
MAT1856 Introduction to Mathematical Finance

0 Introduction

Given a bond, we can compound the interests

1. annually: P1 =
∑

i pi(1 + r)−ti

2. n-times a year: Pn =
∑

i pi
(
1 + r

n

)−tin

As n → ∞, we have P∞ =
∑

i pie
−rti .

We call P the dirty price, it is the accrued interest + clean price, which is also equivalent to n
365× Annual

coupon rate, where n is the number of days since last coupon payment.

Zero coupon bonds:
bonds that contain a single cash flow, i.e. a single payment at the time of maturity.

Bond has three variables:

1. Notional (payment to occur at maturity)

2. Price of the bond

3. Time to maturity

We can then calculate the yield r(T ) = − log(P/N)
T , where P is the bond price, N is the notional, and T is

the time to maturity.

Cashflow valuation formula:
Yield curve can then be used to calculate the price of any series of future cash flows.
With dirty price P =

∑
i pie

−rti , we can do the following Bootstrapping to recover yield curve:

P = P1e
−r(t1)t1 + P2e

−r(t2)t2 , where 0 < t1 <
1

2
< t2 < 1

If we have a bond maturity between 6 months and 1 year. The bond has a coupon payment within 6 months
and another payment between 6 months and 1 year.

For maturity less than 6 months, all coupons are zero-coupon bonds.

We can extend to infinity, allowing us to calculate the yield curve for all maturities, assuming coupon
bearing bonds for all maturities.
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1 Fixed Income Mathematical

Yield to maturity in the usual convension: Given a bond with annual compounding, P =
∑

i pi(1 + r)−ti .
We need a more robust mathematical construction.

In mathematical convention, a yield curve/zero curve/discount curve/spot curve is a curve r(T ) such that
for all bonds, dirty price P =

∑
i pie

−r(ti)ti .
Example: for annual componding, this is equivalent to P =

∑
i pi(1 + r(ti))

−ti .
We want to find/build a curve that works for all bonds.

Questions:

• Does the curve exist?

• How do we calculate it?

• How does this curve change through time?

• What else does it give us?

1.1 Basic Definitions

Zero coupon bonds:

• It is bond that pays no coupons

• It contains a single cash flow: a single payment at the time of maturity

• It is characterized by 3 variables:

1. The Notional (payment to occur at maturity)

2. The Price of the bond

3. The Time to maturity

Definition: 1.1: Yield

Yield r(T ) = − log(P/N)
T , where P is the bond price, N is the notional, and T is the time to maturity.

Arbitrage-free Pricing

• If there were zero coupon bonds of all maturity, we can construct r(t)

• Then, all coupon bearing bonds need to be priced as
∑

i pie
−r(ti)ti , which is a linear function, sum of

all possible bonds i with different time to maturity ti

• Otherwise, there would be an arbitrage opportunity (making money for free).

Arbitrage is unstable, so we assume it does not exist. Therefore, the yield curve must exist and be
unique.

Yield Curve Dynamics
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Definition: 1.2: Bond Price and Rate

Consider a zero-coupon bond that, with a payment of P (t, T ) (bond price) at time t, pays $1 at time
T . P (t, T ) = e−r(T−t), thus r(t, T ) = − logP (t,T )

T−t , where t is today, T is term which could be a year
later.

As a function of T , r is smooth. As a function of t, it is random.

We asume non-negative interest rates, i.e. 0 ≤ r(t, T ) ≤ 1, and no transaction costs, i.e. P (t, t) = 1
(efficient market)

Definition: 1.3: Short Rate

Short rate is the instantaneous cost of borrowing.

rt = r(t, t) = lim
T→t

r(t, T ) = − ∂

∂T
logP (t, T )

∣∣∣∣
T=t

It is used to be called LIBOR, the rate at which banks lend each other in overnight lendings.

Note: P (t, t) = 1 implies that lim
T→t

r(t, T ) = lim
T→t

− logP (t, T )

T − t
= lim

T→t
− logP (t, T )− logP (t, t)

T − t

1.2 Contracts

Definition: 1.4: Forward Contract

A forward contract (bilateral contract) is an obligation to purchase (supply) a certain asset at a
precise time in the future, for a price fixed today, from a certain counter party. (Default risk)

Example: We agree we buy something with a fixed price now, but do the transaction in the future for
bond, stock, rice, etc.

Definition: 1.5: Future Contract

A future contract is an obligation to purchase (supply) a certain asset at a precise time in the future,
for a price fixed today, from an exchange. (No risk)

Example: Oil is only sold in a future market

Similarity: Two parties agree a price now, transact later.
Difference: In a forward contract, there is no guarantee that one party pays. (Can sue afterwards though.)
In a future contract, it is guaranteed that the transaction goes through.

1.3 Pricing Futures

Example (Stock future prices):
Assume APPL stock is $135 today, what is the price to deliver APPL one year from now? i.e. we want to
find APPL(0,1)

We can build a Replicating Portfolio:
Borrow $135 today, buy one stock of APPL, deliver in a year at $x, pay back the loan $135er(1). Therefore,
APPL(0, 1) = 135er(1).
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Date Today T1 T2

Cashflow 0 −P (t, T1, T2) 1

Equity Futures Contracts:
For a stock with price given by St, the price of a futures contract at time t for delivery at time T is
S(t, T ) = Ste

r(t,T )(T−t).

Bond Futures Contracts:
Consider the following forward contract:

• Agreement date: Now (time t)

• Product to deliver: a zero-coupon bond B issued at T1 paying $1 at T2

• Delivery date: T1

• Price: P (t, T1, T2) (Unknown. We want to find this price)

• Payment date: T1 (We need to pay for the bond in order to receive the $1 at T2)

Cashflows of the future contract:

The Replicating Portfolio must contain a bond with maturity at T2, so we get $1. We need to buy that
bond now at price P (t, T2), but we have $0 cashflow now, so we need to short sell something to raise money
to pay for the bond. That something is the bond that has maturity at time T1 at price P (t, T1).

Consider a portfolio Π of 1 bond unit worth P (t, T2) each, and −x bond units worth P (t, T1) each, with
x = P (t,T2)

P (t,T1)
. This gives enough money to buy the bond that matures at T2. Thus P (t, T1, T2) =

P (t,T2)
P (t,T1)

.

The corresponding forward yield is

r(t, T1, T2) = − logP (t, T1, T2)

T2 − T1
= − logP (t, T2)− logP (t, T1)

T2 − T1
.

Taking the limit as T1 → T2, we get the forward rate:

f(t, T ) = r(t, T, T ) = − ∂

∂T
logP (t, T ).

The term structure is reconstructed from f as follows:

P (t, T ) = exp

(
−
∫ T

t
f(t, u)du

)
,

where f(t, u) is the forward curve.

Note: forward curve has no information loss as compared to yield curve.

Example: Consider the pension. We pay pension every month. As time goes on, the value should increase
(by buying bonds). When retired, we get more back.
Example: We know exactly what we earn next month, so we can borrow money from someone now and
buy the bonds that could have higher price next month.

1.4 Market Factors

Securities prices evolve in random ways, but with a strong internal dependence structure. That interde-
pendence is an important market invariant.
It can be calculated using spectral theory:
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• Simplest form: eigenvalues and eigenfunctions

• More compelx forms: neural embeddings and random forests

Note: Dollar values are autoregressive, so we need to look at the percentage returns.

Eigen Analysis:
For ρ a covariance matrix, consider the eigenvalues λi, where

∑
i λi = Tr(ρ). The largest eigenvalue

explains the most of the variance. The corresponding eigenvector describes the main direction of the
market movement. If the rates/price changes move together, the eigenvector will be of the same sign. This
eigenvector can be used as weights in e.g. S&P 500.

For rates, the second eigenvector is associated with how the rate tilts. The third eigenvector is associated
with the change of complexity.

For hedge funds, the eigenvalues are mostly noisy and cannot explain much variance.

1.5 Regression Trees

Suppose we have two features: company size and volatility. We have some multidimensional data with
points xi according to marginal data.

Definition: 1.6: Residual Sum of Squares

Group samples in rectangles (clustering) so that the fitting criterion (RSS) is minimized.

RSS =
J∑

j=1

∑
i∈Rj

|xi − x̂Rj |2,

where x̂Rj us the mean of training observations in Rj .

Recursive splitting: For each pair (feature, value), define the pair of half hyperplanes R1(j, s) = {X :

Xj < s} and R2(j, s) = {X : Xj ≥ s} and select values of (j, s) to minimize
∑

i,xi∈R1(j,s)

|xi − x̂R1 |2 +∑
i,xi∈R2(j,s)

|xi − x̂R2 |2

Cross-Validation: split the training set into possible validation sub-data sets
Selection of Optimal Tree: a sequence of optimal trees Tα, as α increases, the number of nodes decreases.
Small α means overfitting. Large α means simplicity. Cross validation helps find optimal α.
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2 Option Pricing

In Sec. 1.2, we see that contracts are obligations. Here we consider the Options. In options, we have the
right, but we can choose to buy it or not.

Definition: 2.1: Call Options

In a call option, buyer has the right to buy an agreed quantity of underlying asset from the seller of
the option on/before the expiration date for a certain price (strike price). Buyer pays a fee (premium)
for the right.
The payoff is f(S) = (S −K)+ = max(S −K, 0).

Definition: 2.2: Put Options

In a put option, buyer has the right to sell an agreed quantity of underlying asset to the seller of the
option on/before the expiration date for a certain price (strike price). Buyer pays a fee (premium)
for the right.
The payoff is f(S) = (K − S)+ = max(K − S, 0).

Example: a call option with payoff function f0(S) = (S − $1)+. Given the stock tree on the left, and
option tree on the right, What is the value at the question mark (price of the option)?

$1

$2

$0.5

?

$1

$0

We can solve the following system of equations based on the first tree:{
p+ q = 1

2p+ q
2 = 1

and get p = 1
3 , q = 2

3 . The actual price of the option is V = $1
3 .

Replicating Portfolio: borrow $1
3 and buy $2

3 of S. Then we will exactly cover (hedge) the payoff, since it
costs $1

3 to purchase the portfolio, the price should be the same.

2.1 Discounted Value

Assume the existence of a bond with constant interest rate r. Build the porfolio: Π = 2
3 stock units +(

−1
3

)
bonds. No matter what p is, absence of arbitrage implies the option price = 2

3 − 1
3B = 2

3 − 1
3e

−rT ,
where T is the time to expiration and r is the constant interest rate.

Example: If option price = 1
2 , T = 1, then r = ln 2 and the option is sold for $0.5.

Implied Probabilities:
By selecting p = 2

3e
rT − 1

3 , we can achieve option price = E(e−rT f0) = pe−rT .

In other words, we can construct a probability measure Q for the stock process, such that option price
= EQ(B

−1
T f0).

Q is also called the risk netural measure. It can be obtained not only from prices dictated by arbitrage
arguments, but also from market prices.
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If we define the (arbitrage-free) price to equal to discounted pay-off V = B−1
T f0, then there exists a measure

Q under which V is a martingale1.

Incomplete Market:

Assume the stock is valued at $1 today, and can be worth S =


$2

$1

$0.5

after a year. How can we price the

option with strike price = $1?

We cannot calculate the probabilities for sure with the system of equations:{
p+ q + r = 1

2p+ q + r
2 = 1

There are two probabilities:

1. Another derivative price is known

2. We can re-balance our hedge once before maturity.

2.2 Binomial Pricing Theory

Here, we consider a single period situation only, since the multi-period discrete time pricing can be solved
using iterative single period pricing. However, the continuous time multi-period will be different and needs
to be solved by stochastic calculus.

Elements:

1. Payoff Matrix: values of financial instruments in the future. Each column is an instrument. Each
row is an event.

Example: D =

(
1 2
1 0.5

)
. In this payoff matrix, first column is bond, which doesn’t depend on

stock and the second column is stock. We have 2 events: stock goes up/down.

2. Replicating Strategy: a vector v, given by Dv = p, where p is the realized payoff vector. Example:

with the above D, the realized payoff is p =

(
1
0

)
, then the replicating strategy v =

(
x
y

)
is given by

D

(
x = bond units
y = stock units

)
=

(
1
0

)
3. Cost Vector: the current price of the instruments Example: if q = (0.9, 1), this means that the

stock price is $1, and the bond price is $0.9.

Then we can calculate the price of the option = qD−1p, which is the expected discounted payoff.

If we have S =


$2

$1

$0.5

, then we get D =

1 2
1 1
1 0.5

, more rows than columns. The payoff can be

1
0
0


and the cost vector can be q = (0.9, 1, 1/3).

Side note: In financial market, a stock/bond is a financial instrument. A derivative is a derivative on a
financial instrument. But from our perspective, we don’t care. Everything is defined as the payoff in the
future.

1A martingale is a a sequence of random variables such that the value today is the expected future value
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Example (Multi-period):

Assume the stock price process can be:

80

120

60

180

80

72

36

Assuming r = 0, q = (1, 1).

We buy a call option at strike price of $75. Then the payoff vector is


105
5
0
0

.

Focus on the 120-180,80 branch, we know the payoff is p =

(
105
5

)
, the payoff matrix is

D =

(
1 180

120
1 80

120

)
=

(
1 3/2
1 2/3

)
. Thus the price of the option at 120 can be calculated by qD−1p = 45.

For the 60-72,36 branch, since the payoffs are zero, the price of the option is simply 0.

Then we move back to 80-120, 60 branch. The payoff is p =

(
45
0

)
. The payoff matrix is

D =

(
1 120

80
1 60

80

)
=

(
1 3/2
1 3/4

)
. Thus the price of the option at the beginning is $15.

2.3 Pricing Theory

Assume there is a probability space with measure µ2 for the payoffs of N securites available for
trading.

• A security is characterized by its cost now, and its payoff after one unit of time

• The cost of the ith security is qi, i = 1, ..., N

• The payoff is given by the random variable Di(ω)

• The expected payoff of a security is E(Di(ω))

• A portfolio is a vector θ = (θ1, ..., θN ) ∈ RN , which represents the holdings of each security. θi can
be positive or negative.

– if θi < 0, our position is said to be long

– if θi > 0, our position is said to be short

• The payoff of the portfolio is θ ·D(ω)

• A market is complete if Span{θ ·D(ω), θ ∈ RN} = L2(µ) (Entire sapce of L2 payoff functions3 on
the probability space µ) and markets are usually assumed to be complete. In a complete market, for
any payoff, there is a portfolio with that payoff.

2µ(B) = measure/probability of the set B
3L2 = {f :

∫
|f |2 < ∞}, i.e. the set of square integrable function.
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• The cost of a portfolio θ is q · θ

• If a portfolio has non zero cost, q · θ ̸= 0, the return is defined as Rθ(ω) =
θ·D(ω)
q·θ

In a real market, there are hedgers (people trying to minimize risk), speculators (people trying to
maximize return) and arbitrageurs (people detecting market inefficienies).

Definition: 2.3: Arbitrage Opportunity

We say that there is an arbitrage opportunity if there is a portfolio θ such that q ·θ ≤ 0 (non-positive
cost) and D · θ ≥ 0 (non-negative payoff), a.e. and D · θ > 0 with non-zero probability. (making
money at no cost)

Theorem: 2.1: Efficient Market Hypothesis

There is no arbitarge and there are no transaction costs.

Theorem: 2.2: Riesz Representation

If pi are linear functionals of the payoffs L2(µ), then there exists a random variable π(ω) s.t. p · θ =
E(θπ · D) for all θ ∈ RN . (price of the portfoli = corrected expectation of portfolio payoff, π
changes/fixes weight of each event)
π(ω) is called the state-price deflator.
If markets are complete, π is unique. If there are no arbitrage opportunities, π > 0.

For all portfolios θ with returns Rθ, E(Rθπ) = 1.

Example: In the previous example with $1 becoming $2 and and $0.5. π = (2/3, 4/3).
Suppose we guess the probability wrong to be (1/2, 1/2), then E(Di(ω)) = (2 + 0.5)/2 = 1.25.

π helps us correct the guess.
For the bond, we guess 1 and 1 with probability 1

2 and 1
2 . The price is 1

2
2
3 + 1

2
4
3 = 1.

For the stock, we guess 2 and 0.5 with probability 1
2 and 1

2 . The price is 1
2
2
32 +

1
2
4
3
1
2 = 1.

For the option, we guess 1 and 0 with probability 1
2 and 1

2 . The price is 1
2
2
31 +

1
2
4
30 = 1

3 .
Assume D0(ω) is constant for all ω ∈ Ω. This is a savings account.

Definition: 2.4: riskless-bond

A riskless bond is a portfolio θ0 of constant payoff θ ·D(ω) = θ ·D(ω′) for all ω, ω′ ∈ Ω.

The riskless bond always exists, we just take θ = (1, 0, ..., 0). This gives R0 = E(Rθ0) =
1

E(π) .

The riskless interest rate is given by r = − 1
T ln(E(Rθ0)).

Theorem: 2.3: Price Deflator and Arbitrage

A price deflator exists if and only if there is no arbitrage.

Proof. (⇒) if a price deflator exists, then Π(0) = E(πΠ(T )).
Since π is positive as a functional on L. If Π(T ) > 0, then Π(0) > 0
And if Π(T ) = 0, then Π(0) = 0. Meaning that there is no arbitrage.

(⇐) Suppose that there is no arbitrage. Consider the price-payoff vector space V = R× L.
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The (cost, payoff) hyperplane is M = {(−θ · q, θ · P ) : θ ∈ RN} ≠ R× L. θ · q ∈ R is the cost, θ · P ∈ L is
the payoff.
The cone K = R+ × L+ contains alll securities of non-positive price and non-negative payoff.
If there is no arbitrage, then K ∩M = {0}. The cone only touches the hyperplane at the origin.
Otherwise, there is an arbitrage opportunity.

By separating hyperplane theorem, there exists a functional F : V → R s.t. F (x) = 0 for all x ∈ M and
F (x) > 0 for all x ∈ K \ {0}

The Riesz representation of F (x) is F (v, c) = αv + E(ϕ · c).

In terms of α and ϕ, we have −αθ · q + E(ϕ(θ · P )) = 0 for all θ ∈ RN , since M is mapped to {0}.
α, ϕ, θ · P are existence objects from Riesz representation.

Hence π = ϕ
α is a price deflator.
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3 Exotic Options

Example: Consider a European call option with strike K = 0.75.

stock tree

$1

$1.5

$0.75

$2

$1

$0.5

option tree

$1/3
U = 0.833

B = −0.5

$0.75

U = 1

B = 0.75

$0.125
U = 0.5

B = −0.25

$1.25

$0.25

$0

Definition: 3.1: American Call Option

It is never optimal to exercise an American call option prior to maturity. Its value always exceeds
its payoff. More specifically, an American option is only exercised when price< S −K.

At $0.75 of stock, we do not redeem and keep the option, because
price= 0.125 > S −K = 0.75− 0.75 = 0.
At $1.5 of stock, price= 0.75 = S −K = 1.5− 0.75 = 0.75. Keeping or redeeming is indifferent. But if the
price is $0.74, we redeem, and the American call option is exercised.
At $1, it is worth at least $1

3 , we should not redeem, because S −K = 1− 0.75 = 0.25 < 1
3 .

At each branch, if we exercise, we take the American option. Otherwise, we keep and take European
option. That’s why we do the comparison to S −K.

For call options, we rarely exercise. For put options, we sometimes exercise.

3.1 Swing Options

Swing opions (swing contracts, take-and-pay options, variable base-load factor contracts) are most
commonly used for purchase of oil, natural gas, and electricity (energy sector).

This is because we cannot accumulate anything in the energy sector without cost. There is no
arbitrage.

They can be used as hedging instruments by the option holder, to protect against price changes in these
commodities.

Flight pass is also an example of swing option. We will have restrictions on the option.

2-up-swing option:
Pricing a k-up-swing option is like pricing k embedded American options.
Suppose we wish to price a 2-up-swing option with the stock tree above, we need to exercise the first
up-swing when 2-up price - 1-up price < U −K.

Step 1: 1-up swing option

• At $0.75, the 2-up swing price ($0.75) and 1-up swing price ($0.75) agreed

• Exercising at the t = 1 lower node (1-down movement) yields no money

• Exercising at the terminal nodes yields a discounted value of 0.125 at the t = 1 lower node
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Step 2: 2-up swing option
The 0-node represents 2 possibilities

• Exercise one option: cash 0.25 and change tree

• Don’t exercise: it makes the branch European and the option worth 0.5833.

Since both alternative yields the same result, we are indifferent whether we exercise or not.
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4 Stochastic Calculus

In previous sections, we consider discrete models only. How do we extend the discrete time model to
continous time?

Taking dt and dS discrete 1
n → 0 makes the option price converge to 0.

If the random outcomes are linked to independent identically distributed random variables Xi, then the
path location after n steps is equal to Sn =

∑n
k=1Xk.

Our interest is how Sn behaves as n grows to determine the location of the path after many random steps
are taken.

Assuming step increments in the x-axis equal dx and step increments in the y-axis equal dy, the final
location of the path is (ndx, Sndy).

Theorem: 4.1: Central Limit Theorem

lim
n→∞

P

(
Sn√
n
≤ λ

)
=

1√
2π

∫ λ

−∞
e−x2/2dx

Equivalently, if dx = 1
n , dy = 1√

n
, then Sn converges to a N (0, 1) distribution on the vertical axis at

x = 1.

Einstein’s theory:
Consider a 1-D isotropic rod with an initial heat distribution. Temperature at a point x after some time
dt is the average of the temperature around it now:

u(x, t+ dt) =
1

2
[u(x+ dx, t) + u(x− dx, t)].

Subtracting u(x, t) from both sides, we get:

u(x, t+ dt)− u(x, t) =
1

2
[u(x+ dx, t) + u(x− dx, t)− 2u(x, t)].

This gives the heat equation ∂u
∂t dt =

1
2
∂2u
∂x2 dx

2, but dt = dx2 because of the stochastic movements.

4.1 Brownian Motion and Ito Process

In Brownian Motion, the value moves up or down with probability 0.5 by an amount of
√
dt:

dWt = ±
√
dt, E(dWt) = 0

It is distributed at time t according to P (x, t) = 1√
2πt

exp
(
−x2

2t

)
.

An Ito process is a stochastic process that looks like the following:

Xt = X0 +

∫ t

0
σsdWs +

∫ t

0
µsds.

It will be written as:

dXt = σsdWt + µtdt.
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When σ and µ are dependent are X, we have a stochastic differential equation (SDE).

Ito’s Lemma: the chain rule for stochastic processes

df(Xt, t) =
∂f

∂X
dXt +

∂f

∂t
dt︸ ︷︷ ︸

classical

+
1

2
σ2
t

∂2f

∂X2
dt︸ ︷︷ ︸

stochastic

,

where the ∂2f
∂X2dt comes from the ∂2f

∂X2 (dX)2 in the second order Taylor expanansion. It is non-negligible in
stochastic process, because (dX)2 = dt.

Take the stochastic process Xt, and map it with a smooth function f , we get a different Ito process.

Stochastic model for stocks: ∂St
St

= µdt+ σdWt.
Note if we simply have dS = µdt+ σdW , S (the stock price) can be negative.

Example: What is d(logS)?
dS = Sµdt+ SσdW , (dS)2 = S2σ2dt. Note that (dS)2 here means the second partial derivative w.r.t.
S.

Then
d(logS) = ∂

∂S logSds+ 1
2

∂2

∂S2 logS(dS)
2 = 1

S (Sµdt+ SσdW )− 1
2S2 (S

2σ2dt) =
(
µ− 1

2σ
2
)
dt+ σdW

Note: d(logS) is an Ito process independent of S if µ (trend), σ (volatility) are constant.

For stock price, the drift Sµ and standard deviation Sσ are proportional to the stock price S, giving a
controlling effect that prevents stock prices from being negative.

Stock price is a Geometric Brownian Motion (GBM), dSt
St

is the geometric part, σdWt is the Brownian
Motion.

Usually σ (volatility) is another stochastic process dW̃ correlated with dW . This is then a Heston
model.

14



5 Option Pricing

5.1 Types of Options

Definition: 5.1: European Options

European options expire at a preset future time.
Payoff depends on the price of the underlying ST at expiration.
Call options with strike price K have payoff P (ST ) = (ST −K)+
Put options with strike price K have payoff P (ST ) = (K − ST )+

Definition: 5.2: American Options

American options can be exercised at any time prior to expiration T .
Payoff is a function of the value of the underlying St at the exercise time t with t ≤ T .
Call options with strike price K have payoff P (St, t) = (St −K)+
Put options with strike price K have payoff P (St, t) = (K − St−)+

Definition: 5.3: Asian Options

Asian options can be issued with a European or American style.
Payoff depends on the average value of the underlying at certain times prior to expiration.
Example payoffs with ti ≤ T :

P =
1

n

n∑
i=1

(Sti −K)+

P = (
1

n

n∑
i=1

Sti −K)+

P = (K − 1

n

n∑
i=1

Sti)+

Bermudan options are American options that can be exercised only at prescribed discrete future times.
Remove protection, fewer rights, thus lower prices.

5.2 Fixed Income Derivatives

Recall that bonds are sold at a discount and pay a fixed amount at a future time. Their price determines
the interest rates. They usually pay coupons every few months/every year.

Bond Options:

1. Bonds can be bought or sold any time before they expire.

2. Their price will fluctuate. Consequently, they can be used as financial underlying for options.

3. Similar to equity, except for the fact that at the time of expiry of the bond, options make no sense.

Types of Bond Options:

1. Caps: contracts that offer protection against time dependent interest rates rising over a certain
ceiling by paying the corresponding exceeding interest on a fixed notional (like a call option, pay
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when price > cap, protection against rising interest rates. e.g. Fixed rate mortgage=floating rate
mortgage+cap)

2. Floors: charge the corresponding missing interest rates on a fixed notional. They have negative
value (protection against lower interest rates)

3. Collars: A combination of a cap and a floor. By setting the ceiling and floor appropriately, they
can be issued for free (zero collars)

4. Swaps: exploit the different interest rates that different parties will be charged for fixed and
floating rate loans. A swap is a contract that exchanges future payments at fixed and floating rates
(Derivative option)

5. Swaptions: When a swap is viewed as an underlying, options are issued on them (Derivative of a
derivative. When swap is liquid, swaption gives a protection)

6. Cross Currency Swaps: same as swaps, but the exchange is between payments in two currencies.

Trading Instruments: Many other financial instruments are available for trade. Most of the time, they
are designed with the objective of removing risk from uncertain future situations. They also offer risky
speculative alternatives.

5.3 Black-Scholes Theory

Continuous Time Pricing:
Think of infinitesimal time intervals dt. Brownian motion moves up or down with proability 0.5 by an
amount of

√
dt: dWt = ±

√
dt, with E(dWt) = 0

At time t, it is distributed according to P (x, t) = 1√
2πt

exp(−x2/2t)

The infinitesimal stock movements will be dSt = St(µdt+ σdWt)
Ito’s lemma says: dtf(S, t) = ∂Sf(S, t)dS + ∂tf(S, t)dt+

1
2σ

2S2∂2
Sf(S, t)dt

Assume an option has price f(S, t) at any given point in time, conditional on any possible value St = S of
underlying at time t, which is asumed to be known.

Arbitrage Free Argument:

• At time t, build a portfolio Π consisting of a = −∂Sf(S, t) units of stock and the option. Π = f + aS

– At maturity, there is no derivative at S = K, but we can assume that it is well-defined before
time of maturity

– If ∂S > 0, we are short

– If ∂S < 0, we are long

• Using Ito’s lemma,
dtΠ = dtf + adS = (0.5σ2S2∂2

Sf + ∂tf)dt+ ∂SfdS + adS = (0.5σ2S2∂2
Sf + ∂tf)dt.

Note1: datS = 0 is the self-financing condition. a changes through time, but the change won’t affect the
portfolio now, the portfolio will change in next step.
Note2: There is no dW term, dtΠ is deterministic, not stochastic. This is a replicating portfolio of a
bond dtΠ = rΠ = r(f + aS).

This is a risk-free investment, hence it must earn risk-free interest and we obtain:

∂f

∂t
= −0.5σ2S2 ∂

2f

∂S2
− rS

∂f

∂S
+ rf , where f(S, T ) = f0(S) is the terminal condition.
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It is a backward parabolic equation (Note the minus sign in −0.5σ2S2 ∂2f
∂S2 . It gives a time reversal.)

The solution is given by:

f(S, t) = e−r(T−t)

∫ ∞

−∞
f0(Se

(r−σ2/2)(T−t)+x)Pσ(x, T − t)dx, where Pσ(x, t) =
1√

2πtσ2
exp

(
− x2

2tσ2

)

Se(r−σ2/2)(T−t)+x is the future value of S. f(·) gives the payoff. Pσ(x, T − t) is the probability. The
integral calculates the expected payoff. e−r(T−t) is the discount. Then, f(S, t) is the value of the option at
time t.

For a put option, we add a free boundary condition f(S, t) > f0(S, t)

The price of a European call option on a stock S, valued today at S0, maturing at time T with strike K,
constant volatility σ and interest rate r is given by:

V (t,K, σ, r) = S0N(d1)−Ke−r(T−t)N(d2),

where N(d) is the cummulative normal N(d) = 1
2π

∫ d
−∞ e−x2/2dx, and

d1 =
ln(S0/K) + (r + 0.5σ2)(T − t)

σ
√
T − t

d2 =
ln(S0/K) + (r − 0.5σ2)(T − t)

σ
√
T − t
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6 Introduction to Risk Management

6.1 Risks

• Market: loss of NAV (Net Asset Value) due to changes in asset prices

• Credit: loss of NAV due to default events

• Liquidity: Delay turning asset value into cash

• Gap risk: an investment’s price change from one level to another with no trading in between

• Legal risk: e.g. Bankers trust

• Operational risk: e.g. Fat fingers, fraud, cybersecurity

Risk Classification:
In the table, red is Regulated, blue is Revenue generator. Otherwise, it is unregulated.

Banking Insurance Asset Management
Market Risk Base I - VaR, Base III - FRTB Solvency II - SCR Concentration Exposures
Credit Risk Base II - CVaR, Base III - CVA(MAR50) SCR DDQ-Credit premia

Operational Risk Fraud, fat fingers, etc. internal systems, personnel, Fraus, systems, etc
procedures, or controls (IAIS)

Liquidity Risk LCR (UK), ILG (Basel), HQLA, NSFR (US) Governance, roles and Ad Hoc (UCITS, 30-ACT, etc)
responsibilities not clearly defined

Gap risk Asset valuation ALM ∅
Legal risk Marginal to the risk derpartments IAA-1933; MNPI, trading rules ESG

Cybersecurity On-line banking Disaster revenue generator Data protection, disaster recovery

6.2 Value at Risk

Definition: 6.1: Value at Risk

The Value at Risk (VaR) of a portfolio is α-confidence equal to x. i.e. The probability of losing
more than VaRα is 1− α∫ −VaRα

−∞
ρ(r)dr = Prob(losses ≤ VaRα) = 1− α

Note: Value at Risk is not so much a measure of risk, but a measure of a regulatory capital.

Example: Suppose VaR95% = $100, then the probability of losing at least $100 is 5%.

Example: Issue 1000 lottery tickets, winner get $1M

number of tickets sold Prob(loss) VaR95%

1 0.1% 0
49 4.9% 0
50 5% $1M

1000 100% $1M

Calculation in real life:

1. Generate scenarios

2. Similate P&L (profit and loss)

3. Calculate P&L statistics
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Gaussian VaR - 1D:

Prob(P&L ≤ a) =
1√

2πσ2T

∫ a

−∞
exp

(
−(x− µ)2

2Tσ2

)
dx

Denote ϕ(x) the cummulative distribution of N (0, 1), then Prob(P&L ≤ a) = ϕ
(a−µ

σ

)
.

Then VaRα = σZα − Expected return, where Z0.95 = 1.65 and Z0.99 = 2.33.

Example: Assume a portfolio with one asset of $5 million allocated to a stock. The price volatility of the
stock is 2.98% for a one-day period.
Then one-day VaR95% = Z0.95Sσ = $1.65 · 5 · 0.0298 = $246K
one-year VaR95% =

√
365 · $246K = $4.69M

Multivariate Gaussian and VaR - nd:
If X1, ..., Xk are jointly Gaussian, with mean vector µ and covariance matrix Σ,

fX(x1, ..., xk) =
1√

(2π)k det(Σ)
exp(−0.5(x− µ)TΣ−1(x− µ))

A linear combination
∑k

i=1 ciXi is a 1-D Gaussian, with µ =
∑k

i=1 ciµi, σ = cΣcT

Application: Risk Metrics
Calculating an approximation to the VaR of a single investment or an investment portfolio. It assumes
that investments returns follow a normal distribution overtime.

Delta Normal VaR:
Approximate the portfolio value P with future risk factor R (interest rate, stock price, etc) by Taylor
approximation.

P (R) = P (R0) +
∂P

∂R

∣∣∣∣
R=R0︸ ︷︷ ︸
δ

(R−R0) +
1

2

∂P

∂R

∣∣∣∣
R=R0︸ ︷︷ ︸

Γ

(R−R0)
2,

where R0 is the risk factor today. δ and Γ are portfolio sensitivites.

For a bond δ = ∂(N0e−R)
∂R

∣∣∣
R=R0

= −N0e
−R0 .

6.3 Portfolio Sensitivity and Greeks

P&L reflects changes in prices. Portfolio sensitives are efficient ways of trcking small price changes.

Delta (δ,∆):

• Delta measures the rate of change of the portfolio w.r.t. changes in risk factors. It is the first
derivative of the portfolio value w.r.t. the risk factors

δ =
∂V

∂r

• When there are several risk factors (r1, ..., rk), delta becomes a vector δ =
(

∂V
∂r1

, ..., ∂V
∂rn

)
Gamma (Γ):
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• Gamma measures the rate of change of the portfolio delta w.r.t. changes in risk factors. It is the
second derivative of the portfolio value w.r.t. the risk factors

Γ =
∂2V

∂r2

• When there are several risk factors (r1, ..., rk), gamma becomes a matrix Γ =
(

∂2V
∂ri∂rj

)
i,j=1,...,k

Vega (ν):

• Vega measures sensitivity to volatility. It is the first derivative of the portfolio value w.r.t. volatility
of the underlying risk factors.

ν =
∂V

∂σ

• Often, the volatility of the risk factor is not observable, but implied.

• In asset management, long-vol (ν > 0) and short-vol (ν < 0) denote the sign of vega. Short-vol are
common. Long-vol are desired.

Theta (θ): measures the sensitivity of portfolio value to the passage of time. θ = ∂V
∂t .

Rho (ρ): measures the sensitivity of portfolio value to interest rate. ρ = ∂V
∂r .

6.4 PCA and Monte Carlo

Eigenvalues and Gaussians:

Definition: 6.2: Cholesky Decomposition

Suppose Σ = ODO−1, where D = diag(λ1, ..., λn). Σ = HH†. Then H = O
√
D is the Cholesky

Decomposition.

Assume a multivariate Gaussian distribution with a n× n variance/covariance matrix A with dataset
xi ∈ Rn. Then the dataset H−1xi is Gaussian with Σ = I.

Principal Components:
Even when the dataset is not given by multivariate Gaussian distribution, we can still transform dataset
by H−1x. The result is uncorrelated marginals.

Then move on to analyze each marginal with 1-D methods, combine the results and transform back by
H.

Monte Carlo:
Given a data distribution with probability density ρ, how can we produce a sample xi so that the values
xi, i = 1, ..., k follow the given distribution?

If F is the cumulative density corresponding to probability density ρ, and xi is a uniformly distributed
sample, then F−1(xi) is distributed like ρ, where F−1 is the functional inverse of F . In 1-D, ρ(x) = dF

dx ,
F (x) = Prob(X ≤ x).

In multivariable case, ρ(x1, ..., xn) =
∂nF (x1,...,xn)

∂x1...xn
, where

F (x1, ..., xn) = Prob(X1 ≤ x1, ..., Xn ≤ xn).
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Definition: 6.3: Copula

If (X1, ..., Xn) is uniformly distributed, F : [0, 1]n → [0, 1] is a copula.

Theorem: 6.1: Sklar’s Theorem

Given F (x1, ..., xn) with marginals Fi(xi), (F−1
1 (x1), ..., F

−1
n (xn)) is marginally uniformly distributed.

6.5 Sustainability

Substainability considers three aspects: Environment, Social and Governance (ESG).
There is a MSCI ESG rating. The ratings have impact on bonds. Green bonds (AAA, AA) are expensive.
Others are cheaper. But lower rating bonds have higher forward zero curve.
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7 Credit Risk

7.1 Review of Basic Concepts

Cashflow Valuation:
The present value of cashflows is given by the value equation:

Value =

n∑
i=1

pie
−riti ,

where n is the number of payments, pi is the amount paid at time ti, ri is the continously compounded
interest rate at time ti.
Assumption: payments will occur with probability 1 (no default risk)
Credit Premium:
The discounted value of cash flows, when there is probability of default is:

Value =
n∑

i=1

pie
−ritiqi, where 0 ≤ qi ≤ 1

qi denotes the probability that the counter-party is solvent at time ti. A large default risk (small q)
implies that

1. For a fixed set of pis, the discounted present value will always be less than or equal to the value
equation

2. To preserve the same present value of cashflows as in the equation, the cashflows {pi}ni=1 need to be
increased. The amount by which each payment is increased is q−1

i . This it the credit premium at
time ti.

Since qi ≤ 1, we can write qi as qi = e−hiti by defining hi =
− ln qi

ti
, the credit spread (hazard rate) at time

ti.

This gives the value function:

Value =
n∑

i=1

pie
−(ri+hi)ti

Note: When bankrupt or get into default, the value becomes 0.

Example: (Default Yield Curve) A senior unsecured BB rated bond matures exactly in 5 years and is
paying an annual coupon of 6%.
One-year forward zero curves for credit rating BB is 5.55% for Year 1, 6.02% for Year 2, 6.78% for Year 3,
7.27% for Year 4.
What is the value of the bond?

VBB = 6 +
6

1.0555
+

6

1.06022
+

6

1.06783
+

106

1.07274
= 102.0063

Two Credit States:
Assumptions:

1. Assume only 2 possible credit states: solvency and default

2. Assume the probability of solvency in a period (e.g. 1 year), conditional on solvency at the
beginning of the period is given by a fixed amount q. This is a Markov Chain:
Pr(Solvent at time ti+1|Solvent at time ti) = q
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Consequence: qi = qti and gives a constant credit spread hi = h = − ln(q).
By Taylor approximation, the probability of the default is equal to the credit spread.

More formally, assume the default process follows a two-state Markov Chain with transition probability

P =

(
q 1− q
0 1

)
.

Application to country risk:
Consider a one-year zero coupon Greek bond providing a spread h over a German risk-free bond with two
assumptions:

1. Notional N

2. Risk Neutral: Probability of solvency after one year is q

When a country defaults, not all is lost. There is a recovery rate R which is the value we recover in the
case of default. Assume R = 50%
We can adjust the valuation equation: V = Ne−rq︸ ︷︷ ︸

default

+RNe−r(1− q)︸ ︷︷ ︸
recovery

Using the spread V = Ne−(r+h), we get q = e−h−R
1−R .

Credit Rating Agencies:

• Corporations whose business is to rate the credit quality of corporations, governments and specific
debt issues.

• Examples include

– Moody’s Investors Service

– Standard & Poors

– Fitch IBCA

– Duff and Phelps Credit Rating Co.

S&P Rating System
AAA highest quality; capacity to pay interest and repay principal is extremely strong
AA high quality
A strong payment capacity
BBB adequate payment capacity
BB likely to fulfill obligations; onging uncertainty
B High risk obligations
CCC Current vulnerability to default
D in bankruptcy or default or other market shortcomings

Markov Chain Default Models:
Generalize the setting to include more than one solvency state. Transition probabilities between states
1...n are constant overtime. pij is the conditional probability of changing from state i to state j.

Transition Probability:
Between state i and state j, in two time steps is given by P

(2)
ij =

∑
k pikpkj

In other words, if denote by A the one-step conditional probability matrix, the two-step transition
probability matrix is given by A2.
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If A denotes the transition probability matrix at one step (e.g. 1 year), the transition probability after n
steps (30 is especially meaningful for credit risk) is given by An

Similarly, the quarterly transition probability matrix should be A1/4.

Matrix Expansion:

Aα =

∞∑
k=0

(
α

k

)
(A− 1)k, where

(
α

k

)
=

α(α− 1) · · · (α− k + 1)

k!

7.2 Credit Loss

Definition: 7.1: Credit Exposure

Credit Exposure is the maximum loss that a portfolio can experience at any time in the future, taken
with a crtain level confidence (Market probability perspective).

In Goodrich swap, when we receive a payment, credit exposure drops, because money at risk drops. But
as time goes by, the amount of money you could lose increases, because of uncertainty of how rates move.
Decreases in credit exposure happens when a payment occurs.

The definition of credit exposure is independent of counter party and credit quality, but it is a conditional
amount of money we may lose.

Definition: 7.2: Recovery Rate

When default occurs, a portion of the portfolio value can usually be recovered. A recovery rate is
always considered when evaluating credit losses. The recovery rate (R) represents the percentage
value at which we expect to recover, given default.

Definition: 7.3: Loss Given Default (LGD)

Loss Given Default is the percentage we expect to lose when default occurs. R = 1− LGD.

R and LGD may be modelled as random variables. In simple exercises, we can assume they are
constants.

For corporate bonds, there are two primary studies of recovery rates which arrive at similar estimates
(Carty & Lieberman and Altman & Kishore)

There are several seniority classes deciding who collects payment of bonds first, including senior secured,
senior unsecured, senior subordinated, subordinated, junior subordinated

• Senior gets paid before junior

• Secured has colateral

• Subordinated: at the end of line when it comes to collecting payments
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Definition: 7.4: Default Process

The default process It is a random process which follows:

It =

{
1, counter party is at default at time t

0, counter party is solvent at time t

The probability of default at time t is the expectation of I at time t, 1− qt = E(I)

Note: I depends on the credit quality of the counter party. Credit Exposure depends on the market risk
of the instrument or portfolio. Loss Given Default is related to situation of the portfolio within in the
capital structure of the counter party.

Definition: 7.5: Credit Loss

For a portfolio with several counter parties, the credit loss is defined by

Credit Loss =
∑
i

I(i)× Credit Exposurei × LGD

The credit loss distribution is complex. As with Markowitz theory, we try to summarize its statistics with
two numbers µ (expected value, or expected loss), and σ (standard deviation, or unexpected loss)

Worst Credit Loss (WCL): represents the credit loss which will not be exceeded with some confidence
interval over a certain time horizon. This is a measure of risk. (quantile)

Credit VaR (CVaR): represents the credit loss which will not be exceeded in excess of the expected
credit loss, with some confidence interval over a certain time horizon. This is a measure of regulatory
capital. (quantile-expected loss)4

Example: A 95% WSL of $5M on a certain portfolio means that the probability of losing more than $5M
in that particular portfolio is exactly 5%.
A daily CVaR of $5M on a acertain portfolio with 95% CI means that the probability of losing more than
the expected loss plus $5M in one day in that particular portfolio is 5%

Economic Credit Capital:

Definition: 7.6: Capital

Capital is traditionally designed to absored unexpected losses. Credit VaR is the measure of capital,
usually calculated within a one-year time horizon. Losses can come from either defaults or migrations

Definition: 7.7: Credit Reserves

Credit Reserves are set aside to absorb expected losses. Worst Credit Loss measures the sum of the
capital and the credit reserves. Losses can come from either expected losses.

4This Credit VaR is different from the Conditional VaR (Expected Shortfall) which quantifies the amount of tail risk an
investment portfolio has.
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Definition: 7.8: Netting

When two counter parties enter into multiple contracts, the cashflows over all the contracts can be,
by agreement, merged into one cashflow. This practice called Netting is equivalent to assuming that
when a party defaults on one contract, it defaults in all contracts imultaneously.

Expected Credit Loss (ECL): The general framework for ECL is:

ECL = E[I× CE × LGD] =

∫∫∫
(I× CE × LGD)× f(I× CE × LGD)dIdCEdLGD,

where f(I×CE× LGD) is the joint probability density function of the default status (I), Credit Exposure
(CE) and Loss Given Defaults (LGD). The ECL is using the joint pdf of I, CE and LGD.
Because calculating the joint probability distribution of all relevant variables is hard, assume the
distributions are independent.
Then ECL = E(I)︸︷︷︸

probability of default

×E(CE)× E(LGD)

Example (Commercial Mortgage): Consider a commercial mortgage, with a shopping mall as
collateral. Assume the exposure of the deal is $100M, an expected probability of default of 20% (std of
10%) and an expected recovery of 50% (std of 10%). Calculate the expected loss.

1. Assume independence of recovery and default

LGD= 1− 50% = 50%, thus EL = $100M · 20% · 50% = $10M

2. Assume a -50% correlation between the default probability and the recovery rate

Using tree-based model:

• Two equally likely future credit states 30% and 10%

• Two equally likely future recovery rate states 60% (LGD=40%) and 40% (LGD=60%).
p++ + p+− = 0.5 (credit state goes up)
p−+ + p−− = 0.5 (credit state goes down)
p++ + p−+ = 0.5 (recovery state goes up)
p++ − p+− − p−+ + p−− = 0.5 (correlation)

⇒ p++ = p−− = 0.125, p+− = p−+ = 0.375

EL = $100M(0.125 · 0.3 · 0.4 + 0.375 · 0.3 · 0.6 + 0.125 · 0.1 · 0.6 + 0.375 · 0.1 · 0.4) = $10.5M

Example (Goodrich-Rabobank): Consider the swap between Goodrich and MGT. Assuming a total
exposure averaging $10M (std=50%), a default rate averaging 10% (std=3%), fixed recovery 50%.
Calculate the expected loss.

1. Assume independence of recovery and default

LGD= 1− 50% = 50%, thus EL = $10M · 50% · 10% = $0.5M

2. Assume a -50% correlation between the default probability and the recovery rate

Using the tree method, we get p++ = p−− = 0.125, p+− = p−+ = 0.375. However, this time, the
changing values are the default and credit exposure.
EL = 0.5(0.125 · $15M · 0.13 + 0.125 · $5M · 0.07 + 0.375 · $15M · 0.07 + 0.375 · $5M · 0.13) = $0.46M
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Example (FRM 1998 Q39): Calculate 1 year expected loss of a $100M portfolio comprising 10 B-rated
issuers. Assume probability of default of each issuer is 6%, and recovery rate for each issuer in the event
of default is 40%.
LGD= 1− 0.4 = 0.6, so EL = $100M · 6% · 60% = $3.6M .

Example (FRM 1998 Q39 modified): Assume now that the correlation between issuers is:

• 100% (They are all the same)
Loss distribution: default (loss $60M), no default (loss $0)

E ⇒ σ2 = 6% · (60− 3.6)2 + 0.94 · (0− 3.6)2 = 200
Thus, the unexpected loss is σ =

√
200 = $14M

• 0% (They are all different)
Loss distribution is a sum of 10 random variables, each with 2 states: default (loss $6M), no default
(loss $0)

The expected value of each issuer is $0.36M, and std of each issuer is $1.4M

Assuming the number of defauls is given by a Poisson distribution, then unexpected loss (std of the
sum) is the sum of the stds =

√
10 · 1.4 = $5M

• 50% (They are in the same sector)

similar to the all different case, but the variance of the sum is

Var(
∑
i

Xi) =
∑
i,j

E[XiXj ]− µiµj

=
∑
i

σ2
i +

∑
i ̸=j

σi,j

=
∑
i

σ2
i +

∑
i ̸=j

0.5σiσj

= 110

Thus, the unexpected loss is $
√
110M .

7.3 Expected and Unexpected Loss Over Time

Consider a bond issued from a default-prone party, paying two $5 coupons after the end of the second and
forth years. We assume the interest rates are 0. Yearly default probability of 7%, with 0% recovery rate.
Assme that the default-free party maintains a risk-capital to cover the standard deviation of losses that is
adjusted annually and demands a certain return on this risk-capital.

We can build the following Markov Chain where D=Default, ND=Not Default

ND

D

1 (1− p) (1− p)2 (1− p)3 (1− p)4

p (1− p)p (1− p)2p(1− p)3p
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There are two ways to calculate the expected loss, which are equivalent in this case. Since the value of the
contract is always non-negative to the default-free party, we don’t need to discard any future events. (As
every contract can be decomposed into contracts that always have non-negative or non-positive
value)

• First way: compute expected cash flows, but also factor in the probabilities of default within these
periods

We get paid $5 coupons at year 2 and year 4 each.

Expected cash flow = 5 · PND∈(0,2] + 5 · PND∈(0,4] = 5(1− 7%)2 + 5(1− 7%)4 = $8.065,

where PND∈(i,j] is the probability that the default prone party does not default in the time interval
(i, j].

The expected loss is EL = 10− EC = $1.935

• Second way: expected loss is based on yearly exposure

EX(1−) = $10,EX(2−) = $10,EX(3−) = $5,EX(4−) = $5,

where no correction due to discounting was included, since the interest rates are 0%.

EL = EX(1−)PD∈(0,1] + EX(2−)PD∈(1,2] + EX(3−)PD∈(2,3] + EX(4−)PD∈(3,4]

= $10(7%) + $10(7%)(1− 7%) + $5(7%)(1− 7%)2 + $5(7%)(1− 7%)2 = $1.935

Unexpected loss is the variance of the losses:

Var(L[0,1]) = EX(1−)2PD∈(0,1] − (EX(1−)PD∈(0,1])
2 = 6.51

Var(L[1,2]) = 6.08

Var(L[2,3]) = 1.42

Var(L[3,4]) = 1.33

Bank considers unexpected loss

Credit Reserve: If a risk-capital of two standard deviations is required, the default free party
anticipates to use risk capital. A yearly return on such capital leads to an additional surcharge.
Note: A high enough return rate would lead to the possibility of arbitrage (an initial credit-risk premium
of more than $10 in the example)

Credit VaR: unexpected credit loss at some confidence level over a certain time horizon. If we note by
f(x) the distribution of credit loses over a time horizon (typically one year), denote C the confidence level
(e.g. 95%), then the WCL is efined to be

∫∞
WCL f(x)dx = 1− C, with Credit VaR=WCL-ECL.

Example (FRM 1998): Credit VaR has CI of 99.9%, bond valued at $1M one month forward with one
year default probability of 2%. Assume no recovery. Calculate the Credit VaR.
Let d be the monthly probability of default. (1− d)12 = 1− 2% ⇒ d = 0.001682

ECL = $1M · 0.001682 · 100% = $1000

WCL(99.9%) = WCL(1− 0.001682) ≈ $1M

Credit VaR = $1M − 1682 = $998, 318

Example: Two bonds have credit VaR with CI of 99.9%, both of the bond valued at $50K one month
forward with one year default probability of 2% for each. Assume no recovery or correlation. Calculate
the Credit VaR.
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Let d be the monthly probability of default. (1− d)12 = 1− 2% ⇒ d = 0.001682

ECL = $500K · 0.001682 · 100% = $841

WCL(99.9%) = WCL(1− 0.001682) ≈ $250K

Credit VaR = $250K − 841 = $249, 159

7.4 Credit Risk Models

There are two main types of Credit Risk Models.

1. Credit Metrics

• Introduced by JP Morgan

• Based on bond prices

• Consider several credit states

• Modelled with Markov Chain

2. KMV

• Based on the Merton credit model

• Based on equity prices

• Only two states: solvency and default

• Modelled with Black-Scholes theorem

7.4.1 Credit Metrics

Key characteristics:

• Credit risk is driven by movements in bond ratings.

• Credit events are rating downgrades obtained through a matrix of migration probabilities.

• Each instrument is valued using the credit spread for each rating class

• Recovery rates are obtained from historical similarities

• Correlations between defaults are inferred from equity prices, assigning each obligor to a
combination of 152 indices (factor decomposition)

• It does not integrate market and credit risk

To calculate the correlations between two counter-party in Credit Metrics

1. Models were generated using 152 indices, 28 country indices, 19 worldwide indices

2. Apply linear regression. E.g.:

• r1 = 0.9rUS,Ch + k1ϵ1

• r2 = 0.7rGE,Ch + 0.1rGE,Ba + k2ϵ2

3. In the linear regressions, assume the residuals ϵ1, ϵ2 are uncorrelated.

4. Calculate the matrix multiplication of regression factors:
ρdef (r1, r2) = 0.9 · 0.74ρ(rUS,Ch, rGE,Ch) + 0.9 · 0.15ρ(rUS,Ch, rGE,Ba)

If we want to simulate more than one asset
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1. Consider a portfolio consisting of m counter parties and a total of n possible credit states

2. We need to simulate nm states. Their multivariate distribution is given by marginal distributions
and correlations are given by the regression models

3. To obtain accurate results, large simulations are needed, since many states have low probability

4. This does not integrate market and credit risk. Losses are assumed to be due to credit events alone.

7.4.2 Merton Model

In 1974, Merton introduced the view: equity value is a call option on the value of the assets of the firm
with a strike price equal to the firm’s debt.

Stock price embodies the forecast of the firm’s default probabilities, in the same way that an option
embodies an implied forecast of the option being exercised.

A company is a legal entity that has assets and liability. equity=value of assets-value of liability.

Consider a simple setting: Assume the firm’s value is V . The firm issued a zero-coupon bond due in one
time unit, equal to K.

• Solvency: The firm’s value is higher than the bond (V > K)

Bond holders get their bond payment. The remainder value of spread is distributed among the
shareholders.

• Default: The value of the firm is less than the bond (V < K)

Bond holders get the value of the firm V and equity value is 0.

Valud of equity= (V −K)+. This is a call option on the value of the firm, with strike price equal to
debt.

Equity Value:
The value of a firm can be determined at the time debt is due ST = max(VT −K, 0). Since the firm’s
value equals equity plus bonds: BT = VT −max(VT −K, 0) = min(VT ,K). Before debt is due, stocks are
priced as a call option and bonds are priced as a short put.

Pricing Equity:
Assume the firm’s assets are geometric Brownian: dV = µV dt+ σV dz. Also assume there is no
transaction costs including bankruptcy costs, then V = B + S. We can price S with the Black-Scholes
methodology, obtaining:

S = V N(d1)−Ke−rtN(d2),

where d1 =
− ln(Ke−rτ/V )

σ
√
τ

+
σ
√
τ

2
, d2 = d1 − σ

√
τ .

Note that Ke−rτ is the present discounted value of liability, V is the value of the firm, Ke−rτ/V is the
leverage of the firm, σ

√
τ is the volatility over time. σ is the volatility of the assets, which is hard to

calculate.

Asset Volatility:
In practice, only equity volatility is observed, but not asset volatility, which we can define as follows:
The hedge ratio dS = ∂S

∂V dV yields a relationship between stochastic differential equations for S and V ,
from where we get

σSS = σV
∂S

∂V
and σV = σS =

S∂V

V ∂S
.
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We observe dS, but not dV or σV . Note σS and V are both functions of σV . We need to solve for a fixed
point to find σV .

Pricing Debt:
The value of the bond is given by B = V − S. Therefore, B = Ke−rtN(d2) +N(1−N(d1)) or

B
Ke−rτ = N(d2) +

V
Ke−rτ N(−d1). Black-Schole tells us that N(d2) is the probability of exercising the all or

probability that the bond will not default. B
Ke−rτ is the riskless value of the bond. V

Ke−rτ N(−d1) takes the
recovery into account.

Credit Loss:
The expected credit loss is the value of the risk-free bond minus the risky bond.

ECL = Ke−rτ −Ke−rτN(d2)− V [1−N(d1)]

= N(−d2)

[
Ke−rτ − V

N(−d1)

N(−d2)

]
= Probability of default × PV of face value of the bond×
PV of expected value of the firm in case of default

Advantages:

• Relies on equity prices, not bond prices. More companies have stock prices.

• Correlation among equity prices can generate correlations among default probabilities

• Generates movements in EDP that can lead to credit ratings

Disadvantages:

• Cannot be used for counter parties without traded stocks (e.g. governments)

• Relies on a static model for the firm’s capital and risk structure

• The firm could take on operations that will increase stock price, but also its volatility, further leads
to increased credit spreads. In contradiction with basic premise: higher equity prices should be
reflected in lower credit spreads

7.4.3 KMV Model

KMV was a firm founded by Kealhofer, McQuown and Vasicek and then sold to Moody’s. The KMV
model is a simplified version of Merton’s model. The basic model inputs are:

• Value of the liabilities: liabilities (1 year) +0.5× long term debt

• Stock values

• Asset volatility

• Assets

Define the distance to default by the following equation:

distance to default =
market value of assets − default point

market value of assets × asset volatility

Example: A firm with $100M assets, $80M liabilities, annualized volatility of $10M. Then the distance
from default is A−K

σ = 100−80
10 = 2. The default probability is then 0.023 by N (0, 1).
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Capital Requirements under BIS:

K = LGD ×

[
N

(
N−1(PD)−

√
RN−1(0.999)√

1−R
− PD

)]
× MF,

where N is the cumulative normal distribution,
√
R is one-factor asset correlation. MF is the maturity

function, which empirically adjusts for the maturity of the portfolio.
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8 Introduction to Quantitative Investments

A hedge fund is an unregulated invetment structure. Investment skills was hard to exhibit looking only at
returns.

Speculation v.s. arbitrage:

• Cannot obtain returns without taking risks (risks associated with risk premiums give profits)

• Risks can often be mitigated by hedging

• Invetment opportunities exist with lower-than-normal risks (Arbitrage)

• Market inefficiencies are a source of arbitrage

Hedge funds are investment vehicles deisgned to take advantage of arbitrage (in general), market
inefficiency (a type of arbitrage) and risk mitigation strategies through hedging.

Example (Fund Cash Flows): Risk Transfer. Assume correlation of 50% between city and resort
precipitation. With 75% probability, both swaps yield opposite flows, we collect the fee $2M. With 12.5%
probability, we receive payments from both $22M. With 12.5% probability, we have to pay both
-$18M.

Investiment parameters:

• Investment amount: $20M

• Average return: 10%

• Volatility: σ2 = 0.75 · 0 + 0.125 · 1.12 + 0.125 · 0.92 = 0.25, thus σ = 0.5

• Sharpe ratio: 10%/50% = 0.2 < 1, bad deal

A diversified fund: same deal in multiple cities, we get volatility 5%, sharpe ratio 2>1, thus a good
deal.

8.1 Funds

A fund is a way to collect money from investors s.t. an external company manages it.

• Management Company: licensed/registered with local authorities (e.g. OSC, FSA, etc). Required to
create a fund

• Bank: store the money in an account under the name of the fund

• Administrator: Company who count the money (NAV of the funds): earning, lossing. Mutual fund
is calculated daily. Hedge fund is calculated monthly. share price= NAVt

Number of sharest

• Auditor: check that the administrator didn’t make a mistake, because they need to file the tax

• Broker (Custodian): needed when we have stock trading

All 5 companies should be conflict free.

Fees:

• Management fees: proportional to NAV, often paid monthly/quarterly, accured monthly

• Performance fees: proportional to P&L, often paid annually, accured monthly
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• Hurdles: stops performance fees when P&L is below a hurdle rate or modifies performance fees to
P&L over a hurdle rate. Performance fees will be discounted by management fees paid. Make the
management fee a loan against the performance fee.

• First loss fees: Managers give investors protection against loses in exchange to hihger performance
fees

Collateral: How much money do we need for a contract? Usually contract counter parties want cash or
securities as collateral for future payments. This allows indirect borrowing to take place, as one can act as
if you have money when you don’t.
e.g. In a mortgage, the house is a collateral against future payments. If payments do not occur, the bank
keeps the house.

Leverage: How much money do we need for the fund? Depends on the counter parties.

• Case 1 (no trust): $20M per swap, $2B in total.

• Case 2 (some trust): $20xM per swap, $2xB total where 0 < x < 1. Possible if a bank lends
difference or the city sign the swap without full collateral.

• Case 3 (Ignorant counter parties): swap with $0.

Offering Memorandum (OM):
A legally binding document that stipulates the basic conditions for the proper management of the fund,
including: liquidity provision, portfolio and investment guidelines, fees and valuation principles and
methodologies. Investors must read it and invest only if in aggreement with the terms.

Credit Risk: investors have negative profit, while manager still have infinite profit.

Most Favored Nations (MFNs):
Different investors can pay different fees through the issuance of different share classes. Most Favored
Nations Clause is a guarantee issued to a special investor that no other investor will be given better
fees.

Prime broker:

• Fund trades can get executed through any execution broker

• All fund trades settle at the Prime Broker, a key service provider to the fund

• A fund can have one or more PBs

• Services include: security lending, leveraged trade executions and cash management

• PBs also act as the primary custodian of the assets

• In certain situations, also provide risk management services

• Sublease office space and provide access to other facility-based benefis

• The funds are the PB’s clients and often times facilitate introduction to investors.
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Capacity of Hedge Fund: Amount of Asset Under Management (AUM) they can manage before
performance will suffer. Capacity is an issue for funds operating in markets with limited inefficiences, sizes
or volumes.
e.g. If only 100 swaps are available to be negotiated, then capacity is $2B. With < $2B AUM, risk will
rise but return continues at 10%. With > $2B AUM, return will lower, since additional funds cannot be
invested and P&L will have be shared among more investors.

Growth and Death of a Fund:

• Growth: fees, AUM growth, risks, capacity

• fraud, performance drag, blow-up, flows

8.2 Understanding Performance

Portfolio Returns:
Given Sk the share value timeseries.

• Return: rk =
Sk−Sk−1

Sk−1

• Log Return: rlogk = log Sk
Sk−1

= log(1 + rk)

We can collect a time series of portfolio returns

Portfolio Stats: Given return density ρ, can compute the cumulative return distribution function
F = Prob(return ≤ x), ρ = ∂F

∂x

Average/Mean Return: µ =
∫∞
−∞ xρ(x)dx = E(x), estimated by r̄ = 1

n

∑n
i=1 ri.

Volatility/std: σ2 =
∫∞
−∞(x− µ)2ρ(x)dx = E((x− µ)2), estimated by σ =

√
1

n−1

∑n
i=1(ri − r̄)2.

Returns over time:
Running mean/std will have noise because of outliers in the sample. We can compute averages over time
µ/σ. Stocks are higher risk. Bonds are medium risk. Hedge funds are lower risk.

• Time-weighted Rate of Return: monthly returns can be compounded overtime:
1 +R = (1 + r1)(1 + r2) · · · (1 + rn)

• Internal Rate of Return: Takes in to account the amounts invested overtime. If we make
investments worth pk at time tk ago, and final value of the fund is V , then the internal rate of
return is defined by V =

∑
k pk(1 +R)tk .

Correlation: For two funds, with monthly returns given by random variables X and Y , the covariance is
obtained as:

Cov(X,Y ) = E(X − E(X))(Y − E(Y )) =
1

n− 1

n∑
i=1

(Xi − X̄)(Yi − Ȳ )

Correlation can be calculated as:

ρ(X,Y ) =
Cov(X,Y )

σXσY
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By Cauchy-Schwartz, ρ ∈ [−1, 1].

Portfolio Volatility:
Consider a portfolio Π that allocates wi to assets with returns given by random variables Xi, i = 1, ..., n.
If the covariance matrix of Xi is given by V = (σi,j), then the portfolio volatility is given by:

σ2
Π = ⟨

n∑
i=1

wiXi,

n∑
j=1

wjXj⟩

=
∑
i,j

wiwj⟨Xi, Xj⟩

= wV wT

σΠ =
√
wV wT

σΠ implies portfolio diversification. When correlations are less than 1 or negative, portfolio volatility
decreases.

Marginal Value of Diversification:
Assume N assets with returns given by random variables Xi, i = 1, ..., N , and a portfolio Π with
allocations wi. Assume constant pairwise correlations C, equal asset allocations and also equal means and
variances µ and σ. Then

σ2
Π =

∑
i

w2
i σ

2
i +

∑
i ̸=j

wiwjσiσj

= C +
σ2 − C

N︸ ︷︷ ︸
Rate of Diversification

8.2.1 Portfolio Risk and Return (Markowitz)

Portfolios are characterized by two parameters: expected return and standard deviation.
Bonds+stocks with some proportion (diversification) gives lowest risk and good returns, and is better
than all bonds (lower return but higher risk).

Efficient Frontier: The optimal combination of risk and a return. It is the boundary between possible
and impossible investments.

Sharpe Ratio:
Markowitz argue that we should invest in the efficient frontier, but does not specify where. Sharpe tells us
where in the frontier we should invest.

• Suppose we seek a portfolio Π that maximizes the probability of exceeding a fixed benchmark r. If
returns are normally distributed, then Prob(Π ≥ r) = 1− ϕ

( r−µ
σ

)
. The rational decision is to

maximize the Sharpe ratio with benchmark r with µ−r
σ

• Suppose we seek a portfolio Π that maximizes the probability of exceeding a known but random
benchmark Y + r. If returns are normally distributed, then
Prob(Π ≥ Y + r) = Prob((Π− Y ) ≥ +r) = 1− ϕ

(
r−µΠ−Y

σΠ−Y

)
. The rational decision is to maximize

the Sharpe ratio with benchmark r with µΠ−Y −r
σΠ−Y

, A portfolio manager will be paid a bonus if it
makes a benchmark return of r above an index Y . σΠ−Y is the tracking error.
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Portable Alpha:

• Portfolios with return independent of market returns deliver alpha

• Portfolios with returns dependend on markets, indices, etc deliver beta

• Optimal performance of portfolios benchmarked to indices with futures or forwards can be obtained
via portable alpha strategies

1. Construct an optimal portfolio P with cash benchmark.

2. Add an index futres contract to portfolio P .

• This constitutes a direct application of absolute return strategies in the institutional portfolio

Examples:

• Alpha: hedge funds, absolute return strategies, active portfolio management, prop desks

• Beta: stocks, bonds, infrastructure, private equity, credit
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9 Trading Strategies

Hedge Funds Characteristics:

• Turn risk into return: market inefficiencies, information advantage

• Return profile is not directly linked to market direction

• Exchange traded or OTC securities

• May have a limited opportunity set

• May have liquidity restrictions

• Often innovative

9.1 Equity Based Trading

Equity is the populous investment style. It has many different trading styles and characteristics (long
only, long biased, short biased, short only, long short, equity market neutral, quant equity)

Equity Long

• Fundamental: traditional accounting. It is hard to analyze tech companies

– P/B: Price to Book

– EPS: Earnings per share (Price/Earnings ratio). The company is making $8.35 per $147.37 if
the stock price is $147.37 and EPS is $8.35

– Net income

– Free cashflow: cash generated but not needed to fund the operation

– EBITDA: Earnings before income tax depreciation asset (Description of free cash)

– P/E ratio: price to equity ratio. It’s the future earning

• Growth: Focus more on the future

– Historical growth strength (use history to forecast future)

– Strong forward Earnings growth based on analyst or company projections target of >10%

– Efficiency, costs, revenue, etc

• GARP (Growth at a Reasonable Price): In between the previous two

• Momentum: look for stocks moving significantly in one direction on high volume and jump on board
to ride the momentum to a desired profit (e.g. Netflix in 2013)

• Technical: Developing trading signals from charts and graph patterns

Equity Short

• Stock lending: before you can short a stock, someone needs to be willing to lend it. It has
restrictions, may need to give back. Financing rate: Fed+spread

• Locate process

• Uptick rule
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• Short squeeze: forced to return if recalled, typically when stock is expensive

• No right to keep the position indefinitely

If stock rises, stock owners want to sell, short seller were called on the stock loan, stock rose even more.
Many hedge funds were short the auto industry in 2008.

Short Selling Strategy:

• Trades based on negative company information: SEC fillings, litigations, etc.

• Very risky: take overs, short squeeze, unlimited

• Short selling gurns

• Put is better than short, risk based decision

• Short interest ratio = Short Interest
Average Daily Volume

Equity Long Short:: >0 long, <0 short, can have single name short, index short (sector hedge on
NASDAQ, portfolio hedge on SPY)

9.2 Convertible Arbitrage

Convertible bonds are securities companies with bad credits issue. It is issued when both bonds (debt)
and stocks fail to raise funding. It is structured as bonds offering protection arising from an obligation to
pay the coupons and the principal. It also offers upscale, allowing convertible bond holders to exchange
their bonds into stocks inside a period of time.

Convertible bonds are usually issued by companies with volatile stock prices and lower credit quality.
Investors want to profit from the upside presented by convertible bonds, but they want to hedge the
default and market risks.

Hedging is achieved by shorting the underlying stock

• Stock volatility implies upside potential for stock valuation, but convertibility of the bonds mitigates
this

• More or less of the underlying stock will be donw as a hedge, which could totally eliminate the
upside potential of the bond

Example: convertible bond sold at $80 (20% discount) can be converted into 10 shares anytime. Stock
price is $7. Annual coupon payment is $4. Interest rate is 4%. What are possible performance 1 year
later?

Now Calm Bankruptcy Explosive Success
bond $ 80 $ 80 $ 50 (recovery rate) $140 (After conversion)
stock -$70 -$70 0 -$140
coupon $4
T-Bill $70 $72.8 (interest) $72.8 $72.8
Fees -$3.5 (broker 5% on stock) -$3.5 -$3.5
Total $80 $83.3 $119.3 $79.3
Performance (4+0.125)% (4+46)% (4-4.875)%
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Optimizing the table. Consider one convertible bond, short 10x stocks (0 < x < 1)

Now S1 S2 S3 Success
bond 80 140 80 30
stock -70x -140x -70x 0
coupon 0 4 0
T-Bill 70x 72.8x 72.8x 72.8x
Fees -3.5 -3.5 -3.5
Total 80 140− 70.7x 84− 0.7x 30 + 69.3x

Each event has probability 1
3 . Then we can calculate µ and σ for these 3 events. See what gives the

highest Sharpe ratio. (x = 8)
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