MAT1855 Mathematical Problems in Economics

1 Stable Matching

A paring of *e.g.* students to colleges is called *unstable*, if there is an unmatched pair who both prefer each other to their partners, called a blocking pair.

- Transferable Utility (TU): preferences can be changed with e.g. cash transfer (optimal transport)
- Non-Transferable Utility (NTU): preferences cannot be changed with external factors
- Partially Transferable Utility (PTU)

Example (Roommate Problem): Four students assigned to two double rooms. Does any set of preferences admit a stable match? Each student has a rank list of roommate preferences with no ties. The answer is no. Consider the case where three students all rank the same person the least preferred.

1.1 Two-sided (Bipartite) Matching

Example:

- College admission: many-to-one matching
- Marriage problems: One-to-one. Further simplification
 - Same number on each side
 - Preferences: ordered list of potential opposite partners
 - Assume everyone prefers marriage to non-married state

Definition: 1.1: Assignment

Denote $[n] = \{1, ..., n\}$. In the 1-1 context, an assignment or match refers to a 1-1 map $\sigma : [n] \to [n]$. *i.e.* a permutation on n letters.

Equivalently, $\mu : [2n] \to [2n]$, a 1-1 map s.t. $\mu(i) > n$ if $i \le n$, $\mu(j) \le n$ if j > n, $\mu^2(i) = i \forall i$.

Theorem: 1.1: Gale & Shapley (1962)

In 1-1 bipartite settings for preferences as above, a stable match always exist.

Proof. The proof is an algorithm which identifies a stable match. This is the deferred acceptance (dating algorithm)

- 1st round: each man proposes to favorite woman. Each woman keeps favorite suitor, and rejects all others.
- ith round: each rejected man now proposes to favorite woman among those who have not yet rejected him.

Claim:

- 1. This process terminates in finite time (after at most $(n-1)^2$ rounds)
- 2. At termination, stability has been achieved.

Facts (two monotonicites):

- 1. At each round, each woman is at least as satisfied with her partner as the previous round
- 2. At each round, each man is no more enthusiastic about the person he is proposing to in previous rounds.

Each of n men has n preferences, creating a $n \times n$ matrix. In each round, we iterating through the matrix and advances the rows or eliminates elements. It always terminates.

Stability: Suppose (M, w) is a blocking pair at termination.

Let (M, m) and (W, w) be partners. But M prefers w to m $(w >_M m)$, and w prefers M to W $(M >_w W)$. Since $w >_M m$, M must have been rejected by w before he proposed to m. But by the first monotonicity, w must like W better than M $(W >_w M)$. Contradiction.

Definition: 1.2: Achievable Matching

A pair (M, w) is achievable if it forms part of some stable matching.

Theorem: 1.2: Gale & Shapley (1962-2)

If (M, w) is achievable, then w will never reject a proposal by M during the algorithm.

Proof. Induciton on time T of the first rejection by an achievable partner to draw a contradiction.

Let T be the first round in which such a rejection takes place.

i.e. say a rejects A for B, $B >_a A$, yet $\sigma = (Aa, Bb, ...)$ is part of some stable match, because (A, a) is achievable.

Also, $b >_B a$, since otherwise Ba would be a blocking pair, contradicting stability.

From the two monotonicities, B must have proposed to b before a, but by minimality of time T and stability of σ , she cannot have rejected yet. Contradiction.

Corollary 1. Proposer optimality of deferred acceptance. *i.e.* male proposing deferred acceptance proposes a stable match that all men weakly prefer to any other stable match.

Proof. No man is rejected by an achievable mate during the deferred acceptance algorithm.

Theorem: 1.3: Knuth - Battle of the Seres (1981)

If two stable matchings σ and σ' have the property that all men weakly prefer σ to σ' , then all women weakly prefer σ' to σ .

Proof. To derive a contradiction, suppose all men weakly prefer μ to μ' , yet some woman a also strictly prefer μ to μ' . *i.e.* $B = \mu'(a) <_a \mu(a) = A$, $\mu(A) = a >_A \mu'(A) \neq a$. But now Aa blocks μ' . Contradiction. \Box

Theorem: 1.4: Conway's Distributive Lattice

If matchings $\sigma = (Aa, Bb, ...)$ and $\sigma' = (Aa', Bb', ...)$ are both stable, then so are $\sigma \lor \sigma' = (A \max_{A} \{a, a'\}, B \max_{B} \{b, b'\}, ...)$ (men's preferred wifes) and $\sigma \wedge \sigma' = (A \min_{\langle A \rangle} \{a, a'\}, B \min_{\langle B \rangle} \{b, b'\}, ...)$ (women's preferred husbands).

Proof. The two matchings are symmetric, so we prove $\sigma \vee \sigma'$.

1) Join produces a 1-1 matching: Suppose WLOG, $\exists A \neq B$, $a = \max_{\langle A} \{a, a'\} = \max_{\langle B} \{b, b'\} = b'$ Then $\sigma' = (Aa', Bb', ...)$ and $a >_A a'$, so stability of σ' implies $A <_a B$. Similarly, $\sigma = (A(a = b'), Bb)$ and $a = b' >_B b$, so stability of σ implies $A >_a B$. Contradiction.

2) Join is stable.

Suppose WLOG some pair Ab'' blocks, $\sigma \lor \sigma' = (Aa'', Bb'', ...)$ *i.e.* $b'' >_A a''$ and $A >_{b''} B$. Also, $a'' = \max_{A} \{a, a'\}, b'' = \max_{B} \{b, b'\}.$ Then $a, a' \leq_A a'', b, b' \leq_B b''$. Either Aa'', Bb'' both occurred in the same stable match σ (or σ') or one occurred in σ , the other in σ'/σ' By symmetry, either $\sigma = (Aa'', Bb'', ...)$ or $\sigma = (Aa'', ...)$ and $\sigma' = (..., Bb'', ...)$. In case 1 ($\sigma = (Aa'', Bb'', ...)$), Ab'' blocks stability of σ . Contradiction. In case 2, $a = a'' >_A a'$, $b <_B b' = b''$, then $b'' >_A a'' = a >_A a'$ and $A >_{b''} B$, Ab'' blocks σ' . Contradiction.

The lattice is distributive, meaning that $\sigma \wedge (\sigma' \vee \sigma'') = (\sigma \wedge \sigma') \vee (\sigma \wedge \sigma'')$ and similar distribution rules are satisfied.

Game Theory 1.2

Definition: 1.3: Economic Games

Economic games have: players, feasible outcomes, and rules. Player share preferences over feasible outcomes.

Player *i* has strategy $S_i = \left\{ e_i^1, ..., e_i^{k(i)} \right\}$. Outcome: $S_1 \times \cdots \times S_n \to \Omega$. For each *i*, define a relation $\leq_i \in \Omega^2$ to show the preference of outcomes.

An outcome ω dominates ω' if there is a coalition S of player s.t. each player in S strictly prefers ω to ω' and the rules give S the power to enforce ω than ω' .

The *core* of the game refers to the set of all undominated outcomes.

Theorem: 1.5:

The set of stable matching forms the core of the marriage game.

Proof. If a matching is unstable, it's because a blocking pair strictly prefers to marry each other rather than their assigned partner, σ is not in the core.

Conversely, if any matching σ is not in the core, there is some coalition S of players willing and able to prevent it. At least one man $A \in S$ prefers to marry some woman $b \in S$, who is willing to marry him. Ab is a pair which blocks the stability of σ . Hence, σ is unstable.

Definition: 1.4: Nash Equilibrium

A Nash equilibrium $(s_1, ..., s_n) \in S_1 \times \cdots \times S_n$ is a strategy s.t. no player can strictly improve his outcome, acting unilaterally.

 $(s_1, ..., s_n)$ fails to be a Nash equilibrium $\Leftrightarrow \exists i \in [n]$ s.t. $f(s_1, ..., s_n) <_i f(s_1, ..., s_{i-1}, \tilde{s}, s_{i+1}, ..., s_n)$.

Two-Player Zero Sum Game n = 2, payoff is $P : S_1 \times S_2 \to \mathbb{R}$. Player 2 wins P(s,t), player 1 loses P(s,t) (or wins -P(s,t)).

Example: The penalty kick game with payoff in Table 1 does not admit Nash equilibrium. It's an advantage to know opponents strategies. If 2 is changed to 1, a random strategy will work.

Table 1:	Penalty Ki	ick Game
	kick left	kick right
dive left	1	-1
dive right	-1	2

Definition: 1.5: Randomized Strategy (von Neumann - Morgenstern)

Replace
$$S_1 = \{s^1, ..., s^m\} = \{e_1^1, ..., e_1^m\} \subset \mathbb{R}^m$$
 by simplex
 $\Delta^{m-1} = \{(x_1, ..., x_m) \in [0, 1]^m : \sum_{i=1}^m x_i = 1\}, \text{ and } S_2 = \{t^1, ..., t^n\}$ by
 $\Delta^{m-1} = \{(y_1, ..., y_n) \in [0, 1]^n : \sum_{j=1}^n y_j = 1\}.$ Replace the payoff matrix $(P_{ij})_{i \in [m], j \in [n]}$ by expected
payoffs $P(\bar{x}, \bar{y}) = \sum_{i=1}^m \sum_{j=1}^n x_i y_j P_{ij}.$

Remark 1. It never hurts and sometimes helps to know your opponents strategy. *i.e.* If P_1 knows P_2 's strategy j, the payoff if P_2 forced to declare their strategy first is $\sup_{j \in S_2} \inf_{i \in S_1} P_{ij}$. The payoff if P_1 forced to declare strategy first is $\inf_{i \in S_1} \sup_{j \in S_2} P_{ij}$. We have $\sup_{j \in S_2} \inf_{i \in S_1} P_{ij} \leq \inf_{i \in S_1} \sup_{j \in S_2} P_{ij}$. (i_0, j_0) is a Nash equilibrium (saddle point) if and only if $P(i_0, j) \leq P(i_0, j_0) \leq P(i, j_0), \forall (i, j) \in S_1 \times S_2$.

Theorem: 1.6: Minmax Theorem

If a Nash equilibrium exists, then $\sup_{j \in S_2} \inf_{i \in S_1} P(i,j) = \inf_{i \in S_1} \sup_{j \in S_2} P(i,j) \text{ (No duality gap)}$

Proof. Let (i_0, j_0) be a Nash equilibrium,

$$\inf_{i \in S_1} \sup_{j \in S_2} P(i,j) \le \sup_{j} P(i_0,j) \le P(i_0,j_0) \le \inf_{i} P(i,j_0) \le \sup_{j} \inf_{i} P(i,j)$$

Definition: 1.6: Coercive

 $f: M \to (-\infty, \infty]$ is coercive $\Leftrightarrow \forall c \in \mathbb{R}, f^{-1}((-\infty, c])$ is compact in M.

Theorem: 1.7: Existence of Nash Equilibrium (von Neumann)

If $X \subset \mathbb{R}^m, Y \subset \mathbb{R}^n$ are compact convex sets and $P \in C(X \times Y)$ (continuous function from X to Y) and $\forall (x_0, y_0) \in (X, Y)$. $P(x_0, y), -P(x, y_0)$ are convex or at least have convex sublevel sets (coercive and uniquely minimized), then a Nash equilibrium exists

Proof. If both functions are strictly convex, the best response function $x_b(y_0) = \arg\min_x P(x, y_0)$ is unique and continuous. Similarly, P_2 's best response $y_b(x_0) = \arg\max_y P(x_0, y)$ is also unique and continuous. Therefore, $x_b \circ y_0 : X \to X$ is continuous. Brouwer's fixed point theorem implies that $\exists \tilde{x} \in X$ s.t. $\tilde{x} = x_b(y_b(\tilde{x}))$. Because $P(\tilde{x}, y) \leq P(\tilde{x}, \tilde{y}) \leq P(x, \tilde{y}), \forall (x, y) \in X \times Y, \tilde{y} = y_b(\tilde{x})$ makes (\tilde{x}, \tilde{y}) a Nash equilibrium If convexity is not strict, apply perturbation $P_{\epsilon}(x, y) = P(x, y) + \frac{\epsilon}{2}(||x||^2 - ||y||^2)$. Then $\exists (x_{\epsilon}, y_{\epsilon})$ s.t. $P_{\epsilon}(x_{\epsilon}, y) \leq P_{\epsilon}(x_{\epsilon}, y_{\epsilon}) \leq P_{\epsilon}(x, y_{\epsilon}), \forall (x, y) \in X \times Y$. Because the sets are compact, there exists a subsequence $\epsilon(k) \to 0$ s.t. $\lim_{k \to \infty} (x_{\epsilon(k)}, y_{\epsilon(k)}) = (x_{\infty}, y_{\infty})$. As $k \to \infty, P(x_{\infty}, y) \leq P(x_{\infty}, y_{\infty}) \leq P(x, y_{\infty})$.

Claim: If $\arg\max_{y} P(x_0, y) = \{y_b(x_b)\}$, then $y_b: X \to Y$ is continuous.

Let $x_k \to x_\infty$ in X. Set $y_k = y_b(x_k), \forall k \in \mathbb{N}$. *i.e.* $P(x_k, y_k) \ge P(x_k, y), \forall y \in Y$. Consider a subsequence $y_k(j) \to y_\infty, P(x_\infty, y_\infty) \ge P(x_\infty, y)$. Then $y_\infty \in \arg\max_u P(x_\infty, y)$. Therefore

 $y_{\infty} = y_b(x_{\infty})$ since arg max is unique.

The arbitrariness of subsequence gives that $y_b(x_\infty) = \lim_{k \to \infty} y_k = \lim_{k \to \infty} y_b(x_k)$ on the full sequence.

Example: In a football game, the offense decide to pass or run, defense decide to defend the pass or run.

ootb	all C	fame
P	R	
5	6	
7	1	
	potb P 5 7	$\begin{array}{c} \text{potball } 0\\ \hline P & R\\ \hline 5 & 6\\ \hline 7 & 1 \end{array}$

 P_1 (Defense) chooses probability $s \in [0, 1]$ to defend the pass (defends the runs with probability 1 - s). P_2 (Offense) chooses probability $t \in [0, 1]$ to pass (runs with probability 1 - t).

Expected yards when offense pass: $y_{OP}(s) = 5s + 7(1 - s)$.

Expected yards when offense runs: $y_{OR}(s) = 6s + (1 - s)$.

The optimal strategy \tilde{s} is the solution $y_{OP}(\tilde{s}) = y_{OR}(\tilde{s}), \ \tilde{s} = \frac{6}{7}$. Similarly for offense, $5t + 6(1-t) = 7t + (1-t), \ \tilde{t} = \frac{5}{7}$.

1.3 Transferrable Utility Matching (Shapley & Shubik)

Match between *i* and *j* produces benefit b_{ij} . *i* tries to maximize share u_i of the benefit b_{ij} , *j* tries to maximize the share v_j of b_{ij} .

- 1. Stability: $u_i + v_j \ge b_{ij}$, $\forall (i, j) \in I \times J$. Otherwise if $u_i + v_j < b_{ij}$ for some $(i, j) \in I \times J$, *i* and *j* will leave partner to marry each other to make b_{ij} better off.
- 2. Market Clearing Condition: If |I| = |J| = n and matching is 1-1, an assignment is a permutation $\sigma \in \Sigma(n)$ on n letters. Alternatively, allow randomized assignments. *e.g.* i has probability $\gamma_{ij} \ge 0$ of

matching with *i*. Define doubly stochastic matrices: $DS(n) = \left\{ (\gamma_{ij})_{i,j}^n : \sum_{i=1}^n \gamma_{ij} = \sum_{i=1}^n \gamma_{ij} = 1 \right\}$. *e.g.*

$$\gamma_{ij}^{\sigma} = \begin{cases} 1, j = \sigma(i) \\ 0, \text{ else} \end{cases}$$

3. Budget Constraint: $u_i + v_j = b_{ij}$ if $\gamma_{ij} > 0$.

Question: Given direct utility $(b_{ij})_{i,j}$, do there always exist vectors \bar{u}, \bar{v} (indirect utility) and matrix $(\gamma_{ij})_{i,j}$ satisfying the above 3 conditions (stability, market clearing, budget constraint). If yes, then it is a stable matching.

More formally, let b_{ij} =benefit produced if *i* matches with *j*, does there exists $(\gamma_{ij})_{i,j=1}^n \in DS(n)$ and $u, v : [n] \to \mathbb{R}$ s.t.

1. Stability: $(u, v) \in L_b = \{u, v \in \mathbb{R}^n : u_i + v_j \ge b_{ij}\}$

2. Market clears:
$$\gamma \in DS(n) = \left\{ (\gamma_{ij} \ge 0)_{i,j=1}^n : \sum_{i=1}^n \gamma_{ij} = \sum_{j=1}^n \gamma_{ij} = 1 \right\}$$

3. Budget: $u_i + v_j = b_{ij}, \forall i, j \text{ if } \gamma_{i,j} > 0.$

Proof. Let $X = \{u, v \in \mathbb{R}^n\} = \mathbb{R}^{2n}, Y = \left\{\gamma \in \mathbb{R}^{n^2} : \gamma_{ij} \ge 0\right\}$. Define

$$P((u,v);\gamma) = \sum_{i=1}^{n} \sum_{j=1}^{n} (b_{ij} - u_i - v_j)\gamma_{ij} + \sum_{i=1}^{n} u_i + \sum_{j=1}^{n} v_j.$$

 $P((u, v); \gamma)$ is bi-affine in (u, v) and γ .

$$\sup_{\gamma \in Y} P((u,v);\gamma) = \begin{cases} \sum_{i=1}^{n} u_i + \sum_{j=1}^{n} v_j, \text{ if } (b_{ij} - u_i - v_j) \le 0, \forall i, j \le n, (u,v) \in L_b \\ \infty, \text{ otherwise} \end{cases}$$

Therefore, $\inf_{(u,v)\in X} \sup_{\gamma\in Y} P = \inf_{(u,v)\in L_b} \sum_{i=1}^n u_i + \sum_{j=1}^n V_j.$

Now, rewrite
$$P = \sum_{i=1}^{n} \sum_{j=1}^{n} b_{ij} \gamma_{ij} + \sum_{i=1}^{n} u_i \left(1 - \sum_{j=1}^{n} \gamma_{ij} \right) + \sum_{j=1}^{n} v_j \left(1 - \sum_{i=1}^{n} \gamma_{ij} \right).$$

$$\inf_{(u,v)\in X} P = \begin{cases} \sum_{i=1}^{n} \sum_{j=1}^{n} b_{ij} \gamma_{ij}, \text{ if } \gamma \in DS(n) \\ -\infty, \text{ otherwise} \end{cases}$$

Therefore, $\sup_{\gamma \in Y} \inf_{(u,v) \in X} P = \sup_{\gamma \in Y} \sum_{i=1}^{n} \sum_{j=1}^{n} b_{ij} \gamma_{ij}.$

For Nash equilibrium, we need inf $\sup P \leq P((u^0, v^0), \gamma^0) \leq \sup \inf P$. This only happens when $(u^0, v^0) \in L_b$ and $\gamma^0 \in DS(n)$. Otherwise we have $\pm \infty$ for $\inf \sup P$ and $\sup \inf P$. It automatically satisfies the stability and market clearing conditions. When they are exactly equal,

$$\sum_{i=1}^{n} \sum_{j=1}^{n} b_{ij} \gamma_{ij}^{0} = \sum_{i=1}^{n} u_i^{0} + \sum_{j=1}^{n} v_j^{0} = \sum_{i=1}^{n} u_i^{0} \left(\sum_{j=1}^{n} \gamma_{ij} \right) + \sum_{j=1}^{n} v_j^{0} \left(\sum_{i=1}^{n} \gamma_{ij} \right)$$

$$\Rightarrow \sum_{i=1}^{n} \sum_{j=1}^{n} (u_i^0 + v_j^0 - b_{ij})\gamma_{ij}^0 = 0$$

 $\Rightarrow \text{ either } \gamma^0_{ij} = 0 \text{ or } u^0_i + v^0_j = b_{ij} \text{ if } \gamma^0_{ij} > 0.$

This is the budget constraint (complementary slackness)

This induces two variational problems:

- 1. The social planners problem: $\sup_{\gamma \in DS(n)} \sum_{i=1}^{n} \sum_{j=1}^{n} \gamma_{ij} b_{ij}$ (matchmaker)
- 2. Minimize total surplus subject to stability, hoping to achieve budget constraint (Affordability): $\inf_{(u,v)\in L_b}\sum_{i=1}^n u_i + \sum_{i=1}^n v_i$

In the affordability problem, stability $\Rightarrow u_i + v_j \ge b_{ij}, \forall i, j \in [n] \Rightarrow u_i \ge \max_j b_{ij} - v_j$ and $v_j \ge \max_i b_{ij} - u_i$. When b_{ij} has unique maximum for each i and each j, then we get perfect matching.

This is an instance of the **2nd welfare theorem**:

Supply and demand b_{ij} determines equilibrium prices (shadow prices/ Lagrange multipliers for market clearing) (\bar{u}, \bar{v}) , which then decentralize the market. *i.e.* for a.e. b_{ij} , the corresponding (\bar{u}^0, \bar{v}^0) lead each man and woman to have a unique preferred partner, so no matchmaker/social planner is needed. γ_{ij} is the Lagrange multiplier for stability constraint.

2 Optimal Transport

Now we generalize to continuous types/heterogeneity and consider Monge-Kantorovich/Optimal Transport Problems.

Definition: 2.1: Polish Space

A space X is Polish if its topology is metrizable by a complete separable metric. Let $\mathcal{P}(x) = \{\mu \ge 0 \text{ on } X : \mu \text{ is a Borel probability measure}, \mu(X) = 1\}$. Topologize $\mathcal{P}(X)$ using the narrow topology, *i.e.* $\mu_n \to \mu \Leftrightarrow \lim_{n \to \infty} \int_X f d\mu_n \to \int_X f d\mu$ for every $f \in C_b(X) = \{f : X \to \mathbb{R} : f \text{ continuous and bounded}\}.$

Definition: 2.2: Tight Measures

 $C \subset \mathcal{P}(X)$ is tight $\Leftrightarrow \forall \epsilon > 0, \exists X_{\epsilon} \subset X \text{ compact s.t. } \sup_{\mu \in C} \mu(X - X_{\epsilon}) < \epsilon.$

Theorem: 2.1: Prokhorov

 $C \subset \mathcal{P}(X)$ is narrowly pre-compact $\Leftrightarrow C$ is tight.

Corollary 2. $\mu \in \mathcal{P}(X)$ is inner regular. i.e. $\forall \epsilon > 0, \exists X_{\epsilon} \text{ compact}, \mu(X - X_{\epsilon}) < \epsilon$.

Definition: 2.3: Monge's Optimal Transport (1781)

Given X, Y Polish spaces, $\mu^+ \in \mathcal{P}(X)$, $\mu^- \in \mathcal{P}(Y)$, a cost function $c = -b \in C_b(X \times Y)$. We seek a Borel map $G : X \to Y$, μ^+ -measurable. Define the push-forward $G_{\#}\mu^+$ of μ^+ by G s.t. $G_{\#}\mu^+(V) = \mu^+(G^{-1}(V))$ for $V \subset Y$ measurable. If $\mu^+ \in \mathcal{P}(X)$, then $G_{\#}\mu^+ \in \mathcal{P}(Y)$, given G is defined μ^+ -a.e. The optimal solution is

$$\inf_{G_{\#}\mu^+(V)} \int_X c(x,G(x)) d\mu(x)$$

If $\frac{d\mu^{\pm}}{dnol} = f^{\pm}$ is smooth enough probability density and $G: \mathbb{R}^n \to \mathbb{R}^n$ is a diffeomorphism, then

$$\int_{G^{-1}(V)} f^+(x) dvol(x) = \int_V f^-(y) dvol(y) = \int_{G^{-1}(V)} f^{-1}(G(x)) |\det DG(x)| dvol(x)$$

Since V is arbitrary, $f^+(x) = f^-(G(x)) |\det DG(x)|$ vol-a.e. for x. It is difficult to find the solution for the differential equation.

Definition: 2.4: Kantorovich's Optimal Transport (1942)

Seek a joint distribution $\gamma \in \mathcal{P}(X, Y), \gamma \in \Gamma(\mu^+, \mu^-) = \{\gamma \ge 0 : \mu^+(U) = \gamma(U \times Y), \mu^-(V) = \gamma(X \times V), \forall (U, V) \subset X \times Y, \text{ Borel measurable}\}.$ Or equivalently, $\mu^+ = \Pi^X_{\#} \gamma$ is the projection of γ onto $X, \mu^- = \Pi^Y_{\#} \gamma$ is the projection of γ onto Y.

$$\sup_{\gamma \in \Gamma(\mu^+, \mu^-)} \int_{X \times Y} b(x, y) d\gamma(x, y)$$

In optimization and calculus of variations, we need a topology for which

1. Objective is semi-continuous

2. Feasible competitors form a compact set

Note that in Kantorovich's definition, $\Gamma(\mu^+, \mu^-)$ is convex, and the integral functional is linear in γ , so the supremum (maximum) is always attained. F.O.C. (first order conditions, e.g. KKT/Euler-Lagrange equations for any concave maximization problems) become sufficient as well as necessary for optimality. Steepest ascent finds the global optimum.

If
$$G_{\#}\mu^{+} = \mu^{-}$$
, then $\gamma_{G} = (id_{X} \times G)_{\#\mu^{+}} \in \Gamma(\mu^{+}, \mu^{-})$
$$\sup \int b(x, y) d\gamma \ge \sup \int b(x, G(x)) d\mu^{+}$$

We want to find a topology making $\Gamma(\mu^+, \mu^-)$ compact and $\gamma \in \Gamma(\mu^+, \mu^-)$ s.t. $\int b d\gamma$ is continuous. A simple one would be both X, Y are compact. A generalization is X, Y both Polish or Radon.

Fact: If X is Polish, then the narrow topology in Definition 2.1 is metrizable on $\mathcal{P}(X)$.

Claim: If (X, d_X) and (Y, d_Y) are Polish (or Radon) and $\mu^+ \in \mathcal{P}(X)$, then $\Gamma(\mu^+, \mu^-)$ is tight and narrowly closed, hence narrowly compact.

Proof. (1) tightness: $\{\mu^+\}$ is narrowly compact as a set of one element. Fix $\epsilon > 0$, $\exists X_{\epsilon} \subset X$ compact s.t. $\mu^+(X - X_{\epsilon}) < \frac{\epsilon}{2}$. Similarly, $\exists Y_{\epsilon} \subset Y$ compact s.t. $\mu^-(Y - Y_{\epsilon}) < \frac{\epsilon}{2}$. Therefore,

$$\gamma(X_{\epsilon} \times Y_{\epsilon}) = 1 - \gamma(X_{\epsilon}^{C} \times Y) - \gamma(X \times Y_{\epsilon}^{C}) + \gamma(X_{\epsilon}^{C} \times Y_{\epsilon}^{C})$$

$$\geq 1 - \gamma(X_{\epsilon}^{C} \times Y) - \gamma(X \times Y_{\epsilon}^{C})$$

$$> 1 - \frac{\epsilon}{2} - \frac{\epsilon}{2} = 1 - \epsilon$$

Therefore $\gamma((X_{\epsilon} \times Y_{\epsilon})^{C}) < \epsilon$, and $\Gamma(\mu^{+}, \mu^{-})$ is tight.

(2) Narror closedness: Let $\{\gamma_k\}_{k\in\mathbb{N}} \subset \Gamma(\mu^+, \mu^-)$ converging narrowly to $\gamma_{\infty} \in \mathcal{P}(X \times Y)$. Let $f(x, y) = \tilde{f}(x), \forall x \in X$, where $f \in C_b(X, Y)$.

By Definition of narrow topology,

$$\int f d\gamma_{\infty} = \lim_{k \to \infty} \int_{X \times Y} f(x, y) d\gamma_k = \lim_{k \to \infty} \int_{X \times Y} \tilde{f}(x) d\gamma_k = \int_X \tilde{f} d\mu^+$$

Since $\tilde{f} \in C_b(X)$ is arbitrary, $\Pi^X_{\#} \gamma_{\infty} = \mu^+$. Similarly, $\Pi^Y_{\#} \gamma_{\infty} = \mu^-$. Therefore, $\gamma_{\infty} \in \Gamma(\mu^+, \mu^-)$.

Remark 2. More generally, if $\mu_k^+ \to \mu_\infty^+$ and $\mu_k^- \to \mu_\infty^-$ narrowly, then any $\gamma_k \in \Gamma(\mu_k^, \mu_k^-)$ admits a subsequential narrow limit $\gamma_\infty \in \Gamma(\mu_\infty^+, \gamma_\infty^-)$. (Narrow stability).

This shows that $\sup \int bd\gamma = \max \int bd\gamma$ can be attained.

2.1 Linear Programming Approach

In this section, we consider a heuristic linear programming dual problem, inspired by the discrete case.

$$\begin{split} \max_{\gamma \in \Gamma(\mu^+, \mu^-)} \int b d\gamma &= \sup_{\gamma \ge 0} \inf_{u: X \to \mathbb{R}, v: Y \to \mathbb{R}} \int b d\gamma - \int u d\gamma + \int u d\mu^+ - \int v d\gamma + \int v d\mu^- \\ &\leq \inf_{u, v} \sup_{\gamma} \int u d\mu^+ + \int v d\mu^- + \int (b - u - v) d\gamma \\ &= \inf_{u, v \in L_b} \int u d\mu^+ + \int v d\mu^-, \end{split}$$

where $L_b = \{u : X \to \mathbb{R}, v : Y \to \mathbb{R} : u(x) + v(y) \ge b(x, y), \forall x, y \in X \times Y\}$ Claim: If $\gamma \in \Gamma(\mu^+, \mu^-)$ and $(u, v) \in L_b$, then

- 1. $\int_{X \times V} (u(x) + v(y) b(x, y)) d\gamma \ge 0$, since $u + v b \ge 0$ for $(u, v) \in L_b$ and $\gamma \ge 0$
- 2. If the integral is 0, and $u \in L^1(d\mu^+)$, $v \in L^1(d\mu^-)$, then γ maximizes and (u, v) minimizes.
- 3. If the infimum is attained and equality holds, then γ maximizes iff $\exists (u, v) \in L_b$ s.t. the integral is 0, whereas $(u, v) \in L_b$ minimizes iff $\exists \gamma \in \Gamma(\mu^+, \mu^-)$ s.t. integral is 0.

To show that the infimum is attained with no gap:

- 1. characterize maximizers $\gamma \in \Gamma(\mu^+, \mu^-)$ by a property of their support $\operatorname{spt} \gamma = S$, where $S \subset X \times Y$ is the smallest closed subset with $\gamma(S) = 1$.
- 2. use the properties to construct minimizers u and its partner v in L_b .

Motivating Example: $X = Y = \mathbb{R}^n$, $b(x, y) = x \cdot y$.

Definition: 2.5: b-cyclically Monotone

A set $S = X \times Y$ is b-cyclically monotone if and only if $\forall k \in \mathbb{N}$ and $(x_1, y_1), ..., (x_k, y_k) \in S$,

$$\sum_{i=1}^{k} b(x_i, y_i) \ge \sum_{i=1}^{k} b(x_i, y_{i-1}),$$

where $y_0 = y_k$.

Theorem: 2.2:

If $\gamma \in \Gamma(\mu^+, \mu^-)$ maximizes $b \in \Gamma(X \times Y)$, then spt γ is b-cyclically monotone.

Proof. Suppose not, *i.e.* $\exists k \in \mathbb{N}, (x_1, y_1), ..., (x_k, y_k) \in \operatorname{spt}(\gamma) \text{ s.t. } \sum_{i=1}^k b(x_i, y_i) < \sum_{i=1}^k b(x_i, y_{i-1}).$ Since $b \in C(X \times Y)$, the same inequality holds for all x'_i near x_i and y'_i near y_i . *i.e.* $x'_i \in I_i$ and $y'_i \in J_i$ for

some open neighborhood $I_i \times J_i$ of (x_i, y_i) . Let $\epsilon = \min_{i \le k} \gamma(I_i \times J_i) > 0$. Set $\gamma^i(z) = \frac{\gamma(z \cap I_i \times J_i)}{\gamma(I_i \times J_i)}, \ \gamma - \epsilon \gamma^i \ge 0$ and $\gamma - \frac{\epsilon}{k} \sum_{i=1}^k \gamma^i \ge 0$.

Suppose $\gamma_i = z_{i\#}\omega = (x_i, y_i)_{\#}\omega$ on (Ω, ω) where $\omega \in \mathcal{P}(\Omega)$ is a probability measure.

$$\gamma_{\epsilon} = \gamma - \frac{\epsilon}{k} \sum_{i=1}^{k} ((x_i, y_i)_{\#} \omega - (x_i, y_{i-1})_{\#} \omega) \in \Gamma(\mu^+, \mu^-),$$

but
$$\int bd(\gamma - \gamma_{\epsilon}) = \frac{\epsilon}{k} \sum_{i=1}^{k} \int bd(x_i, y_i)_{\#} \omega - bd(x_i, y_{i-1})_{\#} \omega < 0$$
. Contradicting the b-maximiality of γ . \Box

Definition: 2.6: Proper Function and b-subdifferential

 $u: X \to [-\infty, \infty] \text{ is proper unless } u^{-1}(\infty) = X.$ The *b*-subdifferential $\partial_b u = \{(x, y) \in X \times Y : u(\cdot) \ge u(x) + b(\cdot, y) - b(x, y), \forall \cdot \in X\}.$

Example: $b(x, y) = x \cdot y$ on $X = Y = \mathbb{R}^n$, $(x, y) \in \partial_b u \Leftrightarrow u(\cdot) \ge u(x) + \langle \cdot - x, y \rangle$. $\partial_b u$ is a set of (point, slope) pairs that is affine supporting hyperplane for $\operatorname{Graph}(u)$ at (x, y).

Theorem: 2.3: Rockafellar (1966) and Rochet (1986)

 $S \subset X \times Y$ is b-cyclically monotone $\Leftrightarrow S \subset \partial_b u$ for some proper $u: X \to [-\infty, \infty]$.

Proof. (\Rightarrow) Fix $(x_0, y_0) \in S$. For $x \in X$, define

$$u(x) = \sup_{k \in \mathbb{N}} \sup_{(x_1, y_1), \dots, (x_k, y_k) \in S} b(x, y_k) - b(x_k, y_k) + \sum_{i=0}^{k-1} \left[b(x_{i+1}, y_i) - b(x_i, y_i) \right]$$

Claim: $S \subset \partial_b u$, because if $(x', y') \in S$, then $\forall \epsilon > 0, \exists k \in \mathbb{N}, (x_1, y_1), ..., (x_k, y_k)$ s.t.

$$u(x') \le \epsilon + b(x', y_k) - b(x_k, y_k) + \sum_{i=0}^{k-1} [b(x_{i+1}, y_i) - b(x_i, y_i)]$$

Also, $\cdot \in X$ means

$$u(\cdot) \ge b(\cdot, y_{k+1}) - b(x_{k+1}, y_{k+1}) + \sum_{i=0}^{k} \left[b(x_{i+1}, y_i) - b(x_i, y_i) \right]$$

 $u(\cdot) - u(x') \ge -\epsilon + b(\cdot, y') - b(x', y')$, but ϵ is arbitrary, so $(x', y') \in \partial_b u$. S is b-cyclically monotone ensures $u(x_0) \le 0$ and u is proper and bounded above.

Definition: 2.7: b-transform and Legendre-Fenchel Transform

The Legendre-Fenchel transform is

$$u^*(y) = \sup_{y \in \mathbb{R}^n} \langle x, y \rangle - u(x)$$

This is a convex and lower semi continuous (l.s.c.) function. $u \ge u^{**}$ is the convex hull of u, with equality if and only if u is convex l.s.c., $u^{***} = u^*$. The *b*-transforms are

$$u^{b}(y) = \sup_{x \in X} b(x, y) - u(x)$$
$$v^{\tilde{b}}(x) = \sup_{y \in Y} b(x, y) - v(y)$$

Lemma: 2.1: Properties of u^b

$$\begin{split} L_b &= \{u: X \to [-\infty, \infty], v: Y \to [-\infty, \infty] \text{ proper } : u(x) + v(y) \ge b(x, y), \forall x, y \in X \times Y \} \\ 1. \text{ If } (u, v) \in L_b, \text{ then } (u, u^b) \in L^b \text{ and } u^b \le v \\ 2. (u^b)^{\tilde{b}} \le u \\ 3. ((u^b)^{\tilde{b}})^b &= u^b \end{split}$$

Proof. 1.
$$u^{b}(y) = \sup_{x \in X} b(x, y) - u(x) \ge b(x, y) - u(x), \forall x \in X, \text{ so } (u, u^{b}) \in L_{b}$$

If $v(y) \ge b(x, y) - u(x), \forall x \in X, \text{ then } v(y) \ge \sup_{x \in X} b(x, y) - u(x) = u^{b}(y).$

- 2. Using symmetry of x, y, if $(u, u^b) \in L_b$, then $((u^b)^{\overline{b}}, u^b) \in L_b$ and $(u^b)^{\overline{b}} \leq u$.
- 3. Because of the minus sign, $\tilde{u} \ge u \Rightarrow \tilde{u}^b \le u^b$. Therefore $u^b \le ((u^b)^{\tilde{b}})^b \le u^b$. By 2

Theorem: 2.4: Kantorovich Duality

Let X, Y be Polish,
$$b \in C_{bdd}(X \times Y)$$
, $\mu^+ \in \mathcal{P}(X)$, $\mu^- \in \mathcal{P}(Y)$. Then

$$\max_{\gamma \in \Gamma(\mu^+, \mu^-)} \int b d\gamma \le \inf_{(u, v) \in L_b} \int_X u d\mu^+ + \int_Y v d\mu^-$$

And infimum is attained.

Proof. Let $\gamma \in \Gamma(\mu^+, \mu^-)$ optimize b, then $\operatorname{spt}(\gamma)$ is b-cyclically monotone. By Theorem 2.3, there exists some u proper s.t. $\operatorname{spt}(\gamma) \subset \partial_b u$.

Claim: if $v(y) = u^b(y) = \sup_{x \in X} b(x, y) - u(x)$, then $(u, v) \in L_b$ and $\int (u+v-b)d\gamma = 0$, also $u \in L^1(d\mu^+), v \in L^1(d\mu^-)$, where u^b is a b-transform on u.

Claim: $(x, y) \in \partial_b u \Leftrightarrow u^b(y) = b(x, y) - u(x)$. By Definition 2.6, $b(x, y) - u(x) \ge b(\cdot, y) - u(\cdot), \forall \cdot \in X$. This is equivalent to $u^b(y) = b(x, y) - u(x)$. Equivalently, $x \in \arg \max b(\cdot, y) - u(\cdot)$.

Therefore,
$$\operatorname{spt}(\gamma) = \left\{ (x, y) \in X \times Y : u(x) + u^b(y) - b(x, y) = 0 \right\}$$

$$u + v \ge b \ge \inf b = B > -\infty$$
, so $\int (u + v) d\gamma \ge \int b d\gamma \ge B > -\infty$.

Then $\exists x_0 \in X \text{ s.t. } u(x_0) \in \mathbb{R}$, so $v(y) = u^b(y) = \sup b - u \ge b(x_0, y) - u(x_0) \ge B - u(x_0)$ for any $y \in Y$. Then $\int u d\mu^+ + \int v d\mu^-$ must be finite.

Consider $b(x,y) = x \cdot y$ on $X = Y = \mathbb{R}^n$, $\mu^{\pm} \in \mathcal{P}_C(\mathbb{R}^n)$ compact metric on \mathbb{R}^n . Then

$$\max_{\gamma \in \Gamma(\mu^+, \mu^-)} \int \langle x, y \rangle \, d\gamma = \min_{(u, v) \in L_b} \int_X u d\mu^+ \int_Y v d\mu^-,$$

and the optimizers satisfy $\operatorname{spt}(\gamma) \subset \partial_b u = \operatorname{Graph}(Du)$ if $u \in C^1(\mathbb{R}^n)$.

Let $u : \mathbb{R}^n \to (-\infty, \infty]$ be convex and lower semi-continuous (l.s.c.), then $\text{Dom}(u) = \{x \in \mathbb{R}^n : u(x) < \infty\}$ is convex and $\partial(\text{Dom}(u))$ is n-1 dimensional.

Theorem: 2.5: Rademacher's

If u is Lipschitz on \mathbb{R}^n , then u is differentiable a.e.

Lemma: 2.2:

Let X, Y be Polish/Radon. If $\gamma \in \mathcal{P}(X \times Y)$ and $G : X \to Y$ s.t. $X \times Y - \text{Graph}(G)$ has zero γ outer measure, where $\text{Graph}(G) = \{(x, y) \in X \times Y : y \in G(x)\}$, then G is μ -measurable and $\gamma = (\text{id} \times G)_{\#}\mu$ where $\mu = \prod_{\#}^{X} \gamma$.

Proof. The Radon (inner measurability) property of Polish spaces implies there exist compact $K_i \subset K_{i+1} \subset$ Graph $(G) \subset X \times Y$ s.t. $\gamma(K_{\infty}) = 1$, where $K_{\infty} = \bigcup_i K_i$.

Claim: $G_i = G|_{X_i}$ is continuous where $X_i = \Pi^X(K_i)$. Fix $i \in \mathbb{N}$. Let $x^j \in X_i$ be arbitrary, convergent to $x^{\infty} = \lim j \to \infty x^j$. Therefore, there exists $(x^j, y^j) \in K_i$, compactness implies that every subsequence admits a sub-subsequence with some limit $y^{\infty} = \lim_{j \to \infty} y^j$ and

 $(x^{\infty}, y^{\infty}) \in K_i$. Since $K_i \subset \text{Graph}(G)$, $y^{\infty} = G(x^{\infty})$ and $y^j = G(x^j)$. Also, $x^j \to x^{\infty}$, then $G(x^j) \to G(x^{\infty})$ and arbitrariness of the subsequence. Hence $G|_{X_i}$ is continuous.

 G_i admits a continuous extension to (X, d) by Dugundji variant of Tietze's extension theorem (If A is a closed subset of X and $f : A \to Y$ is continuous, then f can be extended to X).

$$\mu(X_{\infty}) = \gamma(X_{\infty} \times Y) = \gamma((X_{\infty} \times Y) \cap \operatorname{Graph}(G)) = \gamma(K_{\infty}) = 1$$

So X_{∞} is μ -measurable.

Given $U \subset X$ and $V \subset Y$ Borel. Then

$$\gamma(U \times V) = \gamma((U \times V) \cap \operatorname{Graph}(G_{\infty}))$$
$$= \gamma((U \cap G_{\infty}^{-1}(V)) \times (Y \cap \operatorname{Graph}(G_{\infty})))$$
$$= \gamma((U \cap G_{\infty}^{-1}(V)) \times Y)$$
$$= \mu(U \cap G_{\infty}^{-1}(V)) = (\operatorname{id} \times G)_{\#}\mu(U \times V)$$

 $G_{\infty} = \lim_{i \to \infty} \tilde{G}_i$ on X_{∞} . Hence μ -a.e. agrees with the limit of continuous functions.

Consider $L_b^1 = \{(u, v) \in L_b : u \in L^1(d\mu), v \in L^1(d\nu) | l.s.c.\}$. Stability implies that $u(x) + v(y) - b(x, y) \ge 0$, $S(u, v) = \{(x, y) \in X \times Y : u(x) + v(y) - b(x, y) \le 0\}$ is closed if $(u, v) \in L_b^1$ and $b \in C(X \times Y)$. (Upper semi-continuity of b is enough).

Proposition: 2.1:

 $v^{b}(x) = \sup_{y \in Y} b(x, y) - v(y)$ inherits the x-modulus of continuity of $x \in X \mapsto b(x, y)$.

Proof. Let $x_0, x_1 \in X$ and $v^{\tilde{b}}(x_0) = b(x_0, y_0) - v(y_0)$. Then $v^{\tilde{b}}(x_0) - v^{\tilde{b}}(x_1) \leq b(x_0, y_0) - v(y_0) - b(x_1, y_0) + v(y_0) \leq w^b_{y_0}(d(x_0, x_1))$. Similarly, $v^{\tilde{b}}(x_1) - v^{\tilde{b}}(x_0) \leq w^b_{y_1}(d(x_0, x_1))$

Definition: 2.8: Semi-Convexity

 $u: \Omega \subset \mathbb{R}^n \to \mathbb{R}$ has semiconvexity constant C if and only if $\forall x_0 \in \Omega, h \in \mathbb{R}^n, x_0 \pm h \in \Omega, \frac{u(x_0+h)+u(x_0-h)-2u(x_0)}{h^2} \geq -C.$ C = 0 if and only if u is convex.

Corollary 3. 1. If $v \in C(X \times Y)$ and X, Y compact, then $v^{\tilde{b}} \in C(X)$

- 2. If $x \in X \mapsto b(x,y)$ has a Lipschitz constant independent of y, then $v^{\tilde{b}}$ has the same Lipschitz constant
- 3. If $x \in X \mapsto b(x, y)$ has semiconvexity constant independent of y, then $v^{\tilde{b}}$ has the same semiconvexity constant

Proof. 1. Compactness of $X \times Y$ means b is uniformly continuous. Hence $v^{\tilde{b}}(x)$ inherits the modulus of continuity.

Remark 3. u has semiconvexity constant if and only if $u(x) + \frac{C}{2}x^2$ is convex.

Theorem: 2.6: Bremer 1987 & McCann 1995

Let $\mu, \nu \in \mathcal{P}_C(\mathbb{R}^n)$ (compactly supported probability measures), with $\mu \ll H^n$ (as bolutely continuous w.r.t. Lebesgue measure). Then $\exists u : \mathbb{R}^n \to \mathbb{R}$ convex $Du : \mathbb{R}^n \to \mathbb{R}^n$ satisfies $(Du)_{\#}\mu = \nu$. This map is unique μ -a.e. Moreover, $\gamma = (\mathrm{id} \times Du)_{\#}\mu$ uniquely maximizes Kantorovich's problem for $b(x, y) = x \cdot y$. Generalization (McCann): $\mu, \nu \in \mathcal{P}(\mathbb{R}^n)$. μ vanishes on all Lipschitz hypersurfaces or all sets of Hausdoff dimension n - 1.

Proof. There exists a Kantorovich optimizer $\gamma \in \Gamma(\mu, \nu)$. $\operatorname{spt}(\gamma)$ is b-cyclically monotone, so $\exists u = (u^b)^b$ in $\operatorname{spt}(\gamma) \subset \partial u$. u is convex and $u = \sup_{y \in Y} x \cdot y - u^b(y)$ is Lipschitz by compactness of $\operatorname{spt}(\gamma)$. Therefore u is differentiable a.e. by Theorem 2.5. $\partial u = \{(x, y) \in (domu) \times \mathbb{R}^n : u(\cdot) \ge u(x) + y(\cdot - x) \forall \cdot \in \mathbb{R}^n\},$ $\partial u \cap (domDu \times \mathbb{R}^n) = \operatorname{Graph}(Du)$. Therefore, $1 = \gamma(\partial U \cap (domDu \times \mathbb{R}^n)) = \gamma(\operatorname{Graph}(Du))$.

By Lemma 2.2, $\gamma = (\mathrm{id} \times Du)_{\#} \mu$, $\nu = Du_{\#} \mu$.

Uniqueness:

Suppose $\tilde{u} : \mathbb{R}^n \to \mathbb{R}$ convex with $D\tilde{u}_{\#}\mu = \nu$, but $Du = D\tilde{u}$, μ -a.e. fails. *i.e.* in some coordinate system, let $U = \left\{ x : \frac{\partial u}{\partial x_1} > \frac{\partial \tilde{u}}{\partial x_1} \right\}$, $\mu \left(\left\{ x : \frac{\partial u}{\partial x_1} > \frac{\partial \tilde{u}}{\partial x_1} \right\} \right) > 0$. $\tilde{\gamma} = \gamma|_{U \times \mathbb{R}^n} \in \Gamma(\tilde{\mu}, \tilde{n}u)$, so $\tilde{\gamma}(\operatorname{Graph}(Du)) = 1$. $\tilde{\gamma} = (\operatorname{id} \times Du)_{\#}\tilde{\mu}$, and $\tilde{\nu} = Du_{\#}\tilde{\mu}$.

Suppose $D\tilde{u}_{\#}\tilde{\mu} = \tilde{\nu}$, but $\int y_1 d(Du_{\#}\tilde{\mu} - D\tilde{u}_{\#}\tilde{\mu}) = \int \left(\frac{\partial u}{\partial x_1} - \frac{\partial \tilde{u}}{\partial x_1}\right) d\tilde{\mu} > 0$. Contradicting $(D\tilde{\mu})_{\#}\tilde{\mu} = \tilde{\nu}$.

When $\gamma = (\mathrm{id} \times D\tilde{u})_{\#}\mu$, $\tilde{u}(x) + \tilde{u}^{b}(y) - x \cdot y \ge 0$. Equality $\Leftrightarrow (x, y) \in \partial \tilde{u} \Leftrightarrow y = D\tilde{u}^{b}$. Integrate w.r.t. γ .

Theorem: 2.7: Isoperimetric Inequality

Let $\Omega \subset \mathbb{R}^n$ with $|\Omega| = H^n(\Omega) = |B_1^n(0)|$ (unit ball). Then $H^{n-1}(\partial\Omega) = |\partial\Omega| \ge |\partial B_1^n(0)|$.

Proof. Let $\mu = \frac{1_{\Omega}}{|\Omega|}, \nu = \frac{1_{B_1^n(0)}}{|B_1^n|}$. By Theorem 2.6, there exists a convex $u : \mathbb{R}^n \to \mathbb{R}$ s.t. $(Du)_{\#} \mu = \nu$. Then $D^2 u(x_0)$ exists μ -a.e.

 $u(x) = u(x_0) + \langle x - x_0, p \rangle + \frac{1}{2} \langle x - x_0, Q(x - x_0) \rangle + o(|x - x_0|^2)$ where $p = Du(x_0), Q = D^2u(x_0)$ and $|Du| \le 1$, det $D^2u(x_0) = 1$ a.e.

$$1 = \det \left[D^2 u(x_0) \right]^{1/n} \le \frac{1}{n} \operatorname{tr} D^2 u(x_0) = \frac{1}{n} \bigtriangleup u$$

$$1 = |\Omega| = \int_{\Omega} dH^n \le \frac{1}{n} \int_{\Omega} \bigtriangleup u = \frac{1}{n} \int_{\partial \Omega} Du(x) \cdot \hat{n}_{\Omega}(x) dH^{n-1} \le \frac{1}{n} H^{n-1}(\partial \Omega) = \frac{1}{n} |\partial \Omega|$$

Also $1 = |B_1^n(0)| = \frac{1}{n} |\partial B_1^n(0)|.$

Theorem: 2.8:

Let $b \in C_b(X \times Y), \mu \in \mathcal{P}(X), \nu \in \mathcal{P}(Y). \gamma \in \Gamma(\mu, \nu)$ is b-optimal (b-maximality) $\Leftrightarrow \exists (u, v) \in L_b^1$, $\gamma(S_{(u,v)}) = 1 \text{ where } S_{(u,v)} = \{(x,y) \in X \times Y : u(x) + v(y) - b(x,y) = 0\}.$

Proof. (\Leftarrow) Suppose $\gamma \in \Gamma(\mu, \nu)$ and $\exists (u, v) \in L_b^1$ s.t. $\gamma(S_{(u,v)}) = 1, u(x) + v(y) = b(x, y), \gamma$ -a.e. $\int u d\mu + v(y) = b(x, y) + v(y) = b(x, y)$ $\int v d\nu = \int b d\gamma, \text{ but } \inf_{(\tilde{u}, \tilde{v}) \in L^1_h} \int \tilde{u} d\mu + \tilde{v} d\nu \ge \sup_{\tilde{\gamma} \in \Gamma(\mu, \nu)} \int b d\tilde{\gamma}, (u, v) \text{ minimizes, } \gamma \text{ maximizes.}$ (\Rightarrow) If $\gamma \in \Gamma(\mu, \nu)$ is b-optimal. Theorem 2.3 implies that $\operatorname{spt}(\gamma) \subset \partial_b u$ for some proper u s.t. $S_{(u,u^b)} \subset \partial_b u$ $S_{(u^{b\tilde{b}},u^{b})}$, where $(u^{b\tilde{b}},u^{b}) \in L^{1}_{b}$.

Lemma: 2.3: Restriction Property

If $\gamma \in \Gamma(\mu, \nu)$ is b-optimal and $0 \leq \tilde{\gamma} \leq \gamma$, then so is $\hat{\gamma} = \frac{\tilde{\gamma}}{\tilde{\gamma}[X \times Y]}$

Proof. b-optimality of $\gamma \Rightarrow \exists (u, v) \in L_b^1$, $\operatorname{spt}(\hat{\gamma}) \subset \operatorname{spt}(\gamma) \subset S_{(u,v)}$. Therefore, $\hat{\gamma}$ is b-optimal.

Definition: 2.9: Twist

Let X be a manifold (or \mathbb{R}^n), $b \in C^1(X \times Y)$ satisfies twist if and only if $\forall y, y' \in Y, x \in X$, b(x, y) - b(x, y') has no critical points. Equivalently, $\forall x_0 \in X$, the map $y \in Y \mapsto D_{x_0}b(x, y)$ is 1-1.

Remark 4. Twist implies that X is not compact.

Example: b(x,y) = -h(x-y) where h is strictly convex/concave. Then b is a twist

Proof. $D_{x_0}b(x,y) = -Dh(x_0 - y) = p$, then $Dh^{-1}(-D_{x_0}b(x,y)) = x_0 - y$, so $y = x_0 - Dh^{-1}(p)$.

Example: $b(x,y) = x \cdot y$, and $b(x,y) = -\frac{1}{2}|x-y|^2$ or any distance metrics are twists.

Example: Fix a Lagrangian $L \in C^1(TM)$ where TM is the tangent bundle of a manifold. Then $\forall x \in M$, $v \in T_x M \mapsto L(x, v)$ is strictly convex. Consider the cost of action along a smooth path. $\forall \sigma : [t_0, t_1] \to M$, its action is $A[\sigma] = \int_{t_0}^{t_1} L(\sigma(t), \dot{\sigma}(t)) dt$. The cost $C(x_0, x_1) = \inf A[\sigma]$ on $\sigma \in C^2([t_0, t_1], M), \sigma(t_0) = x_0$, $\sigma(t_1) = x_1$ (C² or preferrably Lipschitz curve from x_0 to x_1). b = -c is twisted if inf is attained. This problem is following the idea: given the tangent vector at final time t_1 at position x_1 , can we find the initial position x_0 ? The answer is yes.

Lemma: 2.4:

If $b \in C^1(X \times Y)$ is twisted, then $S_{(u,v)} \cap (\operatorname{dom} Du \times Y) \subset \operatorname{Graph}(G)$, where $G(x) = (D_x b)(x, \cdot)^{-1}(Du(x))$. If $u = u^{b\tilde{b}}$, Y is compact and $\partial X \cap \operatorname{dom} Du = \emptyset$, then $S_{(u,v)} \cap (\operatorname{dom} Du \times Y) = \operatorname{Graph}(G)$.

Proof. Let $(\bar{x}, \bar{y}) \in S_{(u,v)} \cap (\operatorname{dom} Du \times Y)$. Since $u(x) + v(y) - b(x, y) \ge 0$, $\forall (x, y) \in X \times Y$ at (\bar{x}, \bar{y}) , $Du(x) = D_x b(x, y)$. Therefore, it is a twist and y = G(x).

If $x \in \text{dom}D^2u$, then $D^2u(\bar{x}) \ge D^2_{xx}b(\bar{x},\bar{y})$, and $(\bar{x},\bar{y}) \in \text{dom}D^2b$.

Theorem: 2.9: Gangbo 1996, Levin 1999

If $\mu, \nu \in \mathcal{P}_C(\mathbb{R}^n)$, $\mu \ll H^n$, $\|b\|_{C^1} < \infty$ and twisted, then $\exists u = u^{b\tilde{b}}$ s.t. $G(x) = D_x b(x, \cdot)^{-1} Du(x)$ satisfies $G_{\#}\mu = \nu$. This map is unique. Also, $\gamma = (\mathrm{id} \times G)_{\#}\mu$ uniquely solves Kantorovich. Finally G is invertible if also $\nu \ll H^n$ and both b and \tilde{b} are twisted.

Proof. By Theorem 2.8. There exist opimizers $\gamma, \tilde{\gamma}$ for Kantorovich problem and $\operatorname{spt}(\gamma) \subset \partial_b u = S_{(u,u^b)}$ with $u = u^{b\tilde{b}}$.

 $\|b\|_{C^1} < \infty$ means that u is Lipschitz, hence $H^n(X - \operatorname{dom} Du) = 0$ by Theorem 2.5. Lemma 2.4 implies that $S_{(u,u^b)} \cap (\operatorname{dom} Du \times Y) = \operatorname{Graph}(G)$, where $G(x) = (D_x b)(x, \cdot)^{-1}(Du(x))$. $\gamma[\operatorname{dom} Du \times Y] = \mu[\operatorname{dom} Du] = 1$ because $\mu \ll H^n$. Therefore, $\gamma = (\operatorname{id} \times G)_{\#}\mu$ from Lemma 2.2, $G_{\#}\mu = \nu$.

$$\int bd\tilde{\gamma} = \int bd\gamma = \int ud\mu + \int vd\nu = \int \tilde{u}d\mu + \int \tilde{u}^b d\nu$$

Therefore, $\tilde{\gamma} = (\mathrm{id} \times G)_{\#} \mu$.

Also,
$$\gamma = (\mathrm{id} \times \tilde{G})_{\#} \mu = (\mathrm{id} \times G)_{\#} \mu$$
, where $\tilde{G}(x) = D_x b(x, \cdot)^{-1}(D\tilde{u}(x))$ on $D\tilde{u}$.

Claim: $G = \tilde{G}$ on dom $Du \cap \text{dom}D\tilde{u}$ μ -a.e. If $b(x, y) = x \cdot y$, then G = Du, $\tilde{G} = D\tilde{u}$, $V = \left\{x \in X : \frac{\partial u}{\partial x^1} < \frac{\partial \tilde{u}}{\partial x^1}\right\}$. Aassume $\mu(V) > 0$. Let $\hat{\mu} = \frac{\mu|_V}{\mu(V)}$ and $\hat{\gamma} = \frac{\gamma|_{V \times Y}}{\mu(V)} \in \Gamma(\hat{\mu}, \hat{\nu})$.

Lemma 2.3 means that $(\mathrm{id} \times \tilde{G})_{\#}\hat{\mu} = (\mathrm{id} \times G)_{\#}\hat{\mu}$, so $G_{\#}\hat{\mu} = \tilde{G}_{\#}\hat{\mu}$.

$$\int y^1 dG_{\#}\hat{\mu} = \int y^1 d\tilde{G}_{\#}\hat{\mu} = \int \frac{\partial u}{\partial x^1} d\hat{\mu} = \int \frac{\partial \tilde{u}}{\partial x^1} d\hat{\mu}$$

But $\frac{\partial u}{\partial x^1} < \frac{\partial \tilde{u}}{\partial x^1} \mu$ -a.e. Contradiction.

For general $b \in C^1(X \times Y)$ twisted, define $d_Y(G(x), \tilde{G}(x)) = \sup_{\|\phi\|_{Lip(y)} \le 1} \phi(G(x)) - \phi(\tilde{G}(x)) = \sup \phi_i(G(x)) - \phi(\tilde{G}(x)) = \sup_{\|\phi\|_{Lip(y)} \le 1} \phi(G(x)) - \phi(G(x)) - \phi(G(x)) = \sup_{\|\phi\|_{Lip(y)} \le 1} \phi(G(x)) - \phi(G(x)) = \sup_{\|\phi\|_{Lip(y)} \le 1} \phi(G(x)) - \phi(G(x)) - \phi(G(x)) = \sup_{\|\phi\|_{Lip(y)} \le 1} \phi(G(x)) - \phi(G(x)) - \phi(G(x)) = \sup_{\|\phi\|_{Lip(y)} \ge 1} \phi(G(x)) - \phi(G(x))$

 $\phi_i(\hat{G}(x))$ for a countable collection of Lipschitz function.

Consider $U_i^{\pm} = \left\{ x \in X : \pm (\phi_i(G(x)) - \phi_i(\tilde{G}(x)) > 0 \right\}$. If $\mu(U_i^{\pm}) = 0, \forall i$, then $G = \tilde{G} \mu$ -a.e. If not, $\exists i$ s.t. $\mu(U_i^{\pm}) > 0$, but it reaches the same contradition.

2.2 Regularity

 $b(x,y) = x \cdot y \Rightarrow F(x) = Du(x)$ is optimal between $d\mu^+(x) = f(x)d^n x$ and $d\mu^-(y) = g(y)d^n y$. **Claim**: u convex $\Rightarrow F$ is approximately differentiable a.e. and $\det(DF(x)) = \frac{f(x)}{g(F(x))}$.

Theorem: 2.10:

Let $\mu, \nu \in \mathcal{P}(\mathbb{R}^n)$ be probability measures, $\gamma \in \Gamma(\mu, \nu)$ is b-optimal. Then $\operatorname{spt}(\gamma) \subset S \subset (\mathbb{R}^n)^2$ with S a 1-Lipschitz graph over diagonal.

Proof. By Theorem 2.2, b-optimality means $\operatorname{spt}(\gamma)$ is b-cyclically monotone. Then $(x_0, y_0), (x_1, y_1) \in \operatorname{spt}(\gamma) \Rightarrow \delta_x \delta y \ge 0$, where $\delta_x = x_1 - x_0, \, \delta_y = y_1 - y_0$. Change bais, $\delta_x = \frac{\delta_z - \delta_w}{\sqrt{2}}, \, \delta_y = \frac{\delta_z + \delta_w}{\sqrt{2}}$. Then

$$0 \le \delta_x \delta_y = \frac{1}{2} (\delta_z - \delta_w) (\delta_z + \delta_w) = \frac{1}{2} (|\delta_z|^2 - |\delta_w|^2)$$

 $\Rightarrow |\delta_w| \le |\delta_z|, \ i.e. \ |w_1 - w_0| \le |z_1 - z_0| \text{ which is 1-Lipschitz.}$ Kirszbraun's extension theorem implies that \exists 1-Lipschitz $W : \mathbb{R}^n \to \mathbb{R}^n \text{ s.t. } (z, w) \in \text{Graph}(W) \subset \text{spt}(\gamma).$ $\forall (z, w) = \left(\frac{y+x}{\sqrt{2}}, \frac{y-x}{\sqrt{2}}\right) \text{ with } (x, y) \in \text{spt}(\gamma).$

Definition: 2.10: Area and Coarea

For Lipschitz change of variables $F : \mathbb{R}^n \to \mathbb{R}^m$, $DF : \mathbb{R}^n \to \mathbb{R}^m$ (all derivatives), define the Jacobian: $JF(x) = \begin{cases} \sqrt{\det(DFDF^{\dagger})}, n \le m \\ \sqrt{\det(DF^{\dagger}DF)}, n > 1m \end{cases}, \forall A \subset \mathbb{R}^n \text{ measurable, the following holds:} \end{cases}$ $\int_A JF(x) dH^n(x) = \int_{\mathbb{R}^m} H^{(n-m)_+}(A \cap F^{-1}(y)) dH^{\min(n,m)}(y)$ $\int_{\mathbb{R}^n} \chi_A JF dH^n = \int_{\mathbb{R}^m} \int (\chi_A \circ F^{-1})(y) dH^{(n-m)_+}(y)$ If we approximate with simple functions, we get:

 $\int_{\mathbb{R}^n} \phi JF dH^n = \int_{\mathbb{R}^m} \int (\phi \circ F^{-1})(y) dH^{(n-m)_+}(y)$

Corollary 4. If $A \subset \mathbb{R}^n$ has $H^n(A) = 0$ and $F : \mathbb{R}^n \to \mathbb{R}^m$ is Lipschitz, then $H^m(F(A)) = 0$

Q: How does the tagent space a.e. to $S \subset (\mathbb{R}^n)^2$ relate to differentiability of $G = Du : \mathbb{R}^n \to \mathbb{R}^n$? Recall Graph $(G) \subset S = \text{Graph}(wover z)$. Define $X(z) = \frac{z - W(z)}{\sqrt{2}}$, $Y(z) = \frac{z + W(z)}{\sqrt{2}}$. Since W is 1-Lipschitz, then X, Y are Lipschitz.

Define $Z_{bad} = \{z \in \mathbb{R}^n : DW(z) \text{ does not exist}\}$. $H^n(Z_{bad}) = 0$, so by the corollary, $H^n(X(Z_{bad})) = 0$.

Claim: G = Du is countably Lipschitz, *i.e.* $\cup_i X_i \subset \text{dom}(G)$ s.t. $G|_{X_i}$ has Lipschitz constant *i* and $H^n(\text{dom}(G) \setminus \cup_i X_i) = 0$. Then by Theorem 2.5 and extension, *G* is approximately differentiable H^n -a.e.

Proof. Heuristically y = G(x) μ -a.e. $Y(z) = G(X(z)), \frac{z+W(z)}{\sqrt{2}} = G\left(\frac{z-W(z)}{\sqrt{2}}\right).$ Differentiate both sides, $\frac{1}{\sqrt{2}}(I + D_z W(z)) = D_x G|_{X(z)} \frac{1}{\sqrt{2}}(I - D_z W(z)).$ Then $D_x G|_{X(z)} = (I + D_z W(z))(I - D_z W(z))^{-1}$ provided that $I - D_z W(z)$ is invertible. Let $Z_1 = \{z : I - D_z W(z) \text{ is not invertible}\}.$ We show that $H^n(X(Z_1)) = 0.$ Since X(z) is Lipschitz, $z \in Z_1 \Rightarrow JX(z) = \sqrt{\det(DFDF^{\dagger})} = 0.$

$$0 = \int_{Z_1} JX(z) dH^n = \int_{\mathbb{R}^n} \int_{Z \cap X^{-1}(x)} dH^0(Z) dH^n(X) \ge H^n(X(Z_1))$$

Note also that Y(z) = G(X(z)) implies $Y \circ X^{-1} = G$. X has a Lipschitz inverse except on Z_1 . This applies implicit function theorem for Lipschitz maps.

Example: If $u : \mathbb{R}^n \to \mathbb{R}$ is convex and $Du(0) \neq 0$ exists. Assume $\frac{\partial u}{\partial x_n} \neq 0$, then there exists difference of convex functions $W : \mathbb{R}^{n-1} \to \mathbb{R}$ s.t. $u(x_1, ..., x_{n-1}, x_n) = 0$ near 0, then $x_n = W(x_1, ..., x_{n-1})$.

However, this does not work for Lipschitz functions due to potential bad sets.

Theorem: 2.11: Clarke 1976

Let $F : \mathbb{R}^n \to \mathbb{R}^n$ be Lipschitz. Define $\partial F(0)$ to be the convex hull of $\left\{ y \in \mathbb{R}^n : x_i \in \operatorname{dom}(DF) \subset \mathbb{R}^n, y = \lim_{i \to \infty} DF(x_i), \lim_{i \to \infty} x_i = 0 \right\}$. If $0 \notin \partial F(0)$, then F is invertible and has Lipschitz inverse in a neighborhood of 0.

Theorem: 2.12:

Let X, Y be compact subset of \mathbb{R}^n . If γ is b-optimal and $b \in C^2(X \times Y)$ is non-degenerate at (x_0, y_0) , *i.e.* det $\frac{\partial^2 b}{\partial x^i \partial y^j} \neq 0$, then $\exists \epsilon > 0$ s.t. $\operatorname{spt}(\gamma) \cap B_{\epsilon}(x_0, y_0) \subset S$, where S is an n-dim Lipschitz submanifold of \mathbb{R}^{2n} .

Proof. Since det $\frac{\partial^2 b}{\partial x^i \partial x^j} \neq 0$, there exists new coordinate $\tilde{y}(y)$ s.t. $\tilde{b}(x, \tilde{y}) = b(x, y)$ with $\tilde{y}(y_0) = 0$ and $\frac{\partial^2 b}{\partial x^i \partial y^j}(x_0, 0) = \delta_{ij}, \frac{\partial^2 \tilde{b}}{\partial x^i \partial \tilde{y}^j}(x, \tilde{y}) = \delta_{ij} + o((x - x_0)^2 + \tilde{y}^2).$

WLOG, set $x_0 = 0$, $z = \frac{\tilde{y}+x}{\sqrt{2}}$, $w = \frac{\tilde{y}-x}{\sqrt{2}}$. $\forall (x_0, y_0), (x_1, y_1) \in \operatorname{spt}(\gamma)$, define $\Delta(x_1, y_1, x_0, y_0) = b(x_1, y_1) - b(x_0, y_0) - b(x_1, y_0) - b(x_0, y_1)$. $\Delta \ge 0$ on $(\operatorname{spt}(\gamma))^2$. Let $\Delta_0(x, y) = \Delta(x, y, x_0, y_0)$. Apply Taylor expansion:

$$\begin{aligned} \Delta_0(x_0 + \delta_x, y_0 + \delta_y) &= (\delta_x, \delta_y) D_{xy}^2 b \binom{\delta_x}{\delta_y} + o(|\delta_x|^2 + |\delta_y|^2) \\ 0 &\leq \tilde{\Delta}_0(x_0 + \delta_x, 0 + \delta_{\tilde{y}}) = \langle \delta_x, \delta_{\tilde{y}} \rangle + o(|\delta_x|^2 + |\delta_y|^2) \\ &\leq \langle \delta_x, \delta_{\tilde{y}} \rangle + \frac{\eta}{2} o(|\delta_x|^2 + |\delta_y|^2), \end{aligned}$$

for all $\eta > 0$. Then $\exists \delta > 0$, $(x_1, \tilde{y}_1) \in B_{\epsilon}(x_0, y_0)$ s.t.

$$0 \le \frac{1}{2}(|\delta_z|^2 - |\delta_w|^2) + \frac{\eta}{2}(|\delta_w|^2 + |\delta_z|^2) \le (1+\eta)|\delta_z|^2$$

Then $|\delta_w| \leq \sqrt{\frac{1+\eta}{1-\eta}} |\delta_z|$. The transformation W(z) is Lipschitz.

Summary of Conditions:

Let $\Delta_0(x,y) = b(x,y) + b(x_0,y_0) - b(x,y_0) - b(x_0,y) \ge 0$ on $\operatorname{spt}(\gamma) \subset \operatorname{Graph}(G)$ γ -a.e.

- (B0) $b \in C(\overline{X \times Y})$
- (B1) Twist: $\forall x_0 \in X \subset \mathbb{R}^m, y \in Y \subset \mathbb{R}^n, D_{x_0}b(x,y)$ is 1-1. *b* is twisted $\Leftrightarrow b$ and \tilde{b} are twisted $\Leftrightarrow \Delta_0(x,y)$ has no critical points except $(x,y) = (x_0, y_0)$. m = n

(B2) Non-degeneracy: det
$$\frac{\partial^2 b}{\partial x^i \partial y^j}(x_0, y_0) \neq 0$$
 for $(x_0, y_0) \in X \times Y$, $m = n$. $\Delta_0(x_0 + \delta_x, y_0 + \delta_y) = \frac{1}{2}(\delta_x, \delta_y)D_{xy}^2\Delta_0\begin{pmatrix}\delta_x\\\delta_y\end{pmatrix} + o(|\delta_x|^2 + |\delta_y|^2)$ as $(\delta_x, \delta_y) \to 0$ if $b \in C^3$. $D_{xy}^2\Delta_0 = \begin{bmatrix} 0 & D_{xy}^2b\\ (D_{xy}^2b)^{\dagger} & 0 \end{bmatrix} \in \mathbb{R}^{2n \times 2n}$.
det $D_{xy}^2\Delta_0 = (-1)^n \det D_{xy}^2b$.
Then $\Delta_0(x_0 + \delta_x, y_0 + \delta_y) = \delta_x D_{xy}^2b(x_0, y_0)\delta_y + o(|\delta_x|^2 + |\delta_y|^2)$ if $b \in C^2$.
Also $\Delta_0(x_0 + \delta_x, y_0 - \delta_y) = -\Delta_0(x_0 + \delta_x, y_0 + \delta_y) + o(|\delta_x|^2 + |\delta_y|^2)$.
Let $H_0 = D_{xy}^2\Delta_0$. If $H_0\begin{pmatrix}\delta_x\\\delta_y\end{pmatrix} = \lambda\begin{pmatrix}\delta_x\\\delta_y\end{pmatrix}$, then $H_0\begin{pmatrix}\delta_x\\-\delta_y\end{pmatrix} = -\lambda\begin{pmatrix}\delta_x\\\delta_y\end{pmatrix}$. So dianoalizing the symmetric matrix H_0 produces \pm eigenvalue pairs.

If $\gamma \in \Gamma(\mu, \nu)$ is b-optimal, then B2 holds at $(x_0, y_0) \in \operatorname{spt}(\gamma) \Rightarrow \operatorname{spt}(\gamma) \cap B_{\epsilon}(x_0, y_0) \subset S$ of dim n in \mathbb{R}^{2n} a Lipschitz submanifold for $\epsilon \ll 1$. $S : \mathbb{R} \to (x(s), y(s))$ is a smooth curve in $\operatorname{spt}(\gamma)$ with $(x(0), y(0)) = (x_0, y_0)$. Then

$$0 \le \Delta_0(x(s), y(s)) = \frac{st}{2}(\dot{x}(0), \dot{y}(0))H_0\left(\frac{\dot{x}(0)}{\dot{y}0}\right) + o(s^2 + t^2) \text{ as } (s, t) \to 0$$
$$(\dot{x}(0), \dot{y}(0))H_0\left(\frac{\dot{x}(0)}{\dot{y}0}\right) \ge 0$$

Assume $\operatorname{spt}(\gamma) \subset \operatorname{Graph}(G), G : X \to Y$ smooth, $u(x) + v(y) - b(x, y) \ge 0$. Equality on y = G(x). F.O.C. gives $Du(x) = D_x b(x, G(x))$. S.O.C. gives $D^2 u(x) - D_{xx}^2 b(x, G(x)) \ge 0$. Since functions are smooth, differentiating F.O.C. gives $D^2 u(x) - D_{xx}^2 b(x, G(x)) = D_{xy}^2 b(x, G(x)) DG(x)$. Take det over both sides,

$$\det(D^{2}u(x) - D^{2}_{xx}b(x, G(x))) = \det D^{2}_{xy}b(x, G(x)) \det DG(x)$$

Let $d\mu(x) = f(x)d^n x$, $d\nu(y) = g(y)d^n y$. Since G is a smooth diffeomorphism, $|\det DG| = \frac{f(x)}{g(G(x))}$. Twist (B1) $\Rightarrow G(x) = D_x b(x, \cdot)^{-1} Du(x) = Y_b(x, Du(x))$. Then

$$g(Y_b(x, Du(x))) \det(D^2 u(x) - D^2_{xx} b(Y_b(x, Du(x)))) = |\det D^2_{xy} b| f(x)$$

This is the *Monge-Ampere equation* (prescribed Jacobian equation)

If
$$b(x,y) = x \cdot y$$
, $Y(x,y) = y$, $g(Du) \det D^2 u = f(x)$

We need convexity of Y and $\log g$, $\log f \in C^{\infty} \cap L^{\infty}$ to have smoothness of u and G. (Caffarelli' 1990)

3 Asymmetric Information (Principal Agent Framework)

Monopolists: Single entity (seller) on one side of the market, parametrized by $y \in Y \subset \mathbb{R}^n$. **Agents**: Large population of heterogenous agents (Each agent has different preferences) parametrized by $x \in X \subset \mathbb{R}^m$.

x is private information. Public knowledge is $\mu \in \mathcal{P}(X)$, $d\mu(x)$ =relative frequency of agent type $x \in X$.

Assume monopolists are selling cars. The public knowlege are: $\phi(x, y, z) =$ value of car y to agent x at price z. Assume $\frac{\partial \phi}{\partial z} < 0$.

 $\pi(x, y, z) =$ monopolists' profit from selling y to x at price z

Assume there is an outside option $y_{\phi} \in Y$.

Agent problem:

$$u(x) = \sup_{y \in Y} \phi(x, y, v(y))$$

Agent x buys a car $y_{\phi,v}(x) \in \arg \max_{y \in Y} \phi(x, y, v(y))$. Hopefully uniquely attained μ -a.e.

Monopolists problem: choose a price menu $v: Y \to \mathbb{R}$ s.t. $v(y_{\phi}) = 0$ to maximize expected profits:

$$\sup_{v,v(y_{\phi})=0}\int \pi(x,y_{\phi,v}(x),v(y_{\phi,v}(x)))d\mu(x)$$

If v is l.s.c, or Y is compact, then the supremum can be attained.

This is the *Monge* type formulation.

In Kantorovich setting:

Seek $\gamma \geq 0$ on $X \times Y$, $\Pi^X_{\#} \gamma = \mu$, $u(x) = \phi(x, y_{\phi,v}(x), v(y_{\phi,v}(x)))$. Let $v^{\phi} = u$, $u(x) + v(y) - b(x, y) = v^{\phi}(x) - \phi(x, y, v(y)) \geq 0$ and equality is achieved γ -a.e.

$$\sup_{v:Y \to \mathbb{R} l.s.c., v(y_{\phi})=0} \sup_{\gamma} \int \pi(x, y, v(y)) d\gamma(x, y).$$

If Y compact, π , ϕ continuous, v l.s.c. s.t. $v(y_{\phi}) = 0$, then supremum can be attained. Maximum problem on γ is an infinite-dimensional linear programming problem, given γ is convex and compact. However, supremum on v is more complicated.

Example: Consider the quasilinear case $\phi(x, y, z) = b(x, y) - z$, $\pi(x, y, z) = z - a(y)$, where a, b can be non-linear functions. Monopolists: $\int \pi d\gamma = \int v(y) - a(y) d\gamma$

Agent x:
$$u(x) = \sup b(x, y) - v(y)$$
.

 $u(x) + v(y) - b(x, y) \ge 0$ on $X \times Y$ and equality holds a.e. Let $U = \{u : X \to \overline{R} : u = v^{\phi} \text{ for some } v : Y \to \overline{R} \text{ l.s.c.}\}$. If $b \in C^1$, then $u \in U$ are equi-Lipschitz. If $b \in C^2$, then $u \in U$ are equi-semiconvex. In both cases, U is convex via Ascoli-Arzela. Then

$$\int v(y) - a(y)d\gamma = \int b(x,y) - u(x) - a(y)d\gamma$$

Equality holds γ -a.e. \Leftrightarrow spt $(\gamma) \subset \partial_b u$. When U is compact $(b \in C^1)$, sup is attained. spt $(\gamma) \subset \partial_b u \Rightarrow \gamma$ is b-optimal hence optimal transport theorem applies. **Rochet-Chone (1998)** Formulation: Suppose n = m, $y_{\phi} = 0 \in \mathbb{R}^n$, $Y = [0, \infty)^n$, $d\mu(x) = f(x)dH^n$, $y_b(x) = Du(x)$. $u = v^*$ is convex. Solve for

$$\max_{u \ge 0, u \text{ convex}} \int_X (x D u(x) - u - a(D u(x))) f(x) dH^n x$$

The function is concave in u if $y \mapsto a(y)$ is convex. Choose $a(y) = \frac{1}{2}|y|^2$, we get

$$\begin{split} & \max_{u,u',u'' \ge 0} \int \left(x D u - u - \frac{1}{2} |Du|^2 \right) \\ &= \max \int \left(-\frac{1}{2} (D u - x)^2 - \left(u - \frac{1}{2} |x|^2 \right) \right) f \\ &= \min \int \left(\frac{1}{2} (D u - x)^2 + \left(u - \frac{1}{2} |x|^2 \right) \right) f \end{split}$$

Consider m = n = 1, $f(x) = \chi_{[a,a+1]}(x)$, then the optimization problem becomes:

$$\min \int_{a}^{a+1} \left(\frac{1}{2} (u'-x)^2 + \left(u - \frac{1}{2} x^2 \right) \right)$$

Simpler Version (Obstacle problem): $\min_{w \ge h \text{ on } \Omega} \int_{\Omega} \frac{1}{2} |Dw|^2 dx$ s.t. w vanishes on $\partial\Omega$ and $w \in W^{1,2}(\Omega)$. Then $\Delta w = 0$ on $\{w > h\}$, and w = h on $\Omega \setminus \{w > h\}$. There are fewer constraints on w.

Let $L(u) = \int (c(Du(x)) + u(x) - xDu(x))f(x)dH^nx$. The Repeater Chone is solving for min

The Rochet-Chone is solving for $-\min_{u \ge 0 \text{ convex}, Du(x) \subset \text{ conv}(Y)} L(u)$. If c is convex, then L(u) is convex, *i.e.* if both u_0, u_1 minimize, so does $(1-t)u_0 + tu_1, \forall t \in [0, 1]$. If c is strictly convex, then $L(u_{1/2}) < L(u_0) + L(u_1)$ unless $Du_0(x) = Du_1(x)$ f-a.e.

Uniqueness: If $H^n \ll \mu \ll H^n$ and $X \subset \mathbb{R}^n$ convex (or open + connected), then $u_0 = u_1 + c_1$ inside X. $L(u_0) = L(u_1) + c_1, c_1 = 0$

Corollary 5. If the solution is unique, it inherits any symmetries of the problem.

Example: $X \subset Y = [0, \infty)^n$. Let $\hat{X} = \{(x_1, ..., x_n) \in \mathbb{R}^n : (|x_1|, ..., |x_n|) \in X\}, \hat{Y} = \mathbb{R}^n$. Define $\hat{f}(x_1, ..., x_n) = f(|x_1|, ..., |x_n|), \hat{L}(u) = \int_{\hat{X}} (c(Du(x)) + u(x) - xDu(x))\hat{f}(x)dH^n x$. $\hat{u} \in \arg\min_{u \ge 0 \text{ convex}} \hat{L}(u)$. By uniqueness, $\hat{u}(x_1, ..., x_n) = \hat{u}(|x_1|, ..., |x_n|)$. This is an unconditionally symmetric minimizer.

Claim: \hat{u} unconditional \Rightarrow if $x \in X \subset Y$, then $Du(x) \in Y = [0, \infty)^n$.

Proof. Assume not, *i.e.* there exists $x \in X$ with $y = Du(x) \notin Y$, say $y_i < 0$. Define $\hat{x} = (\pm x_1, ..., \pm x_n)$. Choose - if $y_i < 0$. $\hat{y} = D\hat{u}(\hat{x}) \in Y$. $0 \le \langle D\hat{u}(\hat{x}) - Du(x), \hat{x} - x \rangle < 0$. (from convexity of \hat{u}) Contradiction.

Theorem: 3.1: Rochet-Chone

Let $X \subset Y = [0, \infty)^n$, c strictly convex, $c \in C^{1,1}(\mathbb{R}^n)$. $u_0 \in \arg\min_{u \ge 0 \text{ convex}} L(u) \Leftrightarrow L(u_0) \le L(u_0 + w)$ $\forall w \ge 0 \text{ convex or } w \text{ convex and spt}(w) \subset \{u > 0\}.$

Proof. (\Rightarrow) is obvious. Consider \Rightarrow .

Recall that to minimize E(x) on $\Omega \subset \mathbb{R}^n$ a compact convex set:

- 1. If $E \in C^1(\operatorname{int}\Omega)$, then $DE(x_0) = 0 \Leftrightarrow x_0 \in \operatorname{int}\Omega$ is a minimizer
- 2. If $E \in C^1(\overline{\Omega})$ and $\partial \Omega \in C^1$, then $DE(x_0) = \lambda \hat{n}_{\Omega}(x_0)$, where $\lambda \ge 0$, $\lambda = 0$ unless $x_0 \in \partial \Omega \Leftrightarrow x_0 \in \partial \Omega$ is a minimizer.
- 3. Non-smooth version: ELKKT (Euler-Lagrange-Karush-Kuhn-Tucker) E, Ω convex, $\partial E(x_0) \cap N_{\Omega}(x_0) \neq \emptyset$, where $N_{\Omega}(x_0) = \{v \in \mathbb{R}^n : v(x - x_0) \leq 0, \forall x \in \Omega\}$ (cone of generalized normals) $\Leftrightarrow x_0$ minimizes E.

Let $U = \{u \ge 0 \text{ convex on } \mathbb{R}^n\}$, U is a convex cone. By ∞ -dim version of ELKKT, $DL(u_0) \cap N_U(x_0) \neq \emptyset$ $\Leftrightarrow u_0 \in \arg\min_{u \in U} L(u) \text{ and } v \in N_u(x_0) \text{ has } v(u - u_0) \le 0, \forall u \in U.$

Consider a small perturbation on L(u):

$$\begin{split} \frac{d}{d\epsilon}\Big|_{\epsilon=0} L(u+\epsilon w) &= \left.\frac{d}{d\epsilon}\right|_{\epsilon=0} \int_X (c(Du+\epsilon Dw)+u+\epsilon w-xDu-\epsilon xDw) f dx \\ &= \int_X (Dc|_{Du}Dw+w-xDw) f dx \\ &= \int_{\partial X} (Dc|_{Du}-x) \hat{n}_X(x) f(x) w(x) dH^{n-1}x + \int_X (f+\nabla \cdot ((x-Dc|_Du)f)) w dx \\ &= \int_{\mathbb{R}^n} \frac{\delta L}{\delta u} w dx, \text{ where} \\ \sigma &:= \frac{\delta L}{\delta u} = (Dc|_{Du}-x) \hat{n}_x f dH^{n-1}|_{\partial X} + (f+\nabla \cdot ((x-Dc|_Du)f)) dH^n|_X \end{split}$$

If u > 0 and $D^2 u \ge \lambda I > 0$ on $\Omega \subset X$ open and smooth, then $u + \epsilon w \in U$. If $w \in C^2_C(\Omega)$, then $\frac{d}{d\epsilon}\Big|_{\epsilon=0} L(u_0 + \epsilon w) = 0$. This gives the E-L equation:

$$\begin{cases} 1 = f^{-1} \nabla \cdot \left((x - Dc|_{Du}) f \right) = \nabla \cdot \left(Dc|_{Du} - x \right) + \langle Dc|_{Du}, D \log f \rangle \text{ on } \Omega \\ \left(Dc|_{Du} - x \right) \cdot \hat{n}_X f = 0 \text{ on } \partial X. \end{cases}$$

Suppose $c(y) = \frac{1}{2}|y|^2$, Dc(y) = y, $f = \chi_X$. These give a Poisson equation + Neumann BC:

$$\begin{cases} \Delta u = n+1\\ (Du-x)\cdot \hat{n} = 0 \end{cases}$$

Assume n = 1.

In the homogenous case, $\mu = \delta_{x_0}$. $L(u) = c(y) + u(x_0) - x_0 \cdot y$, minimum is attained when $Dc(y_0) = x_0$. $u(x) = \max(0, y_0(x - x_0))$, *i.e.* $y_0 = (Dc)^{-1}(x_0)$. It is the undistorted choice of consumer x_0 .

In heterogenous case, $X = [a, a + 1] \subset Y = [0, \infty)$.

$$\begin{cases} u'' = 2 \text{ on } X\\ (u' - x) \cdot \hat{n} = 0 \end{cases}$$

When $a \leq 1$, $u(x) = \begin{cases} \left(x - \frac{a+1}{2}\right)^2, x \geq \frac{a+1}{2} \\ 0, \text{ else} \end{cases}$. A positive fraction of consumers don't buy (buyer's market).

When a > 1, $u(x) = (x - \frac{a+1}{2})^2 - (\frac{a-1}{2})^2$ (seller's market)

Distortion: Always downwards. $x - u'(x) = a + 1 - x \ge 0$. As a increases, more seller's market, more distortion.

 $\sigma = \frac{\delta L}{\delta u} = (n+1-\Delta u)dH^n|_X + (Du-x)\hat{n}_X dH^{n-1}x|_{\partial X}$ is a measure of finite total variation.

For a given u_0 , we define the equivalence relation and class by $x \sim x' \Leftrightarrow Du_0(x) = Du_0(x')$, $\tilde{x} = \{x' \in X : Du_0(x) = Du_0(x')\} = \partial u_0^*(Du_0(x)) \subset \mathbb{R}^n$, where $u_0^*(y) = \sup_{x \in X} x \cdot y - u_0(x)$.

Let $X_i = \Omega_i = \{x \in X : \dim \tilde{x} = n - 1\}.$

Definition: 3.1: Convex Order

Let $\mu, \nu \in m_+(X), X \subset \mathbb{R}^n, U$ any convex cone, $\mu \leq_U \nu \Leftrightarrow \int u d\mu \leq \int u d\nu$ for all $u \in u \subset C(X)$.

Example: If $U = \{u : X \to \mathbb{R} \text{ convex}\}, \leq_{cx} \leq_U is called convex order or second order stochastic dominance.$

Definition: 3.2: Sweeping Operator

A sweeping operator is an operator $T : x \in X \to Tx \in \mathcal{P}(X)$ s.t. 1. $\forall E \subset X$ Borel, $x \to Tx(E)$ is also Borel

2. $x = \int_X z dT x(z), \forall x \in X$ Given $\omega \in \mathcal{P}(X)$, define $T\omega \in \mathcal{P}(X)$ by

$$\int_X \phi dT \omega = \int_X \left(\int_X \phi(z) dT x(z) \right) d\omega(x)$$

Theorem: 3.2: Strassen

Let $\mu, \nu \in \mathcal{P}(X)$ s.t. $\mu \leq_{cx} \nu$ if and only if there exists a sweeping operator T s.t. $T\mu = \nu$.

Lemma: 3.1: Restoring Neutrality

Let $U_0 = \{u : U + u \ge 0\}$. There exists a Lagrange multiplier $\lambda \in m_+(X)$ s.t. $u \in \arg\min_{U_0} L(u) \Leftrightarrow u \in \arg\min_{U} L(u) - \lambda u$. In fact, $\lambda \in m_+(\{u_0 = 0\})$.

Corollary 6. For $\frac{\delta L}{\delta u} = \sigma = \sigma^+ - \sigma^-$, $\exists \lambda \in \mathcal{P}(\{u_0 = 0\}), \ \sigma - \lambda = (\sigma - \lambda)^+ - (\sigma - \lambda)^- = \omega^+ - \omega^-$ s.t. $\omega^- \leq_U \omega^+, \ \sigma^- \leq_U \sigma^+$.

Corollary 7. $(Du_0)_{\#}\sigma = \delta_0$ and $(Du_0)_{\#}\omega^- = (Du_0)_{\#}(T\omega^-) = (Du_0)_{\#}\omega^+$.

Lemma: 3.2:

If $\omega^+ = T\omega^-$ for a sweeping operator T, then $Tx(X - \tilde{x}) = 0 \omega^-$ -a.e. x. *i.e.* sweeping only occurs within equivalent classes.

Theorem: 3.3: Disintegration of Measures

Given X, Y Polish, $F : X \to Y$ Borel, $\mu \in \mathcal{P}(X)$. Then $\exists \{\mu_y\}_{y \in Y} \subset \mathcal{P}(X), \nu = F_{\#}\mu$ -a.e. y statisfies $\mu_y(F^{-1}(y)) = 1$ and ν -a.e. $\mu_y \in \mathcal{P}(X)$ is unique s.t. \forall Borel test functions $\phi \ge 0$ on X.

$$\int_X \phi d\mu = \int_Y \left(\int_X \phi(z) d\mu_y(z) \right) d(F_{\#}\mu)(y)$$

This is similar to Fubini's and Bayes' theorem. All conditional probability measures are unique. For us $F = Du_0, \mu = \omega^+, \nu = \omega^-$.

Corollary 8. Not only $\omega^- \leq_{cx} \omega^+$, but the conditional measures $\omega_y^- \leq_{cx} \omega_y^+$ for $\nu = (Du_0)_{\#}\omega^-$ -a.e. y. **Example:** For n = 1, $f = \chi_{[a,a+1]}$, $\sigma = \frac{\delta L}{\delta u} = (2 - u'')dH|_X + (u' - x)\hat{n}dH^0x$. $\Omega_0 = [a, x_0]$, $\Omega_1 = (x_0, a+1]$. Figure 1.

$$\sigma|_{\Omega_0} = 2dH|_{[a,x_0]} - x \cdot \hat{n}_a = 2\chi_{[a,x_0]} + adH^0$$
$$1 = \int \sigma|_{\Omega_0} = 2(x_0 - a) + a = 2x_0 - a$$
$$x_0 = \frac{a+1}{2}$$

Figure 1: 1D Example

Example: For n = 2, $f = \chi_X$, where $X = [a, a + 1]^2$. Figure 2. Assume $a > \frac{7}{2}$, $\Omega_0 = \{u_0 = 0\}$. Then

$$\sigma|_{\Omega_0} = 3dH^2|_{\Omega_0} - x \cdot \hat{n}dH^1|_{\Omega_0 \cap \partial X}$$
$$1 = \int \sigma|_{\Omega_0} = 3h^2 + 2ah$$
$$h = \frac{2a}{3}\left(-1 + \sqrt{1 + \frac{3}{2a^2}}\right) \sim \frac{1}{2a} \text{ as } a \to \infty$$

Summarization With $b(x,y) = x \cdot y$, $a(y) = \frac{1}{2}|y|^2$, $f = 1_{\Omega}$, where $\Omega \subset \mathbb{R}^n$ is open and convex.

$$E(u) = \int_{\Omega} \left(\frac{1}{2} |Du - x|^2 + \left(u - \frac{1}{2} |x|^2 \right) \right) dx$$

We want to minimize E(u) on U_0 , where $U = \{u : \Omega \to \mathbb{R}^n \text{ convex}\}, U_0 = \{u : u + U \ge 0\}$. Define

$$E'_{u}(w) = \left. \frac{d}{d\lambda} \right|_{\lambda=0} E(u+\lambda w) = \int_{\overline{\Omega}} w d\sigma + \int_{\Omega} (n+1-\Delta u) w dH^{n}(x) + \int_{\partial\Omega} (Du-x) \hat{n} w dH^{n-1}x$$

Figure 2: 2D Example

Lemma: 3.3: Variational Lemma

If $u \in U_0$, $E(u) \leq E(\overline{u})$ for all $\overline{u} \in U_0$, $w = \overline{u} - u$, then 1. $E'_u(w) \geq 0$ 2. $E'_u(\overline{u}) \geq 0$ 3. $E'_{\overline{u}}(-w) < 0$ strictly unless $\overline{u} = u$ +const

Corollary 9. Normal distortion is never inward, i.e. $(Du(x) - x) \cdot \hat{n}_{\Omega}(x) \ge 0, \forall x \in \partial \Omega \text{ s.t. } \hat{n} \text{ is unique } \mathbf{n} \in \mathcal{O}(x)$

Proof. WLOG, assume $\partial \Omega \in C^1$, strictly convex (otherwise approximate) Let $x_0 \in \partial \Omega$. Define $v(x) = u(x) - u(x_0) - Du(x_0)(x - x_0) \ge 0$, $v(x_0) = 0$ WLOG, assume $x_0 = 0$, $\hat{n}(x_0) = (1, 0, 0, ...)$. If not, perform translation. Set $p_0(x) = u(x_0) + Du(x_0)(x - x_0)$ the Taylor expansion. $\hat{u}_t(x) = \frac{n+1}{2}(x_1+t)^2 + p_0(x)$, and $\overline{u}_t = \max\{u, u_t\}$. $U_t = \{x : \overline{u}_t > u\} \subset \{x : -t \le x_1 \le 0\}$. Hence, $\lim_{t \to 0} U_t = \{x_0 = 0\}$. By Lemma 3.3,

$$0 < E'_{\overline{u}_t}(w) = \int_{U_t \cap \partial\Omega} (D\hat{u}_t - x) \cdot \hat{n}_{\Omega} dH^{n-1}(x),$$

if $w = \overline{u}_t - u = \begin{cases} \hat{u}_t, \text{ in } U_t \\ 0, \text{ else} \end{cases}$

By Theorem 3.1 and Theorem 3.3,

$$u \in \arg\min_{U_0} E(u) \Leftrightarrow E'_u(w) \ge 0, \forall u + w \in U_0 \Leftrightarrow \int w d\sigma_{\tilde{x}} \ge 0 \text{ a.e.-}x$$

The last inequality is also equivalent to $\int w d\sigma_{\tilde{x}}^+ \ge \int w d\sigma_{\tilde{x}}^-$. In the equations, $\tilde{x} = \{x' \in \overline{\Omega} : Du(x) = Du(x')\}$ and

$$\int_{\overline{\Omega}} \phi d\sigma^{\pm} = \int_{Du(\Omega)} \left[\int_{\tilde{x}} \phi(z) d\sigma_{\tilde{x}}^{\pm}(z) \right] d(Du_{\#}\sigma^{\pm})(x)$$

Consider the 2D example with $a \gg 1$ (Figure 3). Split Ω_1 into Ω_1^0 (where everything is well-behaved) and Ω_1^{\pm} (symmetric regions).

Figure 3: 2D Example $a \gg 1$

In Ω_1^0 : Perform a transformation of basis, let $z = x_1 + x_2, w = \frac{x_1 - x_2}{2}, dx_1 dx_2 = 2dz dw.$ $u(x_1, x_2) = g(x_1 + x_2) = g(z), Du = (g', g'), \Delta u = 2g''$

$$d\sigma(z,w) = (3 - \Delta u)dx_1dx_2|_{\Omega_1^0} + (Du - x) \cdot \hat{n}dH^1|_{\Omega^0 \cap \partial\Omega}$$

= 2(3 - 2g'')dzdw + (a - g') \left(\left| \frac{1}{2}dz - dw \right|_{x_2 = a} + \left| \frac{1}{2}dz + dw \right|_{x_1 = a} \right)

Fix z, integrate over \tilde{x} , *i.e.* over $w \in \left(a - \frac{z}{2}, a + \frac{z}{2}\right)$.

$$0 = \int_{\hat{x}} d\sigma = \int_{a-\frac{z}{2}}^{a+\frac{z}{2}} \sigma(z,dw) = 2(3-2g'')(z-2a) + 2(a-g')$$

This is an ODE for g, with BCs: $g(z_0) = g'(z_0) = 0$. $\Omega \cap \partial \Omega_0 = \{z = z_0\}$. Homogenous part solved by power law, ansatz with power -1. This leads to

$$g'(z) = \frac{3}{4}z - \frac{a}{2} + \frac{\text{const}}{2(z - 2a)}$$

In Ω_1^- : Let $\overline{x}(r, \theta(t)) = (a, h(\theta)) + r(\cos \theta, \sin \theta)$ and $u(\overline{x}(r, \theta)) = b(\theta) + m(\theta)r = \overline{u}(r, \theta)$. Assume $(r, \theta) \mapsto \overline{x}(r, \theta)$ is locally bi-Lipschitz.

$$dH^{2}|_{\Omega_{1}^{-}} = |h'\cos\theta + r| drd\theta$$

$$dH^{1}|_{\Omega_{1}\cap\partial\Omega} = |h'(\theta)| d\theta$$

$$Du(\overline{x}) = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} m\\ m' \end{bmatrix}$$

$$D^{2}u(\overline{x}) = \frac{m'' + m}{h'\cos\theta + r} \begin{bmatrix} \sin^{2}\theta & -\sin\theta\cos\theta\\ -\sin\theta\cos\theta & \cos^{2}\theta \end{bmatrix}$$

$$b'(\theta) = h'(\theta) \frac{\partial u}{\partial x_{2}}(\overline{x})$$

This is because $\frac{\partial(x_1,x_2)}{\partial(r,\theta)} = \begin{bmatrix} \cos\theta & \sin\theta \\ -r\sin\theta & h'+r\cos\theta \end{bmatrix}$ and $\det = h'\cos\theta + r$, and we apply chain rule and matrix inversion to get all the equalities.

Therefore,

$$d\sigma(r,\theta) = (n+1-\Delta u)dH^2|_{\Omega} + (Du-x)\cdot \hat{n}dH^1|_{\partial\Omega}$$

$$\pm d\sigma(r,\theta) = \left(3 - \frac{m''+m}{h'\cos\theta+r}\right)(h'\cos\theta+r)drd\theta + (Du-\overline{x})\cdot \hat{n}_{\Omega}\delta_0(r)h'(\theta)d\theta dr$$

$$= (3(h'\cos\theta+r) - m''-m)drd\theta + (Du-\overline{x})\cdot \hat{n}_{\Omega}\delta_0(r)h'(\theta)d\theta dr$$

For Ω_1^- in $a \gg 1$, $0 < r < R(\theta)$, $\theta \in [\theta_0, 0]$. Since $\sigma_{\tilde{x}}^+ \ge \sigma_{\tilde{x}}^-$, the singular term is in $\sigma_{\tilde{x}}^+$ and not in $\sigma_{\tilde{x}}^-$. Either h' > 0 and choose $d\sigma(r, \theta)$, or h' < 0 and choose $-d\sigma(r, \theta)$, but as we will see, the second choice can be ruled out.

$$0 = \pm \int_0^{R(\theta)} \sigma(dr,\theta) = (3h'\cos\theta - m'' - m)R + \frac{3}{2}R^2 + (Du - \overline{x}) \cdot \hat{n}_{\Omega}h'(\theta)$$
$$0 = \pm \frac{1}{R^2} \int_0^{R(\theta)} r\sigma(dr,\theta) = (3h'\cos\theta - m'' - m)\frac{1}{2} + R$$

Given $R: [\theta_0, 0] \to [0, \infty)$ Lipschitz, and $\theta_0, h(\theta_0)$, we can solve for $m(\theta), h(\theta)$ subject to ICs:

- 1. $a \gg 1$, $m(\theta_0) = 0$, $m'(\theta_0)$ depends on the initial slope of the line
- 2. $a \ll 1$, $m(\theta_0) = m'(\theta_0) = 0$

Then $(Du - \overline{x}) \cdot \hat{n}_{\Omega} h'(\theta) = \frac{R^2}{2} > 0$, so $-d\sigma(r, \theta)$ cannot happen.

For
$$\Omega_2$$
, $\begin{cases} \Delta u = 3\\ (Du - x) \cdot \hat{n}_{\Omega} = 0 \text{ on } \partial \Omega \end{cases}$, $u_1 = u_2$, $\frac{\partial u_1}{\partial u} = \frac{\partial u_2}{\partial u}$ on $\partial \Omega_1 \cap \partial \Omega_2$, $u \in C^{1,1}_{loc} \cap C^1(\Omega)$.

 $b' = h' \frac{\partial u}{\partial x_2} = h'(m \sin \theta + m' \cos \theta)$. Once h', m, m' are solved,

$$b(\hat{\theta}) = b(\theta_0) + \int_{\theta_0}^{\hat{\theta}} h'(\theta)(m\sin\theta + m'\cos\theta)d\theta$$

On a Lipschitz domain Ω_2 and u_1 on Ω_1 , there exists a unique $u_2 + const$ s.t. $\Delta u_2 = 3$, $(Du - x) \cdot \hat{n}_{\Omega} = 0$ on $\partial \Omega \cap \partial \Omega_2$ (Fixed Boundary), and $\frac{\partial u_1}{\partial u} = \frac{\partial u_2}{\partial u}$ on $\partial \Omega_1 \cap \partial \Omega_2$ (Free Boundary)

Claim: At most one such choice $\{R(\theta)\}_{\theta_0 < \theta < 0}$, $h(\theta_0)$ and θ_0 exist, such that $u_2 = u_1 + const$ on free boundary and u is convex.

Conjecture: There is at least one such choice.

Corollary 10. Monotonicity and concavity of stingray's tail. (Figure 4)

Proof.

$$\begin{split} e(\theta) &= y_2 = \frac{\partial u}{\partial x_2} = m' \cos \theta + m \sin \theta \ge 0\\ f(\theta) &= a - y_1 = (Du - \overline{x}) \cdot \hat{n} = m' \sin \theta - m \cos \theta + a \ge 0\\ -\frac{dy_1}{dy_2} &= \frac{df}{de} = \frac{f'(\theta)}{e'(\theta)} = \frac{(m'' + m) \sin \theta}{(m'' + m) \cos \theta} = \tan \theta < 0\\ -\frac{d^2 y_1}{dy_2^2} &= \frac{d^2 f}{de^2} = \frac{1}{e'(\theta)} \frac{d}{d\theta} \tan \theta = \frac{1}{(m'' + m) \cos^3 \theta} > 0 \end{split}$$

Lemma: 3.4:

If $u : \mathbb{R}^n \to \mathbb{R}$ is convex $(u = u^{**})$ and $u^*(y) = \sup_{x \in \mathbb{R}^n} \langle x, y \rangle - u(x)$ is its dual. If $(x, y) \in \partial u = \{(x_0, y_0) \in \mathbb{R}^{2n} : u(z) \ge u(x_0) + \langle y_0, z - x_0 \rangle, \forall z \in \mathbb{R}^n\}$ and $Q = Q^{\dagger} > 0$, then for $\delta_x = z - x$, the following two statements are equivalent $u(x + \delta_x) \ge u(x) + \langle y, \delta_x \rangle + \frac{1}{2} \langle \delta_x, Q \delta_x \rangle + o(\delta_x^2)$ as $\delta_x \to 0$ $u^*(y + \delta_y) \le u(y) + \langle x, \delta_y \rangle + \frac{1}{2} \langle \delta_y, Q^{-1} \delta_y \rangle + o(\delta_y^2)$ as $\delta_y \to 0$

Proof. We only need to prove the \Rightarrow direction, and the other direction follows from duality.

WLOG, take x = y = 0, u(0) = 0. Assume $u(\delta_x) \ge (1 - s)\frac{1}{2}\delta_x Q\delta_x$ holds on neighborhood U_s of 0. For $\delta_u \in \partial u(U_s) = \bigcup_{x \in U_s} \partial u(x)$, where $\partial u(x) = \{y \in \mathbb{R}^n : (x, y) \in \partial u\}$,

$$u^*(\delta_y) = \sup_{\delta_x \in U_s} \langle \delta_x, \delta_y \rangle - u(\delta_x) \le \sup_{\delta_x \in U_s} \langle \delta_x, \delta_y \rangle - \frac{1-s}{2} \delta_x Q \delta_x$$

F.O.C. gives $\delta_y = (1-s)Q\delta_x$ if $\delta_y \in ((1-s)QU_s) \cap \partial u(U_s)$, and

$$u^*(\delta_y) \le \frac{1}{2} \left\langle \delta_y, ((1-s)Q)^{-1} \delta_y \right\rangle$$

Lemma: 3.5: Interior Consumption

Fix u optimal. Let $x_0 \in \Omega \cap \text{dom}D^2u$. If $Du(x_0) \in \text{int}(D(\Omega))$, then $\Delta u \ge n+1$. If in addition, $\tilde{x_0} = \{x_0\}$, then $\Delta u(x_0) = n+1$.

Proof. Assume $x_0 \in \Omega \cap \operatorname{dom} D^2 u$ with $Du(x_0) \in \operatorname{int}(D(\Omega))$, but $\Delta u + sn < n+1$ for some s > 0. WLOG, take $x_0 = u(x_0) = Du(x_0) = 0$. Then $u(x) < \frac{1}{2} \langle x, (D^2 u(x_0) + sI)x \rangle$ near $x_0 = 0$. Let $\overline{v}(y) = \frac{1}{2} \langle y, (D^2 u(x_0) + sI)^{-1}y \rangle$, then $u^*(y) > \overline{v}(y)$ in a punctured neighborhood of 0. The connected component y^h of $\{u^* < \overline{v} + h\}$ containing $y_0 = 0$ shrinks to $\{0\}$ as $h \to 0$. Let $v_h(y) = \begin{cases} \overline{v}(y) + h \text{ on } y^h \\ u^*(y) \text{ otherwise} \end{cases}$, the max of u^* and $\overline{v} + h$, and $u_h = v_h^* \le u^*$ strictly at $x_0 = 0$. However, $D^2 v_h = (D^2 u(0) + sI)^{-1}$ throughout y^h , so $\Delta u_h \le \Delta u(x_0) + ns < n+1$ on $\{u_h < u\}$. But $0 < E'_{u_h}(u_h - u) = \int (n+1 - \Delta u_h)(u_h - u) + 0$ which gives a contradiction, since $n + 1 - \Delta u_h > 0$, but $u_h - u < 0$.

Theorem: 3.4: PDE Laplacian

$$u \in C^2(\Omega) \cap C(\overline{\Omega})$$
 satisfies $\Delta u = 0$ a.e. if and only if $\forall x_0 \in \Omega$ and $B_r(x_0) \subset \Omega$, $u(x_0) = \int_{\partial B_r(x_0)} u(x) dH^{n-1}(x)$.

Corollary 11. u as above is $C^{\infty}(\Omega)$ (smooth).

Corollary 12. If u as above satisfies $u \ge 0$ on Ω , but $u(x_0) = 0$, then u = 0 throughout Ω .

Theorem: 3.5: All Non-trivial Bunches Reaches $\partial \Omega$

Suppose $\Omega \subset \mathbb{R}^n$ is a convex, open, bounded subset. 1. $\Omega_0 = \{x \in \overline{\Omega} : H^n(\tilde{x}) > 0\} \subset \{x : u = 0\}$, where \tilde{x} is the equivalence class. 2. If $x \in \Omega_1 \cup \cdots \cup \Omega_{n-1}$, then $\tilde{x} \cap \partial \Omega \neq \emptyset$ 3. $\Omega_n = \{x \in \overline{\Omega} : \tilde{x} = \{x\}\}$ is relatively open in $\overline{\Omega}$ and $u \in C^{\infty}(\Omega_n \cap \Omega)$

Proof. 1. Let $x_0 \in \Omega_0$. Choose $w = \pm u$, if -u also works, then the equality holds

$$0 \le E'_u(w) = \int_{\Omega} (n+1-\Delta u)w dH^n + \int_{\partial\Omega} (Du-x) \cdot \hat{n}_{\Omega}w dH^{n-1}$$
$$0 = E'_u(u)|_{\tilde{x}_0} = \int_{\tilde{x}_0} (n+1-\Delta u)u + \int_{\tilde{x}_0 \cap \partial\Omega} (Du-x) \cdot \hat{n}_{\Omega}u$$

Note that $\Delta u = 0$ on the equivalence class, so all terms are nonnegativem and hence u = 0 a.e. \tilde{x}_0 . -u is affine on the equivalence class, so the equality holds.

2. For a contradiction, suppose $\exists \{x_0\} \neq \tilde{x}_0 \subset \Omega$ and $\tilde{x}_0 \cap \partial \Omega = \emptyset$. Then $y_0 = Du(x_0) \in \operatorname{int}(Du(\Omega))$. But $u \in C^{1,1}$ and $X^h = \{x \in \overline{\Omega} : u(x) \leq u_h(x) = u(x_0) + Du(x_0)(x - x_0) + h\}$ Then $\tilde{x}_0 \subset \Omega$ as $h \to 0$. $Du(X^h) \subset Du(\Omega)$ for $0 < h \ll 1$ compactly. By Lemma 3.5, $\Delta u \geq n + 1$ a.e. X^h . Setting $\overline{u} = \max(u, u_h)$ yields.:

$$0 \le E'_u(\overline{u} - u) = \int_{X^h} (n + 1 - \Delta u)(\overline{u} - u)dH^n + \int_{X^n \cap \partial\Omega} (Du - x) \cdot \hat{n}_{\Omega}(\overline{u} - u)dH^{n-1}$$

Note $\overline{u} > u$, $\Delta u \ge n+1$ and the boundary term vanishes, so RHS ≤ 0 .

To make the equality true, we need $\Delta u = n + 1$ a.e. on X^h . Let $j \in \{1, ..., n\}$, $\Delta u_{jj} = 0$, because $u_{jj} = \partial_{jj}^2 u \ge 0$. Either $u_{jj} > 0$ on X^h or $X^h \cap \partial \Omega \neq \emptyset$. Both are contradictions.

3. Recall $\partial u = \{(x, y) : u(z) \ge u(x) + y(z - x), \forall z \in \mathbb{R}^n\} \subset \mathbb{R}^n \times \mathbb{R}^n$ is closed. Claim: $x_0 \in \Omega_n \cap \Omega \Rightarrow Du(x_0) \in \operatorname{int}(Du(\Omega))$. Define $\overline{u}(x) = \begin{cases} u(x), x \in \overline{\Omega} \subset \mathbb{R}^n \\ \infty, \text{ else} \end{cases}$, $\overline{u}^*(y)$ is Lipschitz. $\forall y_k \to Du(x_0), \exists x_k \in \Omega \text{ s.t. } (y_k, x_k) \in \partial \overline{u}^* \text{ i.e. } (x_k, y_k) \in \partial \overline{u}$. If $x_k \to x_\infty$, then $(x_\infty, Du(x_0)) \in \partial \overline{u} \Rightarrow x_\infty = x_0$. If $x_0 \in \operatorname{dom} D^2 u$, then $\Delta u(x_0) = n + 1$. Therefore, $\Delta u = n + 1$ H^n -a.e. on $\Omega_n \cap \Omega$. Openness of $\Omega_n \cap \Omega$ follows from 2. Hence $u \in C^\infty(\Omega_n \cap \Omega)$.

Lemma: 3.6:

 $R(\theta)$ which is the diameter of equivalence class of $\overline{x}(\theta)$ is upper semi-continuous.

Proof. If u convex is affine on $[a_k, b_k] \subset \mathbb{R}^n$, and $(a_k, b_k) \to (a_\infty, b_\infty)$, then u is affine on $[a_\infty, b_\infty]$.

Lemma: 3.7:

Two disjoint segments of length $\geq 2\delta$ in the plane whose midpoints are distance 2ϵ aprt make an angle 2θ s.t. $\arctan \theta \leq \frac{\epsilon}{\delta}$. *i.e.* as $\epsilon \to 0$, $\theta(\text{mid point})$ has Lipschitz constant $\frac{1}{\delta}$.

$$0 \leq (Du(x_0) - x_0) \cdot \hat{n} \leq C \operatorname{diam}(\tilde{x}_0), \text{ where } C = \sup_{B_{\epsilon}(x_0)} \Delta u.$$

Let $w = u - u_1 \ge 0$. If $\Delta w = f(x)\chi_{\{u>0\}} \ge 0$, $f \in C(x_0 = 0)$, then $\tilde{u}(x) = \lim_{r \to 0} \frac{u(rx)}{r^2}$ exists subsequentially, if $u \in C^{1,1}$, $u \ge 0$, then $\tilde{u} = f(0)\chi_{\{\tilde{u}>0\}}$ on \mathbb{R}^n .

Theorem: 3.6: Caffarelli (1972)

Either \tilde{u} is convex and quadratic or half parabola. *i.e.* after rotation and translation, $\tilde{u}(x_1, ..., x_n) = \begin{cases} \frac{f(0)}{2}x_1^2, x_1 > 0\\ 0, \text{ else} \end{cases}$

If $x_0 = 0 \in \partial \{u > 0\}$ free boundary, then it blows up.

Define Lebesgue upper density $\overline{\theta}(x_0, z) = \limsup_{r \to 0} \frac{H^n(Z \cap B_r(x_0))}{H^n(B_r(x_0))}$, and Lebesgue lower density $\underline{\theta}(x_0, z) = \lim_{r \to 0} \frac{H^n(Z \cap B_r(x_0))}{H^n(B_r(x_0))}$. Then, at regular free boundary points, $\overline{\theta}(x_0, \{u > 0\}) = \frac{1}{2}$, and free boundary may be Lipschitz; at singular free boundary points $\underline{\theta}(x_0, \{u > 0\}) = 0$, and free boundary is non-Lipschitz at x_0 .

Remark 5. If $R(\theta)$ is monotone on an interval $J \subset S'$, then $R \in C(\overline{J})$.

Theory:

- 1. w detaches quadratically from $\{w = 0\} \subset \mathbb{R}^n$ provided $f(x) \ge c_0 > 0$
- 2. The Hausdorff dimension of $\partial \{w = 0\} < n \epsilon(c_0) < n \Rightarrow R(\theta)$ is continuous H^1 -a.e.
- 3. Caffarelli, Kinderlehrer, and Nirenberg (1977): $\forall k \in \{0, 1, 2, ...\}$, if $f \in C^{k+2,\alpha}$ and $\partial \{u = 0\}$ is C^1 , then $\partial \{u = 0\}$ is $C^{k+1,\alpha}$. Specifically, Cafferalli shows $f \in C^{2,\alpha} \Rightarrow \partial \{u = 0\} \in C^1$.

Theorem: 3.7: Bootstrapping

If $R \in C^{0,1}$, then R is smooth.

Proof. Suppose $R \in C^{0,1}$ is a neighborhood of a tame ray, then $\overline{x}(0,r)$ is bi-Lipschitz or a smaller neighborhood.

$$\frac{R^2}{2} = h'(Du - x) \cdot \hat{n} \quad 3 - \Delta u = \frac{3r - 2R}{h' \cos \theta + r}$$

 $\Rightarrow R \in C^{0,1}, u \in C^{1,1} \Rightarrow h \in C^{1,1} \Rightarrow \text{coordinates improve to bi-}C^{1,1}.$

Let r = R, $3 - \Delta u = \frac{R}{h' \cos \theta + R} \in C^{0,1}$, $u_1 \in C^{2,\alpha}(B_{\epsilon}(\theta_0, R(\theta_0)))$ for some ϵ and $\alpha \in (0, 1)$. $\Rightarrow R \in C^{1,\alpha}$, provided the ray is transverse to free boundary by CKN-1977. Then $h \in C^{2,\alpha} \Rightarrow u \in C^{3,\alpha} \Rightarrow R \in C^{2,\alpha}$.

Lemma: 3.9:

If $H^{\dim(\tilde{x})}(\tilde{x} - \operatorname{dom} D^2 u) = 0$, then $\forall \xi \in \mathbb{R}^n$, $\partial_{\xi\xi}^2 u = \xi D^2 u\xi$ agrees a.e. on \tilde{x} with convex function. In fact, the relative interior relint $(\tilde{x}) \subset \operatorname{dom} D^2 u$.

Corollary 13. Δu is conves on $relint(\tilde{x})$.

Proof. Fix $x_0, x_1, x_t \in \tilde{x} \cap \text{dom}D^2u, \xi \in \mathbb{R}^2, r > 0$ with $x_t = (1-t)x_0 + tx_1, t \in (0,1)$.

$$u(x_t + r\xi) = u(x_t) + rDu(x_t)\xi + \frac{r^2}{2}\partial_{\xi\xi}^2(x_t) + o(r^2)$$
$$u(x_t + r\xi) \le (1 - t)u(x_0 + r\xi) + tu(x_1 + r\xi)$$

Substituting the first equation into the second inequality, we get $\partial_{\xi\xi}^2(x_t) \leq (1-t)\partial_{\xi\xi}^2 u(x_0) + t\partial_{\xi\xi}^2 u(x_1)$. \Box

Proposition: 3.1:

Let $x_0 \in \partial \Omega$ and $\epsilon > 0$, $(Du - x) \cdot \hat{n}_{\Omega} = 0$ throughout $B_{\epsilon}(x_0) \cap \partial \Omega$. Then $\tilde{x}_0 = \{x_0\}, i.e. x_0 \in \Omega_2$.

Proof. Take $x_0 \in \partial \Omega$ and $\epsilon > 0$ as above, $w = \Delta u - 3$ is convex on \tilde{x} by Lemma 3.9.

$$0 \le E'_w(u)|_{\tilde{x}} = \int_{\tilde{x}} (3 - \Delta u)w + \int_{\tilde{x} \cap \partial \Omega} (Du - x) \cdot \hat{n}w = -\int_{\tilde{x}} w^2$$

 $\Rightarrow w = 0$ a.e. Let $\tilde{N} = \bigcup_{x \in B_{\epsilon}(x_0) \cap \partial \Omega} \tilde{x}, \Delta u = 3$ on \tilde{N} and Ω_2 .

Recall the ODE on tame part of Ω_1 :

$$m'' + m - 3h'\cos\theta - \frac{3}{2}R^2 = h'(Du - x) \cdot \hat{m}$$
$$m'' + m - 3h'\cos\theta = 2R$$

This gives $(m'' + m - 2R)(m'\sin\theta - m\cos\theta + a) = \frac{3}{2}R^2\cos\theta$.

Theorem: 3.8:

Let u optimize for $\Omega = (a, a + 1)^2, a \ge 0$. Then

- 1. Ω_0 is a convex set including a neighborhood of (a, a) in $\overline{\Omega}$, *i.e.* $(a, a) \in int\Omega_0 = int \{u = 0\}$
- 2. The set Ω_1^0 of two-ended rays is connected and if $a \ge \frac{7}{2} \sqrt{2}$, Ω_1^0 is non-empty, but if $a \ll 1$, $\Omega_1^0 = \emptyset$.
- 3. For a > 0, there are exactly two connected components of $\Omega_1 \Omega_1^0$: one consisting of oneended rays intersecting west boundary Ω_W . The other intersecting south boundary Ω_S . These one-ended rays are all tame and satisfy the above ODE. For a = 0, $\Omega_1 = \emptyset$
- 4. The north and east boundaries $\Omega_N \cup \Omega_E \subset \Omega_2$ and $(Du x) \cdot \hat{n} = 0$ for all $x \in \Omega_2 \cap \partial \Omega$ and $\Delta u = 3$ on Ω_2 .
- 5. $x \in \Omega_1 \cap \partial \Omega$ is tame if and only if $(Du(x) x) \cdot \hat{n} > 0$, stray otherwise, happens only at $\partial \Omega_1 \cap \partial \Omega_2 \cap \partial \Omega$.

Proof. 1. Recall that $\Omega_0 = \{u = 0\}$ if $\Omega_0 \neq \emptyset$. The convexity of $\{u = 0\}$ and $\sigma(\{u = 0\}) = \frac{\delta E}{\delta u}(\{u = 0\}) = 1$, then int $\{u = 0\} \neq \emptyset$, hence $\{u = 0\} = \Omega_0$. $\frac{\partial u}{\partial x_i} \ge 0$ for i = 1, 2, by symmtry, $(a, a) \in \Omega_0$.

4. Claim: $(Du - x) \cdot \hat{n} = 0$ on $\Omega_N \cup \Omega_E$. For a contradiction, suppose a tame ray intersects Ω_E with negative slope, so $\theta \ge 0$ measured clockwise from (-1, 0).

 $\sigma^{-} \leq \sigma^{+} \Rightarrow$ sign of Jacobian $dH^{1}(x^{2}) = h'(\theta)d\theta$, so nearby rays are spreading as we move away from $\partial\Omega$. 2-Monotonicity of $Du \Rightarrow$ if $x_{2} \in \tilde{x}_{0}$ and $x_{3} = x_{2} + \lambda e_{1} \in \partial\Omega$ for $\lambda > 0$. Then

$$(Du(x_3) - Du(x_2)) \cdot e_1 > 0$$
$$(Du(x_3) - x_3)e_1 > 0$$
$$(Du(x_2) - x_2)e_1 > 0$$
$$\Rightarrow \frac{\partial}{\partial \theta} (Du(\overline{x}(0,\theta)) - \overline{x}(0,\theta))e_1 > 0$$

Rays continue above x_0 all the way to (a + 1, a + 1).

One of the rays \tilde{x}_4 above x_0 is two-sided, and cuts off an isoceles triangle T with right-angle at $\Omega_N \cap \Omega_E$. Taylor expansion gives

$$\overline{u}(x) = \begin{cases} u(x), x \notin T\\ u(x_4) + Du(x_4)(x - x_4), x \in T \end{cases}$$

Claim: $E(\overline{u}) < E(u) = \int_{\Omega} \frac{1}{2} |Du - x|^2 + \left(u - \frac{1}{2}x^2\right).$ $\overline{u} \le u \text{ on } \Omega.$ For $x = (x_1, x_2) \in T$,

$$x_1 \le a+1 < \frac{\partial u}{\partial x_1}(x_4) = \frac{\partial \overline{u}}{\partial x_1}(x_4) \le \frac{\partial u}{\partial x_1}(x)$$
$$\frac{\partial u}{\partial x_1}(x_4) - (a+1) > 0$$

$$x_2 \le a+1 < \frac{\partial u}{\partial x_2}(x_5) = \frac{\partial \overline{u}}{\partial x_1}(x_5) < \frac{\partial u}{\partial x_2}(x).$$

Then $|D\overline{u} - x|^2 \le |Du - x|^2, \forall x \in T$. Contradiction.

Suppose there are no two-ended rays and instead have single-ended tame rays all the way to the corner. In this case, we have uniform control on Δu for any point $x \in \text{dom}D^2u$ on these rays of

$$\infty > C > \Delta u - 3 = \frac{2R - 3r}{h'\cos\theta + r} \xrightarrow{r=0}{\rightarrow} \frac{2R}{h'\cos\theta} = \frac{4(Du - x) \cdot \hat{n}}{R} \to \infty \text{ as } R \to 0$$

Contradiction.

3. Similar arguments show no tame ray intersecting either Ω_W or Ω_S can have nonnegative slope. But we can have rays of negative slope.

Similarly, arguments show such rays must limit to either Ω_0 or Ω_1^0 .

Strong maximum principle \Rightarrow lower limit of Ω_1^0 , if $\Omega_1^0 \neq \emptyset$, it must lie on $\partial \Omega_0$.

Lower limit of any connected component of Ω_1^- either has to be Ω_0, Ω_1^0 or have zero length.

2. We want to show that $a \ge \frac{7}{2} - \sqrt{2} \Rightarrow \Omega_1^0 \neq \emptyset$.

Assume $\Omega_1^0 = \emptyset$. Let $[(a, \underline{x_2}), (a, \overline{x_2})]$ be maximal in $\overline{\Omega}_1 \cap \partial \Omega$.

$$\begin{aligned} a - 0 &= \partial_1 u(a, \overline{x_2}) - \partial_1 u(a, \underline{x_2}) \\ &= \int_{\underline{x_2}}^{\overline{x_2}} \frac{\partial^2 u}{\partial x_1 \partial x_2}(a, x_2) dx_2 \\ &= -\int_{\underline{\theta}}^{\overline{\theta}} \frac{m'' + m}{h' \cos \theta} \sin \theta \cos \theta h'(\theta) d\theta \\ &= -\int_{\underline{\theta}}^{\overline{\theta}} (2R + 3h' \cos \theta) \sin \theta d\theta \text{ because } 3 - \Delta u = \frac{-2R}{h' \cos \theta} \text{ when } r \to 0 \\ &< 2 \|R\|_{\infty} \left[\cos 0 - \cos \left(-\frac{\pi}{4} \right) \right] + \frac{3}{2} \int_{\underline{x_2}}^{\overline{x_2}} dx_2 \\ &= 2 \left(1 - \frac{1}{\sqrt{2}} \right) + \frac{3}{2} = \frac{7}{2} - \sqrt{2} \end{aligned}$$

Then we want to show that $a \ll 1 \Rightarrow \Omega_1^0 = \emptyset$. Let $u^{(0)} \in \arg \min \int_{(a,a+1)^2} \frac{1}{2} |Du - x|^2 + u - \frac{1}{2}x^2$, $u^{(0)} \neq 0$. $\Omega_1^{(0)} = \emptyset$, $\Omega_1^{(0)} \supset \lim_{a \to 0} \Omega_1^{(a)}$ with area $\frac{1}{3}$.

3.1 Regularity

Let $u \ge 0$ be convex, Ω be a compact convex subset of $[0, \infty)^n$, consider

$$\inf E(u) = \inf \int (c(Du) - xDu + u)f(x)dH^n(x),$$

where $c(y) = \frac{1}{2}|y|^2$ or $D^2c \ge \epsilon I > 0$.

Theorem: 3.9: Caffarelli-Lions (2006+)

 $u \text{ optimal} \Rightarrow u \in C^{1,1}_{loc}(\Omega) \text{ with norms } \|u\|_{C^{1,1}(X')} \text{ depending only on } X' \text{ a convex compact subset of } \Omega, \|\log f\|_{C^{0,1}(X')}, d(X', \partial\Omega), \text{ and } \epsilon > 0.$

Idea: Estimate energies of locally affine replacement.

Proof. Assuming Lemma 3.10, comparing energy of u to max $\{u, A\}$ yields

$$0 \le E(\max\{u, A\}) - E(u)$$

=
$$\int_{S} [c(\overline{y}) - x \cdot \overline{y} + u]_{\overline{y} = Du(x_0)}^{\overline{y} = y} f(x) dH^n(x)$$

 $\leq \left(c_1h - c_2\left(\frac{h}{r}\right)^2 + h\right)|S|$ by 2,3 of lemma

Therefore, $\left(\frac{h}{r}\right)^2 \leq \frac{c_1+1}{c_2}h$, or $h \leq \frac{c_1+1}{c_2}r^2$.

Lemma: 3.10:

Assume $u \in C^{1}(\overline{\Omega}), \exists c_{1}, c_{2}$ constant and $r_{0} < d(X', \partial\Omega)$ depending only on the same data $(\epsilon, \Omega, \|\log f\|_{C^{0,1}(X')}, \|u\|_{C^{1,1}(X')}), \forall (x_{0}, y_{0}) \in \partial\Omega$ with $x \in X'$ and $0 < r < r_{0}, \exists A(x) = x \cdot y + \beta$ s.t. 1. $x_{0} \in S = \{x_{0} \in \Omega : u(x) < A(x)\}$ 2. $0 \leq (A - u)(x) \leq h = \sup_{x \in B_{r}(x_{0})} u(x) - u(x_{0}) - Du(x_{0})(x - x_{0})$ on S3. $\frac{1}{|S|} \int_{S} (c(y) - x \cdot y - c(Du) + xDu) f(x) dH^{n}(x) \leq c_{1}h - c_{2}\left(\frac{h}{r}\right)^{2}$.

Proof. Choose A s.t. 1, 2 holds. Taylor expansion gives

$$c(\overline{y}) \ge c(y) + Dc(y)(\overline{y} - y) + \frac{\epsilon}{2}|y - \overline{y}|^2$$
$$[c(\overline{y}) - x \cdot y]_{\overline{y} = Du(x)}^{\overline{y} = DA(x) = y} \le -(Dc(DA) - x)(Du - DA) - \frac{\epsilon}{2}|Du - DA|^2$$

Integrate over S to get

$$\begin{split} \int_{S} \left[c(\overline{y}) - x \cdot y \right]_{\overline{y} = Du(x)}^{\overline{y} = DA(x) = y} f dH^{n} &\leq -\int_{\partial S} (Dc(DA) - x) \cdot \hat{n}_{S}(u - A) f dH^{n-1} \\ &+ \int_{S} \nabla \cdot f(Dc(DA) - x)(u - A) dH^{n} \\ &- \frac{\epsilon}{2} \int_{S} |Du - DA|^{2} f dH^{n} \\ &\leq c_{1}'' h |S| + c_{1} h |S| - \frac{\epsilon}{2} \int |Du - DA|^{2} f dH^{n} \end{split}$$

The last inequality comes from the following: f is constant. Convexity of $S, \Omega \Rightarrow \nabla \cdot x = n$.

$$\begin{split} n|S| &= \int_{S} \nabla \cdot (x - x_{0}) dH^{n} = \int_{\partial S} (x - x_{0}) \cdot \hat{n}_{S} dH^{n-1} \\ &\geq \int_{\partial S \cap \partial \Omega} (x - x_{0}) \cdot \hat{n}_{S} dH^{n-1} \\ &\geq \int_{\partial S \cap \partial \Omega} r_{0} dH^{n-1} \end{split}$$

Similarly,

$$\int_{\partial S} (Dc(DA) - x) \cdot \hat{n}_S(u - A) f dH^{n-1} \le f_2 h \int_{\partial S \cap \partial \Omega} (x - Dc(DA)) \cdot \hat{n}$$

To choose A, WLOG, assume $x_0 = 0 = Du(x_0)$, $h = u(re_1)$, $Du(re_1) = \lambda e_1$ for some λ . Let $A(x) = \frac{hx_1}{2r} + \frac{h}{2}$, $A(re_1) = h$, $A(-re_1) = 0$, $DA(re_1) = \frac{h}{2r}e_1$. $(u - A)|_{(r,x_2,...,x_n)} \ge 0$, with equality at re_1 . $S = \{x \in \Omega : u < A\} \subset \{x \in \mathbb{R}^n : -r \le x_1 \le r\}.$

Now we want to show that $\int_{S} |Du - DA|^2 dH^n \ge c_2'' |S| \left(\frac{h}{r}\right)^2$. Choose $0 < k < \frac{\operatorname{diam} \Omega}{r_0}$, then $kS \subset B_{r_0}(x_0 = 0) \subset \Omega$. Let $\tilde{x} = P_1^{\perp}(x_1, x_2, ..., x_n) = (x_2, ..., x_n)$ be the projection, $\Delta L_{\tilde{x}} = L_{\tilde{x}}^+ - L_{\tilde{x}}^-$.

$$\begin{split} \int_{S} |Du - DA|^{2} dH^{n} &= \int_{P_{1}^{\perp}(kS)} \Delta L_{\tilde{x}} \left(\int_{L_{\tilde{x}}^{-}}^{L_{\tilde{x}}^{+}} \left(\frac{\partial u}{\partial x_{1}} - \frac{\partial A}{\partial x_{1}} \right)^{2} \frac{\partial x_{1}}{\Delta L_{\tilde{x}}} \right) dH^{n-1}(\tilde{x}) \\ &\geq \int_{P_{1}^{\perp}(kS)} \Delta L_{\tilde{x}}(u - A) |L_{\tilde{x}}^{+} \frac{1}{\Delta L_{\tilde{x}}} dH^{n-1} \\ &\geq \int_{P_{1}^{\perp}(kS)} \frac{1}{2r} \left(\frac{h(1 - k)}{2} \right)^{2} dH^{n-1} \\ &\geq \frac{k^{n-1}}{2r} \left(\frac{h(1 - k)}{2} \right)^{2} H^{n-1}(P_{1}^{\perp}(S)) \\ &\geq \frac{k^{n-1}}{(2r)^{2}} \left(\frac{h(1 - k)}{2} \right)^{2} |S| \quad (\text{Because } H^{n}(S) \leq 2rH^{n-1}(P_{1}^{\perp}(S))) \\ &= c_{2}'''|S| \left(\frac{h}{r} \right)^{2} \geq c_{1}h|S| \end{split}$$

Г			
L			
L			