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1 Introduction

Consider the dataset CELEBA, 200k images of size 200× 200. Assume the images are grayscale, they are
points in R40000. They are samples from an unknown probability measure ν. There are two questions:

1. Find an approximation of ν

2. Find a way to create/generate new samples from ν

Definition: 1.1: Push-forward Measure

Let G : X → Y be a continuous function, η be a measure on X. (G#η)(B) = η(G−1(B)).

To generate an image, Gθ : Rm → R40000, typically for GANs, m = 100. Sample from a known probability
measure η (e.g. multivariant Gaussian). It has a push-forward measure µθ = (Gθ)#η. We want µθ to be
as close as possible to ν of which we have samples.

Notion of closeness of measures: GANs use Jensen-Shannon divergence inf
θ
JS(µθ, ν), where

JS(µ, ν) =
1

2
D(µ||M) +

1

2
D(ν||M)

M =
1

2
(µ+ ν)

D(µ||M) =

∫
µ(x) log

(
µ(x)

M(x)

)
dx

Issue: If µ and ν have disjoint support, then JS(µ, ν) = c is a constant.

Definition: 1.2: Optimal Transport

Let µ be a measure on X, ν be a measure on Y , µ(X) = ν(Y ). Want to find a transport map

T : X → Y with T#µ = ν s.t. inf
T :T#µ=ν

∫
|x− Tx|dµ(x) =W1(µ, ν) (variational problem).

The Wasserstein distance, W1(µ, ν), (minimum cost of transporting µ to ν) does not have the issue, and
resulted in much better training. Training inf

θ
W1((Gθ)#η, ν) is another variational problem.

However, it is difficult to compute W1(µ, ν), WGANs consist of 2 neural networks. Gθ is the generator, and
a neural net (the critic) is introduced for approximately computing W1((Gθ)#η, ν). The approximation is
inaccurate [11]. WGAN-GP (gradient penalty) computes a congested transport cost [7].
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Let x evolve according to a SDE

dx = f(x, t)dt+ g(t)dW

pt be the resulting probability distribution of x(t)s. ∇x log pt(x) is the score. If the score is known, then
we can reverse the process

dx =
[
f(x, t)− g2(t)∇x log pt(x)

]
dt+ g(t)dW

In score-based diffusion model, use a neural network to approximate the score. t → pt is a gradient
flow.

Inverse Spectral Problems Consider the Dirichlet eigenfunctions{
−∆u = λjuj

uj |∂Ω = 0

Given λ1, ..., λn, can we determine Ω? In theory, this is not achievable.
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2 Wasserstein Distance

2.1 Optimal Transport Theory

Let X,Y be complete separable metric spaces (Polish spaces). Most of the time, we will have X =
Y bounded in Rd. µ, ν finite Radon measures on X,Y , µ(X) = ν(Y ). Assume µ, ν are probability
measures.

Monge (1781): Find a Borel measurable map T : X → Y solution of

min
T#µ=ν

∫
X
|x− Tx|dµ(x) (1)

More generally, can have a cost function c(x, y) continuous, c : X × Y → [0,∞):

min
T#µ=ν

∫
X
c(x, Tx)dµ(x)

Reasons to consider general cost functions:

1. c(x, y) = |x − y|p in Rd. Wp(µ, ν) =

(
min
T#µ=ν

∫
X
|x− Tx|pdµ(x)

)1/p

for 1 ≤ p < ∞. (There are

WGAN papers that propose Wp-distances)

2. If X = Y is a Riemannian manifold, c(x, y) = d(x, y)2 is the most often used in geometry

3. WGAN-GP yield cost which is not |x− y|

Note: In Monge’s formulation the transport map may not exist. Standard counter example of existence:
Let µ = δx0 , ν = 1

2(δy0 + δy1), where δ are pointmass. X = {x0} , Y = {y0, y1}. There is no transport map
X → Y .

Kantorovich (1942) relaxed the problem, in lieu of a transport map T , we seek a probability measure γ
on X×Y . If γ has density dγ = γ(x, y)dxdy. Intuitively, γ(x, y) is the fraction of the mass at x transported
y. If A ⊂ X,B ⊂ Y , γ(A×B) is the mass from A to B.
γ is admissible if (Πx)#γ = µ and (Πy)#γ = ν, where Πx(x, y) = x,Πy(x, y) = y are projections onto
corresponding spaces, so µ(A) = γ(Π−1

x (A)) = γ {(x, y) : x ∈ A}, ν(B) = γ(Π−1
y (B)) = γ {(x, y) : y ∈ B}

for A ⊂ X,B ⊂ Y .
If µ, ν, γ are absolutely continuous, µ = f(x)dx, ν = g(y)dy, γ = γ(x, y)dxdy, dx, dy are Lebesgue. Then∫
γ(x, y)dy = f(x),

∫
γ(x, y)dx = g(y). In short, γ should have marginals µ and ν. Let Π(µ, ν) be the set

of admissible γ (transport plans).

min
γ∈Π(µ,ν)

∫
X×Y

c(x, y)dγ (2)

Eq. 2 is the Monge-Kantorovich (MK) problem, which is a linear programming problem.

Theorem: 2.1:

Assume X,Y are compact metric spaces, there is a solution to Eq. 2.

Remark 1. Solution need not be unique.

Example: X = [0, 10] ⊂ R, Y = [1, 11] ⊂ R, µ, ν are Lebesgue measures in R, c(x, y) = |x− y|.
T1(x) = x+ 1, W1(µ, ν) =

∫
X
|x− T1(x)|dµ = 10

T2(x) =

{
x+ 10, x ∈ [0, 1)

x, x ∈ [1, 10]
, W1(µ, ν) =

∫
X
|x− T1(x)|dµ =

∫ 1

0
10dx = 10
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2.2 Duality Theory

Key to compute W1(µ, ν) using a neural network is duality theory.

The dual Kandorvich (DK) problem is

sup
ϕ,ψ∈Cb

∫
X
ϕ(x)dµ(x) +

∫
Y
ψ(y)dν(y) s.t. ϕ(x) + ψ(y) ≤ c(x, y), (3)

where Cb are continuous bounded functions.

DK has a solution and minMK = maxDK.

Intuition: easier to explain:

sup
ρ,ψ

∫
X
−ρ(x)dµ(x) +

∫
Y
ψ(y)dν(y)

for ρ = −ψ. ρ(x) is price we pay at source and ψ(y) is price we collect at destination. The equation is to
maximize the profit.
Honesty constraint: −ρ(x) + ψ(y) ≤ c(x, y).

Proof. (Weak Duality) maxDK ≤ minMK.

Let γ ∈ Π(x, y).∫
X
ϕdµ+

∫
Y
ψdµ =

∫
X×Y

ϕdγ +

∫
X×Y

ψdγ ≤
∫
X×Y

c(x, y)dγ

Definition: 2.1: c-transform

If ϕ(x) + ψ(y) ≤ c(x, y), ∀x, y, then ψ(y) ≤ c(x, y) − ϕ(x) and ψ(y) ≤ infx(c(x, y) − ϕ(x)). Define
ϕc(y) the c-transform of ϕ(x),

ϕc(y) = inf
x
(c(x, y)− ϕ(x))

Similarly, we define ψc by

ψc(x) = inf
y
(c(x, y)− ψ(y))

Most often, we will have X = Y and c(x, y) = c(y, x), the notions will be the same.

Definition: 2.2: c-concave

If ϕ = ψc for some ψ, then ϕ is c-concave.

Theorem: 2.2:

Assume X,Y are compact metric spaces, c : X × Y → [0,∞) continuous. There exists a solution of
Eq. 3 with ψ = ϕc. Moreover, ϕ can be taken c-concave.

sup
ψ,ψ

{∫
X
ϕdµ+

∫
Y
ψdν : ϕ(x) + ψ(y) ≤ c(x, y)

}
= sup

ϕ,ψ≤ϕc

∫
X
ϕdµ+

∫
Y
ψdν

= sup
ϕ

∫
X
ϕdµ+

∫
Y
ϕcdν
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Proposition: 2.1:

Suppose c(x, y) is a distance function on X. Then u : X → R is c-concave if and only if it is
1-Lipschitz. i.e. |u(x)− u(y)| ≤ c(x, y). Moreover, for any Lip-1 function, uc = −u.

Proof. (⇒) Assume u is c-concave, i.e. u = ψc for some ψ. u(x) = infy c(x, y)− ψ(y).

(c(x1, y)− ψ(y))− (c(x2, y)− ψ(y)) = c(x1, y)− c(x2, y) ≤ c(x1, x2)

c(x1, y)− ψ(y) ≤ c(x1, x2) + c(x2, y)− ψ(y)

ψc(x1) ≤ c(x1, x2) + ψc(x2) Take inf on both sides.

Therefore u(x1)− u(x2) ≤ c(x1, x2).
Similarly, u(x2)− u(x1) ≤ c(x1, x2), combining both to get |u(x1)− u(x2)| ≤ c(x1, x2).

(⇐) Suppose u is Lip-1.
u(x1)− u(x2) ≤ c(x1, x2) ⇒ u(x1) ≤ infx2(c(x1, x2)− u(x2)).
On the other hand, infx2(c(x1, x2) + u(x2)) ≤ c(x1, x1) + u(x1) = u(x1).
Hence, u(x1) = infx2(c(x1, x2) + u(x2)) = (−u)c. Thus u is c-concave.
Apply the above to Lip-1 function −u, we get −u = uc = uc, since c is symmetric.

Corollary 1. W1(µ, ν) = min
γ∈Γ(µ,ν)

∫
X×Y

d(x, y)dγ(x, y) = max
u∈Lip-1

∫
X
udµ −

∫
Y
udν (Assume X = Y ) u is

called the Kantorovich potential. This is used to approximate the Wasserstein distance.

Recall that we want to adjust θ s.t. µθ = (Gθ)#η is as close as possible to ν.

min
θ
W1(µθ, ν) ≈ min

θ
max
u∈Lip-1

∫
X
udµθ −

1

N

N∑
i=1

u(xi),

where xi ∼ ν, and
1

N

N∑
i=1

u(xi) is the empirical distribution.

Idea in the first WGAN paper: approximate a Kantorovich potential by a second neural network, u ≈ uw

the critic, trained (modify w) so as to maximize W1(µθ, ν) =

∫
X
uwdµθ +

∫
Y
uwdν.

However, it is difficult to train a neural network to approximate a Lip-1 function.

First attempt to produce a Lipschitz function uw was weight clipping (cutoff weights in the neural net for
uw above a threshold)

Improved version [4] replaced the constrained optimization u ∈ Lip-1 by a weighted unconstrained problem
with a penalty term (WGAN-GP):

max
u

∫
X
udµ−

∫
Y
udν − λ

∫
X
(|∇u(x̂)| − 1)2+ dσ(x̂),

where σ(x̂) is sampling measure. To sample from σ, sample x from µ, y from ν and t from Unif([0, 1]) and
let x̂ = (1− t)y + tx.
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2.3 Basic Convex Analysis

Let B be a Banach space and B∗ its dual. Think of B = RN and B∗ ∼= RN with dual pairing ⟨x, ξ⟩ where ξ
is a linear functional acting on x. We will have B = C(X × Y ) and B∗ finite measure.

Definition: 2.3: Fenchel Transform

For a functional F : B → (−∞,∞] not necessarily convex, define its Fenchel transform (or conjugate)
as

F ∗(β) = sup
b∈B

⟨β, b⟩ − F (b)

for b ∈ B, β ∈ B∗.

Theorem: 2.3: Properties of F ∗

1. F ∗ is convex, because ⟨β, b⟩ − F (b) is affine in β and supremum of affine function is convex.
2. F ∗ is lower semi-continuous (l.s.c), f(x) ≤ lim inf

x→x
f(x), since it is the supremum of continuous

functions
3. If F (b) ≤ G(b),∀b, then F ∗(b) ≥ G∗(b), because of − sign
4. ⟨β, b⟩ ≤ F (b) + F ∗(β)
5. F ∗∗(b) ≤ F (b),∀b, because F ∗∗(b) = sup

β∈B∗
⟨β, b⟩ − F ∗(β) ≤ F (b) + F ∗(β)− F ∗(β) = F (b).

Theorem: 2.4: Fenchel-Moreau-Rockafellar

Assume F is not identially ∞ (such an F is called proper). Then F = F ∗∗ if and only if F is convex
and l.s.c.

Theorem: 2.5:

min(MK) = max(DK)

Proof. Define a functional H on C(X × Y ) as

H(ξ) = −max
ϕ,ψ

{∫
X
ϕdµ+

∫
Y
ψdν : ϕ(x) + ψ(y) ≤ c(x, y)− ξ(x, y)

}
By Theorem 2.2, there exist maximizers for any ξ continuous.

Firstly, we show that H is convex.
Let (ϕ0, ψ0) solve Eq (3) for c(x, y)− ξ0(x, y) and (ϕ1, ψ1) solve Eq (3) for c(x, y)− ξ1(x, y).
Let ξt = (1− t)ξ0 + tξ1, ϕt = (1− t)ϕ0 + tϕ1, ψt = (1− t)ψ0 + tψ1. Since ϕt + ψt ≤ c− ξt

H(ξt) ≤ −
(∫

ϕtdµ+

∫
ψtdν

)
= −

{
(1− t)

(∫
ϕ0dµ+

∫
ψ0dν

)
+ t

(∫
ϕ1dµ+

∫
ψ1dν

)}
= (1− t)H(ξ0) + tH(ξ1)

So H is convex.

H is l.s.c. by Arzela-Ascoli Theorem
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Let γ be a signed Radon measure,

H∗(γ) = sup
ξ
(⟨γ, ξ⟩ −H(ξ))

= sup
ξ

[∫
ξdγ + max

ϕ+ψ≤c−ξ

(∫
ϕdµ+

∫
ψdν

)]
= sup

ϕ,ψ
sup

ξ≤c−ϕ−ψ

∫
ξdγ +

∫
ϕdµ+

∫
ψdν

We will now apply Theorem 2.4 to B = C(X × Y ) and B∗ finite Radon measure on X × Y to show
H∗ ∗ (ξ) = H(ξ) for all ξ ∈ C(X × Y ).

Claim: H∗(γ) = 0 if γ is not a non-negative measure.
If γ is not ≥ 0, then ∃ξ0 s.t.

∫
ξ0dγ > 0.

Consider ψ = ψ = 0, ξN = Nξ0 + c ≤ c = c− ϕ− ψ for N large. Then

H∗(γ) ≥
∫
X×Y

ξNdγ = N

∫
ξ0dγ +

∫
cdγ → ∞ as N → ∞.

If γ ≥ 0, then taking the largest possible ξ gives

H∗(γ) = sup
ψ,ψ

∫
X×Y

c(x, y)− ϕ(x)− ψ(y)dγ +

∫
X
ϕdµ+

∫
Y
ψdν

Let γ1 = (ΠX)#γ, γ2 = (ΠY )#γ be the marginals of γ, then
∫
X×Y

ϕ(x)dγ =

∫
X
ϕdγ1 and

∫
X×Y

ψ(y)dγ =∫
Y
ψdγ2

H∗(γ) = sup
ψ,ψ

∫
X×Y

c(x, y)dγ +

∫
X
ϕ(dµ− dγ1) +

∫
Y
ψ(dν − dγ2)

=

sup
ϕ,ψ

∫
X×Y

c(x, y)dγ, if γ1 = µ, γ2 = ν

∞, otherwise

Note
∫
c(x, y)dγ is independent of ϕ and ψ. Therefore:

H∗(γ) =


∫
X×Y

c(x, y)dγ, if γ ∈ Π(µ, ν)

∞, otherwise

Recall definition of H(ξ):

H(0) = − sup
ϕ+ψ≤c

∫
X
ϕdµ+

∫
Y
ψdν = −max(DK)

By Theorem 2.4, max(DK) = −H(0)−H∗∗(0). Then

H∗∗(0) = sup
γ

⟨γ, 0⟩ −H∗(γ) = − inf
γ
H∗(γ) = − inf

γ∈Π(µ,ν)

∫
X×Y

c(x, y)dγ = −min(MK)

Therefore, max(DK) = −H(0)−H∗∗(0) = min(MK).
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Proposition: 2.2:

Suppose γ is an optimal transport plan (i.e. solution of Eq. (2)) and ϕ, ψ solution of Eq. 3. Then
∀(x, y) ∈ spt(γ), ϕ(x) + ψ(y) = c(x, y).

Proof. By Theorem 2.5, also γ has the marginals µ, ν,∫
X×Y

(ϕ+ ψ)dγ =

∫
X
ϕdµ+

∫
Y
ψdν =

∫
X×Y

c(x, y)dγ

Therefore,
∫
X×Y

(c(x, y)− (ϕ(x) + ψ(y)))dγ = 0.

Also we require c ≥ ϕ+ ψ in Eq. 3. Thus c = ϕ+ ψ for γ-a.e. (x, y).
Since c, ϕ, ψ are continuous functions, {(x, y) : c = ϕ+ ψ} is closed. Hence it contains the smallest closed
set with complement of zero γ measure. Therefore the set is spt(γ).

Proposition: 2.3:

Suppose γ is a solution of Eq. (2) and ϕ is a Kantorovich potential, i.e. a solution of Eq. 3 with ψ = ϕc.
If (x0, y0) ∈ spt(γ), and if ϕ(x) and c(x, y0) are differentiable at x0, then ∇ϕ(x0) = ∇xc(x0, y0).

Proof. By Definition 2.1, ϕc(y) = inf
x
c(x, y)− ϕ(x), so ϕc(y0) ≤ c(x, y0)− ϕ(x),∀x.

For x = x0, ϕc(y0) = c(x0, y0)− ϕ(x0) by Proposition 2.2, since (x0, y0) ∈ spt(γ).
Therefore, x0 is a minimizer of c(x, y0)− ϕ(x). Hence ∇xc(x, y0)−∇xϕ(x) = 0 at x = x0.

Definition: 2.4: Sub-differential

β ∈ B∗ is called a subgradient of F : B → (−∞,∞] (convex) at b0 if F (b) ≥ F (b0) + ⟨β, b− b0⟩ ,∀b.
The set of all subgradients of F at b0 is called the subdifferential of F at b0 and denoted

∂F (b0) = {β ∈ B∗ : F (b) ≥ F (b0) + ⟨β, b− b0⟩ ,∀b}

Intuitively, if F is differentiable at b0, β = F ′(b0). RHS is the linearization at b0.

Example: B = R, F (b) = |b|, B∗ = R, β ∈ R is a subgradient at b0 = 0 if and only if |b| ≥ 0 + βb ⇐ β ∈
[−1, 1].

∂(|b|)(0) = [−1, 1] ⊂ R, if b0 ̸= 0, ∂(|b|)(b0) =

{
1, b0 > 0

−1, b0 < 0
.

Theorem: 2.6: Properties of Sub-differential

1. F has a (global) minimum at b0 ⇔ 0 ∈ ∂F (b0) ⇔ F (b) ≥ F (b0), ∀b
2. ⟨β, b⟩ = F (b) + F ∗(β) ⇔ β ∈ ∂F (b0)
3. Suppose F is convex and l.s.c. then F ∗∗(b) = F (b) (Theorem 2.4) and by 2, ⟨β, b0⟩ = F ∗∗(b0)+
F ∗(β) ⇔ b ∈ ∂F ∗(β)

4. If F is convex and l.s.c., β ∈ ∂F (b0) ⇔ b0 ∈ ∂F ∗(β0).
Hence ∂F ∗(β0) = argmax {⟨β0, b⟩ − F (b)}.

8



Proof. (2)

β ∈ ∂F (b0) ⇔ F (b) ≥ F (b0) + ⟨β, b− b0⟩ ,∀b
⇔ ⟨β, b0⟩ − F (b0) ≥ ⟨β, b⟩ − F (b), ∀b
⇔ ⟨β, b0⟩ − F (b0) ≥ sup

b
⟨β, b⟩ − F (b) = F ∗(β)

Since the reverse inequality always hold, we get ⟨β, b0⟩ − F (b0) = F ∗(β).

Apply it to B = C(X) with X compact and B∗ =finite signed Radon measure with ∥·∥L∞-norm.

Let H be the functional B → (−∞,∞] defined as H(ϕ) = −
∫
Y
ϕcdν, ϕc(y) = inf

x
c(x, y)− ϕ(x).

Claim: H is convex and l.s.c. In fact, H is continuous.

Proof.

ϕc1(y) = inf
x
c(x, y)− ϕ1(x) = inf

x
c(x, y)− ϕ0(x)− ϕ1(x) + ϕ0(x)

≤ inf
x
c(x, y)− ϕ0(x) + ∥ϕ1 − ϕ0∥L∞

Since ϕc1(y)− ϕc0(y) ≤ ∥ϕ1 − ϕ0∥L∞ by continuity of c-transform. Integrate both sides:

−H(ϕ1) +H(ϕ0) ≤ ∥ϕ1 − ϕ0∥L∞

∫
dγ = ∥ϕ1 − ϕ0∥L∞

Interchanging ϕ0 and ϕ1, we get |H(ϕ1)−H(ϕ0)| ≤ ∥ϕ1 − ϕ0∥L∞ . i.e. H is continuous.

Convexity: Let ϕt = (1− t)ϕ0 + tϕ1

c(x, y)− ϕt = c(x, y)− (1− t)ϕ0(x)− tϕ1(x)

= (1− t)(c(x, y)− ϕ0(x)) + t(c(x, y)− ϕ1(x))

≥ (1− t)ϕc0(y) + tϕc1(y)

⇒ϕct(y) ≥ (1− t)ϕc0(x) + tϕc1(y).

Integrate w.r.t. dν, −H(ϕt) ≥ −(1− t)H(ϕ0)− tH(ϕ1).
Therefore, H(ϕt) ≤ (1− t)H(ϕ0) + tH(ϕ1), H is convex.

Since F is continuous and convex, then

∂H∗(µ) = arg max
ϕ∈C(X)

{∫
X
ϕdµ−H(ϕ)

}
= arg max

ϕ∈C(X)

∫
X
ϕdµ+

∫
Y
ϕcdν

Claim: max
ϕ∈C(X)

∫
X
ϕdµ+

∫
Y
ϕcdν =

Tc(µ, ν) = min
γ

∫
c(x, y)dγ, µ ∈ γ(X), more generally µ(X) = ν(Y )

∞, otherwise

Proof. If µ is not ≥ 0, then there exists ϕ ≤ 0 s.t.
∫
ϕ0dµ > 0.

Let λ ∈ R, (λϕ0)c = inf
x
c(x, y) − λϕ0(x) ≥ inf

x
c(x, y) ≥ c, since X × Y is compact and c is continuous, c

always exist. Then

λ

∫
X
ϕ0dµ+

∫
(λϕ0)

cdν ≥ λ

∫
X
ϕ0dµ+ c
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Since
∫
X ϕ0dµ > 0, let λ→ ∞, we get ∞.

Now we need to show µ is a probability measure.
Suppose µ ≥ 0, but µ(X) ̸= ν(Y ). Consider (ϕ+ λ)c = ϕc − λ. Let ϕ = 0. 0c(y) = infx c(x, y) ≥ c.∫

X
(0 + λ)dµ+

∫
Y
(0 + λ)cdν = λ

∫
X
dµ− λ

∫
Y
dν +

∫
Y
0c(y)dν

≥ λ

(∫
X
dµ−

∫
Y
dν

)
+ c

If
∫
X dµ −

∫
Y dν > 0, take λ → ∞, and if

∫
X dµ −

∫
Y dν < 0, take λ → −∞. Therefore, we must have

µ(X) = ν(Y ).

History of Monge Problem:

inf
T#µ=ν

∫
X
|x− Tx|dµ

T is the transport map.
Sudakov (1979) claimed existence of an optimal transport map if µ ≪ L (Lebesgue measure), but there
was gap in the proof.
Evans & Gangbo (1999) proved using PDE methods which requires additional hypothesis.
Cafarelli-Feldman-McCann (2002) proved existence of T if µ≪ L and ν ≪ L.
Ambrosio & Pratteli relaxed to µ≪ L and fixed Sudakov’s proof.

2.4 Application to Wasserstein Distance

Fact: If the subdifferential at b0 consists of a unique element, F is Gateaux differentiable at b0.

Definition: 2.5: Gateaux Derivative

Let χ be a finite Radon measure, the Gateaux derivative is

lim inf
ϵ→0

Tc(µ+ ϵχ, ν)− Tc(µ, ν)
ϵ

Suppose Eq. (3) has a unique c-concave solution ϕ upto constant, then Tc(µ, ν) =
∫
X ϕdµ+

∫
Y ϕ

cdν.

lim inf
ϵ→0

Tc(µ+ ϵχ, ν)− Tc(µ, ν)
ϵ

≥ lim inf
ϵ→0

∫
X ϕd(µ+ ϵχ) +

∫
Y ϕ

cdν −
∫
X ϕdµ−

∫
Y ϕ

cdν

ϵ

= lim inf
ϵ→0

ϵ
∫
X ϕdχ

ϵ
=

∫
X
ϕdχ = ⟨ϕ, χ⟩

Also, lim sup
ϵ→0

Tc(µ+ ϵχ, ν)− Tc(µ, ν)
ϵ

≤ ⟨ϕ, χ⟩. Therefore,

lim
ϵ→0

Tc(µ+ ϵχ, ν)− Tc(µ, ν)
ϵ

=

∫
X
ϕdχ = ⟨ϕ, χ⟩

LHS is the directional derivative at µ in the direction χ, also called the first variation. The unique Kan-
torovich potential ϕ is the Gateaux derivative of µ 7→ Tc(µ, ν) with ν fixed.

Consider the case c(x, y) = 1
2 |x− y|

2, X = Y = Ω compact in Rd. ∇xc(x, y) = x− y, so if (x0, y0) ∈ spt(γ),
we will have x0 − y0 = ∇ϕ(x0), y0 = x0 − ∇ϕ(x0) is unique. This gives a transport map T (x) = x −
∇ϕ(x).
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Special case: c(x, y) = |x − y|. Since this is a distance function, we know ϕ is c-concave if and only if ϕ
is Lipschitz-1 and ϕc = −ϕ. ϕ(x) + ϕc(y) = c(x, y) ⇔ ϕ(x) − ϕ(y) = |x − y| given (x, y) ∈ spt(γ). Also if
µ≪ Ld, there is an optimal transport map T solution of the Monge problem.

Lemma: 2.1:

Let u be a Lipschitz-1 function. If u(x)− u(y) = |x− y|, then u((1− t)x+ ty) = u(x)− t|x− y| for
0 ≤ t ≤ 1.

Proof.

u(x)− u((1− t)x+ ty) ≤ |x− (1− t)x− ty| = t|x− y|
u((1− t)x+ ty)− u(y) ≤ |(1− t)x+ ty − y| = (1− t)|x− y|

⇒ u(x)− u(y) ≤ |x− y|

But we have assumed equality, we must have equality in all equations. i.e. u(x)−u((1−t)x+ty) = t|x−y|.
Also, the equality is saturated for any point inside the segment x→ y:

u((1− t̃)x+ t̃y)− u((1− t)x+ ty) =
∣∣(1− t̃)x+ t̃y − ((1− t)x+ ty)

∣∣

Lemma: 2.2:

If u is Lipschitz-1 and u(x)− u(y) = |x− y|, then u is differentiable at all points xt = (1− t)x+ ty,
t ∈ (0, 1), and ∇u(xt) = x−y

|x−y| . In particular, ∇u(x) = x−Tx
|x−Tx| µ-a.e.

The map Tx goes in the direction −∇u(x), but we don’t know how far. The lemmas also imply that
tranport rays (the segments) cannot cross each other, but potentially meet at the end point.

Usefulness of transport maps: we can use it to denoise, deblur, and translate images [6].
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3 Score-based Generative Models

This section explains the basic ideas of [10], [3].

The score-based generative models can generate stunning images, but the generation process is very costly
by solving reverse SDEs. WGANs are more efficient and needs less training data.

3.1 Image Denoising

Let f be a gray scale noisy image, f is a function on a square Ω ⊂ R2 → R, f(x) is gray scale level at x.
We want to denoise it mathemtically.

Definition: 3.1: Tikhonov Regularization

u0 = argmin
u

∫
Ω
|∇u|2 + λ

2

∫
Ω
|u− f |2

This is like a low pass filter, penalizing high frequency features.

Definition: 3.2: Rudin-Osher-Fatemi

u0 = argmin
u

∫
Ω
|Du|2 + λ

2

∫
Ω
|u− f |2,

where
∫
Ω |u−f |2 is the fidelity term (denoised image should be close to the original image),

∫
Ω |Du|2

is the regularization term.

Definition: 3.3: Total Variation

∫
Ω
|Du| = sup

∥ϕ∥∞≤1

{∫
Ω
u∇ · ϕ : ϕ = (ϕ1, ..., ϕd), ϕ ∈ C1

0 (Ω,Rd)
}

If u ∈ W 1,1(Ω), i.e. u ∈ L1 and
∫
Ω |∇u|dx < ∞, then

∫
Ω |Du| =

∫
Ω |∇u|. This definition allows Du to be

a measure.

BV (Ω) =

{
u ∈ L1 :

∫
Ω
|Du| <∞

}

Because
∫
Ω |Du|2 is total variation, ROF is sometimes called TV regularization.

Example: If A ⊂ Ω is open, χA(x) =

{
1, x ∈ A

0, x /∈ A
, then χA ∈ BV (Ω), but χA /∈ W 1,1(Ω), because the

derivative is δ on boundary and 0 a.e. else. It is not bounded in L1. ROF model allows for such χA →
sharp images.

Theorem: 3.1:

There exists a unique solution of Model 3.2.
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Proof. Let E(u) =

∫
Ω
|Du|+ λ

2

∫
Ω
|u− f |2 for a fixed λ > 0. Assume f ∈ L2 (in R2, BV (Ω) ⊂ L2(Ω))

Since E(u) ≥ 0,∀u, let δ0 = inf
u∈BV (Ω)

E(u) ≥ 0.

We want to show that ∃u0 ∈ BV (Ω) with E(u0) = δ0.

For any n ∈ N, ∃un s.t. δ0 ≤ E(un) < δ0 +
1
n , {un} is called a minimizing sequence lim

n→∞
E(un) = δ0.

Consider E(0), δ0 ≤ E(0) = λ
2

∫
Ω |f |2.

If E(0) = δ0, then done.
Otherwise, E(0) > δ0. Let n be s.t. 1

n < E(0)− δ0, E(un) ≤ δ0 +
1
n < E(0) = λ

2

∫
Ω |f |2.

∥un∥L2 ≤ ∥un − f∥L2 + ∥f∥L2 ≤
(
2

λ
E(un)

)1/2

+ ∥f∥L2 ≤ ∥f∥L2 + ∥f∥L2 = 2 ∥f∥L2

Ball in L2 is weakly compact, so there is a subsequence unk
→ u0 ∈ L2.

To show that u ∈ BV and E(u0) = δ0, need to show u 7→ E(u) is l.s.c. with respect to weak convergence
in L2. By definition of sup, for any ϕ ∈ C1

0 (Ω,Rd):

lim inf
k→∞

∫
Ω
|Dunk

| ≥ lim inf
k→∞

∫
Ω
unk

∇ · ϕ =

∫
Ω
u0∇ · ϕ

Taking sup over ∥ϕ∥∞ ≤ 1, lim inf
k→∞

∫
Ω
|Dunk

| ≥
∫
Ω
|Du0|.

δ0 = lim inf
k→∞

E(unk
) ≥ lim inf

k→∞

∫
Ω
|Dunk

| ≥
∫
Ω
|Du0|

This shows u0 ∈ BV (Ω). Now we need to show that u 7→ ∥u− f∥2 is l.s.c.

∥u0 − f∥2 = sup
∥v∥2≤1

∫
Ω
(u0 − f)v

= sup
∥v∥2≤1

lim inf
k→∞

∫
Ω
(unk

− f)v

≤ sup
∥v∥2≤1

lim inf
k→∞

∥unk
− f∥2 ∥v∥2 by Cauchy-Schwarz

= lim inf
k→∞

∥unk
− f∥2

Combining inequalities, we get

δ0 ≤ E(u0) = E( lim
k→∞

unk
) ≤ lim inf

k→∞
E(unk

) ≤ lim
k→∞

δ0 +
1

nk
= δ0

Thus E(u0) = δ0, so u0 solves ROF.

Uniqueness: suppose u1 ∈ BV (Ω), also satisfies E(u1) = δ0 By Parallelogram law:∥∥∥∥u0 + u1
2

− f

∥∥∥∥2
2

=

∥∥∥∥u0 − f

2
+
u1 − f

2

∥∥∥∥2
2

= 2

∥∥∥∥u0 − f

2

∥∥∥∥2 + 2

∥∥∥∥u1 − f

2

∥∥∥∥2 − ∥∥∥∥u0 − u1
2

∥∥∥∥2

E

(
u0 + u1

2

)
≤ 1

2

∫
Ω
|Du0|+

1

2

∫
Ω
|Du1|+

λ

2

∥∥∥∥u0 + u1
2

− f

∥∥∥∥2
2

≤ 1

2

{(∫
Ω
|Du0|+

λ

2
∥u0 − f∥2

)
+

(∫
Ω
|Du1|+

λ

2
∥u1 − f∥2

)}
− λ

8
∥u0 − u1∥2

=
1

2
E(u0) +

1

2
E(u1)−

λ

8
∥u0 − u1∥2 = δ0 −

λ

8
∥u0 − u1∥2
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Therefore,

δ0 ≤ E

(
u0 + u1

2

)
≤ δ0 −

λ

8
∥u0 − u1∥2

And u0 = u1

3.1.1 Tadmor-Nezzar-Vese (TNV)

Given any f ∈ L2, choose λ0 and let u0 be the corresponding solution of ROF.
Let v0 = f − u0, so f = u0 + v0. u0 can be thought of as main features and v0 may be noise.
Let λ1 = 2λ0 for simplicity. Replace f by v0. Let u1 be the corresponding solution of ROF:

u1 = arg min
u∈BV (Ω)

∫
Ω
|Du|+ λ

2
∥v0 − u∥22

Let v1 = v0 − u1, so v0 = u1 + v1, and f = u0 + u1 + v1. Repeat: Having found vk−1. Let

uk = arg min
u∈BV (Ω)

∫
Ω
|Du|+ λk

2

∫
Ω
∥u− vk−1∥22

vk = vk−1 − uk

f = u0 + u1 + · · ·+ uk + vk

This gives a nonlinear unique decomposition of f consisting of different features.

Theorem: 3.2: Tadmor-Nezzar-Vese

Assume f ∈ BV and can be generated to larger scale (e.g. L2(Ω)),

∥f∥22 =
∞∑
j=0

(
∥uj∥22 +

2

λj
∥uj∥BV

)

Registration Problem: Find ϕ a diffeomorphism to transform distribution I0 to I1, λ
2 ∥I1 − I0 ◦ ϕ∥22 +

d2(ϕ, e), where e is the identity map. ϕ can be decomposed into a sequence of diffeomorphisms.

Iterated TNV in the Denoising Direction
Consider the decomposition f = u0 + v0. In some cases, we may need to denoise only part of an image.
Then we can use a weighted TV

∫
Ω a(x)|Du|.

Let ũ1 = argmin

{∫
Ω
a(x)|Du|+ λ1

2
∥u− u0∥2

}
(denoise more), ṽ1 = u0 − ũ1

ũk+1 = argmin

{∫
Ω
a(x)|Du|+ λk+1

2
∥u− uk∥2

}
f = u0 + v0 = v0 + ṽ1 + ũ1 = v0 + ṽ1 + ṽ2 + · · ·+ ṽk + ũk

We collect the noise and get clean ũk.
This is particular case of a proximal point algorithm ũk → 1

|Ω|
∫
Ω f .

3.1.2 Denoising with Learned Regularizers

Suppose wee have a dataset of noisy images with distribution µ and ν. The data is not paired.

Lunz and Schoenlieb proposed to replace ROF by

x0 = argmin
x

{
u0(x) +

λ

2
∥x− f∥2

}
14



Here we are thinking of vectorized discrete images f ∈ Rd, with u0 a Kantorovich potential (Eq. (3) for
W1(µ, ν)) i.e.

u0 = arg max
u∈Lip−1

∫
udµ−

∫
udν

u0 is large on noisy image and small on clean images.

3.2 Proximal Operators

Definition: 3.4: Proximal Operator

Let X be a reflexive Banach space, F : X → (−∞,∞] a proper, convex l.s.c. function. Define the
proximal operator by

proxτ,F (x) = arg inf
u∈X

{
F (u) +

1

2τ
∥u− x∥2X

}
, τ > 0

Definition 3.2 is a special case, with X = L2(Ω), x = f , λ = 1
τ , F (u) =

∫
|Du|.

Another special case: X = H a Hilbert space, F (x) = IC(x) =

{
0, x ∈ C

∞, x /∈ C
, where C is closed convex

subset of H. Then

proxτ,IC (x) = arg inf
u∈H

{
IC(u) +

1

2τ
∥u− x∥2

}
= arg inf

u∈C

{
1

2τ
∥u− x∥2

}
= projC(x0)

Proximal is the generalization of projection.

Definition: 3.5: Moreau-Yosida Envelope/Regularization

The Moreau-Yosida envelope/regularization of F is

Mτ,F (x) = inf
u∈X

{
F (u) +

1

2τ
∥u− x∥2

}

Example: X = R, F (u) = |u|,

Mτ,|·|(x) = inf
u∈R

{
|u|+ 1

2τ
|u− x|2

}
=

{
1
2τ |x|

2, |x| ≤ τ

|x| − τ
2 , |x| > τ

This is the Huber function. Note that Mτ,|·| is differentiable, and

proxτ,|·|(x) =

{
0, |x| < τ

x− τ x
|x| , |x| > τ

Proposition: 3.1: Properties of Proximal Operators

1. Mτ,F (x) is convex and l.s.c., Mτ,F <∞,∀x ∈ X

2. ∀x ∈ X, there exists a unique x0 = argminu∈X

{
F (u) + 1

2τ ∥x− u∥2
}

s.t. Mτ,F (x) = F (x0) +

1
2τ ∥x0 − x∥2

3. inf
x∈X

F (x) =

∫
x∈X

Mτ,F (x)

15



Proof. 2) Proof similar to Theorem 3.1

3)

inf
x
Mτ,F (x) = inf

x
inf
u

{
F (u) +

1

2τ
∥x− u∥2

}
= inf

u
inf
x

{
F (u) +

1

2τ
∥x− u∥2

}
= inf

u
F (u)

Proposition: 3.2:

x∗ minimizes F ⇔ proxτ,F (x∗) = x∗.

Proof. (⇒) Suppose x∗ minimizes F . Then

F (u) +
1

2τ
∥u− x∗∥2 ≥ F (u) ≥ F (x∗)

Then inf
u∈X

F (u) +
1

2τ
∥u− x∗∥2 ≥ F (x∗), attained when u = x∗. Therefore,

proxτ,F (x
∗) = arg inf

u∈X

{
F (u) +

1

2τ
∥u− x∗∥2X

}
= x∗

(⇐) If x∗ = arg inf
u∈X

{
F (u) +

1

2τ
∥u− x∗∥2

}
, then

0 ∈ ∂

{
F (u) +

1

2τ
∥u− x∗∥2

}
(x∗) = ∂F (x∗) +

1

τ
(x∗ − x∗)

So 0 ∈ ∂F (x∗). This implies that x∗ minimizes F .

To look for minimizers of F , we look for fixed points of proxτ,F ,

xn = proxτ,F (xn−1)

This is the Proximal Point Algorithm.

proxτ,F is, in general, not a contraction map, but it is firmly non-expansive.

Definition: 3.6: Firmly Non-expansive

An operator T is firmly non-expansive if

∥Tx− Ty∥2 + ∥(I − T )x− (I − T )y∥2 ≤ ∥x− y∥2

Recall a contraction is ∥Tx− Ty∥ ≤ C ∥x− y∥ for C < 1.

Proposition: 3.3:

T is firmly non-expansive ⇔ T is resolvent of a maximally monotone operator O.

x0 = proxτ,F (x) = arg inf
u∈X

{
F (u) +

1

2τ
∥u− x∥2

}
⇔ 0 ∈ ∂F (x0) +

1

2τ
(x0 − x)

⇔ x ∈ (I + 2τ∂F )(x0), x0 = (I + 2τ∂F )−1(x)
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Proposition: 3.4:

∂F is maximally monotone.

Therefore, proxτ,F = (I + 2τ∂F )−1. Together, this gives the convergence xn → x∗. xn = proxτ,F (xn−1)
generalizes iterated denoising:

um = arg inf

{∫
Ω
|Du|+ λ

2
∥u− un−1∥2

}
, u−1 = f

so un converges to the minimizer of
∫
Ω
|Du|+ λ

2
∥u− un−1∥2, which is 1

|Ω|
∫
Ω f .

3.3 Gradient Flows

Heuristics on Gradient Descent: Consider xn = xn−1 − τ∇F (xn−1), where τ is the step size. Rear-
ranging, xn−xn−1

τ = −∇F (xn−1) is the Euler discretization. The continuous limit is dx
dt = −∇F (x(t)). This

is a gradient flow in Rd.

For proximal point algorithm, xn = proxτ,F (xn−1). Since 0 ∈ ∂F (x0) +
1
2τ (x0 − x), we have 0 ∈ ∂F (xn) +

1
2τ (xn − xn−1), xn = xn−1 − τ∂F (xn). This is the implicit Euler discretization of the same gradient flow,
but with better convergence property. That is why proximal operators come into play when discussing
gradient flows.

Di Giorgi et. al. wanted to define gradient flows in metric spaces like Wasserstein space.

Definition: 3.7: Minimizing Movements Scheme

Let τ be step size. xnτ = argmin
x

{
F (x) +

1

2τ
d2(x, xn−1

τ )

}
. Define xτ (t) = xnτ on ((n − 1)τ, nτ ] a

piecewise constant interpolant. We say x(t) is a minimizing movement of F if there is a family of
xτ (t) → x(t) for every t as τ → ∞.

Now suppose we are on a Riemannian manifold Md. Gradient flow of F :Md → R is a solution u : R →Md

of du
dt = −∇F (u(t)), u(0) = u0. du

dt is the velocity vector at u(t), an element in the tagent space (dudt ∈
Tu(t)M

d). ∇F is defined ad dF (Y ) = g(∇F, Y ), where g is a metric on Md (inner product on tangent
space), Y ∈ Tu(t), and dF (Y ) is the differential form.

For gradient flows in Wasserstein space P2(Rd), probability measures in Rd, with W2 metric, we will need
to make sense of

1. Velocity vector field of a flow t 7→ µt

2. Tangent space Tµ(t)P2

3. Notion (and computations) of gradient of a functional F on P2(Ω)

4. Conditions on F for convergence of a minimizing movement scheme.
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3.4 Wasserstein-2 Space

Definition: 3.8: Hopf-Lax Formula

Consider Hamilton-Jacobi equation{
∂u
∂t +H(∇u) = 0

u(x, t = 0) = g(x)

It has solution:

u(x, t) = min
y

{
g(y) + tH∗

(
x− y

t

)}
,

where H∗(q) = L(q) = sup
p

{⟨q, p⟩ −H(p)}, the Legendre-Fenchel transform.

In particular, forH(p) = 1
2 |p|

2, L(q) = 1
2 |q|

2 (the dual of L2-norm is L2-norm). Thus,

{
∂u
∂t +

1
2 |∇u|

2 = 0

u(x, t = 0) = g(x)
has solution

u(x, t) = min
y

{
g(y) +

1

2t
|x− y|2

}
=Mt,g(x)

Recall the Wasserstein distance

W2(µ, ν) = min
γ∈Π(µ,ν)

∫
X×Y

1

2
|x− y|2dγ(x, y) = max

ϕ∈C(Ω)

∫
X
ϕdµ+

∫
Y
ϕcdν

We know that there is an optimal plan γ, solution of MK and a c-concave ϕ solution of DK.

Claim: For c(x, y) = 1
2 |x− y|

2 and µ≪ Ld (Lebesgue measure on Rd), there is a unique optimal transport
map T s.t. Tx = ∇h for a convex function h.

Proof. When c(x, y) = 1
2 |x− y|2. Let uϕ(x) = 1

2 |x|
2 − ϕ(x),

ϕc(y) = inf
x

{
1

2
|x− y|2 − ϕ(x)

}
= inf

x

{
1

2
|x|2 − x · y + 1

2
|y|2 − ϕ(x)

}
=

1

2
|y|2 + inf

x
{−x · y + uϕ(x)}

=
1

2
|y|2 − sup

x
{x · y − uϕ(x)}

=
1

2
|y|2 − u∗ϕ(y)

Similarly, ψc(x) = inf
y

{
1

2
|x− y|2 − ϕ(y)

}
=

1

2
|x|2 − u∗ψ(x).

ϕ is c-concave if ϕ = ψc for some ψ, i.e., ϕ(x) = 1
2 |x|

2 − u∗ψ(x) ⇔
1
2 |x|

2 − ϕ(x) = u∗ψ(x).
Because Fenchel transform is convex and l.s.c., then 1

2 |x|
2 − ϕ(x) is convex and l.s.c.

Let γ be a solution of MK and ϕ a c-concave Kantorovich potential. By Proposition 2.2 and 2.3, c(x, y0)−
ϕ(x) is minimal at x0, and if ϕ is differentiable at x0, ∇ϕ(x0) = ∇x

(
1
2 |x0 − y0|2

)
= x0 − y0, y0 := Tx0 =

x0 −∇ϕ(x0) = ∇
(
1
2 |x|

2 − ϕ
)
(x0). h(x) = 1

2 |x|
2 − ϕ(x) is convex.

Assumptions yield ϕ is differentiable a.e. (locally Lipschitz).
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Theorem: 3.3:

For Ω not necessarily bounded, say Ω = Rd. Let µ, ν be probability measures on Rd. Suppose
µ ≪ Ld,

∫
|x|2dµ < ∞ and

∫
|y|2. Then there exists a unique optimal transport map T and it is of

the form T = ∇h with h convex. The set of such measures are P2(Ω).

Theorem: 3.4:

W2(µ, ν) is a distance on P2(Ω), also true for (Pp(Ω),Wp) for 1 ≤ p <∞.

Definition: 3.9: Continuity Equation

Let ρt be the probability density, vt be the flow velocity vector field, then

∂tρt +∇ · (ρtvt) = 0

We say (ρt, vt) solve the continuity equation, if ρt is a family of measures and vt is time-dependent vector
feild s.t.∫ T

0
∥vt∥L1(ρt)

dt =

∫ T

0

∫
Ω
|vt|dρtdt <∞

The equation is satisfied in the distribution sense, i.e.∫ T

0

∫
Ω
(∂tϕ)dρtdt+

∫ T

0

∫
Ω
∇ϕ · vtdρtdt = 0, ∀ϕ ∈ C1

C([0, T ]× Ω) (4)

If ϕ(t, x) is supported in the interior (0, T )× Ω, then∫ T

0

∫
Ω
(∂tϕ)dρtdt−

∫
Ω
ϕ∇ · vt = 0∫

∇ϕ · vt =
∫

∇ · (ϕvt)−
∫
ϕ∇ · vt =

∫
ϕvt · n = 0,

where n is the outward normal vector of Ω, so ∂tρt +∇ · (ρtvt) = 0 in the interior.

Now allow ϕ non-zero on ∂Ω, but
∫
∂Ω
ϕvt · n = 0. This shows that Eq. (4) in the sense of distribution

includes the Neumann boundary condition vt · n = 0, and the entire flow is contained in Ω.

Another way to interpret Eq. (4) in the weak sense:

d

dt

∫
Ω
ψdρt =

∫
Ω
∇ϕ · vtdρt.

The two notions are essentially equivalent.

Definition: 3.10: Lagrangian Coordinates

Assume vt is Lipschitz, uniformly in t.{
y′x(t) = vt(yx(t))

yx(0) = x
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Theorem: 3.5:

Yt(x) = yx(t) ∈ Ω in view of Neumann conditions on boundary, where yx(t) is the position at time
t if we start from x, and Yt(x) is the transformation of x at time t. Then for any ρ0 ∈ P(Ω), the
1-parameter family of measures ρt = (Yt)#(ρ0) solves the continuity equation in Definition 3.9 with
ρt|t=0 = ρ0. Moreover, the equation admits a unique solution. [9]

Definition: 3.11: Metric Derivative

Let (X, d) be a metric space, suppose ω : [0, 1] → X is Lipschitz, i.e. d(w(t1), w(t2)) ≤ ρ ∥t1 − t2∥,
ω′(t) need not have a meaning (if X is not a vector space). However, we can define metric derivative:

|ω′(t)| = lim
h→0

d(ω(t+ h), ω(t))

|h|

Theorem: 3.6:

Suppose ω : [0, 1] → X is a Lipschitz continuous curve, then |ω′(t)| exists a.e. Moreover, for t1 < t2,

d(ω(t1), ω(t2)) ≤
∫ t2

t1

|ω′(s)|ds

Definition: 3.12: Absolute Continuous

A curve ω : [0, 1] → X is absolutely continuous (AC) if ∃g ∈ L1([0, 1]) s.t. d(ω(t1), ω(t2)) ≤
∫ t2
t1
g(s)ds

for every t1 < t2, g ≥ 0 a.e.

In particular, any Lipschitz continuous curves are absolutely continuous. Moreover, we can reparametrize
an AC curve to make it Lipschitz continuous.

Let G(t) =

∫ t

0
g(s)ds, Sϵ(t) = ϵt + G(t), Sϵ is strictly increasing with ϵ ↗ 0. Then ω̃(t) = ω(S−1

ϵ (t)) is

Lipschitz, so ω is AC, ω has a metric derivative.

Theorem: 3.7:

Let Ω ⊂ Rd compact. If Ω is unbounded, need to assume finite second moments
∫
|x|2dµ < ∞.

P(Ω) = {µ : µ a probability measure}, P2(Ω) is P(Ω) with W2(µ, ν) metric. Then W2(µ, ν) satisfies
the properties of a distance function.

Theorem: 3.8:

From [1].
1. Let {µt}t∈[0,1] be an absolutely continous curve in Pp (P(Ω) with Wp metric). Then for a.e.
t ∈ [0, 1], there is a vector field vt ∈ Lp(µt;Rd) s.t.
(a) ∂tµt +∇ · (µtvt) = 0
(b) ∥vt∥Lp(µt)

≤ |µ′(t)|

2. If we are given vt and µt with vt ∈ Lp(µt;Rd),
∫ 1

0
∥vt∥Lp(µt)

dt <∞ solving ∂tµt+∇·(µtvt) = 0.

Then µt is absolutely continous in Pp(Ω) and |µ′(t)| ≤ ∥vt∥Lp(µt)
.

Combining the above, ∥vt∥Lp(µt)
= |µ′(t)|.
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Definition: 3.13: Curve Length

Let (X, d) be a metric space, ω : [0, 1] → X, then

length(ω) = sup

{
n∑
k=1

d(ω(tk−1), ω(tk)), 0 = t0 < · · · < tn = 1

}

Proposition: 3.5:

For any ω ∈AC, length(ω) =
∫ 1
0 |ω′(t)|dt

Definition: 3.14: Geodesic

A curve ω is a geodesic from x0 ∈ X to x1 ∈ X if it minimizes length among all curves with ω(0) = x0,
and ω(1) = x1.
A curve ω is a constant speed geodesic if d(ω(t), ω(s)) = |t− s|d(ω(0), ω(1)).

Theorem: 3.9:

The following are equivalent
1. ω is a constant speed geodesic
2. ω ∈ AC(X) and |ω′(t)| = d(ω(0), ω(1))
3. ω is a solution of

min

{∫ 1

0
|ω′(t)|pdt, ω(0) = x0, ω(1) = x1

}
=

∫ 1

0
d(ω(0), ω(1))pdt = d(ω(0), ω(1))p

Definition: 3.15: Geodesic Space

(X, d) is a geodesic space if

d(x0, x1) = min {length(ω) : ω ∈ AC, ω(0) = x0, ω(1) = x1}

Theorem: 3.10:

If Ω is convex, then P2(Ω) (Pp(Ω) for any p ≥ 1) is a geodesic space.

Proof. Given µ, ν, we need to produce a geodesic from µ to ν.
More precisely, let µ, ν ∈ Pp(Ω) and γ be an optimal plan for the cost c(x, y) = |x− y|p, i.e.

W p
p (µ, ν) =

∫
Ω×Ω

|x− y|pdγ(x, y), γ ∈ Π(µ, ν)

Define Πt : Ω × Ω → Ω by Πt(x, y) = (1 − t)x + ty. Then µt = (Πt)#γ is a constant speed geodesic from
µ to ν. If γ is given by an optimal map T (e.g. when µ ≪ Ld, Ω ⊂ Rd), then µt = ((1 − t)Id + tT )#µ.
When t = 1, µ1 = ν. µt is probability distribution at time t. This is also called displacement interpolation.
µt = (Πt)#γ says:∫

Ω
ϕ(x)dµt =

∫
Ω×Ω

ϕ(Πt(x, y))dγ(x, y) =

∫
Ω×Ω

ϕ((1− t)x+ ty)dγ(x, y)
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Then we need to show that t 7→ µt is a geodesic from µ to ν. For it to be a geodesic, we need Wp(µt, µs) =
|t− s|Wp(µ, ν) (asusming s > t)

It sufficies to show Wp(µt, µs) ≤ |t− s|Wp(µ, ν), because in this case:

Wp(µ, ν) ≤Wp(µ, µt) +Wp(µt, µs) +Wp(µs, ν)

≤ tWp(µ, ν) + (s− t)Wp(µ, ν) + (1− s)Wp(µ, ν) =Wp(µ, ν)

and this gives the equality.

Now we show the claim Wp(µt, µs) ≤ |t− s|Wp(µ, ν).
Let γst = (Πt,Πs)#γ, where (Πt,Πs) : Ω× Ω → Ω× Ω. Then∫

Ω×Ω
ψ(x, y)dγst =

∫
Ω×Ω

ψ((1− t)x+ ty, (1− s)x+ sy)dγ(x, y)

Claim: γst ∈ Π(µt, µs), i.e. it is a marginal from µt to µs. Consider the marginal:∫
Ω×Ω

ϕ(x)dγst =

∫
Ω×Ω

ϕ((1− t)x+ ty)dγ(x, y) =

∫
Ω
ϕdµt

Similarly, the other marginal is µs.

Since Wp(µt, µs) is infimum,

Wp(µt, µs) ≤
(∫

Ω×Ω
|x− y|pdγst

)1/p

=

(∫
Ω×Ω

|(1− t)x+ ty − (1− s)x− sy|pdγ
)1/p

=

(∫
Ω×Ω

|(s− t)(x− y)|pdγ
)1/p

= |s− t|
∫
Ω×Ω

|x− y|pdγ

= |s− t|Wp(µ, ν), since γ is an optimal plan.

Consider the case when γ is given by a transport map T , i.e.

γ = (id, T )#µ⇔
∫
ψ(x, y)dγ =

∫
ψ(x, Tx)dµ

In this case:∫
ϕ(x)dµt =

∫
Ω×Ω

ϕ((1− t)x+ ty)dγ(x, y) =

∫
Ω
ϕ((1− t)x+ tTx)dµ

This shows that µt = ((1− t)id+ tT )#µ.

Theorem: 3.11: Benamou-Brenier Formula

Assume Ω is convex and compact Rd,

W p
p (µ, ν) = min

ρt,vt

{∫ 1

0
∥vt∥pLp(ρt)

dt : ∂tρt +∇ · (ρtvt) = 0, ρ0 = µ, ρ1 = ν

}
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Proof. Intuition: p = 2. Let vt be a nice vector field. Solve dyx(t)
dt = v(t, yx(t)), yx(0) = 0, Yt(x) = yt(x).

Let ρt = (Yt)#ρ0, so ∂tρt +∇ · (ρtvt) = 0. Assume ρ1 = ν.

W 2
2 (ρ, ν) ≤

∫
Ω
|yx(1)− x|2dµ =

∫
Ω
|yx(1)− yx(0)|2dµ

=

∫
Ω

∣∣∣∣∫ 1

0

dyx(t)

dt
dt

∣∣∣∣2 dµ
≤

∫
Ω

∫ 1

0

∣∣∣∣dyx(t)dt

∣∣∣∣2 dtdµ
=

∫ 1

0

∫
Ω

∣∣∣∣dyx(t)dt

∣∣∣∣2 dµdt
=

∫ 1

0

∫
Ω
|vt|2 dµdt =

∫ 1

0
∥vt∥2L2(µt)

dt

Since Pp(Ω) is a geodesic space, there is a geodesic ρt from µ to ν, which we may take to be constant speed.
Then

W p
p (µ, ν) = min

{∫ 1

0
|ρ′(t)|pdt, ρ0 = µ, ρ1 = ν

}
= min

ρt,vt

{∫ 1

0
∥vt∥pLp(ρt)

dt : ∂tρt +∇ · (ρtvt) = 0, ρ0 = µ, ρ1 = ν

}

We can change to a more general interval [0, τ ]:

W 2
2 (ρ0, ρτ ) = τ min

v,ρ

{∫ τ

0
∥vt∥2L2(ρt)

dt : ∂tρ+∇ · (ρv) = 0, ρ(0, ·) = ρ0, ρ(τ, ·) = ρτ

}
Informally, suppose v is any reasonable vector field, then ∂tρ+∇ · (ρv) = 0, ρ(0, ·) = ρ0 yields ρ(τ, ·) = ρτ .
Let yx(t) solve dyx

dt = v(t, yx(t)), yx(0) = x. Let Yt(x) = yx(t), ρt = (Yt)#ρ0 satisfies the continuity
equation, so

W 2
2 (ρ0, ρτ ) ≤

∫
|yx(τ)− x|2dρ0,

since the map Yτ : x 7→ yx(τ), satisfies (Yτ )#ρ0 = ρτ .∫
|yx(τ)− x|2dρ0 =

∫
Ω

∣∣∣∣∫ τ

0

dy

dt
(t, x)dt

∣∣∣∣2 dρ0 (By FTC)

= τ2
∫
Ω

∣∣∣∣1τ
∫ τ

0

dy

dt
(t, x)dt

∣∣∣∣2 dρ0
≤ τ2

∫
1

τ

∫ τ

0

∣∣∣∣dydt (t, x)
∣∣∣∣2 dρ0 By Jensens’ inequality with f =

dy

dt
, ϕ(x) = x2

= τ

∫ τ

0

∫
Ω
|v(t, yx(t))|2dρ0

= τ

∫ τ

0

∫
Ω
|v(t, x)|2dρt, since ρt = (Yt)#ρ0

= τ

∫ τ

0
∥v(t, ·)∥2L2(ρt)

dt
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When ρt is a constant speed geodesic from ρ0 to ρ, we get equality.

Assume ρ0 ≪ Ld, there is an optimal map T , and ρt =
(
x+ t

τ (Tx− x)
)
#
ρ0.

Let Yt(x) = x+ t
τ (Tx− x), yx(t) = x+ t

τ (Tx− x), dyx
dt = Tx−x

τ = v(x) independent of t.

Recall that proximal operators yield implicit Euler discretization of gradient flows. Suppose F : P2(Ω) →
(−∞,∞],

Wproxτ,F (ρ0) = argmin
ρ

{
F (ρ) +

W 2
2 (ρ, ρ0)

2τ

}
By Definition 3.7, as τ → 0, if convergent, we have a flow t 7→ ρt in P2(Ω), which is the gradient flow of F
w.r.t. Wasserstein distance.

Question: Given F , how can we find v?

We can consider two formulations: Definition 3.7 and Theorem 3.8.

A few additional basic facts about Pp(Ω):

1. If Ω is compact, p ∈ [1,∞), Wp(µn, µ) → 0 ⇔ µn → µ weakly. i.e.
∫
ϕdµn →

∫
ϕdµ for ϕ continuous.

2. Wp is separable: finitely supported measures with rational weights on a dense subset of Ω

3. If Ω is compact, Pp(Ω) is also compact w.r.t. topology induced by the metric.

Using these facts, we can show that ρτk+1 = argmin
ρ

{
F (ρ) +

W 2
2 (ρ, ρ

τ
k)

2τ

}
is solvable if F (ρ) is l.s.c. w.r.t.

topology induced by the metric and bounded below.

Optimality Condition (for Definition 3.7):
How do we define δF

δρ if exists for F : P2(Ω) → (−∞,∞]?

Definition: 3.16: Regular

We say ρ is regular for F if F ((1 − ϵ)ρ + ϵρ̃) < ∞ for every ϵ ∈ [0, 1] and any ρ̃ ∈ P(Ω) ∩ L∞
C (Ω)

absolutely continuous.

Definition: 3.17: First Variation

If ρ is regular for F , we define δF
δρ (ρ) (first variation) if exists to be a measurable function s.t.

d

dϵ

∣∣∣∣
ϵ=0

F (ρ+ ϵχ) =

∫
δF

δρ
(ρ)dχ

for all χ = ρ̃− ρ, ρ̃ ∈ P(Ω) ∩ L∞
C (Ω), so ρ+ ϵχ = (1− ϵ)ρ+ ϵρ̃.

Remark 2.
∫
dχ =

∫
dρ̃−

∫
dρ = 1− 1 = 0, so δF

δρ is only defined upto constants.

Therefore, solution of Definition 3.7 satisfies:

δF

δρ
(ρ) +

1

2τ

δW 2
2 (ρ, ρ

τ
k)

δρ
= constant

Assume the c-concave Kantorovich potential ϕ is unique upto constants. (True if e.g. supp(ρ) = Ω)
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Recall the relation of W 2
2 to be the dual problem:

W 2
2 (ρ, ν) = 2max

ϕ

∫
ϕdρ+

∫
ϕcdν

Let ϕ be the minimizer, then

δW 2
2

δρ
(ρ, ν) =

d

dϵ

∣∣∣∣
ϵ=0

W 2
2 (ρ+ ϵχ, ν)

≥ d

dϵ

∣∣∣∣
ϵ=0

2

(∫
ϕd(ρ+ ϵχ) +

∫
ϕcdν

)
= 2

∫
ϕdχ

We can in fact show that the equality holds [9]. δW 2
2

δρ (ρ, ν) = 2ϕ, where ϕ is the Kantorovich potential from
ρ to ν. So the optimality condition is:

δF

δρ
(ρ) +

1

τ
ϕ = constant

Differentiate both size:

∇x
δF

δρ
(ρ) +

1

τ
∇ϕ = 0

Recall for c(x, y) = 1
2 |x− y|2, we proved that there is an optimal transportmap T s.t. Tx = x−∇ϕ(x) in

the beginning of this section, so

∇x
δF

δρ
= −1

τ
∇ϕ(x) = 1

τ
(Tx− x)

gives an optimal transport from ρτk+1 to ρτk.

As τ → 0, we expect ∇x
δF
δρ → −v, the velocity field. Therefore, v = −∇x

δF
δρ .

From the continuity condition, we see that the gradient flow of F (ρ) can be derived from the PDE:

ρt −∇ ·
(
ρ∇δF

δρ

)
= 0

Example: Negative entropy: F (ρ) =
∫
ρ log ρ. More rigorously, F (ρ) =

{∫
ρ log ρ, if ρ≪ Ld

∞, otherwise
.

δF

δρ
=

d

dϵ

∣∣∣∣
ϵ=0

∫
(ρ+ ϵχ) log(ρ+ ϵχ)

=

∫
χ log(ρ+ ϵχ) + (ρ+ ϵχ)

χ

ρ+ ϵχ
|ϵ=0

=

∫
χ log ρ+ ρ

χ

ρ
=

∫
(log ρ+ 1)χ

= log ρ+ 1

The continuity equation becomes the heat equation:

ρt −∇ · (ρ∇(log ρ+ 1)) = 0

ρt −∇ ·
(
ρ
∇ρ
ρ

)
= 0

ρt = ∆ρ
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Example: Kullback-Leibler divergence (relative entropy)

F (ρ) = KL(ρ||π) =
∫
ρ log

(ρ
π

)
=

∫
ρ log ρ− ρ log π

δF

δρ
=

d

dϵ

∣∣∣∣
ϵ=0

∫
(ρ+ ϵχ) log(ρ+ ϵχ)− (ρ+ ϵχ) log π

= log ρ+ 1− log π = log
(ρ
π

)
+ constant

The continuity equation becomes Fokker-Planck equation:

ρt = ∇ ·
(
ρ∇ log

(ρ
π

))
These provides the foundation of forward process of score-based diffusion models [3]. For the backward
process, we need to sample from Gaussian noise and solve reversed diffusion equation with fine-grained step
size. However, if we can properly treat the reversed diffusion with Wasserstein distance, we can use a larger
step.

26



4 Congested Transport

Recall the dual Kantorovich problem (3). WGAN uses a neural network to compute an approximation of
u (critic). However Lip-1 is hard to enforce. WGAN-GP applies a penalty term:

sup

∫
u(dµ− dν)− λ

2

∫
Ω
(|∇u| − 1)2+σ(x̂)dx̂,

where σ(x̂) is the sampling density. This still does not computeW1(µ, ν) exactly, but yields better generated
images [11, 7].

Wardrop considers congested transport in a discrete setting [12]. Carlier, Jimenez, Santambrogio extended
to continuous version [2].

Classical optimal transport only considers starting points and ending points. For congested transport, we
will consider all possible paths and amount of traffic on a given path.

Definition: 4.1: Traffic Plans

Let C be the space of absolutely continuous curves ω : [0, 1] → Ω for Ω compact in Rd with non-empty
interiors. Consider the probability measures Q on C, compatible with µ, ν, analogous to requiring
γ ∈ Π(µ, ν) in optimal transport. Call Q the traffic plans.
Define et : C → Ω s.t. et(ω) = ω(t). µt = (et)#Q is a probability flow s.t. µ0 = (e0)#Q, µ1 = (e1)#Q.∫

ϕdµt =

∫
ϕ(et(ω))dQ(ω)

Let T (µ, ν) denote the traffic plans satisfying µ0 = µ, µ1 = ν.

Definition: 4.2: Traffic Intensity

Define the traffic intensity, a measure iQ on Ω by∫
Ω
ϕdiQ =

∫
C

∫
ω
ϕdsdQ(ω),

where
∫
ω
ϕds =

∫ 1

0
ϕ(ω(t))|ω′(t)|dt

RHS is the line integral on ω of ϕ, averaged over all curves ω ∈ C. Intuitively, if A ⊂ Ω and ϕ = χA, then
iQ(A) =mass of all traffic through A.

Lemma: 4.1: Calier, Jimenez, Santambrogio

Given Q ∈ T (µ, ν), there is γ ∈ Π(µ, ν) and for γ-a.e. (x, y), a probability measure Qx,y on curves
C supported on Cx,y = {ω ∈ C : ω(0) = x, ω(1) = y}, i.e. Qx,y(Cx,y) = 1, s.t.∫

C
ϕ(ω)dQ(ω) =

∫
Ω×Ω

(∫
Cx,y

ϕ(ω)dQx,y

)
dγ(x, y)

This comes from disintegration of measures: we can split integration over C into integration over all curves
from specific starting point x and ending point y, and then integrate over all x and y.
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Definition: 4.3: Congested Transport Problem

Let H(x, z) be a congestion cost function.
Let T p(µ, ν) = {Q ∈ T (µ, ν) : iQ = iQ(x)dx, iQ(x) ∈ Lp(Ω)}, i.e. iQ ≪ L, and iQ(x) is the traffic
intensity through a single point x.

The congested transport cost for a given traffic plan Q ∈ T p(µ, ν) is
∫
Ω
H(x, iQ(x))dx. The congested

transport problem (CTP) is

inf
Q∈T p(µ,ν)

∫
Ω
H(x, iQ(x))dx (5)

Assumptions on H:

1. H is a Caratheodory function:

(a) x 7→ H(x, z) is measurable in x for all z

(b) z 7→ H(x, z) is continuous in z for a.e. x

2. c(zp − 1) ≤ H(x, z) ≤ c(zp + 1), i.e. H(x, z) grows like zp for large z.

Example: H(x, z) = 1
pz
p + λz

1. ∂H
∂z (iQ) = ip−1

Q + λ is the incremental cost for large traffic intensity

2. ∂H
∂z (0) = λ > 0 implies we cannot travel at infinite speed even if road is empty

Definition: 4.4: Wardrop Equilibrium

Given a traffic plan Q, let

LQ(ω) =

∫ 1

0

∂H

∂z
(ω(t), iQ(ω(t)))|ω′(t)|dt

This is the length of a curve w.r.t. a conformal Riemannian metric determined by Q and H. Define
the Riemannian metric:

dQ(x, y) = inf
ω∈Cx,y

LQ(ω),

ω(t) is a geodesic if LQ(ω) = d(ω(0), ω(1)).
Q is called a Wardrop equilibrium if Q is supported on geodesics for dQ.

Theorem: 4.1: Calier, Jimenez, Santambrogio

1. Q solves Eq. 5 if and only if it is a Wardrop equilibrium, and γ = (e0, e1)#Q is a solution

of the optimal transport problem inf
γ∈Π(µ,ν)

∫
Ω×Ω

dQ(x, y)dγ(x, y). Congested cost defines a new

distance measure for the optimal transport problem.
2. If H satisfies all assumptions, there exists a solution Q ∈ T p(µ, ν).
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Let H1 denote the Sobolev spaces s.t.

H1(Ω) =

{
u : u ∈ L2(Ω),

∫
|∇u|2 <∞

}
H1(Ω, σ) =

{
u :

∫
(|u|2 + |∇u|2)σdx <∞

}

Define:

GPλ = sup
u∈H1(Ω)

∫
u(dµ− dν)− λ

2

∫
Ω
(|∇u| − 1)2+σ(x̂)dx̂

G̃Pλ = sup
u∈H1(Ω,σ)

∫
u(dµ− dν)− λ

2

∫
Ω
(|∇u| − 1)2+σ(x̂)dx̂

To integrate w.r.t. σ(x̂), define π(t, x, y) = (1− t)x+ ty,∫
ϕ(x)dσ(x) =

∫∫∫
ϕ((1− t)x+ ty)dtdµ(x)dν(y) =

∫∫∫
π(t, x, y)dtdµdν,

so σ = π#(U [0, 1], µ, ν).

Proposition: 4.1:

If µ≪ Ld, ν ≪ Ld, then σ ≪ Ld, dσ = σ(x)dx.

Theorem: 4.2:

GPλ = CTP with Hλ(x, z) =


1

2λσ(x)z
2 + z, if σ > 0

∞, σ = 0, z ̸= 0

0, σ = z = 0
Also, ∃C > 0 s.t. ∀λ > 0,

sup(GPλ) ≥W1(µ, ν)

(
1 +

C

λ
W1(µ, ν)

)

Here σ acts as a speed limit.

Question: What if σ(x) line segments cross? [5]

Example: Let Ω = [−2, 2]2 ⊂ R2, take µ, ν as uniform distributions on rectangles on [0, 0.1]× [−2, 2] and
[1.9, 2]× [−2, 2]. Take T0 : R2 → R2 with T0(x1, x2) = (x1+1.9, x2) an optimal transport map. (T0)#µ = ν.
The Kantorovich potential is u∗(x1, x2) = −x1.∫

|x− T0x|dµ = 1.9∫
(−x)dµ−

∫
(−x)dν = −0.1

2
+

1.9 + 2

2
= 1.9

The points sampled from σ peaks at (1, 0). Optimal traffic flow concentrate mass on (1, 0). Note that
in H(x, z), cost is low when σ(x) is high. If WGAN-GP computes W1 explicitly, then critic should be
u(x, y) = −x. The level sets of u will be all verticle and transport paths will be horizontal. In reality, all
transport paths bend towards where σ(x) is large.
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5 Additional Topics

5.1 Entropic Regularization

This follows Chapter 4 of [8].

Definition: 5.1: Discrete Optimal Transport

Let µ =
N∑
i=1

aiδxi , ν =
N∑
j=1

bjδyj be point mass and
∑
ai =

∑
bj = 1. Let cost cij be |xi − yj | or

|xi − yj |2. Consider a transport plan γij ≥ 0

min
γ

∑
ij

cijγij : γij ≥ 0,
∑
i

γij = bj ,
∑
j

γij = ai

 (6)

This is a linear programming problem, but simplex method is expensive.

Definition: 5.2: Entropic Regularization

Pick ϵ > 0, solve for

γϵ = argmin
γ

∑
ij

cijγij + ϵγij log γij :
∑
i

γij = bj ,
∑
j

γij = ai

 (7)

∑
ij

γij log γij is strictly convex, so the problem is strictly convex.

As ϵ → ∞, γϵij = aibj . We try to maximize entropy by pairing every xi with every yj . As ϵ → 0, γϵ →
optimal plan for Eq. 6 of maximal entropy.

Rewrite cijγij + ϵγij log γij = ϵγij log
(
γij
ηij

)
, where ηij = exp

(
− cij

ϵ

)
. Then

γϵ = argmin
γ

DKL(γ, η) :
∑
i

γij = bj ,
∑
j

γij = ai

 ,

where η is fixed and γ is unknown.

Let Cb =

{∑
i

γij = bj

}
, Ca =

∑
j

γij = ai

, γ is a (KL) projection to Ca ∩ Cb.

Idea: Iteratively project onto Ca and Cb until convergence. Projection is cheap to compute.
This alternate projection is called Kaczmarz algorithm and does converge for KL.

Projection of γ on Ca is

min

∑
γij log

γij
γij

:
∑
j

γij = ai


This is a separate problem for each i:

min

{
xj log

xj
xj

:
∑

xj = a

}
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Lagrange multiplier gives

log xj − 1− log xj + λ = 0 ⇒ log xj = log xj + const,

xj = pxj for some p constant for any j.

Solution is γij = piγij ,
∑

j γij =
∑

j piγij = ai, so pi = ai∑
j γij

.

Sinkhorn Algorithm:

γ0 = η, γ2k+1
ij =

ai∑
j γ

2k
ij

γ2kij , γ
2k+2
ij =

bj∑
i γ

2k+1
ij

γ2k+1
ij

It is fast, simple, parallelizable and preserves positivity constraints with log. However, it deos not give a
transport map. The convergence deteriorates for small ϵ, so it has limited accuracy.

5.2 High Dimensional Banach Space Theory and Adversarial Examples

At the end of Section 4, we show that the transport paths will cluster around the center. However, in high
dimensions, the chance of transport paths crossing is lower.

Statistically, it is cheaper (in Wasserstein distance) to go from a sample to average than from samples to
samples [11]. If Wasseerstein distance is computed correctly, it approaches the average. However, in con-
gested tranport, it is equivalent to pushing all traffic flows through the same point, which is penalized.

Consider n-dimensional Banach space, e.g. Rn. An image can be represented as a point in the unit cube
[0, 1]n. For simplicity, consider unit sphere Sn−1.

Let µ1 be the area measure normalized to 1, H the hemisphere. For any A ⊂ Sn−1, let

A(ϵ, d) =
{
x ∈ Sn−1 : d(x, y) ≤ ϵ for some y ∈ A

}
Essentially, A(ϵ, d) extend A by a distance ϵ. Assume that d is the standard geodesic distance on Sn−1.

Theorem: 5.1: Isoperimetric Inequality

For any n > 2. If µ1(A) > 1
2 , then µ1(Aϵ) ≥ µ1(Hϵ). i.e. Hemispheres are the least expanded.

Theorem: 5.2: Milman-Schechtman 1986

After ϵ-expansion,

µ1(Hϵ) ≥ 1−
(π
8

) 1
2
exp

(
−n− 1

2
ϵ2
)

As n→ ∞, Hϵ tends to full measure.

Let C be a classifier function, C : Sn−1 → {1, 2, ...,m}. C partitions Sn−1 into m disjoint measurable
sets Cj = {x : C(x) = j} , 1 ≤ j ≤ m. x admits an ϵ-adversarial example if ∃x̂ with d(x, x̂) ≤ ϵ and
C(x̂) ̸= C(x). Safe points in Cc should be away from the boundary.

Theorem: 5.3: Existence of Adversarial Examples

Assume the m classes are distributed over Sn−1 ⊂ Rn with density functions {ρj}mj=1 s.t. ρj =

ρj(x)dµ1. Define Vc = ∥ρc∥L∞ . Suppose c is a class with µ1 {x : C(x) = c} ≤ 1
2 . Sample x from ρc.

Then with probability ≥ 1− Vc
(
π
8

) 1
2 exp

(
−n−1

2 ϵ2
)
, x admits an ϵ-adversarial example.
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Proof. Let Cc be the points in class c. Cc = {x : C(x) = c}. Let A = Cc = {x : x /∈ Cc}.

By assumption µ1(A) ≥ 1
2 . Then by Theorem 5.1, µ1(Aϵ) ≥ µ1(Hϵ).

By Theorem 5.2, µ1(Aϵ) ≥ µ1(Hϵ) ≥ 1−
(
π
8

) 1
2 exp

(
−n−1

2 ϵ2
)
.

Safe points in Cc are in Aϵ (more than ϵ away from the boundary).

µ1(Aϵ) ≤
(π
8

) 1
2
exp

(
−n− 1

2
ϵ2
)

⇒ρc(Aϵ) ≤ Vcµ1(Aϵ) = Vc

(π
8

) 1
2
exp

(
−n− 1

2
ϵ2
)

Close to 0 for large n.

5.3 Score-based Diffusion Mode

This section partially explains the paper [13].

In score-based diffusion model. Let p(t, x) be the density function at time t. The forward process is a
Fokker Planck equation

∂tp+∇ · (pf)− g2(t)

2
∆p = 0, p(0, x) = π(x),

where π(x) is the probability density we wish to determine, of which we have samples (training data).

The reverse/generating process is

∂tρ+∇ · (ρ(f − g2∇ log p(T − t, ·))) = g2(t)

2
∆ρ, ρ(0, ·) = ρ0

Special case: f = 0, g = β:

∂tp =
β2

2
∆p, p(0, ·) = π(x)

∂tρ+ β2∇ · (ρ∇ log p(T − t, ·)) = β2

2
∆ρ, ρ(0, ·) = ρ0

We will show that π = ρ(T, ·).

We interpret the problem as a solution of regularized Wasserstein proximal problem.

Let V (ρ) =
∫
V (x)ρ(x)dx be a functional. Specifically, V (ρ) = β2H(ρ, π), where H(ρ, π) is the cross

entropy:

H(ρ, π) = Eρ(− log π) = −
∫

log π(x)ρ(x)dx.

Recall the KL-divergence:

KL(ρ||π) =
∫
ρ log

ρ

π
=

∫
ρ log ρ−

∫
ρ log π

H(ρ, π) = KL(ρ||π)−
∫
ρ log ρ = KL(ρ||π) + E(ρ),

where E(ρ) = −
∫
ρ log ρ is the entropy. Therefore, V (x) = −β2 log π(x).
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The Wasserstein proximal is

ρT = argmin
ρ̃
V (ρ̃) +

W 2
2 (ρ0, ρ̃)

2T

The Benamou-Brenier formula (Theorem 3.11) gives:

W 2
2 (ρ0, ρ̃)

2T
= inf

ρ≥0,v

{∫ T

0

∫
Ω

1

2
|v(t, x)|2ρ(t, x)dxdt : ∂tρ+∇ · (ρv) = 0, ρ(0, x) = ρ0, ρ(T, x) = ρ̃

}
.

Regularized Wasserstein proximal replaced the continuity equation with ∂tρ + ∇ · (ρv) = ϵ∆ρ, and the
regularized proximal problem becomes

ρT = arg min
ρ≥0,v,ρ̃

{∫
Ω
V (x)ρ̃(x)dx+

∫ T

0

∫
Ω

1

2
|v|2ρ : ∂tρ+∇ · (ρv) = ϵ∆ρ, ρ(0, x) = ρ0, ρ(T, x) = ρ̃

}

Toy problem of Lagrange multiplier: suppose we want to minimize f : RN → R, subject to k
constraints g(x) = 0,g : RN → Rk. Lagrange multipliers give

min
x∈RN

sup
λ∈Rk

f(x) + λ · g(x) = min
x∈RN ,g(x)=0

f(x),

because sup
λ∈Rk

λ · g(x) =

{
0, g(x) = 0

∞, otherwise
. Define the Lagrangian L(x, λ) = f(x) + λ · g(x). We look for a

saddle point of L.

For the regularized Wasserstein proximal operator, define a Lagrange multiplier ϕ(t, x), the Lagrangian
is:

L(ρ, ρ̃, v, ϕ) =

∫
Ω
V (x)ρ̃(x)dx+

1

2

∫ T

0

∫
Ω
|v|2ρdxdt+

∫ T

0

∫
Ω
ϕ(t, x)(∂tρ+∇ · (ρv)− ϵ∆ρ)dxdt

Apply IBP on t

=

∫
Ω
V (x)ρ̃(x)dx+

1

2

∫ T

0

∫
Ω
|v|2ρdxdt+

∫
Ω
ϕ(T, x)ρ(T, x)dx−

∫
Ω
ϕ(0, x)ρ(0, x)dx

−
∫∫

ρ(∂tϕ+∇ϕ · v − ϵ∆ϕ)dxdt

Recall that the continuity equation is interpreted in the weak sense, and we apply divergence theorem and
Green’s theorem to reach the equality.

The optimality condition gives:

δL

δρ̃
= 0 ⇒ V (x) + ϕ(T, x) = 0

δL

δv
= 0 ⇒ v(x) +∇ϕ(x) = 0

δL

δρ
= 0 ⇒ 1

2
|v|2 − (∂tϕ+∇ϕ · v − ϵ∆ϕ) = 0

Also we have the constraint: ∂tρ+∇ · (ρv)− ϵ∆ρ = 0

From δL
δv and δL

δρ , we get:

⇒ 1

2
|v|2 − ∂tϕ− |∇ϕ|2 + ϵ∆ϕ = ∂tϕ+

1

2
|∇ϕ|2 + ϵ∆ϕ = 0
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From δL
δv and the constraint, we get:

∂tρ−∇ · (ρ∇ϕ)− ϵ∆ρ = 0

The following system gives ρT = ρ(T, ·).

∂tϕ+
1

2
|∇ϕ|2 + ϵ∆ϕ = 0

∂tρ−∇ · (ρ∇ϕ)− ϵ∆ϕ = 0

ρ(0, ·) = ρ0

ϕ(T, x) = −V (x) = β2 log π(x)

It is a system of forward (ρ) and backward (ϕ) equations. Let u(t, x) = ϕ(T − t, x) with u(0, x) = β2 log π.
We change the backward equation to

−∂tu+
1

2
|∇u|2 + ϵ∆u = 0

Cole-Hopf Transformation:
Let p = h(u), h : R → R to be determined,

∂p

∂t
= h′(u)

∂u

∂t
;

∂p

∂xj
= h′(u)

∂u

∂xj
;

∂2p

∂x2j
= h′′(u)

(
∂u

∂xj

)2

+ h′(u)
∂2u

∂x2j
.

Then

∆p = h′′(u)|∇u|2 + h′(u)∆u

ϵ∆p− ϵh′′(u)|∇u|2 = ϵh′(u)∆u

∂p

∂t
= h′(u)

∂u

∂t

= h′(u)

(
1

2
|∇u|2 + ϵ∆u

)
= ϵ∆p+

(
−ϵh′′(u) + 1

2
h′(u)

)
|∇u|2

Choose h so that ϵh′′ = 1
2h

′, p = h(u) = exp
(
1
2ϵu

)
is the Cole-Hopf transform.

Then ∂p
∂t = ϵ∆p. This converts the original HJB equation to a heat equation.

If ϵ = β2

2 , p(0, x) = exp
(
1
2ϵu(0, ·)

)
= exp

(
1
β2u(0, ·)

)
= exp

(
β2

β2 log π
)
= π.

Also, log p = 1
2ϵu, so u = β2 log p.

ϕ(t, x) = u(T − t, x) = β2 log p(T − t, ·)

The equation for ρ becomes:

∂tρ− β2∇ · (ρ∇ log p(T − t, ·)) = β2

2
∆ρ

This converts the problem into forward/backward heat equation which has a solution with Green’s ker-
nel.
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