MAT315 Introduction to Number Theory

1 Division and Primes

1.1 Division

Definition: 1.1: Divisors

Let $n, d \in \mathbb{Z}$. We say d divides n if $\exists e \in \mathbb{Z}$ s.t. n = de. Notation: d|n.

Theorem: 1.1: Division Algorithm

Let $a \in \mathbb{Z}$, $b \in \mathbb{N}$. There exists unique $q, r \in \mathbb{Z}$, where a = qb + r, $0 \le r < b$.

Proof. Let $S = \{a - bq \ge 0 : q \in \mathbb{Z}\}$. Note that if we let $q = -|a|, a - qb = a + |a|b \ge 0$, so $-|a| \in S, S \ne \emptyset$. By well-ordering property, there exists a least element r = a - bq, s.t. $a = bq + r, r \ge 0$. If $r \ge b$, then $0 \le r - b = a - b(q + 1), r$ is not the least element in S, contradiction, thus r < b.

Uniqueness: Suppose $bq_1 + r_1 = bq_2 + r_2 = a$, then $r_1 - r_2 = b(q_2 - q_1)$. Since $0 \le r < b$, then $-b < r_1 - r_2 < b$. But it is a multiple of b, then $r_1 - r_2 = 0$, $r_1 = r_2$ and $q_1 = q_2$. \Box

Theorem: 1.2: Properties of Divisors

- 1. If a|b and b|c, then a|c
- 2. If a|b and c|d, then ac|bd
- 3. For all $x, y \in \mathbb{Z}$, if d|a and d|b, then d|ax + by
- *Proof.* 1. If a|b and b|c, then by Definition 1.1, $\exists n, m \in \mathbb{Z}$ s.t. b = na and c = mb, then c = m(na) = (mn)a, thus a|c.
 - 2. If a|b and c|d, then $\exists n, m \in \mathbb{Z}$ s.t. b = na and d = mc, then bd = (na)(mc) = (mn)(ac), thus ac|bd.
 - 3. If d|a and d|b, then $\exists n, m \in \mathbb{Z}$ s.t. a = nd and b = md, then ax + by = (nd)x + (md)y = d(nx + my), thus d|(ax + by).

Definition: 1.2: Greatest Common Divisors

For $a, b \in \mathbb{Z}$, their greatest common divisor (GCD) is the natural number gcd(a, b) which is the largest common divisor of a, b. If a = b = 0, then gcd(a, b) = 1.

Lemma: 1.1: Bezout's Lemma

Let $a, b \in \mathbb{N}$. The equation $ax + by = \gcd(a, b)$ has a solution.

Proof. Let $S = \{c \in \mathbb{N} : ax + by = c \text{ has a solution.}\}$. Obviously $a \in S, S \neq \emptyset$. By well-ordering property, it has the least element s. We want to show that $s = \gcd(a, b)$.

- 1. Firstly, $s \ge \gcd(a, b)$, since $\gcd(a, b)|s$ by Theorem 1.2 (3).
- 2. Now we show that $s \leq \gcd(a, b)$ Apply Theorem 1.1 to s, a. a = qs + r with $0 \leq r < s$. a = q(ax + by) + r, which gives a(1 - qx) + b(-y) = r, is solvable by definition of s. Thus r = 0. s|a and similarly s|b. Therefore $s \leq \gcd(a, b)$

Thus $s = \gcd(a, b)$.

Theorem: 1.3:

Let $a, b, d \in \mathbb{N}$. If d|a and d|b, then $d|\operatorname{gcd}(a, b)$.

Proof. Apply Lemma 1.1, ax + by = gcd(a, b) has a solution. Then by Property 3 of Theorem 1.2, d|gcd(a, b).

Definition: 1.3: Coprime

 $a, b \in \mathbb{Z} \setminus \{0\}$ are coprime, if gcd(a, b) = 1. *i.e.* ax + by = 1 has solutions.

Theorem: 1.4:

ax + by = c is solvable if and only if gcd(a, b)|c.

Proof. (\Leftarrow) If $c = k \gcd(a, b)$. By Lemma 1.1, $\exists x, y \in \mathbb{Z}$ s.t. $ax + by = \gcd(a, b)$. Multiplying both sides by $k, a(kx) + b(ky) = k \gcd(a, b) = c$

 (\Rightarrow) Solvable by property 3 of Theorem 1.2.

Note: If we let d = gcd(a, b), ax + by = dk, $\frac{a}{d}x + \frac{b}{d}y = k$. $\frac{a}{d}$ and $\frac{b}{d}$ are coprime. Therefore, we can always assume that a, b are coprime.

Lemma: 1.2:

Let $a, b \in \mathbb{N}$ be coprime, $c \in \mathbb{N}$. If a|bc, then a|c.

Proof. If $a, b \in \mathbb{N}$ are coprime, by Lemma 1.1, ax + by = 1 has solutions. Multiply both sides by c, a(cx) + (bc)y = c, has solutions. a|a and a|bc, so a|c by Theorem 1.4.

Suppose a, b are coprime, and $(x_0, y_0), (x_1, y_1)$ are two pairs of solutions to ax + by = c. $ax_0 + by_0 = c = ax_1 + by_1 \Rightarrow a(x_0 - x_1) = b(y_1 - y_0)$ Since a, b are coprime, $a|y_1 - y_0, b|x_0 - x_1$. Let $t, s \in \mathbb{Z}, y_1 - y_0 = at, x_0 - x_1 = bs$. Plug back into the equation, abs = bat, thus s = t. $x_1 = x_0 - bt, y_1 = y_0 + at$. Given $ax_0 + bx_0 = c, ax_0 - abt + abt + by_0 = c$, and $a(x_0 - bt) + b(y_0 + at) = c$. \square

Theorem: 1.5: Linear Diophantine Equation Theorem

Let $a, b, c \in \mathbb{N}$, $d = \gcd(a, b)$, $x_0, y_0 \in \mathbb{Z}$ be solutions s.t. $ax_0 + by_0 = c$. Then all solutions to ax + by = c are of the form $x = x_0 - \frac{b}{d}t$, $y = y_0 + \frac{a}{d}t$, $t \in \mathbb{Z}$.

Theorem: 1.6: Euclidean Algorithm

Let $a, b \in \mathbb{N}$. Apply division algorithm, $a = qb + r, 0 \le r < b$. Then gcd(a, b) = gcd(b, r).

Proof. If d = gcd(a, b), d|a and d|b, then d|a - bq = rIf d = gcd(b, r), d|b and d|r, then d|qb + r = a.

Example: a = 450, b = 100, a = 4b + 50. Let $a_1 = 100, b_1 = 50, a_1 = 2b_1 + 0$. Thus gcd(450, 100) = gcd(100, 50) = gcd(50, 0) = 50

Example: a = 315, b = 17, a = 18b + 9.Let $a_1 = 17, b_1 = 9, a_1 = 1b_1 + 8.$ Let $a_2 = 9, b_2 = 8, a_2 = 1b_2 + 1.$ Let $a_3 = 8, b_3 = 1, a_3 = 8b_3 + 0.$ Thus gcd(315, 17) = gcd(17, 9) = gcd(9, 8) = gcd(8, 1) = 1.

We can now iterate backwards to construct a solvable diophantine equation.

 $1 = 9 - 1 \cdot 8$ = 9 - 1(17 - 9) = 2 \cdot 9 - 17 = 2 \cdot (315 - 18 \cdot 17) - 17 = 2 \cdot 315 + (-37)(17)

Thus x = 2, y = -37 is a solution to ax + by = c, where a = 315, b = 17, c = gcd(a, b) = 1.

Theorem: 1.7: Euclidean Algorithm (Formally)

Let $a, b \in \mathbb{N}, a \ge b$. Define a sequence by repeated divisions

 $a = q_1 b + r_1, 0 \le r_1 < b$ $b = q_2 r_1 + r_1,$ $r_{n-3} = q_{n-2} r_{n-2} + r_{n-1}$ $r_{n-2} = q_{n-2} r_{n-1} + r_n$ $r_{n-1} = q_n r_n + 0$

Then $gcd(a,b) = r_n$ and we can solve for x, y in $ax + by = r_n$ by $r_n = r_{n-2} - q_{n-1}r_{n-1} = r_{n-2} - q_{n-1}(r_{n-3} - q_{n-2}r_{n-2})$. This terminates in $\log_2(a, b)$.

1.2 Primes

Definition: 1.4: Prime Numbers

A number $p \in \mathbb{N}$, p > 1 is prime if its only divisors are 1 and itself.

Theorem: 1.8:

For a prime number p and any number a, gcd(a, p) = 1 or p and $gcd(a, p) = p \Leftrightarrow p|a$.

Corollary 1. If $a, b \in \mathbb{Z}$ and p|ab, then p|a or p|b.

Proof. By Theorem 1.8, either p|a or gcd(a, p) = 1 and p|b.

Corollary 2. If $a_1, ..., a_n \in \mathbb{N}$, and $p|a_1 \cdots a_n$, then $p|a_i$ for some *i*.

Proof. By induction on i and previous corollary.

Theorem: 1.9: Fundamental Theorem of Arithmetics

For any $n \in \mathbb{Z}$, $n \neq 0$, there exists a factorization $n = \pm p_1^{k_1} \cdots p_r^{k_r}$ where p_j are distinct primes, $k_j \in \mathbb{N}$ and this is unique up to reordering of p_j .

Proof. Existence: (By strong induction)

Base: 1=1 and 2=2 work

Inductive step: Suppose the statement holds for 1...n, consider n+1

If n+1 is prime, then we are done. Otherwise, $\exists 1 < d < n+1$ s.t. d|n+1, then n+1 = de for $1 < d, e \leq n$. By Induction, d, e factors, so n+1 factors.

Uniqueness: Observe that if p, q are prime and p|q, then p = q

Write $n = p_1^{k_1} \cdots p_r^{k_r} = q_1^{t_1} \cdots q_s^{t_s}$. By Corollary 2, since $q_1|n$, then $q_1|p_i$ for some *i*, and thus $q_1 = p_i$. By reordering, we can assume $p_1 = q_1$, and cancel out to get $p_1^{k_1-1}p_2^{k_2} \cdots p_r^{k_r} = q_1^{t_1-1} \cdots q_s^{t_s}$. Keep cancelling q_1 , we will eventually have $p_1^{k_1-t_1}p_2^{k_2} \cdots p_r^{k_r} = q_2^{t_2} \cdots q_s^{t_s}$.

If $k_1 \neq t_1$, then $p_1|q_i$ for some other $2 \leq i \leq s$. Then q_i is not distinct from q_1 , contradiction. Thus $k_1 = t_1$ and $p_2^{k_2} \cdots p_r^{k_r} = q_2^{t_2} \cdots q_s^{t_s}$.

Iterating this procedure, we get r = s, $k_i = t_i$, $p_i = q_i$.

Theorem: 1.10: Properties of Prime Factorization

If $a = p_1^{k_1} \cdots p_r^{k_r}$ and $b = p_1^{t_1} \cdots p_r^{t_r}$. Then 1. $ab = p_1^{k_1+t_1} \cdots p_r^{k_r+t_r}$ 2. $\frac{b}{a} = p_1^{k_1-t_1} \cdots p_r^{k_r-t_r}$ and a|b if $k_i - t_i \ge 0$ for all i. The divisors of b are $d = p_1^{z_1} \cdots p_r^{z_r}$ for $0 \le z_j \le t_j$ 3. $gcd(a,b) = p_1^{\min(k_1,t_1)} \cdots p_r^{\min(k_r,t_r)}$

Note: $p_1^{a_1} \cdots p_r^{a_r} \in \mathbb{Z}$ if $a_j \ge 0$. Suppose $a_j < 0$ for some j, then $p_j^{a_j} \notin \mathbb{Z}$.

1.3 Counting Primes

Theorem: 1.11: Euclid

There are infinitely many primes

Proof. Let $p_1, ..., p_r$ be primes. Consider $N = p_1 \cdots p_r + 1 > 1$. It has a prime factor q. If $p_j|N$, then $p_j|N - p_1 \cdots p_r = 1$. Contradiction. Thus $q \neq p_j$ for any j. Then $p_1, ..., p_r, p_{r+1} = q$ is a larger set of primes.

4

Theorem: 1.12: Number of Primes

Let $\pi(x)$ be the number of primes $\leq x$. Then $\pi(x) \approx \frac{x}{\log x}$.

How do we estimate $\pi(x)$ and what is the distribution of primes? We can say that p, p+1 are not both prime if $p \ge 2$. And Bertrand postulate states that p_k and p_{k+1} can be far from each other, but for any natural number $n \in \mathbb{N}$, there is always a prime p s.t. $n \leq p \leq 2n$.

Lemma: 1.3: Upper Bound for $\pi(x)$

Let p_n denote the *n*th prime number, then $p_n \leq 2^{2^{n-1}}$.

Proof. Base: $p_1 = 2 \le 2^{2^0} = 2$ Induction Step: Suppose $p_j \leq 2^{2^{j-1}}$ for $j \leq n$. We know that there is a new prime q dividing $M = p_1 \cdot p_n + 1$ from Theorem 1.11. Then

 $p_{n+1} \le q \le p_1 \cdots p_n + 1$ $< 2^{2^{1-1}} 2^{2^{2-1}} \cdots 2^{2^{n-1}} + 1$ $= 2^{\sum_{i=0}^{n-1} 2^i} + 1$ $=2^{2^n-1}+1 < 2^{2^n}$

Definition: 1.5: Integer and Fraction Parts

For $x \in \mathbb{R}$, $|x| = n \in \mathbb{Z}$ when $n \le x < n+1$ and $\{x\} = n - |x|$ is the fraction part.

Corollary 3. $\pi(x) \ge |\log_2 \log_2 x| + 1$

Proof. $\pi(x) = \#$ primes $\leq x$. We want to (at least) count the primes with $2^{2^{n-1}} \leq x$ as from Lemma 1.3. Therefore, $n \leq |\log_2 \log_2 x| + 1$.

Fact: If n is a composite number, it has non-trivial divisor $d \leq \sqrt{n}$. *i.e.* one of $d, \frac{n}{d} \leq \sqrt{n}$ for all d|n.

Principal of Inclusion-Exclusion: For A_1, A_2, A_3 finite sets, $|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_3| = |A_1| + |A_2| + |A_3| - |A_3| = |A_1| + |A_3| - |A_3| = |A_3| + |$ $A_2| - |A_1 \cap A_3| - |A_2 \cap A_3| + |A_1 \cap A_2 \cap A_3|.$

Using the fact and principal of inclusion-exclusion, we can define a sum form of the number of primes $\leq x$:

$$\pi(x) = \#n \le x - \#n \le x, 2|n - \#n \le x, 3|n - \dots - \#n \le x, p|n \text{and} p \le \sqrt{x} + \$n \le x, b|n + \dots$$
$$= \lfloor x \rfloor - \sum_{p \le \sqrt{x}} \left\lfloor \frac{x}{p} \right\rfloor + \sum_{p_1 < p_2 \le \sqrt{x}} \left\lfloor \frac{x}{p_1 p_2} \right\rfloor - \dots$$

 $\text{Then } \pi(x) - \pi(\sqrt{x}) + 1 = \sum_{d \mid P_{\leq \sqrt{x}}} N(d) \left\lfloor \frac{x}{d} \right\rfloor = x \sum_{d \mid P_{\leq \sqrt{x}}} \frac{N(d)}{d} - \sum_{d \mid P_{\leq \sqrt{x}}} \mu(d) \left\{ \frac{x}{d} \right\}, \text{ where } P_{\leq \sqrt{x}} \text{ is the product } p_{\leq \sqrt{x}} = 0$

of all primes $\leq \sqrt{x}$.

2 Congruence and Chinese Remainder Theorem

Consider $x^8 + 1 = 3y^3$. Can it be solved with $x, y \in \mathbb{Z}$?

We check if $x^8 + 1$ is divisible by 3. We consider $x^4 = 3k + r$. If r = 0, then $3 \not| x^8 + 1$. Similar for r = 1 or 2. $x^8 + 1 = 3m + 2$.

We want to find an efficient way of writing the modulo relation.

Definition: 2.1: Equivalence Relation

Given a set X, an equivalence relation on X is a relation \sim s.t.

- 1. Reflexive: $x \sim x, \forall x \in X$
- 2. Symmetric: if $x \sim y$, then $y \sim x$
- 3. Transitive: if $x \sim y$ and $y \sim z$, then $x \sim z$

Definition: 2.2: Congruence

For $n \in \mathbb{N}$, we define an equivalence relation on \mathbb{Z} by $a \sim b$ iff n|(a-b). When $a \sim b$, we write $a \equiv b \mod n$

Proof. Reflexive: n|0 = a - a, so $a \sim a$ Symmtric: $n|a - b \Rightarrow n|b - a$, so $a \sim b \Rightarrow b \sim a$ Transitive: If n|a - b and n|b - c, then n|(a - b) + (b - c) = a - c

Theorem: 2.1: Properties of Congruence

- 1. Addition is preserved: if $a \equiv a' \mod n$ and $b \equiv b' \mod n$, then $a + b \equiv a' + b' \mod n$
- 2. Multiplication is preserved: if $a \equiv a' \mod n$ and $b \equiv b' \mod n$, then $ab \equiv a'b' \mod n$

Proof. Addition: if n|(a-a') and n|(b-b'), then n|(a-a')+(b-b')=(a+b)-(a'+b'), thus $a+b\equiv a'+b' \mod n$.

Multiplication: Note that ab - a'b' = ab - ab' + ab' - a'b' = a(b - b') + b'(a - a'), if n|(a - a') and n|(b - b'), then n|ab - a'b', so $ab \equiv a'b' \mod n$

Corollary 4. If $f(x) \in \mathbb{Z}[x]$ (polynomial ring with integer coefficients) and $a, b \in \mathbb{Z}$, then $f(a) \equiv f(b) \mod n$

Definition: 2.3: Equivalence Classes

The equivalence class of a point $x \in X$ is $[x] = \{y \in X : x \sim y\}$

Note: $[x] \cap [y] \neq \emptyset$ iff $x \sim y$ and [x] = [y]. We can write $X/ \sim = \{[x_1], ..., [x_n], ...\}$ For congruence, there are *n* equivalence classes $\mathbb{Z}/n\mathbb{Z} = \{[0], [1], ..., [n-1]\}$. Often, we drop the $[\cdot]$ bracket.

Example: $\mathbb{Z}/12\mathbb{Z} = \{0, 1, ..., 11\}.$ $3 + 9 \equiv 0 \mod 12, 2(8) + 4 \equiv 8 \mod 12, 3(7) \equiv 9 \mod 12$ $3(9) \equiv 3(-3) \equiv -9 \equiv 3 \mod 12$ However, we cannot divide, $\exists x_0 \text{ s.t. } 6x_0 \equiv 1 \mod 12.$

Remark 1. For $\mathbb{Z}/n\mathbb{Z} = \{[0], [1], ..., [n-1]\}$, define [a] + [b] = [a+b], [a][b] = [ab]. The operations are well-defined as by Theorem 2.1.

Remark 2. So by induction, if $p(x) \in \mathbb{Z}[x]$, then p([a]) = [p(a)] is well-defined. *i.e.* if we are studying polynomial equations p(x) = 0, the solutions in \mathbb{Z} (p(a) = 0) give solutions modulo n ([a]).

Note: Similarly, we can define $\mathbb{Q} = \mathbb{Z} \times \mathbb{Z} / \sim$ as equivalence classes, where $\frac{1}{2} = \frac{2}{4} = \frac{3}{6} = \cdots$. However, $f: \mathbb{Q} \to \mathbb{Z}$ s.t. $f\left(\frac{a}{b}\right) = a - b$ is not well defines, since $\frac{1}{2} = \frac{2}{4}$, but $f\left(\frac{1}{2}\right) = -1 \neq -2 = f\left(\frac{2}{4}\right)$.

We know that [a] = [b] if and only if $a \equiv b \mod n$, but we don't know how to divide or if we can even divide.

Definition: 2.4: Division in Congruence Form

We can divide by $a \mod n$ if the equation $ax \equiv 1 \mod n$ has a solution. We call the solution a^{-1} or the multiplicative inverse of $a \mod n$. It has a solution if and only if gcd(a, n) = 1.

Theorem: 2.2:

The equation $ax \equiv b \mod n$ has a solution if and only if $d = \gcd(a, n)|b$. If x_0 is a solution, then the distinct solutions modulo n are $x_0, x_0 + \frac{n}{d}, x_0 + \frac{2n}{d}, \dots, x_0 + \frac{(d-1)n}{d}$.

Remark 3. gcd(a, n)|d is fine because gcd(m, qm + r) = gcd(m, r) by Theorem 1.7, and d|n. So if n|b - b', then $d|b \Leftrightarrow d|b'$, since b = b' + nk.

Proof. (\Rightarrow) Suppose $ax_0 \equiv b \mod n$ for some x_0 . Then $n|ax_0 - b$, so there exists $y_0 \in \mathbb{Z}$ s.t. $ax_0 - b = ny_0$. Then $ax_0 + n(-y_0) = b$, gcd(a, n)|b.

 (\Leftarrow) If gcd(a, n)|b, then $\exists x_0, y_0 \in \mathbb{Z}$ s.t. $ax_0 + ny_0 = b$ by Lemma 1.1, so $n|ax_0 - b$, or equivalently, $ax_0 \equiv b \mod n$.

Now, we show that the solutions modulo n to $ax \equiv b \mod n$ are exactly the congruence of the x s.t. ax + ny = b. By Theorem 1.5, the solutions are of the form $x_0 + \frac{nd}{t}$ for $t \in \mathbb{Z}$.

Then we show that $x_0, x_0 + \frac{n}{d}, x_0 + \frac{2n}{d}, \dots, x_0 + \frac{(d-1)n}{d}$ are distinct and a complete list of solutions. Distinct: suppose $x_0 + j\frac{n}{d} \equiv x_0 + \frac{in}{d} \mod n$, then $n | \frac{(i-j)n}{d}$, but $0 \le i - j \le d - 1$, $\frac{(i-j)d}{n} < n$, so i - j = 0Complete, for any $x = x_0 + \frac{n}{d}t$, apply Division algorithm for t and d, we get $x = x_0 + \frac{n}{d}t = x_0 + \frac{n}{d}(qd+r) = x_0 + \frac{nr}{d} + qn$ for $0 \le r < d$.

Corollary 5. If gcd(a,n)|b, then $ax \equiv b \mod n$ has d = gcd(a,n) distinct solutions modulo n. If d = 1, then there's a unique solution.

Example: $10x \equiv 11 \mod 9 \equiv 2 \mod 9$, so $x \equiv 2 \mod 9$.

Example: Solve for x s.t. $7x \equiv 13 \mod 15$

Proof. since a = 7, n = 15, b = 13 are coprime, there is a unique solution. We consider 7x + 15y = 13. We can firstly solve 7x + 15y = 1 using Theorem 1.7. $15 = 2 \cdot 7 + 1$, and thus x = -2, y = 1. Multiply both sides by 13, and we get x = -26, y = 13 is a solution to 7x + 15y = 13So the solution to $7x \equiv 13 \mod 15$ is $x \equiv -26 \equiv 4 \mod 15$.

Example: Solve for x s.t. $10x \equiv 6 \mod 16$

Proof. Apply Theorem 1.7,

10x + 16y = 6 $16 = 1 \cdot 10 + 6$ $10 = 1 \cdot 6 + 4$ $6 = 1 \cdot 4 + 2$ $4 = 2 \cdot 2 + 0$

Then back substitute, 2 = 6 - 1(4) = 6 - 1(10 - 1(6)) = 6(2) + 10(-1) = 2(16 - 1(10)) + 10(-1) = 10(-3) + 16(2)Thus x = -3, y = 2 is a solution to 10x + 16y = 2Multiply both sides by 3, we get x = -9, y = 6 is a solution to 10x + 16y = 6Thus the solutions are $7 \equiv -9 \mod 16$ and $15 \equiv -9 + \frac{16}{2} \mod 16$.

Theorem: 2.3: Independence Condition

If $n = p_1^{k_1} \cdots p_r^{k_r}$, then for $a \in \mathbb{Z}$, $a \equiv 0 \mod n$ if and only if $a \equiv 0 \mod p_j^{k_j}$ for all $1 \leq j \leq r$.

Proof. (\Rightarrow) $n = p_j^{k_j}(p_1^{k_1} \cdots p_{j-1}^{k_{j-1}} p_{j+1}^{k_{j+1}} \cdots p_r^{k_r})|a$. Thus $p_j^{k_j}|a$. (\Leftarrow) by applying the corollary of Theorem 1.8. p_j^k s are coprime.

Theorem: 2.4: Chinese Remainder Theorem

Let $m, n \ge 1$ be coprime integers. Then the map

 $\varphi: \mathbb{Z}/nm\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z} \text{ s.t. } \varphi(a \mod (nm)) = (a \mod n, b \mod m)$

is a bijection. Moreover, $\varphi(x+y) = \varphi(x) + \varphi(xy), \ \varphi(1) = 1, \ \varphi(xy) = \varphi(x)\varphi(y).$

Remark 4. If $p(x) \in \mathbb{Z}[x]$, then $\varphi(p(x) \mod mn) = (p(x) \mod n, p(x) \mod m)$.

Remark 5. For $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z} = \{([a]_n, [b]_m) : a = 0, ..., n - 1, b = 0, ..., m - 1\}, ([a]_n, [b]_m) + ([c]_n, [d]_m) = ([a + c]_n, [b + d]_m), \text{ where } (0, 0) \text{ is the additive identity.} ([a]_n, [b]_m) \cdot ([c]_n, [d]_m) = ([ac]_n, [bd]_m), \text{ where } (1, 1) \text{ is the multiplicative identity.}$

Proof. Well defined: if $a \equiv a' \mod nm$, then nm|a-a', since nm coprime, by Theorem 1.8, $n|a-a', a \equiv a' \mod n$ and $m|a-a', a \equiv a' \mod m$.

Injective: If $a \equiv b \mod n$ and $a \equiv b \mod m$, *i.e.* $\varphi(a) = \varphi(b)$, since n, m are coprime, n|a-b and $m|a-b \Rightarrow nm|a-b$, thus $a \equiv b \mod nm$.

Surjective: For any $b \mod n$, $c \mod m$, we want to find $a \mod nm$ s.t. $a \equiv b \mod n$ and $a \equiv c \mod m$. By Lemma 1.1, there are $x_0, y_0 \in \mathbb{Z}$ s.t. $nx_0 + my_0 = 1$ Construct $a = b(my_0) + c(nx_0)$, then $a \equiv b(my_0) \mod n$ and $a \equiv c(nx_0) \mod m = c \mod m$.

 $\varphi(x+y) = ((x+y) \mod n, (x+y) \mod m) = (x \mod n+y \mod n, x \mod m+y \mod m)$ $= (x \mod n, x \mod m) + (y \mod n, y \mod m) = \varphi(x) + \varphi(y)$

 $\varphi(xy) = (xy \mod n, xy \mod m) = (x \mod ny \mod n, x \mod my \mod m)$ $= (x \mod n, x \mod m) (y \mod n, y \mod m) = \varphi(x)\varphi(y)$

 $\varphi(1) = (1 \mod n, 1 \mod m) = (1, 1)$

Example: Solve for $x^2 \equiv 2 \mod 14$.

Proof. By Theorem 2.4, it is enough to solve for $x^2 \equiv 2 \mod 2$ and $x^2 \equiv 2 \mod 7$, and then we can construct solutions mod 14. The first one gives $x \equiv 0 \mod 2$. The second one gives $x^2 \equiv 2 \equiv 9 \mod 7$, $x \equiv \pm 3 \mod 7$. So we have the left side of the correspondance, $\{(0,3), (0,-3)\}$. This means we need to solve $\begin{cases} x \equiv 0 \mod 2 \\ x \equiv 3 \mod 7 \end{cases}$, and $\begin{cases} y \equiv 0 \mod 2 \\ y \equiv -3 \mod 7 \end{cases}$ We want $z \mod nm$ that maps to $(a \mod n, b \mod m)$. Apply a similar idea in proving the surjection. We use z = a(my) + b(nx) s.t. nx + my = 1, then use the Euclidean algorithm. To solve the first one, take z = 0(7y) + 3(2x), where 7y + 2x = 1. Then x = -3, y = 1, $z = -18 \equiv 10 \mod 14$.

For the second one, z = 0(7y) - 3(2x) where 7y + (-2)x = 1, $x = 3, y = 1, z = 18 \equiv 4 \mod 14$.

Example: Solve for $6x \equiv 15 \mod 385$.

Proof. Note $385 = 5 \cdot 7 \cdot 11$. So we solve for $6x \equiv 15 \equiv 0 \mod 5$, $6x \equiv 15 \equiv 1 \mod 7$ and $6x \equiv 15 \equiv 4 \mod 11$.

Consider the first 2 congruence equations:

We solve for 5x + 7y = 1 and get x = 3, y = -2, so we have $a = 0(7y) + 1(5x) \equiv 15 \mod 35$. Then combine this with $6x \equiv 4 \mod 11$, We solve for 11x + 35y = 1: $35 = 3 \cdot 11 + 2$, $11 = 5 \cdot 2 + 1$, so 1 = 11 - 5(2) = 11 - 5(35 - 3(11)) = (-5)(35) + 16(11). *i.e.* x = 16, y = -5. Then we have $b = 4(35y) + 15(11x) = 1940 \equiv 15 \mod 385$. Thus $6x \equiv 1940 \mod 385$, $x \equiv 195 \mod 385$.

Example: (General Problem) You are the general of an army with less than 1000 troops. After the abttle, you have n troops left.

When you ask them to get into groups of 7, there are 5 leftover. When you ask them to get into groups of 11, there are 9 leftover. When you ask them to get into groups of 13, there are 2 leftover. What is n?

Proof. We have three congruence equations:

- 1. $n \equiv 5 \mod 7$
- $2. \ n \equiv 9 \mod 11$
- 3. $n \equiv 2 \mod 13$

Note that $1001 = 7 \cdot 11 \cdot 13$. And $n \equiv a \mod 1001$ has a unique value. Use the first 2 equations. We solve for 7x + 11y = 1, and get an a = 5(11y) + 9(7x). Apply Theorem 1.7, x = -3, y = 2. $a = -79 \equiv -2 \mod 77$ Use $a \equiv -2 \mod 77$ and $n \equiv 2 \mod 13$. We solve for 13x + 77y = 1, and get n = 2(77y) - 2(13x). x = 6, y = -1. So $n = 2(77)(-1) - 2(13)(6) = -310 \equiv 691 \mod 1001$. Thus n = 691.

Theorem: 2.5: General Strategies

The general strategies for solving $f(x) \equiv 0 \mod n$

- 1. Factor $n = p_1^{\breve{k}_1} \cdots p_r^{\breve{k}_r}$
- 2. Solve the system $f(x) \equiv 0 \mod p_1^{k_1}, \cdots, f(x) \equiv 0 \mod p_r^{k_r}$
- 3. Use Theorem 2.4 to combine the solutions.

Since for a number a, $gcd(a, p^n) = 1$ if and only if $p \not| a$. We claim that to solve $f(x) \equiv 0 \mod p^k$, we can solve in steps of solving mod p, then lift to mod p^2 , mod p^3 ,...

Example: $x^4 \equiv 7 \mod 81$.

Proof. Since $81 = 3^4$, we can work with mod 3 first. $x^4 \equiv 7 \equiv 1 \mod 3$, thus $x = \pm 1 \mod 3$. And we can lift up to $x \equiv 1, 2, 4, 5, 7, 8 \mod 9$.

3 Rationals

Previously, we consider the equation $x^2 + y^2 = z^2$ in the integer domain. We want to know if it has rational solutions and how to find them.

Theorem: 3.1: Property of Rationals

If $a, b \in \mathbb{Q} \setminus \{0\}$, then $\frac{a}{b} \in \mathbb{Q}$.

Then we can divide by z on both sides, $\left(\frac{x}{z}\right)^2 + \left(\frac{y}{z}\right)^2 = 1$ or equivalently, $u^2 + v^2 = 1$ for $u, v \in \mathbb{Q}$.

Geometrically, the solutions lie on the unit circle. And we know that (1,0) is a solution. If (u, v) is another rational solution to $u^2 + v^2 = 1$, then the slope of the line connecting (u, v) and (1, 0) must be rational.

Conversely, if we have a line through (1,0) with rational slope v = t(u-1) for $t \in \mathbb{Q}$. Then the system $\begin{cases} v = t(u-1) \\ u^2 + v^2 = 1 \end{cases}$ gives the other rational solution.

By substitution,

$$u^{2} + t^{2}(u-1)^{2} = 1$$
$$(1+t^{2})u^{2} - 2t^{2}u + t^{2} - 1 = 0$$

Using quadratic formula, we get $u = \frac{2t^2 \pm \sqrt{4t^2 - 4(1+t^2)(t^2-1)}}{2(t^2+1)} = \frac{2t^2 \pm 2}{2(t^2+1)}$. u = 1 or $\frac{t^2-1}{t^2+1}$. If t is rational, u is rational, and $v = t(u-1) = t\frac{t^2-1-t^2-1}{t^2+1} = \frac{-2t}{t^2+1}$ is rational.

If we write in lowest terms $t = \frac{m}{n}$, $m, n \in \mathbb{Z}$. $\frac{t^2-1}{t^2+1} = \frac{m^2-n^2}{m^2+n^2}$. $\frac{-2t}{t^2+1} = -\frac{2mn}{m^2+n^2}$. Then clearing our denominators, we get integer solutions to $x^2 + y^2 = z^2$, $(m^2 - n^2, -2mn, m^2 + n^2)$.

Theorem: 3.2:

If $\frac{m}{n} = \frac{a}{b}$ for $a, b \in \mathbb{Z}$, then $a = \lambda m$, $b = \lambda n$, for $\lambda \in \mathbb{Z}$.

However, the same strategy will fail for degree > 2.

4 Polynomials

In previous sections, we often work with modulo a prime number. The modulo world also works nicely for polynomial long divisions.

Example: Suppose we want to divide $x^4 + 3x^3 + x + 1$, with divisor $5x^2 + 3$. The first step is removing the highest degree term, $x^4 + 3x^3 + x + 1 - \frac{1}{5}x^2(5x^2 + 2) = 3x^4 - \frac{3}{5}x^2 + x + 1$. Continue until the degree of polynomial drops below the degree of the divisor. And we will get $x^4 + 3x^3 + x + 1 = q(x)(5x^2 + 3) + r(x)$, with r(x) = 0 or deg(r(x)) < 2.

We can do exactly the same thing mod p. When p is a prime, we have a division algorithm for polynomials. Suppose f(x) is a polynomial with $f(a) \equiv 0 \mod p$, then f(x) = (x - a)g(x).

Notation: $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$, $\mathbb{F}_p[x] = \{a_n x^n + \cdots + a_1 x + a_0 : a_n, \dots, a_0 \in \mathbb{F}_p\}.$

Theorem: 4.1: Division Algorithm for Polynomials

Let $f(x), g(x) \in \mathbb{F}_p[x], g(x)$ non constant. There exists $q(x), r(x) \in \mathbb{F}_p[x]$ s.t. f(x) = q(x)g(x) + r(x) and r(x) = 0 or $\deg(r) < \deg(g)$.

Proof. Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$, $a_i \neq 0$, $g(x) = b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0$, $b_i \neq 0$. If m > n, then q(x) = 0, r(x) = f(x) suffices. If $m \le n$, then $f(x) - \frac{a_n}{b_m} x^{n-m} g(x) = c_{n-1} x^{n-1} + c_{n-2} x^{n-2} + \dots + c_1 x_1 + c_0$. Continue the iteration until it terminates. What is left is r(x) and q(x) = sum of all terms we multiply q(x) by.

Remark 6. The fact we have a division algorithm means we have unique factorization in $\mathbb{F}_p[x]$. More relevantly, the division algorithm lets us connect roots of polynomials with linear factors.

Suppose $f(x) \in \mathbb{F}_p[x]$ and $x - a | f(x), i.e. \exists g(x) \in \mathbb{F}_p[x]$ with f(x) = (x - a)g(x). Then $f(a) \equiv (a - a)g(a) \equiv 0 \mod p$.

Theorem: 4.2:

Let $f(x) \in \mathbb{F}_p[x]$, $a \in \mathbb{F}_p$. If $f(a) \equiv 0 \mod p$, then x - a | f(x).

Proof. Apply Division algorithm to get f(x) = q(x)(x - a) + r(x). We know r(x) = 0 or deg(r) < deg(x - a) = 1, so $r(x) = b_0$ constant. But $f(a) \equiv (a - a)q(a) + b_0 \mod p$, $0 \equiv b_0 \mod p$.

Note: If we write $f(x) = (x - a_1)(x - a_2) \cdots (x - a_k)g(x)$, then deg $(f) \ge k$.

Theorem: 4.3:

Let $f(x) \in \mathbb{F}_p[x]$ be nonzero. Then the number of roots of $f(x) \leq \deg(f)$ counted with multiplicity.

Proof. We prove by induction on degree. Base case: deg = 0 and deg = 1 are clear. Suppose this is true if deg = n. Consider f(x) with degree n + 1. If f has no roots, then we are done. If f has a root, then f(x) = (x - a)g(x) and deg(f) = 1 + deg(g)So deg(g) = n and by induction, the number of roots of g with multiplicity $\leq \text{deg}(g)$. Therefore, the number of roots of f with multiplicity $\leq 1 +$ number of roots of g with multiplicity $\leq 1 + \deg(g) = 1 + n = \deg(f)$.

Theorem: 4.4:

For any p, we can construct $f(x) \in \mathbb{F}_p[x]$ with no roots.

Example: $x^2 + 1 \equiv 0 \mod 3$ has no roots.

What are the roots of $x^p - x \equiv 0 \mod p$? As long as p is a prime, $x^p - x \equiv 0$ has p roots. For $a \neq 0$, $a^{p-1} \equiv 1 \mod p$.

Definition: 4.1: Group of Units Modulo n

For n > 1, define the group of units modulo n by $(\mathbb{Z}/n\mathbb{Z})^* = \{a \in \mathbb{Z}/n\mathbb{Z} : \gcd(a, n) = 1\} =$ invertible elements modulo n with the following properties

1. If $x, y \in (\mathbb{Z}/n\mathbb{Z})^*$, then $xy \in (\mathbb{Z}/n\mathbb{Z})^*$. Also the product is associative and commutative.

2. $\forall x \in (\mathbb{Z}/n\mathbb{Z})^*, \ 1x \equiv x \mod n$

3. $\forall x \in (\mathbb{Z}/n\mathbb{Z})^*, \exists y \in (\mathbb{Z}/n\mathbb{Z})^*$ s.t. $xy \equiv 1 \mod n$ (inverse exists) and the inverse is unique

Definition: 4.2: Euler ϕ -function

Define the function on the positive integers by $\phi(1) = 1$, $\phi(n) = |(\mathbb{Z}/n\mathbb{Z})^*|$ for n > 1.

Example: for p prime, $\phi(p) = p - 1$, $\phi(p^k) = p^k - p^{k-1}$

Example: For $a \in (\mathbb{Z}/n\mathbb{Z})^*$, define $m_a : (\mathbb{Z}/n\mathbb{Z})^* \to (\mathbb{Z}/n\mathbb{Z})^*$ s.t. $m_a = ax$. m_a is a bijection. Since the inverse a^{-1} exists, $m_a \circ m_{a^{-1}} = m_{a^{-1}} \circ m_a = \text{id}$.

Theorem: 4.5: Euler's Theorem

For $a \in (\mathbb{Z}/n\mathbb{Z})^*$, $a^{\phi(n)} \equiv 1 \mod n$

Proof. Write $(\mathbb{Z}/n\mathbb{Z})^* = \{x_1, ..., x_{\phi(n)}\} = \{ax_1, ..., ax_{\phi(n)}\}.$ Multiply everything together, $x_1 \cdots x_{\phi(n)} = ax_1 \cdots ax_{\phi(n)} = a^{\phi(n)}x_1 \cdots x_{\phi(n)}$ by associativity. Since inverse of $x_1 \cdots x_{\phi(n)}$ exists, we get $1 \equiv a^{\phi(n)} \mod n$.

Theorem: 4.6: Fermat's Little Theorem

For p prime, $a \not\equiv 0 \mod p$, $a^{p-1} \equiv 1 \mod p$.

Theorem: 4.7:

If n, m are coprime, then $\phi(nm) = \phi(n)\phi(m)$.

Proof. Theorem 2.4 gives us $\mathbb{Z}/m\mathbb{Z} \cong \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$. And we can reduce to $(\mathbb{Z}/m\mathbb{Z})^* \cong (\mathbb{Z}/m\mathbb{Z})^* \times (\mathbb{Z}/n\mathbb{Z})^*$

Now given an arbitrary $n = p_1^{k_1} \cdots p_r^{k_r}$ with $p_i^{k_i}, p_j^{k_j}$ coprime. Then $\phi(n) = \phi(p_1^{k_1}) \cdots \phi(p_r^{k_r})$. If we want $1 \le a \le p^k$ s.t. $gcd(a, p^k) = 1$, there are $p^k - \left\lfloor \frac{p^k}{p} \right\rfloor = p^k - p^{k-1}$ such numbers. $\left(\left\lfloor \frac{p^k}{p} \right\rfloor \right)$ is the number of elements dividing p^k in $\mathbb{Z}/p^k\mathbb{Z} = \left\{ [0], [1], ..., [p^k - 1] \right\} = \left\{ [1], [2], ..., [p^k - 1], [p^k] \right\} \right)$

Theorem: 4.8: Properties of Euler ϕ -function

1. $\phi(p^k) = p^k - p^{k-1} = p^{k-1}p - 1$ for p prime and $k \ge 1$ 2. if $n = p_1^{k_1} \cdots p_r^{k_r}$, then $\phi(n) = \phi(p_1^{k_1}) \cdots \phi(p_r^{k_r}) = p_1^{k_1-1}(p_1-1) \cdots p_r^{k_r-1}(p_r-1)$ Some times, we write $p^k - p^{k-1} = p^k \left(1 - \frac{1}{p}\right)$, then $\phi(n) = n \prod_{p|n} \left(1 - \frac{1}{p}\right)$

Example: $n = 13^4 3^5 19^7$, then $\phi(n) = \phi(13^4)\phi(3^5)\phi(19^7) = 13^3(13-1)3^4(3-1)19^6(19-1)$

Example: Compute $3^{1492} \mod 100$ (*i.e.* the last two digits)

Proof. We know $3^{\phi(100)} \equiv 1 \mod 100$. If we apply division algorithm $1492 = q\phi(100) + r$ for $0 \le r < \phi(100)$, then $3^{1492} \equiv (3^{\phi(100)})^q 3^r \mod 100 \equiv 3^r \mod 100$. Since $100 = 2^2 5^2$, $\phi(100) = \phi(2^2)\phi(5^2) = 2(2-1)5(5-1) = 40$ $1492 = 37 \cdot 40 + 12$, $1492 \equiv 12 \mod \phi(100)$, then $3^{1492} \equiv 3^{12} \mod 100$

Successive squaring: every number has a binary expansion $m = c_n 2^n + \cdots + c_1 2 + c_0$ where $c_j = 0$ or 1. Then $x^m = x^{c_n 2^n + c_1 \cdots c_0} = (x^{2^n})^{c_n} \cdots (x^2)^{c_1} x^{c_0}$.

 $\begin{array}{l} 12=2^3+2^2,\,3^2\equiv 9 \mod 100,\,3^4\equiv 81 \mod 100,\,3^8\equiv (81)^2\equiv (-19)^2\equiv 61 \mod 100.\\ 3^{12}\equiv 3^83^4\equiv 61\cdot 81 \mod 100\equiv 41 \mod 100. \end{array}$

Suppose we want to solve $x^d \equiv 1 \mod n$. We consider $a^d \equiv 1 \mod n$, then $a^{-1} \equiv a^{d-1} \mod n$.

Definition: 4.3: Order

For $a \in (\mathbb{Z}/n\mathbb{Z})^*$, the order of a is the smallest positive integer d s.t. $a^d \equiv 1 \mod n$. We write $\operatorname{ord}(a)$ for the order.

Theorem: 4.9:

For $a \in (\mathbb{Z}/n\mathbb{Z})^*$. If $a^m \equiv 1 \mod n$, then $\operatorname{ord}(a)|m$.

Proof. Apply division algorithm, $m = q \operatorname{ord}(a) + r$, where $0 \le r < \operatorname{ord}(a)$ $1 \equiv a^m \equiv a^{q \operatorname{ord}(a)} a^r \equiv a^r \mod n$, then r = 0, $\operatorname{ord}(\phi(n))$.

Corollary 6. For every $a \in (\mathbb{Z}/n\mathbb{Z})^*$, $ord(a)|\phi(n)$.

In part, we know $x^d \equiv 1 \mod n$ is only solvable with order d element when $d|\phi(n)$. Suppose $g^{\phi(n)} \equiv 1 \mod n$ and $\phi(n) = \operatorname{ord}(g)$, then $g^{\frac{\phi(n)}{k}}$ has order k.

Claim: We can always find an order d element for $d|\phi(n)$ if and only if we can find an order $\phi(n)$ element.

Aside (Cryptography): You have a large (hard to factor) N and some exponent e. If someone wants to send a message A in terms of $(\mathbb{Z}/n\mathbb{Z})^*$ elements. They send you $A^e \mod N$ where $gcd(e, \phi(N)) = 1$.

Lemma 1.1 tells us that $ef + \phi(N)h = 1$ for some f, h, then $A^1 \equiv A^{ef + \phi(N)h} \equiv A^{ef}(A^{\phi(N)})^h \equiv (A^e)^f \mod N$.

If g is an element of order $\phi(N)$ (a generator), then $(\mathbb{Z}/n\mathbb{Z})^* = \{1, g, g^2, ..., g^{\phi(N)-1}\}$. The existence of a generator gives us a discrete logarithm to each $a \in (\mathbb{Z}/n\mathbb{Z})^*$. There is some unique $0 \le k \le \phi(N) - 1$ s.t. $g^k \equiv a \mod N$, so $k = \log_q a$ and $\log(A^e) = e \log A$.

Definition: 4.4: Primitive Root

 $g \in (\mathbb{Z}/n\mathbb{Z})^*$ is a primitive root if $\operatorname{ord}(g) = \phi(N)$.

Theorem: 4.10:

For $a \in (\mathbb{Z}/n\mathbb{Z})^*$, $\operatorname{ord}(a) = \left| \left\{ a^k : k \ge 0 \right\} \right|$

Proof. Define a map $\{1, ..., \operatorname{ord}(a)\} \rightarrow \{a^k : k \ge 0\}$ by $k \mapsto a^k$ The map is surjective from division algorithm The map is injective: if $a^i \equiv a^j \mod N$ for $i \ge j$, then $a^{i-j} \equiv 1 \mod N$, $0 \le i - j < \operatorname{ord}(N)$, then i = j.

Consider the polynomial $x^d - 1$. If $a \in (\mathbb{Z}/p\mathbb{Z})^*$ of order d, then a is a root. In fact, $1 = a^0, a^1, ..., a^{d-1}$ are roots of the polynomial, with no repeats. Since $x^d - 1$ should have $\leq d$ roots. The set $a^0, a^1, ..., a^{d-1}$ is exactly the set of roots. The set of elements of order d is some subset of lists, consisting a^k where gcd(d, k) = 1.

Theorem: 4.11:

Let $a \in (\mathbb{Z}/n\mathbb{Z})^*$. If $\operatorname{ord}(a) = d$, then $\operatorname{ord}(a^k) = \frac{d}{\operatorname{gcd}(d,k)}, k \ge 1$.

Proof. $(a^k)^{\frac{d}{\gcd(d,k)}} \equiv (a^{\frac{k}{\gcd(d,k)}})^d \equiv 1 \mod n$. Assume $a^{kj} \equiv (a^k)^j \equiv 1 \mod n$, then d|kj. Divide both side by the gcd, $\frac{d}{\gcd(d,k)}|\frac{k}{\gcd(d,k)}j$ But now $\frac{d}{\gcd(d,k)}$ and $\frac{k}{\gcd(d,k)}$ are coprime, then by Lemma 1.2, $\frac{d}{\gcd(d,k)}|j$, so as long as $j > 0, j \ge \frac{d}{\gcd(d,k)}$. \Box

Corollary 7. $ord(a^k) = ord(a)$ if gcd(ord(a), k) = 1.

Theorem: 4.12:

In $(\mathbb{Z}/p\mathbb{Z})^*$, there are either 0 elements of order d or there are $\phi(d)$ of such elements.

Let $\eta(d) = \#$ elements of order d in $(\mathbb{Z}/p\mathbb{Z})^*$. $\sum_{d|p=1} \eta(d) = \phi(p) = p - 1$. We want to show that all

 $\eta(d) \neq 0.$

Theorem: 4.13: Gauss Theorem

For any
$$m \ge 1$$
, $\sum_{d|m} \phi(d) = m$

Proof. Consider $\mathbb{Z}/m\mathbb{Z}$ and for each d|m, let

 $S_d = \{ x \in \mathbb{Z}/m : dx \equiv 0 \mod m \text{ and } lx \not\equiv 0 \mod m \text{ for any } l < d \}$

Firstly, $S_{d_1} \cap S_{d_2} = \text{if } d_1 \neq d_2$. Consider $d_1 x \equiv 0 \equiv d_2 x \mod m$ for any $x \in S_{d_1} \cap S_{d_2}$, but by definition, $d_1 \leq d_2$ and $d_2 \leq d_1$, thus $d_1 = d_2$.

Also, $\forall x \in \mathbb{Z}/m\mathbb{Z}, x \in S_d$ for some d|m, therefore, $\mathbb{Z}/m\mathbb{Z} = \bigcup_{d|m} S_d$ as disjoint union. Therefore, $m = \int_{d|m} S_d$

$$\sum_{d|m} |S_d|.$$

Suppose $x \in S_d$, $dx \equiv 0 \mod m$, equivalently, m|dx. Since d|m, we have $\frac{m}{d}|x$, so $x = \frac{m}{d}t$, $t \in \mathbb{Z}$.

We claim that $\gcd(t, d) = 1$. Since $x = \frac{m}{d}t = \frac{m}{d/\gcd(d,t)}\frac{t}{\gcd(d,t)}$, then $\frac{d}{\gcd(d,t)}x \equiv 0 \mod m$. But since $x \in S_d$, $d \leq \frac{d}{\gcd(d,t)} \leq d$. Therefore $d = \frac{d}{\gcd(d,t)}$, $\gcd(d, t) = 1$. Therefore, $S_d = \left\{\frac{m}{d}t : 0 \leq t \leq d-1, \gcd(d, t) = 1\right\}$ and $|S_d| = \phi(d)$ by definition.

Theorem: 4.14:

Primitive roots exist mod p (prime).

Proof. We have
$$\sum_{\substack{d|p-1\\ d|p-1}} \eta(d) = p - 1 = \sum_{\substack{d|p-1\\ d|p-1}} \phi(d) \text{ and } \eta(d) \le \phi(d), \text{ so } \eta(d) = \phi(d).$$
In particular, $\eta(p-1) = \phi(p-1) > 0.$

Example: $(\mathbb{Z}/8\mathbb{Z})^* = \{1, 3, 5, 7\}, 1^2 \equiv 1, 3^2 \equiv 9 \equiv 1, 5^2 \equiv 25 \equiv 1, 7^2 \equiv 49 \equiv 1$. There are no primitive roots.

Example: Let p be an odd prime, $(\mathbb{Z}/4p\mathbb{Z})^*$ has no primitive roots.

Proof. By Theorem 2.4, $(\mathbb{Z}/4p\mathbb{Z})^* \cong (\mathbb{Z}/4\mathbb{Z})^* \times (\mathbb{Z}/p\mathbb{Z})^*$. Then $a^{p-1} \equiv 1 \mod 4p$ for all a. But $\phi(4p) = 2(p-1)$, so there is no primitive roots. $(\phi(4p) \neq p-1)$

Example: Let p, q be distinct odd primes, $(\mathbb{Z}/pq\mathbb{Z})^*$ has no primitive roots.

Proof. By Theorem 2.4, $(\mathbb{Z}/pq\mathbb{Z})^* \cong (\mathbb{Z}/p\mathbb{Z})^* \times (\mathbb{Z}/q\mathbb{Z})^*$. Consider $a^{\frac{(p-1)(q-1)}{2}}$. Since p, q are distinct odds, p-1, q-1 are even. $\frac{p-1}{2}, \frac{q-1}{2} \in \mathbb{Z}$. Then $a^{\frac{(p-1)(q-1)}{2}} \mapsto \left((a^{p-1})^{\frac{q-1}{2}} \mod p, (a^{q-1})^{\frac{p-1}{2}} \mod q \right) \equiv (1 \mod p, 1 \mod q)$ for all a, since $a^{p-1} \equiv 1 \mod p$ for p primes. Thus, $a^{\frac{(p-1)(q-1)}{2}} \equiv 1 \mod pq$. But $\phi(pq) = (p-1)(q-1)$, so there is no primitive roots.

Lemma: 4.1: Reduction

For n|m, the reduction map $\pi : (\mathbb{Z}/m\mathbb{Z})^* \to (\mathbb{Z}/n\mathbb{Z})^*$ s.t. $\pi([x]_m) = [x]_n$ is surjective.

Proof. Let $1 \le x \le n$, $\gcd(x, n) = 1$, *i.e.* $x \in (\mathbb{Z}/n\mathbb{Z})^*$. If $y \in (\mathbb{Z}/m\mathbb{Z})^*$ with $y \equiv x \mod n$, then for any $y' \in \mathbb{Z}/m\mathbb{Z}$, $y' \equiv x \mod n$, $y' \equiv y + nt$, so the elements in $\mathbb{Z}/n\mathbb{Z}$ above x are x + nt. If $\gcd(x, m) = 1$, then we are good, there's only one element. Otherwise there are primes p|m with p|x. Note $m = \frac{m}{n}n$. Since $\gcd(x, n) = 1$, $p|\frac{m}{n}$, otherwise o|n and $\gcd(x, n) = p$. Take t_0 be the product of p s.t. $p|\frac{m}{n}$. Claim: $\gcd(x + nt_0, m) = 1$ Take a prime p s.t. $p|\frac{m}{n}$ If p|x, then $p|x + nt_0$ implies that $p|nt_0$, so $p|t_0$ contradiction. If $p \not|$, then by construction $p|t_0$. So $p|x + nt_0$ implies p|x, contradiction. Thus $\gcd(x + nt_0, m) = 1$.

Theorem: 4.15:

Let n|m. If $(\mathbb{Z}/m\mathbb{Z})^*$ has a primitive root, then so does $(\mathbb{Z}/n\mathbb{Z})^*$.

Proof. Let $\pi : (\mathbb{Z}/m\mathbb{Z})^* \to (\mathbb{Z}/n\mathbb{Z})^*$ be a reduction map.

Suppose g is a primitive root $\mod m$.

Tkae $h = \pi(g) \mod n$, then for any $x \in (\mathbb{Z}/n\mathbb{Z})^*$, there exists $y \in (\mathbb{Z}/m\mathbb{Z})^*$ with $\pi(y) \equiv x \mod n$. But $y = g^k \mod m$ by definition of primitive roots, $k \ge 0$. Since π preserves multiplication, $h^k \equiv \pi(q)^k \equiv \pi(q^k) \equiv \pi(y) \equiv x \mod n$. Thus h is a primitive root

Since π preserves multiplication, $h^{\kappa} \equiv \pi(g)^{\kappa} \equiv \pi(g^{\kappa}) \equiv \pi(y) \equiv x \mod n$. Thus h is a primitive root mod n.

Theorem: 4.16: Obstruction Theorem

If 8|n or 4p|n for p prime or if pq|n for distinct odd primes, then $(\mathbb{Z}/n\mathbb{Z})^*$ has no primitive root.

Theorem: 4.17:

 $(\mathbb{Z}/p^k\mathbb{Z})^*$ has a primitive root for p odd prime, $k \ge 1$.

Proof. We have shown the theorem for k = 1 in Theorem 4.14.

Consider k = 2. Given g a primitive root mod p. Claim that g or $g + p \mod p^2$ is a primitive root. If g is a primitive root mod p^2 , then done.

Otherwise, let d be the order of g in mod p^2 . $g^d \equiv 1 \mod p^2$, then $g^d \equiv 1 \mod p$, so by order argument (Theorem 4.9), p - 1|d.

Also if d is the order of g in mod p^2 , we know that $d|\phi(p^2) = p(p-1)$. Therefore, p-1|d|p(p-1). This implies that d = p-1 or d = p(p-1). Since we assume g is not a primitive root mod p^2 , we have d = p-1.

Then $(g+p)^{p-1} \equiv g^{p-1} + (p-1)g^{p-2}p \equiv 1 + (p-1)g^{p-2}p \mod p^2$ (the higher order terms vanish) If $(g+p)^{p-1} \equiv 1 \mod p^2$, then $0 \equiv (p-1)g^{p-2}p \mod p^2$. *i.e.* $p^2|(p-1)g^{p-2}p$, so $p|(p-1)g^{p-2}$, but this cannot hold, since p does not dive p-1 or g.

Therefore (g+p) has order p(p-1) in mod p^2 , it is a primitive root.

Now we proceed by induction.

Claim: if h is a primitive root p^k , $k \ge 2$, then it is a primitive root $\mod p^{k+1}$. Let d =order of h in $\mod p^{k+1}$, then $h^d \equiv 1 \mod p^{k+1}$ so $h^d \equiv 1 \mod p^k$. By order argument, $\phi(p^k)|d$ and $d|\phi(p^{k+1})$. Then $d = \phi(p^k) = p^{k-1}(p-1)$ or $\phi(p^{k+1}) = p^k(p-1)$. Observe that $\phi(p^k) = p\phi(p^{k-1})$.
$$\begin{split} h^{\phi(p^{k-1})} &\equiv 1 \mod p^{k-1} \text{ tells us that } h^{\phi(p^{k-1})} = 1 + p^{k-1}t \\ h^{\phi(p^k)} &\not\equiv 1 \mod p^k \text{ tells us that } p \not| t. \\ \text{Then } h^{\phi(p^k)} &\equiv h^{p\phi(p^{k-1})} \equiv \left(h^{\phi(p^{k-1})}\right)^p \equiv (1 + p^{k-1}t)^p \equiv 1 + p^kt + \binom{p}{2}p^{2(k-1)}t^2 \mod p^{k+1}. \end{split}$$
The remaining terms vanish mod p^{k+1} .

2(k-1) is not always $\geq k+1$, but $p|\binom{p}{2}$, so the third term is divisible by 2(k-1)+1 and it is $\geq k+1$, so it vanishes as well.

 $h^{\phi(p^k)} \equiv 1 \mod p^{k+1} \Leftrightarrow p^k t \equiv 0 \Leftrightarrow p|t.$ Contradiction. Thus h is a primitive root $\mod p^{k+1}$ and $h6\phi(p^{k+1}) \equiv 1 \mod p^{k+1}$.

Remark 7. If g is a primitive root $\mod p^2$, then g is a primitive root $\mod p^k$ for $k \ge 1$.

Theorem: 4.18:

Note that for $\phi(2p^k) = \phi(p^k)$, $(\mathbb{Z}/2p^k\mathbb{Z})^*$ has a primitive root for p odd prime and $k \ge 0$.

Proof. $k = 0, (\mathbb{Z}/2\mathbb{Z})^*$ has one element only, and it is the primitive root.

When $k \ge 1$, let g be a primitive root mod p^k . Suppose it is odd. let d =order of g in mod $2p^k$. Then $d|\phi(2p^k) = \phi(p^k)$. and $g^d \equiv 1 \mod 2p^k$, then $g^d \equiv 1 \mod p^k$, so $\phi(p^k)|d$. Then since $d|\phi(p^k)$, $d = \phi(p^k)$. Hence g has a primitive root mod $2p^k$ If g is even, take $g + p^k$ instead.

Theorem: 4.19:

 $(\mathbb{Z}/n\mathbb{Z})^*$ has a primitive root if and only if $n = 1, 2, 4, p^k, 2p^k$ for p an odd prime and $k \ge 1$.

Example: Find primitive roots $(\mathbb{Z}/9\mathbb{Z})^* = \{1, 2, 4, 5, 7, 8\}$

Proof. We know that 2 is a primitive root for $(\mathbb{Z}/3\mathbb{Z})$. We look for its powers in $(\mathbb{Z}/9\mathbb{Z})^*$ which are 2,5,8 Enumerate all powers of 2 in $(\mathbb{Z}/9\mathbb{Z})^*$: $2^1 \equiv 2$, $2^2 \equiv 4$, $2^3 \equiv 8$, $2^6 \equiv 1$. 2 is a primitive root. Actually 2 is a primitive root for all $(\mathbb{Z}/3^k\mathbb{Z})^*$.

Example: What are the solutions to $x^7 \equiv 8 \mod 81$?

Proof. We can always write $x \equiv 2^y \mod 81$ (by previous example). Then $2^{7y} \equiv 8 \equiv 2^3 \mod 81$ Then we only need to solve for $7y \equiv 3 \mod \phi(81)$ by Theorem 4.8.

Notation: if p is a prime, n is an integer, $k \ge 0$, then $p^k || n$ means $p^k |n$ and p^{k+1} / n .

Lemma: 4.2:

For $n \ge 0, 2^{n+2} ||5^{2^n} - 1$

Proof. For n = 0, $5^{2^0} - 1 = 4$, $2^{0+2} = 4$, so $2^{0+2} ||5^{2^0} - 1$ Suppose this holds for $n \ge 0$. Now consider $5^{2^{n+1}} - 1$. Note $5^{2^{n+1}} = 5^{2\cdot 2^n} = (5^{2^n})^2$, so $5^{2^{n+1}} - 1 = (5^{2^n} - 1)(5^{2^n} + 1)$. We know by induction $2^{n+2} ||5^{2^n} - 1$. $5^{2^n} + 1 \equiv 1 + 1 \equiv 2 \mod 4$, so only, $2 ||62^n + 1$, then $2^{n+3} ||5^{2^{n+1}} - 1$.

Theorem: 4.20:

For $n \geq 3$,

- 1. 5 has order 2^{n-2} in $(\mathbb{Z}/2^n\mathbb{Z})^*$
- 2. Every element of $(\mathbb{Z}/2^n\mathbb{Z})^*$ can be written uniquely as $(-1)^{i}5^{j}$, $0 \le i \le 1, 0 \le j \le 2^{n-2} 1$
- *Proof.* 1. Because $φ(2^n) = 2^{n-1}$, then $d = \text{ord}(5) = 2^k$ for some $k \ge 0$ by Theorem 4.11. Moreover, $5^{2^k} - 1 \equiv 0 \mod 2^n$, so $2^n | 5^{2^k} - 1$. By Lemma 4.2, $2^{k+2} | | 5^{2^k} - 1$, so $n \le k + 2$. We know $(\mathbb{Z}/2^n\mathbb{Z})^*$ has no primitive root, so k < n - 1. Therefore $n - 2 \le k < n - 1 \Rightarrow k = n - 2$.
 - 2. We know that each of $5^0, 5^1, \dots, 5^{2^{n-2}-1}, -5^0, -5^1, \dots, -5^{2^{n-2}-1}$ has no overlap. So in total there are $2 \cdot 2^{n-2} = 2^{n-1}$ elements and $|(\mathbb{Z}/2^n\mathbb{Z})^*| = 2^{n-1}$ No-overlap: suppose $5^i \equiv -5^j \mod 2^{n-1}$, then $1 \equiv -1 \mod 4$ Contradiction.

Example: Solve $x^7 \equiv 9 \mod 280$

Proof. $280 = 2^3 \cdot 5 \cdot 7$. By Theorem 2.4, we can split it up.

- 1. $x^7 \equiv 9 \equiv 2 \mod 7$. By Theorem 4.5, $x^6 \equiv 1 \mod 7$, $x^7 \equiv x \mod 7$. $x \equiv 2 \mod 7$ is the only solution
- 2. $x^7 \equiv 9 \equiv 4 \mod 5$. By Theorem 4.5, $x^4 \equiv 1 \mod 5$, so $x^3 \equiv 4 \mod 5$, $x \equiv 4 \mod 5$ is the only solution
- 3. $x^7 \equiv 9 \equiv 1 \mod 8$. By Theorem 4.5, $\phi(8) = 2^2(2-1) = 4$, $x^4 \equiv 1 \mod 8$, thus $x^3 \equiv 1 \mod 8$. By Theorem 4.20, all elements mod 8 has the form $\pm 5^0, \pm 5^1 \ (n=3). \ (\pm 5^i)^3 \equiv \pm 5^{3i}, \ 5^4 \equiv 125 \equiv 5 \mod 8$. $(\pm 5^i)^3 \equiv \pm 5^{3i} \equiv \pm 5^i \equiv 1 \mod 8$. Thus $x \equiv 1 \mod 8$.

We can then combine the solutions using Theorem 2.4.

For any general quadratic equations $x^2 + bx + c \mod p$, we can follow the quadratic formula $x = \frac{-b \pm \sqrt{b^2 - 4c}}{2}$, and the square root can be found by $y^2 \equiv r \mod p$, which has 0, 1, 2 solutions, and if s is a solution, then -s is a solution.

Lemma: 4.3: Hensel's Lemma

Let f(x) be a polynomial with integer coefficients. Let k be a positive integer, and r an integer such that $f(r) \equiv 0 \mod p^k$. Suppose $m \leq k$ is a positive integer. Then if $f'(r) \not\equiv 0 \mod p$, there is an integer s such that $f(s) \equiv 0 \mod p^{k+m}$ and $s \equiv r \mod p^k$. So s is a lifting of r to a root mod p^{k+m} . Moreover s is unique mod p^{k+m} .

5 Midterm

Q1. Solve
$$\begin{cases} x \equiv 13 \mod{514} \\ x \equiv 33 \mod{144} \end{cases}$$

Proof. $514 = 2 \cdot 257$, $144 = 12^2 = 2^4 \cdot 3^2$. The system is the same as $\begin{cases} x \equiv 13 \equiv 1 \mod 2 \\ x \equiv 13 \mod 257 \\ x \equiv 33 \mod 144 \end{cases}$. But the first equation is implied by the third, so we $x \equiv 33 \mod 144$ can solve $\begin{cases} x \equiv 13 \mod 257 \\ x \equiv 33 \mod 144 \end{cases}$ instead. This can be done by CRT (Theorem 2.4) \Box

Q2.

- (a) Show that if $p|n^6 + n^3 + 1$, then p = 3 or $p \equiv 1 \mod 9$
- (b) Show that there are infinitely many primes p s.t. $p \equiv 1 \mod 9$
- $\begin{array}{ll} \textit{Proof.} & (a) \ \text{Consider} \ x^3 1 = (x-1)(x^2 + x + 1). \ \text{Let} \ x = n^3, \ \text{we get} \ n^9 1 = (n-1)(n^6 + n^3 + 1). \ \text{Since} \\ p|(n^6 + n^3 + 1), \ \text{we have} \ p|n^9 1. \\ \text{Equivalently, } \text{ord}(n)|9 \Rightarrow \text{ord}(n) = 1, 3, 9. \\ \text{If } \text{ord}(n) = 9, \ \text{then by Theorem 4.6 and Theorem 4.9, } 9|p-1, \ \text{so} \ p \equiv 1 \ \ \text{mod} \ 9 \\ \text{If } \text{ord}(n) = 1, 3, \ \text{then} \ n^3 \equiv 1 \ \ \text{mod} \ p, \ \text{then} \ 0 \equiv n^6 + n^3 + 1 \equiv 3 \ \ \text{mod} \ p, \ p = 3 \end{array}$
 - (b) Suppose there are finitely many $p_1, ..., p_n$ s.t. $p \equiv 1 \mod 9$. Consider the prime divisors of $m^6 + m^3 + 1$, $m = 3p_1, ..., p_n$. It must be distinct from any of them.

Q3. Find the smallest n with n/10 a 7th power and n/7 a 5th power.

 $\begin{array}{l} Proof. \ 2^{a}5^{b}7^{c}p_{1}^{k_{1}}\cdots p_{r}^{k_{r}}=n=10m^{7}=2\cdot5(2^{d}5^{e}7^{f}p_{1}^{j_{1}}\cdots p_{r}^{j_{r}})^{7}\\ 2^{a}5^{b}7^{c}p_{1}^{k_{1}}\cdots p_{r}^{k_{r}}=n=7m^{5}=7(2^{g}5^{h}7^{i}p_{1}^{l_{1}}\cdots p_{r}^{k_{r}})^{7}\\ This gives that \begin{cases} a=7d+1=5g\\ b=7e+1=5h\\ c=7f=1+5i \end{cases}, \text{ and } 7|k_{j},5|k_{j}. \text{ We can set } k_{j} \text{ to } 0 \text{ to get the smallest number.}\\ c=7f=1+5i\\ a\equiv 0 \mod 5 \end{cases}, \begin{cases} b\equiv 1 \mod 7\\ b\equiv 0 \mod 5 \end{cases}, \begin{cases} c\equiv 1 \mod 5\\ c\equiv 0 \mod 7 \end{cases}. \text{ The solutions are } a=b=15, c=21 \end{cases}$

Q4. Solve ax + by = c

Proof. Use Euclidean's algorithm (Theorem 1.7) to find $d = \gcd(a, b)$. If d|c, then we can find solutions to $ax_0 + by_0 = d$

Q6. Solve $x^3 + x^2 - 5 \equiv 0 \mod 7^4$

Proof. Use Lemma 4.3, start with $x^3 + x^2 - 5 \equiv 0 \mod 7$, $x \equiv 2 \mod 7$. $f(x) = x^3 + x^2 - 5$, $f'(x) = 3x^2 + 2x$, $f'(2) = 3 \cdot 4 + 2^2 = 16 \not\equiv 0 \mod 7$, thus Hensel's lemma is valid. Iteratively, we compute $a_1 = 2$, $a_2 = 2 - \frac{f(a_1)}{f'(a_1)}$ to get solution mod 7^4 . Q7. Let p be an odd prime. Show that $\left(\left(\frac{p-1}{2}\right)!\right)^2 \equiv (-1)^{\frac{p+1}{2}} \mod p.$

Theorem: 5.1: Wilson's Thereom

 $(p-1)! = 1 \cdot 2 \cdot 3 \cdots (p-2)(p-1) = 1(-1) \mod p = -1 \mod p$

Proof. For Q7, we have
$$\left(\left(\frac{p-1}{2} \right)! \right)^2 = \left(1 \cdot 2 \cdots \frac{p-1}{2} \right) \left(1 \cdot 2 \cdots \frac{p-1}{2} \right)$$

$$\equiv \left(1 \cdot 2 \cdots \frac{p-1}{2} \right) (1-p)(2-p) \cdots \left(\frac{p-1}{2} - p \right)$$

$$\equiv \left(1 \cdot 2 \cdots \frac{p-1}{2} \right) (-1)^{\frac{p-1}{2}} (p-1)(p-2) \cdots \left(\frac{p-1}{2} + 1 \right) \equiv (-1)^{\frac{p-1}{2}} (p-1)! \equiv (-1)^{\frac{p+1}{2}} \mod p$$

6 Quadratic Reciprocal

In this section, we always consider p as an odd prime.

Definition: 6.1: Quadratic Residue

 $a \in \mathbb{Z}, a \neq 0 \mod p$ is a quadratic residue (QR) if the equation $x^2 \equiv a \mod p$ has a solution. If there are no solutions, it is a non-residue (NR).

Theorem: 6.1:

There are $\frac{p-1}{2}$ QRs mod p and $\frac{p-1}{2}$ NRs.

Proof. Consider the list $1^2, 2^2, \dots, (p-1)^2$. This contains all quadratic residues.

Since $(-x)^2 = x^2$, the list $1^2, 2^2, ..., \left(\frac{p-1}{2}\right)^2$ contains all quadratic residues. For $\frac{p-1}{2} < n \le p-1, 1 \le p-n \le \frac{p-1}{2}$.

There are no duplicates in the list, because if $1 \le a, b \le \frac{p-1}{2}$ with $a^2 \equiv b^2 \mod p$, then $(a-b)(a+b) \equiv 0 \mod p$.

 $p|(a-b)(a+b) \Rightarrow p|a-b \text{ or } p|a+b.$

Because $2 \le a + b \le p - 1$, $p \not| a + b$, then $p \mid a - b$. We know that -p < a - b < p, then a = b.

Notation (Legendre symbol): For $a \not\equiv 0 \mod p$, $\left(\frac{a}{p}\right) = \begin{cases} 1, a \text{ is a QR mod } p \\ -1, a \text{ is a NR mod } p \end{cases}$

Theorem: 6.2: QR Multiplicative Rule

Let $a, b \in \mathbb{Z}, a, b \neq 0 \mod p$, $\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)$. That is QR×QR=QR, QR×NR=NR, NR×NR=QR

Proof. 1) QR×QR=QR: Suppose $a \equiv s_1^2 \mod p$, $b \equiv s_2^2 \mod p$, then $ab \equiv (s_1s_2)^2 \mod p$ 2) QR×NR=NR: Suppose $a \equiv s_1^2 \mod p$ and p is a NR. Assume $ab \equiv t^2 \mod p$. Then $s^2b \equiv t^2 \mod p$, $b = \left(\frac{t}{s}\right)^2 \mod p$. Contradiction. 3) NR×NR=QR:

Suppose a is NR. Let QRs be $q_1, \ldots, q_{\frac{p-1}{2}}$, NRs be $n_1, \ldots, n_{\frac{p-1}{2}}$

The list $aq_1, ..., aq_{\frac{p-1}{2}}$ consists of NRs and there are $\frac{p-1}{2}$ distinct ones, so they are all of the NRs.

The list $an_1, ..., an_{\frac{p-1}{2}}$ has $\frac{p-1}{2}$ elements and is disjoint from above. Therefore, the list is all QRs. For a NR *b*, *ab* is in the list, hence it is a QR.

Example: Does $x^2 \equiv 3^4 5^7 11^3 \mod 13$ have a solution?

Proof. $\left(\frac{3^{4}5^{7}11^{3}}{13}\right) = \left(\frac{3}{13}\right)^{4} \left(\frac{5}{13}\right)^{7} \left(\frac{11}{13}\right)^{3} = \left(\frac{5}{13}\right) \left(\frac{11}{13}\right)$ The list of QRs for 13 contains $1^{2}, 2^{2}, 3^{2}, 4^{2}, 5^{2}, 6^{2} = 1, 4, 9, 3, 12, 10$, so 5 and 11 are NRs. Thus $\left(\frac{5}{13}\right) \left(\frac{11}{13}\right) = 1, x^{2} \equiv 3^{4}5^{7}11^{3} \mod 13$ has a solution.

Observation: For $n \in \mathbb{Z}$, $(-1)^k = (-1)^k \mod 2$. Given $n = \pm q_1^{k_1} \cdots q_r^{k_r}$ with q_j disjoint from p. Then $\left(\frac{n}{p}\right) = \left(\frac{\pm 1}{p}\right) \left(\frac{q_1}{p}\right)^{k_1} \cdots \left(\frac{q_r}{p}\right)^{k_r} = \left(\frac{\pm 1}{p}\right) \left(\frac{q_1}{p}\right)^{k_1 \mod 2} \cdots \left(\frac{q_r}{p}\right)^{k_r \mod 2}$. Note: $\left(\frac{1}{p}\right) = 1$. We want to understand $\left(\frac{-1}{p}\right), \left(\frac{q}{p}\right)$ for prime $q \neq p$.

Theorem: 6.3: Euler's Criterion

For $a \in \mathbb{Z}$, $a \not\equiv 0 \mod p$, $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \mod p$.

Proof. By Theorem 4.6, the polynomial $x^{p-1} - 1$ has exactly p-1 roots mod p. Since p is odd, $\frac{p-1}{2} \in \mathbb{Z}$. We get $x^{p-1} - 1 = \left(x^{\frac{p-1}{2}} - 1\right) \left(x^{\frac{p-1}{2}} + 1\right)$. Therefore, $x^{\frac{p-1}{2}} - 1$ and $x^{\frac{p-1}{2}} + 1$ each have exactly $\frac{p-1}{2}$ roots. Consider $s \neq 0 \mod p$, $(s^2)^{\frac{p-1}{2}} - 1 \equiv s^{p-1} - 1 \equiv 0 \mod p$. So $\left\{ \text{roots of } x^{\frac{p-1}{2}} - 1 \right\} = \text{set of QRs. } \left\{ \text{roots of } x^{\frac{p-1}{2}} + 1 \right\} = \text{set of NRs.}$ $i.e., a \text{ is QR} \Leftrightarrow a^{\frac{p-1}{2}} - 1 \equiv 0 \mod p$, so for a QR, $a^{\frac{p-1}{2}} \equiv 1 \equiv \left(\frac{a}{p}\right) \mod p$

 $a \text{ is NR} \Leftrightarrow a^{\frac{p-1}{2}} + 1 \equiv 0 \mod p$, so for a NR, $a^{\frac{p-1}{2}} \equiv -1 \equiv \left(\frac{a}{p}\right) \mod p$

Corollary 8.
$$\left(\frac{-1}{p}\right) \equiv (-1)^{\frac{p-1}{2}} \equiv \begin{cases} 1, \text{ if } p \equiv 1 \mod 4\\ -1, \text{ if } p \equiv 3 \mod 4 \end{cases}$$

Using Theorem 6.3, we can prove Theorem 6.2. $\left(\frac{ab}{p}\right) \equiv (ab)^{\frac{p-1}{2}} \equiv a^{\frac{p-1}{2}}b^{\frac{p-1}{2}} \equiv \left(\frac{a}{p}\right)\left(\frac{b}{p}\right) \mod p$. To upgrade this to an equality, observe that if p is an odd prime and $\epsilon, \delta \in \{\pm 1\}$ with $\epsilon \equiv \delta \mod p$, then $\epsilon = \delta$. This is because $\epsilon \equiv \delta \mod p \Rightarrow p | \epsilon - \delta$, but $\epsilon - \delta \in \{-2, 0, 2\}$, and only 0 can be divided by an odd prime p. Thus $\epsilon - \delta = 0, \epsilon = \delta$, so $\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$.

Example: Compute $\left(\frac{7}{11}\right)$.

Proof. By Theorem 6.3, we can compute $7^{\frac{11-1}{2}} \equiv 7^5 \mod 11$, which can be done using successive squares, which is faster $(\mathcal{O}(\log p))$ than exploring all squares mod 11 $(\mathcal{O}(p))$.

To make Euler's Criterion more useful, we want to investigate $a^{\frac{p-1}{2}} \mod p$. To do this, recall the proof of Theorem 4.6 by listing all equivalence classes.

Consider the list $1, 2, ..., \frac{p-1}{2}$, adding a negative sign gives all numbers $1 \le n \le p-1$. Consider also the related list $a, 2a, ..., \frac{p-1}{2}a$.

Example: p = 13, a = 7, 1st list: 1, 2, 3, 4, 5, 6, 2nd list: 7, $14 \equiv 1, 8, 2, 9, 3$ Reduce the second list mod 13, we get -6, 1, -5, 2, -4, 3. The number of negative signs = the number of $1 \le k \le \frac{p-1}{2}$ so that $ka \mod p > \frac{p-1}{2}$. Call this number μ Observe that $(-1)^{\mu} 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \equiv 7^6 (1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6)$, so $7^6 \equiv (-1)^{\mu} \mod 13$.

Theorem: 6.4: Gauss' Criteria

Let $a \neq 0 \mod p$, $\mu =$ number of $1 \leq k \leq \frac{p-1}{2}$ s.t. $ka \mod p > \frac{p-1}{2}$. Then $a^{\frac{p-1}{2}} \equiv (-1)^{\mu} \mod p$, and as a result $\left(\frac{a}{p}\right) = (-1)^{\mu}$.

Proof. Start with the list $1, 2, 3, ..., \frac{p-1}{2}$, and consider the related list $a, 2a, ..., \frac{p-1}{2}a$. We knoe for each $1 \le k \le \frac{p-1}{2}$, we can work with $ka \equiv \epsilon_k y_k \mod p$ for $1 \le y_k \le \frac{p-1}{2}$, $\epsilon_k = \pm 1$. As a result, the product of elements in the second list is $a(2a)\cdots\left(\frac{p-1}{2}a\right)\equiv a^{\frac{p-1}{2}}\left(\frac{p-1}{2}\right)!\mod p.$ On the other hand,

$$a(2a)\cdots\left(\frac{p-1}{2}a\right) \equiv (\epsilon_1, y_1)\cdots\left(\epsilon_{\frac{p-1}{2}}y_{\frac{p-1}{2}}\right) \equiv \left(\epsilon_1\cdots\epsilon_{\frac{p-1}{2}}\right)\left(y_1\cdots y_{\frac{p-1}{2}}\right) \equiv (-1)^{\mu}\left(y_1\cdots y_{\frac{p-1}{2}}\right) \mod p.$$

We need $y_1 \cdots y_{\frac{p-1}{2}} \equiv \left(\frac{p-1}{2}\right)! \mod p$. One way to guarantee this is for $\left\{y_1, \dots, y_{\frac{p-1}{2}}\right\} = \left\{1, 2, \dots, \frac{p-1}{2}\right\}$ It suffices to show that y_k 's are all distinct. Suppose $y_i = y_j$, then $ia \equiv \epsilon_i y_i \equiv \epsilon_j y_j \equiv \pm ja \mod p$. Then $a(i \pm j) \equiv 0 \mod p$. Since $a \neq 0 \mod p$, $p|i \pm j$. Since $1 \le i, j \le \frac{p-1}{2}$, we require $i \pm j = 0$, so $i = \pm j$, i = j. Thus $y_1 \cdot y_{\frac{p-1}{2}} \equiv \left(\frac{p-1}{2}\right)!$, so $a^{\frac{p-1}{2}} \left(\frac{p-1}{2}\right)! \equiv (-1)^{\mu} y_1 \cdots y_{\frac{p-1}{2}} \equiv (-1)^{\mu} \left(\frac{p-1}{2}\right)! \mod p.$ Thus $a^{\frac{p-1}{2}} \equiv (-1)^{\mu} \mod p$.

Theorem: 6.5:

Let p be an odd prime, then $\binom{2}{p} = \begin{cases} 1, \text{ if } p \equiv 1 \mod 8 \text{ or } p \equiv 7 \mod 8 \\ -1, \text{ if } p \equiv 3 \mod 8 \text{ or } p \equiv 5 \mod 8 \end{cases}$

Proof. We want to use Theorem 6.4, so we compute $\mu(2, p)$.

We know that for $1 \le k \le \frac{p-1}{2}, 2 \le 2k \le p-1$, so $2k \mod p = 2k$ Case 1: $p \equiv 1 \mod 4, \frac{p-1}{4} \in \mathbb{Z}, \mu(2,p) = \frac{p-1}{2} - \frac{p-1}{4} = \frac{p-1}{4}$ Case 2: $p \equiv 3 \mod 4, \frac{p-1}{4} = \frac{p-3}{4} + \frac{1}{2}$, so $\frac{p-1}{4} < k \Leftrightarrow \frac{p-3}{4} + 1 \le k$. Hence, $\mu(2,p) = \frac{p-1}{2} - \frac{p-3}{4} - 1 + 1 = \frac{p+1}{4}$

Now, we compute $(-1)^{\mu(2,p)}$. All that matters is if $\mu(2,p)$ is even. This is a condition on p mod 8 and there are 4 cases to consider.

Case 1: $p \equiv 1 \mod 8$. This gives $p \equiv 1 \mod 4$, $\mu(2, p) = \frac{p-1}{4} \equiv 0$ is even. Case 2: $p \equiv 5 \mod 8$. This gives $p \equiv 1 \mod 4$, $\mu(2, p) = \frac{p-1}{4} \equiv 1$ is odd. Case 3: $p \equiv 3 \mod 8$. This gives $p \equiv 3 \mod 4$, $\mu(2, p) = \frac{p+1}{4} \equiv 1$ is odd. Case 4: $p \equiv 7 \mod 8$. This gives $p \equiv 3 \mod 4$, $\mu(2,p) = \frac{p+1}{4} \equiv 0$ is even.

Because we know how to compute $\left(\frac{2}{p}\right)$ and $\left(\frac{bc}{p}\right) = \left(\frac{b}{p}\right) \left(\frac{c}{p}\right)$. We just need to know how to compute $\left(\frac{a}{p}\right)$ when a is odd.

Recall that there are unique $q_k, r_k \in \mathbb{Z}$ s.t. $ka = q_k p + r_k$, where $-\frac{p-1}{2} \le r_k \le \frac{p-1}{2}$. Then $\frac{ka}{p} = q_k + \frac{r_k}{p}, -\frac{1}{2} < \frac{r_k}{p} < \frac{1}{2}$. Therefore $\left\lfloor \frac{ka}{p} \right\rfloor = \begin{cases} q_k, \text{ if } r_k > 0\\ q_k - 1, \text{ if } r_k < 0 \end{cases}$. $\sum_{k=1}^{\frac{p}{2}} \left\lfloor \frac{ka}{p} \right\rfloor = \sum_{k=1}^{\frac{p}{2}} q_k - \mu(a, p), \text{ where } \mu(a, p) = \text{number of } 1 \le k \le \frac{p-1}{2} \text{ s.t. } ka \mod p > \frac{p-1}{2} \text{ (negative } p > \frac{p-1}{2} \text{ (negat$ value).

Theorem: 6.6:

Let p be an odd prime, a be odd s.t. $a \not\equiv 0 \mod p$. Then $\mu(a, p) = \sum_{k=1}^{\frac{p-1}{2}} \left| \frac{ka}{p} \right|$ $\mod 2$ *Proof.* From before, $\mu(a, p) \equiv \sum_{k=1}^{\frac{p-1}{2}} \left\lfloor \frac{ka}{p} \right\rfloor + \sum_{k=1}^{\frac{p-1}{2}} q_k \mod 2$. (plus and minus are interchangeable when mod 2)

2)

Since a, p are odd, $ka \equiv q_k p + r_k \mod 2, \ k \equiv q_k + r_k \mod 2.$

So $\sum_{k=1}^{\frac{p-1}{2}} q_k \equiv \sum_{k=1}^{\frac{p-1}{2}} k + \sum_{k=1}^{\frac{p-1}{2}} r_k \mod 2.$

The list of r_k is exactly $\epsilon_1 1, \epsilon_2 2, ..., \epsilon_{\frac{p-1}{2}} \frac{p-1}{2}$ where $\epsilon_j = \pm 1$. But $-1 \equiv 1 \mod 2$, so the list of $r_k \mod 2$ is $1, 2, ..., \frac{p-1}{2}$

So
$$\sum_{k=1}^{\frac{p-1}{2}} r_k \equiv \sum_{k=1}^{\frac{p-1}{2}} k \mod 2$$
 and $\sum_{k=1}^{\frac{p-1}{2}} q_k \equiv 2 \sum_{k=1}^{\frac{p-1}{2}} k \equiv 0 \mod 2$

 $\begin{array}{l} \textbf{Example:} \ a=7, p=11, \mbox{find } \mu(7,11) \\ \frac{p-1}{2}=5, \ \left\lfloor \frac{1\cdot7}{11} \right\rfloor = 0, \ \left\lfloor \frac{2\cdot7}{11} \right\rfloor = 1, \ \left\lfloor \frac{3\cdot7}{11} \right\rfloor = 1, \ \left\lfloor \frac{4\cdot7}{11} \right\rfloor = 2, \ \left\lfloor \frac{5\cdot7}{11} \right\rfloor = 3. \\ \mu(7,11)\equiv (0+1+1+2+3)\equiv 1 \mod 2 \\ \mbox{Also, consider the list } 7,14\equiv 3,10,6,2, \ \mu(7,11)=3. \end{array}$

Geometric perspective:

Firstly notice that $\left\lfloor \frac{ka}{p} \right\rfloor$ count the integers $1 \le m < \frac{ka}{p} = \frac{a}{p}k$. $\sum_{k=1}^{\frac{p-1}{2}} \left\lfloor \frac{ka}{p} \right\rfloor$ =number of lattice points (integer coordinate points) inside the triangle with vertices (0,0), $\left(\frac{p}{2}, \frac{a}{2}\right), \left(\frac{p}{2}, 0\right)$. Write as T(a, p).

Theorem: 6.7: Quadratic Reciprocity

Let p, q be distinct odd primes. Then $\binom{p}{q} = \binom{q}{p} (-1)^{\frac{p-1}{2}\frac{q-1}{2}}$. Equivalently, $\binom{p}{q} \binom{q}{p} = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}$. Specifically, if $p \equiv 1 \mod 4$ or $q \equiv 1 \mod 4$, then $x^2 \equiv p \mod q$ has a solution $\Leftrightarrow x^2 \equiv q \mod p$ has a solution; if $p \equiv q \equiv 3 \mod 4$, then $x^2 \equiv p \mod q$ has a solution $\Leftrightarrow x^2 \equiv q \mod p$ does not have a solution.

Proof. $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\mu(p,q)}(-1)^{\mu(q,p)} = (-1)^{\mu(p,q)+\mu(q,p)} = (-1)^{T(p,q)+T(q,p)}$ Now, we use symmetry from triangle argument.

T(p,q) =number of interior points with $y = \frac{p}{q}x$. T(q,p) =number of integer points with $y = \frac{q}{p}x$. The two triangles form a rectangle. Also, there is no lattice point on the diagonal, otherwise, p,q are not coprime.

Thus
$$T(p,q) + T(q,p)$$
 =number of interior points in the rectangle $(0,0), \left(\frac{p}{2}, \frac{q}{2}\right) = \frac{p-1}{2}\frac{q-1}{2}$.

Example: Let p be an odd prime, $p \neq 5$, when is $x^2 \equiv 5 \mod p$ solvable?

Proof. We want to find
$$\left(\frac{5}{p}\right)$$
, we know by Theorem 6.7 that $\left(\frac{5}{p}\right) = \left(\frac{p}{5}\right)(-1)^{\frac{p-1}{2}\frac{5-1}{2}} = \left(\frac{p}{5}\right)$.
 $x = 1, 2, x^2 = 1, 4 \equiv -1. \quad \left(\frac{p}{5}\right) = \begin{cases} -1, \text{ if } p \equiv 2, 3 \mod 5\\ 1, \text{ if } p \equiv 1, 4 \mod 5 \end{cases}$.

Example: $p \neq 7$, find $\left(\frac{7}{p}\right)$

$$\begin{aligned} Proof. \left(\frac{7}{p}\right) &= \left(\frac{p}{7}\right) \left(-1\right)^{\frac{p-1}{2}\frac{7-1}{2}} &= \left(\frac{p}{7}\right) \left(-1\right)^{\frac{p-1}{2}}.\\ x &= 1, 2, 3, x^2 = 1, 4, 9 \equiv 2. \ \left(\frac{p}{7}\right) &= \begin{cases} -1, \text{ if } p \equiv 3, 5, 6 \mod 7\\ 1, \text{ if } p \equiv 1, 2, 4 \mod 7 \end{cases} \text{ . Also, } (-1)^{\frac{p-1}{2}} &= \begin{cases} 1, \text{ if } p \equiv 1 \mod 4\\ -1, \text{ if } p \equiv 3 \mod 4 \end{cases} \end{aligned}$$

And we can combine the results using Thereom 2.4

6.1 Sum of Two Squares

Which primes can be written as a sum of two squares? *i.e.* $p = x^2 + y^2, x, y \in \mathbb{Z}$. e.q. if p = 2, $p = 1^2 + 1^2$.

Theorem: 6.8:

If p is an odd prime and $p = x^2 + y^2$, then $p \equiv 1 \mod 4$

Proof. Check squares mod 4, $x \equiv 0, 1, 2, 3, x^2 \equiv 0, 1, 0, 1$ so $x^2 + y^2 \equiv 0, 1, 2 \mod 4$. But p is odd, so $p \equiv 1 \mod 4$.

Theorem: 6.9:

If $p \equiv 1 \mod 4$, then p is a sum of two squares.

Recall that $\left(\frac{-1}{p}\right) = \begin{cases} 1, \text{ if } p \equiv 1 \mod 4\\ -1, \text{ if } p \equiv 3 \mod 4 \end{cases}$, so if $p \equiv 1 \mod 4$, then there is some a with $a^2 \equiv -1 \mod p$ or equivalently, $p|a^2 + 1$, which we can write as $a^2 + 1^2 = pk, k \in \mathbb{Z}$. The argument is $x^2 + y^2 + pk$, k > 2, then we can find x, y, t s.t. $x^2 + y^2 = pt, 1 \le t < k$. This follows from the following two facts: 1) $(x^2+y^2)(u^2+v^2) = (xu-vy)^2 + (yu+vx)^2$; 2) if $x^2+y^2 = zw^2$, then z should be a sum of two squares $\left(\frac{x}{w}\right)^2 + \left(\frac{y}{w}\right)^2 = z$. The second is not literally true, because we don't always have w|x and w|y.

Theorem: 6.10: Descent Procedure

Input: write $A^2 + B^2 = pk$, $1 \le k < p$

- 1. If k = 1, then $A^2 + B^2 = p$, done
- 2. Find $-\frac{k}{2} \le u, v \le \frac{k}{2}$, with $u \equiv A \mod k, v \equiv B \mod k$ 3. Notice $u^2 + v^2 \equiv A^2 + B^2 \equiv 0 \mod k$, so $u^2 + v^2 = kt$, where $1 \le t < k$
- 4. Multiply $k^2pt = (kt)(pt) = (u^2 + v^2)(A^2 + B^2) = (vA uB)^2 + (uA + vB)^2$ 5. Notice k|vA uB and k|uA + vB, so $pt = \left(\frac{vA uB}{k}\right)^2 + \left(\frac{uA + vB}{k}\right)^2$

Proof. 1. is fine

- 2. We can do this because of Division Algo (Theorem 1.1)
- 3. $u^2 + v^2 \equiv A^2 + B^2 \equiv 0 \mod k$ is clear, so we can write $u^2 + v^2 = kt$. $kt = u^2 + v^2 \le \frac{k^2}{4} + \frac{k^2}{4} = \frac{k^2}{2}$, so $t \le \frac{k}{2} < k$ Now we show that $t \le 1$. Since $u^2 + v^2 > 0$, obviously, $t \ge 0$. If t = 0, then u = v = 0, k|A and k|B. Since $A^2 + B^2 = pk$, also we have A = ka and B = kb. Then $k^2(a^2+b^2) = A^2 + B^2 = pk$, then k|p, k = 1 contradiction. Thus $t \ge 1$.
- 4. algebraic manipulation

5. $vA - uB \equiv BA - AB \equiv 0 \mod k, uA + vB \equiv A^2 + B^2 \equiv 0 \mod k$

Proof. (Theorem 6.9) We can write $a^1 + 1^2 = pk$ for some $a, k \in \mathbb{Z}, 1 \le k < o$, apply Descent proceedure (Theorem 6.10) until it terminates with $p = x^2 + y^2$. It takes $\mathcal{O}(\log k)$ steps.

7 Arithmetic Functions

Definition: 7.1: Arithmetic Functions

An arithmetic function is a function $f : \mathbb{N} \to \mathbb{C}$.

Example: $\tau(n) = \#$ positive divisors, $\tau(3) = 2, \tau(12) = 6, \tau(33) = 4$ For $n > 1, \tau(n) = 2 \Leftrightarrow n$ is prime.

Example: $\phi(n) = |\{\mathbb{Z}/n\mathbb{Z}\}^n|$ (Euler's totient function), $\phi(3) = 2, \phi(12) = 4, \phi(33) = 30$

Example: $\sigma(n)$ =sum of all positive divisors of n, $\sigma(3) = 1 + 3 = 4$, $\sigma(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28$, $\sigma(33) = 1 + 3 + 11 + 33 = 48$

Example: w(n) = # prime divisors of n, w(3) = 1, w(12) = w(33) = 2

- 1. w(n) is roughly $\log \log n$
- 2. w(n) behaves like a normally distributed random variable.

Definition: 7.2: Multiplicative Arithmetic Functions

An arithmetic function f is multiplicative if 1. f(1) = 12. For all $n, m \in \mathbb{N}$, gcd(n, m) = 1, f(nm) = f(n)f(m)

Theorem: 7.1:

Let f be multiplicative. For any n > 1, $n = p_1^{k_1} \cdots p_r^{k_r}$, $f(n) = f(p_1^{k_1}) \cdots f(p_r^{k_r})$.

Proof. By induction that if $m_1, ..., m_t$ are s.t. $gcd(m_i, m_j) = 1, i \neq j$, then $f(m_1 \cdots m_t) = f(m_1) \cdots f(m_t)$.

Note: $f(p^2) \neq f(p)^2$.

Definition: 7.3: Totally Multiplicative

An arithmetic function is totally multiplicative if 1. f(1) = 12. For all $n, m \in \mathbb{N}$, f(nm) = f(n)f(m)

Theorem: 7.2:

Let f be totally multiplicative. For any n > 1, $n = p_1^{k_1} \cdots p_r^{k_r}$, $f(n) = f(p_1)^{k_1} \cdots f(p_r)^{k_r}$.

Lemma: 7.1:

Let $n, m \in \mathbb{Z}$, gcd(n, m) = 1. Then $\forall d | nm, d > 0$, there exists unique divisors $d_1 | n, d_2 | m$ s.t. $d = d_1 d_2$.

Proof. Take $d_1 = \gcd(d, n), d_1|n$. Let $d_2 = \frac{d}{d_1}$. Then $d_1d_2 = d$. Also $\gcd\left(\frac{d}{d_1}, \frac{n}{d_1}\right) = 1$. So $d_1d_2|nm \Rightarrow d_2|\frac{n}{d_1}m \Rightarrow d_2|m$.

Suppose $e_1|n, e_2|m$, with $d = e_1e_2$, then $d_1d_2 = d = e_1e_2$.

Since gcd(n, m) = 1, $gcd(e_1, d_2) = 1$, so $e_1|d_1$. By a similar argument, $d_1|e_1$. So $d_1 = \pm e_1$, but $e_1 \ge d_1 > 0$. So $d_1 = e_1$. Similarly, $d_2 = e_2$.

Note: there is a bijection ϕ : {positive divisors of n}×{positive divisors of m} \rightarrow {positive divisors of nm} s.t. $\phi(d_1, d_2) = d_1 d_2$.

So if
$$n, m$$
 are coprime, then $\sum_{d|nm} \cdot = \sum_{d_1|n, d_2|m} \cdot = \sum_{d_1|n} \cdot \sum_{d_2|m} \cdot$

Theorem: 7.3:

$$\tau(n) = \sum_{d|n} 1$$
 and $\sigma(n) = \sum_{d|n} d$ are multiplicative.

Proof.
$$\tau(1) = \sigma(1) = 1$$
.
Let $n, m \in \mathbb{N}$, $\gcd(n, m) = 1$, $\tau(nm) = \sum_{d|nm} 1 = \sum_{d_1|n} \sum_{d_2|m} 1 = \sum_{d_1|n} 1 \sum_{d_2|m} 1 = \tau(n)\tau(m)$
Similarly, $\sigma(nm) = \sum_{d|nm} d = \left(\sum_{d_1|n} d_1\right) \left(\sum_{d_2|m} d_2\right) = \sigma(n)\sigma(m)$.

7.1 Dirichlet Series

Definition: 7.4: Generating Series

A generating series is
$$\left(\sum_{n\geq 1} a_n z^n\right) \left(\sum_{m\geq 1} b_m z^m\right) = \sum_{k\geq 1} \left(\sum_{i+j=k} a_j b_i\right) z^k$$

Definition: 7.5: Riemann Zeta Function

The Riemann zeta function is
$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^{\zeta}}$$
.
Consider $D(s) = \sum_{n=1}^{\infty} \frac{f(n)}{n^{\zeta}}, E(s) = \sum_{n=1}^{\infty} \frac{g(n)}{n^{\zeta}}, D(s)E(s) = \sum_{n=1}^{\infty} \left(\sum_{ab=n} f(a)g(b)\right) \frac{1}{n^s}$.
We can rewrite the first term as $\sum_{d|n} f(d)g\left(\frac{n}{d}\right)$.

Definition: 7.6: Dirichlet Convolution

If f, g are arithmetic functions, the Dirichlet convolution is an arithmetic function f * g s.t. $(f * g)(n) = \sum_{d|n} f(d)g\left(\frac{n}{d}\right)$.

Example: Let
$$\mathbb{1}$$
 be s.t. $\mathbb{1}(n) = 1, \forall n$.
Then $(\mathbb{1} * \mathbb{1})(n) = \sum_{d|n} \mathbb{1}(d)\mathbb{1}\left(\frac{n}{d}\right) = \sum_{d|n} 1 \cdot 1 = \sum_{d|n} 1 = \tau(n)$.

Example: Let I(n) = n. Then $(I * 1)(n) = \sum_{d|n} I(d) 1 \left(\frac{n}{d}\right) = \sum_{d|n} d = \sigma(n)$.

Theorem: 7.4:

Let f, g be multiplicative, then f * g is multiplicative.

Proof.
$$(f * g)(1) = \sum_{d|1} f(d)g\left(\frac{1}{d}\right) = f(1)g(1) = 1$$

Let $n, m \in \mathbb{N}$, gcd(n, m) = 1. Then

$$(f * g)(nm) = \sum_{d|nm} f(d)g\left(\frac{nm}{d}\right) = \sum_{d_1|n} \sum_{d_2|m} f(d_1d_2)g\left(\frac{n}{d_1}\frac{m}{d_2}\right)$$
$$= \sum_{d_1|n} \sum_{d_2|m} f(d_1)f(d_2)g\left(\frac{n}{d_1}\right)g\left(\frac{m}{d_2}\right)$$
$$= \sum_{d_1|n} f(d_1)g\left(\frac{n}{d_1}\right)\sum_{d_2|m} f(d_2)g\left(\frac{m}{d_2}\right)$$
$$= (f * g)(n)(f * g)(m)$$

Definition: 7.7: Identity

Let
$$i(n) = \begin{cases} 1, & \text{if } n = 1 \\ 0, & \text{otherwise} \end{cases}$$

Claim 1. If f is an arithmetic function, then f * i = f

Proof.
$$(f*i)(n) = \sum_{d|n} f(d)i\left(\frac{n}{d}\right) = f(n)$$

There is a special class of arithmetic functions f for which there is an arithmetic function g s.t. f * g = i.

 $\begin{array}{l} \textbf{Example: Let } f = 1, \ f(n) = 1. \ \text{For } g \text{ to be an inverse of } f, \text{ we need } f \ast g = i \text{ or } (f \ast g)(n) = i(n). \ i.e. \\ \sum_{d \mid n} g(d) = \begin{cases} 1, \ \text{if } n = 1 \\ 0, \ \text{otherwise} \end{cases} \\ n = 1, \ g(1) = 1; \ n = 2, \ g(2) + g(1) = 0 \ \text{gives } g(2) = -1; \ \text{similarly}, \ n = 3, \ g(3) + g(1) = 0 \ \text{gives } g(3) = -1 \\ n = 4, \ g(4) + g(2) + g(1) = 0 \ \text{gives } g(4) = 0 \\ \text{Note } g(n) = \sum_{d \mid n, d < n} g(d) = 0. \end{array}$

Definition: 7.8: Mobius Function

$$u(n) = \begin{cases} 1, & \text{if } n \text{ is square free and has even number of prime factors} \\ 1, & \text{if } n \text{ is square free and has odd number of prime factors} \\ 0, & \text{otherwise} \end{cases}$$

,

Square free means no square divisors. i.e. p^t with $t \ge 2$ are not divisors.

Theorem: 7.5:

$$\sum_{d|n} \mu(d) = \begin{cases} 1, & \text{if } n = 1\\ 0, & \text{otherwise} \end{cases}$$

Proof. RHS is multiplicative. $\mu(n)$ is multiplicative and thus LHS is multiplicative. Then it suffices to check if this equality holds for $n = p^k$, p prime, $k \ge 1$.

$$\sum_{d \mid p^k} \mu(d) = \sum_{j=0}^k \mu(p^j) = \mu(p^0) + \mu(p^1) = \mu(1) + \mu(p) = 1 + (-1) = 0$$

Note that anything larger will have a square divisor and $\mu(p^j) = 0$.

Theorem: 7.6: Mobius Inversion Formula

Let f, g be arithmetic functions, then

$$f(n) = \sum_{d|n} g(d) \Leftrightarrow g(n) = \sum_{d|n} f(d) \mu\left(\frac{n}{d}\right)$$

Proof. (
$$\Rightarrow$$
) Suppose $f(n) = \sum_{d|n} g(d)$

$$\sum_{d|n} f(d)\mu\left(\frac{n}{d}\right) = \sum_{d|n} \left(\sum_{e|d} g(e)\right)\mu\left(\frac{n}{d}\right)$$
$$= \sum_{d|n} \sum_{e|d} g(e)\mu\left(\frac{n}{d}\right)$$
$$= \sum_{e|d} g(e) \sum_{d|n,e|d} \mu\left(\frac{n}{d}\right) \text{ (switching sums)}$$

Note $d|n, e|d \Leftrightarrow d = ed'$ and ed'|n or $d'|\frac{n}{e}$. Continuing the transformation, we get

$$= \sum_{e|n} g(e) \sum_{d'|\frac{n}{e}} \mu\left(\frac{n/e}{e'}\right)$$
$$= \sum_{e|n} g(e)i\left(\frac{n}{e}\right) = g(n)$$

 $i.e. \ f=g*1 \Leftrightarrow f*\mu=g*1*\mu=g*i=g.$

Example:
$$\phi(n) = n \prod_{p|n} \left(1 - \frac{1}{p}\right) = \sum_{d|n} \mu(d) \frac{n}{d} \Leftrightarrow n = \sum_{d|n} \phi(d).$$

8 Extra Topics

8.1 Probability in Number Theory (Analytic Number Theory)

Q1: If I pick two positive integers n, m at random, how likely is it that they are coprime?

Q: If I pick two positive integers n, m at random from $\{1, 2, ..., N\}$, how likely is it that they are coprime? If we call this probability p_N , then the limit $\lim_{N\to\infty} p_N$, if exists, is a descent answer to Q1.

 $\begin{array}{l} \text{Total number of outcomes} = \text{total number of pairs } (n,m) \text{ s.t. } 1 \leq n,m \leq N = N^2 \\ \text{Total number of pairs } (n,m) \text{ s.t. } 1 \leq n,m \leq N, \gcd(n,m) = 1 = \sum_{1 \leq n,m \leq N, \gcd(n,m) = 1} 1 \end{array}$

Substitute $M = \gcd(n, m)$ into the Mobius function (Definition 7.8), we get $\sum_{n|M} \mu(d) = \begin{cases} 1, & \text{if } M = 1 \\ 0, & \text{otherwise} \end{cases}$

we get $\sum_{n|\gcd(n,m)=1} \mu(d) = \begin{cases} 1, \text{ if } \gcd(n,m) = 1\\ 0, \text{ otherwise} \end{cases}$. Then,

$$\begin{split} \sum_{1 \le n,m \le N, \gcd(n,m) = 1} 1 &= \sum_{n,m \le N} \sum_{d \mid \gcd(n,m)} \mu(d) \\ &= \sum_{d \le N} \mu(d) \# \text{pairs } (n,m) \text{ s.t. } d \mid n, d \mid m, 1 \le n, m \le N \\ &= \sum_{d \le N} \mu(d) \left\lfloor \frac{N}{d} \right\rfloor^2 \end{split}$$

Note that $\frac{N}{d} - \left\{\frac{N}{d}\right\} = \left\lfloor\frac{N}{d}\right\rfloor$. Square both sides $\left(\frac{N}{d} - \left\{\frac{N}{d}\right\}\right)^2 = \left\lfloor\frac{N}{d}\right\rfloor^2$, we get $\frac{N^2}{d^2} - 2\frac{N}{d}\left\{\frac{N}{d}\right\} + \left\{\frac{N}{d}\right\}^2 = \left\lfloor\frac{N}{d}\right\rfloor^2$ Since $0 \leq \left\{\frac{N}{d}\right\} < 1$, by triangle inequality,

$$\left|-2\frac{N}{d}\left\{\frac{N}{d}\right\} + \left\{\frac{n}{D}\right\}^2\right| \le \left|2\frac{N}{d}\left\{\frac{N}{d}\right\}\right| + \left|\left\{\frac{n}{D}\right\}^2\right| \le 2\frac{N}{d} + 1 \le 3\frac{N}{d}$$

Then $\left\lfloor \frac{N}{d} \right\rfloor^2 = \frac{N^2}{d^2} + \mathcal{O}\left\{ \frac{N}{d} \right\}.$

$$\sum_{1 \le n,m \le N, \gcd(n,m)=1} 1 = \sum_{d \le N} \mu(d) \left\lfloor \frac{N}{d} \right\rfloor^2$$
$$= \sum_{d \le N} \mu(d) \frac{N^2}{d^2} + \mathcal{O}\left(\sum_{d \le N} \frac{N}{d}\right)$$
$$= N^2 \sum_{d \le N} \frac{\mu(d)}{d^2} + \mathcal{O}\left(N \sum_{d \le N} \frac{1}{d}\right)$$
$$= N^2 \sum_{d \le N} \frac{\mu(d)}{d^2} + \mathcal{O}\left(N \log N\right)$$

$$p_N = \frac{1}{N^2} \sum_{1 \le n, m \le N, \gcd(n,m)=1} 1$$
$$= \frac{1}{N^2} \sum_{d \le N} \left(N^2 \frac{\mu(d)}{d^2} + \mathcal{O}\left(N \log N\right) \right)$$
$$= \sum_{d \le N} \frac{\mu(d)}{d^2} + \mathcal{O}\left(\frac{\log N}{N}\right)$$

Therefore, $p = \lim_{N \to \infty} p_N = \sum_{d=1}^{\infty} \frac{\mu(d)}{d^2} = \frac{6}{\pi^2}.$

i.e. If we pick two positive integers n, m at random, they are coprime with probability $\frac{6}{\pi^2}$

We know that
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
, how is that related to $\sum_{n=1}^{\infty} \frac{\mu(n)}{n^2} = \frac{6}{\pi^2}$?
Consider the Dirichlet convolution (Definition 7.6), $\sum_{n=1}^{\infty} \frac{\mu(n)}{n^s} \sum_{n=1}^{\infty} \frac{1}{n^s} = \sum_{n=1}^{\infty} \frac{(\mu * 1)(n)}{n^s} = 1$, so $\sum_{n=1}^{\infty} \frac{\mu(n)}{n^s} = \frac{1}{\zeta(s)}$.

Euler's Product: Consider

$$\prod_{p} \left(\frac{1}{1 - 1/p} \right) = \prod_{p} \left(1 + \frac{1}{p} + \frac{1}{p^2} + \dots \right) = \left(1 + \frac{1}{2} + \frac{1}{4} + \dots \right) \left(1 + \frac{1}{3} + \frac{1}{9} + \dots \right)$$
$$= \sum_{n=1}^{\infty} \frac{1}{n}$$

This is due to the unique prime factorization of integers.

This also shows that there must be infinitely many primes, because RHS is infinite.

If f is multiplicative,

$$\sum_{n=1}^{\infty} \frac{f(n)}{n^s} = \prod_p \left(1 + \frac{f(p)}{p^s} + \frac{f(p^2)}{p^{2s}} + \cdots \right).$$

If f is totally multiplicative,

$$\sum_{n=1}^{\infty} \frac{f(n)}{n^s} = \prod_p \left(1 + \frac{f(p)}{p^s} + \left(\frac{f(p)}{p^s}\right)^2 + \cdots \right) = \prod_p \frac{1}{1 - f(p)/p^s}$$

For Mobius function,

$$\sum_{n=1}^{\infty} \frac{\mu(n)}{n^s} = \prod_p \left(1 + \frac{\mu(p)}{p^s} + \frac{\mu(p^2)}{p^{2s}} \cdots \right) = \prod_p \left(1 - \frac{1}{p^s} \right) = \frac{1}{\zeta(s)}$$

Then,

$$\frac{6}{\pi^2} = \sum_{n=1}^{\infty} \frac{\mu(n)}{n^2} = \prod_p \left(1 - \frac{1}{p^2}\right) = \text{probability } n, m \text{ are not both divisible by } p$$

Q: If I pick two positive integers n, m at random, how likely is it that m|n? Start with finite $N, q_N = \frac{\#(n,m) \text{ s.t. } n, m \leq N, m|n}{N^2}$

$$\sum_{n,m\leq N,m|n} 1 = \sum_{n\leq N} \sum_{m|n} 1 = \sum_{n\leq N} \tau(N)$$

Note that $\frac{1}{N} \sum_{n \leq N} \tau(N) \approx \log N$, so $q_N \approx \frac{\log N}{N} \to 0$ as $N \to \infty$.

Why the same technique won't work for the first problem?

Fix n, how many $m \leq N$ are there with gcd(n, m) = 1?

Example: $N = 15, n = 4, \phi(n) = 2$. There are 8 such n with gcd(n, m) = 1

In each modular partition, there are exactly $\phi(n)$ occurrence. But there are either $\lfloor \frac{N}{n} \rfloor$ or $\lfloor \frac{N}{n} \rfloor + 1$ different partitions. The error term cannot be ignored.

8.2 Fermat's Last Theorem (Algebraic Number Theory)

Find solutions to $x^2 - y^2 = z^2$ for gcd(x, y, z) = 1, *i.e.* gcd(x, y) = gcd(y, z) = gcd(x, z) = 1. This means that exactly two of x, y, z are odd. WLOG, assume x, z are odd, y is even. By difference of square $(x - y)(x + y) = z^2$. Since x + y = x - y + 2y, gcd(x - y, x + y) = gcd(x - y, 2y) = gcd(x - y, y) = gcd(x, y) = 1. Write $z = p_1^{k_1} \cdots p_r^{k_r}$, $z^2 = p_1^{2k_1} \cdots p_r^{2k_r}$, so $(x - y)(x + y) = p_1^{2k_1} \cdots p_r^{2k_r}$. As a result, there are coprime s and t s.t. $\begin{cases} x - y = s^2 \\ x + y = t^2 \\ z = st \end{cases}$

This gives $\begin{cases} x = \frac{s^2 + t^2}{2} \\ y = \frac{t^2 - s^2}{2} \\ z = st \end{cases}$. So we find all possible integer solutions to $x^2 = y^2 + z^2$.

However, this idea can fail for $x^3 + y^3 = z^3$, gcd(x, y, z) = 1 $x^3 = z^3 - y^3 = (z - y)(z^2 + zy + y^2)$, which cannot be factored anymore in integers.

For $x^2 + y^2 = z^2$, we can also consider $x^2 - (iy)^2 = z^2$ where $i^2 = -1$. Then $(x - iy)(x + iy) = z^2$. Now, we are wroking with Gaussian integer $\mathbb{Z}[i]$. Since $\mathbb{Z}[i]$ has unique prime factorization, this still works.

With a similar idea, we consider $\omega = e^{\frac{2\pi i}{3}}$, $\omega^3 = 1$ with $\omega \neq 1$. $x^3 - 1 = (x - 1)(x^2 + x + 1) = (x - 1)(x - \omega)(x - \omega^2)$. Then $z^3 = x^3 + y^3 = (x + y)(x + \omega y)(x + \omega^2 y)$. Now, we we work with the Eisenstein integers $\mathbb{Z}[\omega]$.

More geneerally, for an odd prime p, there is $\zeta_p = e^{\frac{2\pi i}{p}}$ with $\zeta_p^p = 1$ and $\zeta_p, \zeta_p^2, ..., \zeta_p^{p-1} \neq 1$. $z^p = x^p + y^p = (x+y)(x+\zeta_p y) \cdots (x+\zeta_p^{p-1} y)$

Now, we are in $\mathbb{Z}[\zeta_p]$. As long as we can show that $\zeta_p, \zeta_p^2, ..., \zeta_p^{p-1}$ are coprime and there is unique prime factorization in $\mathbb{Z}[\zeta_p]$, we are done.

However, it fails. Consider $\mathbb{Z}[\sqrt{5}i]$, $6 = (1 + \sqrt{5}i)(1 - \sqrt{5}i) = 2 \cdot 3$ has multiple factorizations. $x^2 + 5y^2 = (x + \sqrt{5}iy)(x - \sqrt{5}iy) = z^2$ won't work the same way.

This is the issue in Lame's proof of Fermat's Last Theorem.

Theorem: 8.1: Fermat's Last Theorem

For $n \ge 3$, there are no positive integer solutions to $x^n + y^n = z^n$.