Introduction To Functional Analysis

This is mainly from MIT 18.102 Introduction To Functional Analysis (https://ocw.mit.edu/courses/
18-102-introduction-to-functional-analysis-spring-2021/)

1 Normed and Banach Spaces

1.1 Basic Banach Spaces

Definition: 1.1: Vector Space

V' is a vector space over R or C or a field K if V' has two operations:

e +: VXV -V, (’(11,’()2)—)U1+U2

o KxV =V, (o,v) = av
Along with some axioms: commutativity, associativity, identity and inverse of addition. Identity of
multiplication and distributivity.

Example: R, C", C(]0,1]) ={f :]0,1] — C: f continuous} are vector spaces.

Definition: 1.2: Dimension of Vector Spaces

A vector space V is finite dimensional if every linearly independent set is finite. i.e. VE C V s.t.
N

Yui,...,uny € B, Zaivi =0= a1 =---=any =0, then F is finite. V is infinite dimensional if V' is
i=1
not finite dimensional.

Example: C([0,1]) is infinite dimensional. E = {f,(x) = 2™ : n € NU {0}} is a linearly independent
infinite set.

Definition: 1.3: Norm

A norm on a vector space V' is a function || - || : V' — [0, 00) with the following properties:
1. Definiteness: ||[v||=0< v =10
2. Homogeneity: ||Av|| = |A|||v]| for all v € V and A € K
3. Triangle Inequality: [|v1 + va|| < ||lvi]| + [|v2]|-
A semi-norm is a function || - || : V' — [0, 00) that satisfies 2 and 3, but not necessarily 1.
A vector space V' with a norm || - || is a normed space.
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Definition: 1.4: Metric

Let X be aset. d: X x X — [0,00) is a metric if
l. d(z,y) =0 2=y
2. Ve,y € X, d(x,y) = d(y,x)
3. Vz,y,z € X, d(z,y) < d(z,z) + d(z,y)

Theorem: 1.1: Metric Induced by Norm

Let || - || be a norm on a vector space V. Then d(v,w) = |[v — w|| defines a metric on V called the
metric induced by the norm.

Proof. 1 in Definition [I.3]= 1 in Definition
2: [l —w|[[(=1)(w =) = [ = IJw - v[| = [w = o]
3 in Definition [.3] = 3 in Definition [L.4l O

n 1/2
Example: The Euclidean norm of R™ and C" is given by |z|2 = <Z ’%\2) . We can also have
i=1

n 1/p
|z||co = max |z;|. In general, for p > 1, ||z||, = <Z ]mi|p) :
7
i=1

Example: Let X be a metric space. Define Co(X) = {f : X — C: f continuous and bounded.}. Coo(X)
is a vector space. ||u|lcc = sup |u(z)| is a norm on Cu(X).
rzeX

Proof. 1, 2 are easily satisfied.
For 3, let u,v € Coo(X), then Vz € X, |u(z) + v(z)| < |u(x)] + |v(x)] < ||u)loc + ||V co-
lt|loo + ||v]| 0o is an upper bound for |u(z) +v(x)|. Thus ||u+ v|ee = sup |u(x) + v(z)| < [|ulloo + [|V]loo- O

Note that u, — v in C(X) < ||up —ul| = 0asn — oo < Ve > 0, IN € Ns.t. Vn > N, Vo € X,
|un () —u(z)| < € & up, — u uniformly on X. i.e. Convergence of functions in a continuous and bounded
space of functions C(X) is equivalent to uniform convergence of sequence of functions in X.

Definition: 1.5: [P Spaces

The [P space is the space of sequences I” = {{a;}32; : [[a||, < oo}, where [P-norm is defined by

1/p
(Z2lail) " 1< p <o

SUP1<j<oo laj|,p = o0

lall, =

Example: {%};’il € [P for all p > 1, but not in ! (By p-series test).

Definition: 1.6: Banach Space

A normed space is a Banach space if it is complete w.r.t. the metric induced by the norm. i.e. All
Cauchy sequences converges.

Example: R™ and C” are complete, thus Banach w.r.t. any of {? norms.



Theorem: 1.2:

Let X be a metric space, then C(X) is Banach space.

Proof. We want to show that Co(X) is complete, i.e. every Cauchy sequence {u,} in Cs(X) converges
in Coo(X).

Firstly, we show that u,, — u exists and is bounded.

Let {u,} be a Cauchy sequence in Coo(X). Then AN € N s.it. Vn,m > N, ||uy, — tum|lec < 1 by definition
of Cauchy sequences and choosing ¢ = 1.

Also Vn > No, [[unlee = llun = uny + unglloo < [lun — unglloo + ([t lloo < T+ [Jung[loo-
Let B = [Ju1]|oo + -+ + [[ung|loo + 1. Then |Juy|loc < B for all n. ||uy||eo is bounded.

Since Vo € X, |up(x) — um/(z)| < sup |un(x) — um/(z)| = ||un — tm|co, then Vo € X, {u,(x)}5°, is Cauchy
in C.
By Completeness of C, Vo € X, {uy(2)}52; converges in C. Define u: X — C s.t. u(z) = lim w,(z).

n—oo
Then Vz € X, |u(z)| = li_>m |un(z)] < B, Thus sup |u(z)| < B, u is bounded.
n—oo rzeX

Now we show ||u — u,| — 0 as n — oo.

Let € > 0. Since {u,} is Cauchy in Coo(X), IN € Nst. Vn,m > N, |[up — tum|c < 5.

Let z € X, |un(z) — um(x)| < ||un — Umllee < §. Let m — oo, then Vn > N, |u,(2) — u(z)| < §. Therefore,
ltn — ullee < § <€ Thus |Jup — ullec — 0. u, — u uniformly on X. u is continuous.

Thus u € Coo(X). Cxo(X) is complete and therefore a Banach space. O

Example: Vp > 1, [P is a Banach space.

Example: Cy = {a € [*°: lim a; = 0} is a Banach space with ||a||cc = sup |a;].
J—Q i

Definition: 1.7: Summable Sequence

(e.9]

m
Let {v,} C V be a sequence in V. The series ), v, is summable if {Z vn} converges and
n=1

m=1
> . Un is absolutely summable if ) |lv,|| converges.

Theorem: 1.3:

m o0
If )", vy is absolutely summable, then {Z vn} is Cauchy in V.

n=1

m=1

O

Proof. Same as in R.

Theorem: 1.4:

V' is a Banach space < every absolutely summable series is summable.




Proof. (=) Suppose V is a Banach space. Let v, be an absolute summable series.

m o m 0
By Theorem (1.3 {Zvn} is Cauchy in V. By Definition , {Zvn} converges, thus it is

n=1 m=1 n=1 m=1
summable.
(<) Suppose every absolutely summable series is summable. Let {vy,}, be a Cauchy sequence in V.
We want to show that {v,} converges in V.
{v,} is Cauchy = Vk € N, AN, € N s.t. Vn,m > Ny, |[vn — vl < 27
Define ny, = N1+ -+ Ni. Then N, <njp <ng < ---.
Thus Vk € N, [[vn,., — Un |l < 277, 3 1(Unysy — vn,) is absolutely summable and thus Y (vn,,, — Un,) is
summable.

m oo m—1 o]
= {Z(vnkﬂ — vnk)} converges in V. Thus {vm = Z(U"k+1 —vp, ) + vm} converges in V.

k=1 m=1 k=1 m=1
The subsequence {v,,, } converges in V. Thus {v,}, converges in V by metric space theory. O

Theorem: 1.5: Holder’s Inequality

Let n € N, ag, b, € R, 1§k§n,if1<p<ooand%—i—%:l,then
n n l/p n l/q
> o < (St ) (S )
k=1 k=1 k=1
Theorem: 1.6: Minkowski’s Inequality

Let n € N, ag, by € R, 1 <k <n,if 1 <p < oo, then
n 1/p n 1/p n 1/p
(Z|ak+bk’p> < <Z|ak|p> (Z|bk|p>
k=1 k=1 k=1

1.2 Operators and Functionals

Definition: 1.8: Linear Operators

Let V,W be vector spaces, we say a map 1 : V — W is linear if VA, o € K, Vui,v0 € V,
T(Av1 + Agve) = A1 Tv1 + AoTwe. T is often called a linear operator.

Example: Let K : [0,1] x [0,1] — C be continuous functions. For f € C([0,1]), define T'f(x) =
1

/ K(z,y)f(y)dy. Then Tf € C([0,1]) and VA1, \a € C, f1, fo € C([0,1]), T(A1 fi+Aaf2) = MT fi+ T fo.
0

T is a linear operator. It is the inverse of differential operator.

Definition: 1.9: Continuous Operators

T :V — W is continuous on V if Vv € V, ¥{v,} with v, — v = Tv, — Tv, or equivalently, for all
opensets U CW, T~ 1 (U)={v eV :Tv e U} is open in V.




Theorem: 1.7: Bounded Linear Operator

A linear operator T : V' — W is continuous if and only if 3C' > 0 s.t. Yo € V, [|[Tv||w < Cljv|y. We
say T is a bounded linear operator.

Note: The image of T is not bounded unless 7T is the zero map, but bounded subsets of V are always
mapped to bounded subsets of W.

Proof. (<) Suppose || Tv|| < C|v||.
Let v € V' and suppose v, — v. Then ||[Tv, — Tv|| = ||T (v, — v)|| < C|lvp, — v]| = 0 as n — oc.
By squeeze theorem, | Tv, — Tv|| — 0, T is continuous by the Definition (1).

(=) Suppose T is continuous.

Let By (0,1) be the ball centered at 0 in W with radius 1. Then T-Y(By/(0,1)) = {v € V : Tv € By (0,1)}
is an open set in V' by Definition (2).

0 € T-Y(Bw(0,1)) since T is a linear map 70 = 0. Therefore, Ir > 0 s.t. By (0,7) C T~ (Bw(0,1)).

Let v € V'\ {0}. Then Hﬁ v € By (0, r) and T (2”UHU> € By (0,1).
HT (2” v )H <1l=|Tv| < 2H’UH so we can choose C = £, s.t. Yo € V, [|[Tv||lw < Cljv]|v.

—r
=3 <7 gy

O

Example: T : C([0,1]) — C([0,1]) given by T'f(z / K(z,y)f(y)dy, where K (z,y) € C(]0,1] x [0, 1])

is a bounded linear operator.

Proof. Let f € C([0,1]) and || f]lcoc = sup |f(x)].
z€[0,1]
Then for all z € [0, 1],

1
VTf(w)|=:'/£ zr<x,y>f<y>dy1

1
SAIM%Mﬂw@

1
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Thus [|T fllee < [K ool flloo 0

Definition: 1.10: Operator Norm

Let V, W be normed spaces. Define B(V, W) to be the space of all bounded linear operators. B(V, W)
is a vector space. Define the operator norm

1T} = sup [[Tv]

v||[=1

Note: T € B(V,W) = 3C > 0s.t. Yo e V, | Tv| < C|lv].

Theorem: 1.8:

The operator norm is a norm, so B(V, W) is a normed space.




Proof. Definiteness: Suppose Tv = 0 V||v|| = 1. Then Vo € V' \ {0}, 0 =T (L> = +:Tv. Then Tv =0

o]l flv]]
for all v € V. T is the zero operator.

Homogeneity: |AT'|| = sup |[|ATv|| = |A] sup [|[Tv|| = |A|||T]]-

v||=1 lv]|=1

Triangle inequality: If S, 7 € B(V,W),v eV, |Jv| = 1.
Triangle inequality of norm Definition of Operator Norm
1(S+T)(v)

By Linearity
=" [[Sv+Tv]| < 1Sl +[[Tv]] < ST+ O

Remark 1. If v # 0, then HT (” H)H < 7| = IITw| < |IT]]l.

Example: For T'f(x / K(z,y)f(y)dy, [|T] <[ Koo

Theorem: 1.9:

If W is a Banach space, then B(V,W) is a Banach space.

Proof. Suppose {Ty,}, C B(V,W) s.t. C =) |T,| < oco. We want to show that ) T, is summable.
m m

Let ve V,meN. > |Twll < Y | Talllloll < lloll Y IITull = Cllo|
n=1 n=1

Thus {Z | T v\} is bounded, ", ||T,,v|| converges.

Thus ), Thv is absolutely summable in W. Since W is a Banach space, by Theorem |I.4] -, YonTnv is
summable in W.

m
Define T: V — W st. Tv = lim ZTHU. We want to show that T' € B(V,W).

m—00
n=1

Linearity: VA1, A2 € K, v1,v2 € V|

()\11)1 + )\22}2) = 'nlgnoo Z:IT )\1’01 + )\21}2) A1 hm X:IT nU1 + Aa 'nlgnoo Z:IT nUo = M Tv1 + AT v

T € B(V,W) (Bounded): Let v € V, |v|| = 1.

m m
|Twl| = || lim_ ZlTnv ZlTnv
n— n=

= lim
m—0o0

m m
< ,gignooZl | To] < n}gnoozg ITallloll = S |1 T0ll = €
n= n= n

Thus ||Tv|| < C for allv e V, |jv|| = 1. || Tv|| < C||v|| Vv € V. Therefore, T' € B(V,W).

m
Now we show that Z T, —T.
n=1

Let v eV, |v|| =1

m m/
TU—ZTnv = mhglooZT U—ZT’U = ml,lgnoO Z T,v
n=1 n=m+1
m/ m’ m/ 00
< 1l < 1 < I =
< dm | Y Tol< sm Y Tel< im S nI= Y %
n=m+1 n=m+1 n=m+1 n=m+1




m oo m
Thus, ||T" — ZTn < Z IT.|| — 0 as m — oco. By squeeze theorem, ||T — ZTn — 0.
n=1 n=m-+1 n=1
m
Thus Z T, — T, and B(V,W) is a Banach space. O
n=1

Definition: 1.11: Dual Space and Functionals

If V is a normed space, V' = B(V,K) is the dual space of V. Since K = R or C is complete, V' is a
Banach space. An element in V' is called a functional.

Example: V1 < p < oo, The dual of I space is (I?)’ = ¥ where }% + %D =1. (1YY =1, (I1?) =2, but
(Y # 11

1.3 Quotient Spaces

Definition: 1.12: Subspace

W C V is a subspace if VA1, Ao € K, wy,wy € W, Mjwy + Aowg € W

Theorem: 1.10: Banach Subspace

A subspace W of a Banach space V' is a Banach space if and only if W C V is closed.

Definition: 1.13: Quotient Space

Let W C V be a subspace. Define equivalence relation on V by v ~ v/ & v — v € W. Define
[v] = {v' € V: v/ ~ v} to be the equivalence class of v. Usually, we write [v] as v + W.

The quotient space is V/W = {[v] : v € V'} the collection of equivalence classes. V/W is a vector
space with (v1 + W) + (va + W) = (v1 +v2) + W and A(v+ W) = v+ W.

Note: W =04+W =w+ W for all w+ W.

Theorem: 1.11:

Let ||| be a semi-norm on V. Then £ = {v € V : ||v|| = 0} is a subspace of V.. Let |[v+El|y/g = ||v]|
Vv + E € V/E. Then ||v + E|y,g defines a norm on V/E.

Proof. Yvi,v3 € E and A1, A2 € K, ||[Av1 + Agvz|| < |A1]]|vi]| + [A2]llvz2]] by homogeneity and triangle
inequality of semi-norm.
Since ||v1]] = |lv2|| = 0, ||A1v1 + Agv2]] = 0, E is a subspace.

We now check that [|v+ Elly/g = [[v]| is well defined. Suppose v+ E =v'+ E, i.e. Je € E's.t. v=1"+e.
Then [[o| = [|v" +el| < [[V'[| + [le]l = [[v[|. Similarly, [[o/]] < [lv]|. Thus [[o]] = {]v"||

Norm: Homogeneity and triangle inequality comes from the semi-norm. Definiteness comes that everything
evaluates to 0 is in the same equivalence class in the quotient space. O



Theorem: 1.12: Baire Category Theorem

If M is a complete metric space and {C,,} is a collection of closed subsets of M s.t. M = ﬂ Ch,

neN
then at least one C), containts an open ball B(z,r) = {y € M : d(z,y) < r}.

Proof. Assume that 3 a collection of closed subsets {C},} s.t. M = ﬂ C', and none of (), contains an open
neN

ball.

Since M contains an open ball, but Cy does not, then M # C1, 3p; € M \ C1.

Since C is closed, M \ Cj is open. Je; > 0 s.t. B(p1,e1) NCy = 0.

Now, since Cy does not contain an open balls, B(p1, §) ¢ C2, Ip2 € B(p1, 5) s.t. p2 & Ca.

Since Cy is closed, 30 < €2 < F s.t. B(p2,e2) N Cy = 0.

By induction, we can find a sequence of points {p;}r in M and ¢; € (0,€1) s.t. Vk, pp € B(pg—1, 6’“?’1),
B(pg,ex) N C = 0.

Now, we show that {py} is Cauchy.
VkeN,VlIeN,
d(pks Prt1) < d(p, Pr1) + -+ + d(Prti-1, Prt1)

€k €k+1—1
<A+
3 3

00

€1 €1 —-m

<3T+"'+W<Elz3
m=0

— Eg-k+1

2
Thus, {px} is Cauchy.
Since M is complete, Ip € M s.t. pp — p.
Now Vk € N,

1 1 N 3
d(pk+lapk+1+l) < €k+1 <3 + -+ 3’6) < €k41 Z 37 = 6k+1§
m=0

Take limit as | — 00, d(pg41,p) < Seps1 < 5ex Thus d(py,p) < d(Pr, Prt1) + d(Prt1,p) < 3k + 36k < €
Thus p € B(pg,€x), p ¢ Ci for any k. p ¢ UC = M. Contradiction. O]
n

Theorem: 1.13: Uniform Boundedness Theorem

Let B be a Banach space. {7} be a sequence in B(B, V) (a sequence of bounded linear operators).
If Vb € B, sup ||T,,b|| < oo, then sup ||T,|| < oo.
n n

Proof. Define Cy, ={b€ B :||b|| <1 and sup, [|T,b| < k} for k € N.
If {b,} C Cx and b,, — b, then ||b]| = h_)m |bn]] <1 and Vm € N, ||T5,0|| = h_)m | Tnbnll < k. Thus b € Cy,

C}, is closed.

Since Vb € B, sup ||T,,b|| < oo, we can always find some integer k to bound the sup, {b € B : ||b]| < 1} =
n

U (% is a complete metric space as union of closed sets.
k



By Theorem there exists Cj that contains an open ball B(bg, dp).
Let b € B(0,00), i-e. ||b]| < dp. Then by + b € B(bg, o), sup ||Tn(bo + )| < K.

sup || T,b]| = sup || T (bo + b) — Tpbol| < sup || Tnbol| + sup || T (bo + b)|| < k + k = 2k

4k
Let n € N, ||b]| = 1. Then ‘ T, (%%)H < 2k, ||ITb] < %. Thus |T,) < % and sup||To) < T <o0. O
n

do

1.4 Open Mapping and Closed Graph Theorem

Theorem: 1.14: Open Mapping Theorem

If By, By are Banach spaces and T' € B(Bj, B2) is a surjective bounded linear operator, then T is an
open map i.e. ¥V open subset U C By, T(U) is open in Bs.

Proof. Firstly, we prove that if B(0,1) = {b € By, ||b|]| < 1}, then T'(B(0,1)) contains an open ball in Bs
centered at 0.
Since T is surjective, By = |_J T(B(0, n)).

neN
By Theorem dng € N s.t. T(B(0,n9)) contains an open ball. By linearity, noZ'(B(0,1)) contains an
open ball. Since ng is just a constant rescaling, 7'(B(0, 1)) contains an open ball.
i.e. Jug € By and 7 > 0 s.t. B(vg,4r) C T(B(0,1)).
Then Jv; = Tu; € T(B(0,1)) for some u; € B(0,1) s.t. |Jvg — v1]| < 2r. Then B(vy,2r) C B(vg,4r) C
T(B(0,1))
Let |[v]| < r, then 3(2v + v) € $T(B(0,1)) = T(B(0, 3)). Then,

1
= 5(21} +v1) —

. Ul 1 (251 1 _ 7& 1 T(B(0 1))
Thus B(0,7) € T(B(0,1)). Rescale by 2°7, B(0,2~"r) = 2-"B(0,r) C 2-"T(B(0,1)) = T(B(0,2-")) for
any n € N.

Now we show that B(0,5) C T(B(0,1)).

Let |[v]| < 4. Then v € T(B(0, 3)) = 3b; € B( 2) st flo—Tby| < &. Thus v — Ty € T(B(0, 1)).

Then by € B(0, 1) s.t. [|v — Tb1 Thy| < g Contlnumg the iteration, we get a sequence {bk} in By s.t.
n

1 1 1
5111 = 5(21} + 1) — ETul

o]l < 2%, |lv — ZTka < 27" The series 3 by, is absolutely summable in B .

k=1
Since B1 is a Banach space, by Theorem -, > bg is summable, 3b € By s.t. b = Y by and ||b|| =

lim szku < lim anku - anku < Zz ko

Moreover, since T is continuous, 7b = lim TZ by = hm Z Tby, = v. Since ||b|| < 1, we have v =Tb €

n—o0
T(B(0,1)).
Thus B(0,%) C T(B(0,1)) (as by definition, [[v|| < %, v € B(0,%)). i.e. T(B(0,1)) contains an open ball
in By centered at 0.

We have shown the specific case. Now, suppose U C Bj is open and by = Thy € T(U). Then Je > 0 s.t.
b1 + B(0,¢e) = B(by,¢) CU. Let 6 >0

B(bs, €8) = by + €B(0,38) C by + eT'(B(0,1)) = Thy + ¢T(B(0,1)) = T(by + B(0,¢)) C T(U)



This shows the general case. O

Corollary 1. If By, By are Banach spaces, T € B(By, Bs) is a bijective bounded linear operator, then
T € B(By, By).

Proof. T~! is continuous if and only if V open U C B, (T~1)~}(U) = T(U) is open by Theorem O

Theorem: 1.15:

Let Bji, By be Banach spaces, then By x By with norm ||(b1, b2)|| = ||b1]| + ||b2|| is a Banach space.

Theorem: 1.16: Closed Graph Theorem

If B;, By are Banach spaces, T : By — Bs is a linear operator, then T' € B(By,Bs2) & I'(T) =
{(u,Tu) : w € B1} C By x By is closed.

Proof. (=) Suppose T € B(By, B2). Let {(un,Tuy,)} be a sequence in I'(T) s.t. u, — u and Tu,, — v.
Then by continuity, v = lim Twu, = T( lim u,) = Tu. Thus (u,v) = (u,Tu) € I'(T"), I'(T) is closed.
n—oo n—oo

(<) Define m : I'(T') — By s.t. mi(u, Tu) = u, m : I'(T") — By s.t. ma(u, Tu) = Tu.
I(T)
AR
By T By

Since I'(T") C By x By is a closed subspace of the Banach space By x Bs, then I'(T) is a Banach space.
Since |71 (u,v)|| = ||u|| < ||ul| + ||Jv|| = || (w,v)||, m1 € B(I(T), B1), similarly, mo € B(I'(T), Ba).

Also m; : T(T) — By is bijective, thus S = ;' : By — I'(T) is a bounded linear operator.

Then T = w08 : By — Bs is a bounded linear operator as the composition of bounded linear operators. [

Remark 2. Theorem and Theorem are logically equivalent.

1.5 Hahn-Banach Theorem

Given a general non-trivial normed space, the dual space V' = B(V,K) = {0} is not necessarily true. The
Hahn-Banach Theorem tells us that the dual space contains many elements.

Definition: 1.14: Partial Order

A partial order on a set E is a relation < on E s.t.

1. Vee E,e<e

2. Ve, feFE, e<fand f<e=e=f

3. Ve,f,ge E,e< fand f<g=e<yg
An upper bound of a set D C E is an element e € F s.t. Vd € D, d < e. A maximal element of E is
an element e € E s.t. if f € F and e < f, then e = f. Similar definition for minimal element.

Definition: 1.15: Chain

If (E, <) is a partially ordered set, a chain in F is a set C' s.t. Ve, f € C, either e < for f <e




Lemma: 1.1: Zorn’s Lemma

If every chain in a non-empty partially ordered set F has an upper bound, then F has a maximal
element

Definition: 1.16: Hamel Basis

A Hamel basis H C V' (V' a vector space) is a linearly independent set s.t. every element of V' is a
finite linear combination of elements of H.

Example: { [(1)] , [ﬂ } is a Hamel basis for R2.

Theorem: 1.17:

If V is a vector space, then V' has a Hamel basis.

Proof. Let E = {linearly independent subsets of V'}.
Define a partial order < on E by inclusion, i.e. for e,e’ CV,e<e < e Cé.
Let C be a chain in E. Define ¢ = U e. Then Ve € C, e < ¢, ¢ is an upper bound for C.

ecC
Let vi,...,on € ¢. Jeq,...,ey € C s.t. Vj, v € ¢;.

Since C is a chain, 3J st. Vj = 1,...,N, e; < ey (equivalently, e; C ey). Therefore, vi,...,vn € €.
v1,..., 0N are linearly independent, since ey € E. Thus C € F.

By Lemma E has a maximal element H.

Assume H does not span V, then Jv € V s.t. v cannot be written as a finite linear combination of elements
in H.

H U {v} is a linearly independent subset of V. Then H < H U{v}, H is not maximal. Contradiction.
Thus H spans V and by definition, H is a Hamel basis. O

Let V be a normed space, M C V be a subspace and v : M — C be linear s.t. |u(t)| < C||t||,Vt € M.
Let © ¢ M. Then Ju' : M’ — C which is linear on M' = M +Cx = {t + ax : t € M,a € C} s.t.
|y =wand Vt' € M, [W/(t)] < C||¢||

Proof. If ' € M’ = M + Cuz, then there exists unique t € M and a € C s.t. t/ =t + ax.
If t + ax =t + az, then (a —a)r =t —t € M, a=a, t =t. Otherwise, (a — a)r # 0, and (a — a)z ¢ M.
Once we choose A € C, v/ (t + ax) = u(t) + aX is well-defined on M and ' : M’ — C is linear.

WLOG, assume C' = 1. We want to choose A € Cs.t. Vi € M, a € C, |u(t) + aX| < ||t + az||, which always
holds for a = 0.

Consider the case a # 0. Then we can divide both sides by |al.

lu(L) — Al < ||-£ — || V¢t € M, which is equivalent to |u(t) — | < ||t — z]|.

We firstly show that Ja € R s.t. |w(t) — a] < ||t — ||, Yt € M where w(t) = Re(u(t)) = M
Note ¥t € M, [u(t)| = [Re(u(t))| < [u(t)] < ]
Then th,tg S M, w(tl) — ’LU(tQ) = w(t1 — tg) S \w(tl - t2)| S ”tl — tQH S Htl - .%'H + th - .1‘”
Thus, w(t1) — |[t1 — z|| < w(t2) + ||t2 — z||, Vt1,t2 € M. Therefore, sup[w(t) — ||t — z||] < w(t2) + ||t2 — =],
Vit € M. M
Then sup|w(t) — ||t — z||] < inf w(t) + ||t — z||. We choose « between them.
teM teM
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Then vt € M, w(t)— [t -z < a < w(t)+ [[t—al| = [t —z] < a—w(t) < [t -2l = lw(t) —a] < [t—z].
We can repeat this for imagnary part by replacing x with iz. Then it defines v’ on all M + Cz. O

Theorem: 1.18: Hahn-Banach Theorem

Let V be a normed space, M C V asubspace, and u : M — C a linear map s.t. Vt € M, |u(t)| < C||¢]]
for all t € M (bounded lienar functional), then there exists a continuous extension U € V' = B(V, C)

s.t. Uy =wand |[U(¢)|| < C||t]] for all t € V.

Proof. Strategy: Firstly, apply Lemma for all continuous extensions of u to get a maximal element U.
Then use Lemma [1.2] to show that U is defined on all of V.

Let E = {(v, N)} where N is a subspace of V' and v is a continuous extension of u to N.
Define < on E by (v1, N1) < (v2, N2) if N; C N2 and va|n, = v1. Then < is a partial order.
Let C' = {(vi, N;),i € I} be a chain in E. Then Vi;, iy € I, either (v;;, N;,) < (vi,, Ni,) or vice versa.

Let N = U N;. We show that N is a subspace.

Let vl,vgleelN and ay,a2 € C, Jiy,i3 € I s.t. v1 € N, and vy € N,

Then since C' is a chain, WLOG we assume N;; C N;,. Then v1,va € N;,. ajv1 + agve € N, C N, N is a
subspace.

Define v: N — C, v(t) = vi(t) if t € Nj.

Well-defined: suppose ¢ € N;, N N;,, WLOG assume (v;,, N, ) < (viy, Niy)

Since v;, extend v;,, Ui2|Ni1 = vj,, Vi, (t) = v, (t), v is well defined.

Similarly, we can show that v is linear and is an extension of any v;. Thus Vi € I, (v;, NV;) < (v, N), i.e
(v, N) is an upper bound of C.

By Lemma E has a maximal element (U, N). We want to show that N = V.

Assume N # V. Let © ¢ N, by Lemma there exists a continuous extension of U to N + Cx and
(v, N+Czx)€E.

Then (U, N) < (v, N 4+ Cz), (U, N) is not maximal. Contradiction. Thus N = V. O

Theorem: 1.19:

If V is a normed space, then Vo € V' \ {0}, 3f € V' s.t. ||f|| =1 and f(v) = ||v].

Proof. Define u : Cv — C by u(Av) = Aljv||. Then |u(t)| < ||t]|, Yt € Cv and u(v) = ||v]|.
By Theorem [1.18] 3f € V' extending u s.t. V¢t € V, |f(t)] < [|t[|. Then f(v) = u(v) = |jv].

Since |f(t)] < ||t]], Vt e V, ||f]| < 1. But 1 = f < ||f]l- Thus ||f|| = 1. O

HvH

1.6 Double Dual
Definition: 1.17: Double Dual

The double dual of V is V" = (V')" (dual of the dual)

Example: Let v € V. Define T, : V' — C by T, (v') = v/(v), where v’ is a functional in V’ and v is a fixed
vector in V. Then T, € V".

12



Proof. T, is linear, since v is fixed and v’ is a bounded linear functional.
T, is bounded, since |T,,(v")| = [/ (v)| < ||[v/]|[|v]]-
Thus T, € (V') = V" and ||T,|| < ||v].

Definition: 1.18: Isometry

If V,W are normed space, then T' € B(V, W) is isometric if Vv € V, || Tv|| = ||v||.

Theorem: 1.20:

Let v € V. Define T, : V! — C s.t. T,(v') = v'(v). Then the map T : V! — V" s.t. T(v) = Ty, is
isometric.

O

Proof. We have shown that T'(v) = T, is a bounded linear operator T' € B(V, V") and ||T,|| < ||v| in the
previous example.

Now, we show that Vv € V, ||T,| = ||v]|.

If v =0, it is trivial that ||Zp|| = ||0]|.

If v € V' \ {0}, then by Theorem [1.19] 3f € V' st. || f|| =1 and f(v) = ||v]|.
Then o] = [£(0)] = [Tl < Tl = 7]l Thus ITo]] = ffo].

O

Definition: 1.19: Reflexive Banach Space

A Banach space is reflexive if V= V" in the sense that v — T, is onto.

Example: For 1 < p < oo, IP is reflexive. (I') is not reflexive, since (I}) = I, but (I1°°)" # I'. ¢y the
sequences converging to zero is not reflexive, (cg)’ = I}, but (I')" = [ # .

13



2 Lebesgue Measure and Integrals

Why do we need Lebesgue measure and Lebesgue integrals? Compared with Riemann integrals, Lebesgue
integration has more and better limiting theorems. Consider the space of Riemann integrable functions on
[0, 1]:

LE([0,1]) = {f : [0,1] — C: f is Riemann integrable on [0, 1]}

We can define ||f]]1 = fol |f(z)|dz for f € L%L([0,1]) as a semi-norm. However, even if we quotient out
the || f||1 = 0 subspace to get a norm, LL([0,1]) is still not Banach. The completion of Lk ([0,1]) is the
Lebesgue integrable functions.

Definition: 2.1: Indicator Function

L p(z) = {1,er

0,z ¢ FE

How should we integrate 1g(x)? If E = [a,b], then [ 1g(z)dz = [([a,b]). For more general E, [1g(z)dz =
m(E) where m(F) is the measure (length) of E.

We want to define measure of subsets of R with the following properties:
1. m(E) is well-defined VE C R

2. If I is an interval, m(I) = I(I), regardless of its topology (open/close intervals)
3. If {E,} is a countable collection of disjoint sets, then m (U En> = Zm(En)
n n

4. m is translation invariant: If £ C R, z € R, then m(z + E) =m({x +y : y € E}) = m(E).

However, such a function m : P(R) — [0,00) does not exist. We drop the first assumption, and still
satisfying 2, 3 and 4, which gives the set of Lebesgue measurable sets.

Notation: If I C R is an interval, then [(I) denotes its length.

2.1 Measures

Definition: 2.2: Outer Measure

For A C R, define the outer measure of A as

m*(A) = inf {Z I(I,) : {I,} a countable collection of open intervals s.t. A C U In}

n

Example: m*({0}) =0

Proof. Let € > 0. Then {0} C (=5, §). m*({0}) <I(—5,§) = €. Thus m*({0}) =0. O

Theorem: 2.1:
If A C R is countable, then m*(A4) = 0.
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Proof. If A is countable, then A = {a,, : n € N} can be enumerated.
Let € > 0. We show that m*(A) <e.
For each n € N, let I, = (an — 557, an + srr)-
an € I, for each n, thus A C U, I,.
oo o0
Then m*(A) < Zl([n) = Z 2% =e. Thus m*(A) = 0. O
n=1

n=1

Example: m*(Q) =0

Theorem: 2.2:

If A C B, then m*(A) < m*(B).

Proof. Any covering of B should also cover A. Infimum over covering of A should be smaller. O

Theorem: 2.3:

Let {A,} be a countable collection of subsets of R. Then m* (U An> < Z m*(Ap).

Proof. If In s.t. mx (A,) = 0o or Y. m* (A,,) = 0o, then the inequality is true.
Suppose ¥n m*(A;,) < oo and ) m* (Ay) < co.

o
Let € > 0. For each n, let {I,x}ren be a collection of open intervals s.t. A, C U I, and Zl([nk) <

keN k=1
N €
m*(A,) + o
Then U A, C U L.
neN n,keEN

Thus, by Theorem

m* (U An> <Y UT) =D 0D M) <Y _omt(An) + ) Qin = m(4,) +e
n n,k n k n n n

Let € — 0, we get m* <U An> < Zm*(An). O

Theorem: 2.4:

If I C R is an interval, then m*(I) = I(I).

Proof. Suppose I = [a,b]. Then Ve >0, I C (a—e¢,b+e€), m*(I) <l(a—e,b+e) =b—a+2¢, m*(I) <b—a.
Now, we need to show that b —a < m*(I). Let {I,,}, be a collection of open intervals s.t. [a,b] C UI,.

N
Since [a,b] is compact by Heine Borel Theorem, then 3{Jy}_ | C {I,} s.t. [a,b] C U Jr (Any cover of
k=1
compact sets have finite subcover).
Since a € U,ivzljk, Jk1 s.t. a € Ji,. By rearranging the intervals, we can assume k; = 1. i.e. a € J; =
(al,bl)
If by > b, then we are done. Otherwise by < b, then by € [a,b]. Jka s.t. by € Ji,. By rearranging, assume
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ko =2,b1 € Jo = (az,bg).
We continue until by > b. Thus 3K, 1 < K < Nsit. Vk=1,.., K —1, by < b and ag41 < by < bgy1, and
b < bg. Then,

N K
S UI) =D 1) <D Uk

n k=1 k=1

= (bx —ax)+ (bxk—1 —ax—1)+---+ (b1 —a1)
=bx + (bx—1 —ax) + (bxk—2 —ax 1) + -+ (b1 —az) —ax
>bp,—ar>b—a

Thus m*(I) > b — a. Therefore, m*(I) = b — a.

If I is any finite interval, [a, b], (a,b], [a,b), (a,b), then Ve > 0, [a + €,b— €] C I C [a — €,b+ €.
*([a+e,b—¢€) <m*(I) <m*(ja—eb+¢€]),s0b—a—2e<m*(I) <b—a+2e

Let € > 0, b—a <m*(I) <b— a. Therefore, m*(I) =b — a.

If I =R, (—00,a),(a,0),(—00,al,[a,oo), then m*(I) = co O

Theorem: 2.5:

VA C R and € > 0, there exists an open set O s.t. A C O and m*(4) < m*(0) < m*(A) + ¢

Proof. Tt is clear if m*(A) = oo, so we suppose m*(A) < oo.
Let {I,}n be a collection of open intervals s.t. A C UI and Zl ) <m*(A) + e

n

Take O = UI”’ O is open. A C O and m* <UI ) < Zm*([n) = Zl([n) <m*(A)+e O

Definition: 2.3: Measurable Sets

A set E C R is Lebesgue measurable if VA C R, m*(A) = m*(AN E) + m*(AN E°).

Remark 3. Since VA, E, A = (AN E)U (AN EY), m*(A) < m*(AN E) + m*(AnN EY) always hold by
Theorem . Thus E is measurable if VA C R, m*(AN E) + m*(AN EY) < m*(A).

Theorem: 2.6:

(), R are measurable. E C R is measurable < E¢ C R is measurable.

Theorem: 2.7:

If m*(E) = 0 (E has zero outer measure), then E is measurable.

Proof. Let ACR. Then ANE C E, m* (ANE) <m*(E) =0= m*"(ANE) =0. Thus m*(ANE)+
m*(ANEY) =m*(AN E®) <m*(A).

O

Theorem: 2.8:

If Eq, E> are measurable, then F; U Ey is measurable.
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Proof. Let A C R. Since Ej is measurable, then m*(AN EY) = m*(ANEY N Ey) +m*(An EY NEY) by
Definition setting A = AN Elc, E = Fs.

Then AN (FE1UEy)) = (ANE)U(ANEY) = (AN E)) U (AN EyNEY) (because AN Ey N By is included
in the first set).

Then m*(AN (Ey U By)) < m* (AN Ey) +m* (AN By BE) 71 m@SWe s Ay m* (AN By) +m* (AN
EyN ES) =m*(A) — m*(AN (B U Ey)%)

Rearranging the terms, we get m*(A N (E; U Ey)) +m* (AN (Ey U F)¢) < m*(A) O

Theorem: 2.9:

n
If Eq, ..., B, are measurable, then U E;. is measurable.
k=1

Proof. We prove by induction. n =1 is trivial.
n

IH: Suppose U E}, holds for n = m.

k=1
m+1 m
When n = m + 1. Let Ey,..., Epy1 be measurable. Then U E, = U E, U E,, 41 is measurable as the
k=1 k=1
union of two measurable sets by Theorem [2.8| O

2.1.1 Sigma Algebra

Definition: 2.4: Sigma Alegebra

A non-empty collection of sets A C P(R) is an algebra if:
1. FeA=E“€A
n

2. By,..B,€e A= | JEx€ A

k=1
An algebra A is a g-algebra if also

(0.9]
3. if {E,}52, is a countable collection of elements of A, then U E,cA

n=1

n n C

Remark 4. By De Morgan’s law, Ey,....E, € A = m B, = <U E,?) € A. Thus if E € A, then
k=1 k=1

)=FENE“cA and R=0° c A.

Similarly, if A is a o-algebra, then {E,}, C A = ﬂ E, € A.

Example: A= {§,R}, A=P(R), A={E CR:FE or EY is countable} are o-algebra
Proof. For the third one, F is countable, EC is uncountable, but (EC)C is then countable.

Suppose {E,} C A. If Vn, E, is countable, then U, E,, is countable, U, E,, € A.
If 3Ny s.t. E](\J,O is countable, then (UE,)¢ = NES C ECO, (UE,)® is countable. Thus UE,, € A. O

17



Theorem: 2.10: Borel Measure

Let ¥ = {A: A is a sigma algebra cotaining all subsets of R}. (e.g. P(R) € ) Define B = ﬂ AcC
AeX¥
P(R). Then B is the smallest o-algebra containing all subsets of R. This is the Borel Measure.

Proof. Suppose E € B. Then VA € &, E € A, and thus E€ € A, E¢ ¢ ﬂ A = B. Therefore B is closed

AeXx
under complement.

Similarly, we can show that it is closed under countable union: those sets in the countable union must be
in every A € X, and then we can apply closure under countable union within each A. O

Let A be an algebra, {E,}, be a collection of elements of A. Then 3{F,},, a collection of elements
of A that are disjoint s.t. U I = U F,,. (Thus we only need to check 3 for disjoint collections {E), }

for 3 for o-alg)

Proof. Leth:UEk. ThenGchQC--‘,andUE :UG”'
k=1 n n
Take Fy = G1 and Fy1 = Gpy1 \ Gy for all n > 1. Then U F, = U Gy. And UEk = UFk for

) k=1 k=1 k k
countable unions. O

Theorem: 2.11: Additivity of Lebesgue Measure

n

n
Let ACR, Eq, ..., E, be disjoint measurable sets. Then m* (A N (U Ek.)) = Zm*(A N Ey).
k=1 k=1

Proof. By induction, n = 1 is trivially true.

IH: Suppose m* (A N (U Ek>> = Zm*(A N Ey) is true for n = m.

k=1 k=1
IS: When n = m + 1. Let Ey,..., Ep1 be measurable disjoint sets. Let A C R. Since Ej, N Ep,y 1 = 0 for

m—+1 m—+1 m+41
allk=1,...m. AN (U E | NEmi1=ANEp,1, and AN (U Ek> NES,, =AnN (U Ek>

k=1 k=1 k=1
Since E,,1+1 is measurable, by Definition

m* (AN (UPLEr)) = m* (AN (U Ey) N Egr) +m* (AN (U E) N ES )
=m* (AN Ey,q) +m* (AN (UL Ey))

m
=m* (AN Epi1) + Y m*(An Ey)By TH
k=1
m+1

= m*(ANE)

k=1
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Theorem: 2.12:

The collection M of measurable sets is a o-algebra.

Proof. We have shown that M is an algebra. By Lemma 2.1 we just need to show M is closed under

o0
countable disjoint unions. Let {E,} be a collection of disjoint measurable sets. Let A C R, E = U E,.
n=1
We want to show that m*(AN EY) + m*(ANE) < m*(A).
Let N € N. Since M is an algebra, UN_, E,, € M.

m*(A) = m* (AN (U= En)) +m* (AN (U2 Bn))

>m (AN (UN_E,)) +m* (AN EY)
N
=> m*(ANE,) +m*(An E°)

n=1

Let N — oo, m*(A) > Zm*(AﬂEn) +m* (AN EY) > m* (ANULE,) + m*(ANE®) = m"(ANE) +
n=1

m*(AN E°) O

Theorem: 2.13:

Va € R, (a,o0) is measurable.

Proof. Let A C R, A; = AN(a,00), Ay = AN (—00,al]. We want to show that m*(A;) + m*(A4s) < m*(A).
If m*(A) = oo, then done. Suppose m*(A) < oo
Let € > 0, {I,,}n, be a collection of open intervals s.t. Z I(I,) <m*(A) +e.

n
Define J,, = I, N (a,00), K, = I, N (=00, a]. Then each J,, and K, is either an interval or an empty set.
Then Ay C UpJy, As C UK, and I(I,) = I(Jp,) + U(Ky),

m* (A1) +m(A2) <> m () + Y m (Kp) =Y U(Jn) + UER) =Y (I) <m*(A) +e

n

Let € — 0, m*(A1) + m*(A2) < m(A). O

Theorem: 2.14:

Every open set is measurable, and thus B € M

0 o0 C
1 1
Proof. For all b € R, (—o0,b) = —00,b——| = b—— b b— 1 i -
roof. For all b € R, (—o0,b) nL_Jl( 00, n] nL;J1< n,oo) € M, because ( n,oo) is mea
surable. Complements are measurable by measurable by Definition [2.4] and countable unions of measurable

sets are measurable.
Thus any (a,b) = (—o00,b) N (a,0) is measurable because o-alg is closed under intersections.
Finally every open subset of R is a countable union of open intervals. Thus all open sets are measurable. [
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2.1.2 Lebesgue Measure

Definition: 2.5: Lebesgue Measure

If E € M is measurable, then the Lebesgue measure of E is m(E) = m*(E).

Theorem: 2.15:

If A,B e M and A C B, then m(A) < m(B). Every interval is Lebesgue measurable and m(l) = I(I).

Proof. These properties are inherited from outer measures Definition For closed intervals, [a,b] =
(b,00)¢ N (—00,a)® and (b,00)¢ and (—o0,a)® are measurable.

O

Theorem: 2.16:

Suppose {E,,} is a countable collection of disjoint measurable sets. Then m (U En> = Z m(Ey,).

Proof. Since E,, are measurable, U, E,, € M by Theorem [2.12]
Theorem 2.3

Thus m <U En> Deﬁnigonlmm* (U En> < 2.3] Zm*(En> _ Zm(En)

We now show that Z m(E,) <m U E,

N N N N
Let N e N, m (U En> =m" (Rﬂ <U En>> :Zm*(RﬁEn) :Zm(En)
n=1

n=1 n=1 n=1
N N
Thus, Zm(En) =m <U En> <m(UpEy).
n=1 n=1

Let N — oo, Zm(En) <m(UpEy,). Thus m <U En> = Zm(En) O

Theorem: 2.17: Translation Invariance

If E€ Mand z € R, then E+x ={y+x:y € E} is measurable and m(E) = m(E + x).

Theorem: 2.18: Continuity of Lebesgue Measure

(0.)
Suppose {Eg}i is a collection of measurable sets s.t. E; C Ey C ---. Then m (U Ek> =
k=1
N
s ()

Proof. Let Fy = By, Fii1 = Egy1 \ By for k > 1. Then Fyy = Exy1 N EY € M. Then {F}} is a disjoint
collection of measurable sets.
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Also, Vn € N, UFk_E and UFk_UEk
k=1 k=1

oo [e.e] n
. Theorem 2.16] T By construction .,
Then m <U Ek> =m (U Fk> = E m(Fy) = TLILH;O ,;1 m(Fy) = nl;ngo m(Ey) O

k=1 k=1 k=1
2.2 Measurable Functions

We want to define / f= hmZyZ U(fyiz1,9i]). If f is a general function, f~![y;_1, ;] need not be

i=1
an interval.

Definition: 2.6: Extended Real Numbers

We define the extended real numbers [—oc0,00] = R U {£oo} s.t. = £ 00 = foo, Vo € R and
0(£o0) =0, z(£o0) = 00, Vz € R\ {0}.

Definition: 2.7: Measurable Functions

Let E C R be measurable, f : E — [—o00, o] is Lebesgue measurable if Vo € R, f~1((a, oc]) € M is
measurable.

Theorem: 2.19:

Let £ C R be measurable, f : E — [—00,00]|. Then, the follwoing are equivalent:
1.Vo¢€R,f’(( ])GM

2. Va € R, f~1([a, 0]) €
3. Va € R, f1([~o0 ))EM
4. Ya € R, f~1([~00,a]) € M.

Proof. (1 = 2) Suppose Va € R, f~!((a,00]) € M. Then Va € R, [a, 0] = ﬂ <a — i,oo]. (e, 00]) =

n

1
ﬂ f ((a - — oo}) is measurable as countable intersection of measurable sets.

(2 = 1) Suppose Ya € R, f~1([a,x]) € M. Then Va € R, (a,0] = U [044— Tll,oo], 1 ((a, <))

U ‘. ( [Oé + — oo] > is measurable.

2 & 3, because [—o0, a) = ([a, 00])¢. 1 < 4, because [—00,a] = ((a, o0])%.

O

Theorem: 2.20:

If E C R is measurable and f : E — R is a measurable function, then VF € B (Borel o-alg), f~'(F)
is measurable.

Proof. f is measurable, then Va < b, f~1((a,b)) = f~1([~o0,b) N (a,]) = f~1([~00,b)) N f~1((a,x]) is
measurable. Thus Va < b, f~1(a,b) is measurable. f~1(U) is therefore measurable for all open U C R as
countable union of open intervals. O
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Theorem: 2.21:

If f: E — R is measurable, then f~1({cc}) and f~!({—oc}) are measurable.

Proof. f~1({o0}) = ﬂ 1 is measurable. Similarly, f~*({—oc}) = ﬂ ! —n)) is measur-
able. O

Theorem: 2.22:

If f:R — R is continuous, then f is measurable.

Proof. Ya € R, f~((a, 00]) = f~((ar, 0)) is an open set as pre-image of an open set. Thus measurable. []

Theorem: 2.23:

LLzeF :
Let E C R, F C R be measurable. Define xp(z) = {0 ¢ 4P Then xr : F — R is measurable.
T
0,a>1
Proof. Let a € R, xp' ((a,0]) ={ ENF,0 < <1 is measurable. O
F.a<(

Theorem: 2.24: Algebraic Operations Measurability

Suppose E C R is measurable, f,g : E — R are measurable and ¢ € R. Then cf, f+g¢g,fg: F — R
are measurable.

Proof. 1. If ¢ =0, then ¢f = 0 is continuous, thus measurable. If ¢ > 0, let o € R, cf(z) > a & f(x) >
2 (ef) (e, o)) = fH((a/e, 00]) is measurable, same for ¢ < 0
2. Let « € R f(z) +g9(z) > a & fx) > a—g(x) e Ir e Qs.t flx&) >r > a—gx) (Qis
dense in R). de. f(z) > r and g(z) > a —r. Thus € f~1((r,00]) N g7 '((aw — r,00]). Then
(f+ g)_l((a,oo]) = U (f_l((r, o)) Ng *(a—r, oo])) is measurable
reQ
3. We show that f? is measurable. Let o € R. If a < 0, then (f2)7!((, 00]) = E is measurable.

fa >0 thn 2z) > a & f(z) > vaor f(z) < —va (2 (@ o0]) = f1((/ao0]) U
fH([~o0, —y/@)) is measurable.
Then fg = 1((f +9)* — (f — 9)?) is measurable.
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Theorem: 2.25:

If E C R is measurable, f, : E — [—00,00] is measurable for all n, then the following functions are
measurable

L gi(x) = sty fu(z)
x) = irﬁf fn(x)

2. ga(x)
3. g3(z) = limsup f,(z) = lim sup f,(z) = inf sup f,(x)
4. ga(w) = liminf f,,(z) = Tim Igg fn = sup érzli; fn

Proof. 1. z € g;l((a,oo]) & sup,, fo(z) > a & there exists n s.t. fo(z) > a, ie. @ € f,71((a, 0)),
gfl((a, x]) = U fn_l((oz, o0]) is measurable

n

2. g5 ([, ]) = ﬂf_l([a, o0]) is measurable

n
n

gs is infimum of sequence of functions defined as supremum of f,,, thus measurable. Same for g4. O

Theorem: 2.26:

If E C R is measurable, f, : E — [—00, 00] is measurable for all n, and lim f,(x) = f(z) Vz € E,

n—o0
then f is measurable.

Proof. If lim f,(x) = f(z) Vx € E, then f(z) = limsup f,(z) = liminf f,(z). By Theorem [2.25 both are
n—o0 n—oo n— o0
measurable. O

Remark 5. If f,, : [a,b] — R is Riemann integrable for all n, and f,, — f, then f need not be Riemann
integrable.

1 ey Ty,
Example: Let QN [0,1] = {ry,r2,...}. fu(z) = {O,xIE {ri,...,rn}
, else

finite n. Ya € [0,1], fn(z) = xo(z), which is not Riemann integrable.

Definition: 2.8: Almost Everywhere

A statement P(z) holds almost everywhere on E (a.e. on E) if m({x € E : P(z) does not hold}) =0

Theorem: 2.27:

If f,g: F — [—00,00], f is measurable and f = g a.e. on E, then g is measurable.

. fn(z) is Riemann integrable for all

Proof. Let N ={x € E: f(z) # g(z)}. Then N € M and m(N) = 0 by Definition [2.8
Let a € R, Ny ={x € N : g(x) > a} C N, so m*(N,) =0, and N, € M.
Then g~ ((a, 00]) = (f (e, 00]) N NY) U N, € M.

O

Definition: 2.9: Complex Measurable Functions

Let E C R be measurable, f : E — C is measurable if Re(f) : E — R and Im(f) : E — R are
measurable.
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Theorem: 2.28: Properties of Complex Measurable Functions

If f,g: E — C are measurable and « € C, then af, f + g, fg, f, | f| are measurable.

Theorem: 2.29:

If f, : E — C is measurable Vn and Vz € F, li_>m fn(x) = f(x), then f is measurable.
n—oo

2.2.1 Simple Functions

Definition: 2.10: Simple Functions

If £ C R is measurable, a measurable function ¢ : E — C is a simple function if ¢(E) = {a1, ..., an}
(range is finite).

Remark 6. If ¢ : E — C is a simple function, ¢(E) = {a1,...,a,}, then Vi, A; = p~'({a;}) is measurable

and Vi # j, A; N A; =0, U A;=E,Vz € E, p(x) = z@z’XAi(J?)-
=1

=1 ]

Theorem: 2.30: Properties of Simple Functions

Scalar multiplications, linear combinations and products of simple functions are simple functions.

Theorem: 2.31:

If f: E — [0,00] is measurable, then 3 sequence of simple functions {¢,} s.t.
1. Vz € E,0 < po(z) < p1(z) < -+ < f(a)
2. Vx e E, ILm on(x) = f(z)
3. VB >0, ¢, — f uniformly on {x € E: f(z) < B}

Proof. For n = 0,1,2,..., — < k < 22" — 1, define Ef¥ = {z € £ : k27" < f(z) < (k+1)27"} =
2271,_1
FHR2™, (B +1)277), and Fy = f71((27 00)), on = Y k27 "X + 2"XF,

k=0
_ 1 3
¢-9- ¥1= X104 T 2Xy-2(Ga) T X218 F 2X 13,2 T 2N (200)
By definition, 0 < o, (z) < f(z). If x € EF, then k27" < f(z) < (k+1)27", pu(z) = k27" < f(z). If
x € Fy, then f(z) > 2" = ¢, (z).
For 1, suppose x € EX. Then k27" < f(z) < (k +1)27, (2k)27"! < f(z) < (2k+2)27" ! soz €
n+1 n+1 -
If z € E2% |, then o (2) = k27" = (2k)27" 7! = ppi1(2)
If x € E?L]fjll, then ¢, (r) = k27" = (2k)27" L < (2k+1)27" 1 = ¢, 11 ()
Similarly, if z € F,,, on(z) < pni1(2).

2m 1
Since E = U EF| UF,, then Yz € E, p,(x) < @ni1(z). Thus 1 is proved.
k=0
22n—1
For2and 3, {y € E: f(y) < 2"} = U EF. Suppose 2 € EF, then k27" < f(x) < (k4 1)27™
k=0
Thus 0 < f(z) — pn(z) = f(x) — k27" < (k4 1)27" — k27" = 27". Then 2 and 3 follow. O



Definition: 2.11:

If f: E— [—00,00], we define f*(z) = max(f(z),0) and f~ = max(—f(x),0). Then f = f+ — f~
and |f| = f*+ f~.

Theorem: 2.32:

Let E C R be measurable, f : E — C be measurable. Then there exists a sequence of functions {¢y, }
s.t.
1. Vz € E, 0 < [po(z)| < [p1(2)] < --- < |f(2)]
2. Vx € B, lim ¢,(z) = f(z)
n—oo
3. VB >0, ¢, — f uniformly on {z € E: f(x) < B}.

2.3 Lebesgue Integrals
2.3.1 Lebesgue Integral of a Non-negative Function

Definition: 2.12:

If £ C R is measurable, define LT (E) = {f : E — [0,00] : f is measurable}.

Definition: 2.13: Lebesgue Integral of Simple Functions

n
Let ¢ € L (F) be a simple function, ¢ = ZanAJ" where Vj,A; C E, Vi # j, AiNA; = 0 and

=1
n ! m
A; = E. The Lebesgue integral of ¢ is / p= Zajm(Aj) € [0, co].
j=1 8 j=1

Theorem: 2.33: Properties of Lebesgue Integrals (Simple Functions)

Let p,7 € LT (E) be simple functions. Then

—_

.IchO,then/w):c/go

FE E
-/E(<p+w)=/Eso+/Ew

2

3. Ifgogw,then/gpg/d)
E E

4

. If F C E is measurable, then / ® :/ oxF < / %
F E E

n
Proof. 1. By Definition [2.10] and [2.13} cp = Z(caj)XAj.
j=1

Then / cp = an]m(AJ) = cZa]m(AJ) = C/ (%2
E j=1 7j=1 E

n m n m
2. Write ¢ = ZanAJ" P = ZkaBk' Then F = U Aj = U By.
k=1

j=1 Jj=1 k=1
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m n

Vi, Aj = U Aj N By, Vk, By, = U B N Aj, and these unions are disjoint. Then by Deﬁnition
k=1 j=1

(Additivity),

/E<P+/E¢ = _aym(4;)+)  bim(By) Z“n (AiNBi)+D_bem(Bind;) = 3 (aj+be)m(A;NBy)
j=1 k=1

k,j 3,k
Since ¢ + ¢ = Z(aj + bk)xA;nB,, then / (p+v) = Z(aj +by)m(A; N By) = / ) +/ (0
T E I E E
3. Vx € E, p(z) < 9(x) & a; < by whereever A; N By, # (. Thus

/QO—ZCZ]' Za] A ﬂBk <Zbkm ﬂBk)_Zbkm(Bk)_/’l/J
E j=1 k=1 E

7.k

Definition: 2.14: Lebesgue Integral of Non-negative Functions

If f € LT(E), define
/ f= sup{/ ¢ : ¢ € LT(E) simple functionsp < f}
E E

Theorem: 2.34:

If ECRst. m(E)=0, then Vf € LT(E), / f = 0. (Similar to Riemann integral over a single
E

point)

Proof. Let ¢ € LT(E) be simple. ¢ = Za]XA with ¢ < f. Then A; C E,Vj = m(4;) = 0,Vj =
7j=1

/ Za] ) = 0. Thus, /90:sup{0}:0 O
E

Theorem: 2.35: Properties of Lebesgue Integrals (Non-negative Functions)

If ¢ € LT (F) is simple, then the two definitions (2.13 and [2.14) agree
If f,g€ LT(E), c€[0,00) and f < g on E, then : <

If fe LT(E) and F C E is measurable, then fXF <

Theorem: 2.36: Order Property of Lebesgue Integrals (Non-negative Functions)

If f,g€ LT(F) and f < g a.e. onE,then/fg/g
E E
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Proof. Let F ={z € E: f(z) < g(x)} = (9 — f)71([0,<]), F is measurable and m(F) = 0, since f < g
a.e. Then

Jo7 = o= JoT = = o= oot oI = o= o

Theorem: 2.37: Monotone Convergence Theorem

If {f,} is a sequence in L*(F) s.t. fi < fo <--- pointwise on E and f,, — f pointwise on E. Then

lim fn= [ f. (Note: we don’t require uniform convergence as in Riemann integration.)
By Th 2.36 :
Proof. f1 < fo < «+- 7 eg;m / fi < /f2 < --., so the integrals form a monotone sequence,
E E
lim [ f, exists in [0, c0].
n—oo E

Since f1 < fo < --- and ILm fn = f(z) Vz, then fi < fo < .-+ < f. Thus Vn,/ fn < /fn,
= JE E E

lim fn /f

n—oo

Now we show that / f < lim fn

n—o0

Let ¢ € LT (F) be simple, ¢ = ZanAj withp < f. Lete € (0,1) and E,, = {x € E : f,(x) > (1—€)p(x)}
j=1

Note Vz € E, (1 —¢€)p(x) < f(z). Since Vx € E, ILm fu(z) = f(2), U E, =E. Since f; < fo <---, then
n=1

FE1 C E9y C ---. Then we have

Loz [ gz [ 0-gew-0-9 [ ew 1_62% (A4; N Ey)

Taking the limit, we get hm / fn> lim (1 —¢ Za] (A;NE,).
n—)oo 1
Jj=

Since By NA; C EoNA; C --- and U(E” N Aj) = Aj, by Theorem2.18, we get lim m(A; N E,) =

n—00
n=1

Therefore, hm fn > h_)m (I1—¢) E m(A;NE,) =(1—¢) E a;m(A;) = (1— e)/ ©.
E n—00 : E
: _]:1

Let € = 0, / » < lim fn Thus

n=1

f < lim fn O

n—o0 n—oo

Theorem: 2.38:

If f e LT(F) and {¢,} is a sequence of simple functions s.t. 0 < o1 < 9 < --- < f and ¢, — f

pointwise, then f= lim On-
E n—o0 E
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Theorem: 2.39: Additivity of Lebesgue Integral (Non-negative Functions)

Iff,geL*(ELthen/E(f—Irg)z/Ef—i—[Eg

Proof. Let {¢on} and {1, } be sequences of simple functions s.t. 0 < ¢1 < o < -+ < f, and ¢, — f
pointwise, 0 < 91 <9 < --- < g, and ¢, — g pointwise.

Then 0 < o1+ Y1 < pa+ 1Y < -+ < f+g and o, + ¥, = f+ g pointwise. Then/(f+g) =
E

s oo (oo [ )= 1+ [ :

Theorem: 2.40:

If {f,} is a sequence in LT (E), then /Ean = Z/Efn

N N
Proof. By induction using Theorem [2.39 we have / Z fn= Z/ fn-
En=1 n=1"&

N [e'e)
Since Z fn < Z fn<--- and Z fn— Z fn pointwise, then by Theorem [2.37
= n=1

n=1
/an— lim /an— lgnooijl/Efn:i/Efn. 0

Theorem: 2.41:

IffeL*(ELthen/sz@sza.e. on E.
E

Proof. (<) Since f <0 a.e., then 0 < / f< / 0=0
E E

(:>)LetFn:{weE:f(x)>%},F:{x€E:f(x)>()}. Then | JFo=F, i CFyC---.

n=1
Then Vn, 0 < m /</ f</f_0
. . B Theorem 2.I8] .. .
Thus Vn, m(Fy,) =0, m(F) = <L_J n) = T}l}ngo m(F,) = 0.
Thus f =0 a.e. on E. O

Theorem: 2.42:

If {f.} is a sequence in LT(E) s.t. fi(z) < fo(x) < --- for almost all z € E and Ii_)m fn(x) = f(2),

then | f= lim fn
E

n—oo
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Proof. Let F = {x € E : both conditions hold}. Then m(E\ F) =0, f —xrf =0a.e. and f, — xpfn =0
a.e. for all n.

By Theorem [2.37| and [2.41 /f:/ Ixr :/ f= lim fn = lim fn O
E E

n—oo n—oo

Remark 7. Sets of measure zero don’t affect Lebesgue integrals.

Lemma: 2.2: Fatou’s Lemma

If {fn} is a sequence in LT (E), then / liminf f,(z) < hrr_l)inf/ fn(2)
n—0o0 E

ETLOO

n—oo n—oo \ k>n

Proof. Since liminf f,(z) = lim <1nf fr(z )) and infy>; fr(z) < infg>o fr(z) < -+, by Theorem [2.37

/ liminf f,, = lim inf fg.
E

n—00 n—oo fpk>n
Vi>n,xzeE, Ii1>lf fr(z) < fj(z) by defintion, thus / 1nf fr(n / fj(x) by Theorem [2.36
>n ek
Therefore, / inf frp(n) <infj > n/ fi(x)
g k>n
= [ liminf f, = lim inf fi < lim 1nf/ S —hmlnf/ fnlx O
g Moo n—oo Jpk>n n—oo k>n

Theorem: 2.43:

If fe LT(F) and / f < oo, then {x € E: f(x) = oo} is a set of measure zero.
E

Proof. Let F' = {x € E: f(z) =o0}. Then Vn, nxr < fxr (Definition of unbounded functions). By

Theorem [2.36] Vn, nm(F) < / Ixr < / f < 0.
E E

1
Then Vn, m(F) < / f — 0 since / f < oo. Therefore, m(F') = 0.
nJE E

O

2.3.2 Lebesgue Integrable Functions

Definition: 2.15: Lebesgue Integrable Functions

Let £ C R be measurable, a measurable function f : E — R is Lebesgue integrable over E if

|f] < oo.

Note: / | f] :/ i —I—/ f~. Thus f is integrable < f* and f~ are both integrable.
E E E

Definition: 2.16: Lebesgue Integral

f f: E — R is Lebesgue integrable, then the Lebesgue integral of f is / f= / [ —/ .
E E E




Theorem: 2.44: Properties of Lebesgue Integrals

Suppose f,g: E — R are integrable, then
1. Ve € R, cf is integrable and / cf = c/ f

E
2. f+glsmtegrableand/ f+g) = /f+/

3. If A, B are disjoint measurable sets, then / 7= / f +/ f
UB A B

Proof. 1. scaling by ¢ # 0 either swaps f* with f~ or doesn’t change anything and follows from Theo-
rem [2.39)

2. |f+ 9| <|f| + |gl, thus by Theorem [2.35 /|f—1—g|§/ |f|—|—/ lg| < oo, thus f + g is integrable.
fra=(+9) "= (f+9) =UT+g") - (f+97) Then/(f+g /f+g) /(f+g)_=

Jutear- [ raor=[re o= [r-[a=[r+]0

3. fxaus = fxa+ fxs and follows 2

O

Theorem: 2.45: Order Properties of Lebesgue Integrals

Suppose f,g: E — R are measurable, then:

1. If f is integrable, then / f‘ §/ |f]
E E

2. If g is integrable and f = g a.e., then f is integrable and / f=1g
E E

3. If f and g are integrable and f < g a.e., then/ f< / g
E

E
Proof. 1. ’/Ef‘ =
Il

n _ Triangle Inequality and Non-negativity i _ n _
/ = / f < / JT+ / I~ = / fT+f =
E E E E E

2. If f =g a.e., then |f| = |g| a.e., /\f| /|g|<oo, thus f is integrable.

-l Lo

g(x) = f(x),9(x) > f(x) Then h € L*(E), h=g—fae. / |h| < oo. Thus
0, else E

o< [ = fn=fa=r=[o- 1
Therefore, /E < /E g

Moreover, |f —g| =0 a.e.

3. Define h(z) = {
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Theorem: 2.46: Dominated Convergence Theorem

Let g : E — [0,00) be integrable, {f}n be a sequence of real-valued measurable functions s.t. Vn,

|fnl < g. Then 3f : E — R s.t. f, — f pointwise a.e. Then lim fn—/f

n—o0

Proof. Since Vn, |f,| < g a.e., then f, is integrable. Moreover, f,, — f a.e., so f is measurable and |f| < g
a.e. Thus, f is integrable, by Theorem [2.29]

Since changing f and f,, for all n on a set of measure zero does not affect the integrals, we can assume that
Vn, |ful <g,and 3f : E > Rst. fr, = f

By Theorem
Note Vn, / fn < / | fnl < / g, therefore, { / fn} is a bounded sequence in R.
E E E

Since g + f, > 0, by Lemma/g—f:/hmlnf(g fn)<hm1nf/g—fn:/ —hmsup/fn

n—oo n—oo

Similarly, / g+f§/g—|—11m1nf/ fn. Then,
E

n—00 E

li?glsgp/EfnS/Eg—/E(g—f)Z/Efszngf—/Egﬁlggiggf/Efn

But limsup / frn = liminf / fn by definition. Thus liminf [ f, = limsup | f, = lim fn = / f.
E E

n—00 n—00 n—oco Jp n—oo JE n—00

Theorem: 2.47: Agreement of Riemann and Lebesgue Integrals

b
Suppose a < b, f € C([a,b]). Then / f= / f(x)dx. Lebesgue and Riemann integrals agree on
la,b a
C([a, b))

Proof. 1If f € C([a,b]), then |f| € C([a,b]), i.e. |f| is bounded, 3B > 0 s.t. |f| < B on [a,b]
Then 1fl < B = Bm(]a,b]) = B(b—a) < co. Thus f is Lebesgue integrable.
la,b] la,b]

By considering fT = f+2\f| and f~ = If\z—f

b
separately and showing = / f*(x)dz and using
[a,b] a

linearity, we may assume that f > 0.

Let 2" = {zf = a, 2, ...,z = b} be a sequence of partitions of [a, b] s.t. ||z

Let &7 = [my_l,xy] s.t. e[iTPf n]f(x) — (D).

”H—ngx ‘x -z | =o0.

By Riemann integration theory, hm Z f §J a: — a: / flx
7j=1

oo
Let N = U x". Then N is countable, m(N) = 0.

n 1

Let f, = Z f(&) X[an_,am) OX{I 3¢ fn is a non-negative simple function.

Mn,

NOte, \V/n; fn:Zf(fjn) j 15 ])) Zf(é-j)(‘,r _xj 1)
j=1

[avb} j:1

Also, Vz € [a,b] \ N, 6§ fa(z) < f(x).
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We show that if x € [a,b] \ N, then f,, — f pointwise a.e.
Let z € [a,b] \ N, € > 0. Since f is continuous at z, 3§ > 0 s.t. if | — y| < 0, then |f(x) — f(y)| <e.

. n|| _ n _ > no__ ph .
Since ||x"|] 1%?2X'L‘JI] T 1‘—>O dM € Ns.t. Vn > M, <n;12<3% (z] —aj_4) <9

Let n > M. Then f,(z Zf &) Xan_.a ( ) = f(&;) for some unique k s.t. x € [z}_,2}).

Then since & € [z}, 2]] and xp —axp | <0, then |z — & < 0 and |f(z) — fu(z)| = |f(x) — f(§F)| <e.
Thus Jingofn(x) = f(x), Ya € [a,b] \ N.

By Theorem [2.46 / = lim / fn= lim Zf ) (@] — ] / f(z O
[ab n—oo n—oo

Definition: 2.17: Complex Lebesgue Integrals

We can use the previous theorems to construct the corresponding statements for complex-valued
integrable functions. f : E — C is Lebesgue integrable if/ |f] < oo with / f= /Re(f) +
E E E

z'/EIm(f).

Theorem: 2.48: Order Property (Complex Valued)

If f: E — C is integrable, then

Li< [in

Proof. Clear if/ f=0. Suppose/ f#DO.
E

Let o =

| ’ Then |a| =1 and

/Ef‘:a/Ef:/EafafiirealRe/Eaf:/ERe(af)
< [ et@ni< [lasi= [ 1

O

2.4 Lp space

Definition: 2.18: L Norm

1/p
If f: E — C is measurable and 1 < p < oo, then we define ||f||,rg) = / |fIP

E
And ||fllpee(py = inf{M >0:m({z € E:[f(z)| > M}) =0} = ess sup,eg|f(z)| is the infinity

norm or the essential supremum.

Theorem: 2.49:

If f: E — C is measurable, then |f(z)| < || fllpe(p) a-e. on E. If E = [a,b] and f € C([a,b]), then
HfHLoo([a,b]) = [|fllee = SUPzca,b] |f(z)].




Remark 8. We denote ||| o) by [|,-

Theorem: 2.50: Holder Inequality

If 1 <p<ooand %—i— é =1, and f,g: E — C are measurable, then / |fal < £, Mgl
E

Theorem: 2.51: Minkowski Inequality

If1<p<ocand f,g: E — C are measurable, then || f +g||, < [|f]l, + llgll,-

Definition: 2.19: LP space

For 1 < p < oo, define LP(E) = {f : E— C: f is measurable and [|f]|, < oo}. We consider two
elements f,g € LP(E) to be the same element if f = g a.e.

Remark 9. Strictly speaking, this means an element of LP(F) is an equivalence class:
[f] = {g tE—C:gll, <ocoand g=f a.e.}. We still refer to functions f € LP(E) rather than [f] €
LP(E).

Theorem: 2.52:

LP(E) with pointwise addition and scalar multiplication is a vector space. Moreover, ||-||, is a norm
on LP(E).

Proof. Note that by Theorem [2.45] if f = g a.e., then / |fIP = / |g[P. Thus if [f] = [g], then [[[f]||, =
E E

/ P = / 19? = gl [, is well-defined.
E F

Definiteness: by Theorem [2.41] / IfIP =0« f=0ae., [f]=]0]
E
Homogeneity and triangle inequality then follow from the definition and Theorem [2.51] O

Theorem: 2.53:

Let £ C R be measurable. Then f € LP(E) < lim |fIP < oo.

=00 J—nn]NE

Proof. 1f f € LP(E), then/ |fIP < oo. Note/ |fIP = / X[=nn | fIP-
E [=n,n]NE E
Since x_1.lf? < X2/ < -+ on B and Vo € B, limn x(nu (@£ @) = |f@)"

By Theorem [2.37 / |f|P = lim |fIP. O
E n=00 J—nn)NE

Example: If f : R — C is measurable and 3C > 0 and ¢ > 1 s.t. for almost every z € R, |f(x)| <
C(1+ |z|)79, then f € LP(R) Vp > 1.
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n

Proof. / lfIP < / CP(1 + |z|)™P = CP(1 + |z|)"Pdx < CB(p), where B(p) is a constant
n,n [—n,n —-n
depending on p. O

Theorem: 2.54: Density of LP

Let a < b, 1 <p < oo, f € LP([a,b]) and € > 0. Then Jg € C([a,b]) s.t. g(a) = g(b) = 0 and
If —gll, <e. ie. C([a,b]) is dense and a proper subset in LP([a, b]).

Theorem: 2.55: Riesz-Fischer

For all 1 < p < oo, LP(F) is a Banach space.

Proof. For 1 < p < oo, we show that every absolutely summable series is summable.

Let {fx} be a sequence in LP(E) s.t. Z | fkll, < co. We want to show that 3f € LP(E) s.t. ka — f,
k=1

i.e. lim
n—oo

P
n Triangle Inequality
Define g, : E — [0,00) by g, = Z |fk(@)]- gn is measurable. Then |gn||, = <

k=1

ZkaH < M < oo.

By Lemma / Z ]fk| / liminf |g, [P < liminf/ lgn|P < MP
E n—oo n—o0 E

Thus Z | fx(z)]] < oo for almost every z € E.

2ok fu(@), 20k | i ()] < o0 o(z) = {Zk ()], 2o [fr(@)] < o0

0, else 0, else

Define f(x) = {

3" fe(@) — f@)| < llg(@)|” ae. on E.

k=1

Then lim ka f(x) a.e. on E and

n—oo

Z|fk|‘
P

Since

< M, then [g||, < M, /Egp < 0o. Moreover, ||f|[, < lgll, < M. i.e. f€ LP(E).

p

>
|

lim
n—oo

Apply Theorem 2.4 =0, i.e.
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3 Hilbert Spaces

Definition: 3.1: Pre-Hilbert Space

A pre-Hilbert space H is a vector space over C with a Hermitian inner product (-,-) : H x H — C
with the following properties

1. VA1, € C, vy,v0,w € H, <)\1’U1 + /\gvg,w> =\ <v1,w> + A <U2,w>

2. Yo,w € H, (v,w) = (w,v)

3. Yve H, (v,v) >0 and (v,v) =0 < v=0.
Also,

1. If v € H and (v,w) =0 for all w € H, then v =0

2. (v, w) = Aw,v) = A{w,v) = X {v,w)

Definition: 3.2: Norm on Pre-Hilbert Space

If H is a pre-Hilbert space, we define ||v|| = (v,v)1/2

Theorem: 3.1: Cauchy-Schwarz Inequality

Vu,v € H, [(u,v)| < [|ull [[v]|.

o

Proof. Let f(t) = |lu+ tv]|* = (u+ tv, u + tv) >

Then f(t) = (u,u) + 2 (v, v>+t<uv>—|—t< u)

The minimum of f is non-negative and f(¢min)
| <

Then 0 < f(tmin) = [[ul]* = B4 Re (u,0)

[[o

Hu|| +t2 Hv|| + 2tRe (u,v)
Re(u,v)
[ol® ~

, SO tmin = —

[l {1

If (u,v) = 0, then done. Otherwise, let A = é w9 Then Al = 1 and |(u,v)| = Au,v) = (Au,v) =
Re (Au, v) < [|Aul| [[o]]. )
Since |A| =1 and (Au, Au) = A\ (u, u) = (u,u), we get [|[Aul| ||v]| = ||ul| [|v]|- O

Theorem: 3.2:

If H is a pre-Hilbert space, then |[|-|| is a norm on H.

Proof. Definiteness: |[v]| =0 < (v,v) =0& v=0
Homogeneity: If A € C, v € H, (v, \) = AX (v,0) = |A]? (v,v). Thus ||Av]| = [A][|v].
Triangle inequality: Let u,v € H. Then
lu+ol* = (u+v,u+v) = ul® + |v]* + 2Re (u, v)
< JJul® + [[o]]* + 2 [Re {u, v))|
< lul® 4 |v)|* + 2|{u,v)| (Norm of Complex Numbers)
< JJul® + flo)l* + 2 Jul [[v]| (By Theorem B.1)
2
= ([lull + l[l)
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Theorem: 3.3: Continuity of Hermitian Inner Product

If u, — w and v, — v in a pre-Hilbert space with norm |-|| = (., -)1/2, then (up,vp) — (u,v)

Proof. 1If u, — w and v, — v, i.e. ||u, — u|| = 0 and ||v, — v|]| = 0 as n — oo, then

[(Un, vn) = (w,v)| = [(Un — u,vn) + (U, vn — V)|
< (up — u, v )| + |[{u, vy, — v)| (Triangle inequality)
< lun = wll flon]l + l[ull {lon = v]| (By Theorem 3.1

< Jlun = wlsup [Jop || + [Jul lvn = vl = 0 as n = oo
k

By squeeze theorem, (uy,,v,) — (u,v) O

3.1 Basic Theory

Definition: 3.3: Hilbert Space

A Hilbert space H is a pre-Hilbert space which is complete w.r.t. the norm ||-|| = (-, >1/2

n
Example: C" = {z = (21, ..., 2,) : 2 € C} where (z,w) = ZzﬂTj is a Hilbert space.
j=1

o
Example: [? = {a = {ar}tr :ar € Cand Y 7, ]ak\2 < oo} where (a,b) = Zaka is a Hilbert space.
k=1

1/2
Note (a,a)"/? = (Z |ak|2> = |lal|;z is the I norm.

Example: If E C R is measurable, then L*(E) = {f: E — C: [, |f|* < co} where (f,g) / fgisa
Hilbert space.

Theorem: 3.4: Parallelogram Law

If H is a pre-Hilbert space, then Vu,v € H, ||u+ v|]* + |ju —v|* = 2 <HuH2 + HvH2> Moreover, if H
is a normed space satisfying the equation, then H is a pre-Hilbert space.

This implies that except for p = 2, other [P or LP spaces are not Hilbert space.

Definition: 3.4: Orthonormal Subsets

If H is a pre-Hilbert space, u,v € H are orthogonal if (u,v) = 0. We write u L v. A subset
{ex}rea C H is orthonormal if VA € A, [lex]| = 1 and A1 # X2 = ey, L ey,.

Remark 10. We are mainly interested in finite/countable orthonormal subsets, {ey,...,en} = {en}i\[:l and

{entney
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Example: {<(1)> , (?)} is an orthonormal subset of C2, 01,10 is an orthonormal subset of

nth entry
Example: Let e, = {O, e, 1,0, } €’ {en}s2 is orthonormal in 2.

L1 i 2(1_ 1 _in . T2([_
Example: VoL e L*([—m, m). {me z}nez is orthonormal in L*([—m, 7])

Tl e L 1T

—x V2T 2 27 J_,

- ei(m—n)x

Proof. When m # n, = 0. (Consider e'z = cosx + isin ) O

Theorem: 3.5: Bessel

If {e,},, is a countable orthonormal subset of a pre-Hilbert space H, then Yu € H, Z [(u, en)|? <
n
2
]|

Proof. (Finite case) Suppose {en}gzl is an orthonormal subset of H. Then

2
Al = <Z (u, ep) en,z (u, em>em>

n m

= Z (u, en) (U, em) (en, €m)
=" [u,en)]?

N N
And <u, Zn =1V (u,e,) en> = zzl (u, en) (u, en) = z:l [(u, en)|?

N
Thus, 0 < ||u — Z (u,ep) en
n=1
N 2 N
< Jlul* + Z (u,en)en|| —2Re <u, Z (u,en) en>
n=1 n=1
N
= Jull® = [{u, en)?
n=1

N
(Infinite case) Suppose {ey} - is an orthonormal subset of H. Then VN € N, Z [(u, en)* < ||lul/* and
n=1

take N — oo gives the desired result. O
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3.1.1 Gram-Schmidt

Definition: 3.5: Maximal Orthonormal Subset

An orthonormal subset {ex},, of a pre-Hilbert space H is maximal if u € H and (u,ey) = 0VA € A
= u = 0.

Example: {(é) , <(1)>} is maximal in C2, but 0,11 is not maximal in C3, since [0 ] is
orthogonal to this set.

Example: {e,} 2, is maximal subset of (2.

Theorem: 3.6:

Every non-trivial pre-Hilbert space has a maximal orthonormal subset.

Theorem: 3.7:

Every non-trivial separable (having a countable dense subset) pre-Hilbert space has a countable
maximal orthonormal subset.

Proof. Let {vj}]oil be a countable dense subset of H s.t. ||v1|| # 0
Claim: Vn € N, Im(n) < n and an orthonormal subset {61, ey em(n)} s.t.

1. span {61, e em(n)} = span {v1, ..., vp }

2. {e1, remm) } = {€e1, - emm-1)} U {@,Un € span {vy, ..., Up—1}

€m(n), €lse

We prove the claim by induction:

Base case: n=1, e = II%II

Induction: Suppose the claim holds for n = k.
When n =k + 1:

If vgyq1 € span {vy,...,vx}, then span {el, cey em(k)} = span {v1, ..., vx } = span {vy, ..., Uk, Vgp11}-

m(k)
Suppose vg+1 ¢ span {vi, ..., v }. Define wgi1 = vg41 — Z (Uk41,€j) € # 0, since vg11 ¢ span {vy, ..., v}
j=1
We can define a unit vector ex11 = szlzﬁ’ llex+1|l = 1.
k
For any j < k, <em(k+1)aek> = ; Vk+1 — mz(:) (Vk+1,€5) €j,e1 ) = ; ((Vkt1,€1) — (Vt1,€1) =
[we1]] ot [ wh-1]]
0

Let S — U {61, cey em(n)} (may be finite or infinite). Then S is an orthonormal subset of H. We now show
n=1

that H is maximal.
Suppose u € H, Vi, (u,e;) = 0. Since {vj}j is dense in H, there exists a sequence {Uj(k)}iozl st v —u
as k — oo.



By the first part of the claim, v;) € span {61, e em(j(k))}. Thus

m(j(k)) m(j(k))

(u,e;)=0
losl® = > Kojo el ™= [(vjiay = wen)[”
I=1 =1
» The%rem@ ij(k) — uH2 —+0ask — o0

By squeeze theorem, ||v;y,) H = 0 and thus u = 0. 0l

Definition: 3.6: Orthonormal Basis

Let H be a Hilbert space. An orthonormal basis of H is a countable maximal orthonormaal subset
{entnen:

Theorem: 3.8: Fourier-Bessel Series

m

If {e,},, is an orthonormal basis in a Hilbert space H, then Yu € H, lim Z (u,en) ey, = u. ie.
m—0Q

n=1
o0
(U, En) En = U
n=1
m
Proof. We show that {Z (u, en) en} is Cauchy.
n=1 m
[e.e]
Let € > 0. By Theorem , Z [, en) | < |Jul® < .
n=1
oo
Thus, IM € Nst. YN > M, > [(u,en)]* < €.
n=N+1

Then Vm >1> N,

m l 2 m 00

Z <u7 6n> €n — Z <u7 €n> En|| = Z |<u7 €n>’2 < Z |<u7 6n>|2 < 62

n=1 n=1 n=I[+1 n=I[+1

m

Since H is complete, Ju € H s.t. u = lim Z (u,en) e, in H.
By Theorem [3.3) VI € N, (u — 4, €;) = limyo0 (u — >0y (U, €n) €n, €1) = ((u,ep) — (u,ep)) =0
Since {e;}, is maximal, then u — @ = 0. O

Theorem: 3.9:

If H has an orthonormal basis, then H is separable.

m
Proof. Suppose {e,} is an orthonormal basis for H. Then S = U {Z Qnén  q1, - qm € Q + i@} is

meN (n=1

countable.

By Theorem [3.§] S is dense in H. O

Remark 11. If H is a Hilbert space, then H is separable < H has an orthonormal basis.
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Theorem: 3.10: Parseval’s Identity

If H is a Hilbert space and {e, },, is a countable orthonormal basis, then Vu € H, Z [, en)|? = ||ull®.

n

Proof. We have u = Z (u, en) €n. Then

n

Jull? = tim_ <§j (u,en) en, Y (1,1 €z>

n=1 =1
m
= lim Z (u, en) (u, €r) (en, €r)
m—ro0
n,l=1
m
:n%iinoozzlw,em (u, en)
n—=

=3 Jfuen)?

Theorem: 3.11:

If H is an infinite dimensional separable Hilbert space, then H is isometrically isomorphic to 2.
i.e. 3 a bijective (bounded) linear operator T : H — [ s.t. Vu,v € H, ||Tullz = |lully and
(Tu, Tv)p = (u,v) .

Proof. Since H is a separable Hilbert space, by Theorem it has an orthonormal basis {e,},cy and

o0

Yu e H, u= Z(u,en>en.
n=1 y
1/2
Then ||u|| = (fo:l ](u,enHQ) . Define Tu = {{u,e,)}°>°; € 2. T does the job. O

3.2 Fourier Series

Theorem: 3.12:

inT

The subset { f/%

} ; is an orthonormal subset of L?([—, 7).
ne

Proof.

™ ™ 2 =
) ‘ — L T,m=n
<€mac7 ezmm> — / eMT otz o — / el(” m)wdx = { ’

. o 0, else
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Definition: 3.7: Fourier Series

. 1 /7 A
Let f € L?([—m,m]). The nth Fourier coefficient of f is f(n) = — f(t)e "™ dt. The Nth partial
—T

inT

R . eint e
Fourier sum of f is Sy f(x) = Z f(n)e™* = Z <f, >
< < Vor/ V2w
The Fourier series of f is the formal series Z f(n)e™m=.
neZ

Question: Do we have for all f € L?([-7, 7)), f(x) = Z f(n)e™®?
nez

™ 1/2
ie. |f—Snfll,= </ |f(x)SNf(x)|2d:U> —0as N — oo?

—T

81”1‘

. . 2 _ ? . . A _ _
\/ﬂ}nez maximal in L*([—n,7])? d.e. if f(n) =0 Vn, then f = 0.

The answer to this question is yes.

Theorem: 3.13: Dirichlet Kernel
iy

Equivalently, is {

Vf e L*([-m, 7)), Ne NU{0}. Snf(z) = Dy (x —t)f(t)dt,
2N+1 .. -
where Dy (z) = siiET(NJr%)x) . Dn(z) is called the Dirichlet kernel.

“orem(z) 270

Proof. If f € L*([—m,7]), Snf(z) = Z ( " f(t)e_mtdt> et _ /7r £(1) % Z cin@=t) | g

In|]<N T - In|<N
1 ' 1 2N
DN(x) _ % Z einT — % —iNz Z(ezz)n

In|<N n=0
1 _nal— ei(2N+1) .,
27 1—ew
| (e (e i (Nt ) a
2m el — e7i% 21 sin Z

2

O

Note: if the series converges, the Cesaro mean converges. Also if we have a sequence {1, —1,1, —1} which
does not converge, but the Cesaro mean converges.
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Theorem: 3.14: Fejer Kernel

N+1 —
T ?,Jf =0
Vf € L*([-7, 7)), onf(z) = Ky (xz —t)f(t)dt, where Ky (z) = ) sin( X£L) 2 is the
- 2 (N+1) < sin 3 )
Fejer kernel. Moreover,
1. Kn(x) >0, Kn(z) = Kn(—2), Ky is 2m-periodic
2. / Kn(t)dt =1
1 & Tl &
Proof. From Theorem [3.13} oy f(z) = N1l l;)Skf(:c) = N1 kZODk(x —t)f(t)dt. Then

k=0 sin 3)” k=0
L LS oske — cos(h-+ 1
= cos kx — cos x
2n(N +1)2 (sin %)2 =0
1 1
= 1-— N+1
37N+ 1) (Sin%)z( cos((N +1)x))
1 1 5, N+1
T (N D) (sing) (0=~
1 follows since sin? are positive and Ky (z) = Ky (—x).
— int gy — — —
For 2, . Dk(t)dt = /ﬂ_ Zk e"™dt = 1. Then . KN(t)dt = m kzo . Dk(t)dt = ﬁ =1.
n—=— =
For 3, let § € (0, 7. Then sin®Z is even and increasing on [0,7]. V6 < |z| < 7, sin? £ < sin®$
1 N+1 1
Thus Kn(z) < — sin2< - x> < — m
2m(N 4 1) sin” § 2 27(N 4 1) sin” §

Theorem: 3.15: Fejer’s Theorem

If f € C([—m,n]) is 27 periodic, f(w) = f(—mn), then on f — f uniformly on [—7,x].

Proof. Firstly, we extend f by periodicity f(x + 27) = f(z) to all of R. Then f € C(R) is 2m-periodic.

Thus f is uniformly continuous and bounded. i.e. || f||., =sup|f(z)|= sup |f(z)| < oco.

Let € > 0. Since f is uniformly continuous, 36 > 0 s.t. if ]yx—@i\ <9, ]f(;j :WJZT(]Z)\ <.

Choose M € N s.t. YN > M, % < § because LHS— 0.

Since f and Ky are 2r-periodic, on f(z) = [ Kn(z — )f(t)dt "= / s Kn(r)f(x — 7)dr PR

—Tr
s

Kn(t)f(z — t)dt.

—T
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Then VN > M, Vz € [—7, 7],

o f(2) — f(z)] = ’ " Ky f@—tdi— | Ky) f(x)dt‘ (since | Ky (t)dt)
:{ " KO — 1) - f@)da

—T

< /W [Kn()(f(x — 1) — f(2))|dz (By Theorem 25)

—T

= mev@—w—f@ﬂﬁ+/’ Kn(t)|f(x — ) — £()|dt

|t|<o 5<|z|<m
Kn(t
<< Kn(t)dt +2 HfHOO/ %dt (By uniform continuity, choice of M)
2 Jit)<s o<[t|<m 27w (N + 1) sin2

@]

€ 2|11l €
<P <t - =e
T2 (N+1)sin?d 2 2

Thus on f — f uniformly. O

™

Remark 12. Same proof can be modified if instead of Ky (z) > 0, we have sup/ |Kn(z)|dz < oo.
N T

Also,/ |Dn(x)|dz ~ log N.

—T

Theorem: 3.16: Bounding Cesaro-Fourier Mean

Vf € L2 ([=m,a]), lonflly < £l

Proof. Suppose f € C([—m,7]) 2m-periodic. Then oy f(z) = flz —t)Kn(t)dt,

—T

/W |0Nf(x)2dx:/_7r /_ﬁ _ﬂ f(z—s)f(x — t)Kn(s)Kn(t)dsdtdx

— / [ Kn(s)Kn(t) [ i flz — s)f(x—t)d:c} dsdt (By Fubini)

—T J =T —T

< _ﬂ En(s)ENE = s)llz [1F(- = D)l dsdt (By Theorem 3.1)

— 1413 [ Kn(s)ds [ Kttt =113

—Tr

Thus [lon f|| < [|flly for f € C([=m,7])

Let f € L*([—m, 7)), 3{fn}, of 2m-periodic continuous functions s.t. || fn, — flly — 0.

Then |lonfn —onflla = 0

Thus [lon flly = lm [loyfally < lim [fully =[] -
n—oo n—oo

Theorem: 3.17: Convergence of Cesaro-Fourier Mean

Vf e L3([-m, 7)), lonf — fll, = 0 as N — co. In particular, if f(n) = 0, ¥n, then f = 0.
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Proof. Let f € L*([—m,7]), € > 0. There exists g € C([—,7]) and 27-periodic s.t. || f — g[l, < §.
Since oyg — ¢ uniformly on [—m, 7] by Theorem

dM € Nst. VN > M, Vx € [—m, 7], long(x) — g(z)| < 3\/6%

Then VN > M,

lonf = flly < lon(f = 9)lla + llong = glly + lg = fll; (By Triangle inequality)

T 1/2
<2[f —glly+ (/ long — gI? dx> (By Theorem and Definition [2.18)

<26+e</” 1 d)1/2

—+- ——dx =e.

3 3 _x V2T

Thus ||onf — fll; = 0 as N — oo. O

Now we have shown that Vf € L2, ||Syf — f|l, — 0. Carleson shows that Vf € L?, Sy f(z) — f(x) a.e.
Also V1 < p < o0, ||SNf — f||p — 0, but this doesn’t hold for p = 1 or co.

3.3 Riesz Representation

Theorem: 3.18: Length Minimizer

Suppose C C H is a subset of a Hilbert space H s.t. C # 0, C is closed and C is convex, i.e.
if v1,v2 € C and t € [0,1], then tv; + (1 — t)va € C. Then there exists a unique v € C with
[0l = inf [jul].

ueC

Proof. a =1inf S <> a is a lower bound for S and 3{s,} € S s.t. s, — a.
Let d = ing |lul|. Then I{u,}, € C s.t. ||u,| = d. We want to show that {u,} is Cauchy.
ue

Let € > 0, since |[u,|| = d, IN € Ns.t. Vn > N, 2 ||lun||? < 2d2 + % Then Vn,m > N,

2

Un + tm (By Theorem 3.4))

4
2 2 2 s .
< 2 ||unll” 4+ 2 [Jum||” — 4d* (By Definition of d as infimum)

lun, = wml|* < 2 lunl|* + 2 fum|* — 4

62 62
<2d2—|—§+2d2+5—4d2:62

Therefore, {u,} is Cauch. Since H is complete, then Jv € H s.t. u, — v. Since C is closed, v € C.
ol = tim Jluy | = d

Thus the existence of v € C, [[v]| =d = ing ||u|| is proved.
ue

Now we show the uniqueness. Suppose v,v € C s.t. |[v|| = ||v]| = d. Then
v+
112 2 112
lo = o)l" = 2]jol]” + 2|]ol|" - 4] —;
—ad? — 4|0 < —ad? =0
Thus v = 7. O
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Theorem: 3.19: Orthogonal Complement

If H is a Hilbert space, W C H is a subspace, then W+ = {u € H : (u,w) = 0,Vw € W} is a closed
linear subspace of H. If W is closed, then H = W @ W+ (i.e. Yu € H, 3w € W, wt € W s.t.
u=w+wb)

Proof. Note that W+ is a subspace of H by linearity of inner product and W N W+ = {0} by definiteness.

Let {uy}, be sequence in W+ and u € H s.t. u, — u. Let w € W. Then by Theorem [3.3| (continuity),

(u,w) = lim (un,w) = 0. Thus u € W+, W+ is closed. W+ is therefore a closed linear subspace of H.
n—oo

Now suppose W is closed, we show that H = W & W,

If W=H,then Wt ={0}and H=W @ {0} =W o W+

Suppose W # H. Let u € H\W. Define C =u+W ={u+w:w e W}. Noteu e C,soC#0

Let u+w; € C, u+ wy € C, for wi,wy € W and ¢t € [0,1], then t(u + w1) + (1 — ¢)(u + we) =
u+ (twy + (1 — t)we) € C, since W is a subspace. Thus C is convex.

Now suppose u + w,, = v € H. Then w, — v — u. Since w is closed, v — u € W. Then v = u + w for
we W = wveC. Thus C is closed.

Since C'is closed and covex, by Theorem [3.18, Jlv € C s.t. ||v]| = wlggv llu+ wl.

Note that v € C = u—v € W and u = (u — v) + v. We show that v € W+,

Let w e W, f(t) = ||v+ tw|* = ||v]|* + £ |w||* + 2tRe (v, w). Then f(t) has a min at t = 0, f'(t) =0 =
Re (v, w) = 0.

Repeat the same argument with iw to get Re (v,iw) = Im (v,w) = 0. Thus (v,w) = 0 and v € W+.

We have now decompsed u € H to u = v+w for w € W,v € W+. We need to show that the decomposition
is unique.
If u = w; +wi = wy +wy. Then wy —wy = wi- — wy. Since W N W+ = {0}, wy = ws, wi = wy. O

Theorem: 3.20:

If W C H is a subspace, then (W)L is the closure W of W. If W is closed, then (W4)+ = W.

Definition: 3.9: Projection

A bounded operator P : H — H is a projection if P? = P.

Theorem: 3.21:

Let H be a Hilbert space, W C H be a closed subspace s.t. H = W &W+. The map IIyy = H — H,
defined by if v = w + w™, then Iy (v) = w, is a projection.

Proof. Iy is linear: If v1 = wy + ’wf‘, Vo = Wy + w%, A, A9 € C, then A\v1 + Aovg = (/\1w1 + )\Q’LUQ) +
()\171)1L + )\QU)QL). Hw()\11)1 + /\21)2) = )\1HW(U1) + )\Qﬂw(vg).
wl>

Iy is bounded: If v = w+w™, then |jv]|* = |w +wLH2 fowz)=0 ||w||2+HwLH2 > ||wl||®. Then ||y (v)|| =

[w]l < {lvf| and [Tl [| < 1.

Projection: Iy (Ilyy (v)) = Iy (w) = w = Hy (v). O
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Theorem: 3.22: Riesz Representation Theorem

If H is a Hilbert space, then Vf € H’, there is a unique v € H s.t. f(u) = (u,v) for u € H.

Proof. v is unique: if f(u) = (u,v) = (u,v) for all u, then (u,v —v) =0 Vu € H. Thus v = 7.

If f =0, we can simply choose v = 0. So we suppose f # 0.
Then Juy € H s.t. f(ur) = (u1,v) # 0.

Let ug = —f(“ull). flup) = <—f&11),v> = 7f(1lu) (ug,v) = 1.
Let C ={u€ H: f(u) =1} = f~1({1}). C is a non-empty closed subset of H.
Let uy,ug € C, t € [0,1], then f(tu; + (1 —t)ug) =tf(ur) + (1 —1t)f(uz) =t+1—t = 1. Thus C is convex.

Then by Theorem [3.18] Jvg € C s.t. ||vo|| = ing [l
ue
Let v = ”—0”2, N=f"({0})={we H: f(w) =0}. Then C = {vg+w:w € N}, so ||v] = ireljvavg + w||

llvo
and vg € Nt.
Let u € H. Then f(u — f(u)vg) = f(u) — f(u)f(vo) = 0. Thus u = u — f(u)vg + f(u)vg € N + N+
Therefore, (u,v) = ﬁ (u,vg) = W [(u — f(u)vo,vo) + f(u) (vo,v0)] = f(u). O

llvo

3.4 Adjoint

Theorem: 3.23: Adjoint Operator

Let H be a Hilbert space, A : H — H be a bounded linear operator. Then there exists a unique
bounded linear operator A* : H — H (adjoint) s.t. Yu,v € H, (Au,v) = (u, A*v) and [|A*]| = ||A]|.

Proof. Uniqueness of A* follows from (Au,v) = (u, A*v).
Define f, : H — C s.t. fy(u) = (Au,v). Then Yui,us € H, A1, A9 € C,

fv()\lul + )\QUQ) = <A()\1U1 + )\QUQ),U> = ()\1Au1 + )\2AU2,’U>
= A1 (Aug,v) + Ao (Aug, v2)
= A fo(ur) + Ao fo(uz)

Thus f, is linear.

Theorem [3.1]
If ||u]| = 1, then |fy(u)| = |(Au,v)| < |Aul| ||v]| < ||A]| [|v]| since A is bounded linear operator.
Thus || full < ||A]l |v] is a bounded linear operator, f, € H'.
By Theorem there exists a unique A*v € H s.t. Yu € H, f,(u) = (u, A*v)
i.e. Yu € H, (Au,v) = (u, A*v).

v — A*v is linear: Let v1,v9 € H A1, A0 € C, Vu € H,

(u, A*()qvl + )\2’1}2)> = (Au, v + )\21)2> = /\_1 <A’U,, ’U1> + /\_2 (Au, ’U2>
= )\_1 <u, A*’U1> + )\_2 (u, A*U2> = (u, M A0 + )\QA*’U2>

Therefore, A*(A1v1 + A2va) = A1 A*v1 + Ao A*ve, A* : H — H is a linear operator.

Suppose ||v|]| = 1. If A*v =0, then ||[A*v] < ||A¥|.

Suppose A*v # 0. Then || A*v||? = (A x v, A*v) = (AA*0,v) < ||AA*V| |Jv]| < ||A] |A*|.

Then [[A%o|[ < [|A]]. [|A*] < [|A]].

Note: Yu,v € H, (u, (A*)*v) = (A*u,v) = (v, A*u) = (Av,u) = (u, Av).

Thus (A*)x = A, and [|A[| = [[(A")+] < [[A]].

Thus [|A]| = [|A]]. O
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ul n
Example: For u= | : | € C", define A s.t. (Au); = ZAijUj, where A;; € C. Then
Un, J=1

n

12

=1

n n n
=Y uy Agui =y u(Av);,
j=1 i=1 7j=1

where (A*v) ZA]Z’U] Thus if A = (A;;), then (A%);; = Aj;.

7j=1
N N
Example: Suppose {Azj}fj is a double sequence in C" s.t. Z |Ai;* = hm Z Z |Ai;]* < oo.
§ N—o0
i i=1 j=1
Define A : 12 — [?> by Aa = Z Ajjaz, where a = {a;}; € 12,
j=1
Then A € B(i%,12) and Va,b € 12, (Aa,b) ZZAwajb =Y a;y Aybi = {a, AD), where (A*D); =
j i
> Agb;.
j=1
Example: Suppose K € C([0,1] x [0,1]). Define A : L{[0,1]) — L3([0,1]) s.t. Af(x / K(z,y)f

Then A*g( K

Theorem: 3.24: Range Null Space

Suppose H is a Hilbert space and A : H — H is a bounded linear operator. Then (Range(A))* =

Null(A*), where Range(B) = {Bu : v € H}, Null(B) = Ker(B) = {u € H : Bu = 0}.

Proof. v € Null(A*) & (u, A*v) =0, Vu € H < (Au,v) =0 < v € (Range(A))* O
Remark 13. Suppose Range(A) is closed. Then A : H — H is surjective < A* : H — H is injective.

3.5 Compactness

Definition: 3.10: Compact Subset

If X is a metric space, K C X is compact if every sequence in K has a subsequence converging to
an element in K.

Example: all finite subsets of any metric space are compact.

Theorem: 3.25: Heine-Borel

A subsets K C R (or R™, C") is compact if and only if K is closed and bounded.
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Exampe: [a,0], {1 :n € N} U{0} are compact.

Example: Suppose H is an infinite-dimensional Hilbert space, then F' = {u € H : ||u|| < 1} is not com-
pact.

Proof. Let {e,}2°, be an orthonormal subset of H. Then Vn # k, |len —erl|* = |lenl® + [lexl
2Re (en, ex) = 2. Thus {e,} cannot be Cauchy, i.e. No converging subsequences. O

Definition: 3.11: Equi-small Tails

Let H be a Hilbert space. A subset K C H has equi-small tails w.r.t. a countable orthonormal
subset {e,}, if Ve >0, IN € Ns.t. Vv € K, Z (v, ex)|* < €2
k>N

Example: K = {v1,...,v,} = K has an equi-small tail w.r.t. any {ey},.

Theorem: 3.26:

Let H be a Hilbert space, {v,},, be a sequence with v, — v. Let {ej}, be a countable orthonormal
subset. Then K = {v, : n € N} U{v} is compact and K has equi-small tails w.r.t. {eg},.

Proof. We show the equi-small tails here.
Let € > 0, since v, — v, IM € Ns.t. Vn > M, |jv, —v| < §.

2
2 €
Choose N € N large s.t. Z (v, ex)|* + | max Z |{vn, ex)|” < T
k>N k>N
2

Then2|vek <—<6 and V1 <n <M —1, Zk>N|<Umek>| <%<62.

k>M
1/2
<Z | -, Bk <’U,€k>‘2>

If n > M, by Theorem [3.5]

1/2
(z |<vn,ek>|2)
k>N

k>N
1/2 1/2
< (z o —v,ek>|2) + (z |<v,ek>|2) (By Theorem [
k>N k>N
Theoremm

j— < —_ =
lon —oll 45 < 5+

Theorem: 3.27:

Let H be a separable Hilbert space, and {ey}, be an orthonormal basis of H. Then K C H is
compact if and only if K is and bounded and has equi-small tails.

Proof. (=) Suppose K is compact, then K is closed and bounded by metric space theory.
Suppose K does not have equi-small tails w.r.t. {ey},.
Then Jey > 0s.t. VN € N, Juy € K s.t. Z [(un, er)])? > €2

k>N
Since {un}y is a sequence in K, then there exists a subsequence {v,}, and v € K s.t. v, — v. Then
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€N, Y |{vn,ex)| 2 €
k>n
Then {v, : n € N} U {v} does not have equi-small tails w.r.t, {e;},. Contradiction to Theorem Thus

K must have equi-small tails w.r.t. {eg},.

(<) Suppose K is closed and bounded and has equi-small tails. Let {u,},, be a sequence in K.

Since K is closed, we just need to show {uy}, has a convergent subsequence.

Since K is bounded, then 3C > 0 s.t. Vn, ||u,|| < C. Then Vk,n, [(un, ex)| < ||un|| |lex]] < C. ie. Yk € N,
{(un,ex)},, is a bounded sequence in C.

Since {(un, e1)},, is bounded, there is a subsequence {(uy, ;) €1>}j of {(un,e1)}, which converges in C.

Since {<u

nl(j),€2>}j is bounded, there exists a subsequence {<un2(]~),eg>}j of {<Un1(j),€2>}j which con-
verges.
Note ]lggo <un2(j),el> exists and lggo <Un2(j),62> exists.

Then VI, there exists subsequence {n;(j)}; of {ni—1(j)}; s.t. V1 <k <, lim (U, (k)» €k) exists.
J—00
Pick v; = up,(I) for 1 =1,2,3,.... Then {v;}, is a subsequence of {u,}, s.t. Vk, {(v}, ex)}, converges.

Now we show that {v;}, is Cauchy. Let € > 0.

2
Since K has equi-small tails, 3N € N s.t. VI € N, Z (g, e)]? < %
k>N
Since the N sequences {(v,e1)},, ..., {(vi, en)}, converge, IM € N s.t. VI,m > M,

N 2
€
we have Z [{(vr, ex) — (U, €k>|2 < 1

k=1
Then Vi,m > M,

1/2
(01— vms er) >+ D 1w — vm, €k>’2]

N
lor = v || = Z
Lk=1 k>N
N 1/2 1/2
St e [l - <vm,ek>12]
Lk=1 k>N
1/2 1/2
€
<5+ [ Ttmar] |3 o]
k>N k>N
< € + € + €
- — — = €
2 4 4

O

Therefore {v;}, is Cauchy, and thus converges.

Definition: 3.12: Hilbert Cube

K = {{a}, € 1> : |ay| < 27%} is compact. K is the Hilbert cube.

Theorem: 3.28:

A subset K C H is compact if and only if K is closed and bounded, and Ve > 0, there exists a finite
dimensional subspace W C H s.t. Vu € K, in‘gv lu —wl| <e.
we




3.6 Operators
Let H be a Hilbert space, the bounded linear operators set B(H, H) will be denoted by B(H ).

3.6.1 Finite Rank Operators

Definition: 3.13: Finite Rank Operators

T € B(H) is a finite rank operator if Range(T") (a subspace of H) is finite dimensional. Write
T e R(H).

Example: Ta = {aTl, %2, ..., 5,0,0, } for a = {ax}, € 2. Then T is finite rank.

ey T

Theorem: 3.29:
R(H) is a subspace of B(H).

Theorem: 3.30: Matrix Representation of Finite Rank Operators

T € R(H) if and only if there exists a finite orthonormal set {ek}fk:l and constants {Cij}szl cC

L
s.t. Tu = Z Ty, egh @

ij=1

Proof. (<) By defintion, T is a finite rank operator.

(=) Since Range(T') is finite dimensional, there exists an orthonormal basis {ék}szl s.t.
N N
Tu = Z (Tu, ey e, = Z (u, T ey) e = Z (u, vy) ek, where v, = T ey,
k=1 k=1 k=1
Let {ey, ..., er} be the orthonormal subset of H obtained by applying Gram-Schmidt to {éy, ..., ér,v1,...,v5}

L L
Then Elakiybkj s.t. e = E Ak €;, Vg = E bkjej.
k=1 j=1
N

L N
Then Tu = Z (u,v) € = Z <Z akibkj> (u,e;) e;. We can thus define Cj; = Eivzl kibrj - O
k=1 ij=1 \k=1

Theorem: 3.31:

1. If T'€ R(H), then T* € R(H).
2. If T € R(H), A, B € B(H), then ATB € R(H).
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L
Proof. Write Tu = Z Cij (u, e;) e;, for w € H. Then Yu,v € H,
ij=1

(u, T*v) = (T'u,v) <ZCZ] U, €5) €4,V >
:ZCZ-J- u, ;) (€, v)
Y]

= <u, Z Cijes U>€j>
1,J

= <u7 Zcilj <Uv ei> €j>

Thus <u,T*v =304, 5Ci (v, &) ej> =0 for all u,v
L

Therefore, T*v = Y _ Cj; (v, €;) ¢; for all v € H. Then T* € R(H). O
i,7=1

3.6.2 Compact Operators

Notice that R(H) is not a closed subset in B(H). i.e. if T, € R(H) and |1, — T|| — 0, T' € R(H) is not
necesarily true.

Example: Take T}, : 12 — [? s.t. Tpa = {Tl L. ,0,...} for a = {ay},c;2. Then T, € R(H) and
|T, — T|| — 0, where Ta = {4,% ..} ( < n}rl) Then Tey = ey, Tea = 3e2, Ten, = ey, but
T ¢ R(H).

n

Definition: 3.14: Compact Operator

A bounded linear operator K € B(H) is a compact operator if K ({u € H : |Ju|| < 1}) is compact.

Example: Ka = (¢, 9, 9, }, a € [2. Then K is a compact operator.
Example: If K € C([0,1] x [0,1]) and Tf(z / K(z,y)f(y)dy, f € L*([0,1]). T is a compact

(z—-1)y,0<y<az<1

operator on L2([0,1]). If K(x,y) =
p (010)- 16Ky =4 5 22

1
thenu = [ () f(g)dy solves u” = 1.
0

u(0) = u(1) =0 on [0, 1].

Example: I on [? is not a compact operator. Let e, be the nth orthonormal basis vector. Then |le,|| = 1
and ||Ie, — Iepm|® = 2, Vn # m. Then {Ie,} does not have a convergent subsequence.

Theorem: 3.32:

Let H be a separable Hilbert space. Then T' € B(H) is a compact operator < 3{T,},, of finite rank
operators s.t. || — T,|| — 0. i.e. the set of compact operators is the closure of R(H).

Proof. (=) Let {e;}, be an orthonormal basis for H. Since T is a compact operator {Tw : |lul| <1} is a

compact set, then Ve > 0, 3N € N s.t. Z (T, e)||* < €2, V|Ju| <1 by Theorem [3.27
k>N
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n

For n € N, deﬁneTuzZ(Tu ex) e for u e H.

Then T,, € B(H) and Range( n) C span{ey,...,e,}, thus T, € R(H).
Let € > 0, N as above. Let n > N. Then if ||u| =1,

2

n 00
| Thu — Tul| = Z Tuey) e Z Tu,e)
k=1 k=1
2
_ Z <TU,€k> er By Theoremm Z ’ TU e |
k>n k>N
2
< Z <TU, €k> ek|| <€
k>N

Thus |1, —T|| <€ |T, —T| — 0

(<) Suppose |1, — T|| — 0 with T,, € R(H),Vn, then {Tu : ||ul| <1} C {v: |jv| < ||T}.

Then {Tw : ||u]| <1} is closed and bounded.

Claim: Ve > 0, there exists a finite dimensional subspace W s.t. V||u|| < 1, in‘i;V | Tu —w| <e.
we

Since || T, — T'|| =+ 0, 3N € Ns.t. ||[Tn —T|| < e. Let W = Range(Tn). W is a finite dimensional subspace.

Then V|uf <1, |Tu = Tyul| <||T = Ty || [Jul] < [T = Tx[| <e.

Thus, in‘gv |Tu — w| <e. Tyue W. By Theorem [3.28 T is compact. O
we

Theorem: 3.33: Properties of Compact Operators

Let H be a separable Hilbert space, K(H) be the set of compact operators on H. Then
1. K(H) is a closed subspace of B(H)
2. T e K(H), then Tx € K(H)
3. VA,Be B(H),itT € K(H), ATB € K(H)

Proof. 1. clear because K (H) is the closure of R(H)

2. If T € K(H), by Theorem T, € R(H) s.t. |[T,, —T|| — 0. Since Ty € R(H), ||T;} — Tx| =
|7, —T|| — 0. Thus T* € K(H)

3. T, € R(H),so 3T, € R(H) s.t. | T, —T|| — 0. AT,,B € R(H) by Theorem and
|AT, B — ATB|| = |A(T,, — T)B|| < |A|| |T» — T|| || B|| = 0. Thus ATB € K(H).

3.6.3 Spectrum
Theorem: 3.34:

Let T € B(H). If |T|| < 1, then I — T is invertible and (I — 1)~ ZT" (Analogous to

(1—z) foor[x\<1

92



Theorem: 3.35: Invertible Linear Operators

The set of invertible linear operators GL(H) = {T € B(H) : T is bijective} is an open subset of
B(H).

Proof. Let Ty € GL(H). Suppose |[T — Tp|| < HTO_IH_I. Then || T, (T —
Thus I — Ty N(T — Tp) € GL(H). T =To(I — Ty H(T — Tp)) € GL(H).
i.e. {HT — Tl < HTO_IHA} is an open neighborhood of Ty in GL(H). GL(H) isopen. O

To)|| < || Ty 1| 11T = Tol| < 1.

Definition: 3.15: Spectrum

Let A € B(H). The resolvent set of A is Res(A) ={Ae€ C:A— X € GL(H)}. The spectrum of A
is the complement Spec(A) = C\ Res(A).

Example: Let A: C?> — C%, A = )(\)1 )\0 . ThenA—/\I:<
2

A # A1, A2. Then Spec(A) = {1, A2}, Res(A) = C\ {A1, A2}

AL —A 0

. 2
0 )\2_/\>.A M e GL(C?) &

Definition: 3.16: Eigenvalue and Eigenvector

If A€ B(H) and A — A is not injective, then Ju € H \ {0} s.t. Au = Au. Then A € Spec(A) is an
eigenvalue of A and v is an eigenvector.

Example: Ta = {a—f,%,} for a € 2. Note Te, = %en, i.e. {T—%}en = 0. Then {%}neN are
eigenvalues of T, so {%}neN C Spec(T'). 0 € Spec(T') because T'— 0 = T' is injective but not surjective and

thus not invertible, 0 ¢ Res(T).

Example: T : L?([0,1]) — L%([0,1]) s.t. Tf(x) = xf(z) has not eigenvalues and Spec(T) = [0, 1].

Theorem: 3.36:

Let A € B(H). Then Spec(A) is a closed subset of C and Spec(A) C {\ € C: |A| < ||A]|}. (Spectrum
is a compact subset of C)

Proof. We show that the complement Res(A) is open and {|A| > ||A]|} C Res(A).

Let Ao € Res(A). Since GL(H) is open, then 3¢ > 0s.t. |T'— (A—X)|| <e. T € GL(H).

Then if (A= Xo| < €, [[(A—=A) = (A—=XoD)|| = |(A=Xo)I|| = [AN—=Xo| < e. Thus A — M € GL(H).
A € Res(A). So {|]A — Xo| < €} C Res(A). Res(A) is open.

Suppose [A| > ||A]|, then ||3A| < 1. I — $A is invertible. A — A = —A(I —3A) € GL(H). Thus
A € Res(A). d.e. {|A] > ||A|]} C Res(4). O

Remark 14. Spectrum cannot be empty. If it is, then Yu,v € H, f(\) = <(A - )\I)*lu,v> is continuous,

complex differentiable function in A on C. As A — oo, (A — AI)~! — 0, but Liouville’s theorem tells us
that f(A\) — 0 as |A\| — oo, f must be identically 0. Then (A — AI)~! = 0. Contradiction.
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3.6.4 Self-Adjoint Operators

Theorem: 3.37: Self-Adjoint Operators

If A= A* € B(H) is a self-adjoint operator, then
1. Yu € H, (Au,u) is real
2. ||All = sup [(Au,u)]

llull=1
Proof. 1. Ifue H, (Au,u) = (u, Au) = (u, A*u) = (Au,u). Thus (Au,u) is real.
2. Let a = sup [(Au,u)|.
[[ufl=1

By Theorem [3.] Definition [L.10]
Note V [[ul| =1, [(Au, u)] < [Aul lull = |Aul] < [|A]. Thus a <[|A]]
Let ||ul| =1 and Au # 0. Define v = ﬁ Then |jv]| = 1.
|Au|| = (Au,v) = Re (Au, v)
1

Re [(A(u +v), (u+v)) — (Alu —v),u —v) + i (A(u + ), u + iv) — i (A(u — ), u — v)]

((A(u + ), (u+v)) = (A(u — v),u —v))

IN

(allu+ vl +afu—ov|?)

(2 Jul|* + 2 ||U||2) (By Theorem [3.4))

SN N N e Y

Thus V||ul| =1, |Au|]| < a = |A|| < a
Thus a = ||A]|

O

Remark 15. In quantum mechanics, observables (positions, momentum, etc) are modeled by self-adjoint
unbounded operators. All things measured in nature (the eigenvalues) are real.

Theorem: 3.38: Spectrum of Self-Adjoint Operator

Suppose A = A* € B(H). Then
1. Spec(4) C [ [l 4], Al c C
2. At least one of + ||A|| € Spec(A)

Proof. 1. Since Spec C {|A\| < ||A||}, we just need to show Spec(A4) C R.
We show that if A = s +it, ¢t # 0, then A € Res(A).
Suppose A = s+it, s,t € R, t #0, then A —\= (A —s) —it =A—it, where A= A — s = A*.
Then A — it is bijective < A — X is bijective, so we only need to consider the case s = 0.
Since (Au, u) is real, then Im (((A — it)u, u)) = —t ||u|*. Thus (A—it)u = 0 < u = 0. Nnull(A—it) =
{0}, so A — it is injective.
Similarly, (A—it)* = A+it is injective. Range(A—it)* Theore:mmNull((A—it)*) = Null(A+it) = {0}
So Range(A — it) = (Range(A — z‘t)L)L = {0} =H.
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Now we show that Range(A — it) is closed.
Suppose (A — it)u, — v. Then
[t} [ un — umH2 = Im (((A = it)(tn — um), un — um))|
< (A = it)up — (A = it)uml| [[un — uml|
Thus, ||ty — || < ﬁ (A —it)uy, — (A —it)up|-
Since {(A —it)u,}, is Cauchy (converges), then u, is Cauchy. Ju € H s.t. u, — u.
Then (A — it)u = nh_g)lo(A —it)un, = v. Thus v € Range(A — it). Range(A — it) is closed. Therefore

A — it is bijective.

2. Since ||Al| = sup |[(Au,w)|, then I ||uy| =1 s.t. (Auy, un) — ||A]| or — ||A]| as n — oc.
flul[=1
Then ((A £ ||A|])un, un) — 0 as n — co. We want to show that A £ || A|| is not invertible.
Suppose A £ ||A]| is invertible, then
1= Junll = [|(A=£ [|AD T (A £ [|A]unl|
< [[(A=1ADTHIA £ [ADun]l = 0

Contradiction. Thus A £ ||A]| is not invertible. & || A|| € Spec(A).

Theorem: 3.39:

If A= A* € B(H), and a_ = ”iﬂlfl (Au,u), ay = sup (Au,u), then ay € Spec(A) C [a—,a].
ull= [luf=1

Proof. Note that |(Au,u)| < ||A|| for all ||u]| = 1. Then — [|A|| < a_ < aq < ||A4].

By definition of at, 3||ul|| = 1 s.t. (Aut,ul) = ay. ie. (A—ax)ul,ul) — 0.

By the same argument as in Theorem [3.38] a4 € Spec(A).

Let b= 3% B = A—bl. Then B* = B € B(H), so by Theorem , Spec(B) C [—||B||,||B]|], and

therefore, Spec(A) C [—||B]| + b, || B|| + b] by linearity.

|B|| = sup |[(Bu,u)| = sup |{(Au,u) — - —;a+ = o ; a,7 since (Au,u) € [a—,a4] and a+;a_ is the
[lull=1 [lull=1

midpoint, the supremum is half of the length.

Thus Spec(A4) C [a—, a4] O

Theorem: 3.40:

Let A* = A € B(H), then Vu, (Au,u) > 0 < Spec(A) C [0, 00)

Definition: 3.17: Eigenspace

If A€ B(H), define the eigenspace F\ = Null(A —X) ={u € H: (A— X)u =0}

Theorem: 3.41: Compact Self-Adjoint Operators

Suppose A* = A € B(H) is a compact self-adjoint operator. Then
1. If A # 0 is an eigenvalue of A, then dimF), is finite and A € R
2. If A\; # Ay are eigenvalues of A, then E), and E), are orthogonal.
3. The set of nonzero eigenvalues of A is either finite or countable. If it is countably infinite, then
lim |A,| =0

n— o0
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Proof. 1. Suppose A # 0 and dim F) = oo. Then by Gram-Schmidt process, there exists a sequence
{un},, of orthonormal elements in E}.

Since A is a compact operator, { Auy}, has a convergent subsequence {Aunj }j.

Then {Aunj }j is Cauchy, but HAunj — AunkH2 = H)\unj - )\unkHQ = |\ Hun] — unkHQ = 2|\|? does
not converge to 0, since u,, are orthonormal. Contradiction. - B

If |lul| = 1, Au = Au, then A = X (u,u) = (\u,u) = (Au,u) = (u, Au) = (u, \u) = A (u,u) = X. Thus
AeR

2. Suppose A1 # A2, u; € E), and ug € E),.
Then A (u1, ug2) = (Auy, ug) = (Auy, ug) = (u1, Aug) = (ug, Adgua) = A (u1, ug).
Then (A1 — A2) (ur, u2) =0, but Ay # A2, we must have (ug,us) = 0. i.e. E), and E), are orthogonal.

3. Let A ={\# 0: Au = Au} be the set of nonzero eigenvalues.
Claim: If {\,} 7 is a sequence of distinct nonzero eigenvalues of A, then X, — 0.

Define Ay = {)\ eAN: N> %} Ay is finite for all IV, otherwise we can take a sequence in Ay that

doesn’t converge to 0. Then A = U AN is countable.

NeN
Let {un}, be asequence in H s.t. |lu,| =1 and Vn, Au, = Ayuy,. Then |A,| = || Apun|| = [|Auy||.

Assume ||Auy|| # 0. Then Jeg > 0 and {Aun]. }j s.t. Yy, | Auy, H > €

Since A is a compact operator, there exists a subsequence ej = Un, of {un]. }j s.t. {Aey}, converges

in H and ||Aeg|| > € for all k.

Note Yk # I, (e, er) = (un,,, un,) = 0.

Let f = lim Aeg. Then 2 < ||| = (f,f) = lim
k—o00 k—oo

By Theorem 3.5 Y [{er, Af)* < | Af| < oo.

(Aey, f) (er, Af).

= lim
k—o0

k
Thus klim (e, Af) = 0. Contradiction. Therefore, |\, | = ||Au,|| — 0.
—00

3.6.5 Spectral Theorem

Theorem: 3.42: Fredholm Alternative

Let A = A* € B(H) be a compact operator and A € R\ {0}. Then Range(A — AI) is closed and
thus Range(A — AI) = (Range(A — )\I)J-)J' = Null(4 — AI)*. Therefore, either A — AT is bijective
or Null(A — AI) is nontrivial and finite dimensional.

Remark 16. 1. f € Range(A — M) < f € Null(A — M)+
2. Since Spec(A) C R, Spec(A) \ {0} = {eigenvalues of A}.

Proof. Suppose (A — X )u,, — f € H. We want to show that f € Range(A — \I).

Let vp, = IlNun(a—xr)L un (the projection of u, onto Null(4 — A1),

Then (A — M)uy, = (A — X)) (Txuna—xrytn + vn) = (A — M)vy. Then (A — X)v, = (A= A)u, — f.
Claim: {vy},, is bounded.

Assume it is not bounded, then there exists a subseqeunce {vnj }j s.t. anj H — 00.

Then (A — M)t = (A — M), — 0f =0

vagl|  fong |l
” nj g

Since A is a compact operator, there exists a subsequence {vy, }, of {vnj }j s.t. { A ( Uny, ) } converges.
k

[[orns ]

o6



Then - = [ < ) (A=) <)] Therefore, {A <U"")} converges to an element
H%H oue] [ lonll ) S
v € Null(4 — A+

Then |jv]| = hm

H Land (A= AJv = lim (4= AJ) <”> = 0.

Therefore, v € Null(A M) N Null(A — A+ = {0}, v = 0. Contradiction, since ||v|| = 1. Thus, {v,},,
must be bounded.

Since {vy},, is bounded and A is a compact operator, then there exists a subsequence {vnj }j s.t. {Avnj }j

converges.

Then, v,, = X (Avnj — (A=Al )vn‘j) converges to an element v.

Then f = lim (A — A )vp; = (A — AM)v, so f € Range(A — \I). O
Jj—o0

Theorem: 3.43:

Let A= A* € B(H) be a non-trivial compact operator. Then A has a non-trivial eigenvalue A\; with

|[Adi| = sup [(Au,u)| = |(Auy,u1)|, where ||ui|] = 1 satisfies Au; = A\uy.
llull=1

Proof. In Theorem we have shown that at least one of £ ||A|| € Spec(A) for a self-adjoint operator
A* = A.
Then =+ || A is an eigenvalue of A by Theorem [3.42) and |A;| = sup |[(Au,u)| from [|A| = |£||A]|| =

Jul|=1
sup |(Au,u)|.
llull=1
And [(Auq,u;)| comes from the fact that eigenvalues are associated with eigenvectors. O

Theorem: 3.44: Maximum Principle

Let A = A* € B(H) be a compact operator. Then the nonzero eigenvalues of A can be ordered
[Ad1] > |A2| > -+ (counted with multiplicity) with corresponding orthonormal eigenfunctions {u }

il = Sup |(Au,u)| = |[(Au;,u;)| and if the sequence does not terminate,
[|ul|=1,uespan{uy,...,uj_1}
I\j| = 0 as j — oo.

Proof. The construction proceeds inductively.

Base case: j = 1 follows from Theorem [3.43]

Induction: Suppose we have A1, ..., \,, along with orthonormal eigenvectors wuy, ..., u, s.t. |A1| > |Ag| > ---
n

Case 1: Au = Z)\k (u, ug) ug, we found all eigenvlaues and the process terminates. A is a finite rank

k=1
operator

n n
Case 2: Au # Z A (u, ug) ug. Let Apu = Au — — Z A (u,ug) ug #0
k=1 k=1
Then A, is a self-adjoint compact operator and

1. Yu € span{uy, ...,up}, Apu =20
2. Yu € span {u, ..., un}L, A,u = Au

3. Vu € H, v € span{uy, ..., un}, (Apu,v) = (u, A,v) = 0, so A,u € spanuq, ..., u,~. Range(A,) C
€1
spanuy, ..., U,
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4. If Ayu = Au # 0, then u € Range(A,) C span {ul,...,un}J‘. Thus Au = Apu = Au, i.e. \is an
eigenvalue of A

By Theorem A, has a nonzero eigenvalue \,+1 with unit eigenvector u,41 s.t.

|)‘n+1| = |<Aun+1’un+1>| = sup |<Anu>u>|

flull=1
- Sup ‘<Anua U>‘
llull=1,ucspan{us,...,un}*
= sup A |(Au, u)|

lull=Luespan{ur....un}
< sup [{Au, u)| = [An]

lul|=1,u€span{us,....un—1}

O

Theorem: 3.45: Spectral Theorem

Let A= A* € B(H) be a compact operator on a separable Hilbert space H. Let [A1| > [Aa| > --- be
the nonzero eigenvalues of A (counted with multiplicity) with corresponding orthonormal eigenvalues
{u}). Then
1. {ug}, is an orthonormal basis for Range(A).
2. {ux}) is an orthonormal basis for Range(A) and 3 orthonormal basis {f;}; of Null(A) s.t.
{ur}, U{f;}, is an orthonormal basis for H.

Proof. 1. The process of obtaining |Ai| > |Xa| > --- and eigenvectors {u}, terminates < In s.t.

n
Au = Z Ak (u, ug) ug. In this case Range(A) = span {uy, ..., ug }.
k=1
Suppose the process does not terminate, {A;}, is countably infinite, Ay, — 0 by Theorem

Claim: If f € Range(A) and Vk, (f,ux) =0, then f =0
Suppose f = Ay and (f,ur) = 0, Vk.
Then Vkv )\k? u7uk’> = (U, )\k’uk> = <U7Auk> = <Au7uk> = <f> uk:> =0 Vk.

171l = [l Au] = H (A— Y <u,uk>uk> u
k=1

By Theorem |3.4

Il =0, f=0.

W

— JAuull < s Jull = 0. Thus

2. By part 1, Range(A) C span {uy}, = {chuk : Z ler]? < oo}
k k

Thus ug is an orthonormal basis for Range(A) = (I—iamge(A)l)L = (Null(A))*.
Since H is separable, Null(A) is separable, 3 an orthonormal basis {f;}, of Null(A), so {f;}, U {ux},
is an orthonormal basis for Null(A4) @ Null(A)+ = H.

O

3.7 Dirichlet Problem

—u'(z) + V(z)u(z) = f(x)
u(0) =u(1) =0

f € O([0,1]), does there exist a unique solution u € C?([0,1]) to the problem? If V(x) > 0, then yes.
Otherwise, it depends on f.

Let V € C([0,1]) be a real valued function. Consider { , x € [0,1]. Given
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Theorem: 3.46:

Let V > 0. If f € C([0,1]), u1,uz € C%([0,1]) solve the problem, then u; = us.

—u"(z) + V(z)u(x) =0

Proof. Ket u = u; —ug. Then
u(0) =u(l) =0

1 —
0—/0 (—u"(z) + V(z)u(z)) u(z)dz
= — 1u”xﬁx 1 ) |u(z)|?dx
- [ w@p@is+ [ V@)

o 1 1
= —u’(x)u(w)(l)—i-/ u’(x)u’(x)dm—i—/ V(z)|u(z)*dz (IBP)
0 0
1 1
:/ |u’\2+/ V]u|?> (Boundary Condition)
0 0

1
z/Ww%vzm
0
1
Thus / [W/|> =0, u' =0, u is constant, and u = 0, s0 u; = us. O]
0

We now want to show the existence of solution, firstly consider V = 0 case

Theorem: 3.47:

(z—1)y,0<y<az<1 /1
Let K(x,y) = , K € C([0,1] x[0,1]). Define Af(x) = K(z, dy.
(z,y) {(y_1)$’0<x<y<1 ([0, 1] <0, 1]) f(@) 0 (@,y).f(y)dy
Then A € B(L?([0,1])) is a compact self-adjoint operator and if f € C([0,1]), then u = Af is the
o _
unique solution for (@) =1 on [0, 1].
u(0) =u(1) =0

Proof. 1If C = sup |K| < oo, then by Theorem (3.1
[0,1]2

1 1
IAf(:v)IZ‘ [ ks < [l
1/2

<c (/0 12)1/2 (/0 2) - =cll,

And [Af(x) = Af(2)] < e (K (2, y) = K(z9)[ [ f]l2
yel0,1
These two estimates and Arzela-Ascoli theorem (sufficient condition for a sequence of functions to have a

convergent subsequence) give that A is a compact operator on L?([0, 1]).
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Let f,g € C([0,1]). Then

(Af,g) _/</Kmy >()dm
[ s
- [t [ K aitee i

= (f,Bg),

where Bg(x / K@) dy—/ K (2, 9)g(y)dy = Ag(z). i.c. (Af,g) = (f, Ag), ¥f,g € C([0,1]) C
L3(]0,1])

Since C’([O 1]) is dense in L2([0,1]), (Af,g) = (f, Ag), Vf,g € L*([0,1]). Thus A* = A is a self-adjoint
operator.

T 1
If £ € C([0,1]), then u(z) = Af(z) = (x — 1) /0 yfW)dy + /0 (v — 1) f(v)dy.

By FTC, u € C%([0,1]) with —u" = f. O
1
_ Vu=
For V' #£ 0, W Vu=f < —u' = f—Vus u=A(f — Vu) by leeting f — Vu = g and apply
u(0) =u(1)=0

Theorem [3.47| < (I + AV)u = Af.
Write u = Al/2v, then AY2 (I + AYV2VAY2) v = Af. Thus (I + AY2VAY2)v = A2},
Note (Al/ZVAl/Q)* = A2V AY? is a compact self-adjoint operator.

Theorem: 3.48:

Null(A) = {0} and the orthonormal eigenvectors for A are given by uy(z) = v/2sin(knz), k € N

with eigenvalues Ay = #

Remark 17. By Theorem , {ﬂsin lmx}f:l is an orthonormal basis for L?([0, 1])

Proof. We show that Range(A4) = L%([0, 1]).

Let u be a polynomial on [0,1], f = —u” with u(0) = u(1) = 0.

By Theorem Af is the unique solution to Dirichlet problem with V' = 0, i.e. (—Af)” = f and
Af(0)=Af(1)=0,s0 Af = u.

Since the set of polynomials on [0, 1] vanishing at = 0,1 is dense in L?([0,1]) (from density of C([0,1])
and Weierstrass Approximation Theorem), Range(A) contains a dense subset of L?([0,1]). Therefore,
Range(A) = L%([0, 1]).

Since Null(4)+ = Range(A), then Null(A) = {0}

Suppose A # 0, |Jull, = 1 and Au = Au. Then because Af € C([0,1]) by the bound of |Af(z) — Af(2)],
u=3Au € C([0,1]).

Thus Au € C2([0,1]), u = +Au € C?([0,1]) = —u” = }u gives that u(z) = Asin (f ) + B cos (\1[\ )
Since u(0) =0, B =0, u(x) = Asin <ﬁx> and A#0. u(l) =0= \%)\ =nn for n € N.
Thus u(z) = Asin krz, and A = v/2 from |Jul|, = 1. O
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Definition: 3.18: Series Solution

00 1
If f e L%(0,1]), f(x) = Z cpV2sinkrz, ¢ = / f(z)V/2sinknzdz. Define the operation
k=1 v
> 1
A/? flx Z e 2sin krz. (Essentially, A'/2? multiplies every term by ﬁ)
T
k—1

Theorem: 3.49:

A'/? is a compact self-adjoint operator on L?([0,1]) and (A1/2)2 = A.

o

Proof. Let f(x) = ch\ﬁsm krz, g(x de\/ism kmz. Then
k=1 k=1
[avey - i&\@smm 2:§:\ _ ii 2 _ IIf13
2 k:lkﬂ 2 k=1 B k=1 m

Then <A1/2f,g> = i c—kdik = ick@ = <f, A1/29>. AY/? i self-adjoint.

s km
k=1 k=1
1/2 [ A1/2 ¢\ _ 41/2 = Ck .
A (A f) A <,§_1 T 251n/~c7rx>

¢
= Z k:Tfr? 2sin kmx
k=1
oo
= Z e AV2 sin krx
k=1

:Ach\stinkﬂx =Af

To show that A is compact, it sufﬁeces to show {Al/ 2 flly < 1} has equi-small tails.

Let € > 0. Choose N € N s.t. W < €% Let ||Ifll, < 1.

) ‘<A1/2f, V2sin km->’2 _ N el
k>N =

k272
N

1 — 1
2 _ 2
Smkz_l|ck| —m”f”z

1 2
N2 <€

IN

O

Thus, A is compact.

Theorem: 3.50:

Let V' € C([0,1]) be real valued, and define my f(z) = V(z)f(z) for f € L?([0,1]). Then my €
B(L*([0,1])) is self-adjoint.
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Theorem: 3.51:

Let V € C([0,1]) be real valued. Then T = AY/2my A'/? satisfies
1. T is a self-adjoint compact operator on L?([0, 1])
2. T € B(L*([0,1]),C([0,1]))

Proof. 1. follows from Theorem and Theorem [3.50]
2. Since my € B(L2([o 1])), it suffices to show A'/2 € B(L*([0,1]), C([0,1])).

Let f(x) = Z cxV2sin krz. Then A1/2f Z \/ism kmx by Definition |3.18]
k=1

1/2 172
. Ck /s \Ckl\f |Ck| !Ck| 1 2 2
Since ’E\/ismlmm:’ < Z zk:kQ ;’Ck‘ < G [ flly by

Theorem then by Weierstrass M-test, A1/2f € ()[0,1] and ‘Al/Qf(a:)} <4/ %2 Il f1l5-

Theorem: 3.52:

Let V € C([0,1]) with V > 0 and let f € C([0,1]). Then there exists a unique u € C?([0, 1]) solving
—u"+Vu=f

w(0) =u() =0 01

Proof. The plan is to have u = A'/2 (I + Al/vaAl/z)_1 AYV2f,

By Theorem AY2my AV/2 s a self-adjoint compact operator.

Then by Theorem (I+ Al/QmVAl/Q)_1 exists < Null (1 + Al/QmVAl/Q) = {0}
Suppose (I + Al/QmVAl/Q) g =0, then

0= <([+ Al/vaAl/Q) g,g> _ ngg n <A1/2mVA1/Qg,g>
= ”9”; + <va1/2g, A1/2g> (Self-adjoint)
1 S —
—lol+ [ v (429) (A7) go
0
2 ! 2 2
= lall3+ [ v |47%[ = ol

Thus ||g||, =0, g = 0. Then (I + Al/vaAl/z)_1 exists.

Define v = (I 4+ AY2my AY2)7HAV2f y = A2y,

Thus u + A(Vu) = A2y + AV? (Al/szAl/Q) v = A2 (I + (Al/vaAl/Q» v=AYV2AVZf — Af.
Taking the derivatives gives v’ — Vu = —f, so —u” + Vu = f. u solves the Dirichlet problem. O
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