
MAT1855 Mathematical Problems in Economics

1 Stable Matching

A paring of e.g. students to colleges is called unstable, if there is an unmatched pair who both prefer each
other to their partners, called a blocking pair.

• Transferable Utility (TU): preferences can be changed with e.g. cash transfer (optimal transport)

• Non-Transferable Utility (NTU): preferences cannot be changed with external factors

• Partially Transferable Utility (PTU)

Example (Roommate Problem): Four students assigned to two double rooms. Does any set of preferences
admit a stable match? Each student has a rank list of roommate preferences with no ties.
The answer is no. Consider the case where three students all rank the same person the least preferred.

1.1 Two-sided (Bipartite) Matching

Example:

• College admission: many-to-one matching

• Marriage problems: One-to-one. Further simplification

– Same number on each side

– Preferences: ordered list of potential opposite partners

– Assume everyone prefers marriage to non-married state

Definition: 1.1: Assignment

Denote [n] = {1, ..., n}. In the 1-1 context, an assignment or match refers to a 1-1 map σ : [n] → [n].
i.e. a permutation on n letters.
Equivalently, µ : [2n] → [2n], a 1-1 map s.t. µ(i) > n if i ≤ n, µ(j) ≤ n if j > n, µ2(i) = i ∀i.

Theorem: 1.1: Gale & Shapley (1962)

In 1-1 bipartite settings for preferences as above, a stable match always exist.

Proof. The proof is an algorithm which identifies a stable match. This is the deferred acceptance (dating
algorithm)

• 1st round: each man proposes to favorite woman. Each woman keeps favorite suitor, and rejects all
others.

• ith round: each rejected man now proposes to favorite woman among those who have not yet rejected
him.
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Claim:

1. This process terminates in finite time (after at most (n− 1)2 rounds)

2. At termination, stability has been achieved.

Facts (two monotonicites):

1. At each round, each woman is at least as satisfied with her partner as the previous round

2. At each round, each man is no more enthusiastic about the person he is proposing to in previous
rounds.

Each of n men has n preferences, creating a n× n matrix. In each round, we iterating through the matrix
and advances the rows or eliminates elements. It always terminates.

Stability: Suppose (M,w) is a blocking pair at termination.
Let (M,m) and (W,w) be partners. But M prefers w to m (w >M m), and w prefers M to W (M >w W ).
Since w >M m, M must have been rejected by w before he proposed to m.
But by the first monotonicity, w must like W better than M (W >w M). Contradiction.

Definition: 1.2: Achievable Matching

A pair (M,w) is achievable if it forms part of some stable matching.

Theorem: 1.2: Gale & Shapley (1962-2)

If (M,w) is achievable, then w will never reject a proposal by M during the algorithm.

Proof. Induciton on time T of the first rejection by an achievable partner to draw a contradiction.
Let T be the first round in which such a rejection takes place.
i.e. say a rejects A for B, B >a A, yet σ = (Aa,Bb, ...) is part of some stable match, because (A, a) is
achievable.
Also, b >B a, since otherwise Ba would be a blocking pair, contradicting stability.
From the two monotonicities, B must have proposed to b before a, but by minimality of time T and stability
of σ, she cannot have rejected yet. Contradiction.

Corollary 1. Proposer optimality of deferred acceptance. i.e. male proposing deferred acceptance proposes
a stable match that all men weakly prefer to any other stable match.

Proof. No man is rejected by an achievable mate during the deferred acceptance algorithm.

Theorem: 1.3: Knuth - Battle of the Seres (1981)

If two stable matchings σ and σ′ have the property that all men weakly prefer σ to σ′, then all
women weakly prefer σ′ to σ.

Proof. To derive a contradiction, suppose all men weakly prefer µ to µ′, yet some woman a also strictly prefer
µ to µ′. i.e. B = µ′(a) <a µ(a) = A, µ(A) = a >A µ′(A) ̸= a. But now Aa blocks µ′. Contradiction.
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Theorem: 1.4: Conway’s Distributive Lattice

If matchings σ = (Aa,Bb, ...) and σ′ = (Aa′, Bb′, ...) are both stable, then so are
σ ∨ σ′ = (Amax<A {a, a′} , Bmax<B {b, b′} , ...) (men’s preferred wifes) and
σ ∧ σ′ = (Amin<A {a, a′} , Bmin<B {b, b′} , ...) (women’s preferred husbands).

Proof. The two matchings are symmetric, so we prove σ ∨ σ′.

1) Join produces a 1-1 matching:
Suppose WLOG, ∃A ̸= B, a = max<A {a, a′} = max<B {b, b′} = b′

Then σ′ = (Aa′, Bb′, ...) and a >A a′, so stability of σ′ implies A <a B.
Similarly, σ = (A(a = b′), Bb) and a = b′ >B b, so stability of σ implies A >a B. Contradiction.

2) Join is stable.
Suppose WLOG some pair Ab′′ blocks, σ ∨ σ′ = (Aa′′, Bb′′, ...)
i.e. b′′ >A a′′ and A >b′′ B. Also, a′′ = max<A {a, a′}, b′′ = max<B {b, b′}.
Then a, a′ ≤A a′′, b, b′ ≤B b′′.
Either Aa′′, Bb′′ both occurred in the same stable match σ (or σ′) or one occurred in σ, the other in σ′/
By symmetry, either σ = (Aa′′, Bb′′, ...) or σ = (Aa′′, ...) and σ′ = (..., Bb′′, ...).
In case 1 (σ = (Aa′′, Bb′′, ...)), Ab′′ blocks stability of σ. Contradiction.
In case 2, a = a′′ >A a′, b <B b′ = b′′, then b′′ >A a′′ = a >A a′ and A >b′′ B, Ab′′ blocks σ′.
Contradiction.

The lattice is distributive, meaning that σ ∧ (σ′ ∨ σ′′) = (σ ∧ σ′) ∨ (σ ∧ σ′′) and similar distribution rules
are satisfied.

1.2 Game Theory

Definition: 1.3: Economic Games

Economic games have: players, feasible outcomes, and rules. Player share preferences over feasible
outcomes.
Player i has strategy Si =

{
e1i , ..., e

k(i)
i

}
. Outcome: S1 × · · · × Sn → Ω. For each i, define a relation

≤i∈ Ω2 to show the preference of outcomes.
An outcome ω dominates ω′ if there is a coalition S of player s.t. each player in S strictly prefers ω
to ω′ and the rules give S the power to enforce ω than ω′.
The core of the game refers to the set of all undominated outcomes.

Theorem: 1.5:

The set of stable matching forms the core of the marriage game.

Proof. If a matching is unstable, it’s because a blocking pair strictly prefers to marry each other rather
than their assigned partner, σ is not in the core.
Conversely, if any matching σ is not in the core, there is some coalition S of players willing and able to
prevent it. At least one man A ∈ S prefers to marry some woman b ∈ S, who is willing to marry him. Ab
is a pair which blocks the stability of σ. Hence, σ is unstable.
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Definition: 1.4: Nash Equilibrium

A Nash equilibrium (s1, ..., sn) ∈ S1 × · · · × Sn is a strategy s.t. no player can strictly improve his
outcome, acting unilaterally.
(s1, ..., sn) fails to be a Nash equilibrium ⇔ ∃i ∈ [n] s.t. f(s1, .., sn) <i f(s1, ...si−1, s̃, si+1, ..., sn).

Two-Player Zero Sum Game n = 2, payoff is P : S1 × S2 → R. Player 2 wins P (s, t), player 1 loses
P (s, t) (or wins −P (s, t)).

Example: The penalty kick game with payoff in Table 1 does not admit Nash equilibrium. It’s an advantage
to know opponents strategies. If 2 is changed to 1, a random strategy will work.

Table 1: Penalty Kick Game
kick left kick right

dive left 1 -1
dive right -1 2

Definition: 1.5: Randomized Strategy (von Neumann - Morgenstern)

Replace S1 =
{
s1, ..., sm

}
=
{
e11, ..., e

m
1

}
⊂ Rm by simplex

∆m−1 =

{
(x1, ..., xm) ∈ [0, 1]m :

m∑
i=1

xi = 1

}
, and S2 =

{
t1, ..., tn

}
by

∆m−1 =

(y1, ..., yn) ∈ [0, 1]n :
n∑

j=1

yj = 1

. Replace the payoff matrix (Pij)i∈[m],j∈[n] by expected

payoffs P (x̄, ȳ) =

m∑
i=1

n∑
j=1

xiyjPij .

Remark 1. It never hurts and sometimes helps to know your opponents strategy. i.e. If P1 knows P2’s
strategy j, the payoff if P2 forced to declare their strategy first is sup

j∈S2

inf
i∈S1

Pij . The payoff if P1 forced to

declare strategy first is inf
i∈S1

sup
j∈S2

Pij . We have sup
j∈S2

inf
i∈S1

Pij ≤ inf
i∈S1

sup
j∈S2

Pij . (i0, j0) is a Nash equilibrium

(saddle point) if and only if P (i0, j) ≤ P (i0, j0) ≤ P (i, j0), ∀(i, j) ∈ S1 × S2.

Theorem: 1.6: Minmax Theorem

If a Nash equilibrium exists, then sup
j∈S2

inf
i∈S1

P (i, j) = inf
i∈S1

sup
j∈S2

P (i, j) (No duality gap)

Proof. Let (i0, j0) be a Nash equilibrium,

inf
i∈S1

sup
j∈S2

P (i, j) ≤ sup
j

P (i0, j) ≤ P (i0, j0) ≤ inf
i
P (i, j0) ≤ sup

j
inf
i
P (i, j)

Definition: 1.6: Coercive

f : M → (−∞,∞] is coercive ⇔ ∀c ∈ R, f−1((−∞, c]) is compact in M .
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Theorem: 1.7: Existence of Nash Equilibrium (von Neumann)

If X ⊂ Rm, Y ⊂ Rn are compact convex sets and P ∈ C(X × Y ) (continuous function from X to Y )
and ∀(x0, y0) ∈ (X,Y ). P (x0, y),−P (x, y0) are convex or at least have convex sublevel sets (coercive
and uniquely minimized), then a Nash equilibrium exists

Proof. If both functions are strictly convex, the best response function xb(y0) = argmin
x

P (x, y0) is unique
and continuous. Similarly, P2’s best response yb(x0) = argmax

y
P (x0, y) is also unique and continous.

Therefore, xb ◦ y0 : X → X is continous.
Brouwer’s fixed point theorem implies that ∃x̃ ∈ X s.t. x̃ = xb(yb(x̃)).
Because P (x̃, y) ≤ P (x̃, ỹ) ≤ P (x, ỹ), ∀(x, y) ∈ X × Y , ỹ = yb(x̃) makes (x̃, ỹ) a Nash equilibrium

If convexity is not strict, apply perturbation Pϵ(x, y) = P (x, y) + ϵ
2(∥x∥

2 − ∥y∥2).
Then ∃(xϵ, yϵ) s.t. Pϵ(xϵ, y) ≤ Pϵ(xϵ, yϵ) ≤ Pϵ(x, yϵ), ∀(x, y) ∈ X × Y .
Because the sets are compact, there exists a subsequence ϵ(k) → 0 s.t. lim

k→∞
(xϵ(k), yϵ(k)) = (x∞, y∞). As

k → ∞, P (x∞, y) ≤ P (x∞, y∞) ≤ P (x, y∞).
Claim: If argmax

y
P (x0, y) = {yb(xb)}, then yb : X → Y is continuous.

Let xk → x∞ in X. Set yk = yb(xk), ∀k ∈ N. i.e. P (xk, yk) ≥ P (xk, y),∀y ∈ Y .
Consider a subsequence yk(j) → y∞, P (x∞, y∞) ≥ P (x∞, y). Then y∞ ∈ argmax

y
P (x∞, y). Therefore

y∞ = yb(x∞) since argmax is unique.
The arbitrariness of subsequence gives that yb(x∞) = lim

k→∞
yk = lim

k→∞
yb(xk) on the full sequence.

Example: In a football game, the offense decide to pass or run, defense decide to defend the pass or run.

Table 2: Football Game
P R

DP 5 6
DR 7 1

P1 (Defense) chooses probability s ∈ [0, 1] to defend the pass (defends the runs with probability 1− s).
P2 (Offense) chooses probability t ∈ [0, 1] to pass (runs with probability 1− t).
Expected yards when offense pass: yOP (s) = 5s+ 7(1− s).
Expected yards when offense runs: yOR(s) = 6s+ (1− s).
The optimal strategy s̃ is the solution yOP (s̃) = yOR(s̃), s̃ = 6

7 .
Similarly for offense, 5t+ 6(1− t) = 7t+ (1− t), t̃ = 5

7 .

1.3 Transferrable Utility Matching (Shapley & Shubik)

Match between i and j produces benefit bij . i tries to maximize share ui of the benefit bij , j tries to
maximize the share vj of bij .

1. Stability: ui + vj ≥ bij , ∀(i, j) ∈ I × J . Otherwise if ui + vj < bij for some (i, j) ∈ I × J , i and j
will leave partner to marry each other to make bij better off.

2. Market Clearing Condition: If |I| = |J | = n and matching is 1-1, an assignment is a permutation
σ ∈ Σ(n) on n letters. Alternatively, allow randomized assignments. e.g. i has probability γij ≥ 0 of
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matching with i. Define doubly stochastic matrices: DS(n) =

(γij)
n
i,j :

n∑
j=1

γij =

n∑
i=1

γij = 1

. e.g.

γσij =

{
1, j = σ(i)

0, else

3. Budget Constraint: ui + vj = bij if γij > 0.

Question: Given direct utility (bij)i,j , do there always exist vectors ū, v̄ (indirect utility) and matrix (γij)i,j
satisfying the above 3 conditions (stability, market clearing, budget constraint). If yes, then it is a stable
matching.

More formally, let bij =benefit produced if i matches with j, does there exists (γij)
n
i,j=1 ∈ DS(n) and

u, v : [n] → R s.t.

1. Stability: (u, v) ∈ Lb = {u, v ∈ Rn : ui + vj ≥ bij}

2. Market clears: γ ∈ DS(n) =

(γij ≥ 0)ni,j=1 :
n∑

i=1

γij =
n∑

j=1

γij = 1


3. Budget: ui + vj = bij , ∀i, j if γi,j > 0.

Proof. Let X = {u, v ∈ Rn} = R2n, Y =
{
γ ∈ Rn2

: γij ≥ 0
}

. Define

P ((u, v); γ) =
n∑

i=1

n∑
j=1

(bij − ui − vj)γij +
n∑

i=1

ui +
n∑

j=1

vj .

P ((u, v); γ) is bi-affine in (u, v) and γ.

sup
γ∈Y

P ((u, v); γ) =

{∑n
i=1 ui +

∑n
j=1 vj , if (bij − ui − vj) ≤ 0,∀i, j ≤ n, (u, v) ∈ Lb

∞, otherwise

Therefore, inf
(u,v)∈X

sup
γ∈Y

P = inf
(u,v)∈Lb

n∑
i=1

ui +
n∑

j=1

Vj .

Now, rewrite P =

n∑
i=1

n∑
j=1

bijγij +
n∑

i=1

ui

1−
n∑

j=1

γij

+
n∑

j=1

vj

(
1−

n∑
i=1

γij

)
.

inf
(u,v)∈X

P =

{∑n
i=1

∑n
j=1 bijγij , if γ ∈ DS(n)

−∞, otherwise

Therefore, sup
γ∈Y

inf
(u,v)∈X

P = sup
γ∈Y

n∑
i=1

n∑
j=1

bijγij .

For Nash equilibrium, we need inf supP ≤ P ((u0, v0), γ0) ≤ sup inf P .
This only happens when (u0, v0) ∈ Lb and γ0 ∈ DS(n). Otherwise we have ±∞ for inf supP and sup inf P .
It automatically satisfies the stability and market clearing conditions. When they are exactly equal,
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n∑
i=1

n∑
j=1

bijγ
0
ij =

n∑
i=1

u0i +

n∑
j=1

v0j =

n∑
i=1

u0i

 n∑
j=1

γij

+

n∑
j=1

v0j

(
n∑

i=1

γij

)

⇒
n∑

i=1

n∑
j=1

(u0i + v0j − bij)γ
0
ij = 0

⇒ either γ0ij = 0 or u0i + v0j = bij if γ0ij > 0.

This is the budget constraint (complementary slackness)

This induces two variational problems:

1. The social planners problem: sup
γ∈DS(n)

n∑
i=1

n∑
j=1

γijbij (matchmaker)

2. Minimize total surplus subject to stability, hoping to achieve budget constraint (Affordability):

inf
(u,v)∈Lb

n∑
i=1

ui +

n∑
j=1

vj

In the affordability problem, stability ⇒ ui+vj ≥ bij , ∀i, j ∈ [n] ⇒ ui ≥ maxj bij−vj and vj ≥ maxi bij−ui.
When bij has unique maximum for each i and each j, then we get perfect matching.

This is an instance of the 2nd welfare theorem:
Supply and demand bij determines equilibrium prices (shadow prices/ Lagrange multipliers for market
clearing) (ū, v̄), which then decentralize the market. i.e. for a.e. bij , the corresponding (ū0, v̄0) lead each
man and woman to have a unique preferred partner, so no matchmaker/social planner is needed. γij is the
Lagrange multiplier for stability constraint.
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2 Optimal Transport

Now we generalize to continuous types/heterogeneity and consider Monge-Kantorovich/Optimal Transport
Problems.

Definition: 2.1: Polish Space

A space X is Polish if its topology is metrizable by a complete separable metric. Let
P(x) = {µ ≥ 0 on X : µ is a Borel probability measure, µ(X) = 1}. Topologize P(X) using the

narrow topology, i.e. µn → µ ⇔ lim
n→∞

∫
X
fdµn →

∫
X
fdµ for every

f ∈ Cb(X) = {f : X → R : f continuous and bounded}.

Definition: 2.2: Tight Measures

C ⊂ P(X) is tight ⇔ ∀ϵ > 0, ∃Xϵ ⊂ X compact s.t. sup
µ∈C

µ(X −Xϵ) < ϵ.

Theorem: 2.1: Prokhorov

C ⊂ P(X) is narrowly pre-compact ⇔ C is tight.

Corollary 2. µ ∈ P(X) is inner regular. i.e. ∀ϵ > 0, ∃Xϵ compact, µ(X −Xϵ) < ϵ.

Definition: 2.3: Monge’s Optimal Transport (1781)

Given X,Y Polish spaces, µ+ ∈ P(X), µ− ∈ P(Y ), a cost function c = −b ∈ Cb(X × Y ). We
seek a Borel map G : X → Y , µ+-measurable. Define the push-forward G#µ

+ of µ+ by G s.t.
G#µ

+(V ) = µ+(G−1(V )) for V ⊂ Y measurable. If µ+ ∈ P(X), then G#µ
+ ∈ P(Y ), given G is

defined µ+-a.e. The optimal solution is

inf
G#µ+(V )

∫
X
c(x,G(x))dµ(x)

If dµ±

dvol = f± is smooth enough probability density and G : Rn → Rn is a diffeomorphism, then∫
G−1(V )

f+(x)dvol(x) =

∫
V
f−(y)dvol(y) =

∫
G−1(V )

f−1(G(x)) |detDG(x)| dvol(x)

Since V is arbitrary, f+(x) = f−(G(x)) |detDG(x)| vol-a.e. for x. It is difficult to find the solution for the
differential equation.

Definition: 2.4: Kantorovich’s Optimal Transport (1942)

Seek a joint distribution γ ∈ P(X,Y ), γ ∈ Γ(µ+, µ−) =
{γ ≥ 0 : µ+(U) = γ(U × Y ), µ−(V ) = γ(X × V ),∀(U, V ) ⊂ X × Y, Borel measurable}. Or
equivalently, µ+ = ΠX

#γ is the projection of γ onto X, µ− = ΠY
#γ is the projection of γ onto Y .

sup
γ∈Γ(µ+,µ−)

∫
X×Y

b(x, y)dγ(x, y)

In optimization and calculus of variations, we need a topology for which

1. Objective is semi-continuous
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2. Feasible competitors form a compact set

Note that in Kantorovich’s definition, Γ(µ+, µ−) is convex, and the integral functional is linear in γ, so
the supremum (maximum) is always attained. F.O.C. (first order conditions, e.g. KKT/Euler-Lagrange
equations for any concave maximization problems) become sufficient as well as necessary for optimality.
Steepest ascent finds the global optimum.

If G#µ
+ = µ−, then γG = (idX ×G)#µ+ ∈ Γ(µ+, µ−).

sup

∫
b(x, y)dγ ≥ sup

∫
b(x,G(x))dµ+

We want to find a topology making Γ(µ+, µ−) compact and γ ∈ Γ(µ+, µ−) s.t.
∫
bdγ is continuous. A

simple one would be both X,Y are compact. A generalization is X,Y both Polish or Radon.

Fact: If X is Polish, then the narrow topology in Definition 2.1 is metrizable on P(X).

Claim: If (X, dX) and (Y, dY ) are Polish (or Radon) and µ+ ∈ P(X), then Γ(µ+, µ−) is tight and narrowly
closed, hence narrowly compact.

Proof. (1) tightness: {µ+} is narrowly compact as a set of one element.
Fix ϵ > 0, ∃Xϵ ⊂ X compact s.t. µ+(X − Xϵ) < ϵ

2 . Similarly, ∃Yϵ ⊂ Y compact s.t. µ−(Y − Yϵ) < ϵ
2 .

Therefore,

γ(Xϵ × Yϵ) = 1− γ(XC
ϵ × Y )− γ(X × Y C

ϵ ) + γ(XC
ϵ × Y C

ϵ )

≥ 1− γ(XC
ϵ × Y )− γ(X × Y C

ϵ )

> 1− ϵ

2
− ϵ

2
= 1− ϵ

Therefore γ((Xϵ × Yϵ)
C) < ϵ, and Γ(µ+, µ−) is tight.

(2) Narror closedness:
Let {γk}k∈N ⊂ Γ(µ+, µ−) converging narrowly to γ∞ ∈ P(X × Y ).
Let f(x, y) = f̃(x), ∀x ∈ X, where f ∈ Cb(X,Y ).
By Definition of narrow topology,∫

fdγ∞ = lim
k→∞

∫
X×Y

f(x, y)dγk = lim
k→∞

∫
X×Y

f̃(x)dγk =

∫
X
f̃dµ+

Since f̃ ∈ Cb(X) is arbitrary, ΠX
#γ∞ = µ+. Similarly, ΠY

#γ∞ = µ−. Therefore, γ∞ ∈ Γ(µ+, µ−).

Remark 2. More generally, if µ+
k → µ+

∞ and µ−
k → µ−

∞ narrowly, then any γk ∈ Γ(µ,
kµ

−
k ) admits a

subsequential narrow limit γ∞ ∈ Γ(µ+
∞, γ−∞). (Narrow stability).

This shows that sup

∫
bdγ = max

∫
bdγ can be attained.

2.1 Linear Programming Approach

In this section, we consider a heuristic linear programming dual problem, inspired by the discrete case.
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max
γ∈Γ(µ+,µ−)

∫
bdγ = sup

γ≥0
inf

u:X→R,v:Y→R

∫
bdγ −

∫
udγ +

∫
udµ+ −

∫
vdγ +

∫
vdµ−

≤ inf
u,v

sup
γ

∫
udµ+ +

∫
vdµ− +

∫
(b− u− v)dγ

= inf
u,v∈Lb

∫
udµ+ +

∫
vdµ−,

where Lb = {u : X → R, v : Y → R : u(x) + v(y) ≥ b(x, y),∀x, y ∈ X × Y }

Claim: If γ ∈ Γ(µ+, µ−) and (u, v) ∈ Lb, then

1.
∫
X×Y

(u(x) + v(y)− b(x, y))dγ ≥ 0, since u+ v − b ≥ 0 for (u, v) ∈ Lb and γ ≥ 0

2. If the integral is 0, and u ∈ L1(dµ+), v ∈ L1(dµ−), then γ maximizes and (u, v) minimizes.

3. If the infimum is attained and equality holds, then γ maximizes iff ∃(u, v) ∈ Lb s.t. the integral is 0,
whereas (u, v) ∈ Lb minimizes iff ∃γ ∈ Γ(µ+, µ−) s.t. integral is 0.

To show that the infimum is attained with no gap:

1. characterize maximizers γ ∈ Γ(µ+, µ−) by a property of their support sptγ = S, where S ⊂ X × Y is
the smallest closed subset with γ(S) = 1.

2. use the properties to construct minimizers u and its partner v in Lb.

Motivating Example: X = Y = Rn, b(x, y) = x · y.

Definition: 2.5: b-cyclically Monotone

A set S = X × Y is b-cyclically monotone if and only if ∀k ∈ N and (x1, y1), ..., (xk, yk) ∈ S,

k∑
i=1

b(xi, yi) ≥
k∑

i=1

b(xi, yi−1),

where y0 = yk.

Theorem: 2.2:

If γ ∈ Γ(µ+, µ−) maximizes b ∈ Γ(X × Y ), then sptγ is b-cyclically monotone.

Proof. Suppose not, i.e. ∃k ∈ N, (x1, y1), ..., (xk, yk) ∈ spt(γ) s.t.
k∑

i=1

b(xi, yi) <

k∑
i=1

b(xi, yi−1).

Since b ∈ C(X × Y ), the same inequality holds for all x′i near xi and y′i near yi. i.e. x′i ∈ Ii and y′i ∈ Ji for
some open neighborhood Ii × Ji of (xi, yi).
Let ϵ = mini≤k γ(Ii × Ji) > 0. Set γi(z) = γ(z∩Ii×Ji)

γ(Ii×Ji)
, γ − ϵγi ≥ 0 and γ − ϵ

k

∑k
i=1 γ

i ≥ 0.

Suppose γi = zi#ω = (xi, yi)#ω on (Ω, ω) where ω ∈ P(Ω) is a probability measure.

γϵ = γ − ϵ

k

k∑
i=1

((xi, yi)#ω − (xi, yi−1)#ω) ∈ Γ(µ+, µ−),

10



but
∫

bd(γ − γϵ) =
ϵ

k

k∑
i=1

∫
bd(xi, yi)#ω − bd(xi, yi−1)#ω < 0. Contradicting the b-maximiality of γ.

Definition: 2.6: Proper Function and b-subdifferential

u : X → [−∞,∞] is proper unless u−1(∞) = X.
The b-subdifferential ∂bu = {(x, y) ∈ X × Y : u(·) ≥ u(x) + b(·, y)− b(x, y),∀· ∈ X}.

Example: b(x, y) = x · y on X = Y = Rn, (x, y) ∈ ∂bu ⇔ u(·) ≥ u(x) + ⟨· − x, y⟩. ∂bu is a set of (point,
slope) pairs that is affine supporting hyperplane for Graph(u) at (x, y).

Theorem: 2.3: Rockafellar (1966) and Rochet (1986)

S ⊂ X × Y is b-cyclically monotone ⇔ S ⊂ ∂bu for some proper u : X → [−∞,∞].

Proof. (⇒) Fix (x0, y0) ∈ S. For x ∈ X, define

u(x) = sup
k∈N

sup
(x1,y1),...,(xk,yk)∈S

b(x, yk)− b(xk, yk) +

k−1∑
i=0

[b(xi+1, yi)− b(xi, yi)]

Claim: S ⊂ ∂bu, because if (x′, y′) ∈ S, then ∀ϵ > 0, ∃k ∈ N, (x1, y1), ..., (xk, yk) s.t.

u(x′) ≤ ϵ+ b(x′, yk)− b(xk, yk) +
k−1∑
i=0

[b(xi+1, yi)− b(xi, yi)]

Also, · ∈ X means

u(·) ≥ b(·, yk+1)− b(xk+1, yk+1) +

k∑
i=0

[b(xi+1, yi)− b(xi, yi)]

u(·)− u(x′) ≥ −ϵ+ b(·, y′)− b(x′, y′), but ϵ is arbitrary, so (x′, y′) ∈ ∂bu.
S is b-cyclically monotone ensures u(x0) ≤ 0 and u is proper and bounded above.

Definition: 2.7: b-transform and Legendre-Fenchel Transform

The Legendre-Fenchel transform is

u∗(y) = sup
y∈Rn

⟨x, y⟩ − u(x).

This is a convex and lower semi continuous (l.s.c.) function. u ≥ u∗∗ is the convex hull of u, with
equality if and only if u is convex l.s.c., u∗∗∗ = u∗.
The b-transforms are

ub(y) = sup
x∈X

b(x, y)− u(x)

vb̃(x) = sup
y∈Y

b(x, y)− v(y)

11



Lemma: 2.1: Properties of ub

Lb = {u : X → [−∞,∞], v : Y → [−∞,∞] proper : u(x) + v(y) ≥ b(x, y),∀x, y ∈ X × Y }
1. If (u, v) ∈ Lb, then (u, ub) ∈ Lb and ub ≤ v

2. (ub)b̃ ≤ u

3. ((ub)b̃)b = ub

Proof. 1. ub(y) = sup
x∈X

b(x, y)− u(x) ≥ b(x, y)− u(x),∀x ∈ X, so (u, ub) ∈ Lb

If v(y) ≥ b(x, y)− u(x), ∀x ∈ X, then v(y) ≥ sup
x∈X

b(x, y)− u(x) = ub(y).

2. Using symmetry of x, y, if (u, ub) ∈ Lb, then ((ub)b̃, ub) ∈ Lb and (ub)b̃ ≤ u.

3. Because of the minus sign, ũ ≥ u ⇒ ũb ≤ ub. Therefore ub ≤ ((ub)b̃)b ≤
By 2

ub.

Theorem: 2.4: Kantorovich Duality

Let X,Y be Polish, b ∈ Cbdd(X × Y ), µ+ ∈ P(X), µ− ∈ P(Y ). Then

max
γ∈Γ(µ+,µ−)

∫
bdγ ≤ inf

(u,v)∈Lb

∫
X
udµ+ +

∫
Y
vdµ−

And infimum is attained.

Proof. Let γ ∈ Γ(µ+, µ−) optimize b, then spt(γ) is b-cyclically monotone. By Theorem 2.3, there exists
some u proper s.t. spt(γ) ⊂ ∂bu.

Claim: if v(y) = ub(y) = sup
x∈X

b(x, y)−u(x), then (u, v) ∈ Lb and
∫
(u+v− b)dγ = 0, also u ∈ L1(dµ+), v ∈

L1(dµ−), where ub is a b-transform on u.

Claim: (x, y) ∈ ∂bu ⇔ ub(y) = b(x, y)− u(x).
By Definition 2.6, b(x, y)− u(x) ≥ b(·, y)− u(·), ∀· ∈ X.
This is equivalent to ub(y) = b(x, y)− u(x). Equivalently, x ∈ argmax b(·, y)− u(·).

Therefore, spt(γ) =
{
(x, y) ∈ X × Y : u(x) + ub(y)− b(x, y) = 0

}
.

u+ v ≥ b ≥ inf b = B > −∞, so
∫
(u+ v)dγ ≥

∫
bdγ ≥ B > −∞.

Then ∃x0 ∈ X s.t. u(x0) ∈ R, so v(y) = ub(y) = sup b− u ≥ b(x0, y)− u(x0) ≥ B − u(x0) for any y ∈ Y .

Then
∫
udµ+ +

∫
vdµ− must be finite.

Consider b(x, y) = x · y on X = Y = Rn, µ± ∈ PC(Rn) compact metric on Rn. Then

max
γ∈Γ(µ+,µ−)

∫
⟨x, y⟩ dγ = min

(u,v)∈Lb

∫
X
udµ+

∫
Y
vdµ−,

and the optimizers satisfy spt(γ) ⊂ ∂bu = Graph(Du) if u ∈ C1(Rn).

Let u : Rn → (−∞,∞] be convex and lower semi-continuous (l.s.c.), then Dom(u) = {x ∈ Rn : u(x) < ∞}
is convex and ∂(Dom(u)) is n− 1 dimensional.
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Theorem: 2.5: Rademacher’s

If u is Lipschitz on Rn, then u is differentiable a.e.

Lemma: 2.2:

Let X,Y be Polish/Radon. If γ ∈ P(X × Y ) and G : X → Y s.t. X × Y − Graph(G) has
zero γ outer measure, where Graph(G) = {(x, y) ∈ X × Y : y ∈ G(x)}, then G is µ-measurable and
γ = (id ×G)#µ where µ = ΠX

#γ.

Proof. The Radon (inner measurability) property of Polish spaces implies there exist compact Ki ⊂ Ki+1 ⊂
Graph(G) ⊂ X × Y s.t. γ(K∞) = 1, where K∞ = ∪iKi.

Claim: Gi = G|Xi is continuous where Xi = ΠX(Ki).
Fix i ∈ N. Let xj ∈ Xi be arbitrary, convergent to x∞ = lim j → ∞xj . Therefore, there exists (xj , yj) ∈ Ki,
compactness implies that every subsequence admits a sub-subsequence with some limit y∞ = lim

j→∞
yj and

(x∞, y∞) ∈ Ki. Since Ki ⊂ Graph(G), y∞ = G(x∞) and yj = G(xj). Also, xj → x∞, then G(xj) → G(x∞)
and arbitrariness of the subsequence. Hence G|Xi is continuous.

Gi admits a continuous extension to (X, d) by Dugundji variant of Tietze’s extension theorem (If A is a
closed subset of X and f : A → Y is continuous, then f can be extended to X).

µ(X∞) = γ(X∞ × Y ) = γ((X∞ × Y ) ∩ Graph(G)) = γ(K∞) = 1

So X∞ is µ-measurable.

Given U ⊂ X and V ⊂ Y Borel. Then

γ(U × V ) = γ((U × V ) ∩ Graph(G∞))

= γ((U ∩G−1
∞ (V ))× (Y ∩ Graph(G∞)))

= γ((U ∩G−1
∞ (V ))× Y )

= µ(U ∩G−1
∞ (V )) = (id ×G)#µ(U × V )

G∞ = lim
i→∞

G̃i on X∞. Hence µ-a.e. agrees with the limit of continuous functions.

Consider L1
b =

{
(u, v) ∈ Lb : u ∈ L1(dµ), v ∈ L1(dν)l.s.c.

}
. Stability implies that u(x)+ v(y)− b(x, y) ≥ 0,

S(u, v) = {(x, y) ∈ X × Y : u(x) + v(y)− b(x, y) ≤ 0} is closed if (u, v) ∈ L1
b and b ∈ C(X × Y ). (Upper

semi-continuity of b is enough).

Proposition: 2.1:

vb̃(x) = sup
y∈Y

b(x, y)− v(y) inherits the x-modulus of continuity of x ∈ X 7→ b(x, y).

Proof. Let x0, x1 ∈ X and vb̃(x0) = b(x0, y0)− v(y0).
Then vb̃(x0)− vb̃(x1) ≤ b(x0, y0)− v(y0)− b(x1, y0) + v(y0) ≤ wb

y0(d(x0, x1)).
Similarly, vb̃(x1)− vb̃(x0) ≤ wb

y1(d(x0, x1))
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Definition: 2.8: Semi-Convexity

u : Ω ⊂ Rn → R has semiconvexity constant C if and only if ∀x0 ∈ Ω, h ∈ Rn, x0 ± h ∈ Ω,
u(x0+h)+u(x0−h)−2u(x0)

h2 ≥ −C. C = 0 if and only if u is convex.

Corollary 3. 1. If v ∈ C(X × Y ) and X,Y compact, then vb̃ ∈ C(X)

2. If x ∈ X 7→ b(x, y) has a Lipschitz constant independent of y, then vb̃ has the same Lipschitz constant

3. If x ∈ X 7→ b(x, y) has semiconvexity constant independent of y, then vb̃ has the same semiconvexity
constant

Proof. 1. Compactness of X × Y means b is uniformly continuous. Hence vb̃(x) inherits the modulus of
continuity.

Remark 3. u has semiconvexity constant if and only if u(x) + C
2 x

2 is convex.

Theorem: 2.6: Bremer 1987 & McCann 1995

Let µ, ν ∈ PC(Rn) (compactly supported probability measures), with µ ≪ Hn (asbolutely continuous
w.r.t. Lebesgue measure). Then ∃u : Rn → R convex Du : Rn → Rn satisfies (Du)#µ = ν. This
map is unique µ-a.e. Moreover, γ = (id × Du)#µ uniquely maximizes Kantorovich’s problem for
b(x, y) = x · y.
Generalization (McCann): µ, ν ∈ P(Rn). µ vanishes on all Lipschitz hypersurfaces or all sets of
Hausdoff dimension n− 1.

Proof. There exists a Kantorovich optimizer γ ∈ Γ(µ, ν). spt(γ) is b-cyclically monotone, so ∃u = (ub)b̃

in spt(γ) ⊂ ∂u. u is convex and u = sup
y∈Y

x · y − ub(y) is Lipschitz by compactness of spt(γ). Therefore

u is differentiable a.e. by Theorem 2.5. ∂u = {(x, y) ∈ (domu)× Rn : u(·) ≥ u(x) + y(· − x)∀· ∈ Rn},
∂u ∩ (domDu× Rn) = Graph(Du). Therefore, 1 = γ(∂U ∩ (domDu× Rn)) = γ(Graph(Du)).

By Lemma 2.2, γ = (id ×Du)#µ, ν = Du#µ.

Uniqueness:
Suppose ũ : Rn → R convex with Dũ#µ = ν, but Du = Dũ, µ-a.e. fails.
i.e. in some coordinate system, let U =

{
x : ∂u

∂x1
> ∂ũ

∂x1

}
, µ
({

x : ∂u
∂x1

> ∂ũ
∂x1

})
> 0.

γ̃ = γ|U×Rn ∈ Γ(µ̃, ñu), so γ̃(Graph(Du)) = 1. γ̃ = (id ×Du)#µ̃, and ν̃ = Du#µ̃.

Suppose Dũ#µ̃ = ν̃, but
∫
y1d(Du#µ̃−Dũ#µ̃) =

∫ (
∂u
∂x1

− ∂ũ
∂x1

)
dµ̃ > 0. Contradicting (Dµ̃)#µ̃ = ν̃.

When γ = (id × Dũ)#µ, ũ(x) + ũb(y) − x · y ≥ 0. Equality ⇔ (x, y) ∈ ∂ũ ⇔ y = Dũb. Integrate w.r.t.
γ.

Theorem: 2.7: Isoperimetric Inequality

Let Ω ⊂ Rn with |Ω| = Hn(Ω) = |Bn
1 (0)| (unit ball). Then Hn−1(∂Ω) = |∂Ω| ≥ |∂Bn

1 (0)|.

Proof. Let µ = 1Ω
|Ω| , ν =

1Bn
1 (0)

|Bn
1 |

. By Theorem 2.6, there exists a convex u : Rn → R s.t. (Du)#µ = ν. Then
D2u(x0) exists µ-a.e.
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u(x) = u(x0) + ⟨x− x0, p⟩ + 1
2 ⟨x− x0, Q(x− x0)⟩ + o(|x − x0|2) where p = Du(x0), Q = D2u(x0) and

|Du| ≤ 1, detD2u(x0) = 1 a.e.

1 = det
[
D2u(x0)

]1/n ≤ 1

n
trD2u(x0) =

1

n
△u

1 = |Ω| =
∫
Ω
dHn ≤ 1

n

∫
Ω
△u =

1

n

∫
∂Ω

Du(x) · n̂Ω(x)dH
n−1 ≤ 1

n
Hn−1(∂Ω) =

1

n
|∂Ω|

Also 1 = |Bn
1 (0)| = 1

n |∂B
n
1 (0)|.

Theorem: 2.8:

Let b ∈ Cb(X × Y ), µ ∈ P(X), ν ∈ P(Y ). γ ∈ Γ(µ, ν) is b-optimal (b-maximality) ⇔ ∃(u, v) ∈ L1
b ,

γ(S(u,v)) = 1 where S(u,v) = {(x, y) ∈ X × Y : u(x) + v(y)− b(x, y) = 0}.

Proof. (⇐) Suppose γ ∈ Γ(µ, ν) and ∃(u, v) ∈ L1
b s.t. γ(S(u,v)) = 1, u(x) + v(y) = b(x, y), γ-a.e.

∫
udµ +∫

vdν =
∫
bdγ, but inf

(ũ,ṽ)∈L1
b

∫
ũdµ+ ṽdν ≥ sup

γ̃∈Γ(µ,ν)

∫
bdγ̃, (u, v) minimizes, γ maximizes.

(⇒) If γ ∈ Γ(µ, ν) is b-optimal. Theorem 2.3 implies that spt(γ) ⊂ ∂bu for some proper u s.t. S(u,ub) ⊂
S
(ubb̃,ub)

, where (ubb̃, ub) ∈ L1
b .

Lemma: 2.3: Restriction Property

If γ ∈ Γ(µ, ν) is b-optimal and 0 ≤ γ̃ ≤ γ, then so is γ̂ = γ̃
γ̃[X×Y ]

Proof. b-optimality of γ ⇒ ∃(u, v) ∈ L1
b , spt(γ̂) ⊂ spt(γ) ⊂ S(u,v). Therefore, γ̂ is b-optimal.

Definition: 2.9: Twist

Let X be a manifold (or Rn), b ∈ C1(X × Y ) satisfies twist if and only if ∀y, y′ ∈ Y, x ∈ X,
b(x, y)− b(x, y′) has no critical points. Equivalently, ∀x0 ∈ X, the map y ∈ Y 7→ Dx0b(x, y) is 1-1.

Remark 4. Twist implies that X is not compact.

Example: b(x, y) = −h(x− y) where h is strictly convex/concave. Then b is a twist

Proof. Dx0b(x, y) = −Dh(x0 − y) = p, then Dh−1(−Dx0b(x, y)) = x0 − y, so y = x0 −Dh−1(p).

Example: b(x, y) = x · y, and b(x, y) = −1
2 |x− y|2 or any distance metrics are twists.

Example: Fix a Lagrangian L ∈ C1(TM) where TM is the tangent bundle of a manifold. Then ∀x ∈ M ,
v ∈ TxM 7→ L(x, v) is strictly convex. Consider the cost of action along a smooth path. ∀σ : [t0, t1] → M ,

its action is A[σ] =

∫ t1

t0

L(σ(t), σ̇(t))dt. The cost C(x0, x1) = inf A[σ] on σ ∈ C2([t0, t1],M), σ(t0) = x0,

σ(t1) = x1 (C2 or preferrably Lipschitz curve from x0 to x1). b = −c is twisted if inf is attained. This
problem is following the idea: given the tangent vector at final time t1 at position x1, can we find the initial
position x0? The answer is yes.
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Lemma: 2.4:

If b ∈ C1(X × Y ) is twisted, then S(u,v) ∩ (domDu × Y ) ⊂ Graph(G), where G(x) =

(Dxb)(x, ·)−1(Du(x)). If u = ubb̃, Y is compact and ∂X ∩domDu = ∅, then S(u,v) ∩ (domDu×Y ) =
Graph(G).

Proof. Let (x̄, ȳ) ∈ S(u,v) ∩ (domDu× Y ).
Since u(x) + v(y)− b(x, y) ≥ 0, ∀(x, y) ∈ X × Y at (x̄, ȳ), Du(x) = Dxb(x, y). Therefore, it is a twist and
y = G(x).

If x ∈ domD2u, then D2u(x̄) ≥ D2
xxb(x̄, ȳ), and (x̄, ȳ) ∈ domD2b.

Theorem: 2.9: Gangbo 1996, Levin 1999

If µ, ν ∈ PC(Rn), µ ≪ Hn, ∥b∥C1 < ∞ and twisted, then ∃u = ubb̃ s.t. G(x) = Dxb(x, ·)−1Du(x)
satisfies G#µ = ν. This map is unique. Also, γ = (id ×G)#µ uniquely solves Kantorovich. Finally
G is invertible if also ν ≪ Hn and both b and b̃ are twisted.

Proof. By Theorem 2.8. There exist opimizers γ, γ̃ for Kantorovich problem and spt(γ) ⊂ ∂bu = S(u,ub)

with u = ubb̃.
∥b∥C1 < ∞ means that u is Lipschitz, hence Hn(X − domDu) = 0 by Theorem 2.5.
Lemma 2.4 implies that S(u,ub) ∩ (domDu× Y ) = Graph(G), where G(x) = (Dxb)(x, ·)−1(Du(x)).
γ[domDu× Y ] = µ[domDu] = 1 because µ ≪ Hn. Therefore, γ = (id×G)#µ from Lemma 2.2, G#µ = ν.∫

bdγ̃ =

∫
bdγ =

∫
udµ+

∫
vdν =

∫
ũdµ+

∫
ũbdν

Therefore, γ̃ = (id ×G)#µ.

Also, γ = (id × G̃)#µ = (id ×G)#µ, where G̃(x) = Dxb(x, ·)−1(Dũ(x)) on Dũ.

Claim: G = G̃ on domDu ∩ domDũ µ-a.e.
If b(x, y) = x · y, then G = Du, G̃ = Dũ, V =

{
x ∈ X : ∂u

∂x1 < ∂ũ
∂x1

}
. Aassume µ(V ) > 0. Let µ̂ = µ|V

µ(V ) and

γ̂ =
γ|V ×Y

µ(V ) ∈ Γ(µ̂, ν̂).

Lemma 2.3 means that (id × G̃)#µ̂ = (id ×G)#µ̂, so G#µ̂ = G̃#µ̂.∫
y1dG#µ̂ =

∫
y1dG̃#µ̂ =

∫
∂u

∂x1
dµ̂ =

∫
∂ũ

∂x1
dµ̂

But ∂u
∂x1 < ∂ũ

∂x1 µ-a.e. Contradiction.

For general b ∈ C1(X×Y ) twisted, define dY (G(x), G̃(x)) = sup
∥ϕ∥Lip(y)≤1

ϕ(G(x))−ϕ(G̃(x)) = supϕi(G(x))−

ϕi(G̃(x)) for a countable collection of Lipschitz function.

Consider U±
i =

{
x ∈ X : ±(ϕi(G(x))− ϕi(G̃(x)) > 0

}
. If µ(U±

i ) = 0, ∀i, then G = G̃ µ-a.e. If not, ∃i s.t.

µ(U±
i ) > 0, but it reaches the same contradition.
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2.2 Regularity

b(x, y) = x · y ⇒ F (x) = Du(x) is optimal between dµ+(x) = f(x)dnx and dµ−(y) = g(y)dny.
Claim: u convex ⇒ F is approximately differentiable a.e. and det(DF (x)) = f(x)

g(F (x)) .

Theorem: 2.10:

Let µ, ν ∈ P(Rn) be probability measures, γ ∈ Γ(µ, ν) is b-optimal. Then spt(γ) ⊂ S ⊂ (Rn)2 with
S a 1-Lipschitz graph over diagonal.

Proof. By Theorem 2.2, b-optimality means spt(γ) is b-cyclically monotone. Then (x0, y0), (x1, y1) ∈
spt(γ) ⇒ δxδy ≥ 0, where δx = x1 − x0, δy = y1 − y0.
Change bais, δx = δz−δw√

2
, δy = δz+δw√

2
. Then

0 ≤ δxδy =
1

2
(δz − δw)(δz + δw) =

1

2
(|δz|2 − |δw|2)

⇒ |δw| ≤ |δz|, i.e. |w1 − w0| ≤ |z1 − z0| which is 1-Lipschitz.
Kirszbraun’s extension theorem implies that ∃ 1-Lipschitz W : Rn → Rn s.t. (z, w) ∈ Graph(W ) ⊂ spt(γ).
∀(z, w) =

(
y+x√

2
, y−x√

2

)
with (x, y) ∈ spt(γ).

Definition: 2.10: Area and Coarea

For Lipschitz change of variables F : Rn → Rm, DF : Rn → Rm (all derivatives), define the Jacobian:

JF (x) =

{√
det(DFDF †), n ≤ m√
det(DF †DF ), n > 1m

, ∀A ⊂ Rn measurable, the following holds:

∫
A
JF (x)dHn(x) =

∫
Rm

H(n−m)+(A ∩ F−1(y))dHmin(n,m)(y)∫
Rn

χAJFdHn =

∫
Rm

∫
(χA ◦ F−1)(y)dH(n−m)+(y)

If we approximate with simple functions, we get:∫
Rn

ϕJFdHn =

∫
Rm

∫
(ϕ ◦ F−1)(y)dH(n−m)+(y)

Corollary 4. If A ⊂ Rn has Hn(A) = 0 and F : Rn → Rm is Lipschitz, then Hm(F (A)) = 0

Q: How does the tagent space a.e. to S ⊂ (Rn)2 relate to differentiability of G = Du : Rn → Rn?
Recall Graph(G) ⊂ S = Graph(woverz). Define X(z) = z−W (z)√

2
, Y (z) = z+W (z)√

2
. Since W is 1-Lipschitz,

then X,Y are Lipschitz.
Define Zbad = {z ∈ Rn : DW (z) does not exist}. Hn(Zbad) = 0, so by the corollary, Hn(X(Zbad)) =
0.

Claim: G = Du is countably Lipschitz, i.e. ∪iXi ⊂ dom(G) s.t. G|Xi has Lipschitz constant i and
Hn(dom(G) \ ∪iXi) = 0. Then by Theorem 2.5 and extension, G is approximately differentiable Hn-
a.e.
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Proof. Heuristically y = G(x) µ-a.e. Y (z) = G(X(z)), z+W (z)√
2

= G
(
z−W (z)√

2

)
.

Differentiate both sides, 1√
2
(I +DzW (z)) = DxG|X(z)

1√
2
(I −DzW (z)).

Then DxG|X(z) = (I +DzW (z))(I −DzW (z))−1 provided that I −DzW (z) is invertible.

Let Z1 = {z : I −DzW (z) is not invertible}. We show that Hn(X(Z1)) = 0.
Since X(z) is Lipschitz, z ∈ Z1 ⇒ JX(z) =

√
det(DFDF †) = 0.

0 =

∫
Z1

JX(z)dHn =

∫
Rn

∫
Z∩X−1(x)

dH0(Z)dHn(X) ≥ Hn(X(Z1))

Note also that Y (z) = G(X(z)) implies Y ◦X−1 = G. X has a Lipschitz inverse except on Z1. This applies
implicit function theorem for Lipschitz maps.

Example: If u : Rn → R is convex and Du(0) ̸= 0 exists. Assume ∂u
∂xn

̸= 0, then there exists difference of
convex functions W : Rn−1 → R s.t. u(x1, ..., xn−1, xn) = 0 near 0, then xn = W (x1, ..., xn−1).

However, this does not work for Lipschitz functions due to potential bad sets.

Theorem: 2.11: Clarke 1976

Let F : Rn → Rn be Lipschitz. Define ∂F (0) to be the convex hull of{
y ∈ Rn : xi ∈ dom(DF ) ⊂ Rn, y = lim

i→∞
DF (xi), lim

i→∞
xi = 0

}
. If 0 /∈ ∂F (0), then F is invertible

and has Lipschitz inverse in a neighborhood of 0.

Theorem: 2.12:

Let X,Y be compact subset of Rn. If γ is b-optimal and b ∈ C2(X × Y ) is non-degenerate at
(x0, y0), i.e. det ∂2b

∂xi∂yj
̸= 0, then ∃ϵ > 0 s.t. spt(γ) ∩ Bϵ(x0, y0) ⊂ S, where S is an n-dim Lipschitz

submanifold of R2n.

Proof. Since det ∂2b
∂xi∂xj ̸= 0, there exists new coordinate ỹ(y) s.t. b̃(x, ỹ) = b(x, y) with ỹ(y0) = 0 and

∂2b
∂xi∂yj

(x0, 0) = δij , ∂2b̃
∂xi∂ỹj

(x, ỹ) = δij + o((x− x0)
2 + ỹ2).

WLOG, set x0 = 0, z = ỹ+x√
2

, w = ỹ−x√
2

.
∀(x0, y0), (x1, y1) ∈ spt(γ), define ∆(x1, y1, x0, y0) = b(x1, y1) − b(x0, y0) − b(x1, y0) − b(x0, y1). ∆ ≥ 0 on
(spt(γ))2. Let ∆0(x, y) = ∆(x, y, x0, y0). Apply Taylor expansion:

∆0(x0 + δx, y0 + δy) = (δx, δy)D
2
xyb

(
δx
δy

)
+ o(|δx|2 + |δy|2)

0 ≤ ∆̃0(x0 + δx, 0 + δỹ) = ⟨δx, δỹ⟩+ o(|δx|2 + |δy|2)

≤ ⟨δx, δỹ⟩+
η

2
o(|δx|2 + |δy|2),

for all η > 0. Then ∃δ > 0, (x1, ỹ1) ∈ Bϵ(x0, y0) s.t.

0 ≤ 1

2
(|δz|2 − |δw|2) +

η

2
(|δw|2 + |δz|2) ≤ (1 + η)|δz|2

Then |δw| ≤
√

1+η
1−η |δz|. The transformation W (z) is Lipschitz.
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Summary of Conditions:
Let ∆0(x, y) = b(x, y) + b(x0, y0)− b(x, y0)− b(x0, y) ≥ 0 on spt(γ) ⊂ Graph(G) γ-a.e.

(B0) b ∈ C(X × Y )

(B1) Twist: ∀x0 ∈ X ⊂ Rm, y ∈ Y ⊂ Rn, Dx0b(x, y) is 1-1. b is twisted ⇔ b and b̃ are twisted ⇔ ∆0(x, y)
has no critical points except (x, y) = (x0, y0). m = n

(B2) Non-degeneracy: det ∂2b
∂xi∂yj

(x0, y0) ̸= 0 for (x0, y0) ∈ X × Y , m = n. ∆0(x0 + δx, y0 + δy) =

1
2(δx, δy)D

2
xy∆0

(
δx
δy

)
+ o(|δx|2 + |δy|2) as (δx, δy) → 0 if b ∈ C3. D2

xy∆0 =

[
0 D2

xyb

(D2
xyb)

† 0

]
∈ R2n×2n.

detD2
xy∆0 = (−1)n detD2

xyb.
Then ∆0(x0 + δx, y0 + δy) = δxD

2
xyb(x0, y0)δy + o(|δx|2 + |δy|2) if b ∈ C2.

Also ∆0(x0 + δx, y0 − δy) = −∆0(x0 + δx, y0 + δy) + o(|δx|2 + |δy|2).
Let H0 = D2

xy∆0. If H0

(
δx
δy

)
= λ

(
δx
δy

)
, then H0

(
δx
−δy

)
= −λ

(
δx
δy

)
. So dianoalizing the symmetric matrix

H0 produces ± eigenvalue pairs.

If γ ∈ Γ(µ, ν) is b-optimal, then B2 holds at (x0, y0) ∈ spt(γ) ⇒ spt(γ) ∩ Bϵ(x0, y0) ⊂ S of dim n in R2n

a Lipschitz submanifold for ϵ ≪ 1. S : R → (x(s), y(s)) is a smooth curve in spt(γ) with (x(0), y(0)) =
(x0, y0). Then

0 ≤ ∆0(x(s), y(s)) =
st

2
(ẋ(0), ẏ(0))H0

(
ẋ(0)

ẏ0

)
+ o(s2 + t2) as (s, t) → 0

(ẋ(0), ẏ(0))H0

(
ẋ(0)

ẏ0

)
≥ 0

Assume spt(γ) ⊂ Graph(G), G : X → Y smooth, u(x) + v(y)− b(x, y) ≥ 0. Equality on y = G(x).
F.O.C. gives Du(x) = Dxb(x,G(x)). S.O.C. gives D2u(x) − D2

xxb(x,G(x)) ≥ 0. Since functions are
smooth, differentiating F.O.C. gives D2u(x) −D2

xxb(x,G(x)) = D2
xyb(x,G(x))DG(x). Take det over both

sides,

det(D2u(x)−D2
xxb(x,G(x))) = detD2

xyb(x,G(x)) detDG(x)

Let dµ(x) = f(x)dnx, dν(y) = g(y)dny. Since G is a smooth diffeomorphism, |detDG| = f(x)
g(G(x)) .

Twist (B1) ⇒ G(x) = Dxb(x, ·)−1Du(x) = Yb(x,Du(x)). Then

g(Yb(x,Du(x))) det(D2u(x)−D2
xxb(Yb(x,Du(x)))) = | detD2

xyb|f(x)

This is the Monge-Ampere equation (prescribed Jacobian equation)

If b(x, y) = x · y, Y (x, y) = y, g(Du) detD2u = f(x).

We need convexity of Y and log g, log f ∈ C∞∩L∞ to have smoothness of u and G. (Caffarelli’ 1990)
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3 Asymmetric Information (Principal Agent Framework)

Monopolists: Single entity (seller) on one side of the market, parametrized by y ∈ Y ⊂ Rn.
Agents: Large population of heterogenous agents (Each agent has different preferences) parametrized by
x ∈ X ⊂ Rm.

x is private information. Public knowledge is µ ∈ P(X), dµ(x) =relative frequency of agent type x ∈
X.

Assume monopolists are selling cars. The public knowlege are: ϕ(x, y, z) =value of car y to agent x at price
z. Assume ∂ϕ

∂z < 0.
π(x, y, z) =monopolists’ profit from selling y to x at price z

Assume there is an outside option yϕ ∈ Y .

Agent problem:

u(x) = sup
y∈Y

ϕ(x, y, v(y))

Agent x buys a car yϕ,v(x) ∈ argmax
y∈Y

ϕ(x, y, v(y)). Hopefully uniquely attained µ-a.e.

Monopolists problem: choose a price menu v : Y → R s.t. v(yϕ) = 0 to maximize expected profits:

sup
v,v(yϕ)=0

∫
π(x, yϕ,v(x), v(yϕ,v(x)))dµ(x)

If v is l.s.c, or Y is compact, then the supremum can be attained.

This is the Monge type formulation.

In Kantorovich setting:
Seek γ ≥ 0 on X × Y , ΠX

#γ = µ, u(x) = ϕ(x, yϕ,v(x), v(yϕ,v(x))). Let vϕ = u, u(x) + v(y) − b(x, y) =

vϕ(x)− ϕ(x, y, v(y)) ≥ 0 and equality is achieved γ-a.e.

sup
v:Y→Rl.s.c.,v(yϕ)=0

sup
γ

∫
π(x, y, v(y))dγ(x, y).

If Y compact, π, ϕ continous, v l.s.c. s.t. v(yϕ) = 0, then supremum can be attained. Maximum problem
on γ is an infinite-dimensional linear programming problem, given γ is convex and compact. However,
supremum on v is more complicated.

Example: Consider the quasilinear case ϕ(x, y, z) = b(x, y) − z, π(x, y, z) = z − a(y), where a, b can be
non-linear functions.
Monopolists:

∫
πdγ =

∫
v(y)− a(y)dγ

Agent x: u(x) = sup
y

b(x, y)− v(y).

u(x) + v(y)− b(x, y) ≥ 0 on X × Y and equality holds a.e.
Let U =

{
u : X → R : u = vϕ for some v : Y → R l.s.c.

}
. If b ∈ C1, then u ∈ U are equi-Lipschitz. If

b ∈ C2, then u ∈ U are equi-semiconvex. In both cases, U is convex via Ascoli-Arzela. Then∫
v(y)− a(y)dγ =

∫
b(x, y)− u(x)− a(y)dγ

Equality holds γ-a.e. ⇔ spt(γ) ⊂ ∂bu. When U is compact (b ∈ C1), sup is attained.
spt(γ) ⊂ ∂bu ⇒ γ is b-optimal hence optimal transport theorey applies.
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Rochet-Chone (1998) Formulation: Suppose n = m, yϕ = 0 ∈ Rn, Y = [0,∞)n, dµ(x) = f(x)dHn,
yb(x) = Du(x). u = v∗ is convex. Solve for

max
u≥0,u convex

∫
X
(xDu(x)− u− a(Du(x)))f(x)dHnx

The function is concave in u if y 7→ a(y) is convex. Choose a(y) = 1
2 |y|

2, we get

max
u,u′,u′′≥0

∫ (
xDu− u− 1

2
|Du|2

)
=max

∫ (
−1

2
(Du− x)2 −

(
u− 1

2
|x|2
))

f

=min

∫ (
1

2
(Du− x)2 +

(
u− 1

2
|x|2
))

f

Consider m = n = 1, f(x) = χ[a,a+1](x), then the optimization problem becomes:

min

∫ a+1

a

(
1

2
(u′ − x)2 +

(
u− 1

2
x2
))

Simpler Version (Obstacle problem): min
w≥h on Ω

∫
Ω

1

2
|Dw|2dx s.t. w vanishes on ∂Ω and w ∈ W 1,2(Ω).

Then △w = 0 on {w > h}, and w = h on Ω \ {w > h}. There are fewer constraints on w.

Let L(u) =

∫
(c(Du(x)) + u(x)− xDu(x))f(x)dHnx.

The Rochet-Chone is solving for − min
u≥0convex, Du(x)⊂conv(Y )

L(u). If c is convex, then L(u) is convex, i.e. if

both u0, u1 minimize, so does (1−t)u0+tu1, ∀t ∈ [0, 1]. If c is strictly convex, then L(u1/2) < L(u0)+L(u1)
unless Du0(x) = Du1(x) f -a.e.
Uniqueness: If Hn ≪ µ ≪ Hn and X ⊂ Rn convex (or open + connected), then u0 = u1 + c1 inside X.
L(u0) = L(u1) + c1, c1 = 0

Corollary 5. If the solution is unique, it inherits any symmetries of the problem.

Example: X ⊂ Y = [0,∞)n. Let X̂ = {(x1, ..., xn) ∈ Rn : (|x1|, ..., |xn|) ∈ X}, Ŷ = Rn.
Define f̂(x1, ..., xn) = f(|x1|, ..., |xn|), L̂(u) =

∫
X̂(c(Du(x)) + u(x)− xDu(x))f̂(x)dHnx.

û ∈ argminu≥0 convex L̂(u). By uniqueness, û(x1, ..., xn) = û(|x1|, ..., |xn|). This is an unconditionally
symmetric minimizer.

Claim: û unconditional ⇒ if x ∈ X ⊂ Y , then Du(x) ∈ Y = [0,∞)n.

Proof. Assume not, i.e. there exists x ∈ X with y = Du(x) /∈ Y , say yi < 0.
Define x̂ = (±x1, ...,±xn). Choose − if yi < 0. ŷ = Dû(x̂) ∈ Y .
0 ≤ ⟨Dû(x̂)−Du(x), x̂− x⟩ < 0. (from convexity of û) Contradiction.

Theorem: 3.1: Rochet-Chone

Let X ⊂ Y = [0,∞)n, c strictly convex, c ∈ C1,1(Rn). u0 ∈ arg min
u≥0 convex

L(u) ⇔ L(u0) ≤ L(u0+w)

∀w ≥ 0 convex or w convex and spt(w) ⊂ {u > 0}.

Proof. (⇒) is obvious. Consider ⇒.
Recall that to minimize E(x) on Ω ⊂ Rn a compact convex set:
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1. If E ∈ C1(intΩ), then DE(x0) = 0 ⇔ x0 ∈ intΩ is a minimizer

2. If E ∈ C1(Ω) and ∂Ω ∈ C1, then DE(x0) = λn̂Ω(x0), where λ ≥ 0, λ = 0 unless x0 ∈ ∂Ω ⇔ x0 ∈ ∂Ω
is a minimizer.

3. Non-smooth version: ELKKT (Euler-Lagrange-Karush-Kuhn-Tucker) E,Ω convex,
∂E(x0) ∩NΩ(x0) ̸= ∅, where NΩ(x0) = {v ∈ Rn : v(x− x0) ≤ 0,∀x ∈ Ω} (cone of generalized
normals) ⇔ x0 minimizes E.

Let U = {u ≥ 0 convex on Rn}, U is a convex cone. By ∞-dim version of ELKKT, DL(u0) ∩NU (x0) ̸= ∅
⇔ u0 ∈ argmin

u∈U
L(u) and v ∈ Nu(x0) has v(u− u0) ≤ 0,∀u ∈ U .

Consider a small perturbation on L(u):

d

dϵ

∣∣∣∣
ϵ=0

L(u+ ϵw) =
d

dϵ

∣∣∣∣
ϵ=0

∫
X
(c(Du+ ϵDw) + u+ ϵw − xDu− ϵxDw)fdx

=

∫
X
(Dc|DuDw + w − xDw)fdx

=

∫
∂X

(Dc|Du − x)n̂X(x)f(x)w(x)dHn−1x+

∫
X
(f +∇ · ((x−Dc|Du)f))wdx

=

∫
Rn

δL

δu
wdx, where

σ :=
δL

δu
= (Dc|Du − x)n̂xfdH

n−1|∂X + (f +∇ · ((x−Dc|Du)f))dHn|X

If u > 0 and D2u ≥ λI > 0 on Ω ⊂ X open and smooth, then u + ϵw ∈ U . If w ∈ C2
C(Ω), then

d
dϵ

∣∣
ϵ=0

L(u0 + ϵw) = 0. This gives the E-L equation:{
1 = f−1∇ · ((x−Dc|Du)f) = ∇ · (Dc|Du − x) + ⟨Dc|Du, D log f⟩ on Ω

(Dc|Du − x) · n̂Xf = 0 on ∂X.

Suppose c(y) = 1
2 |y|

2, Dc(y) = y, f = χX . These give a Poisson equation + Neumann BC:{
∆u = n+ 1

(Du− x) · n̂ = 0

Assume n = 1.

In the homogenous case, µ = δx0 . L(u) = c(y) + u(x0) − x0 · y, minimum is attained when Dc(y0) = x0.
u(x) = max(0, y0(x− x0)), i.e. y0 = (Dc)−1(x0). It is the undistorted choice of consumer x0.

In heterogenous case, X = [a, a+ 1] ⊂ Y = [0,∞).{
u′′ = 2 on X

(u′ − x) · n̂ = 0

When a ≤ 1, u(x) =

{(
x− a+1

2

)2
, x ≥ a+1

2

0, else
. A positive fraction of consumers don’t buy (buyer’s

market).

When a > 1, u(x) =
(
x− a+1

2

)2 − (a−1
2

)2 (seller’s market)
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Distortion: Always downwards. x − u′(x) = a + 1 − x ≥ 0. As a increases, more seller’s market, more
distortion.

σ = δL
δu = (n+ 1−∆u)dHn|X + (Du− x)n̂XdHn−1x|∂X is a measure of finite total variation.

For a given u0, we define the equivalence relation and class by x ∼ x′ ⇔ Du0(x) = Du0(x
′), x̃ =

{x′ ∈ X : Du0(x) = Du0(x
′)} = ∂u∗0(Du0(x)) ⊂ Rn, where u∗0(y) = sup

x∈X
x · y − u0(x).

Let Xi = Ωi = {x ∈ X : dimx̃ = n− 1}.

Definition: 3.1: Convex Order

Let µ, ν ∈ m+(X), X ⊂ Rn, U any convex cone, µ ≤U ν ⇔
∫
udµ ≤

∫
udν for all u ∈ u ⊂ C(X).

Example: If U = {u : X → R convex}, ≤cx=≤U is called convex order or second order stochastic domi-
nance.

Definition: 3.2: Sweeping Operator

A sweeping operator is an operator T : x ∈ X → Tx ∈ P(X) s.t.
1. ∀E ⊂ X Borel, x → Tx(E) is also Borel
2. x =

∫
X zdTx(z), ∀x ∈ X

Given ω ∈ P(X), define Tω ∈ P(X) by∫
X
ϕdTω =

∫
X

(∫
X
ϕ(z)dTx(z)

)
dω(x)

Theorem: 3.2: Strassen

Let µ, ν ∈ P(X) s.t. µ ≤cx ν if and only if there exists a sweeping operator T s.t. Tµ = ν.

Lemma: 3.1: Restoring Neutrality

Let U0 = {u : U + u ≥ 0}. There exists a Lagrange multiplier λ ∈ m+(X) s.t. u ∈ argmin
U0

L(u) ⇔

u ∈ argmin
U

L(u)− λu. In fact, λ ∈ m+({u0 = 0}).

Corollary 6. For δL
δu = σ = σ+ − σ−, ∃λ ∈ P({u0 = 0}), σ − λ = (σ − λ)+ − (σ − λ)− = ω+ − ω− s.t.

ω− ≤U ω+, σ− ≤U σ+.

Corollary 7. (Du0)#σ = δ0 and (Du0)#ω
− = (Du0)#(Tω

−) = (Du0)#ω
+.

Lemma: 3.2:

If ω+ = Tω− for a sweeping operator T , then Tx(X − x̃) = 0 ω−-a.e. x. i.e. sweeping only occurs
within equivalent classes.
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Theorem: 3.3: Disintegration of Measures

Given X,Y Polish, F : X → Y Borel, µ ∈ P(X). Then ∃ {µy}y∈Y ⊂ P(X), ν = F#µ-a.e. y statisfies
µy(F

−1(y)) = 1 and ν-a.e. µy ∈ P(X) is unique s.t. ∀ Borel test functions ϕ ≥ 0 on X.∫
X
ϕdµ =

∫
Y

(∫
X
ϕ(z)dµy(z)

)
d(F#µ)(y)

This is similar to Fubini’s and Bayes’ theorem. All conditional probability measures are unique. For us
F = Du0, µ = ω+, ν = ω−.

Corollary 8. Not only ω− ≤cx ω+, but the conditional measures ω−
y ≤cx ω+

y for ν = (Du0)#ω
−-a.e. y.

Example: For n = 1, f = χ[a,a+1], σ = δL
δu = (2−u′′)dH|X +(u′−x)n̂dH0x. Ω0 = [a, x0], Ω1 = (x0, a+1].

Figure 1.

σ|Ω0 = 2dH|[a,x0] − x · n̂a = 2χ[a,x0] + adH0

1 =

∫
σ|Ω0 = 2(x0 − a) + a = 2x0 − a

x0 =
a+ 1

2

Figure 1: 1D Example

Example:For n = 2, f = χX , where X = [a, a+ 1]2. Figure 2.
Assume a > 7

2 ,Ω0 = {u0 = 0}. Then

σ|Ω0 = 3dH2|Ω0 − x · n̂dH1|Ω0∩∂X

1 =

∫
σ|Ω0 = 3h2 + 2ah

h =
2a

3

(
−1 +

√
1 +

3

2a2

)
∼ 1

2a
as a → ∞

Summarization With b(x, y) = x · y, a(y) = 1
2 |y|

2, f = 1Ω, where Ω ⊂ Rn is open and convex.

E(u) =

∫
Ω

(
1

2
|Du− x|2 +

(
u− 1

2
|x|2
))

dx

We want to minimzie E(u) on U0, where U = {u : Ω → Rn convex}, U0 = {u : u+ U ≥ 0}. Define

E′
u(w) =

d

dλ

∣∣∣∣
λ=0

E(u+ λw) =

∫
Ω
wdσ +

∫
Ω
(n+ 1−∆u)wdHn(x) +

∫
∂Ω

(Du− x)n̂wdHn−1x
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Figure 2: 2D Example

Lemma: 3.3: Variational Lemma

If u ∈ U0, E(u) ≤ E(u) forall u ∈ U0, w = u− u, then
1. E′

u(w) ≥ 0
2. E′

u(u) ≥ 0
3. E′

u(−w) < 0 strictly unless u = u+const

Corollary 9. Normal distortion is never inward, i.e. (Du(x)− x) · n̂Ω(x) ≥ 0,∀x ∈ ∂Ω s.t. n̂ is unique

Proof. WLOG, assume ∂Ω ∈ C1, strictly convex (otherwise approximate)
Let x0 ∈ ∂Ω. Define v(x) = u(x)− u(x0)−Du(x0)(x− x0) ≥ 0, v(x0) = 0
WLOG, assume x0 = 0, n̂(x0) = (1, 0, 0, . . . ). If not, perform translation.
Set p0(x) = u(x0)+Du(x0)(x−x0) the Taylor expansion. ût(x) = n+1

2 (x1+t)2+p0(x), and ut = max {u, ut}.
Ut = {x : ut > u} ⊂ {x : −t ≤ x1 ≤ 0}. Hence, lim

t→0
Ut = {x0 = 0}.

By Lemma 3.3,

0 < E′
ut
(w) =

∫
Ut∩∂Ω

(Dût − x) · n̂ΩdH
n−1(x),

if w = ut − u =

{
ût, in Ut

0, else

By Theorem 3.1 and Theorem 3.3,

u ∈ argmin
U0

E(u) ⇔ E′
u(w) ≥ 0, ∀u+ w ∈ U0 ⇔

∫
wdσx̃ ≥ 0 a.e.-x

The last inequality is also equivalent to
∫

wdσ+
x̃ ≥

∫
wdσ−

x̃ .

In the equations, x̃ =
{
x′ ∈ Ω : Du(x) = Du(x′)

}
and∫

Ω
ϕdσ± =

∫
Du(Ω)

[∫
x̃
ϕ(z)dσ±

x̃ (z)

]
d(Du#σ

±)(x)

Consider the 2D example with a ≫ 1 (Figure 3). Split Ω1 into Ω0
1 (where everything is well-behaved) and

Ω±
1 (symmetric regions).
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Figure 3: 2D Example a ≫ 1

In Ω0
1: Perform a transformation of basis, let z = x1 + x2, w = x1−x2

2 , dx1dx2 = 2dzdw.

u(x1, x2) = g(x1 + x2) = g(z), Du = (g′, g′),∆u = 2g′′

dσ(z, w) = (3−∆u)dx1dx2|Ω0
1
+ (Du− x) · n̂dH1|Ω0∩∂Ω

= 2(3− 2g′′)dzdw + (a− g′)

(∣∣∣∣12dz − dw

∣∣∣∣
x2=a

+

∣∣∣∣12dz + dw

∣∣∣∣
x1=a

)
Fix z, integrate over x̃, i.e. over w ∈

(
a− z

2 , a+ z
2

)
.

0 =

∫
x̃
dσ =

∫ a+ z
2

a− z
2

σ(z, dw) = 2(3− 2g′′)(z − 2a) + 2(a− g′)

This is an ODE for g, with BCs: g(z0) = g′(z0) = 0. Ω ∩ ∂Ω0 = {z = z0}.
Homogenous part solved by power law, ansatz with power −1. This leads to

g′(z) =
3

4
z − a

2
+

const
2(z − 2a)

In Ω−
1 : Let x(r, θ(t)) = (a, h(θ)) + r(cos θ, sin θ) and u(x(r, θ)) = b(θ) +m(θ)r = u(r, θ).

Assume (r, θ) 7→ x(r, θ) is locally bi-Lipschitz.

dH2|Ω−
1
=
∣∣h′ cos θ + r

∣∣ drdθ
dH1|Ω1∩∂Ω =

∣∣h′(θ)∣∣ dθ
Du(x) =

[
cos θ − sin θ
sin θ cos θ

] [
m
m′

]
D2u(x) =

m′′ +m

h′ cos θ + r

[
sin2 θ − sin θ cos θ

− sin θ cos θ cos2 θ

]
b′(θ) = h′(θ)

∂u

∂x2
(x)

This is because ∂(x1,x2)
∂(r,θ) =

[
cos θ sin θ

−r sin θ h′ + r cos θ

]
and det = h′ cos θ+r, and we apply chain rule and matrix

inversion to get all the equalities.

Therefore,

dσ(r, θ) = (n+ 1−∆u)dH2|Ω + (Du− x) · n̂dH1|∂Ω

±dσ(r, θ) =

(
3− m′′ +m

h′ cos θ + r

)
(h′ cos θ + r)drdθ + (Du− x) · n̂Ωδ0(r)h

′(θ)dθdr

= (3(h′ cos θ + r)−m′′ −m)drdθ + (Du− x) · n̂Ωδ0(r)h
′(θ)dθdr
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For Ω−
1 in a ≫ 1, 0 < r < R(θ), θ ∈ [θ0, 0]. Since σ+

x̃ ≥ σ−
x̃ , the singular term is in σ+

x̃ and not in σ−
x̃ .

Either h′ > 0 and choose dσ(r, θ), or h′ < 0 and choose −dσ(r, θ), but as we will see, the second choice can
be ruled out.

0 = ±
∫ R(θ)

0
σ(dr, θ) = (3h′ cos θ −m′′ −m)R+

3

2
R2 + (Du− x) · n̂Ωh

′(θ)

0 = ± 1

R2

∫ R(θ)

0
rσ(dr, θ) = (3h′ cos θ −m′′ −m)

1

2
+R

Given R : [θ0, 0] → [0,∞) Lipschitz, and θ0, h(θ0), we can solve for m(θ), h(θ) subject to ICs:

1. a ≫ 1, m(θ0) = 0, m′(θ0) depends on the initial slope of the line

2. a ≪ 1, m(θ0) = m′(θ0) = 0

Then (Du− x) · n̂Ωh
′(θ) = R2

2 > 0, so −dσ(r, θ) cannot happen.

For Ω2,

{
∆u = 3

(Du− x) · n̂Ω = 0 on ∂Ω
, u1 = u2,

∂u1
∂u = ∂u2

∂u on ∂Ω1 ∩ ∂Ω2, u ∈ C1,1
loc ∩ C1(Ω).

b′ = h′ ∂u
∂x2

= h′(m sin θ +m′ cos θ). Once h′,m,m′ are solved,

b(θ̂) = b(θ0) +

∫ θ̂

θ0

h′(θ)(m sin θ +m′ cos θ)dθ

On a Lipschitz domain Ω2 and u1 on Ω1, there exists a unique u2 + const s.t. ∆u2 = 3, (Du− x) · n̂Ω = 0
on ∂Ω ∩ ∂Ω2 (Fixed Boundary), and ∂u1

∂u = ∂u2
∂u on ∂Ω1 ∩ ∂Ω2 (Free Boundary)

Claim: At most one such choice {R(θ)}θ0<θ<0, h(θ0) and θ0 exist, such that u2 = u1 + const on free
boundary and u is convex.
Conjecture: There is at least one such choice.

Corollary 10. Monotonicity and concavity of stingray’s tail. (Figure 4)

Figure 4: Consumption Region a ≫ 1

Proof.

e(θ) = y2 =
∂u

∂x2
= m′ cos θ +m sin θ ≥ 0

f(θ) = a− y1 = (Du− x) · n̂ = m′ sin θ −m cos θ + a ≥ 0

−dy1
dy2

=
df

de
=

f ′(θ)

e′(θ)
=

(m′′ +m) sin θ

(m′′ +m) cos θ
= tan θ < 0

−d2y1
dy22

=
d2f

de2
=

1

e′(θ)

d

dθ
tan θ =

1

(m′′ +m) cos3 θ
> 0
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Lemma: 3.4:

If u : Rn → R is convex (u = u∗∗) and u∗(y) = sup
x∈Rn

⟨x, y⟩ − u(x) is its dual. If (x, y) ∈ ∂u ={
(x0, y0) ∈ R2n : u(z) ≥ u(x0) + ⟨y0, z − x0⟩ ,∀z ∈ Rn

}
and Q = Q† > 0, then for δx = z − x, the

following two statments are equivalent

u(x+ δx) ≥ u(x) + ⟨y, δx⟩+
1

2
⟨δx, Qδx⟩+ o(δ2x) as δx → 0

u∗(y + δy) ≤ u(y) + ⟨x, δy⟩+
1

2

〈
δy, Q

−1δy
〉
+ o(δ2y) as δy → 0

Proof. We only need to prove the ⇒ direction, and the other direction follows from duality.

WLOG, take x = y = 0, u(0) = 0. Assume u(δx) ≥ (1− s)12δxQδx holds on neighborhood Us of 0.
For δu ∈ ∂u(Us) =

⋃
x∈Us

∂u(x), where ∂u(x) = {y ∈ Rn : (x, y) ∈ ∂u},

u∗(δy) = sup
δx∈Us

⟨δx, δy⟩ − u(δx) ≤ sup
δx∈Us

⟨δx, δy⟩ −
1− s

2
δxQδx

F.O.C. gives δy = (1− s)Qδx if δy ∈ ((1− s)QUs) ∩ ∂u(Us), and

u∗(δy) ≤
1

2

〈
δy, ((1− s)Q)−1δy

〉

Lemma: 3.5: Interior Consumption

Fix u optimal. Let x0 ∈ Ω ∩ domD2u. If Du(x0) ∈ int(D(Ω)), then ∆u ≥ n + 1. If in addition,
x̃0 = {x0}, then ∆u(x0) = n+ 1.

Proof. Assume x0 ∈ Ω ∩ domD2u with Du(x0) ∈ int(D(Ω)), but ∆u+ sn < n+ 1 for some s > 0.
WLOG, take x0 = u(x0) = Du(x0) = 0.
Then u(x) < 1

2

〈
x, (D2u(x0) + sI)x

〉
near x0 = 0.

Let v(y) = 1
2

〈
y, (D2u(x0) + sI)−1y

〉
, then u∗(y) > v(y) in a punctured neighborhood of 0.

The connected component yh of {u∗ < v + h} containing y0 = 0 shrinks to {0} as h → 0.

Let vh(y) =

{
v(y) + h on yh

u∗(y) otherwise
, the max of u∗ and v + h, and uh = v∗h ≤ u∗ strictly at x0 = 0.

However, D2vh = (D2u(0) + sI)−1 throughout yh, so ∆uh ≤ ∆u(x0) + ns < n+ 1 on {uh < u}.
But 0 < E′

uh
(uh − u) =

∫
(n+ 1−∆uh)(uh − u) + 0 which gives a contradiction, since n+ 1−∆uh > 0,

but uh − u < 0.

Theorem: 3.4: PDE Laplacian

u ∈ C2(Ω) ∩ C(Ω) satisfies ∆u = 0 a.e. if and only if ∀x0 ∈ Ω and Br(x0) ⊂ Ω, u(x0) =∫
∂Br(x0)

u(x)dHn−1(x).

Corollary 11. u as above is C∞(Ω) (smooth).
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Corollary 12. If u as above satisfies u ≥ 0 on Ω, but u(x0) = 0, then u = 0 throughout Ω.

Theorem: 3.5: All Non-trivial Bunches Reaches ∂Ω

Suppose Ω ⊂ Rn is a convex, open, bounded subset.
1. Ω0 =

{
x ∈ Ω : Hn(x̃) > 0

}
⊂ {x : u = 0}, where x̃ is the equivalence class.

2. If x ∈ Ω1 ∪ · · · ∪ Ωn−1, then x̃ ∩ ∂Ω ̸= ∅
3. Ωn =

{
x ∈ Ω : x̃ = {x}

}
is relatively open in Ω and u ∈ C∞(Ωn ∩ Ω)

Proof. 1. Let x0 ∈ Ω0. Choose w = ±u, if −u also works, then the equality holds

0 ≤ E′
u(w) =

∫
Ω
(n+ 1−∆u)wdHn +

∫
∂Ω

(Du− x) · n̂ΩwdH
n−1

0 = E′
u(u)|x̃0 =

∫
x̃0

(n+ 1−∆u)u+

∫
x̃0∩∂Ω

(Du− x) · n̂Ωu

Note that ∆u = 0 on the equivalence class, so all terms are nonnegativem and hence u = 0 a.e. x̃0. −u is
affine on the equivalence class, so the equality holds.

2. For a contradiction, suppose ∃ {x0} ≠ x̃0 ⊂ Ω and x̃0 ∩ ∂Ω = ∅. Then y0 = Du(x0) ∈ int(Du(Ω)).
But u ∈ C1,1 and Xh =

{
x ∈ Ω : u(x) ≤ uh(x) = u(x0) +Du(x0)(x− x0) + h

}
Then x̃0 ⊂ Ω as h → 0. Du(Xh) ⊂ Du(Ω) for 0 < h ≪ 1 compactly.
By Lemma 3.5, ∆u ≥ n+ 1 a.e. Xh. Setting u = max(u, uh) yields.:

0 ≤ E′
u(u− u) =

∫
Xh

(n+ 1−∆u)(u− u)dHn +

∫
Xn∩∂Ω

(Du− x) · n̂Ω(u− u)dHn−1

Note u > u, ∆u ≥ n+ 1 and the boundary term vanishes, so RHS≤ 0.
To make the equality true, we need ∆u = n+ 1 a.e. on Xh.
Let j ∈ {1, ..., n}, ∆ujj = 0, because ujj = ∂2

jju ≥ 0. Either ujj > 0 on Xh or Xh ∩ ∂Ω ̸= ∅. Both are
contradictions.

3. Recall ∂u = {(x, y) : u(z) ≥ u(x) + y(z − x),∀z ∈ Rn} ⊂ Rn × Rn is closed.
Claim: x0 ∈ Ωn ∩ Ω ⇒ Du(x0) ∈ int(Du(Ω)).

Define u(x) =

{
u(x), x ∈ Ω ⊂ Rn

∞, else
, u∗(y) is Lipschitz.

∀yk → Du(x0), ∃xk ∈ Ω s.t. (yk, xk) ∈ ∂u∗ i.e. (xk, yk) ∈ ∂u.
If xk → x∞, then (x∞, Du(x0)) ∈ ∂u ⇒ x∞ = x0.
If x0 ∈ domD2u, then ∆u(x0) = n+ 1. Therefore, ∆u = n+ 1 Hn-a.e. on Ωn ∩ Ω.
Openness of Ωn ∩ Ω follows from 2. Hence u ∈ C∞(Ωn ∩ Ω).

Lemma: 3.6:

R(θ) which is the diameter of equivalence class of x(θ) is upper semi-continous.

Proof. If u convex is affine on [ak, bk] ⊂ Rn, and (ak, bk) → (a∞, b∞), then u is affine on [a∞, b∞].

Lemma: 3.7:

Two disjoint segments of length ≥ 2δ in the plane whose midpoints are distance 2ϵ aprt make an
angle 2θ s.t. arctan θ ≤ ϵ

δ . i.e. as ϵ → 0, θ(mid point) has Lipschitz constant 1
δ .
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Lemma: 3.8:

0 ≤ (Du(x0)− x0) · n̂ ≤ Cdiam(x̃0), where C = sup
Bϵ(x0)

∆u.

Let w = u−u1 ≥ 0. If ∆w = f(x)χ{u>0} ≥ 0, f ∈ C(x0 = 0), then ũ(x) = lim
r→0

u(rx)

r2
exists subsequentially,

if u ∈ C1,1, u ≥ 0, then ũ = f(0)χ{ũ>0} on Rn.

Theorem: 3.6: Caffarelli (1972)

Either ũ is convex and quadratic or half parabola. i.e. after rotation and translation, ũ(x1, ..., xn) ={
f(0)
2 x21, x1 > 0

0, else

If x0 = 0 ∈ ∂ {u > 0} free boundary, then it blows up.

Define Lebesgue upper density θ(x0, z) = lim sup
r→0

Hn(Z ∩Br(x0))

Hn(Br(x0))
, and Lebesgue lower density θ(x0, z) =

lim inf
r→0

Hn(Z ∩Br(x0))

Hn(Br(x0))
. Then, at regular free boundary points, θ(x0, {u > 0}) = 1

2 , and free boundary

may be Lipschitz; at singular free boundary points θ(x0, {u > 0}) = 0, and free boundary is non-Lipschitz
at x0.

Remark 5. If R(θ) is monotone on an interval J ⊂ S′, then R ∈ C(J).

Theory:

1. w detaches quadratically from {w = 0} ⊂ Rn provided f(x) ≥ c0 > 0

2. The Hausdorff dimension of ∂ {w = 0} < n− ϵ(c0) < n ⇒ R(θ) is continous H1-a.e.

3. Caffarelli, Kinderlehrer, and Nirenberg (1977): ∀k ∈ {0, 1, 2, ...}, if f ∈ Ck+2,α and ∂ {u = 0} is C1,
then ∂ {u = 0} is Ck+1,α. Specifically, Cafferalli shows f ∈ C2,α ⇒ ∂ {u = 0} ∈ C1.

Theorem: 3.7: Bootstrapping

If R ∈ C0,1, then R is smooth.

Proof. Suppose R ∈ C0,1 is a neighborhood of a tame ray, then x(0, r) is bi-Lipschitz or a smaller neigh-
borhood.

R2

2
= h′(Du− x) · n̂ 3−∆u =

3r − 2R

h′ cos θ + r

⇒ R ∈ C0,1, u ∈ C1,1 ⇒ h ∈ C1,1 ⇒ coordinates improve to bi-C1,1.

Let r = R, 3−∆u = R
h′ cos θ+R ∈ C0,1, u1 ∈ C2,α(Bϵ(θ0, R(θ0))) for some ϵ and α ∈ (0, 1).

⇒ R ∈ C1,α, provided the ray is transverse to free boundary by CKN-1977. Then h ∈ C2,α ⇒ u ∈ C3,α ⇒
R ∈ C2,α.

Lemma: 3.9:

If Hdim(x̃)(x̃− domD2u) = 0, then ∀ξ ∈ Rn, ∂2
ξξu = ξD2uξ agrees a.e. on x̃ with convex function. In

fact, the relative interior relint(x̃) ⊂ domD2u.
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Corollary 13. ∆u is conves on relint(x̃).

Proof. Fix x0, x1, xt ∈ x̃ ∩ domD2u, ξ ∈ R2, r > 0 with xt = (1− t)x0 + tx1, t ∈ (0, 1).

u(xt + rξ) = u(xt) + rDu(xt)ξ +
r2

2
∂2
ξξ(xt) + o(r2)

u(xt + rξ) ≤ (1− t)u(x0 + rξ) + tu(x1 + rξ)

Substituting the first equation into the second inequality, we get ∂2
ξξ(xt) ≤ (1− t)∂2

ξξu(x0) + t∂2
ξξu(x1).

Proposition: 3.1:

Let x0 ∈ ∂Ω and ϵ > 0, (Du− x) · n̂Ω = 0 throughout Bϵ(x0) ∩ ∂Ω. Then x̃0 = {x0}, i.e. x0 ∈ Ω2.

Proof. Take x0 ∈ ∂Ω and ϵ > 0 as above, w = ∆u− 3 is convex on x̃ by Lemma 3.9.

0 ≤ E′
w(u)|x̃ =

∫
x̃
(3−∆u)w +

∫
x̃∩∂Ω

(Du− x) · n̂w = −
∫
x̃
w2

⇒ w = 0 a.e. Let Ñ =
⋃

x∈Bϵ(x0)∩∂Ω

x̃, ∆u = 3 on Ñ and Ω2.

Recall the ODE on tame part of Ω1:

m′′ +m− 3h′ cos θ − 3

2
R2 = h′(Du− x) · n̂

m′′ +m− 3h′ cos θ = 2R

This gives (m′′ +m− 2R)(m′ sin θ −m cos θ + a) = 3
2R

2 cos θ.

Theorem: 3.8:

Let u optimize for Ω = (a, a+ 1)2, a ≥ 0. Then
1. Ω0 is a convex set including a neighborhood of (a, a) in Ω, i.e. (a, a) ∈ intΩ0 = int {u = 0}
2. The set Ω0

1 of two-ended rays is connected and if a ≥ 7
2 −

√
2, Ω0

1 is non-empty, but if a ≪ 1,
Ω0
1 = ∅.

3. For a > 0, there are exactly two connected components of Ω1 − Ω0
1: one consisting of one-

ended rays intersecting west boundary ΩW . The other intersecting south boundary ΩS . These
one-ended rays are all tame and satisfy the above ODE. For a = 0, Ω1 = ∅

4. The north and east boundaries ΩN ∪ ΩE ⊂ Ω2 and (Du − x) · n̂ = 0 for all x ∈ Ω2 ∩ ∂Ω and
∆u = 3 on Ω2.

5. x ∈ Ω1 ∩ ∂Ω is tame if and only if (Du(x) − x) · n̂ > 0, stray otherwise, happens only at
∂Ω1 ∩ ∂Ω2 ∩ ∂Ω.

Proof. 1. Recall that Ω0 = {u = 0} if Ω0 ̸= ∅. The convexity of {u = 0} and σ ({u = 0}) = δE
δu ({u = 0}) =

1, then int {u = 0} ≠ ∅, hence {u = 0} = Ω0. ∂u
∂xi

≥ 0 for i = 1, 2, by symmtry, (a, a) ∈ Ω0.

4. Claim: (Du − x) · n̂ = 0 on ΩN ∪ ΩE . For a contradiction, suppose a tame ray intersects ΩE with
negative slope, so θ ≥ 0 measured clockwise from (−1, 0).
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σ− ≤ σ+ ⇒ sign of Jacobian dH1(x2) = h′(θ)dθ, so nearby rays are spreading as we move away from ∂Ω.
2-Monotonicity of Du ⇒ if x2 ∈ x̃0 and x3 = x2 + λe1 ∈ ∂Ω for λ > 0. Then

(Du(x3)−Du(x2)) · e1 > 0

(Du(x3)− x3)e1 > 0

(Du(x2)− x2)e1 > 0

⇒ ∂

∂θ
(Du(x(0, θ))− x(0, θ))e1 > 0

Rays continue above x0 all the way to (a+ 1, a+ 1).
One of the rays x̃4 above x0 is two-sided, and cuts off an isoceles triangle T with right-angle at ΩN ∩ ΩE .
Taylor expansion gives

u(x) =

{
u(x), x /∈ T

u(x4) +Du(x4)(x− x4), x ∈ T

Claim: E(u) < E(u) =

∫
Ω

1

2
|Du− x|2 +

(
u− 1

2
x2
)

.

u ≤ u on Ω. For x = (x1, x2) ∈ T ,

x1 ≤ a+ 1 <
∂u

∂x1
(x4) =

∂u

∂x1
(x4) ≤

∂u

∂x1
(x)

∂u

∂x1
(x4)− (a+ 1) > 0

x2 ≤ a+ 1 <
∂u

∂x2
(x5) =

∂u

∂x1
(x5) <

∂u

∂x2
(x).

Then |Du− x|2 ≤ |Du− x|2,∀x ∈ T . Contradiction.

Suppose there are no two-ended rays and instead have single-ended tame rays all the way to the corner. In
this case, we have uniform control on ∆u for any point x ∈ domD2u on these rays of

∞ > C > ∆u− 3 =
2R− 3r

h′ cos θ + r

r=0→ 2R

h′ cos θ
=

4(Du− x) · n̂
R

→ ∞ as R → 0

Contradiction.

3. Similar arguments show no tame ray intersecting either ΩW or ΩS can have nonnegative slope. But we
can have rays of negative slope.
Similarly, arguements show such rays must limit to either Ω0 or Ω0

1.
Strong maximum principle ⇒ lower limit of Ω0

1, if Ω0
1 ̸= ∅, it must lie on ∂Ω0.

Lower limit of any connected component of Ω−
1 either has to be Ω0,Ω

0
1 or have zero length.

2. We want to show that a ≥ 7
2 −

√
2 ⇒ Ω0

1 ̸= ∅.
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Assume Ω0
1 = ∅. Let [(a, x2), (a, x2)] be maximal in Ω1 ∩ ∂Ω.

a− 0 = ∂1u(a, x2)− ∂1u(a, x2)

=

∫ x2

x2

∂2u

∂x1∂x2
(a, x2)dx2

= −
∫ θ

θ

m′′ +m

h′ cos θ
sin θ cos θh′(θ)dθ

= −
∫ θ

θ
(2R+ 3h′ cos θ) sin θdθ because 3−∆u =

−2R

h′ cos θ
when r → 0

< 2 ∥R∥∞
[
cos 0− cos

(
−π

4

)]
+

3

2

∫ x2

x2

dx2

= 2

(
1− 1√

2

)
+

3

2
=

7

2
−
√
2

Then we want to show that a ≪ 1 ⇒ Ω0
1 = ∅.

Let u(0) ∈ argmin

∫
(a,a+1)2

1

2
|Du− x|2 + u− 1

2
x2, u(0) ̸= 0.

Ω
(0)
1 = ∅, Ω(0)

1 ⊃ lim
a→0

Ω
(a)
1 with area 1

3 .

3.1 Regularity

Let u ≥ 0 be convex, Ω be a compact convex subset of [0,∞)n, consider

inf E(u) = inf

∫
(c(Du)− xDu+ u)f(x)dHn(x),

where c(y) = 1
2 |y|

2 or D2c ≥ ϵI > 0.

Theorem: 3.9: Caffarelli-Lions (2006+)

u optimal ⇒ u ∈ C1,1
loc (Ω) with norms ∥u∥C1,1(X′) depending only on X ′ a convex compact subset of

Ω, ∥log f∥C0,1(X′), d(X
′, ∂Ω), and ϵ > 0.

Idea: Estimate energies of locally affine replacement.

Proof. Assuming Lemma 3.10, comparing energy of u to max {u,A} yields

0 ≤ E(max {u,A})− E(u)

=

∫
S
[c(y)− x · y + u]y=y

y=Du(x0)
f(x)dHn(x)

≤

(
c1h− c2

(
h

r

)2

+ h

)
|S| by 2,3 of lemma

Therefore,
(
h
r

)2 ≤ c1+1
c2

h, or h ≤ c1+1
c2

r2.
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Lemma: 3.10:

Assume u ∈ C1(Ω), ∃c1, c2 constant and r0 < d(X ′, ∂Ω) depending only on the same data
(ϵ,Ω, ∥log f∥C0,1(X′) , ∥u∥C1,1(X′)), ∀(x0, y0) ∈ ∂Ω with x ∈ X ′ and 0 < r < r0, ∃A(x) = x · y + β s.t.

1. x0 ∈ S = {x0 ∈ Ω : u(x) < A(x)}
2. 0 ≤ (A− u)(x) ≤ h = sup

x∈Br(x0)
u(x)− u(x0)−Du(x0)(x− x0) on S

3.
1

|S|

∫
S
(c(y)− x · y − c(Du) + xDu)f(x)dHn(x) ≤ c1h− c2

(
h

r

)2

.

Proof. Choose A s.t. 1, 2 holds. Taylor expansion gives

c(y) ≥ c(y) +Dc(y)(y − y) +
ϵ

2
|y − y|2

[c(y)− x · y]y=DA(x)=y
y=Du(x) ≤ −(Dc(DA)− x)(Du−DA)− ϵ

2
|Du−DA|2

Integrate over S to get∫
S
[c(y)− x · y]y=DA(x)=y

y=Du(x) fdHn ≤−
∫
∂S

(Dc(DA)− x) · n̂S(u−A)fdHn−1

+

∫
S
∇ · f(Dc(DA)− x)(u−A)dHn

− ϵ

2

∫
S
|Du−DA|2fdHn

≤ c′′1h|S|+ c1h|S| −
ϵ

2

∫
|Du−DA|2fdHn

The last inequality comes from the following: f is constant. Convexity of S,Ω ⇒ ∇ · x = n.

n|S| =
∫
S
∇ · (x− x0)dH

n =

∫
∂S

(x− x0) · n̂SdH
n−1

≥
∫
∂S∩∂Ω

(x− x0) · n̂SdH
n−1

≥
∫
∂S∩∂Ω

r0dH
n−1

Similarly,∫
∂S

(Dc(DA)− x) · n̂S(u−A)fdHn−1 ≤ f2h

∫
∂S∩∂Ω

(x−Dc(DA)) · n̂

To choose A, WLOG, assume x0 = 0 = Du(x0), h = u(re1), Du(re1) = λe1 for some λ.
Let A(x) = hx1

2r + h
2 , A(re1) = h, A(−re1) = 0, DA(re1) =

h
2re1. (u − A)|(r,x2,...,xn) ≥ 0, with equality at

re1. S = {x ∈ Ω : u < A} ⊂ {x ∈ Rn : −r ≤ x1 ≤ r}.

Now we want to show that
∫
S
|Du−DA|2dHn ≥ c′′2|S|

(
h

r

)2

.

Choose 0 < k < diam Ω
r0

, then kS ⊂ Br0(x0 = 0) ⊂ Ω.
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Let x̃ = P⊥
1 (x1, x2, ..., xn) = (x2, ..., xn) be the projection, ∆Lx̃ = L+

x̃ − L−
x̃ .∫

S
|Du−DA|2dHn =

∫
P⊥
1 (kS)

∆Lx̃

(∫ L+
x̃

L−
x̃

(
∂u

∂x1
− ∂A

∂x1

)2 ∂x1
∆Lx̃

)
dHn−1(x̃)

≥
∫
P⊥
1 (kS)

∆Lx̃(u−A)|L
+
x̃

L−
x̃

1

∆Lx̃
dHn−1

≥
∫
P⊥
1 (kS)

1

2r

(
h(1− k)

2

)2

dHn−1

≥ kn−1

2r

(
h(1− k)

2

)2

Hn−1(P⊥
1 (S))

≥ kn−1

(2r)2

(
h(1− k)

2

)2

|S| (Because Hn(S) ≤ 2rHn−1(P⊥
1 (S)))

= c′′′2 |S|
(
h

r

)2

≥ c1h|S|
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