∥Tn(b0 + b)− Tnb0∥ ≤ sup
n

∥Tnb0∥+ sup
n

∥Tn(b0 + b)∥ ≤ k + k = 2k

Let n ∈ N, ∥b∥ = 1. Then
∥∥∥Tn ( δ0

2 b
)∥∥∥ ≤ 2k. ∥Tnb∥ ≤ 4k

δ0
. Thus ∥Tn∥ ≤ 4k

δ0
and sup

n
∥Tn∥ ≤ 4k

δ0
<∞.

1.4 Open Mapping and Closed Graph Theorem

Theorem: 1.14: Open Mapping Theorem

If B1, B2 are Banach spaces and T ∈ B(B1, B2) is a surjective bounded linear operator, then T is an
open map i.e. ∀ open subset U ⊂ B1, T (U) is open in B2.

Proof. Firstly, we prove that if B(0, 1) = {b ∈ B1, ∥b∥ < 1}, then T (B(0, 1)) contains an open ball in B2

centered at 0.
Since T is surjective, B2 =

⋃
n∈N

T (B(0, n)).

By Theorem 1.12, ∃n0 ∈ N s.t. T (B(0, n0)) contains an open ball. By linearity, n0T (B(0, 1)) contains an
open ball. Since n0 is just a constant rescaling, T (B(0, 1)) contains an open ball.
i.e. ∃v0 ∈ B2 and r > 0 s.t. B(v0, 4r) ⊂ T (B(0, 1)).
Then ∃v1 = Tu1 ∈ T (B(0, 1)) for some u1 ∈ B(0, 1) s.t. ∥v0 − v1∥ < 2r. Then B(v1, 2r) ⊂ B(v0, 4r) ⊂
T (B(0, 1))

Let ∥v∥ < r, then 1
2(2v + v1) ∈ 1

2T (B(0, 1)) = T (B(0, 12)). Then,

v =
1

2
(2v + v1)−

1

2
v1 =

1

2
(2v + v1)−

1

2
Tu1

= −T u1
2

+
1

2
(2v + v1) ∈ −T u1

2
+ T

(
B

(
0,

1

2

))
= T

(
−u1

2
+B

(
0,

1

2

))
⊂ T (B(0, 1))

Thus B(0, r) ⊂ T (B(0, 1)). Rescale by 2−n, B(0, 2−nr) = 2−nB(0, r) ⊂ 2−nT (B(0, 1)) = T (B(0, 2−n)) for
any n ∈ N.

Now we show that B(0, r2) ⊂ T (B(0, 1)).
Let ∥v∥ < r

2 . Then v ∈ T (B(0, 12)) ⇒ ∃b1 ∈ B(0, 12) s.t. ∥v − Tb1∥ < r
4 . Thus v − Tb1 ∈ T (B(0, 14)).

Then ∃b2 ∈ B(0, 14) s.t. ∥v − Tb1 − Tb2∥ < r
8 . Continuing the iteration, we get a sequence {bk} in B1 s.t.

∥bk∥ < 2−k, ∥v −
n∑

k=1

Tbk∥ < 2−n−1r. The series
∑
bk is absolutely summable in B1.

Since B1 is a Banach space, by Theorem 1.4,
∑
bk is summable, ∃b ∈ B1 s.t. b =

∑
bk and ∥b∥ =

lim
n→∞

∥
n∑

k=1

bk∥ ≤ lim
n→∞

n∑
k=1

∥bk∥ =

∞∑
k=1

∥bk∥ <
∞∑
k=1

2−k = 1

Moreover, since T is continuous, Tb = lim
n→∞

T

n∑
k=1

bk = lim
n→∞

n∑
k=1

Tbk = v. Since ∥b∥ < 1, we have v = Tb ∈

T (B(0, 1)).
Thus B(0, r2) ⊂ T (B(0, 1)) (as by definition, ∥v∥ < r

2 , v ∈ B(0, r2)). i.e. T (B(0, 1)) contains an open ball
in B2 centered at 0.

We have shown the specific case. Now, suppose U ⊂ B1 is open and b2 = Tb1 ∈ T (U). Then ∃ϵ > 0 s.t.
b1 +B(0, ϵ) = B(b1, ϵ) ⊂ U . Let δ > 0

B(b2, ϵδ) = b2 + ϵB(0, δ) ⊂ b2 + ϵT (B(0, 1)) = Tb1 + ϵT (B(0, 1)) = T (b1 +B(0, ϵ)) ⊂ T (U)
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This shows the general case.

Corollary 1. If B1, B2 are Banach spaces, T ∈ B(B1, B2) is a bijective bounded linear operator, then
T−1 ∈ B(B2, B1).

Proof. T−1 is continuous if and only if ∀ open U ⊂ B, (T−1)−1(U) = T (U) is open by Theorem 1.14.

Theorem: 1.15:

Let B1, B2 be Banach spaces, then B1 ×B2 with norm ∥(b1, b2)∥ = ∥b1∥+ ∥b2∥ is a Banach space.

Theorem: 1.16: Closed Graph Theorem

If B1, B2 are Banach spaces, T : B1 → B2 is a linear operator, then T ∈ B(B1, B2) ⇔ Γ(T ) =
{(u, Tu) : u ∈ B1} ⊂ B1 ×B2 is closed.

Proof. (⇒) Suppose T ∈ B(B1, B2). Let {(un, Tun)} be a sequence in Γ(T ) s.t. un → u and Tun → v.
Then by continuity, v = lim

n→∞
Tun = T ( lim

n→∞
un) = Tu. Thus (u, v) = (u, Tu) ∈ Γ(T ), Γ(T ) is closed.

(⇐) Define π1 : Γ(T ) → B1 s.t. π1(u, Tu) = u, π2 : Γ(T ) → B2 s.t. π2(u, Tu) = Tu.

Γ(T )

B1 B2

π1S π2

T

Since Γ(T ) ⊂ B1 ×B2 is a closed subspace of the Banach space B1 ×B2, then Γ(T ) is a Banach space.
Since ∥π1(u, v)∥ = ∥u∥ ≤ ∥u∥+ ∥v∥ = ∥(u, v)∥, π1 ∈ B(Γ(T ), B1), similarly, π2 ∈ B(Γ(T ), B2).
Also π1 : Γ(T ) → B1 is bijective, thus S = π−1

1 : B1 → Γ(T ) is a bounded linear operator.
Then T = π2◦S : B1 → B2 is a bounded linear operator as the composition of bounded linear operators.

Remark 2. Theorem 1.14 and Theorem 1.16 are logically equivalent.

1.5 Hahn-Banach Theorem

Given a general non-trivial normed space, the dual space V ′ = B(V,K) = {0} is not necessarily true. The
Hahn-Banach Theorem tells us that the dual space contains many elements.

Definition: 1.14: Partial Order

A partial order on a set E is a relation ≤ on E s.t.
1. ∀e ∈ E, e ≤ e
2. ∀e, f ∈ E, e ≤ f and f ≤ e ⇒ e = f
3. ∀e, f, g ∈ E, e ≤ f and f ≤ g ⇒ e ≤ g

An upper bound of a set D ⊂ E is an element e ∈ E s.t. ∀d ∈ D, d ≤ e. A maximal element of E is
an element e ∈ E s.t. if f ∈ E and e ≤ f , then e = f . Similar definition for minimal element.

Definition: 1.15: Chain

If (E,≤) is a partially ordered set, a chain in E is a set C s.t. ∀e, f ∈ C, either e ≤ f or f ≤ e

10



Lemma: 1.1: Zorn’s Lemma

If every chain in a non-empty partially ordered set E has an upper bound, then E has a maximal
element

Definition: 1.16: Hamel Basis

A Hamel basis H ⊂ V (V a vector space) is a linearly independent set s.t. every element of V is a
finite linear combination of elements of H.

Example:
{[

1
0

]
,

[
0
1

]}
is a Hamel basis for R2.

Theorem: 1.17:

If V is a vector space, then V has a Hamel basis.

Proof. Let E = {linearly independent subsets of V }.
Define a partial order ≤ on E by inclusion, i.e. for e, e′ ⊂ V , e ≤ e′ ⇔ e ⊂ e′.
Let C be a chain in E. Define c =

⋃
e∈C

e. Then ∀e ∈ C, e ≤ c, c is an upper bound for C.

Let v1, ..., vN ∈ c. ∃e1, ..., eN ∈ C s.t. ∀j, vj ∈ ej .
Since C is a chain, ∃J s.t. ∀j = 1, ..., N , ej ≤ eJ (equivalently, ej ⊂ eJ). Therefore, v1, ..., vN ∈ eJ .
v1, ..., vN are linearly independent, since eJ ∈ E. Thus C ∈ E.
By Lemma 1.1, E has a maximal element H.
Assume H does not span V , then ∃v ∈ V s.t. v cannot be written as a finite linear combination of elements
in H.
H ∪ {v} is a linearly independent subset of V . Then H < H ∪ {v}, H is not maximal. Contradiction.
Thus H spans V and by definition, H is a Hamel basis.

Lemma: 1.2:

Let V be a normed space, M ⊂ V be a subspace and u :M → C be linear s.t. |u(t)| ≤ C∥t∥, ∀t ∈M .
Let x /∈ M . Then ∃u′ : M ′ → C which is linear on M ′ = M + Cx = {t + ax : t ∈ M,a ∈ C} s.t.
u′|M = u and ∀t′ ∈M ′, |u′(t′)| ≤ C∥t′∥

Proof. If t′ ∈M ′ =M + Cx, then there exists unique t ∈M and a ∈ C s.t. t′ = t+ ax.
If t+ ax = t̃+ ãx, then (a− ã)x = t̃− t ∈M , a = ã, t = t̃. Otherwise, (a− ã)x ̸= 0, and (a− ã)x /∈M .
Once we choose λ ∈ C, u′(t+ ax) = u(t) + aλ is well-defined on M ′ and u′ :M ′ → C is linear.

WLOG, assume C = 1. We want to choose λ ∈ C s.t. ∀t ∈M , a ∈ C, |u(t) + aλ| ≤ ∥t+ ax∥, which always
holds for a = 0.
Consider the case a ̸= 0. Then we can divide both sides by |a|.
|u( t

−a)− λ| ≤ ∥ t
−a − x∥ ∀t ∈M , which is equivalent to |u(t)− λ| ≤ ∥t− x∥.

We firstly show that ∃α ∈ R s.t. |w(t)− α| ≤ ∥t− x∥, ∀t ∈M where w(t) = Re(u(t)) = w(t)+w(t)
2

Note ∀t ∈M , |w(t)| = |Re(u(t))| ≤ |u(t)| ≤ ∥t∥
Then ∀t1, t2 ∈M , w(t1)− w(t2) = w(t1 − t2) ≤ |w(t1 − t2)| ≤ ∥t1 − t2∥ ≤ ∥t1 − x∥+ ∥t2 − x∥
Thus, w(t1)− ∥t1 − x∥ ≤ w(t2) + ∥t2 − x∥, ∀t1, t2 ∈M . Therefore, sup

t∈M
[w(t)− ∥t− x∥] ≤ w(t2) + ∥t2 − x∥,

∀t2 ∈M .
Then sup

t∈M
[w(t)− ∥t− x∥] ≤ inf

t∈M
w(t) + ∥t− x∥. We choose α between them.
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Then ∀t ∈M , w(t)−∥t−x∥ ≤ α ≤ w(t)+∥t−x∥ ⇒ −∥t−x∥ ≤ α−w(t) ≤ ∥t−x∥ ⇒ |w(t)−α| ≤ ∥t−x∥.
We can repeat this for imagnary part by replacing x with ix. Then it defines u′ on all M + Cx.

Theorem: 1.18: Hahn-Banach Theorem

Let V be a normed space, M ⊂ V a subspace, and u :M → C a linear map s.t. ∀t ∈M , |u(t)| ≤ C∥t∥
for all t ∈M (bounded lienar functional), then there exists a continuous extension U ∈ V ′ = B(V,C)
s.t. U |M = u and ∥U(t)∥ ≤ C∥t∥ for all t ∈ V .

Proof. Strategy: Firstly, apply Lemma 1.1 for all continuous extensions of u to get a maximal element U .
Then use Lemma 1.2 to show that U is defined on all of V .

Let E = {(v,N)} where N is a subspace of V and v is a continuous extension of u to N .
Define ≤ on E by (v1, N1) ≤ (v2, N2) if N1 ⊂ N2 and v2|N1 = v1. Then ≤ is a partial order.
Let C = {(vi, Ni), i ∈ I} be a chain in E. Then ∀i1, i2 ∈ I, either (vi1 , Ni1) ≤ (vi2 , Ni2) or vice versa.

Let N =
⋃
i∈I

Ni. We show that N is a subspace.

Let v1, v2 ∈ N and a1, a2 ∈ C, ∃i1, i2 ∈ I s.t. v1 ∈ Ni1 and v2 ∈ Ni2 .
Then since C is a chain, WLOG we assume Ni1 ⊂ Ni2 . Then v1, v2 ∈ Ni2 . a1v1 + a2v2 ∈ Ni2 ⊂ N , N is a
subspace.
Define v : N → C, v(t) = vi(t) if t ∈ Ni.
Well-defined: suppose t ∈ Ni1 ∩Ni2 , WLOG assume (vi1 , Ni1) ≤ (vi2 , Ni2)
Since vi2 extend vi1 , vi2 |Ni1

= vi1 , vi2(t) = vi1(t), v is well defined.

Similarly, we can show that v is linear and is an extension of any vi. Thus ∀i ∈ I, (vi, Ni) ≤ (v,N), i.e.
(v,N) is an upper bound of C.

By Lemma 1.1, E has a maximal element (U,N). We want to show that N = V .
Assume N ̸= V . Let x /∈ N , by Lemma 1.2, there exists a continuous extension of U to N + Cx and
(v,N + Cx) ∈ E.
Then (U,N) < (v,N + Cx), (U,N) is not maximal. Contradiction. Thus N = V .

Theorem: 1.19:

If V is a normed space, then ∀v ∈ V \ {0}, ∃f ∈ V ′ s.t. ∥f∥ = 1 and f(v) = ∥v∥.

Proof. Define u : Cv → C by u(λv) = λ∥v∥. Then |u(t)| ≤ ∥t∥, ∀t ∈ Cv and u(v) = ∥v∥.
By Theorem 1.18, ∃f ∈ V ′ extending u s.t. ∀t ∈ V , |f(t)| ≤ ∥t∥. Then f(v) = u(v) = ∥v∥.
Since |f(t)| ≤ ∥t∥, ∀t ∈ V , ∥f∥ ≤ 1. But 1 = f

(
v

∥v∥

)
≤ ∥f∥. Thus ∥f∥ = 1.

1.6 Double Dual

Definition: 1.17: Double Dual

The double dual of V is V ′′ = (V ′)′ (dual of the dual)

Example: Let v ∈ V . Define Tv : V ′ → C by Tv(v′) = v′(v), where v′ is a functional in V ′ and v is a fixed
vector in V . Then Tv ∈ V ′′.
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Proof. Tv is linear, since v is fixed and v′ is a bounded linear functional.
Tv is bounded, since |Tv(v′)| = |v′(v)| ≤ ∥v′∥∥v∥.
Thus Tv ∈ (V ′)′ = V ′′ and ∥Tv∥ ≤ ∥v∥.

Definition: 1.18: Isometry

If V,W are normed space, then T ∈ B(V,W ) is isometric if ∀v ∈ V , ∥Tv∥ = ∥v∥.

Theorem: 1.20:

Let v ∈ V . Define Tv : V ′ → C s.t. Tv(v′) = v′(v). Then the map T : V ′ → V ′′ s.t. T (v) = Tv is
isometric.

Proof. We have shown that T (v) = Tv is a bounded linear operator T ∈ B(V, V ′′) and ∥Tv∥ ≤ ∥v∥ in the
previous example.
Now, we show that ∀v ∈ V , ∥Tv∥ = ∥v∥.
If v = 0, it is trivial that ∥T0∥ = ∥0∥.
If v ∈ V \ {0}, then by Theorem 1.19, ∃f ∈ V ′ st. ∥f∥ = 1 and f(v) = ∥v∥.
Then ∥v∥ = |f(v)| = ∥Tv(f)∥ ≤ ∥Tv∥∥f∥ = ∥Tv∥. Thus ∥Tv∥ = ∥v∥.

Definition: 1.19: Reflexive Banach Space

A Banach space is reflexive if V = V ′′ in the sense that v 7→ Tv is onto.

Example: For 1 < p < ∞, lp is reflexive. (l1)′ is not reflexive, since (l1)′ = l∞, but (l∞)′ ̸= l1. c0 the
sequences converging to zero is not reflexive, (c0)′ = l1, but (l1)′ = l∞ ̸= c0.
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2 Lebesgue Measure and Integrals

Why do we need Lebesgue measure and Lebesgue integrals? Compared with Riemann integrals, Lebesgue
integration has more and better limiting theorems. Consider the space of Riemann integrable functions on
[0, 1]:

L1
R([0, 1]) = {f : [0, 1] → C : f is Riemann integrable on [0, 1]}

We can define ∥f∥1 =
∫ 1
0 |f(x)|dx for f ∈ L1

R([0, 1]) as a semi-norm. However, even if we quotient out
the ∥f∥1 = 0 subspace to get a norm, L1

R([0, 1]) is still not Banach. The completion of L1
R([0, 1]) is the

Lebesgue integrable functions.

Definition: 2.1: Indicator Function

1E(x) =

{
1, x ∈ E

0, x /∈ E

How should we integrate 1E(x)? If E = [a, b], then
∫
1E(x)dx = l([a, b]). For more general E,

∫
1E(x)dx =

m(E) where m(E) is the measure (length) of E.

We want to define measure of subsets of R with the following properties:

1. m(E) is well-defined ∀E ⊂ R

2. If I is an interval, m(I) = l(I), regardless of its topology (open/close intervals)

3. If {En} is a countable collection of disjoint sets, then m

(⋃
n

En

)
=
∑
n

m(En)

4. m is translation invariant: If E ⊂ R, x ∈ R, then m(x+ E) = m({x+ y : y ∈ E}) = m(E).

However, such a function m : P(R) → [0,∞) does not exist. We drop the first assumption, and still
satisfying 2, 3 and 4, which gives the set of Lebesgue measurable sets.

Notation: If I ⊂ R is an interval, then l(I) denotes its length.

2.1 Measures

Definition: 2.2: Outer Measure

For A ⊂ R, define the outer measure of A as

m∗(A) = inf

{∑
n

l(In) : {In} a countable collection of open intervals s.t. A ⊂
⋃
n

In

}

Example: m∗({0}) = 0

Proof. Let ϵ > 0. Then {0} ⊂ (− ϵ
2 ,

ϵ
2). m

∗({0}) ≤ l(− ϵ
2 ,

ϵ
2) = ϵ. Thus m∗({0}) = 0.

Theorem: 2.1:

If A ⊂ R is countable, then m∗(A) = 0.
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Proof. If A is countable, then A = {an : n ∈ N} can be enumerated.
Let ϵ > 0. We show that m∗(A) ≤ ϵ.
For each n ∈ N, let In = (an − ϵ

2n+1 , an + ϵ
2n+1 ).

an ∈ In for each n, thus A ⊂ ∪nIn.

Then m∗(A) ≤
∞∑
n=1

l(In) =
∞∑
n=1

ϵ

2n
= ϵ. Thus m∗(A) = 0.

Example: m∗(Q) = 0

Theorem: 2.2:

If A ⊂ B, then m∗(A) ≤ m∗(B).

Proof. Any covering of B should also cover A. Infimum over covering of A should be smaller.

Theorem: 2.3:

Let {An} be a countable collection of subsets of R. Then m∗

(⋃
n

An

)
≤
∑
n

m∗(An).

Proof. If ∃n s.t. m ∗ (An) = ∞ or
∑
m ∗ (An) = ∞, then the inequality is true.

Suppose ∀n m∗(An) <∞ and
∑
m ∗ (An) <∞.

Let ϵ > 0. For each n, let {Ink}k∈N be a collection of open intervals s.t. An ⊂
⋃
k∈N

Ink and
∞∑
k=1

l(Ink) <

m∗(An) +
ϵ

2n
.

Then
⋃
n∈N

An ⊂
⋃

n,k∈N
Ink.

Thus, by Theorem 2.2,

m∗

(⋃
n

An

)
≤
∑
n,k

l(Ink) =
∑
n

∑
k

l(Ink) <
∑
n

m∗(An) +
∑
n

ϵ

2n
=
∑
n

m∗(An) + ϵ

Let ϵ→ 0, we get m∗

(⋃
n

An

)
≤
∑
n

m∗(An).

Theorem: 2.4:

If I ⊂ R is an interval, then m∗(I) = l(I).

Proof. Suppose I = [a, b]. Then ∀ϵ > 0, I ⊂ (a− ϵ, b+ ϵ), m∗(I) ≤ l(a− ϵ, b+ ϵ) = b−a+2ϵ, m∗(I) ≤ b−a.
Now, we need to show that b− a ≤ m∗(I). Let {In}n be a collection of open intervals s.t. [a, b] ⊂ ∪In.

Since [a, b] is compact by Heine Borel Theorem, then ∃{Jk}Nk=1 ⊂ {In} s.t. [a, b] ⊂
N⋃
k=1

Jk (Any cover of

compact sets have finite subcover).
Since a ∈ ∪N

k=1Jk, ∃k1 s.t. a ∈ Jk1 . By rearranging the intervals, we can assume k1 = 1. i.e. a ∈ J1 =
(a1, b1).
If b1 > b, then we are done. Otherwise b1 ≤ b, then b1 ∈ [a, b]. ∃k2 s.t. b1 ∈ Jk2 . By rearranging, assume
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k2 = 2, b1 ∈ J2 = (a2, b2).
We continue until bk > b. Thus ∃K, 1 ≤ K ≤ N s.t. ∀k = 1, ...,K − 1, bk ≤ b and ak+1 < bk < bk+1, and
b < bK . Then,

∑
n

l(In) ≥
N∑
k=1

l(Jk) ≤
K∑
k=1

l(Jk)

= (bK − aK) + (bK−1 − aK−1) + · · ·+ (b1 − a1)

= bK + (bK−1 − aK) + (bK−2 − aK−1) + · · ·+ (b1 − a2)− a1

≥ bk − a1 ≥ b− a

Thus m∗(I) ≥ b− a. Therefore, m∗(I) = b− a.

If I is any finite interval, [a, b], (a, b], [a, b), (a, b), then ∀ϵ > 0, [a+ ϵ, b− ϵ] ⊂ I ⊂ [a− ϵ, b+ ϵ].
m ∗ ([a+ ϵ, b− ϵ]) ≤ m∗(I) ≤ m∗([a− ϵ, b+ ϵ]), so b− a− 2ϵ ≤ m∗(I) ≤ b− a+ 2ϵ.
Let ϵ→ 0, b− a ≤ m∗(I) ≤ b− a. Therefore, m∗(I) = b− a.
If I = R, (−∞, a), (a,∞), (−∞, a], [a,∞), then m∗(I) = ∞

Theorem: 2.5:

∀A ⊂ R and ϵ > 0, there exists an open set O s.t. A ⊂ O and m∗(A) ≤ m∗(O) ≤ m∗(A) + ϵ

Proof. It is clear if m∗(A) = ∞, so we suppose m∗(A) <∞.
Let {In}n be a collection of open intervals s.t. A ⊂

⋃
n

In and
∑
n

l(In) ≤ m∗(A) + ϵ.

Take O =
⋃
n

In, O is open. A ⊂ O and m∗(O) = m∗

(⋃
n

In

)
≤
∑
n

m∗(In) =
∑
n

l(In) ≤ m∗(A) + ϵ.

Definition: 2.3: Measurable Sets

A set E ⊂ R is Lebesgue measurable if ∀A ⊂ R, m∗(A) = m∗(A ∩ E) +m∗(A ∩ EC).

Remark 3. Since ∀A,E, A = (A ∩ E) ∪ (A ∩ EC), m∗(A) ≤ m∗(A ∩ E) + m∗(A ∩ EC) always hold by
Theorem 2.3. Thus E is measurable if ∀A ⊂ R, m∗(A ∩ E) +m∗(A ∩ EC) ≤ m∗(A).

Theorem: 2.6:

∅, R are measurable. E ⊂ R is measurable ⇔ EC ⊂ R is measurable.

Theorem: 2.7:

If m∗(E) = 0 (E has zero outer measure), then E is measurable.

Proof. Let A ⊂ R. Then A ∩ E ⊂ E, m∗(A ∩ E) ≤ m∗(E) = 0 ⇒ m∗(A ∩ E) = 0. Thus m∗(A ∩ E) +
m∗(A ∩ EC) = m∗(A ∩ EC) ≤ m∗(A).

Theorem: 2.8:

If E1, E2 are measurable, then E1 ∪ E2 is measurable.
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Proof. Let A ⊂ R. Since E2 is measurable, then m∗(A ∩EC
1 ) = m∗(A ∩EC

1 ∩E2) +m∗(A ∩EC
1 ∩EC

2 ) by
Definition 2.3, setting A = A ∩ EC

1 , E = E2.
Then A ∩ (E1 ∪ E2) = (A ∩ E1) ∪ (A ∩ E2) = (A ∩ E1) ∪ (A ∩ E2 ∩ EC

1 ) (because A ∩ E1 ∩ E2 is included
in the first set).
Then m∗(A ∩ (E1 ∪E2)) ≤ m∗(A ∩E1) +m∗(A ∩E2 ∩EC

1 )
E1 is measurable

= m∗(A)−m∗(A ∩E1) +m∗(A ∩
E2 ∩ EC

1 ) = m∗(A)−m∗(A ∩ (E1 ∪ E2)
C)

Rearranging the terms, we get m∗(A ∩ (E1 ∪ E2)) +m∗(A ∩ (E1 ∪ E2)
C) ≤ m∗(A)

Theorem: 2.9:

If E1, ..., En are measurable, then
n⋃

k=1

Ek is measurable.

Proof. We prove by induction. n = 1 is trivial.

IH: Suppose
n⋃

k=1

Ek holds for n = m.

When n = m + 1. Let E1, ..., Em+1 be measurable. Then
m+1⋃
k=1

Ek =
m⋃
k=1

Ek ∪ Em+1 is measurable as the

union of two measurable sets by Theorem 2.8.

2.1.1 Sigma Algebra

Definition: 2.4: Sigma Alegebra

A non-empty collection of sets A ⊂ P(R) is an algebra if:
1. E ∈ A⇒ EC ∈ A

2. E1, ..., En ∈ A⇒
n⋃

k=1

Ek ∈ A

An algebra A is a σ-algebra if also

3. if {En}∞n=1 is a countable collection of elements of A, then
∞⋃
n=1

En ∈ A

Remark 4. By De Morgan’s law, E1, ..., En ∈ A ⇒
n⋂

k=1

Ek =

(
n⋃

k=1

EC
k

)C

∈ A. Thus if E ∈ A, then

∅ = E ∩ EC ∈ A, and R = ∅C ∈ A.

Similarly, if A is a σ-algebra, then {En}n ⊂ A⇒
⋂
n

En ∈ A.

Example: A = {∅,R}, A = P(R), A = {E ⊂ R : E or EC is countable} are σ-algebra

Proof. For the third one, E is countable, EC is uncountable, but (EC)C is then countable.
Suppose {En} ⊂ A. If ∀n, En is countable, then ∪nEn is countable, ∪nEn ∈ A.
If ∃N0 s.t. EC

N0
is countable, then (∪En)

C = ∩EC
n ⊂ EC

N0
, (∪En)

C is countable. Thus ∪En ∈ A.
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Theorem: 2.10: Borel Measure

Let Σ = {A : A is a sigma algebra cotaining all subsets of R}. (e.g. P(R) ∈ Σ) Define B =
⋂
A∈Σ

A ⊂

P(R). Then B is the smallest σ-algebra containing all subsets of R. This is the Borel Measure.

Proof. Suppose E ∈ B. Then ∀A ∈ Σ, E ∈ A, and thus EC ∈ A, EC ∈
⋂
A∈Σ

A = B. Therefore B is closed

under complement.
Similarly, we can show that it is closed under countable union: those sets in the countable union must be
in every A ∈ Σ, and then we can apply closure under countable union within each A.

Lemma: 2.1:

Let A be an algebra, {En}n be a collection of elements of A. Then ∃{Fn}n a collection of elements
of A that are disjoint s.t.

⋃
n

En =
⋃
n

Fn. (Thus we only need to check 3 for disjoint collections {En}

for 3 for σ-alg)

Proof. Let Gn =

n⋃
k=1

Ek. Then G1 ⊂ G2 ⊂ · · · , and
⋃
n

En =
⋃
n

Gn.

Take F1 = G1 and Fn+1 = Gn+1 \ Gn for all n ≥ 1. Then
n⋃

k=1

Fk =

n⋃
k=1

Gn. And
⋃
k

Ek =
⋃
k

Fk for

countable unions.

Theorem: 2.11: Additivity of Lebesgue Measure

Let A ⊂ R, E1, ..., En be disjoint measurable sets. Then m∗

(
A ∩

(
n⋃

k=1

Ek

))
=

n∑
k=1

m∗(A ∩ Ek).

Proof. By induction, n = 1 is trivially true.

IH: Suppose m∗

(
A ∩

(
n⋃

k=1

Ek

))
=

n∑
k=1

m∗(A ∩ Ek) is true for n = m.

IS: When n = m + 1. Let E1, ..., Em+1 be measurable disjoint sets. Let A ⊂ R. Since Ek ∩ Em+1 = ∅ for

all k = 1, ...,m. A ∩

(
m+1⋃
k=1

Ek

)
∩ Em+1 = A ∩ Em+1, and A ∩

(
m+1⋃
k=1

Ek

)
∩ EC

m+1 = A ∩

(
m+1⋃
k=1

Ek

)
.

Since Em+1 is measurable, by Definition 2.3,

m∗(A ∩ (∪m+1
k=1 Ek)) = m∗(A ∩ (∪m+1

k=1 Ek) ∩ Em+1) +m∗(A ∩ (∪m+1
k=1 Ek) ∩ EC

m+1)

= m∗(A ∩ Em+1) +m∗(A ∩ (∪m
k=1Ek))

= m∗(A ∩ Em+1) +
m∑
k=1

m∗(A ∩ Ek)By IH

=

m+1∑
k=1

m∗(A ∩ Ek)
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Theorem: 2.12:

The collection M of measurable sets is a σ-algebra.

Proof. We have shown that M is an algebra. By Lemma 2.1, we just need to show M is closed under

countable disjoint unions. Let {En} be a collection of disjoint measurable sets. Let A ⊂ R, E =
∞⋃
n=1

En.

We want to show that m∗(A ∩ EC) +m∗(A ∩ E) ≤ m∗(A).
Let N ∈ N. Since M is an algebra, ∪N

n=1En ∈ M.

m∗(A) = m∗(A ∩ (∪N
n=1En)) +m∗(A ∩ (∪N

n=1En)
C)

≥ m∗(A ∩ (∪N
n=1En)) +m∗(A ∩ EC)

=

N∑
n=1

m∗(A ∩ En) +m∗(A ∩ EC)

Let N → ∞, m∗(A) ≥
∞∑
n=1

m∗(A ∩ En) +m∗(A ∩ EC) ≥ m∗(A ∩ ∪nEn) +m∗(A ∩ EC) = m∗(A ∩ E) +

m∗(A ∩ EC)

Theorem: 2.13:

∀a ∈ R, (a,∞) is measurable.

Proof. Let A ⊂ R, A1 = A∩ (a,∞), A2 = A∩ (−∞, a]. We want to show that m∗(A1)+m∗(A2) ≤ m∗(A).
If m∗(A) = ∞, then done. Suppose m∗(A) <∞
Let ϵ > 0, {In}n be a collection of open intervals s.t.

∑
n

l(In) ≤ m∗(A) + ϵ.

Define Jn = In ∩ (a,∞), Kn = In ∩ (−∞, a]. Then each Jn and Kn is either an interval or an empty set.
Then A1 ⊂ ∪nJn, A2 ⊂ ∪nKn and l(In) = l(Jn) + l(Kn),

m∗(A1) +m∗(A2) ≤
∑
n

m∗(Jn) +
∑
n

m∗(Kn) =
∑
n

l(Jn) + l(Kn) =
∑
n

(In) ≤ m∗(A) + ϵ

Let ϵ→ 0, m∗(A1) +m∗(A2) ≤ m(A).

Theorem: 2.14:

Every open set is measurable, and thus B ⊂ M

Proof. For all b ∈ R, (−∞, b) =

∞⋃
n=1

(
−∞, b− 1

n

]
=

∞⋃
n=1

(
b− 1

n
,∞
)C

∈ M, because
(
b− 1

n ,∞
)

is mea-

surable. Complements are measurable by measurable by Definition 2.4 and countable unions of measurable
sets are measurable.
Thus any (a, b) = (−∞, b) ∩ (a,∞) is measurable because σ-alg is closed under intersections.
Finally every open subset of R is a countable union of open intervals. Thus all open sets are measurable.

19



2.1.2 Lebesgue Measure

Definition: 2.5: Lebesgue Measure

If E ∈ M is measurable, then the Lebesgue measure of E is m(E) = m∗(E).

Theorem: 2.15:

If A,B ∈M and A ⊂ B, thenm(A) ≤ m(B). Every interval is Lebesgue measurable andm(l) = I(l).

Proof. These properties are inherited from outer measures Definition 2.2. For closed intervals, [a, b] =
(b,∞)C ∩ (−∞, a)C and (b,∞)C and (−∞, a)C are measurable.

Theorem: 2.16:

Suppose {En} is a countable collection of disjoint measurable sets. Then m

(⋃
n

En

)
=
∑
n

m(En).

Proof. Since En are measurable, ∪nEn ∈ M by Theorem 2.12,

Thus m

(⋃
n

En

)
Definition 2.5

= m∗

(⋃
n

En

)
Theorem 2.3

≤
∑
n

m∗(En) =
∑
n

m(En).

We now show that
∑
n

m(En) ≤ m

(⋃
n

En

)
.

Let N ∈ N, m

(
N⋃

n=1

En

)
= m∗

(
R ∩

(
N⋃

n=1

En

))
=

N∑
n=1

m∗(R ∩ En) =

N∑
n=1

m(En).

Thus,
N∑

n=1

m(En) = m

(
N⋃

n=1

En

)
≤ m(∪nEn).

Let N → ∞,
∑
n

m(En) ≤ m(∪nEn). Thus m

(⋃
n

En

)
=
∑
n

m(En).

Theorem: 2.17: Translation Invariance

If E ∈ M and x ∈ R, then E + x = {y + x : y ∈ E} is measurable and m(E) = m(E + x).

Theorem: 2.18: Continuity of Lebesgue Measure

Suppose {Ek}k is a collection of measurable sets s.t. E1 ⊂ E2 ⊂ · · · . Then m

( ∞⋃
k=1

Ek

)
=

lim
n→∞

m

(
N⋃
k=1

m(En)

)

Proof. Let F1 = E1, Fk+1 = Ek+1 \ Ek for k ≥ 1. Then Fk+1 = Ek+1 ∩ EC
k ∈ M. Then {Fk} is a disjoint

collection of measurable sets.
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Also, ∀n ∈ N,
n⋃

k=1

Fk = En and
∞⋃
k=1

Fk =

∞⋃
k=1

Ek.

Then m

( ∞⋃
k=1

Ek

)
= m

( ∞⋃
k=1

Fk

)
Theorem 2.16

=
∞∑
k=1

m(Fk) = lim
n→∞

n∑
k=1

m(Fk)
By construction

= lim
n→∞

m(En)

2.2 Measurable Functions

We want to define
∫ b

a
f = lim

n∑
i=1

yi−1l(f
−1[yi−1, yi]). If f is a general function, f−1[yi−1, yi] need not be

an interval.

Definition: 2.6: Extended Real Numbers

We define the extended real numbers [−∞,∞] = R ∪ {±∞} s.t. x ± ∞ = ±∞, ∀x ∈ R and
0(±∞) = 0, x(±∞) = ∞, ∀x ∈ R \ {0}.

Definition: 2.7: Measurable Functions

Let E ⊂ R be measurable, f : E → [−∞,∞] is Lebesgue measurable if ∀α ∈ R, f−1((α,∞]) ∈ M is
measurable.

Theorem: 2.19:

Let E ⊂ R be measurable, f : E → [−∞,∞]. Then, the follwoing are equivalent:
1. ∀α ∈ R, f−1((α,∞]) ∈ M.
2. ∀α ∈ R, f−1([α,∞]) ∈ M.
3. ∀α ∈ R, f−1([−∞, α)) ∈ M.
4. ∀α ∈ R, f−1([−∞, α]) ∈ M.

Proof. (1 ⇒ 2) Suppose ∀α ∈ R, f−1((α,∞]) ∈ M. Then ∀α ∈ R, [a,∞] =
⋂
n

(
α− 1

n
,∞
]
. f−1([α,∞]) =⋂

n

f−1

((
α− 1

n
,∞
])

is measurable as countable intersection of measurable sets.

(2 ⇒ 1) Suppose ∀α ∈ R, f−1([α,∞]) ∈ M. Then ∀α ∈ R, (a,∞] =
⋃
n

[
α+

1

n
,∞
]
, f−1((α,∞]) =⋃

n

f−1

([
α+

1

n
,∞
])

is measurable.

2 ⇔ 3, because [−∞, α) = ([α,∞])C . 1 ⇔ 4, because [−∞, α] = ((α,∞])C .

Theorem: 2.20:

If E ⊂ R is measurable and f : E → R is a measurable function, then ∀F ∈ B (Borel σ-alg), f−1(F )
is measurable.

Proof. f is measurable, then ∀a < b, f−1((a, b)) = f−1([−∞, b) ∩ (a,∞]) = f−1([−∞, b)) ∩ f−1((a,∞]) is
measurable. Thus ∀a < b, f−1(a, b) is measurable. f−1(U) is therefore measurable for all open U ⊂ R as
countable union of open intervals.
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Theorem: 2.21:

If f : E → R is measurable, then f−1({∞}) and f−1({−∞}) are measurable.

Proof. f−1({∞}) =
⋂
n

f−1((n,∞]) is measurable. Similarly, f−1({−∞}) =
⋂
n

f−1([−∞,−n)) is measur-

able.

Theorem: 2.22:

If f : R → R is continuous, then f is measurable.

Proof. ∀α ∈ R, f−1((α,∞]) = f−1((α,∞)) is an open set as pre-image of an open set. Thus measurable.

Theorem: 2.23:

Let E ⊂ R, F ⊂ R be measurable. Define χF (x) =

{
1, x ∈ F

0, x /∈ F
. Then χF : E → R is measurable.

Proof. Let α ∈ R, χ−1
F ((α,∞]) =


∅, α ≥ 1

E ∩ F, 0 ≤ α < 1

E,α < 0

is measurable.

Theorem: 2.24: Algebraic Operations Measurability

Suppose E ⊂ R is measurable, f, g : E → R are measurable and c ∈ R. Then cf, f + g, fg : E → R
are measurable.

Proof. 1. If c = 0, then cf = 0 is continuous, thus measurable. If c > 0, let α ∈ R, cf(x) > α⇔ f(x) >
α
c . (cf)−1((α,∞]) = f−1((α/c,∞]) is measurable, same for c < 0

2. Let α ∈ R. f(x) + g(x) > α ⇔ f(x) > α − g(x) ⇔ ∃r ∈ Q s..t f(x) > r > α − g(x) (Q is
dense in R). i.e. f(x) > r and g(x) > α − r. Thus x ∈ f−1((r,∞]) ∩ g−1((α − r,∞]). Then
(f + g)−1((α,∞]) =

⋃
r∈Q

(
f−1((r,∞]) ∩ g−1((α− r,∞])

)
is measurable

3. We show that f2 is measurable. Let α ∈ R. If α < 0, then (f2)−1((α,∞]) = E is measurable.
If α ≥ 0, then f2(x) > α ⇔ f(x) >

√
α or f(x) < −

√
α. (f2)−1((α,∞]) = f−1((

√
α,∞]) ∪

f−1([−∞,−
√
α)) is measurable.

Then fg = 1
4((f + g)2 − (f − g)2) is measurable.
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Theorem: 2.25:

If E ⊂ R is measurable, fn : E → [−∞,∞] is measurable for all n, then the following functions are
measurable

1. g1(x) = sup
n
fn(x)

2. g2(x) = inf
n
fn(x)

3. g3(x) = lim sup
n

fn(x) = lim
n→∞

sup
k≥n

fn(x) = inf
n→∞

sup
k≥n

fn(x)

4. g4(x) = lim inf
n

fn(x) = lim
n→∞

inf
k≥n

fn = sup
n→∞

inf
k≥n

fn

Proof. 1. x ∈ g−1
1 ((α,∞]) ⇔ supn fn(x) > α ⇔ there exists n s.t. fn(x) > α, i.e. x ∈ f−1

n ((α,∞]),
g−1
1 ((α,∞]) =

⋃
n

f−1
n ((α,∞]) is measurable

2. g−1
2 ([α,∞]) =

⋂
n

f−1
n ([α,∞]) is measurable

g3 is infimum of sequence of functions defined as supremum of fn, thus measurable. Same for g4.

Theorem: 2.26:

If E ⊂ R is measurable, fn : E → [−∞,∞] is measurable for all n, and lim
n→∞

fn(x) = f(x) ∀x ∈ E,
then f is measurable.

Proof. If lim
n→∞

fn(x) = f(x) ∀x ∈ E, then f(x) = lim sup
n→∞

fn(x) = lim inf
n→∞

fn(x). By Theorem 2.25, both are

measurable.

Remark 5. If fn : [a, b] → R is Riemann integrable for all n, and fn → f , then f need not be Riemann
integrable.

Example: Let Q ∩ [0, 1] = {r1, r2, ...}. fn(x) =

{
1, x ∈ {r1, ..., rn}
0, else

. fn(x) is Riemann integrable for all

finite n. ∀x ∈ [0, 1], fn(x) → χQ(x), which is not Riemann integrable.

Definition: 2.8: Almost Everywhere

A statement P (x) holds almost everywhere on E (a.e. on E) if m({x ∈ E : P (x) does not hold}) = 0

Theorem: 2.27:

If f, g : E → [−∞,∞], f is measurable and f = g a.e. on E, then g is measurable.

Proof. Let N = {x ∈ E : f(x) ̸= g(x)}. Then N ∈ M and m(N) = 0 by Definition 2.8.
Let α ∈ R, Nα = {x ∈ N : g(x) > α} ⊂ N , so m∗(Nα) = 0, and Nα ∈ M.
Then g−1((α,∞]) = (f−1((α,∞]) ∩NC) ∪Nα ∈ M.

Definition: 2.9: Complex Measurable Functions

Let E ⊂ R be measurable, f : E → C is measurable if Re(f) : E → R and Im(f) : E → R are
measurable.
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Theorem: 2.28: Properties of Complex Measurable Functions

If f, g : E → C are measurable and α ∈ C, then αf , f + g, fg, f̄ , |f | are measurable.

Theorem: 2.29:

If fn : E → C is measurable ∀n and ∀x ∈ E, lim
n→∞

fn(x) = f(x), then f is measurable.

2.2.1 Simple Functions

Definition: 2.10: Simple Functions

If E ⊂ R is measurable, a measurable function φ : E → C is a simple function if φ(E) = {a1, ..., an}
(range is finite).

Remark 6. If φ : E → C is a simple function, φ(E) = {a1, ..., an}, then ∀i, Ai = φ−1({ai}) is measurable

and ∀i ̸= j, Ai ∩Aj = ∅,
n⋃

i=1

Ai = E, ∀x ∈ E, φ(x) =
n∑

i=1

aiχAi(x).

Theorem: 2.30: Properties of Simple Functions

Scalar multiplications, linear combinations and products of simple functions are simple functions.

Theorem: 2.31:

If f : E → [0,∞] is measurable, then ∃ sequence of simple functions {φn} s.t.
1. ∀x ∈ E, 0 ≤ φ0(x) ≤ φ1(x) ≤ · · · ≤ f(x)
2. ∀x ∈ E, lim

n→∞
φn(x) = f(x)

3. ∀B ≥ 0, φn → f uniformly on {x ∈ E : f(x) ≤ B}

Proof. For n = 0, 1, 2, ..., − ≤ k ≤ 22n − 1, define Ek
n = {x ∈ E : k2−n < f(x) ≤ (k + 1)2−n} =

f−1((k2−n, (k + 1)2−n]), and Fn = f−1((2n,∞]), φn =

22n−1∑
k=0

k2−nχEk
n
+ 2nχFn .

e.g. φ1 = 0χf−1((0, 1
2
]) +

1
2χf−1(( 1

2
,1]) + χf−1((1, 3

2
]) +

3
2χf−1(( 3

2
,2]) + 2χf−1((2,∞])

By definition, 0 ≤ φn(x) ≤ f(x). If x ∈ Ek
n, then k2−n < f(x) ≤ (k + 1)2−n, φn(x) = k2−n < f(x). If

x ∈ Fn, then f(x) > 2n = φn(x).
For 1, suppose x ∈ Ek

n. Then k2−n < f(x) ≤ (k + 1)2n, (2k)2−n−1 < f(x) ≤ (2k + 2)2−n−1, so x ∈
E2k

n+1 ∪ E
2k+1
n+1 .

If x ∈ E2k
n+1, then φn(x) = k2−n = (2k)2−n−1 = φn+1(x)

If x ∈ E2k+1
n+1 , then φn(x) = k2−n = (2k)2−n−1 < (2k + 1)2−n−1 = φn+1(x)

Similarly, if x ∈ Fn, φn(x) ≤ φn+1(x).

Since E =

[
2m−1⋃
k=0

Ek
n

]
∪ Fn, then ∀x ∈ E, φn(x) ≤ φn+1(x). Thus 1 is proved.

For 2 and 3, {y ∈ E : f(y) ≤ 2n} =

22n−1⋃
k=0

Ek
n. Suppose x ∈ Ek

n, then k2−n < f(x) ≤ (k + 1)2−n.

Thus 0 ≤ f(x)− φn(x) = f(x)− k2−n ≤ (k + 1)2−n − k2−n = 2−n. Then 2 and 3 follow.
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Definition: 2.11:

If f : E → [−∞,∞], we define f+(x) = max(f(x), 0) and f− = max(−f(x), 0). Then f = f+ − f−

and |f | = f+ + f−.

Theorem: 2.32:

Let E ⊂ R be measurable, f : E → C be measurable. Then there exists a sequence of functions {ϕn}
s.t.

1. ∀x ∈ E, 0 ≤ |φ0(x)| ≤ |φ1(x)| ≤ · · · ≤ |f(x)|
2. ∀x ∈ E, lim

n→∞
φn(x) = f(x)

3. ∀B ≥ 0, φn → f uniformly on {x ∈ E : f(x) ≤ B}.

2.3 Lebesgue Integrals

2.3.1 Lebesgue Integral of a Non-negative Function

Definition: 2.12:

If E ⊂ R is measurable, define L+(E) = {f : E → [0,∞] : f is measurable}.

Definition: 2.13: Lebesgue Integral of Simple Functions

Let φ ∈ L+(E) be a simple function, φ =

n∑
j=1

ajχAj , where ∀j, Aj ⊂ E, ∀i ̸= j, Ai ∩ Aj = ∅ and

n⋃
j=1

Aj = E. The Lebesgue integral of φ is
∫
E
φ =

m∑
j=1

ajm(Aj) ∈ [0,∞].

Theorem: 2.33: Properties of Lebesgue Integrals (Simple Functions)

Let φ,ψ ∈ L+(E) be simple functions. Then

1. If c ≥ 0, then
∫
E
cφ = c

∫
E
φ

2.
∫
E
(φ+ ψ) =

∫
E
φ+

∫
E
ψ

3. If φ ≤ ψ, then
∫
E
φ ≤

∫
E
ψ

4. If F ⊂ E is measurable, then
∫
F
φ =

∫
E
φχF ≤

∫
E
φ

Proof. 1. By Definition 2.10 and 2.13, cφ =

n∑
j=1

(caj)χAj .

Then
∫
E
cφ =

n∑
j=1

cajm(Aj) = c

n∑
j=1

ajm(Aj) = c

∫
E
φ

2. Write φ =
n∑

j=1

ajχAj , ψ =
m∑
k=1

bkχBk
. Then E =

n⋃
j=1

Aj =
m⋃
k=1

Bk.
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∀j, Aj =

m⋃
k=1

Aj ∩ Bk, ∀k, Bk =

n⋃
j=1

Bk ∩ Aj , and these unions are disjoint. Then by Definition 2.5

(Additivity),∫
E
φ+

∫
E
ψ =

n∑
j=1

ajm(Aj)+

m∑
k=1

bkm(Bk) =
∑
j,k

ajm(Aj∩Bk)+
∑
k,j

bkm(Bk∩Aj) =
∑
j,k

(aj+bk)m(Aj∩Bk)

Since φ+ ψ =
∑
j,k

(aj + bk)χAj∩Bk
, then

∫
E
(φ+ ψ) =

∑
j,k

(aj + bk)m(Aj ∩Bk) =

∫
E
ϕ+

∫
E
ψ

3. ∀x ∈ E, φ(x) ≤ ψ(x) ⇔ aj ≤ bk whereever Aj ∩Bk ̸= ∅. Thus∫
E
φ =

n∑
j=1

ajm(Aj) =
∑
j,k

ajm(Aj ∩Bk) ≤
∑
j,k

bkm(Aj ∩Bk) =

m∑
k=1

bkm(Bk) =

∫
E
ψ

Definition: 2.14: Lebesgue Integral of Non-negative Functions

If f ∈ L+(E), define∫
E
f = sup{

∫
E
φ : φ ∈ L+(E) simple functionsφ ≤ f}

Theorem: 2.34:

If E ⊂ R s.t. m(E) = 0, then ∀f ∈ L+(E),
∫
E
f = 0. (Similar to Riemann integral over a single

point)

Proof. Let φ ∈ L+(E) be simple. φ =
n∑

j=1

ajχAj with φ ≤ f . Then Aj ⊂ E,∀j ⇒ m(Aj) = 0, ∀j ⇒∫
E
φ =

n∑
j=1

ajm(Aj) = 0. Thus,
∫
E
φ = sup{0} = 0

Theorem: 2.35: Properties of Lebesgue Integrals (Non-negative Functions)

If φ ∈ L+(E) is simple, then the two definitions (2.13 and 2.14) agree.

If f, g ∈ L+(E), c ∈ [0,∞) and f ≤ g on E, then
∫
E
cf = c

∫
E
f ,
∫
E
f ≤

∫
E
g

If f ∈ L+(E) and F ⊂ E is measurable, then
∫
F
f =

∫
E
fχF ≤

∫
E
f

Theorem: 2.36: Order Property of Lebesgue Integrals (Non-negative Functions)

If f, g ∈ L+(E) and f ≤ g a.e. on E, then
∫
E
f ≤

∫
E
g
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Proof. Let F = {x ∈ E : f(x) ≤ g(x)} = (g − f)−1([0,∞]), F is measurable and m(FC) = 0, since f ≤ g
a.e. Then∫

E
f =

∫
F∪FC

f =

∫
F
f +

∫
FC

f =

∫
F
f ≤

∫
F
g =

∫
F
g +

∫
FC

f =

∫
F∪FC

f =

∫
E
g

Theorem: 2.37: Monotone Convergence Theorem

If {fn} is a sequence in L+(E) s.t. f1 ≤ f2 ≤ · · · pointwise on E and fn → f pointwise on E. Then

lim
n→∞

∫
E
fn =

∫
E
f . (Note: we don’t require uniform convergence as in Riemann integration.)

Proof. f1 ≤ f2 ≤ · · · By Theorem 2.36⇒
∫
E
f1 ≤

∫
E
f2 ≤ · · · , so the integrals form a monotone sequence,

lim
n→∞

∫
E
fn exists in [0,∞].

Since f1 ≤ f2 ≤ · · · and lim
n→∞

∫
E
fn = f(x) ∀x, then f1 ≤ f2 ≤ · · · ≤ f . Thus ∀n,

∫
E
fn ≤

∫
E
fn,

lim
n→∞

∫
E
fn ≤

∫
E
f

Now we show that
∫
E
f ≤ lim

n→∞

∫
E
fn.

Let φ ∈ L+(E) be simple, φ =

m∑
j=1

ajχAj with φ ≤ f . Let ϵ ∈ (0, 1) and En = {x ∈ E : fn(x) ≥ (1−ϵ)φ(x)}

Note ∀x ∈ E, (1− ϵ)φ(x) < f(x). Since ∀x ∈ E, lim
n→∞

fn(x) = f(x),
∞⋃
n=1

En = E. Since f1 ≤ f2 ≤ · · · , then

E1 ⊂ E2 ⊂ · · · . Then we have∫
E
fn ≥

∫
En

fn ≥
∫
En

(1− ϵ)φ(x) = (1− ϵ)

∫
E
φ(x) = (1− ϵ)

m∑
j=1

ajm(Aj ∩ En)

Taking the limit, we get lim
n→∞

∫
E
fn ≥ lim

n→∞
(1− ϵ)

m∑
j=1

ajm(Aj ∩ En).

Since E1 ∩ Aj ⊂ E2 ∩ Aj ⊂ · · · and
∞⋃
n=1

(En ∩ Aj) = Aj , by Theorem2.18, we get lim
n→∞

m(Aj ∩ En) =

m

( ∞⋃
n=1

En ∩Aj

)
= m(Aj).

Therefore, lim
n→∞

∫
E
fn ≥ lim

n→∞
(1− ϵ)

m∑
j=1

ajm(Aj ∩ En) = (1− ϵ)

n∑
j=1

ajm(Aj) = (1− ϵ)

∫
E
φ.

Let ϵ→ 0,
∫
E
φ ≤ lim

n→∞

∫
E
fn. Thus

∫
E
f ≤ lim

n→∞

∫
E
fn

Theorem: 2.38:

If f ∈ L+(E) and {φn} is a sequence of simple functions s.t. 0 ≤ φ1 ≤ φ2 ≤ · · · ≤ f and φn → f

pointwise, then
∫
E
f = lim

n→∞

∫
E
φn.
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Theorem: 2.39: Additivity of Lebesgue Integral (Non-negative Functions)

If f, g ∈ L+(E), then
∫
E
(f + g) =

∫
E
f +

∫
E
g

Proof. Let {φn} and {ψn} be sequences of simple functions s.t. 0 ≤ φ1 ≤ φ2 ≤ · · · ≤ f , and φn → f
pointwise, 0 ≤ ψ1 ≤ ψ2 ≤ · · · ≤ g, and ψn → g pointwise.

Then 0 ≤ φ1 + ψ1 ≤ φ2 + ψ2 ≤ · · · ≤ f + g and φn + ψn → f + g pointwise. Then
∫
E
(f + g) =

lim
n→∞

∫
E
φn + ψn = lim

n→∞

(∫
E
φn +

∫
E
ψn

)
=

∫
E
f +

∫
E
g

Theorem: 2.40:

If {fn} is a sequence in L+(E), then
∫
E

∑
n

fn =
∑
n

∫
E
fn.

Proof. By induction using Theorem 2.39, we have
∫
E

N∑
n=1

fn =
N∑

n=1

∫
E
fn.

Since
1∑

n=1

fn ≤
2∑

n=1

fn ≤ · · · and
N∑

n=1

fn →
∞∑
n=1

fn pointwise, then by Theorem 2.37,

∫
E

∞∑
n=1

fn = lim
N→∞

∫
E

N∑
n=1

fn = lim
N→∞

N∑
n=1

∫
E
fn =

∞∑
n=1

∫
E
fn.

Theorem: 2.41:

If f ∈ L+(E), then
∫
E
f = 0 ⇔ f = 0 a.e. on E.

Proof. (⇐) Since f ≤ 0 a.e., then 0 ≤
∫
E
f ≤

∫
E
0 = 0

(⇒) Let Fn = {x ∈ E : f(x) > 1
n}, F = {x ∈ E : f(x) > 0}. Then

∞⋃
n=1

Fn = F , F1 ⊂ F2 ⊂ · · · .

Then ∀n, 0 ≤ 1

n
m(Fn) =

∫
Fn

1

n
≤
∫
Fn

f ≤
∫
E
f = 0

Thus ∀n,m(Fn) = 0, m(F ) = m

( ∞⋃
n=1

Fn

)
Theorem 2.18

= lim
n→∞

m(Fn) = 0.

Thus f = 0 a.e. on E.

Theorem: 2.42:

If {fn} is a sequence in L+(E) s.t. f1(x) ≤ f2(x) ≤ · · · for almost all x ∈ E and lim
n→∞

fn(x) = f(x),

then
∫
E
f = lim

n→∞

∫
E
fn.
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Proof. Let F = {x ∈ E : both conditions hold}. Then m(E \ F ) = 0, f − χF f = 0 a.e. and fn − χF fn = 0
a.e. for all n.
By Theorem 2.37 and 2.41,

∫
E
f =

∫
E
fχF =

∫
F
f = lim

n→∞

∫
F
fn = lim

n→∞

∫
E
fn.

Remark 7. Sets of measure zero don’t affect Lebesgue integrals.

Lemma: 2.2: Fatou’s Lemma

If {fn} is a sequence in L+(E), then
∫
E
lim inf
n→∞

fn(x) ≤ lim inf
n→∞

∫
E
fn(x).

Proof. Since lim inf
n→∞

fn(x) = lim
n→∞

(
inf
k≥n

fk(x)

)
and infk≥1 fk(x) ≤ infk≥2 fk(x) ≤ · · · , by Theorem 2.37,∫

E
lim inf
n→∞

fn = lim
n→∞

∫
E
inf
k≥n

fk.

∀j ≥ n, x ∈ E, inf
k≥n

fk(x) ≤ fj(x) by defintion, thus
∫
E
inf
k≥n

fk(n) ≤
∫
E
fj(x) by Theorem 2.36.

Therefore,
∫
E
inf
k≥n

fk(n) ≤ inf j ≥ n

∫
E
fj(x)

⇒
∫
E
lim inf
n→∞

fn = lim
n→∞

∫
E
inf
k≥n

fk ≤ lim
n→∞

inf
k≥n

∫
E
fk = lim inf

n→∞

∫
E
fn(x)

Theorem: 2.43:

If f ∈ L+(E) and
∫
E
f <∞, then {x ∈ E : f(x) = ∞} is a set of measure zero.

Proof. Let F = {x ∈ E : f(x) = ∞}. Then ∀n, nχF ≤ fχF (Definition of unbounded functions). By

Theorem 2.36, ∀n, nm(F ) ≤
∫
E
fχF ≤

∫
E
f <∞.

Then ∀n, m(F ) ≤ 1

n

∫
E
f → 0 since

∫
E
f <∞. Therefore, m(F ) = 0.

2.3.2 Lebesgue Integrable Functions

Definition: 2.15: Lebesgue Integrable Functions

Let E ⊂ R be measurable, a measurable function f : E → R is Lebesgue integrable over E if∫
E
|f | <∞.

Note:
∫
E
|f | =

∫
E
f+ +

∫
E
f−. Thus f is integrable ⇔ f+ and f− are both integrable.

Definition: 2.16: Lebesgue Integral

f f : E → R is Lebesgue integrable, then the Lebesgue integral of f is
∫
E
f =

∫
E
f+ −

∫
E
f−.
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Theorem: 2.44: Properties of Lebesgue Integrals

Suppose f, g : E → R are integrable, then

1. ∀c ∈ R, cf is integrable and
∫
E
cf = c

∫
E
f

2. f + g is integrable and
∫
E
(f + g) =

∫
E
f +

∫
E
g

3. If A,B are disjoint measurable sets, then
∫
A∪B

f =

∫
A
f +

∫
B
f

Proof. 1. scaling by c ̸= 0 either swaps f+ with f− or doesn’t change anything and follows from Theo-
rem 2.35.

2. |f + g| ≤ |f |+ |g|, thus by Theorem 2.35,
∫
E
|f + g| ≤

∫
E
|f |+

∫
E
|g| <∞, thus f + g is integrable.

f + g = (f + g)+− (f + g)− = (f++ g+)− (f−+ g−). Then
∫
E
(f + g) =

∫
E
(f + g)+−

∫
E
(f + g)− =∫

E
(f+ + g+)−

∫
E
(f− + g−) =

∫
E
f+ +

∫
E
g+ −

∫
E
f− −

∫
E
g− =

∫
E
f +

∫
E
g

3. fχA∪B = fχA + fχB and follows 2

Theorem: 2.45: Order Properties of Lebesgue Integrals

Suppose f, g : E → R are measurable, then:

1. If f is integrable, then
∣∣∣∣∫

E
f

∣∣∣∣ ≤ ∫
E
|f |

2. If g is integrable and f = g a.e., then f is integrable and
∫
E
f =

∫
E
g

3. If f and g are integrable and f ≤ g a.e., then
∫
E
f ≤

∫
E
g

Proof. 1.
∣∣∣∣∫

E
f

∣∣∣∣ = ∣∣∣∣∫
E
f+ −

∫
E
f−
∣∣∣∣ Triangle Inequality and Non-negativity

≤
∫
E
f+ +

∫
E
f− =

∫
E
f+ + f− =∫

E
|f |

2. If f = g a.e., then |f | = |g| a.e.,
∫
E
|f | =

∫
E
|g| <∞, thus f is integrable.

Moreover, |f − g| = 0 a.e.
∣∣∣∣∫

E
f −

∫
E
g

∣∣∣∣ = ∣∣∣∣∫
E
(f − g)

∣∣∣∣ ≤ ∫
E
|f − g| = 0

3. Define h(x) =

{
g(x)− f(x), g(x) ≥ f(x)

0, else
. Then h ∈ L+(E), h = g − f a.e.

∫
E
|h| <∞. Thus

0 ≤
∫
E
h+ =

∫
E
h =

∫
E
g − f =

∫
E
g −

∫
E
f

Therefore,
∫
E
f ≤

∫
E
g.
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Theorem: 2.46: Dominated Convergence Theorem

Let g : E → [0,∞) be integrable, {fn}n be a sequence of real-valued measurable functions s.t. ∀n,

|fn| ≤ g. Then ∃f : E → R s.t. fn → f pointwise a.e. Then lim
n→∞

∫
E
fn =

∫
E
f .

Proof. Since ∀n, |fn| ≤ g a.e., then fn is integrable. Moreover, fn → f a.e., so f is measurable and |f | ≤ g
a.e. Thus, f is integrable, by Theorem 2.29.
Since changing f and fn for all n on a set of measure zero does not affect the integrals, we can assume that
∀n, |fn| ≤ g, and ∃f : E → R s.t. fn → f

Note ∀n,
∣∣∣∣∫

E
fn

∣∣∣∣ By Theorem 2.45
≤

∫
E
|fn| ≤

∫
E
g, therefore,

{∫
E
fn

}
n

is a bounded sequence in R.

Since g + fn ≥ 0, by Lemma 2.2,
∫
E
g − f =

∫
E
lim inf
n→∞

(g − fn) ≤ lim inf
n→∞

∫
E
g − fn =

∫
E
g − lim sup

n→∞

∫
E
fn

Similarly,
∫
E
g + f ≤

∫
E
g + lim inf

n→∞

∫
E
fn. Then,

lim sup
n→∞

∫
E
fn ≤

∫
E
g −

∫
E
(g − f) =

∫
E
f =

∫
E
g + f −

∫
E
g ≤ lim inf

n→∞

∫
E
fn

But lim sup
n→∞

∫
E
fn ≥ lim inf

n→∞

∫
E
fn by definition. Thus lim inf

n→∞

∫
E
fn = lim sup

n→∞

∫
E
fn = lim

n→∞

∫
E
fn =

∫
E
f .

Theorem: 2.47: Agreement of Riemann and Lebesgue Integrals

Suppose a < b, f ∈ C([a, b]). Then
∫
[a,b]

f =

∫ b

a
f(x)dx. Lebesgue and Riemann integrals agree on

C([a, b]).

Proof. If f ∈ C([a, b]), then |f | ∈ C([a, b]), i.e. |f | is bounded, ∃B ≥ 0 s.t. |f | ≤ B on [a, b]

Then
∫
[a,b]

|f | ≤
∫
[a,b]

B = Bm([a, b]) = B(b− a) <∞. Thus f is Lebesgue integrable.

By considering f+ = f+|f |
2 and f− = |f |−f

2 separately and showing
∫
[a,b]

f± =

∫ b

a
f±(x)dx and using

linearity, we may assume that f ≥ 0.
Let xn =

{
xn0 = a, xn1 , ..., x

n
mn

= b
}

be a sequence of partitions of [a, b] s.t. ∥xn∥ = max
1≤j≤mn

∣∣xnj − xnj−1

∣∣→ 0.

Let ξnj =
[
xnj−1, x

n
j

]
s.t. inf

x∈[xn
j−1,x

n
j ]
f(x) = f(ξnj ).

By Riemann integration theory, lim
n→∞

mn∑
j=1

f(ξnj )
(
xnj − xnj−1

)
=

∫ b

a
f(x)dx

Let N =

∞⋃
n=1

xn. Then N is countable, m(N) = 0.

Let fn =

mn∑
j=1

f(ξnj )χ[xn
j−1,x

n
j )

+ 0χ{xn
j }, fn is a non-negative simple function.

Note, ∀n,
∫
[a,b]

fn =

mn∑
j=1

f(ξnj )m([xnj−1, x
n
j )) =

mn∑
j=1

f(ξnj )(x
n
j − xnj−1)

Also, ∀x ∈ [a, b] \N , 0 ≤ fn(x) ≤ f(x).
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We show that if x ∈ [a, b] \N , then fn → f pointwise a.e.
Let x ∈ [a, b] \N , ϵ > 0. Since f is continuous at x, ∃δ > 0 s.t. if |x− y| < δ, then |f(x)− f(y)| < ϵ.
Since ∥xn∥ = max

1≤j≤mn

∣∣xnj − xnj−1

∣∣→ 0, ∃M ∈ N s.t. ∀n ≥M , max
1≤j≤mn

(xnj − xnj−1) < δ.

Let n ≥M . Then fn(x) =
mn∑
j=1

f(ξnj )χ[xn
j−1,x

n
j )
(x) = f(ξnk ) for some unique k s.t. x ∈ [xnk−1, x

n
k).

Then since ξnk ∈ [xnk−1, x
n
k ] and xnk − xnk−1 < δ, then |x− ξnk | < δ and |f(x)− fn(x)| = |f(x)− f(ξnk )| < ϵ.

Thus lim
n→∞

fn(x) = f(x), ∀x ∈ [a, b] \N .

By Theorem 2.46,
∫
[a,b]

f = lim
n→∞

∫
[a,b]

fn = lim
n→∞

mn∑
j=1

f(ξnj )(x
n
j − xnj−1) =

∫ b

a
f(x)dx.

Definition: 2.17: Complex Lebesgue Integrals

We can use the previous theorems to construct the corresponding statements for complex-valued

integrable functions. f : E → C is Lebesgue integrable if
∫
E
|f | < ∞ with

∫
E
f =

∫
E

Re(f) +

i

∫
E

Im(f).

Theorem: 2.48: Order Property (Complex Valued)

If f : E → C is integrable, then
∣∣∣∣∫

E
f

∣∣∣∣ ≤ ∫
E
|f |.

Proof. Clear if
∫
E
f = 0. Suppose

∫
E
f ̸= 0.

Let α =
∫
E f

|∫E f| . Then |α| = 1 and

∣∣∣∣∫
E
f

∣∣∣∣ = α

∫
E
f =

∫
E
αf

αf is real
= Re

∫
E
αf =

∫
E

Re (αf)

≤
∫
E
|Re(αf)| ≤

∫
E
|αf | =

∫
E
|f |

2.4 Lp space

Definition: 2.18: LP Norm

If f : E → C is measurable and 1 ≤ p <∞, then we define ∥f∥LP (E) =

(∫
E
|f |p

)1/p

And ∥f∥L∞(E) = inf {M > 0 : m ({x ∈ E : |f(x)| > M}) = 0} = ess supx∈E |f(x)| is the infinity
norm or the essential supremum.

Theorem: 2.49:

If f : E → C is measurable, then |f(x)| ≤ ∥f∥L∞(E) a.e. on E. If E = [a, b] and f ∈ C([a, b]), then
∥f∥L∞([a,b]) = ∥f∥∞ = supx∈[a,b] |f(x)|.

32



Remark 8. We denote ∥·∥Lp(E) by ∥·∥p.

Theorem: 2.50: Holder Inequality

If 1 ≤ p ≤ ∞ and 1
p + 1

q = 1, and f, g : E → C are measurable, then
∫
E
|fg| ≤ ∥f∥p ∥g∥q.

Theorem: 2.51: Minkowski Inequality

If 1 ≤ p ≤ ∞ and f, g : E → C are measurable, then ∥f + g∥p ≤ ∥f∥p + ∥g∥p.

Definition: 2.19: Lp space

For 1 ≤ p ≤ ∞, define Lp(E) =
{
f : E → C : f is measurable and ∥f∥p <∞

}
. We consider two

elements f, g ∈ Lp(E) to be the same element if f = g a.e.

Remark 9. Strictly speaking, this means an element of Lp(E) is an equivalence class:
[f ] =

{
g : E → C : ∥g∥p <∞ and g = f a.e.

}
. We still refer to functions f ∈ Lp(E) rather than [f ] ∈

Lp(E).

Theorem: 2.52:

Lp(E) with pointwise addition and scalar multiplication is a vector space. Moreover, ∥·∥p is a norm
on Lp(E).

Proof. Note that by Theorem 2.45, if f = g a.e., then
∫
E
|f |p =

∫
E
|g|p. Thus if [f ] = [g], then ∥[f ]∥p =∫

E
|f |p =

∫
E
|g|p = ∥[g]∥p. ∥·∥p is well-defined.

Definiteness: by Theorem 2.41,
∫
E
|f |p = 0 ⇔ f = 0 a.e., [f ] = [0]

Homogeneity and triangle inequality then follow from the definition and Theorem 2.51.

Theorem: 2.53:

Let E ⊂ R be measurable. Then f ∈ Lp(E) ⇔ lim
n→∞

∫
[−n,n]∩E

|f |p <∞.

Proof. If f ∈ Lp(E), then
∫
E
|f |p <∞. Note

∫
[−n,n]∩E

|f |p =
∫
E
χ[−n,n]|f |p.

Since χ[−1,1]|f |p ≤ χ[−2,2]|f |p ≤ · · · on E and ∀x ∈ E, lim
n→∞

χ[−n,n](x)|f(x)|p = |f(x)|p.

By Theorem 2.37,
∫
E
|f |p = lim

n→∞

∫
[−n,n]∩E

|f |p.

Example: If f : R → C is measurable and ∃C ≥ 0 and q > 1 s.t. for almost every x ∈ R, |f(x)| ≤
C(1 + |x|)−q, then f ∈ Lp(R) ∀p ≥ 1.
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Proof.
∫
[−n,n]

|f |p ≤
∫
[−n,n]

Cp(1 + |x|)−pq =

∫ n

−n
Cp(1 + |x|)−pqdx ≤ CB(p), where B(p) is a constant

depending on p.

Theorem: 2.54: Density of Lp

Let a < b, 1 ≤ p < ∞, f ∈ Lp([a, b]) and ϵ > 0. Then ∃g ∈ C([a, b]) s.t. g(a) = g(b) = 0 and
∥f − g∥p < ϵ. i.e. C([a, b]) is dense and a proper subset in Lp([a, b]).

Theorem: 2.55: Riesz-Fischer

For all 1 ≤ p ≤ ∞, Lp(E) is a Banach space.

Proof. For 1 ≤ p <∞, we show that every absolutely summable series is summable.

Let {fk} be a sequence in Lp(E) s.t.
∑
k

∥fk∥p < ∞. We want to show that ∃f ∈ Lp(E) s.t.
n∑

k=1

fk → f ,

i.e. lim
n→∞

∥∥∥∥∥
n∑

k=1

fk − f

∥∥∥∥∥
p

= 0

Define gn : E → [0,∞) by gn =
n∑

k=1

|fk(x)|. gn is measurable. Then ∥gn∥p =

∥∥∥∥∥
n∑

k=1

|fk|

∥∥∥∥∥
p

Triangle Inequality
≤

n∑
k=1

∥fk∥p ≤M <∞.

By Lemma 2.2,
∫
E

(∑
k

|fk|

)p

=

∫
E
lim inf
n→∞

|gn|p ≤ lim inf
n→∞

∫
E
|gn|p ≤Mp

Thus
∑
k

∥fk(x)∥ <∞ for almost every x ∈ E.

Define f(x) =

{∑
k fk(x),

∑
k |fk(x)| <∞

0, else
, g(x) =

{∑
k |fk(x)| ,

∑
k |fk(x)| <∞

0, else
.

Then lim
n→∞

n∑
k=1

fk(x)− f(x) a.e. on E and

∣∣∣∣∣
n∑

k=1

fk(x)− f(x)

∣∣∣∣∣
p

≤ ∥g(x)∥p a.e. on E.

Since

∥∥∥∥∥∑
k

|fk|

∥∥∥∥∥
p

≤M , then ∥g∥p ≤M ,
∫
E
|g|p <∞. Moreover, ∥f∥p ≤ ∥g∥p ≤M . i.e. f ∈ Lp(E).

Apply Theorem 2.46, lim
n→∞

∫
E

∣∣∣∣∣
n∑

k=1

fk − f

∣∣∣∣∣
p

= 0, i.e.

∥∥∥∥∥
n∑

k=1

fk − f

∥∥∥∥∥
p

p

→ 0.
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3 Hilbert Spaces

Definition: 3.1: Pre-Hilbert Space

A pre-Hilbert space H is a vector space over C with a Hermitian inner product ⟨·, ·⟩ : H ×H → C
with the following properties

1. ∀λ1, λ2 ∈ C, v1, v2, w ∈ H, ⟨λ1v1 + λ2v2, w⟩ = λ1 ⟨v1, w⟩+ λ2 ⟨v2, w⟩
2. ∀v, w ∈ H, ⟨v, w⟩ = ⟨w, v⟩
3. ∀v ∈ H, ⟨v, v⟩ ≥ 0 and ⟨v, v⟩ = 0 ⇔ v = 0.

Also,
1. If v ∈ H and ⟨v, w⟩ = 0 for all w ∈ H, then v = 0
2. ⟨v, λw⟩ = ⟨λw, v⟩ = λ ⟨w, v⟩ = λ ⟨v, w⟩

Definition: 3.2: Norm on Pre-Hilbert Space

If H is a pre-Hilbert space, we define ∥v∥ = ⟨v, v⟩1/2

Theorem: 3.1: Cauchy-Schwarz Inequality

∀u, v ∈ H, |⟨u, v⟩| ≤ ∥u∥ ∥v∥.

Proof. Let f(t) = ∥u+ tv∥2 = ⟨u+ tv, u+ tv⟩ ≥ 0.
Then f(t) = ⟨u, u⟩+ t2 ⟨v, v⟩+ t ⟨u, v⟩+ t ⟨v, u⟩ = ∥u∥2 + t2 ∥v∥2 + 2tRe ⟨u, v⟩
The minimum of f is non-negative and f ′(tmin) = 0, so tmin = −Re⟨u,v⟩

∥v∥2 .

Then 0 ≤ f(tmin) = ∥u∥2 − (Re⟨u,v⟩)2
∥v∥2 , |Re ⟨u, v⟩| ≤ ∥u∥ ∥v∥.

If ⟨u, v⟩ = 0, then done. Otherwise, let λ = ⟨u,v⟩
|⟨u,v⟩| . Then |λ| = 1 and |⟨u, v⟩| = λ ⟨u, v⟩ = ⟨λu, v⟩ =

Re ⟨λu, v⟩ ≤ ∥λu∥ ∥v∥.
Since |λ| = 1 and ⟨λu, λu⟩ = λλ̄ ⟨u, u⟩ = ⟨u, u⟩, we get ∥λu∥ ∥v∥ = ∥u∥ ∥v∥.

Theorem: 3.2:

If H is a pre-Hilbert space, then ∥·∥ is a norm on H.

Proof. Definiteness: ∥v∥ = 0 ⇔ ⟨v, v⟩ = 0 ⇔ v = 0
Homogeneity: If λ ∈ C, v ∈ H, ⟨λv, λv⟩ = λλ̄ ⟨v, v⟩ = |λ|2 ⟨v, v⟩. Thus ∥λv∥ = |λ| ∥v∥.
Triangle inequality: Let u, v ∈ H. Then

∥u+ v∥2 = ⟨u+ v, u+ v⟩ = ∥u∥2 + ∥v∥2 + 2Re ⟨u, v⟩
≤ ∥u∥2 + ∥v∥2 + 2 |Re ⟨u, v⟩|
≤ ∥u∥2 + ∥v∥2 + 2 |⟨u, v⟩| (Norm of Complex Numbers)

≤ ∥u∥2 + ∥v∥2 + 2 ∥u∥ ∥v∥ (By Theorem 3.1)

= (∥u∥+ ∥v∥)2

35



Theorem: 3.3: Continuity of Hermitian Inner Product

If un → u and vn → v in a pre-Hilbert space with norm ∥·∥ = ⟨·, ·⟩1/2, then ⟨un, vn⟩ → ⟨u, v⟩

Proof. If un → u and vn → v, i.e. ∥un − u∥ → 0 and ∥vn − v∥ → 0 as n→ ∞, then

|⟨un, vn⟩ − ⟨u, v⟩| = |⟨un − u, vn⟩+ ⟨u, vn − v⟩|
≤ |⟨un − u, vn⟩|+ |⟨u, vn − v⟩| (Triangle inequality)
≤ ∥un − u∥ ∥vn∥+ ∥u∥ ∥vn − v∥ (By Theorem 3.1)
≤ ∥un − u∥ sup

k
∥vk∥+ ∥u∥ ∥vn − v∥ → 0 as n→ ∞

By squeeze theorem, ⟨un, vn⟩ → ⟨u, v⟩

3.1 Basic Theory

Definition: 3.3: Hilbert Space

A Hilbert space H is a pre-Hilbert space which is complete w.r.t. the norm ∥·∥ = ⟨·, ·⟩1/2.

Example: Cn = {z = (z1, ..., zn) : zj ∈ C} where ⟨z, w⟩ =
n∑

j=1

zjwj is a Hilbert space.

Example: l2 =
{
a = {ak}k : ak ∈ C and

∑∞
k=1 |ak|

2 <∞
}

where ⟨a, b⟩ =

∞∑
k=1

akbk is a Hilbert space.

Note ⟨a, a⟩1/2 =

( ∞∑
k=1

|ak|2
)1/2

= ∥a∥l2 is the l2 norm.

Example: If E ⊂ R is measurable, then L2(E) =
{
f : E → C :

∫
E |f |2 <∞

}
where ⟨f, g⟩ =

∫
E
fg is a

Hilbert space.

Theorem: 3.4: Parallelogram Law

If H is a pre-Hilbert space, then ∀u, v ∈ H, ∥u+ v∥2 + ∥u− v∥2 = 2
(
∥u∥2 + ∥v∥2

)
. Moreover, if H

is a normed space satisfying the equation, then H is a pre-Hilbert space.

This implies that except for p = 2, other lp or Lp spaces are not Hilbert space.

Definition: 3.4: Orthonormal Subsets

If H is a pre-Hilbert space, u, v ∈ H are orthogonal if ⟨u, v⟩ = 0. We write u ⊥ v. A subset
{eλ}λ∈Λ ⊂ H is orthonormal if ∀λ ∈ Λ, ∥eλ∥ = 1 and λ1 ̸= λ2 ⇒ eλ1 ⊥ eλ2 .

Remark 10. We are mainly interested in finite/countable orthonormal subsets, {e1, ..., eN} = {en}Nn=1 and
{en}∞n=1.
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Example:
{(

1
0

)
,

(
0
1

)}
is an orthonormal subset of C2,


1
0
0

 ,

0
0
1

 is an orthonormal subset of

C3.

Example: Let en =

{
0, ...,

nth entry
1 , 0, ...

}
∈ l2, {en}∞n=1 is orthonormal in l2.

Example: 1√
2π
einx ∈ L2([−π, π]).

{
1√
2π
einx

}
n∈Z

is orthonormal in L2([−π, π])

Proof. When m ̸= n,
∫ π

−π

1√
2π
eimx 1√

2π
einx =

1

2π

∫ π

−π
ei(m−n)x = 0. (Consider eix = cosx+ i sinx)

Theorem: 3.5: Bessel

If {en}n is a countable orthonormal subset of a pre-Hilbert space H, then ∀u ∈ H,
∑
n

|⟨u, en⟩|2 ≤

∥u∥2.

Proof. (Finite case) Suppose {en}Nn=1 is an orthonormal subset of H. Then∥∥∥∥∥
N∑

n=1

⟨u, en⟩ en

∥∥∥∥∥
2

=

〈∑
n

⟨u, en⟩ en,
∑
m

⟨u, em⟩ em

〉
=
∑
n,m

⟨u, en⟩ ⟨u, em⟩ ⟨en, em⟩

=
∑
n

|⟨u, en⟩|2

And
〈
u,
∑

n = 1N ⟨u, en⟩ en
〉
=

N∑
n=1

⟨u, en⟩ ⟨u, en⟩ =
N∑

n=1

|⟨u, en⟩|2

Thus, 0 ≤

∥∥∥∥∥u−
N∑

n=1

⟨u, en⟩ en

∥∥∥∥∥
2

≤ ∥u∥2 +

∥∥∥∥∥
N∑

n=1

⟨u, en⟩ en

∥∥∥∥∥
2

− 2Re

〈
u,

N∑
n=1

⟨u, en⟩ en

〉

= ∥u∥2 −
N∑

n=1

|⟨u, en⟩|2

(Infinite case) Suppose {en}∞n=1 is an orthonormal subset of H. Then ∀N ∈ N,
N∑

n=1

|⟨u, en⟩|2 ≤ ∥u∥2 and

take N → ∞ gives the desired result.
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3.1.1 Gram-Schmidt

Definition: 3.5: Maximal Orthonormal Subset

An orthonormal subset {eλ}λ∈Λ of a pre-Hilbert space H is maximal if u ∈ H and ⟨u, eλ⟩ = 0 ∀λ ∈ Λ
⇒ u = 0.

Example:
{(

1
0

)
,

(
0
1

)}
is maximal in C2, but


1
0
0

 ,

0
1
0

 is not maximal in C3, since

0
0
1

 is

orthogonal to this set.

Example: {en}∞n=1 is maximal subset of l2.

Theorem: 3.6:

Every non-trivial pre-Hilbert space has a maximal orthonormal subset.

Theorem: 3.7:

Every non-trivial separable (having a countable dense subset) pre-Hilbert space has a countable
maximal orthonormal subset.

Proof. Let {vj}∞j=1 be a countable dense subset of H s.t. ∥v1∥ ≠ 0

Claim: ∀n ∈ N, ∃m(n) ≤ n and an orthonormal subset
{
e1, ..., em(n)

}
s.t.

1. span
{
e1, ..., em(n)

}
= span {v1, ..., vn}

2.
{
e1, ..., em(n)

}
=
{
e1, ..., em(n−1)

}
∪

{
∅, vn ∈ span {v1, ..., vn−1}
em(n), else

We prove the claim by induction:
Base case: n = 1, e1 = v1

∥v1∥
Induction: Suppose the claim holds for n = k.
When n = k + 1:
If vk+1 ∈ span {v1, ..., vk}, then span

{
e1, ..., em(k)

}
= span {v1, ..., vk} = span {v1, ..., vk, vk+1}.

Suppose vk+1 /∈ span {v1, ..., vk}. Define wk+1 = vk+1 −
m(k)∑
j=1

⟨vk+1, ej⟩ ej ̸= 0, since vk+1 /∈ span {v1, ..., vk}

We can define a unit vector ek+1 =
wk+1

∥wk+1∥ , ∥ek+1∥ = 1.

For any j ≤ k,
〈
em(k+1), ek

〉
=

1

∥wk+1∥

〈
vk+1 −

m(k)∑
j=1

⟨vk+1, ej⟩ ej , e1

〉
=

1

∥wk+1∥
(⟨vk+1, el⟩ − ⟨vk+1, el⟩) =

0

Let S−
∞⋃
n=1

{
e1, ..., em(n)

}
(may be finite or infinite). Then S is an orthonormal subset of H. We now show

that H is maximal.
Suppose u ∈ H, ∀l, ⟨u, el⟩ = 0. Since {vj}j is dense in H, there exists a sequence

{
vj(k)

}∞
k=1

s.t. vj(k) → u
as k → ∞.
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By the first part of the claim, vj(k) ∈ span
{
e1, ..., em(j(k))

}
. Thus

∥∥vj(k)∥∥2 = m(j(k))∑
l=1

∣∣〈vj(k), el〉∣∣2 ⟨u,el⟩=0
=

m(j(k))∑
l=1

∣∣〈vj(k) − u, el
〉∣∣2

By Theorem 3.5
≤

∥∥vj(k) − u
∥∥2 → 0 as k → ∞

By squeeze theorem,
∥∥vj(k)∥∥ = 0 and thus u = 0.

Definition: 3.6: Orthonormal Basis

Let H be a Hilbert space. An orthonormal basis of H is a countable maximal orthonormaal subset
{en}n∈N.

Theorem: 3.8: Fourier-Bessel Series

If {en}n is an orthonormal basis in a Hilbert space H, then ∀u ∈ H, lim
m→∞

m∑
n=1

⟨u, en⟩ en = u. i.e.

∞∑
n=1

⟨u, en⟩ en = u

Proof. We show that

{
m∑

n=1

⟨u, en⟩ en

}
m

is Cauchy.

Let ϵ > 0. By Theorem 3.5,
∞∑
n=1

|⟨u, en⟩|2 ≤ ∥u∥2 <∞.

Thus, ∃M ∈ N s.t. ∀N ≥M ,
∞∑

n=N+1

|⟨u, en⟩|2 < ϵ2.

Then ∀m > l ≥ N ,∥∥∥∥∥
m∑

n=1

⟨u, en⟩ en −
l∑

n=1

⟨u, en⟩ en

∥∥∥∥∥
2

=
m∑

n=l+1

|⟨u, en⟩|2 ≤
∞∑

n=l+1

|⟨u, en⟩|2 < ϵ2

Since H is complete, ∃ū ∈ H s.t. ū = lim
m→∞

m∑
n=1

⟨u, en⟩ en in H.

By Theorem 3.3, ∀l ∈ N, ⟨u− ū, el⟩ = limm→∞ ⟨u−
∑m

n=1 ⟨u, en⟩ en, el⟩ = (⟨u, el⟩ − ⟨u, el⟩) = 0
Since {el}l is maximal, then u− ū = 0.

Theorem: 3.9:

If H has an orthonormal basis, then H is separable.

Proof. Suppose {en} is an orthonormal basis for H. Then S =
⋃
m∈N

{
m∑

n=1

qnen : q1, ..., qm ∈ Q+ iQ

}
is

countable.
By Theorem 3.8, S is dense in H.

Remark 11. If H is a Hilbert space, then H is separable ⇔ H has an orthonormal basis.
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Theorem: 3.10: Parseval’s Identity

IfH is a Hilbert space and {en}n is a countable orthonormal basis, then ∀u ∈ H,
∑
n

|⟨u, en⟩|2 = ∥u∥2.

Proof. We have u =
∑
n

⟨u, en⟩ en. Then

∥u∥2 = lim
m→∞

〈
m∑

n=1

⟨u, en⟩ en,
m∑
l=1

⟨u, el⟩ el

〉

= lim
m→∞

m∑
n,l=1

⟨u, en⟩ ⟨u, el⟩ ⟨en, el⟩

= lim
m→∞

m∑
n=1

⟨u, en⟩ ⟨u, en⟩

=
∑
n

|⟨u, en⟩|2

Theorem: 3.11:

If H is an infinite dimensional separable Hilbert space, then H is isometrically isomorphic to l2.
i.e. ∃ a bijective (bounded) linear operator T : H → l2 s.t. ∀u, v ∈ H, ∥Tu∥l2 = ∥u∥H and
⟨Tu, Tv⟩l2 = ⟨u, v⟩H .

Proof. Since H is a separable Hilbert space, by Theorem 3.9, it has an orthonormal basis {en}n∈N and

∀u ∈ H, u =
∞∑
n=1

⟨u, en⟩ en.

Then ∥u∥ =
(∑∞

n=1 |⟨u, en⟩|
2
)1/2

. Define Tu = {⟨u, en⟩}∞n=1 ∈ l2. T does the job.

3.2 Fourier Series

Theorem: 3.12:

The subset
{

einx
√
2π

}
n∈Z

is an orthonormal subset of L2([−π, π]).

Proof.

〈
einx, eimx

〉
=

∫ π

−π
einxeimxdx =

∫ π

−π
ei(n−m)xdx =

{
2π,m = n

0, else
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Definition: 3.7: Fourier Series

Let f ∈ L2([−π, π]). The nth Fourier coefficient of f is f̂(n) =
1

2π

∫ π

−π
f(t)e−intdt. The Nth partial

Fourier sum of f is SNf(x) =
∑

|n|≤N

f̂(n)einx =
∑

|n|≤N

〈
f,
eint√
2π

〉
einx√
2π

The Fourier series of f is the formal series
∑
n∈Z

f̂(n)einx.

Question: Do we have for all f ∈ L2([−π, π]), f(x) =
∑
n∈Z

f̂(n)einx?

i.e. ∥f − SNf∥2 =
(∫ π

−π
|f(x)− SNf(x)|2 dx

)1/2

→ 0 as N → ∞?

Equivalently, is
{

einx
√
2π

}
n∈Z

maximal in L2([−π, π])? i.e. if f̂(n) = 0 ∀n, then f = 0.
The answer to this question is yes.

Theorem: 3.13: Dirichlet Kernel

∀f ∈ L2([−π, π]), N ∈ N ∪ {0}. SNf(x) =
∫ π

−π
DN (x− t)f(t)dt,

where DN (x) =


2N+1
2π , x = 0

sin((N+ 1
2
)x)

2π sin(x
2
) , x ̸= 0

. DN (x) is called the Dirichlet kernel.

Proof. If f ∈ L2([−π, π]), SNf(x) =
∑

|n|≤N

(∫ π

−π
f(t)e−intdt

)
einx =

∫ π

−π
f(t)

 1

2π

∑
|n|≤N

ein(x−t)

 dt

DN (x) =
1

2π

∑
|n|≤N

einx =
1

2π
e−iNx

2N∑
n=0

(eix)n

=
1

2π
e−iNx 1− ei(2N+1)x

1− eix

=
1

2π

ei(N+ 1
2)x − e−i(N+ 1

2)x

ei
x
2 − e−ix

2

=
1

2π

sin
(
N + 1

2

)
x

sin x
2

Definition: 3.8: Cesaro-Fourier Mean

If f ∈ L2([−π, π]). Define the Nth Cesaro-Fourier mean of f by σNf(x) =
1

N + 1

N∑
k=0

Skf(x).

Note: if the series converges, the Cesaro mean converges. Also if we have a sequence {1,−1, 1,−1} which
does not converge, but the Cesaro mean converges.
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Theorem: 3.14: Fejer Kernel

∀f ∈ L2([−π, π]), σNf(x) =
∫ π

−π
KN (x− t)f(t)dt, where KN (x) =


N+1
2π , x = 0

1
2π(N+1)

(
sin(N+1

2
x)

sin x
2

)2 is the

Fejer kernel. Moreover,
1. KN (x) ≥ 0, KN (x) = KN (−x), KN is 2π-periodic

2.
∫ π

−π
KN (t)dt = 1

3. ∀δ ∈ (0, π], then ∀δ ≤ |x| ≤ π, KN (x) ≤ 1
2π(N+1) sin2 δ

2

Proof. From Theorem 3.13, σNf(x) =
1

N + 1

N∑
k=0

Skf(x) =

∫ π

−π

1

N + 1

N∑
k=0

Dk(x− t)f(t)dt. Then

KN (x) =
1

N + 1

N∑
k=0

Dk(x) =
1

2π(N + 1)

1

2
(
sin x

2

)2 N∑
k=0

2 sin
x

2
sin

((
k +

1

2

)
x

)

=
1

2π(N + 1)

1

2
(
sin x

2

)2 N∑
k=0

[cos kx− cos(k + 1)x]

=
1

2π(N + 1)

1

2
(
sin x

2

)2 (1− cos((N + 1)x))

=
1

2π(N + 1)

1(
sin x

2

)2 sin2 (() N + 1

2
x)

1 follows since sin2 are positive and KN (x) = KN (−x).

For 2,
∫ π

−π
Dk(t)dt =

∫ π

−π

k∑
n=−k

eintdt = 1. Then
∫ π

−π
KN (t)dt =

1

N + 1

N∑
k=0

∫ π

−π
Dk(t)dt =

N + 1

N + 1
= 1.

For 3, let δ ∈ (0, π]. Then sin2 x
2 is even and increasing on [0, π]. ∀δ ≤ |x| ≤ π, sin2 x

2 ≤ sin2 δ
2

Thus KN (x) ≤ 1

2π(N + 1) sin2 δ
2

sin2
(
N + 1

2
x

)
≤ 1

2π(N + 1) sin2 δ
2

Theorem: 3.15: Fejer’s Theorem

If f ∈ C([−π, π]) is 2π periodic, f(π) = f(−π), then σNf → f uniformly on [−π, π].

Proof. Firstly, we extend f by periodicity f(x + 2π) = f(x) to all of R. Then f ∈ C(R) is 2π-periodic.
Thus f is uniformly continuous and bounded. i.e. ∥f∥∞ = sup

x∈R
|f(x)| = sup

x∈[−π,π]
|f(x)| <∞.

Let ϵ > 0. Since f is uniformly continuous, ∃δ > 0 s.t. if |y − z| < δ, |f(y)− f(z)| < ϵ
2 .

Choose M ∈ N s.t. ∀N ≥M , 2∥f∥2
(N+1) sin2 δ

2

< ϵ
2 because LHS→ 0.

Since f and KN are 2π-periodic, σNf(x) =

∫ π

−π
KN (x − t)f(t)dt

τ=x−t
=

∫ x+π

x−π
KN (τ)f(x − τ)dτ

periodic
=∫ π

−π
KN (t)f(x− t)dt.
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Then ∀N ≥M , ∀x ∈ [−π, π],

|σNf(x)− f(x)| =
∣∣∣∣∫ π

−π
KN (t)f(x− t)dt−

∫ π

−π
KN (t)f(x)dt

∣∣∣∣ (since
∫ π

−π
KN (t)dt)

=

∣∣∣∣∫ π

−π
KN (t)(f(x− t)− f(x))dx

∣∣∣∣
≤
∫ π

−π
|KN (t)(f(x− t)− f(x))| dx (By Theorem 2.45)

=

∫
|t|≤δ

KN (t) |f(x− t)− f(x)| dt+
∫
δ≤|x|≤π

KN (t)|f(x− t)− f(t)|dt

<
ϵ

2

∫
|t|<δ

KN (t)dt+ 2 ∥f∥∞
∫
δ≤|t|≤π

KN (t)

2π(N + 1) sin
δ
2

dt (By uniform continuity, choice of M)

≤ ϵ

2
+

2 ∥f∥∞
(N + 1) sin2 δ

2

<
ϵ

2
+
ϵ

2
= ϵ.

Thus σNf → f uniformly.

Remark 12. Same proof can be modified if instead of KN (x) ≥ 0, we have sup
N

∫ π

−π
|KN (x)|dx <∞.

Also,
∫ π

−π
|DN (x)|dx ∼ logN .

Theorem: 3.16: Bounding Cesaro-Fourier Mean

∀f ∈ L2([−π, π]), ∥σNf∥2 ≤ ∥f∥L2

Proof. Suppose f ∈ C([−π, π]) 2π-periodic. Then σNf(x) =
∫ π

−π
f(x− t)KN (t)dt,

∫ π

−π
|σNf(x)|2 dx =

∫ π

−π

∫ π

−π

∫ π

−π
f(x− s)f(x− t)KN (s)KN (t)dsdtdx

=

∫ π

−π

∫ π

−π
KN (s)KN (t)

[∫ π

−π
f(x− s)f(x− t)dx

]
dsdt (By Fubini)

≤
∫ π

−π
KN (s)KN (t) ∥f(· − s)∥2 ∥f(· − t)∥2 dsdt (By Theorem 3.1)

= ∥f∥22
∫ π

−π
KN (s)ds

∫ π

−π
KN (t)dt = ∥f∥22

Thus ∥σNf∥ ≤ ∥f∥2 for f ∈ C([−π, π])

Let f ∈ L2([−π, π]), ∃ {fn}n of 2π-periodic continuous functions s.t. ∥fn − f∥2 → 0.
Then ∥σNfn − σNf∥2 → 0
Thus ∥σNf∥2 = lim

n→∞
∥σNfn∥2 ≤ lim

n→∞
∥fn∥2 = ∥f∥2.

Theorem: 3.17: Convergence of Cesaro-Fourier Mean

∀f ∈ L2([−π, π]), ∥σNf − f∥2 → 0 as N → ∞. In particular, if f̂(n) = 0, ∀n, then f = 0.
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Proof. Let f ∈ L2([−π, π]), ϵ > 0. There exists g ∈ C([−π, π]) and 2π-periodic s.t. ∥f − g∥2 <
ϵ
3 .

Since σNg → g uniformly on [−π, π] by Theorem 3.15,
∃M ∈ N s.t. ∀N ≥M , ∀x ∈ [−π, π], |σNg(x)− g(x)| < ϵ

3
√
2π

Then ∀N ≥M ,

∥σNf − f∥2 ≤ ∥σN (f − g)∥2 + ∥σNg − g∥2 + ∥g − f∥2 (By Triangle inequality)

≤ 2 ∥f − g∥2 +
(∫ π

−π
|σNg − g|2 dx

)1/2

(By Theorem 3.16 and Definition 2.18)

<
2ϵ

3
+
ϵ

3

(∫ π

−π

1√
2π
dx

)1/2

= ϵ.

Thus ∥σNf − f∥2 → 0 as N → ∞.

Now we have shown that ∀f ∈ L2, ∥SNf − f∥2 → 0. Carleson shows that ∀f ∈ L2, SNf(x) → f(x) a.e.
Also ∀1 < p <∞, ∥SNf − f∥p → 0, but this doesn’t hold for p = 1 or ∞.

3.3 Riesz Representation

Theorem: 3.18: Length Minimizer

Suppose C ⊂ H is a subset of a Hilbert space H s.t. C ̸= ∅, C is closed and C is convex, i.e.
if v1, v2 ∈ C and t ∈ [0, 1], then tv1 + (1 − t)v2 ∈ C. Then there exists a unique v ∈ C with
∥v∥ = inf

u∈C
∥u∥.

Proof. a = inf S ↔ a is a lower bound for S and ∃{sn} ∈ S s.t. sn → a.
Let d = inf

u∈C
∥u∥. Then ∃ {un}n ∈ C s.t. ∥un∥ → d. We want to show that {un} is Cauchy.

Let ϵ > 0, since ∥un∥ → d, ∃N ∈ N s.t. ∀n ≥ N , 2 ∥un∥2 < 2d2 + ϵ2

2 . Then ∀n,m ≥ N ,

∥un − um∥2 ≤ 2 ∥un∥2 + 2 ∥um∥2 − 4

∥∥∥∥un + um
4

∥∥∥∥2 (By Theorem 3.4)

≤ 2 ∥un∥2 + 2 ∥um∥2 − 4d2 (By Definition of d as infimum)

< 2d2 +
ϵ2

2
+ 2d2 +

ϵ2

2
− 4d2 = ϵ2

Therefore, {un} is Cauch. Since H is complete, then ∃v ∈ H s.t. un → v. Since C is closed, v ∈ C.
∥v∥ = lim

n→∞
∥un∥ = d

Thus the existence of v ∈ C, ∥v∥ = d = inf
u∈C

∥u∥ is proved.

Now we show the uniqueness. Suppose v, v̄ ∈ C s.t. ∥v∥ = ∥v̄∥ = d. Then

∥v − v̄∥2 = 2 ∥v∥2 + 2 ∥v̄∥2 − 4

∥∥∥∥v + v̄

2

∥∥∥∥2
= 4d2 − 4

∥∥∥∥v + v̄

2

∥∥∥∥ ≤ 4d2 − 4d2 = 0

Thus v = v̄.

44



Theorem: 3.19: Orthogonal Complement

If H is a Hilbert space, W ⊂ H is a subspace, then W⊥ = {u ∈ H : ⟨u,w⟩ = 0, ∀w ∈W} is a closed
linear subspace of H. If W is closed, then H = W ⊕W⊥ (i.e. ∀u ∈ H, ∃!w ∈ W , w⊥ ∈ W⊥ s.t.
u = w + w⊥)

Proof. Note that W⊥ is a subspace of H by linearity of inner product and W ∩W⊥ = {0} by definiteness.
Let {un}n be sequence in W⊥ and u ∈ H s.t. un → u. Let w ∈ W . Then by Theorem 3.3 (continuity),
⟨u,w⟩ = lim

n→∞
⟨un, w⟩ = 0. Thus u ∈W⊥, W⊥ is closed. W⊥ is therefore a closed linear subspace of H.

Now suppose W is closed, we show that H =W ⊕W⊥.
If W = H, then W⊥ = {0} and H =W ⊕ {0} =W ⊕W⊥

Suppose W ̸= H. Let u ∈ H \W . Define C = u+W = {u+ w : w ∈W}. Note u ∈ C, so C ̸= ∅
Let u + w1 ∈ C, u + w2 ∈ C, for w1, w2 ∈ W and t ∈ [0, 1], then t(u + w1) + (1 − t)(u + w2) =
u+ (tw1 + (1− t)w2) ∈ C, since W is a subspace. Thus C is convex.
Now suppose u + wn → v ∈ H. Then wn → v − u. Since w is closed, v − u ∈ W . Then v = u + w for
w ∈W ⇒ v ∈ C. Thus C is closed.
Since C is closed and covex, by Theorem 3.18, ∃!v ∈ C s.t. ∥v∥ = inf

w∈W
∥u+ w∥.

Note that v ∈ C ⇒ u− v ∈W and u = (u− v) + v. We show that v ∈W⊥.
Let w ∈ W , f(t) = ∥v + tw∥2 = ∥v∥2 + t2 ∥w∥2 + 2tRe ⟨v, w⟩. Then f(t) has a min at t = 0, f ′(t) = 0 ⇒
Re ⟨v, w⟩ = 0.
Repeat the same argument with iw to get Re ⟨v, iw⟩ = Im ⟨v, w⟩ = 0. Thus ⟨v, w⟩ = 0 and v ∈W⊥.

We have now decompsed u ∈ H to u = v+w for w ∈W, v ∈W⊥. We need to show that the decomposition
is unique.
If u = w1 + w⊥

1 = w2 + w⊥
2 . Then w2 − w1 = w⊥

1 − w⊥
2 . Since W ∩W⊥ = {0}, w1 = w2, w⊥

1 = w⊥
2 .

Theorem: 3.20:

If W ⊂ H is a subspace, then (W⊥)⊥ is the closure W̄ of W . If W is closed, then (W⊥)⊥ =W .

Definition: 3.9: Projection

A bounded operator P : H → H is a projection if P 2 = P .

Theorem: 3.21:

Let H be a Hilbert space, W ⊂ H be a closed subspace s.t. H =W ⊕W⊥. The map ΠW = H → H,
defined by if v = w + w⊥, then ΠW (v) = w, is a projection.

Proof. ΠW is linear: If v1 = w1 + w⊥
1 , v2 = w2 + w⊥

2 , λ1, λ2 ∈ C, then λ1v1 + λ2v2 = (λ1w1 + λ2w2) +
(λ1w

⊥
1 + λ2w

⊥
2 ). ΠW (λ1v1 + λ2v2) = λ1ΠW (v1) + λ2ΠW (v2).

ΠW is bounded: If v = w+w⊥, then ∥v∥2 =
∥∥w + w⊥∥∥2 ⟨w,w⊥⟩=0

= ∥w∥2+
∥∥w⊥∥∥2 ≥ ∥w∥2. Then ∥ΠW (v)∥ =

∥w∥ ≤ ∥v∥ and ∥ΠW ∥ ≤ 1.

Projection: ΠW (ΠW (v)) = ΠW (w) = w = ΠW (v).
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Theorem: 3.22: Riesz Representation Theorem

If H is a Hilbert space, then ∀f ∈ H ′, there is a unique v ∈ H s.t. f(u) = ⟨u, v⟩ for u ∈ H.

Proof. v is unique: if f(u) = ⟨u, v⟩ = ⟨u, v̄⟩ for all u, then ⟨u, v − v̄⟩ = 0 ∀u ∈ H. Thus v = v̄.

If f = 0, we can simply choose v = 0. So we suppose f ̸= 0.
Then ∃u1 ∈ H s.t. f(u1) = ⟨u1, v⟩ ≠ 0.
Let u0 = u1

f(u1)
. f(u0) =

〈
u1

f(u1)
, v
〉
= 1

f(u1)
⟨u1, v⟩ = 1.

Let C = {u ∈ H : f(u) = 1} = f−1({1}). C is a non-empty closed subset of H.
Let u1, u2 ∈ C, t ∈ [0, 1], then f(tu1+(1− t)u2) = tf(u1)+ (1− t)f(u2) = t+1− t = 1. Thus C is convex.
Then by Theorem 3.18, ∃v0 ∈ C s.t. ∥v0∥ = inf

u∈C
∥u∥

Let v = v0
∥v0∥2

, N = f−1({0}) = {w ∈ H : f(w) = 0}. Then C = {v0 + w : w ∈ N}, so ∥v0∥ = inf
w∈N

∥v0 + w∥

and v0 ∈ N⊥.
Let u ∈ H. Then f(u− f(u)v0) = f(u)− f(u)f(v0) = 0. Thus u = u− f(u)v0 + f(u)v0 ∈ N +N⊥.
Therefore, ⟨u, v⟩ = 1

∥v0∥2
⟨u, v0⟩ = 1

∥v0∥2
[⟨u− f(u)v0, v0⟩+ f(u) ⟨v0, v0⟩] = f(u).

3.4 Adjoint

Theorem: 3.23: Adjoint Operator

Let H be a Hilbert space, A : H → H be a bounded linear operator. Then there exists a unique
bounded linear operator A∗ : H → H (adjoint) s.t. ∀u, v ∈ H, ⟨Au, v⟩ = ⟨u,A∗v⟩ and ∥A∗∥ = ∥A∥.

Proof. Uniqueness of A∗ follows from ⟨Au, v⟩ = ⟨u,A∗v⟩.
Define fv : H → C s.t. fv(u) = ⟨Au, v⟩. Then ∀u1, u2 ∈ H, λ1, λ2 ∈ C,

fv(λ1u1 + λ2u2) = ⟨A(λ1u1 + λ2u2), v⟩ = ⟨λ1Au1 + λ2Au2, v⟩
= λ1 ⟨Au1, v⟩+ λ2 ⟨Au2, v2⟩
= λ1fv(u1) + λ2fv(u2)

Thus fv is linear.

If ∥u∥ = 1, then |fv(u)| = |⟨Au, v⟩|
Theorem 3.1

≤ ∥Au∥ ∥v∥ ≤ ∥A∥ ∥v∥ since A is bounded linear operator.
Thus ∥fv∥ ≤ ∥A∥ ∥v∥ is a bounded linear operator, fv ∈ H ′.
By Theorem 3.22, there exists a unique A∗v ∈ H s.t. ∀u ∈ H, fv(u) = ⟨u,A∗v⟩
i.e. ∀u ∈ H, ⟨Au, v⟩ = ⟨u,A∗v⟩.

v → A∗v is linear: Let v1, v2 ∈ H,λ1, λ2 ∈ C, ∀u ∈ H,

⟨u,A∗(λ1v1 + λ2v2)⟩ = ⟨Au, λ1v1 + λ2v2⟩ = λ̄1 ⟨Au, v1⟩+ λ̄2 ⟨Au, v2⟩
= λ̄1 ⟨u,A∗v1⟩+ λ̄2 ⟨u,A∗v2⟩ = ⟨u, λ1A∗v1 + λ2A

∗v2⟩

Therefore, A∗(λ1v1 + λ2v2) = λ1A
∗v1 + λ2A

∗v2, A∗ : H → H is a linear operator.

Suppose ∥v∥ = 1. If A∗v = 0, then ∥A∗v∥ ≤ ∥A∗∥.
Suppose A∗v ̸= 0. Then ∥A∗v∥2 = ⟨A ∗ v,A∗v⟩ = ⟨AA∗v, v⟩ ≤ ∥AA∗v∥ ∥v∥ ≤ ∥A∥ ∥A∗v∥.
Then ∥A∗v∥ ≤ ∥A∥. ∥A∗∥ ≤ ∥A∥.
Note: ∀u, v ∈ H, ⟨u, (A∗)∗v⟩ = ⟨A∗u, v⟩ = ⟨v,A∗u⟩ = ⟨Av, u⟩ = ⟨u,Av⟩.
Thus (A∗)∗ = A, and ∥A∥ = ∥(A∗)∗∥ ≤ ∥A∥.
Thus ∥A∥ = ∥A∗∥.
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Example: For u =

u1...
un

 ∈ Cn, define A s.t. (Au)i =
n∑

j=1

Aijuj , where Aij ∈ C. Then

⟨Au, v⟩ =
n∑

i=1

(Au)ivi =
∑
i,j

Aijujvi

=
n∑

j=1

uj

n∑
i=1

Aijvi =
n∑

j=1

uj(A∗v)j ,

where (A∗v)i =

n∑
j=1

Ajivj . Thus if A = (Aij), then (A∗)ij = Aji.

Example: Suppose {Aij}∞i,j=1 is a double sequence in Cn s.t.
∑
i,j

|Aij |2 = lim
N→∞

N∑
i=1

N∑
j=1

|Aij |2 <∞.

Define A : l2 → l2 by Aa =

∞∑
j=1

Aijaj , where a = {aj}j ∈ l2.

Then A ∈ B(l2, l2) and ∀a, b ∈ l2, ⟨Aa, b⟩ =
∑
i

∑
j

Aijajbi =
∑
j

aj
∑
i

Aijbi = ⟨a,A∗b⟩, where (A∗b)i =

∞∑
j=1

Ajibj .

Example: Suppose K ∈ C([0, 1]× [0, 1]). Define A : L([0, 1]) → L2([0, 1]) s.t. Af(x) =
∫ 1

0
K(x, y)f(y)dy.

Then A∗g(x) =

∫ 1

0
K(y, x)g(y)dy

Theorem: 3.24: Range Null Space

Suppose H is a Hilbert space and A : H → H is a bounded linear operator. Then (Range(A))⊥ =
Null(A∗), where Range(B) = {Bu : u ∈ H}, Null(B) = Ker(B) = {u ∈ H : Bu = 0}.

Proof. v ∈ Null(A∗) ⇔ ⟨u,A∗v⟩ = 0, ∀u ∈ H ⇔ ⟨Au, v⟩ = 0 ⇔ v ∈ (Range(A))⊥

Remark 13. Suppose Range(A) is closed. Then A : H → H is surjective ⇔ A∗ : H → H is injective.

3.5 Compactness

Definition: 3.10: Compact Subset

If X is a metric space, K ⊂ X is compact if every sequence in K has a subsequence converging to
an element in K.

Example: all finite subsets of any metric space are compact.

Theorem: 3.25: Heine-Borel

A subsets K ⊂ R (or Rn, Cn) is compact if and only if K is closed and bounded.
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Exampe: [a, b],
{

1
n : n ∈ N

}
∪ {0} are compact.

Example: Suppose H is an infinite-dimensional Hilbert space, then F = {u ∈ H : ∥u∥ ≤ 1} is not com-
pact.

Proof. Let {en}∞n=1 be an orthonormal subset of H. Then ∀n ̸= k, ∥en − ek∥2 = ∥en∥2 + ∥ek∥2 +
2Re ⟨en, ek⟩ = 2. Thus {en} cannot be Cauchy, i.e. No converging subsequences.

Definition: 3.11: Equi-small Tails

Let H be a Hilbert space. A subset K ⊂ H has equi-small tails w.r.t. a countable orthonormal
subset {en}n if ∀ϵ > 0, ∃N ∈ N s.t. ∀v ∈ K,

∑
k>N

|⟨v, ek⟩|2 < ϵ2.

Example: K = {v1, ..., vn} ⇒ K has an equi-small tail w.r.t. any {ek}k.

Theorem: 3.26:

Let H be a Hilbert space, {vn}n be a sequence with vn → v. Let {ek}k be a countable orthonormal
subset. Then K = {vn : n ∈ N} ∪ {v} is compact and K has equi-small tails w.r.t. {ek}k.

Proof. We show the equi-small tails here.
Let ϵ > 0, since vn → v, ∃M ∈ N s.t. ∀n ≥M , ∥vn − v∥ < ϵ

2 .

Choose N ∈ N large s.t.
∑
k>N

|⟨v, ek⟩|2 + max
1≤n≤M−1

∑
k>N

|⟨vn, ek⟩|2 <
ϵ2

4
.

Then
∑
k>M

|⟨v, ek⟩|2 <
ϵ2

4
< ϵ2, and ∀1 ≤ n ≤M − 1,

∑
k>N |⟨vn, ek⟩|2 < ϵ2

4 < ϵ2.

If n ≥M , by Theorem 3.5,(∑
k>N

|⟨vn, ek⟩|2
)1/2

=

(∑
k>N

|⟨vn − v, ek⟩+ ⟨v, ek⟩|2
)1/2

≤

(∑
k>N

|⟨vn − v, ek⟩|2
)1/2

+

(∑
k>N

|⟨v, ek⟩|2
)1/2

(By Theorem 1.6)

Theorem 3.10
≤ ∥vn − v∥+ ϵ

2
<
ϵ

2
+
ϵ

2
= ϵ.

Theorem: 3.27:

Let H be a separable Hilbert space, and {ek}k be an orthonormal basis of H. Then K ⊂ H is
compact if and only if K is and bounded and has equi-small tails.

Proof. (⇒) Suppose K is compact, then K is closed and bounded by metric space theory.
Suppose K does not have equi-small tails w.r.t. {ek}k.
Then ∃ϵ0 > 0 s.t. ∀N ∈ N, ∃uN ∈ K s.t.

∑
k>N

|⟨uN , ek⟩|2 > ϵ20

Since {uN}N is a sequence in K, then there exists a subsequence {vn}n and v ∈ K s.t. vn → v. Then
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∀n ∈ N,
∑
k>n

|⟨vn, ek⟩| ≥ ϵ20

Then {vn : n ∈ N} ∪ {v} does not have equi-small tails w.r.t, {ek}k. Contradiction to Theorem 3.26. Thus
K must have equi-small tails w.r.t. {ek}k.

(⇐) Suppose K is closed and bounded and has equi-small tails. Let {un}n be a sequence in K.
Since K is closed, we just need to show {un}n has a convergent subsequence.
Since K is bounded, then ∃C ≥ 0 s.t. ∀n, ∥un∥ ≤ C. Then ∀k, n, |⟨un, ek⟩| ≤ ∥un∥ ∥ek∥ ≤ C. i.e. ∀k ∈ N,
{⟨un, ek⟩}n is a bounded sequence in C.
Since {⟨un, e1⟩}n is bounded, there is a subsequence

{〈
un1(j), e1

〉}
j

of {⟨un, e1⟩}n which converges in C.
Since

{〈
un1(j), e2

〉}
j

is bounded, there exists a subsequence
{〈
un2(j), e2

〉}
j

of
{〈
un1(j), e2

〉}
j

which con-
verges.
Note lim

j→∞

〈
un2(j), e1

〉
exists and lim

j→∞

〈
un2(j), e2

〉
exists.

Then ∀l, there exists subsequence {nl(j)}j of {nl−1(j)}j s.t. ∀1 ≤ k ≤ l, lim
j→∞

〈
unl(k), ek

〉
exists.

Pick vl = unl
(l) for l = 1, 2, 3, .... Then {vl}l is a subsequence of {un}n s.t. ∀k, {⟨vl, ek⟩}l converges.

Now we show that {vl}l is Cauchy. Let ϵ > 0.

Since K has equi-small tails, ∃N ∈ N s.t. ∀l ∈ N,
∑
k>N

|⟨vl, el⟩|2 <
ϵ2

16
.

Since the N sequences {⟨vl, e1⟩}l , ..., {⟨vl, eN ⟩}l converge, ∃M ∈ N s.t. ∀l,m ≥M ,

we have
N∑
k=1

|⟨vl, ek⟩ − ⟨vm, ek⟩|2 <
ϵ2

4

Then ∀l,m ≥M ,

∥vl − vm∥ =

[
N∑
k=1

|⟨vl − vm, ek⟩|2 +
∑
k>N

|⟨vl − vm, ek⟩|2
]1/2

≤

[
N∑
k=1

|⟨vl − vm, ek⟩|2
]1/2

+

[∑
k>N

|⟨vl, ek⟩ − ⟨vm, ek⟩|2
]1/2

<
ϵ

2
+

[∑
k>N

|⟨vl, ek⟩|2
]1/2

+

[∑
k>N

|⟨vm, ek⟩|2
]1/2

<
ϵ

2
+
ϵ

4
+
ϵ

4
= ϵ

Therefore {vl}l is Cauchy, and thus converges.

Definition: 3.12: Hilbert Cube

K =
{
{ak}k ∈ l2 : |ak| ≤ 2−k

}
is compact. K is the Hilbert cube.

Theorem: 3.28:

A subset K ⊂ H is compact if and only if K is closed and bounded, and ∀ϵ > 0, there exists a finite
dimensional subspace W ⊂ H s.t. ∀u ∈ K, inf

w∈W
∥u− w∥ < ϵ.
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3.6 Operators

Let H be a Hilbert space, the bounded linear operators set B(H,H) will be denoted by B(H).

3.6.1 Finite Rank Operators

Definition: 3.13: Finite Rank Operators

T ∈ B(H) is a finite rank operator if Range(T ) (a subspace of H) is finite dimensional. Write
T ∈ R(H).

Example: Ta =
{
a1
1 ,

a2
2 , ...,

an
n , 0, 0, ...

}
for a = {ak}k ∈ l2. Then T is finite rank.

Theorem: 3.29:

R(H) is a subspace of B(H).

Theorem: 3.30: Matrix Representation of Finite Rank Operators

T ∈ R(H) if and only if there exists a finite orthonormal set {ek}lk=1 and constants {Cij}Li,j=1 ⊂ C

s.t. Tu =

L∑
i,j=1

Cij ⟨u, ej⟩ ei.

Proof. (⇐) By defintion, T is a finite rank operator.

(⇒) Since Range(T ) is finite dimensional, there exists an orthonormal basis {ēk}Nk=1 s.t.

Tu =
N∑
k=1

⟨Tu, ēk⟩ ēk =
N∑
k=1

⟨u, T ∗ēk⟩ ēk =
N∑
k=1

⟨u, vk⟩ ēk, where vk = T ∗ēk.

Let {e1, ..., eL} be the orthonormal subset of H obtained by applying Gram-Schmidt to {ē1, ..., ēL, v1, ..., vL}

Then ∃aki, bkj s.t. ēk =
L∑

k=1

akiei, v̄k =
L∑

j=1

bkjej .

Then Tu =

N∑
k=1

⟨u, vk⟩ ēk =

L∑
i,j=1

(
N∑
k=1

akibkj

)
⟨u, ej⟩ ei. We can thus define Cij =

∑N
k=1 akibkj .

Theorem: 3.31:

1. If T ∈ R(H), then T ∗ ∈ R(H).
2. If T ∈ R(H), A,B ∈ B(H), then ATB ∈ R(H).
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Proof. Write Tu =

L∑
i,j=1

Cij ⟨u, ej⟩ ei, for u ∈ H. Then ∀u, v ∈ H,

⟨u, T ∗v⟩ = ⟨Tu, v⟩ =

〈∑
i,j

Cij ⟨u, ej⟩ ei, v

〉
=
∑
i,j

Ci,j ⟨u, ej⟩ ⟨ei, v⟩

=

〈
u,
∑
i,j

Cij⟨ei, v⟩ej

〉

=

〈
u,
∑
i,j

Cij ⟨v, ei⟩ ej

〉

Thus
〈
u, T ∗v −

∑
i, jCji ⟨v, ei⟩ ej

〉
= 0 for all u, v

Therefore, T ∗v =

L∑
i,j=1

Cji ⟨v, ei⟩ ej for all v ∈ H. Then T ∗ ∈ R(H).

3.6.2 Compact Operators

Notice that R(H) is not a closed subset in B(H). i.e. if Tn ∈ R(H) and ∥Tn − T∥ → 0, T ∈ R(H) is not
necesarily true.
Example: Take Tn : l2 → l2 s.t. Tna =

{
a1
1 ,

a2
2 , ...,

an
n , 0, ...

}
for a = {ak}k∈l2 . Then Tn ∈ R(H) and

∥Tn − T∥ → 0, where Ta =
{
a1
1 ,

a2
2 , ...

}
. (∥Tn − T∥ ≤ 1

n+1). Then Te1 = e1, Te2 = 1
2e2, Ten = 1

nen, but
T /∈ R(H).

Definition: 3.14: Compact Operator

A bounded linear operator K ∈ B(H) is a compact operator if K ({u ∈ H : ∥u∥ < 1}) is compact.

Example: Ka =
{
a1
1 ,

a2
2 ,

a3
3 , ...

}
, a ∈ l2. Then K is a compact operator.

Example: If K ∈ C([0, 1] × [0, 1]) and Tf(x) =

∫ 1

0
K(x, y)f(y)dy, f ∈ L2([0, 1]). T is a compact

operator on L2([0, 1]). If K(x, y) =

{
(x− 1)y, 0 ≤ y ≤ x ≤ 1

x(y − 1), 0 ≤ x ≤ y ≤ 1
, then u =

∫ 1

0
K(x, y)f(y)dy solves u′′ = f ,

u(0) = u(1) = 0 on [0, 1].

Example: I on l2 is not a compact operator. Let en be the nth orthonormal basis vector. Then ∥en∥ = 1
and ∥Ien − Iem∥2 = 2, ∀n ̸= m. Then {Ien} does not have a convergent subsequence.

Theorem: 3.32:

Let H be a separable Hilbert space. Then T ∈ B(H) is a compact operator ⇔ ∃{Tn}n of finite rank
operators s.t. ∥T − Tn∥ → 0. i.e. the set of compact operators is the closure of R(H).

Proof. (⇒) Let {ek}k be an orthonormal basis for H. Since T is a compact operator {Tu : ∥u∥ ≤ 1} is a
compact set, then ∀ϵ > 0, ∃N ∈ N s.t.

∑
k>N

∥⟨Tu, ek⟩∥2 < ϵ2, ∀ ∥u∥ ≤ 1 by Theorem 3.27.
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For n ∈ N, define Tnu =

n∑
k=1

⟨Tu, ek⟩ ek for u ∈ H.

Then Tn ∈ B(H) and Range(Tn) ⊂ span {e1, ..., en}, thus Tn ∈ R(H).
Let ϵ > 0, N as above. Let n ≥ N . Then if ∥u∥ = 1,

∥Tnu− Tu∥ =

∥∥∥∥∥
n∑

k=1

⟨Tuek⟩ ek −
∞∑
k=1

⟨Tu, ek⟩ ek

∥∥∥∥∥
2

=

∥∥∥∥∥∑
k>n

⟨Tu, ek⟩ ek

∥∥∥∥∥
2

By Theorem 3.10
=

∑
k>N

|⟨Tu, ek⟩|2

≤

∥∥∥∥∥∑
k>N

⟨Tu, ek⟩ ek

∥∥∥∥∥
2

< ϵ

Thus ∥Tn − T∥ < ϵ, ∥Tn − T∥ → 0

(⇐) Suppose ∥Tn − T∥ → 0 with Tn ∈ R(H),∀n, then {Tu : ∥u∥ ≤ 1} ⊂ {v : ∥v∥ ≤ ∥T∥}.
Then {Tu : ∥u∥ ≤ 1} is closed and bounded.
Claim: ∀ϵ > 0, there exists a finite dimensional subspace W s.t. ∀ ∥u∥ ≤ 1, inf

w∈W
∥Tu− w∥ < ϵ.

Since ∥Tn − T∥ → 0, ∃N ∈ N s.t. ∥TN − T∥ < ϵ. Let W = Range(TN ). W is a finite dimensional subspace.
Then ∀ ∥u∥ ≤ 1, ∥Tu− TNu∥ ≤ ∥T − TN∥ ∥u∥ ≤ ∥T − TN∥ < ϵ.
Thus, inf

w∈W
∥Tu− w∥ < ϵ. TNu ∈W . By Theorem 3.28, T is compact.

Theorem: 3.33: Properties of Compact Operators

Let H be a separable Hilbert space, K(H) be the set of compact operators on H. Then
1. K(H) is a closed subspace of B(H)
2. If T ∈ K(H), then T∗ ∈ K(H)
3. ∀A,B ∈ B(H), if T ∈ K(H), ATB ∈ K(H)

Proof. 1. clear because K(H) is the closure of R(H)

2. If T ∈ K(H), by Theorem 3.32, ∃Tn ∈ R(H) s.t. ∥Tn − T∥ → 0. Since T ∗
n ∈ R(H), ∥T ∗

n − T∗∥ =
∥Tn − T∥ → 0. Thus T ∗ ∈ K(H)

3. Tn ∈ R(H), so ∃Tn ∈ R(H) s.t. ∥Tn − T∥ → 0. ATnB ∈ R(H) by Theorem 3.31 and
∥ATnB −ATB∥ = ∥A(Tn − T )B∥ ≤ ∥A∥ ∥Tn − T∥ ∥B∥ → 0. Thus ATB ∈ K(H).

3.6.3 Spectrum

Theorem: 3.34:

Let T ∈ B(H). If ∥T∥ < 1, then I − T is invertible and (I − T )−1 =

∞∑
n=0

Tn. (Analogous to

(1− x)−1 =
∞∑
n=0

x for |x| < 1)
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Theorem: 3.35: Invertible Linear Operators

The set of invertible linear operators GL(H) = {T ∈ B(H) : T is bijective} is an open subset of
B(H).

Proof. Let T0 ∈ GL(H). Suppose ∥T − T0∥ <
∥∥T−1

0

∥∥−1. Then
∥∥T−1

0 (T − T0)
∥∥ ≤

∥∥T−
0 1
∥∥ ∥T − T0∥ < 1.

Thus I − T−1
0 (T − T0) ∈ GL(H). T = T0(I − T−1

0 (T − T0)) ∈ GL(H).
i.e.

{
∥T − T0∥ <

∥∥T−1
0

∥∥−1
}

is an open neighborhood of T0 in GL(H). GL(H) isopen.

Definition: 3.15: Spectrum

Let A ∈ B(H). The resolvent set of A is Res(A) = {λ ∈ C : A− λI ∈ GL(H)}. The spectrum of A
is the complement Spec(A) = C \ Res(A).

Example: Let A : C2 → C2, A =

(
λ1 0
0 λ2

)
. Then A − λI =

(
λ1 − λ 0

0 λ2 − λ

)
. A − λI ∈ GL(C2) ⇔

λ ̸= λ1, λ2. Then Spec(A) = {λ1, λ2}, Res(A) = C \ {λ1, λ2}.

Definition: 3.16: Eigenvalue and Eigenvector

If A ∈ B(H) and A− λI is not injective, then ∃u ∈ H \ {0} s.t. Au = λu. Then λ ∈ Spec(A) is an
eigenvalue of A and u is an eigenvector.

Example: Ta =
{
a1
1 ,

a2
2 , ...

}
for a ∈ l2. Note Ten = 1

nen, i.e.
{
T − 1

n

}
en = 0. Then

{
1
n

}
n∈N are

eigenvalues of T , so
{

1
n

}
n∈N ⊂ Spec(T ). 0 ∈ Spec(T ) because T − 0 = T is injective but not surjective and

thus not invertible, 0 /∈ Res(T ).

Example: T : L2([0, 1]) → L2([0, 1]) s.t. Tf(x) = xf(x) has not eigenvalues and Spec(T ) = [0, 1].

Theorem: 3.36:

Let A ∈ B(H). Then Spec(A) is a closed subset of C and Spec(A) ⊂ {λ ∈ C : |λ| ≤ ∥A∥}. (Spectrum
is a compact subset of C)

Proof. We show that the complement Res(A) is open and {|λ| > ∥A∥} ⊂ Res(A).
Let λ0 ∈ Res(A). Since GL(H) is open, then ∃ϵ > 0 s.t. ∥T − (A− λI)∥ < ϵ. T ∈ GL(H).
Then if |λ− λ0| < ϵ, ∥(A− λI)− (A− λ0I)∥ = ∥(λ− λ0)I∥ = |λ− λ0| < ϵ. Thus A − λI ∈ GL(H).
λ ∈ Res(A). So {|λ− λ0| < ϵ} ⊂ Res(A). Res(A) is open.
Suppose |λ| > ∥A∥, then

∥∥ 1
λA
∥∥ < 1. I − 1

λA is invertible. A − λI = −λ
(
I − 1

λA
)
∈ GL(H). Thus

λ ∈ Res(A). i.e. {|λ| > ∥A∥} ⊂ Res(A).

Remark 14. Spectrum cannot be empty. If it is, then ∀u, v ∈ H, f(λ) =
〈
(A− λI)−1u, v

〉
is continuous,

complex differentiable function in λ on C. As λ → ∞, (A − λI)−1 → 0, but Liouville’s theorem tells us
that f(λ) → 0 as |λ| → ∞, f must be identically 0. Then (A− λI)−1 = 0. Contradiction.
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3.6.4 Self-Adjoint Operators

Theorem: 3.37: Self-Adjoint Operators

If A = A∗ ∈ B(H) is a self-adjoint operator, then
1. ∀u ∈ H, ⟨Au, u⟩ is real
2. ∥A∥ = sup

∥u∥=1
|⟨Au, u⟩|

Proof. 1. If u ∈ H, ⟨Au, u⟩ = ⟨u,Au⟩ A=A∗
= ⟨u,A∗u⟩ = ⟨Au, u⟩. Thus ⟨Au, u⟩ is real.

2. Let a = sup
∥u∥=1

|⟨Au, u⟩|.

Note ∀ ∥u∥ = 1, |⟨Au, u⟩|
By Theorem 3.1

≤ ∥Au∥ ∥u∥ = ∥Au∥
Definition 1.10

≤ ∥A∥. Thus a ≤ ∥A∥.
Let ∥u∥ = 1 and Au ̸= 0. Define v = Au

∥Au∥ . Then ∥v∥ = 1.

∥Au∥ = ⟨Au, v⟩ = Re ⟨Au, v⟩

=
1

4
Re [⟨A(u+ v), (u+ v)⟩ − ⟨A(u− v), u− v⟩+ i ⟨A(u+ iv), u+ iv⟩ − i ⟨A(u− iv), u− iv⟩]

=
1

4
(⟨A(u+ v), (u+ v)⟩ − ⟨A(u− v), u− v⟩)

≤ 1

4

(
a ∥u+ v∥2 + a ∥u− v∥2

)
=
a

4

(
2 ∥u∥2 + 2 ∥v∥2

)
(By Theorem 3.4)

= a

Thus ∀ ∥u∥ = 1, ∥Au∥ ≤ a ⇒ ∥A∥ ≤ a
Thus a = ∥A∥

Remark 15. In quantum mechanics, observables (positions, momentum, etc) are modeled by self-adjoint
unbounded operators. All things measured in nature (the eigenvalues) are real.

Theorem: 3.38: Spectrum of Self-Adjoint Operator

Suppose A = A∗ ∈ B(H). Then
1. Spec(A) ⊂ [−∥A∥ , ∥A∥] ⊂ C
2. At least one of ±∥A∥ ∈ Spec(A)

Proof. 1. Since Spec ⊂ {|λ| ≤ ∥A∥}, we just need to show Spec(A) ⊂ R.
We show that if λ = s+ it, t ̸= 0, then λ ∈ Res(A).
Suppose λ = s+ it, s, t ∈ R, t ̸= 0, then A− λ = (A− s)− it = Ã− it, where Ã = A− s = Ã∗.
Then Ã− it is bijective ⇔ A− λ is bijective, so we only need to consider the case s = 0.
Since ⟨Au, u⟩ is real, then Im (⟨(A− it)u, u⟩) = −t ∥u∥2. Thus (A−it)u = 0 ⇔ u = 0. Nnull(A−it) =
{0}, so A− it is injective.
Similarly, (A−it)∗ = A+it is injective. Range(A−it)⊥ Theorem 3.24

= Null((A−it)∗) = Null(A+it) = {0}
So Range(A− it) =

(
Range(A− it)⊥

)⊥
= {0}⊥ = H.
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Now we show that Range(A− it) is closed.
Suppose (A− it)un → v. Then

|t| ∥un − um∥2 = |Im (⟨(A− it)(un − um), un − um⟩)|
≤ ∥(A− it)un − (A− it)um∥ ∥un − um∥

Thus, ∥un − um∥ ≤ 1
|t| ∥(A− it)un − (A− it)um∥.

Since {(A− it)un}n is Cauchy (converges), then un is Cauchy. ∃u ∈ H s.t. un → u.
Then (A− it)u = lim

n→∞
(A− it)un = v. Thus v ∈ Range(A− it). Range(A− it) is closed. Therefore

A− it is bijective.

2. Since ∥A∥ = sup
∥u∥=1

|⟨Au, u⟩|, then ∃ ∥un∥ = 1 s.t. ⟨Aun, un⟩ → ∥A∥ or −∥A∥ as n→ ∞.

Then ⟨(A± ∥A∥)un, un⟩ → 0 as n→ ∞. We want to show that A± ∥A∥ is not invertible.
Suppose A± ∥A∥ is invertible, then

1 = ∥un∥ =
∥∥(A± ∥A∥)−1(A± ∥A∥)un

∥∥
≤
∥∥(A± ∥A∥)−1

∥∥ ∥(A± ∥A∥)un∥ → 0

Contradiction. Thus A± ∥A∥ is not invertible. ±∥A∥ ∈ Spec(A).

Theorem: 3.39:

If A = A∗ ∈ B(H), and a− = inf
∥u∥=1

⟨Au, u⟩, a+ = sup
∥u∥=1

⟨Au, u⟩, then a± ∈ Spec(A) ⊂ [a−, a+].

Proof. Note that |⟨Au, u⟩| ≤ ∥A∥ for all ∥u∥ = 1. Then −∥A∥ ≤ a− ≤ a+ ≤ ∥A∥.
By definition of a±, ∃ ∥u±n ∥ = 1 s.t. ⟨Au±n , u±n ⟩ → a±. i.e. ⟨(A− a±)u

±
n , u

±
n ⟩ → 0.

By the same argument as in Theorem 3.38, a± ∈ Spec(A).
Let b = a−+a+

2 , B = A − bI. Then B∗ = B ∈ B(H), so by Theorem 3.38, Spec(B) ⊂ [−∥B∥ , ∥B∥], and
therefore, Spec(A) ⊂ [−∥B∥+ b, ∥B∥+ b] by linearity.

∥B∥ = sup
∥u∥=1

|⟨Bu, u⟩| = sup
∥u∥=1

∣∣∣∣⟨Au, u⟩ − a− + a+
2

∣∣∣∣ = a+ − a−
2

, since ⟨Au, u⟩ ∈ [a−, a+] and a++a−
2 is the

midpoint, the supremum is half of the length.
Thus Spec(A) ⊂ [a−, a+]

Theorem: 3.40:

Let A∗ = A ∈ B(H), then ∀u, ⟨Au, u⟩ ≥ 0 ⇔ Spec(A) ⊂ [0,∞)

Definition: 3.17: Eigenspace

If A ∈ B(H), define the eigenspace Eλ = Null(A− λI) = {u ∈ H : (A− λI)u = 0}

Theorem: 3.41: Compact Self-Adjoint Operators

Suppose A∗ = A ∈ B(H) is a compact self-adjoint operator. Then
1. If λ ̸= 0 is an eigenvalue of A, then dimEλ is finite and λ ∈ R
2. If λ1 ̸= λ2 are eigenvalues of A, then Eλ1 and Eλ2 are orthogonal.
3. The set of nonzero eigenvalues of A is either finite or countable. If it is countably infinite, then

lim
n→∞

|λn| = 0
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Proof. 1. Suppose λ ̸= 0 and dimEλ = ∞. Then by Gram-Schmidt process, there exists a sequence
{un}n of orthonormal elements in Eλ.
Since A is a compact operator, {Aun}n has a convergent subsequence

{
Aunj

}
j
.

Then
{
Aunj

}
j

is Cauchy, but
∥∥Aunj −Aunk

∥∥2 =
∥∥λunj − λunk

∥∥2 = |λ|2
∥∥unj − unk

∥∥2 = 2|λ|2 does
not converge to 0, since un are orthonormal. Contradiction.
If ∥u∥ = 1, Au = λu, then λ = λ ⟨u, u⟩ = ⟨λu, u⟩ = ⟨Au, u⟩ = ⟨u,Au⟩ = ⟨u, λu⟩ = λ̄ ⟨u, u⟩ = λ̄. Thus
λ ∈ R.

2. Suppose λ1 ̸= λ2, u1 ∈ Eλ1 and u2 ∈ Eλ2 .
Then λ ⟨u1, u2⟩ = ⟨λu1, u2⟩ = ⟨Au1, u2⟩ = ⟨u1, Au2⟩ = ⟨u1, λ2u2⟩ = λ2 ⟨u1, u2⟩.
Then (λ1−λ2) ⟨u1, u2⟩ = 0, but λ1 ̸= λ2, we must have ⟨u1, u2⟩ = 0. i.e. Eλ1 and Eλ2 are orthogonal.

3. Let Λ = {λ ̸= 0 : Au = λu} be the set of nonzero eigenvalues.
Claim: If {λn}∞n=1 is a sequence of distinct nonzero eigenvalues of A, then λn → 0.
Define ΛN =

{
λ ∈ Λ : |λ| ≥ 1

N

}
. ΛN is finite for all N , otherwise we can take a sequence in ΛN that

doesn’t converge to 0. Then Λ =
⋃
N∈N

ΛN is countable.

Let {un}n be a sequence in H s.t. ∥un∥ = 1 and ∀n, Aun = λnun. Then |λn| = ∥λnun∥ = ∥Aun∥.
Assume ∥Aun∥ ̸→ 0. Then ∃ϵ0 > 0 and

{
Aunj

}
j

s.t. ∀j,
∥∥Aunj

∥∥ ≥ ϵ0

Since A is a compact operator, there exists a subsequence ek = unjk
of
{
unj

}
j

s.t. {Aek}k converges
in H and ∥Aek∥ ≥ ϵ0 for all k.
Note ∀k ̸= l, ⟨ek, el⟩ = ⟨unk

, unl
⟩ = 0.

Let f = lim
k→∞

Aek. Then ϵ20 ≤ ∥f∥2 = ⟨f, f⟩ = lim
k→∞

⟨Aek, f⟩ = lim
k→∞

⟨ek, Af⟩.

By Theorem 3.5,
∑
k

|⟨ek, Af⟩|2 ≤ ∥Af∥2 <∞.

Thus lim
k→∞

⟨ek, Af⟩ = 0. Contradiction. Therefore, |λn| = ∥Aun∥ → 0.

3.6.5 Spectral Theorem

Theorem: 3.42: Fredholm Alternative

Let A = A∗ ∈ B(H) be a compact operator and λ ∈ R \ {0}. Then Range(A − λI) is closed and
thus Range(A − λI) =

(
Range(A− λI)⊥

)⊥
= Null(A − λI)⊥. Therefore, either A − λI is bijective

or Null(A− λI) is nontrivial and finite dimensional.

Remark 16. 1. f ∈ Range(A− λI) ⇔ f ∈ Null(A− λI)⊥

2. Since Spec(A) ⊂ R, Spec(A) \ {0} = {eigenvalues of A}.

Proof. Suppose (A− λI)un → f ∈ H. We want to show that f ∈ Range(A− λI).
Let vn = ΠNull(A−λI)⊥un (the projection of un onto Null(A− λI)⊥).
Then (A− λI)un = (A− λI)

(
ΠNull(A−λI)un + vn

)
= (A− λI)vn. Then (A− λI)vn = (A− λI)un → f .

Claim: {vn}n is bounded.
Assume it is not bounded, then there exists a subseqeunce

{
vnj

}
j

s.t.
∥∥vnj

∥∥→ ∞.

Then (A− λI)
vnj

∥vnj∥
= 1

∥vnj∥
(A− λI)vnj → 0f = 0

Since A is a compact operator, there exists a subsequence {vnk
}k of

{
vnj

}
j

s.t.
{
A

(
vnk

∥vnk∥

)}
k

converges.
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Then vnk

∥vnk∥
= 1

λ

[
A

(
vnk

∥vnk∥

)
− (A− λI)

(
vnk

∥vnk∥

)]
. Therefore,

{
A

(
vnk

∥vnk∥

)}
k

converges to an element

v ∈ Null(A− λI)⊥.

Then ∥v∥ = lim
k→∞

∥∥∥∥ vnk

∥vnk
∥

∥∥∥∥ = 1 and (A− λI)v = lim
k→∞

(A− λI)

(
vnk

∥vnk
∥

)
= 0.

Therefore, v ∈ Null(A − λI) ∩ Null(A − λI)⊥ = {0}, v = 0. Contradiction, since ∥v∥ = 1. Thus, {vn}n
must be bounded.

Since {vn}n is bounded and A is a compact operator, then there exists a subsequence
{
vnj

}
j

s.t.
{
Avnj

}
j

converges.

Then, vnj =
1

λ

(
Avnj − (A− λI)vnj

)
converges to an element v.

Then f = lim
j→∞

(A− λI)vnj = (A− λI)v, so f ∈ Range(A− λI).

Theorem: 3.43:

Let A = A∗ ∈ B(H) be a non-trivial compact operator. Then A has a non-trivial eigenvalue λ1 with
|λ1| = sup

∥u∥=1
|⟨Au, u⟩| = |⟨Au1, u1⟩|, where ∥u1∥ = 1 satisfies Au1 = λ1u1.

Proof. In Theorem 3.38, we have shown that at least one of ±∥A∥ ∈ Spec(A) for a self-adjoint operator
A∗ = A.
Then ±∥A∥ is an eigenvalue of A by Theorem 3.42, and |λ1| = sup

∥u∥=1
|⟨Au, u⟩| from ∥A∥ = |± ∥A∥| =

sup
∥u∥=1

|⟨Au, u⟩|.

And |⟨Au1, u1⟩| comes from the fact that eigenvalues are associated with eigenvectors.

Theorem: 3.44: Maximum Principle

Let A = A∗ ∈ B(H) be a compact operator. Then the nonzero eigenvalues of A can be ordered
|λ1| ≥ |λ2| ≥ · · · (counted with multiplicity) with corresponding orthonormal eigenfunctions {uk}
s.t. |λj | = sup

∥u∥=1,u∈span{u1,...,uj−1}⊥
|⟨Au, u⟩| = |⟨Auj , uj⟩| and if the sequence does not terminate,

|λj | → 0 as j → ∞.

Proof. The construction proceeds inductively.
Base case: j = 1 follows from Theorem 3.43.
Induction: Suppose we have λ1, ..., λn along with orthonormal eigenvectors u1, ..., un s.t. |λ1| ≥ |λ2| ≥ · · · .

Case 1: Au =

n∑
k=1

λk ⟨u, uk⟩uk, we found all eigenvlaues and the process terminates. A is a finite rank

operator

Case 2: Au ̸=
n∑

k=1

λk ⟨u, uk⟩uk. Let Anu = Au−−
n∑

k=1

λk ⟨u, uk⟩uk ̸= 0

Then An is a self-adjoint compact operator and

1. ∀u ∈ span {u1, ..., un}, Anu = 0

2. ∀u ∈ span {u1, ..., un}⊥, Anu = Au

3. ∀u ∈ H, v ∈ span {u1, ..., un}, ⟨Anu, v⟩ = ⟨u,Anv⟩ = 0, so Anu ∈ spanu1, ..., un⊥. Range(An) ⊂
spanu1, ..., un⊥
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4. If Anu = λu ̸= 0, then u ∈ Range(An) ⊂ span {u1, ..., un}⊥. Thus Au = Anu = λu, i.e. λ is an
eigenvalue of A

By Theorem 3.43, An has a nonzero eigenvalue λn+1 with unit eigenvector un+1 s.t.

|λn+1| = |⟨Aun+1, un+1⟩| = sup
∥u∥=1

|⟨Anu, u⟩|

= sup
∥u∥=1,u∈span{u1,...,un}⊥

|⟨Anu, u⟩|

= sup
∥u∥=1,u∈span{u1,...,un}⊥

|⟨Au, u⟩|

≤ sup
∥u∥=1,u∈span{u1,...,un−1}⊥

|⟨Au, u⟩| = |λn|

Theorem: 3.45: Spectral Theorem

Let A = A∗ ∈ B(H) be a compact operator on a separable Hilbert space H. Let |λ1| ≥ |λ2| ≥ · · · be
the nonzero eigenvalues of A (counted with multiplicity) with corresponding orthonormal eigenvalues
{uk}k. Then

1. {uk}k is an orthonormal basis for Range(A).
2. {uk}k is an orthonormal basis for Range(A) and ∃ orthonormal basis {fj}j of Null(A) s.t.

{uk}k ∪ {fj}j is an orthonormal basis for H.

Proof. 1. The process of obtaining |λ1| ≥ |λ2| ≥ · · · and eigenvectors {uk}k terminates ⇔ ∃n s.t.

Au =
n∑

k=1

λk ⟨u, uk⟩uk. In this case Range(A) = span {u1, ..., uk}.

Suppose the process does not terminate, {λk}k is countably infinite, λk → 0 by Theorem 3.44.
Claim: If f ∈ Range(A) and ∀k, ⟨f, uk⟩ = 0, then f = 0
Suppose f = Ak and ⟨f, uk⟩ = 0,∀k.
Then ∀k, λk ⟨u, uk⟩ = ⟨u, λkuk⟩ = ⟨u,Auk⟩ = ⟨Au, uk⟩ = ⟨f, uk⟩ = 0 ∀k.

By Theorem 3.44, ∥f∥ = ∥Au∥ =

∥∥∥∥∥
(
A−

n∑
k=1

λk ⟨u, uk⟩uk

)
u

∥∥∥∥∥ = ∥Anu∥ ≤ |λn+1| ∥u∥ → 0. Thus

∥f∥ = 0, f = 0.

2. By part 1, Range(A) ⊂ span {uk}k =

{∑
k

ckuk :
∑
k

|ck|2 <∞

}
.

Thus uk is an orthonormal basis for Range(A) =
(
Range(A)⊥

)⊥
= (Null(A))⊥.

Since H is separable, Null(A) is separable, ∃ an orthonormal basis {fj}j of Null(A), so {fj}j ∪ {uk}k
is an orthonormal basis for Null(A)⊕ Null(A)⊥ = H.

3.7 Dirichlet Problem

Let V ∈ C([0, 1]) be a real valued function. Consider

{
−u′′(x) + V (x)u(x) = f(x)

u(0) = u(1) = 0
, x ∈ [0, 1]. Given

f ∈ C([0, 1]), does there exist a unique solution u ∈ C2([0, 1]) to the problem? If V (x) ≥ 0, then yes.
Otherwise, it depends on f .
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Theorem: 3.46:

Let V ≥ 0. If f ∈ C([0, 1]), u1, u2 ∈ C2([0, 1]) solve the problem, then u1 = u2.

Proof. Ket u = u1 − u2. Then

{
−u′′(x) + V (x)u(x) = 0

u(0) = u(1) = 0
.

0 =

∫ 1

0

(
−u′′(x) + V (x)u(x)

)
u(x)dx

= −
∫ 1

0
u′′(x)u(x)dx+

∫ 1

0
V (x)|u(x)|2dx

= −u′(x)u(x)|10 +
∫ 1

0
u′(x)u′(x)dx+

∫ 1

0
V (x)|u(x)|2dx (IBP)

=

∫ 1

0
|u′|2 +

∫ 1

0
V |u|2 (Boundary Condition)

≥
∫ 1

0
|u′|2 (V ≥ 0)

Thus
∫ 1

0
|u′|2 = 0, u′ = 0, u is constant, and u = 0, so u1 = u2.

We now want to show the existence of solution, firstly consider V = 0 case

Theorem: 3.47:

Let K(x, y) =

{
(x− 1)y, 0 ≤ y ≤ x ≤ 1

(y − 1)x, 0 ≤ x ≤ y ≤ 1
, K ∈ C([0, 1]× [0, 1]). Define Af(x) =

∫ 1

0
K(x, y)f(y)dy.

Then A ∈ B(L2([0, 1])) is a compact self-adjoint operator and if f ∈ C([0, 1]), then u = Af is the

unique solution for

{
−u′′(x) = f

u(0) = u(1) = 0
on [0, 1].

Proof. If C = sup
[0,1]2

|K| <∞, then by Theorem 3.1,

|Af(x)| =
∣∣∣∣∫ 1

0
K(x, y)f(y)dy

∣∣∣∣ ≤ C

∫ 1

0
|f(y)| dy

≤ C

(∫ 1

0
12
)1/2(∫ 1

0
|f |2

)1/2

= C ∥f∥2

And |Af(x)−Af(z)| ≤ sup
y∈[0,1]

|K(x, y)−K(z, y)| ∥f∥2.

These two estimates and Arzela-Ascoli theorem (sufficient condition for a sequence of functions to have a
convergent subsequence) give that A is a compact operator on L2([0, 1]).
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Let f, g ∈ C([0, 1]). Then

⟨Af, g⟩ =
∫ 1

0

(∫ 1

0
K(x, y)f(y)dy

)
g(x)dx

=

∫ 1

0

∫ 1

0
K(x, y)f(y)g(x)dydx

=

∫ 1

0
f(y)

(∫ 1

0
K(x, y)g(x)dx

)
dy

= ⟨f,Bg⟩ ,

where Bg(x) =
∫ 1

0
K(y, x)g(y)dy =

∫ 1

0
K(x, y)g(y)dy = Ag(x). i.e. ⟨Af, g⟩ = ⟨f,Ag⟩, ∀f, g ∈ C([0, 1]) ⊂

L2([0, 1])
Since C([0, 1]) is dense in L2([0, 1]), ⟨Af, g⟩ = ⟨f,Ag⟩, ∀f, g ∈ L2([0, 1]). Thus A∗ = A is a self-adjoint
operator.

If f ∈ C([0, 1]), then u(x) = Af(x) = (x− 1)

∫ x

0
yf(y)dy + x

∫ 1

0
(y − 1)f(y)dy.

By FTC, u ∈ C2([0, 1]) with −u′′ = f .

For V ̸= 0,

{
−u′′ + V u = f

u(0) = u(1) = 0
⇔ −u′′ = f − V u ⇔ u = A(f − V u) by leeting f − V u = g and apply

Theorem 3.47 ⇔ (I +AV )u = Af .
Write u = A1/2v, then A1/2

(
I +A1/2V A1/2

)
v = Af . Thus

(
I +A1/2V A1/2

)
v = A1/2f .

Note
(
A1/2V A1/2

)∗
= A1/2V A1/2 is a compact self-adjoint operator.

Theorem: 3.48:

Null(A) = {0} and the orthonormal eigenvectors for A are given by uk(x) =
√
2 sin(kπx), k ∈ N

with eigenvalues λk = 1
k2π2 .

Remark 17. By Theorem 3.45,
{√

2 sin kπx
}∞
k=1

is an orthonormal basis for L2([0, 1])

Proof. We show that Range(A) = L2([0, 1]).
Let u be a polynomial on [0, 1], f = −u′′ with u(0) = u(1) = 0.
By Theorem 3.47, Af is the unique solution to Dirichlet problem with V = 0, i.e. (−Af)′′ = f and
Af(0) = Af(1) = 0, so Af = u.
Since the set of polynomials on [0, 1] vanishing at x = 0, 1 is dense in L2([0, 1]) (from density of C([0, 1])
and Weierstrass Approximation Theorem), Range(A) contains a dense subset of L2([0, 1]). Therefore,
Range(A) = L2([0, 1]).
Since Null(A)⊥ = Range(A), then Null(A) = {0}
Suppose λ ̸= 0, ∥u∥2 = 1 and Au = λu. Then because Af ∈ C([0, 1]) by the bound of |Af(x) − Af(z)|,
u = 1

λAu ∈ C([0, 1]).

Thus Au ∈ C2([0, 1]), u = 1
λAu ∈ C2([0, 1]) ⇒ −u′′ = 1

λu gives that u(x) = A sin
(

1√
λ
x
)
+B cos

(
1√
λ
x
)
.

Since u(0) = 0, B = 0, u(x) = A sin
(

1√
λ
x
)

and A ̸= 0. u(1) = 0 ⇒ 1√
λ
= nπ for n ∈ N.

Thus u(x) = A sin kπx, and A =
√
2 from ∥u∥2 = 1.

60



Definition: 3.18: Series Solution

If f ∈ L2([0, 1]), f(x) =
∞∑
k=1

ck
√
2 sin kπx, ck =

∫ 1

0
f(x)

√
2 sin kπxdx. Define the operation

A1/2f(x) =
∞∑
k=1

1

kπ
ck
√
2 sin kπx. (Essentially, A1/2 multiplies every term by 1

kπ )

Theorem: 3.49:

A1/2 is a compact self-adjoint operator on L2([0, 1]) and
(
A1/2

)2
= A.

Proof. Let f(x) =
∞∑
k=1

ck
√
2 sin kπx, g(x) =

∞∑
k=1

dk
√
2 sin kπx. Then

∥∥∥A1/2f
∥∥∥2
2
=

∥∥∥∥∥
∞∑
k=1

ck
kπ

√
2 sin kπx

∥∥∥∥∥
2

2

=

∞∑
k=1

∣∣|ck|2∣∣
k2π2

≤ 1

π2

∞∑
k=1

|ck|2 =
∥f∥22
π2

Then
〈
A1/2f, g

〉
=

∞∑
k=1

ck
kπ
dk =

∞∑
k=1

ck
dk
kπ

=
〈
f,A1/2g

〉
. A1/2 is self-adjoint.

A1/2
(
A1/2f

)
= A1/2

( ∞∑
k=1

ck
kπ

√
2 sin kπx

)

=

∞∑
k=1

ck
k2π2

√
2 sin kπx

=

∞∑
k=1

ckA
√
2 sin kπx

= A
∞∑
k=1

ck
√
2 sin kπx = Af

To show that A is compact, it suffieces to show
{
A1/2f : ∥f∥2 ≤ 1

}
has equi-small tails.

Let ϵ > 0. Choose N ∈ N s.t. 1
N2 < ϵ2. Let ∥f∥2 ≤ 1.

∑
k>N

∣∣∣〈A1/2f,
√
2 sin kπx

〉∣∣∣2 = ∑
k>N

|ck|2

k2π2

≤ 1

N2

∞∑
k=1

|ck|2 =
1

N2
∥f∥22

≤ 1

N2
< ϵ2

Thus, A is compact.

Theorem: 3.50:

Let V ∈ C([0, 1]) be real valued, and define mV f(x) = V (x)f(x) for f ∈ L2([0, 1]). Then mV ∈
B(L2([0, 1])) is self-adjoint.
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Theorem: 3.51:

Let V ∈ C([0, 1]) be real valued. Then T = A1/2mVA
1/2 satisfies

1. T is a self-adjoint compact operator on L2([0, 1])
2. T ∈ B(L2([0, 1]), C([0, 1]))

Proof. 1. follows from Theorem 3.49 and Theorem 3.50.

2. Since mV ∈ B(L2([0, 1])), it suffices to show A1/2 ∈ B(L2([0, 1]), C([0, 1])).

Let f(x) =
∞∑
k=1

ck
√
2 sin kπx. Then A1/2f(x) =

∞∑
k=1

ck
kπ

√
2 sin kπx by Definition 3.18.

Since
∣∣∣ ck
kπ

√
2 sin kπx

∣∣∣ ≤ |ck|
√
2

kπ
≤ |ck|

j
and

∞∑
k=1

|ck|
k

≤

(∑
k

1

k2

)1/2(∑
k

|ck|2
)1/2

<

√
π2

6
∥f∥2 by

Theorem 3.1, then by Weierstrass M-test, A1/2f ∈ C)[0, 1] and
∣∣A1/2f(x)

∣∣ ≤√π2

6 ∥f∥2.

Theorem: 3.52:

Let V ∈ C([0, 1]) with V ≥ 0 and let f ∈ C([0, 1]). Then there exists a unique u ∈ C2([0, 1]) solving{
−u′′ + V u = f

u(0) = u(1) = 0
on [0, 1]

Proof. The plan is to have u = A1/2
(
I +A1/2mVA

1/2
)−1

A1/2f .
By Theorem 3.51, A1/2mVA

1/2 is a self-adjoint compact operator.
Then by Theorem 3.42,

(
I +A1/2mVA

1/2
)−1 exists ⇔ Null

(
I +A1/2mVA

1/2
)
= {0}

Suppose
(
I +A1/2mVA

1/2
)
g = 0, then

0 =
〈(
I +A1/2mVA

1/2
)
g, g
〉
= ∥g∥22 +

〈
A1/2mVA

1/2g, g
〉

= ∥g∥22 +
〈
mVA

1/2g,A1/2g
〉

(Self-adjoint)

= ∥g∥22 +
∫ 1

0
V
(
A1/2g

) (
A1/2

)
gdx

= ∥g∥22 +
∫ 1

0
V
∣∣∣A1/2g

∣∣∣2 ≥ ∥g∥22

Thus ∥g∥2 = 0, g = 0. Then
(
I +A1/2mVA

1/2
)−1 exists.

Define v =
(
I +A1/2mVA

1/2
)−1

A1/2f , u = A1/2v.

Thus u+A(V u) = A1/2v +A1/2
(
A1/2mVA

1/2
)
v = A1/2

(
I +

(
A1/2mVA

1/2
))

v = A1/2A1/2f = Af .
Taking the derivatives gives u′′ − V u = −f , so −u′′ + V u = f . u solves the Dirichlet problem.
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