
MAT315 Introduction to Number Theory

1 Division and Primes

1.1 Division

Definition: 1.1: Divisors

Let n, d ∈ Z. We say d divides n if ∃e ∈ Z s.t. n = de.
Notation: d|n.

Theorem: 1.1: Division Algorithm

Let a ∈ Z, b ∈ N. There exists unique q, r ∈ Z, where a = qb+ r, 0 ≤ r < b.

Proof. Let S = {a− bq ≥ 0 : q ∈ Z}.
Note that if we let q = −|a|, a− qb = a+ |a|b ≥ 0, so −|a| ∈ S, S ̸= ∅.
By well-ordering property, there exists a least element r = a− bq, s.t. a = bq + r, r ≥ 0.
If r ≥ b, then 0 ≤ r − b = a− b(q + 1), r is not the least element in S, contradiction, thus r < b.

Uniqueness: Suppose bq1 + r1 = bq2 + r2 = a, then r1 − r2 = b(q2 − q1).
Since 0 ≤ r < b, then −b < r1 − r2 < b. But it is a multiple of b, then r1 − r2 = 0, r1 = r2 and q1 = q2.

Theorem: 1.2: Properties of Divisors

1. If a|b and b|c, then a|c
2. If a|b and c|d, then ac|bd
3. For all x, y ∈ Z, if d|a and d|b, then d|ax+ by

Proof. 1. If a|b and b|c, then by Definition 1.1, ∃n,m ∈ Z s.t. b = na and c = mb, then c = m(na) =
(mn)a, thus a|c.

2. If a|b and c|d, then ∃n,m ∈ Z s.t. b = na and d = mc, then bd = (na)(mc) = (mn)(ac), thus ac|bd.

3. If d|a and d|b, then ∃n,m ∈ Z s.t. a = nd and b = md, then ax+ by = (nd)x+ (md)y = d(nx+my),
thus d|(ax+ by).

Definition: 1.2: Greatest Common Divisors

For a, b ∈ Z, their greatest common divisor (GCD) is the natural number gcd(a, b) which is the
largest common divisor of a, b. If a = b = 0, then gcd(a, b) = 1.
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Lemma: 1.1: Bezout’s Lemma

Let a, b ∈ N. The equation ax+ by = gcd(a, b) has a solution.

Proof. Let S = {c ∈ N : ax+ by = c has a solution.}. Obviously a ∈ S, S ̸= ∅.
By well-ordering property, it has the least element s. We want to show that s = gcd(a, b).

1. Firstly, s ≥ gcd(a, b), since gcd(a, b)|s by Theorem 1.2 (3).

2. Now we show that s ≤ gcd(a, b)
Apply Theorem 1.1 to s, a. a = qs+ r with 0 ≤ r < s.
a = q(ax+ by) + r, which gives a(1− qx) + b(−y) = r, is solvable by definition of s. Thus r = 0. s|a
and similarly s|b. Therefore s ≤ gcd(a, b)

Thus s = gcd(a, b).

Theorem: 1.3:

Let a, b, d ∈ N. If d|a and d|b, then d|gcd(a, b).

Proof. Apply Lemma 1.1, ax+ by = gcd(a, b) has a solution.
Then by Property 3 of Theorem 1.2, d|gcd(a, b).

Definition: 1.3: Coprime

a, b ∈ Z \ {0} are coprime, if gcd(a, b) = 1. i.e. ax+ by = 1 has solutions.

Theorem: 1.4:

ax+ by = c is solvable if and only if gcd(a, b)|c.

Proof. (⇐) If c = kgcd(a, b). By Lemma 1.1, ∃x, y ∈ Z s.t. ax+ by = gcd(a, b). Multiplying both sides by
k, a(kx) + b(ky) = kgcd(a,b) = c

(⇒) Solvable by property 3 of Theorem 1.2.

Note: If we let d = gcd(a, b), ax+ by = dk, a
dx+ b

dy = k. a
d and b

d are coprime. Therefore, we can always
assume that a, b are coprime.

Lemma: 1.2:

Let a, b ∈ N be coprime, c ∈ N. If a|bc, then a|c.

Proof. If a, b ∈ N are coprime, by Lemma 1.1, ax+ by = 1 has solutions.
Multiply both sides by c, a(cx) + (bc)y = c, has solutions. a|a and a|bc, so a|c by Theorem 1.4.

Suppose a, b are coprime, and (x0, y0), (x1, y1) are two pairs of solutions to ax+ by = c.
ax0 + by0 = c = ax1 + by1 ⇒ a(x0 − x1) = b(y1 − y0)
Since a, b are coprime, a|y1 − y0, b|x0 − x1.
Let t, s ∈ Z, y1 − y0 = at, x0 − x1 = bs.
Plug back into the equation, abs = bat, thus s = t. x1 = x0 − bt, y1 = y0 + at.
Given ax0 + bx0 = c, ax0 − abt+ abt+ by0 = c, and a(x0 − bt) + b(y0 + at) = c.
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Theorem: 1.5: Linear Diophantine Equation Theorem

Let a, b, c ∈ N, d = gcd(a, b), x0, y0 ∈ Z be solutions s.t. ax0 + by0 = c. Then all solutions to
ax+ by = c are of the form x = x0 − b

d t, y = y0 +
a
d t, t ∈ Z.

Theorem: 1.6: Euclidean Algorithm

Let a, b ∈ N. Apply division algorithm, a = qb+ r, 0 ≤ r < b. Then gcd(a, b) = gcd(b, r).

Proof. If d = gcd(a, b), d|a and d|b, then d|a− bq = r
If d = gcd(b, r), d|b and d|r, then d|qb+ r = a.

Example: a = 450, b = 100, a = 4b + 50. Let a1 = 100, b1 = 50, a1 = 2b1 + 0. Thus gcd(450, 100) =
gcd(100, 50) = gcd(50, 0) = 50

Example: a = 315, b = 17, a = 18b+ 9.
Let a1 = 17, b1 = 9, a1 = 1b1 + 8.
Let a2 = 9, b2 = 8, a2 = 1b2 + 1.
Let a3 = 8, b3 = 1, a3 = 8b3 + 0.
Thus gcd(315, 17) = gcd(17, 9) = gcd(9, 8) = gcd(8, 1) = 1.

We can now iterate backwards to construct a solvable diophantine equation.

1 = 9− 1 · 8
= 9− 1(17− 9) = 2 · 9− 17

= 2 · (315− 18 · 17)− 17

= 2 · 315 + (−37)(17)

Thus x = 2, y = −37 is a solution to ax+ by = c, where a = 315, b = 17, c = gcd(a, b) = 1.

Theorem: 1.7: Euclidean Algorithm (Formally)

Let a, b ∈ N, a ≥ b. Define a sequence by repeated divisions

a = q1b+ r1, 0 ≤ r1 < b

b = q2r1 + r1,

rn−3 = qn−2rn−2 + rn−1

rn−2 = qn−2rn−1 + rn

rn−1 = qnrn + 0

Then gcd(a, b) = rn and we can solve for x, y in ax + by = rn by rn = rn−2 − qn−1rn−1 = rn−2 −
qn−1(rn−3 − qn−2rn−2).
This terminates in log2(a, b).

1.2 Primes

Definition: 1.4: Prime Numbers

A number p ∈ N, p > 1 is prime if its only divisors are 1 and itself.
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Theorem: 1.8:

For a prime number p and any number a, gcd(a, p) = 1 or p and gcd(a, p) = p ⇔ p|a.

Corollary 1. If a, b ∈ Z and p|ab, then p|a or p|b.

Proof. By Theorem 1.8, either p|a or gcd(a, p) = 1 and p|b.

Corollary 2. If a1, ..., an ∈ N, and p|a1 · · · an, then p|ai for some i.

Proof. By induction on i and previous corollary.

Theorem: 1.9: Fundamental Theorem of Arithmetics

For any n ∈ Z, n ̸= 0, there exists a factorization n = ±pk11 · · · pkrr where pj are distinct primes,
kj ∈ N and this is unique up to reordering of pj .

Proof. Existence: (By strong induction)
Base: 1=1 and 2=2 work
Inductive step: Suppose the statment holds for 1...n, consider n+ 1
If n+1 is prime, then we are done. Otherwise, ∃1 < d < n+1 s.t. d|n+1, then n+1 = de for 1 < d, e ≤ n.
By Induction, d, e factors, so n+ 1 factors.

Uniqueness: Observe that if p, q are prime and p|q, then p = q
Write n = pk11 · · · pkrr = qt11 · · · qtss . By Corollary 2, since q1|n, then q1|pi for some i, and thus q1 = pi. By
reordering, we can assume p1 = q1, and cancel out to get pk1−1

1 pk22 · · · pkrr = qt1−1
1 · · · qtss . Keep cancelling

q1, we will eventually have pk1−t1
1 pk22 · · · pkrr = qt22 · · · qtss .

If k1 ̸= t1, then p1|qi for some other 2 ≤ i ≤ s. Then qi is not distinct from q1, contradiction. Thus k1 = t1
and pk22 · · · pkrr = qt22 · · · qtss .
Iterating this procedure, we get r = s, ki = ti, pi = qi.

Theorem: 1.10: Properties of Prime Factorization

If a = pk11 · · · pkrr and b = pt11 · · · ptrr . Then
1. ab = pk1+t1

1 · · · pkr+tr
r

2. b
a = pk1−t1

1 · · · pkr−tr
r and a|b if ki − ti ≥ 0 for all i. The divisors of b are d = pz11 · · · pzrr for

0 ≤ zj ≤ tj

3. gcd(a, b) = p
min(k1,t1)
1 · · · pmin(kr,tr)

r

Note: pa11 · · · parr ∈ Z if aj ≥ 0. Suppose aj < 0 for some j, then p
aj
j /∈ Z.

1.3 Counting Primes

Theorem: 1.11: Euclid

There are infinitely many primes

Proof. Let p1, ..., pr be primes. Consider N = p1 · · · pr + 1 > 1. It has a prime factor q.
If pj |N , then pj |N − p1 · · · pr = 1. Contradiction. Thus q ̸= pj for any j
Then p1, ..., pr, pr+1 = q is a larger set of primes.

4



Theorem: 1.12: Number of Primes

Let π(x) be the number of primes ≤ x. Then π(x) ≈ x
log x .

How do we estimate π(x) and what is the distribution of primes? We can say that p, p + 1 are not both
prime if p ≥ 2. And Bertrand postulate states that pk and pk+1 can be far from each other, but for any
natural number n ∈ N, there is always a prime p s.t. n ≤ p ≤ 2n.

Lemma: 1.3: Upper Bound for π(x)

Let pn denote the nth prime number, then pn ≤ 22
n−1 .

Proof. Base: p1 = 2 ≤ 22
0
= 2

Induction Step: Suppose pj ≤ 22
j−1 for j ≤ n.

We know that there is a new prime q dividing M = p1 · pn + 1 from Theorem 1.11. Then

pn+1 ≤ q ≤ p1 · · · pn + 1

≤ 22
1−1

22
2−1 · · · 22n−1

+ 1

= 2
∑n−1

i=0 2i + 1

= 22
n−1 + 1 ≤ 22

n

Definition: 1.5: Integer and Fraction Parts

For x ∈ R, ⌊x⌋ = n ∈ Z when n ≤ x < n+ 1 and {x} = n− ⌊x⌋ is the fraction part.

Corollary 3. π(x) ≥ ⌊log2 log2 x⌋+ 1

Proof. π(x) = #primes ≤ x. We want to (at least) count the primes with 22
n−1 ≤ x as from Lemma 1.3.

Therefore, n ≤ ⌊log2 log2 x⌋+ 1.

Fact: If n is a composite number, it has non-trivial divisor d ≤
√
n. i.e. one of d, n

d ≤
√
n for all d|n.

Principal of Inclusion-Exclusion: For A1, A2, A3 finite sets, |A1 ∪A2 ∪A3| = |A1|+ |A2|+ |A3| − |A1 ∩
A2| − |A1 ∩A3| − |A2 ∩A3|+ |A1 ∩A2 ∩A3|.

Using the fact and principal of inclusion-exclusion, we can define a sum form of the number of primes
≤ x:

π(x) = #n ≤ x−#n ≤ x, 2|n−#n ≤ x, 3|n− · · · −#n ≤ x, p|nandp ≤
√
x+ $n ≤ x, b|n+ · · ·

= ⌊x⌋ −
∑
p≤

√
x

⌊
x

p

⌋
+

∑
p1<p2≤

√
x

⌊
x

p1p2

⌋
− · · ·

Then π(x)− π(
√
x) + 1 =

∑
d|P≤

√
x

N(d)
⌊x
d

⌋
= x

∑
d|P≤

√
x

N(d)

d
−
∑

d|P≤
√
x

µ(d)
{x
d

}
, where P≤

√
x is the product

of all primes ≤
√
x.
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2 Congruence and Chinese Remainder Theorem

Consider x8 + 1 = 3y3. Can it be solved with x, y ∈ Z?
We check if x8 +1 is divisible by 3. We consider x4 = 3k+ r. If r = 0, then 3 ̸ |x8 +1. Similar for r = 1 or
2. x8 + 1 = 3m+ 2.
We want to find an efficient way of writing the modulo relation.

Definition: 2.1: Equivalence Relation

Given a set X, an equivalence relation on X is a relation ∼ s.t.
1. Reflexive: x ∼ x,∀x ∈ X
2. Symmetric: if x ∼ y, then y ∼ x
3. Transitive: if x ∼ y and y ∼ z, then x ∼ z

Definition: 2.2: Congruence

For n ∈ N, we define an equivalence relation on Z by a ∼ b iff n|(a− b). When a ∼ b, we write a ≡ b
mod n

Proof. Reflexive: n|0 = a− a, so a ∼ a
Symmtric: n|a− b ⇒ n|b− a, so a ∼ b ⇒ b ∼ a
Transitive: If n|a− b and n|b− c, then n|(a− b) + (b− c) = a− c

Theorem: 2.1: Properties of Congruence

1. Addition is preserved: if a ≡ a′ mod n and b ≡ b′ mod n, then a+ b ≡ a′ + b′ mod n
2. Multiplication is preserved: if a ≡ a′ mod n and b ≡ b′ mod n, then ab ≡ a′b′ mod n

Proof. Addition: if n|(a−a′) and n|(b− b′), then n|(a−a′)+(b− b′) = (a+ b)− (a′+ b′), thus a+ b ≡ a′+ b′

mod n.
Multiplication: Note that ab−a′b′ = ab−ab′+ab′−a′b′ = a(b− b′)+ b′(a−a′) , if n|(a−a′) and n|(b− b′),
then n|ab− a′b′, so ab ≡ a′b′ mod n

Corollary 4. If f(x) ∈ Z[x] (polynomial ring with integer coefficients) and a, b ∈ Z, then f(a) ≡ f(b)
mod n

Definition: 2.3: Equivalence Classes

The equivalence class of a point x ∈ X is [x] = {y ∈ X : x ∼ y}

Note: [x] ∩ [y] ̸= ∅ iff x ∼ y and [x] = [y]. We can write X/ ∼= {[x1], ..., [xn], ...}
For congruence, there are n equivalence classes Z/nZ = {[0], [1], ..., [n− 1]}. Often, we drop the [·]
bracket.

Example: Z/12Z = {0, 1, ..., 11}.
3 + 9 ≡ 0 mod 12, 2(8) + 4 ≡ 8 mod 12, 3(7) ≡ 9 mod 12
3(9) ≡ 3(−3) ≡ −9 ≡ 3 mod 12
However, we cannot divide, ̸ ∃x0 s.t. 6x0 ≡ 1 mod 12.

Remark 1. For Z/nZ = {[0], [1], ..., [n− 1]}, define [a] + [b] = [a + b], [a][b] = [ab]. The operations are
well-defined as by Theorem 2.1.
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Remark 2. So by induction, if p(x) ∈ Z[x], then p([a]) = [p(a)] is well-defined. i.e. if we are studying
polynomial equations p(x) = 0, the solutions in Z (p(a) = 0) give solutions modulo n ([a]).

Note: Similarly, we can define Q = Z × Z/ ∼ as equivalence classes, where 1
2 = 2

4 = 3
6 = · · · . However,

f : Q → Z s.t. f
(
a
b

)
= a− b is not well defines, since 1

2 = 2
4 , but f

(
1
2

)
= −1 ̸= −2 = f

(
2
4

)
.

We know that [a] = [b] if and only if a ≡ b mod n, but we don’t know how to divide or if we can even
divide.

Definition: 2.4: Division in Congruence Form

We can divide by a mod n if the equation ax ≡ 1 mod n has a solution. We call the solution a−1

or the multiplicative inverse of a modulo n. It has a solution if and only if gcd(a, n) = 1.

Theorem: 2.2:

The equation ax ≡ b mod n has a solution if and only if d = gcd(a, n)|b. If x0 is a solution, then
the distinct solutions modulo n are x0, x0 +

n
d , x0 +

2n
d , ..., x0 +

(d−1)n
d .

Remark 3. gcd(a, n)|d is fine because gcd(m, qm+ r) = gcd(m, r) by Theorem 1.7, and d|n. So if n|b− b′,
then d|b ⇔ d|b′, since b = b′ + nk.

Proof. (⇒) Suppose ax0 ≡ b mod n for some x0. Then n|ax0− b, so there exists y0 ∈ Z s.t. ax0− b = ny0.
Then ax0 + n(−y0) = b, gcd(a, n)|b.

(⇐) If gcd(a, n)|b, then ∃x0, y0 ∈ Z s.t. ax0+ny0 = b by Lemma 1.1, so n|ax0− b, or equivalently, ax0 ≡ b
mod n.

Now, we show that the solutions modulo n to ax ≡ b mod n are exactly the congruence of the x s.t.
ax+ ny = b. By Theorem 1.5, the solutions are of the form x0 +

nd
t for t ∈ Z.

Then we show that x0, x0 +
n
d , x0 +

2n
d , ..., x0 +

(d−1)n
d are distinct and a complete list of solutions.

Distinct: suppose x0 + j nd ≡ x0 +
in
d mod n, then n| (i−j)n

d , but 0 ≤ i− j ≤ d− 1, (i−j)d
n < n, so i− j = 0

Complete, for any x = x0+
n
d t, apply Division algorithm for t and d, we get x = x0+

n
d t = x0+

n
d (qd+r) =

x0 +
nr
d + qn for 0 ≤ r < d.

Corollary 5. If gcd(a, n)|b, then ax ≡ b mod n has d = gcd(a, n) distinct solutions modulo n. If d = 1,
then there’s a unique solution.

Example: 10x ≡ 11 mod 9 ≡ 2 mod 9, so x ≡ 2 mod 9.

Example: Solve for x s.t. 7x ≡ 13 mod 15

Proof. since a = 7, n = 15, b = 13 are coprime, there is a unique solution.
We consider 7x+ 15y = 13. We can firstly solve 7x+ 15y = 1 using Theorem 1.7.
15 = 2 · 7+ 1, and thus x = −2, y = 1. Multiply both sides by 13, and we get x = −26, y = 13 is a solution
to 7x+ 15y = 13
So the solution to 7x ≡ 13 mod 15 is x ≡ −26 ≡ 4 mod 15.

Example: Solve for x s.t. 10x ≡ 6 mod 16
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Proof. Apply Theorem 1.7,

10x+ 16y = 6

16 = 1 · 10 + 6

10 = 1 · 6 + 4

6 = 1 · 4 + 2

4 = 2 · 2 + 0

Then back substitute, 2 = 6 − 1(4) = 6 − 1(10 − 1(6)) = 6(2) + 10(−1) = 2(16 − 1(10)) + 10(−1) =
10(−3) + 16(2)
Thus x = −3, y = 2 is a solution to 10x+ 16y = 2
Multiply both sides by 3, we get x = −9, y = 6 is a solution to 10x+ 16y = 6
Thus the solutions are 7 ≡ −9 mod 16 and 15 ≡ −9 + 16

2 mod 16.

Theorem: 2.3: Independence Condition

If n = pk11 · · · pkrr , then for a ∈ Z, a ≡ 0 mod n if and only if a ≡ 0 mod p
kj
j for all 1 ≤ j ≤ r.

Proof. (⇒) n = p
kj
j (pk11 · · · pkj−1

j−1 p
kj+1

j+1 · · · pkrr )|a. Thus p
kj
j |a.

(⇐) by applying the corollary of Theorem 1.8. pkj s are coprime.

Theorem: 2.4: Chinese Remainder Theorem

Let m,n ≥ 1 be coprime integers. Then the map

φ : Z/nmZ → Z/nZ× Z/mZ s.t. φ(a mod (nm)) = (a mod n, b mod m)

is a bijection. Moreover, φ(x+ y) = φ(x) + φ(xy), φ(1) = 1, φ(xy) = φ(x)φ(y).

Remark 4. If p(x) ∈ Z[x], then φ(p(x) mod mn) = (p(x) mod n, p(x) mod m).

Remark 5. For Z/nZ× Z/mZ = {([a]n, [b]m) : a = 0, ..., n− 1, b = 0, ...,m− 1},
([a]n, [b]m) + ([c]n, [d]m) = ([a+ c]n, [b+ d]m), where (0, 0) is the additive identity.
([a]n, [b]m) · ([c]n, [d]m) = ([ac]n, [bd]m), where (1, 1) is the multiplicative identity.

Proof. Well defined: if a ≡ a′ mod nm, then nm|a−a′,since nm coprime, by Theorem 1.8, n|a−a′, a ≡ a′

mod n and m|a− a′, a ≡ a′ mod m.

Injective: If a ≡ b mod n and a ≡ b mod m, i.e. φ(a) = φ(b), since n,m are coprime, n|a− b and m|a− b
⇒ nm|a− b, thus a ≡ b mod nm.

Surjective: For any b mod n, c mod m, we want to find a mod nm s.t. a ≡ b mod n and a ≡ c mod m.
By Lemma 1.1, there are x0, y0 ∈ Z s.t. nx0 +my0 = 1
Construct a = b(my0) + c(nx0), then a ≡ b(my0) mod n and a ≡ c(nx0) mod m = c mod m.

φ(x+ y) = ((x+ y) mod n, (x+ y) mod m) = (x mod n+ y mod n, x mod m+ y mod m)

= (x mod n, x mod m) + (y mod n, y mod m) = φ(x) + φ(y)
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φ(xy) = (xy mod n, xy mod m) = (x mod ny mod n, x mod my mod m)

= (x mod n, x mod m) (y mod n, y mod m) = φ(x)φ(y)

φ(1) = (1 mod n, 1 mod m) = (1, 1)

Example: Solve for x2 ≡ 2 mod 14.

Proof. By Theorem 2.4, it is enough to solve for x2 ≡ 2 mod 2 and x2 ≡ 2 mod 7,
and then we can construct solutions mod 14.
The first one gives x ≡ 0 mod 2. The second one gives x2 ≡ 2 ≡ 9 mod 7, x ≡ ±3 mod 7.
So we have the left side of the correspondance, {(0, 3), (0,−3)}.

This means we need to solve

{
x ≡ 0 mod 2

x ≡ 3 mod 7
, and

{
y ≡ 0 mod 2

y ≡ −3 mod 7

We want z mod nm that maps to (a mod n, b mod m).
Apply a similar idea in proving the surjection. We use z = a(my) + b(nx) s.t. nx+my = 1, then use the
Euclidean algorithm.
To solve the first one, take z = 0(7y) + 3(2x), where 7y + 2x = 1. Then x = −3, y = 1, z = −18 ≡ 10
mod 14.
For the second one, z = 0(7y)− 3(2x) where 7y + (−2)x = 1, x = 3, y = 1, z = 18 ≡ 4 mod 14.

Example: Solve for 6x ≡ 15 mod 385.

Proof. Note 385 = 5 · 7 · 11.
So we solve for 6x ≡ 15 ≡ 0 mod 5, 6x ≡ 15 ≡ 1 mod 7 and 6x ≡ 15 ≡ 4 mod 11.

Consider the first 2 congruence equations:
We solve for 5x+ 7y = 1 and get x = 3, y = −2, so we have a = 0(7y) + 1(5x) ≡ 15 mod 35.
Then combine this with 6x ≡ 4 mod 11,
We solve for 11x + 35y = 1: 35 = 3 · 11 + 2, 11 = 5 · 2 + 1, so 1 = 11 − 5(2) = 11 − 5(35 − 3(11)) =
(−5)(35) + 16(11). i.e. x = 16, y = −5. Then we have b = 4(35y) + 15(11x) = 1940 ≡ 15 mod 385.
Thus 6x ≡ 1940 mod 385, x ≡ 195 mod 385.

Example: (General Problem) You are the general of an army with less than 1000 troops. After the abttle,
you have n troops left.
When you ask them to get into groups of 7, there are 5 leftover.
When you ask them to get into groups of 11, there are 9 leftover.
When you ask them to get into groups of 13, there are 2 leftover.
What is n?

Proof. We have three congruence equations:

1. n ≡ 5 mod 7

2. n ≡ 9 mod 11

3. n ≡ 2 mod 13
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Note that 1001 = 7 · 11 · 13. And n ≡ a mod 1001 has a unique value.
Use the first 2 equations. We solve for 7x+ 11y = 1, and get an a = 5(11y) + 9(7x).
Apply Theorem 1.7, x = −3, y = 2. a = −79 ≡ −2 mod 77
Use a ≡ −2 mod 77 and n ≡ 2 mod 13. We solve for 13x+ 77y = 1, and get n = 2(77y)− 2(13x).
x = 6, y = −1. So n = 2(77)(−1)− 2(13)(6) = −310 ≡ 691 mod 1001.
Thus n = 691.

Theorem: 2.5: General Strategies

The general strategies for solving f(x) ≡ 0 mod n
1. Factor n = pk11 · · · pkrr
2. Solve the system f(x) ≡ 0 mod pk11 , · · · , f(x) ≡ 0 mod pkrr
3. Use Theorem 2.4 to combine the solutions.

Since for a number a, gcd(a, pn) = 1 if and only if p ̸ |a. We claim that to solve f(x) ≡ 0 mod pk, we can
solve in steps of solving mod p, then lift to mod p2, mod p3,...

Example: x4 ≡ 7 mod 81.

Proof. Since 81 = 34, we can work with mod 3 first.
x4 ≡ 7 ≡ 1 mod 3, thus x = ±1 mod 3.
And we can lift up to x ≡ 1, 2, 4, 5, 7, 8 mod 9.
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3 Rationals

Previously, we consider the equation x2+y2 = z2 in the integer domain. We want to know if it has rational
solutions and how to find them.

Theorem: 3.1: Property of Rationals

If a, b ∈ Q \ {0}, then a
b ∈ Q.

Then we can divide by z on both sides,
(
x
z

)2
+
(y
z

)2
= 1 or equivalently, u2 + v2 = 1 for u, v ∈ Q.

Geometrically, the solutions lie on the unit circle. And we know that (1, 0) is a solution. If (u, v) is another
rational solution to u2+v2 = 1, then the slope of the line connecting (u, v) and (1, 0) must be rational.

Conversely, if we have a line through (1, 0) with rational slope v = t(u − 1) for t ∈ Q. Then the system{
v = t(u− 1)

u2 + v2 = 1
gives the other rational solution.

By substitution,

u2 + t2(u− 1)2 = 1

(1 + t2)u2 − 2t2u+ t2 − 1 = 0

Using quadratic formula, we get u =
2t2±

√
4t2−4(1+t2)(t2−1)

2(t2+1)
= 2t2±2

2(t2+1)
. u = 1 or t2−1

t2+1
.

If t is rational, u is rational, and v = t (u− 1) = t t
2−1−t2−1

t2+1
= −2t

t2+1
is rational.

If we write in lowest terms t = m
n , m,n ∈ Z. t2−1

t2+1
= m2−n2

m2+n2 . −2t
t2+1

= − 2mn
m2+n2 .

Then clearing our denominators, we get integer solutions to x2+y2 = z2,
(
m2 − n2,−2mn,m2 + n2

)
.

Theorem: 3.2:

If m
n = a

b for a, b ∈ Z, then a = λm, b = λn, for λ ∈ Z.

However, the same strategy will fail for degree > 2.
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4 Polynomials

In previous sections, we often work with modulo a prime number. The modulo world also works nicely for
polynomial long divisions.

Example: Suppose we want to divide x4 + 3x3 + x+ 1, with divisor 5x2 + 3.
The first step is removing the highest degree term, x4 + 3x3 + x+ 1− 1

5x
2(5x2 + 2) = 3x4 − 3

5x
2 + x+ 1.

Continue until the degree of polynomial drops below the degree of the divisor.
And we will get x4 + 3x3 + x+ 1 = q(x)(5x2 + 3) + r(x), with r(x) = 0 or deg(r(x)) < 2.

We can do exactly the same thing mod p. When p is a prime, we have a division algorithm for polynomials.
Suppose f(x) is a polynomial with f(a) ≡ 0 mod p, then f(x) = (x− a)g(x).

Notation: Fp = Z/pZ, Fp[x] = {anxn + · · · a1x+ a0 : an, ..., a0 ∈ Fp}.

Theorem: 4.1: Division Algorithm for Polynomials

Let f(x), g(x) ∈ Fp[x], g(x) non constant. There exists q(x), r(x) ∈ Fp[x] s.t. f(x) = q(x)g(x)+ r(x)
and r(x) = 0 or deg(r) < deg(g).

Proof. Let f(x) = anx
n+an−1x

n−1+ · · ·+a1x+a0, ai ̸= 0, g(x) = bnx
n+bn−1x

n−1+ · · ·+b1x+b0, bi ̸= 0.
If m > n, then q(x) = 0, r(x) = f(x) suffices.
If m ≤ n, then f(x)− an

bm
xn−mg(x) = cn−1x

n−1 + cn−2x
n−2 + · · · c1x1 + c0.

Continue the iteration until it terminates. What is left is r(x) and q(x) = sum of all terms we multiply
g(x) by.

Remark 6. The fact we have a division algorithm means we have unique factorization in Fp[x]. More
relevantly, the division algorithm lets us connect roots of polynomials with linear factors.

Suppose f(x) ∈ Fp[x] and x−a|f(x), i.e. ∃g(x) ∈ Fp[x] with f(x) = (x−a)g(x). Then f(a) ≡ (a−a)g(a) ≡
0 mod p.

Theorem: 4.2:

Let f(x) ∈ Fp[x], a ∈ Fp. If f(a) ≡ 0 mod p, then x− a|f(x).

Proof. Apply Division algorithm to get f(x) = q(x)(x − a) + r(x). We know r(x) = 0 or deg(r) <
deg(x− a) = 1, so r(x) = b0 constant.
But f(a) ≡ (a− a)q(a) + b0 mod p, 0 ≡ b0 mod p.

Note: If we write f(x) = (x− a1)(x− a2) · · · (x− ak)g(x), then deg(f) ≥ k.

Theorem: 4.3:

Let f(x) ∈ Fp[x] be nonzero. Then the number of roots of f(x) ≤ deg(f) counted with multiplicity.

Proof. We prove by induction on degree.
Base case: deg = 0 and deg = 1 are clear.
Suppose this is true if deg = n. Consider f(x) with degree n+ 1.
If f has no roots, then we are done.
If f has a root, then f(x) = (x− a)g(x) and deg(f) = 1 + deg(g)
So deg(g) = n and by induction, the number of roots of g with multiplicity ≤ deg(g).
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Therefore, the number of roots of f with multiplicity ≤ 1+ number of roots of g with multiplicity ≤
1 + deg(g) = 1 + n = deg(f).

Theorem: 4.4:

For any p, we can construct f(x) ∈ Fp[x] with no roots.

Example: x2 + 1 ≡ 0 mod 3 has no roots.

What are the roots of xp − x ≡ 0 mod p?
As long as p is a prime, xp − x ≡ 0 has p roots. For a ̸= 0, ap−1 ≡ 1 mod p.

Definition: 4.1: Group of Units Modulo n

For n >1, define the group of units modulo n by (Z/nZ)∗ = {a ∈ Z/nZ : gcd(a, n) = 1} = invertible
elements modulo n with the following properties

1. If x, y ∈ (Z/nZ)∗, then xy ∈ (Z/nZ)∗. Also the product is associative and commutative.
2. ∀x ∈ (Z/nZ)∗, 1x ≡ x mod n
3. ∀x ∈ (Z/nZ)∗, ∃y ∈ (Z/nZ)∗ s.t. xy ≡ 1 mod n (inverse exists) and the inverse is unique

Definition: 4.2: Euler ϕ-function

Define the function on the positive integers by ϕ(1) = 1, ϕ(n) = |(Z/nZ)∗| for n > 1.

Example: for p prime, ϕ(p) = p− 1, ϕ(pk) = pk − pk−1

Example: For a ∈ (Z/nZ)∗, define ma : (Z/nZ)∗ → (Z/nZ)∗ s.t. ma = ax. ma is a bijection.
Since the inverse a−1 exists, ma ◦ma−1 = ma−1 ◦ma = id.

Theorem: 4.5: Euler’s Theorem

For a ∈ (Z/nZ)∗, aϕ(n) ≡ 1 mod n

Proof. Write (Z/nZ)∗ =
{
x1, ..., xϕ(n)

}
=
{
ax1, ..., axϕ(n)

}
.

Multiply everything together, x1 · · ·xϕ(n) = ax1 · · · axϕ(n) = aϕ(n)x1 · · ·xϕ(n) by associativity.
Since inverse of x1 · · ·xϕ(n) exists, we get 1 ≡ aϕ(n) mod n.

Theorem: 4.6: Fermat’s Little Theorem

For p prime, a ̸≡ 0 mod p, ap−1 ≡ 1 mod p.

Theorem: 4.7:

If n,m are coprime, then ϕ(nm) = ϕ(n)ϕ(m).

Proof. Theorem 2.4 gives us Z/mnZ ∼= Z/mZ× Z/nZ.
And we can reduce to (Z/mnZ)∗ ∼= (Z/mZ)∗ × (Z/nZ)∗

13



Now given an arbitrary n = pk11 · · · pkrr with pkii , p
kj
j coprime. Then ϕ(n) = ϕ(pk11 ) · · ·ϕ(pkrr ).

If we want 1 ≤ a ≤ pk s.t. gcd(a, pk) = 1, there are pk −
⌊
pk

p

⌋
= pk − pk−1 such numbers. (

⌊
pk

p

⌋
is the

number of elements dividing pk in Z/pkZ =
{
[0], [1], ..., [pk − 1]

}
=
{
[1], [2], ..., [pk − 1], [pk]

}
)

Theorem: 4.8: Properties of Euler ϕ-function

1. ϕ(pk) = pk − pk−1 = pk−1)p− 1 for p prime and k ≥ 1
2. if n = pk11 · · · pkrr , then ϕ(n) = ϕ(pk11 ) · · ·ϕ(pkrr ) = pk1−1

1 (p1 − 1) · · · pkr−1
r (pr − 1)

Some times, we write pk − pk−1 = pk
(
1− 1

p

)
, then ϕ(n) = n

∏
p|n

(
1− 1

p

)

Example: n = 13435197, then ϕ(n) = ϕ(134)ϕ(35)ϕ(197) = 133(13− 1)34(3− 1)196(19− 1)

Example: Compute 31492 mod 100 (i.e. the last two digits)

Proof. We know 3ϕ(100) ≡ 1 mod 100.
If we apply division algorithm 1492 = qϕ(100)+r for 0 ≤ r < ϕ(100), then 31492 ≡ (3ϕ(100))q3r mod 100 ≡
3r mod 100.
Since 100 = 2252, ϕ(100) = ϕ(22)ϕ(52) = 2(2− 1)5(5− 1) = 40
1492 = 37 · 40 + 12, 1492 ≡ 12 mod ϕ(100), then 31492 ≡ 312 mod 100

Successive squaring: every number has a binary expansion m = cn2
n+ · · · c12+ c0 where cj = 0 or 1. Then

xm = xcn2
n+c...c0 = (x2

n
)cn · · · (x2)c1xc0 .

12 = 23 + 22, 32 ≡ 9 mod 100, 34 ≡ 81 mod 100, 38 ≡ (81)2 ≡ (−19)2 ≡ 61 mod 100.
312 ≡ 3834 ≡ 61 · 81 mod 100 ≡ 41 mod 100.

Suppose we want to solve xd ≡ 1 mod n. We consider ad ≡ 1 mod n, then a−1 ≡ ad−1 mod n.

Definition: 4.3: Order

For a ∈ (Z/nZ)∗, the order of a is the smallest positive integer d s.t. ad ≡ 1 mod n. We write
ord(a) for the order.

Theorem: 4.9:

For a ∈ (Z/nZ)∗. If am ≡ 1 mod n, then ord(a)|m.

Proof. Apply division algorithm, m = qord(a) + r, where 0 ≤ r < ord(a)
1 ≡ am ≡ aqord(a)ar ≡ ar mod n, then r = 0, ord|ϕ(n).

Corollary 6. For every a ∈ (Z/nZ)∗, ord(a)|ϕ(n).

In part, we know xd ≡ 1 mod n is only solvable with order d element when d|ϕ(n).
Suppose gϕ(n) ≡ 1 mod n and ϕ(n) = ord(g), then g

ϕ(n)
k has order k.

Claim: We can always find an order d element for d|ϕ(n) if and only if we can find an order ϕ(n)
element.

Aside (Cryptography): You have a large (hard to factor) N and some exponent e. If someone wants to
send a message A in terms of (Z/nZ)∗ elements. They send you Ae mod N where gcd(e, ϕ(N)) = 1.
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Lemma 1.1 tells us that ef + ϕ(N)h = 1 for some f, h, then A1 ≡ Aef+ϕ(N)h ≡ Aef (Aϕ(N))h ≡ (Ae)f

mod N .

If g is an element of order ϕ(N) (a generator), then (Z/nZ)∗ =
{
1, g, g2, ..., gϕ(N)−1

}
. The existence of a

generator gives us a discrete logarithm to each a ∈ (Z/nZ)∗. There is some unique 0 ≤ k ≤ ϕ(N) − 1 s.t.
gk ≡ a mod N , so k = logg a and log(Ae) = e logA.

Definition: 4.4: Primitive Root

g ∈ (Z/nZ)∗ is a primitive root if ord(g) = ϕ(N).

Theorem: 4.10:

For a ∈ (Z/nZ)∗, ord(a) =
∣∣{ak : k ≥ 0

}∣∣
Proof. Define a map {1, ..., ord(a)} →

{
ak : k ≥ 0

}
by k 7→ ak

The map is surjective from division algorithm
The map is injective: if ai ≡ aj mod N for i ≥ j, then ai−j ≡ 1 mod N , 0 ≤ i − j < ord(N), then
i = j.

Consider the polynomial xd − 1. If a ∈ (Z/pZ)∗ of order d, then a is a root. In fact, 1 = a0, a1, ..., ad−1

are roots of the polynomial, with no repeats. Since xd − 1 should have ≤ d roots. The set a0, a1, ..., ad−1

is exactly the set of roots. The set of elements of order d is some subset of lists, consisting ak where
gcd(d, k) = 1.

Theorem: 4.11:

Let a ∈ (Z/nZ)∗. If ord(a) = d, then ord(ak) = d
gcd(d,k) , k ≥ 1.

Proof. (ak)
d

gcd(d,k) ≡ (a
k

gcd(d,k) )d ≡ 1 mod n.
Assume akj ≡ (ak)j ≡ 1 mod n, then d|kj.
Divide both side by the gcd, d

gcd(d,k) |
k

gcd(d,k)j

But now d
gcd(d,k) and k

gcd(d,k) are coprime, then by Lemma 1.2, d
gcd(d,k) |j, so as long as j > 0, j ≥ d

gcd(d,k) .

Corollary 7. ord(ak) = ord(a) if gcd(ord(a), k) = 1.

Theorem: 4.12:

In (Z/pZ)∗, there are either 0 elements of order d or there are ϕ(d) of such elements.

Let η(d) =# elements of order d in (Z/pZ)∗.
∑
d|p−1

η(d) = ϕ(p) = p − 1. We want to show that all

η(d) ̸= 0.

Theorem: 4.13: Gauss Theorem

For any m ≥ 1,
∑
d|m

ϕ(d) = m.

15



Proof. Consider Z/mZ and for each d|m, let

Sd = {x ∈ Z/m : dx ≡ 0 mod m and lx ̸≡ 0 mod m for any l < d}

Firstly, Sd1 ∩ Sd2 = if d1 ̸= d2.
Consider d1x ≡ 0 ≡ d2x mod m for any x ∈ Sd1 ∩ Sd2 , but by definition, d1 ≤ d2 and d2 ≤ d1, thus
d1 = d2.

Also, ∀x ∈ Z/mZ, x ∈ Sd for some d|m, therefore, Z/mZ =
⋃
d|m

Sd as disjoint union. Therefore, m =∑
d|m

|Sd|.

Suppose x ∈ Sd, dx ≡ 0 mod m, equivalently, m|dx. Since d|m, we have m
d |x, so x = m

d t, t ∈ Z.

We claim that gcd(t, d) = 1.
Since x = m

d t =
m

d/gcd(d,t)
t

gcd(d,t) , then d
gcd(d,t)x ≡ 0 mod m.

But since x ∈ Sd, d ≤ d
gcd(d,t) ≤ d. Therefore d = d

gcd(d,t) , gcd(d, t) = 1.
Therefore, Sd =

{
m
d t : 0 ≤ t ≤ d− 1, gcd(d, t) = 1

}
and |Sd| = ϕ(d) by definition.

Theorem: 4.14:

Primitive roots exist mod p (prime).

Proof. We have
∑
d|p−1

η(d) = p− 1 =
∑
d|p−1

ϕ(d) and η(d) ≤ ϕ(d), so η(d) = ϕ(d).

In particular, η(p− 1) = ϕ(p− 1) > 0.

Example: (Z/8Z)∗ = {1, 3, 5, 7}, 12 ≡ 1, 32 ≡ 9 ≡ 1, 52 ≡ 25 ≡ 1, 72 ≡ 49 ≡ 1. There are no primitive
roots.

Example: Let p be an odd prime, (Z/4pZ)∗ has no primitive roots.

Proof. By Theorem 2.4, (Z/4pZ)∗ ∼= (Z/4Z)∗ × (Z/pZ)∗. Then ap−1 ≡ 1 mod 4p for all a.
But ϕ(4p) = 2(p− 1), so there is no primitive roots. (ϕ(4p) ̸= p− 1)

Example: Let p, q be distinct odd primes, (Z/pqZ)∗ has no primitive roots.

Proof. By Theorem 2.4, (Z/pqZ)∗ ∼= (Z/pZ)∗ × (Z/qZ)∗.
Consider a

(p−1)(q−1)
2 .

Since p, q are distinct odds, p− 1, q − 1 are even. p−1
2 , q−1

2 ∈ Z.

Then a
(p−1)(q−1)

2 7→
(
(ap−1)

q−1
2 mod p, (aq−1)

p−1
2 mod q

)
≡ (1 mod p, 1 mod q) for all a, since ap−1 ≡ 1

mod p for p primes.
Thus, a

(p−1)(q−1)
2 ≡ 1 mod pq.

But ϕ(pq) = (p− 1)(q − 1), so there is no primitive roots.

Lemma: 4.1: Reduction

For n|m, the reduction map π : (Z/mZ)∗ → (Z/nZ)∗ s.t. π([x]m) = [x]n is surjective.

16



Proof. Let 1 ≤ x ≤ n, gcd(x, n) = 1, i.e. x ∈ (Z/nZ)∗.
If y ∈ (Z/mZ)∗ with y ≡ x mod n, then for any y′ ∈ Z/mZ, y′ ≡ x mod n, y′ ≡ y + nt, so the elements
in Z/nZ above x are x+ nt.
If gcd(x,m) = 1, then we are good, there’s only one element.
Otherwise there are primes p|m with p|x. Note m = m

n n.
Since gcd(x, n) = 1, p|mn , otherwise o|n and gcd(x, n) = p.
Take t0 be the product of p s.t. p|mn .
Claim: gcd(x+ nt0,m) = 1
Take a prime p s.t. p|mn
If p|x, then p|x+ nt0 implies that p|nt0, so p|t0 contradiction.
If p ̸ |, then by construction p|t0. So p|x+ nt0 implies p|x, contradiction.
Thus gcd(x+ nt0,m) = 1.

Theorem: 4.15:

Let n|m. If (Z/mZ)∗ has a primitive root, then so does (Z/nZ)∗.

Proof. Let π : (Z/mZ)∗ → (Z/nZ)∗ be a reduction map.
Suppose g is a primitive root mod m.
Tkae h = π(g) mod n, then for any x ∈ (Z/nZ)∗, there exists y ∈ (Z/mZ)∗ with π(y) ≡ x mod n.
But y = gk mod m by definition of primitive roots, k ≥ 0.
Since π preserves multiplication, hk ≡ π(g)k ≡ π(gk) ≡ π(y) ≡ x mod n. Thus h is a primitive root
mod n.

Theorem: 4.16: Obstruction Theorem

If 8|n or 4p|n for p prime or if pq|n for distinct odd primes, then (Z/nZ)∗ has no primitive root.

Theorem: 4.17:

(Z/pkZ)∗ has a primitive root for p odd prime, k ≥ 1.

Proof. We have shown the theorem for k = 1 in Theorem 4.14.

Consider k = 2. Given g a primitive root mod p. Claim that g or g + p mod p2 is a primitive root.
If g is a primitive root mod p2, then done.
Otherwise, let d be the order of g in mod p2. gd ≡ 1 mod p2, then gd ≡ 1 mod p, so by order argument
(Theorem 4.9), p− 1|d.
Also if d is the order of g in mod p2, we know that d|ϕ(p2) = p(p− 1). Therefore, p− 1|d|p(p− 1).
This implies that d = p − 1 or d = p(p − 1). Since we assume g is not a primitive root mod p2, we have
d = p− 1.
Then (g + p)p−1 ≡ gp−1 + (p− 1)gp−2p ≡ 1 + (p− 1)gp−2p mod p2 (the higher order terms vanish)
If (g + p)p−1 ≡ 1 mod p2, then 0 ≡ (p− 1)gp−2p mod p2. i.e. p2|(p− 1)gp−2p, so p|(p− 1)gp−2, but this
cannot hold, since p does not dive p− 1 or g.
Therefore (g + p) has order p(p− 1) in mod p2, it is a primitive root.

Now we proceed by induction.
Claim: if h is a primitive root pk, k ≥ 2, then it is a primitive root mod pk+1.
Let d =order of h in mod pk+1, then hd ≡ 1 mod pk+1 so hd ≡ 1 mod pk.
By order argument, ϕ(pk)|d and d|ϕ(pk+1). Then d = ϕ(pk) = pk−1(p− 1) or ϕ(pk+1) = pk(p− 1).
Observe that ϕ(pk) = pϕ(pk−1).
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hϕ(p
k−1) ≡ 1 mod pk−1 tells us that hϕ(p

k−1) = 1 + pk−1t
hϕ(p

k) ̸≡ 1 mod pk tells us that p ̸ |t.
Then hϕ(p

k) ≡ hpϕ(p
k−1) ≡

(
hϕ(p

k−1)
)p

≡ (1 + pk−1t)p ≡ 1 + pkt+
(
p
2

)
p2(k−1)t2 mod pk+1.

The remaining terms vanish mod pk+1.
2(k− 1) is not always ≥ k+ 1, but p|

(
p
2

)
, so the third term is divisible by 2(k− 1) + 1 and it is ≥ k+ 1, so

it vanishes as well.
hϕ(p

k) ≡ 1 mod pk+1 ⇔ pkt ≡ 0 ⇔ p|t. Contradiction.
Thus h is a primitive root mod pk+1 and h6ϕ(pk+1) ≡ 1 mod pk+1.

Remark 7. If g is a primitive root mod p2, then g is a primitive root mod pk for k ≥ 1.

Theorem: 4.18:

Note that for ϕ(2pk) = ϕ(pk), (Z/2pkZ)∗ has a primitive root for p odd prime and k ≥ 0.

Proof. k = 0, (Z/2Z)∗ has one element only, and it is the primitive root.

When k ≥ 1, let g be a primitive root mod pk. Suppose it is odd. let d =order of g in mod 2pk.
Then d|ϕ(2pk) = ϕ(pk). and gd ≡ 1 mod 2pk, then gd ≡ 1 mod pk, so ϕ(pk)|d.
Then since d|ϕ(pk), d = ϕ(pk).
Hence g has a primitive root mod 2pk

If g is even, take g + pk instead.

Theorem: 4.19:

(Z/nZ)∗ has a primitive root if and only if n = 1, 2, 4, pk, 2pk for p an odd prime and k ≥ 1.

Example: Find primitive roots (Z/9Z)∗ = {1, 2, 4, 5, 7, 8}

Proof. We know that 2 is a primitive root for (Z/3Z). We look for its powers in (Z/9Z)∗ which are 2,5,8
Enumerate all powers of 2 in (Z/9Z)∗: 21 ≡ 2, 22 ≡ 4, 23 ≡ 8, 26 ≡ 1.
2 is a primitive root. Actually 2 is a primitive root for all (Z/3kZ)∗.

Example: What are the solutions to x7 ≡ 8 mod 81?

Proof. We can always write x ≡ 2y mod 81 (by previous example). Then 27y ≡ 8 ≡ 23 mod 81
Then we only need to solve for 7y ≡ 3 mod ϕ(81) by Theorem 4.8.

Notation: if p is a prime, n is an integer, k ≥ 0, then pk||n means pk|n and pk+1 ̸ |n.

Lemma: 4.2:

For n ≥ 0, 2n+2||52n − 1

Proof. For n = 0, 520 − 1 = 4, 20+2 = 4, so 20+2||520 − 1
Suppose this holds for n ≥ 0. Now consider 52

n+1 − 1.
Note 52

n+1
= 52·2

n
=
(
52

n)2, so 52
n+1 − 1 =

(
52

n − 1
) (

52
n
+ 1
)
.

We know by induction 2n+2||52n − 1.
52

n
+ 1 ≡ 1 + 1 ≡ 2 mod 4, so only, 2||62n + 1, then 2n+3||52n+1 − 1.
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Theorem: 4.20:

For n ≥ 3,
1. 5 has order 2n−2 in (Z/2nZ)∗
2. Every element of (Z/2nZ)∗ can be written uniquely as (−1)i5j , 0 ≤ i ≤ 1, 0 ≤ j ≤ 2n−2 − 1

Proof. 1. Because ϕ(2n) = 2n−1, then d = ord(5) = 2k for some k ≥ 0 by Theorem 4.11.
Moreover, 52k − 1 ≡ 0 mod 2n, so 2n|52k − 1. By Lemma 4.2, 2k+2||52k − 1, so n ≤ k + 2.
We know (Z/2nZ)∗ has no primitive root, so k < n− 1. Therefore n− 2 ≤ k < n− 1 ⇒ k = n− 2.

2. We know that each of 50, 51, ..., 52n−2−1, −50,−51, ...,−52
n−2−1 has no overlap. So in total there are

2 · 2n−2 = 2n−1 elements and |(Z/2nZ)∗| = 2n−1

No-overlap: suppose 5i ≡ −5j mod 2n−1, then 1 ≡ −1 mod 4 Contradiction.

Example: Solve x7 ≡ 9 mod 280

Proof. 280 = 23 · 5 · 7. By Theorem 2.4, we can split it up.

1. x7 ≡ 9 ≡ 2 mod 7. By Theorem 4.5, x6 ≡ 1 mod 7, x7 ≡ x mod 7. x ≡ 2 mod 7 is the only
solution

2. x7 ≡ 9 ≡ 4 mod 5. By Theorem 4.5, x4 ≡ 1 mod 5, so x3 ≡ 4 mod 5, x ≡ 4 mod 5 is the only
solution

3. x7 ≡ 9 ≡ 1 mod 8. By Theorem 4.5, ϕ(8) = 22(2− 1) = 4, x4 ≡ 1 mod 8, thus x3 ≡ 1 mod 8.
By Theorem 4.20, all elements mod 8 has the form ±50,±51 (n = 3). (±5i)3 ≡ ±53i, 54 ≡ 125 ≡ 5
mod 8.
(±5i)3 ≡ ±53i ≡ ±5i ≡ 1 mod 8. Thus x ≡ 1 mod 8.

We can then combine the solutions using Theorem 2.4.

For any general quadratic equations x2+bx+c mod p, we can follow the quadratic formula x = −b±
√
b2−4c
2 ,

and the square root can be found by y2 ≡ r mod p, which has 0, 1, 2 solutions, and if s is a solution, then
−s is a solution.

Lemma: 4.3: Hensel’s Lemma

Let f(x) be a polynomial with integer coefficients. Let k be a positive integer, and r an integer such
that f(r) ≡ 0 mod pk. Suppose m ≤ k is a positive integer. Then if f ′(r) ̸≡ 0 mod p, there is an
integer s such that f(s) ≡ 0 mod pk+m and s ≡ r mod pk. So s is a lifting of r to a root mod
pk+m. Moreover s is unique mod pk+m.
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5 Midterm

Q1. Solve

{
x ≡ 13 mod 514

x ≡ 33 mod 144
.

Proof. 514 = 2 · 257, 144 = 122 = 24 · 32.

The system is the same as


x ≡ 13 ≡ 1 mod 2

x ≡ 13 mod 257

x ≡ 33 mod 144

. But the first equation is implied by the third, so we

can solve

{
x ≡ 13 mod 257

x ≡ 33 mod 144
instead. This can be done by CRT (Theorem 2.4)

Q2.

(a) Show that if p|n6 + n3 + 1, then p = 3 or p ≡ 1 mod 9

(b) Show that there are infinitely many primes p s.t. p ≡ 1 mod 9

Proof. (a) Consider x3− 1 = (x− 1)(x2+x+1). Let x = n3, we get n9− 1 = (n− 1)(n6+n3+1). Since
p|(n6 + n3 + 1), we have p|n9 − 1.
Equivalently, ord(n)|9 ⇒ ord(n) = 1, 3, 9.
If ord(n) = 9, then by Theorem 4.6 and Theorem 4.9, 9|p− 1, so p ≡ 1 mod 9
If ord(n) = 1, 3, then n3 ≡ 1 mod p, then 0 ≡ n6 + n3 + 1 ≡ 3 mod p, p = 3

(b) Suppose there are finitely many p1, ..., pn s.t. p ≡ 1 mod 9. Consider the prime divisors of m6+m3+1,
m = 3p1, ..., pn. It must be distinct from any of them.

Q3. Find the smallest n with n/10 a 7th power and n/7 a 5th power.

Proof. 2a5b7cpk11 · · · pkrr = n = 10m7 = 2 · 5(2d5e7fpj11 · · · pjrr )7

2a5b7cpk11 · · · pkrr = n = 7m5 = 7(2g5h7ipl11 · · · pkrr )7

This gives that


a = 7d+ 1 = 5g

b = 7e+ 1 = 5h

c = 7f = 1 + 5i

, and 7|kj , 5|kj . We can set kj to 0 to get the smallest number.

We just need to solve:

{
a ≡ 1 mod 7

a ≡ 0 mod 5
,

{
b ≡ 1 mod 7

b ≡ 0 mod 5
,

{
c ≡ 1 mod 5

c ≡ 0 mod 7
. The solutions are a = b =

15, c = 21

Q4. Solve ax+ by = c

Proof. Use Euclidean’s algorithm (Theorem 1.7) to find d = gcd(a, b). If d|c, then we can find solutions to
ax0 + by0 = d

Q6. Solve x3 + x2 − 5 ≡ 0 mod 74

Proof. Use Lemma 4.3, start with x3 + x2 − 5 ≡ 0 mod 7, x ≡ 2 mod 7.
f(x) = x3 + x2 − 5, f ′(x) = 3x2 + 2x, f ′(2) = 3 · 4 + 22 = 16 ̸≡ 0 mod 7, thus Hensel’s lemma is valid.
Iteratively, we compute a1 = 2, a2 = 2− f(a1)

f ′(a1)
to get solution mod 74.
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Q7. Let p be an odd prime. Show that
((

p−1
2

)
!
)2

≡ (−1)
p+1
2 mod p.

Theorem: 5.1: Wilson’s Thereom

(p− 1)! = 1 · 2 · 3 · · · (p− 2)(p− 1) = 1(−1) mod p = −1 mod p

Proof. For Q7, we have
((

p−1
2

)
!
)2

=
(
1 · 2 · · · p−1

2

)(
1 · 2 · · · p−1

2

)
≡
(
1 · 2 · · · p−1

2

)
(1− p)(2− p) · · ·

(
p−1
2 − p

)
≡
(
1 · 2 · · · p−1

2

)
(−1)

p−1
2 (p− 1)(p− 2) · · ·

(
p−1
2 + 1

)
≡ (−1)

p−1
2 (p− 1)! ≡ (−1)

p+1
2 mod p
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6 Quadratic Reciprocal

In this section, we always consider p as an odd prime.

Definition: 6.1: Quadratic Residue

a ∈ Z, a ̸≡ 0 mod p is a quadratic residue (QR) if the equation x2 ≡ a mod p has a solution. If
there are no solutions, it is a non-residue (NR).

Theorem: 6.1:

There are p−1
2 QRs mod p and p−1

2 NRs.

Proof. Consider the list 12, 22, · · · , (p− 1)2. This contains all quadratic residues.

Since (−x)2 = x2, the list 12, 22, ...,
(
p−1
2

)2
contains all quadratic residues. For p−1

2 < n ≤ p − 1, 1 ≤
p− n ≤ p−1

2 .
There are no duplicates in the list, because if 1 ≤ a, b ≤ p−1

2 with a2 ≡ b2 mod p, then (a− b)(a+ b) ≡ 0
mod p.
p|(a− b)(a+ b) ⇒ p|a− b or p|a+ b.
Because 2 ≤ a+ b ≤ p− 1, p ̸ |a+ b, then p|a− b. We know that −p < a− b < p, then a = b.

Notation (Legendre symbol): For a ̸≡ 0 mod p,
(
a
p

)
=

{
1, a is a QR mod p

−1, a is a NR mod p

Theorem: 6.2: QR Multiplicative Rule

Let a, b ∈ Z, a, b ̸≡ 0 mod p,
(
ab
p

)
=
(
a
p

)(
b
p

)
. That is QR×QR=QR, QR×NR=NR, NR×NR=QR

Proof. 1) QR×QR=QR:
Suppose a ≡ s21 mod p, b ≡ s22 mod p, then ab ≡ (s1s2)

2 mod p
2) QR×NR=NR:
Suppose a ≡ s21 mod p and b is a NR. Assume ab ≡ t2 mod p. Then s2b ≡ t2 mod p, b =

(
t
s

)2
mod p.

Contradiction.
3) NR×NR=QR:
Suppose a is NR. Let QRs be q1, ..., q p−1

2
, NRs be n1, ..., n p−1

2

The list aq1, ..., aq p−1
2

consists of NRs and there are p−1
2 distinct ones, so they are all of the NRs.

The list an1, ..., an p−1
2

has p−1
2 elements and is disjoint from above. Therefore, the list is all QRs. For a

NR b, ab is in the list, hence it is a QR.

Example: Does x2 ≡ 3457113 mod 13 have a solution?

Proof.
(
3457113

13

)
=
(

3
13

)4 ( 5
13

)7 (11
13

)3
=
(

5
13

) (
11
13

)
The list of QRs for 13 contains 12, 22, 32, 42, 52, 62 = 1, 4, 9, 3, 12, 10, so 5 and 11 are NRs.
Thus

(
5
13

) (
11
13

)
= 1, x2 ≡ 3457113 mod 13 has a solution.
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Observation: For n ∈ Z, (−1)k = (−1)k mod 2. Given n = ±qk11 · · · qkrr with qj disjoint from p. Then(
n
p

)
=
(
±1
p

)(
q1
p

)k1
· · ·
(
qr
p

)kr
=
(
±1
p

)(
q1
p

)k1 mod 2
· · ·
(
qr
p

)kr mod 2
.

Note:
(
1
p

)
= 1. We want to understand

(
−1
p

)
,
(
q
p

)
for prime q ̸= p.

Theorem: 6.3: Euler’s Criterion

For a ∈ Z, a ̸≡ 0 mod p,
(
a
p

)
≡ a

p−1
2 mod p.

Proof. By Theorem 4.6, the polynomial xp−1 − 1 has exactly p− 1 roots mod p.
Since p is odd, p−1

2 ∈ Z. We get xp−1− 1 =
(
x

p−1
2 − 1

)(
x

p−1
2 + 1

)
. Therefore, x

p−1
2 − 1 and x

p−1
2 +1 each

have exactly p−1
2 roots.

Consider s ̸≡ 0 mod p, (s2)
p−1
2 − 1 ≡ sp−1 − 1 ≡ 0 mod p.

So
{

roots of x
p−1
2 − 1

}
= set of QRs.

{
roots of x

p−1
2 + 1

}
= set of NRs.

i.e., a is QR ⇔ a
p−1
2 − 1 ≡ 0 mod p, so for a QR, a

p−1
2 ≡ 1 ≡

(
a
p

)
mod p

a is NR ⇔ a
p−1
2 + 1 ≡ 0 mod p, so for a NR, a

p−1
2 ≡ −1 ≡

(
a
p

)
mod p

Corollary 8.
(
−1
p

)
≡ (−1)

p−1
2 ≡

{
1, if p ≡ 1 mod 4

−1, if p ≡ 3 mod 4

Using Theorem 6.3, we can prove Theorem 6.2.
(
ab
p

)
≡ (ab)

p−1
2 ≡ a

p−1
2 b

p−1
2 ≡

(
a
p

)(
b
p

)
mod p.

To upgrade this to an equality, observe that if p is an odd prime and ϵ, δ ∈ {±1} with ϵ ≡ δ mod p, then
ϵ = δ. This is because ϵ ≡ δ mod p ⇒ p|ϵ− δ, but ϵ− δ ∈ {−2, 0, 2}, and only 0 can be divided by an odd
prime p. Thus ϵ− δ = 0, ϵ = δ, so

(
ab
p

)
=
(
a
p

)(
b
p

)
.

Example: Compute
(

7
11

)
.

Proof. By Theorem 6.3, we can compute 7
11−1

2 ≡ 75 mod 11, which can be done using successive squares,
which is faster (O(log p)) than exploring all squares mod 11 (O(p)).

To make Euler’s Criterion more useful, we want to investigate a
p−1
2 mod p. To do this, recall the proof of

Theorem 4.6 by listing all equivalence classes.
Consider the list 1, 2, ..., p−1

2 , adding a negative sign gives all numbers 1 ≤ n ≤ p − 1. Consider also the
related list a, 2a, ..., p−1

2 a.

Example: p = 13, a = 7, 1st list: 1, 2, 3, 4, 5, 6, 2nd list: 7, 14 ≡ 1, 8, 2, 9, 3
Reduce the second list mod 13, we get −6, 1,−5, 2,−4, 3.
The number of negative signs = the number of 1 ≤ k ≤ p−1

2 so that ka mod p > p−1
2 . Call this number µ

Observe that (−1)µ1 · 2 · 3 · 4 · 5 · 6 ≡ 76(1 · 2 · 3 · 4 · 5 · 6), so 76 ≡ (−1)µ mod 13.

Theorem: 6.4: Gauss’ Criteria

Let a ̸≡ 0 mod p, µ =number of 1 ≤ k ≤ p−1
2 s.t. ka mod p > p−1

2 . Then a
p−1
2 ≡ (−1)µ mod p,

and as a result
(
a
p

)
= (−1)µ.
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Proof. Start with the list 1, 2, 3, ..., p−1
2 , and consider the related list a, 2a, ..., p−1

2 a. We knoe for each
1 ≤ k ≤ p−1

2 , we can work with ka ≡ ϵkyk mod p for 1 ≤ yk ≤ p−1
2 , ϵk = ±1.

As a result, the product of elements in the second list is a(2a) · · ·
(
p−1
2 a
)
≡ a

p−1
2

(
p−1
2

)
! mod p.

On the other hand,

a(2a) · · ·
(
p− 1

2
a

)
≡ (ϵ1, y1) · · ·

(
ϵ p−1

2
y p−1

2

)
≡
(
ϵ1 · · · ϵ p−1

2

)(
y1 · · · y p−1

2

)
≡ (−1)µ

(
y1 · · · y p−1

2

)
mod p.

We need y1 · · · y p−1
2

≡
(
p−1
2

)
! mod p. One way to guarantee this is for

{
y1, ..., y p−1

2

}
=
{
1, 2, ..., p−1

2

}
It suffices to show that yk’s are all distinct.
Suppose yi = yj , then ia ≡ ϵiyi ≡ ϵjyj ≡ ±ja mod p. Then a(i± j) ≡ 0 mod p.
Since a ̸≡ 0 mod p, p|i± j. Since 1 ≤ i, j ≤ p−1

2 , we require i± j = 0, so i = ±j, i = j.

Thus y1 · y p−1
2

≡
(
p−1
2

)
!, so a

p−1
2

(
p−1
2

)
! ≡ (−1)µy1 · · · y p−1

2
≡ (−1)µ

(
p−1
2

)
! mod p.

Thus a
p−1
2 ≡ (−1)µ mod p.

Theorem: 6.5:

Let p be an odd prime, then
(
2
p

)
=

{
1, if p ≡ 1 mod 8 or p ≡ 7 mod 8

−1, if p ≡ 3 mod 8 or p ≡ 5 mod 8

Proof. We want to use Theorem 6.4, so we compute µ(2, p).
We know that for 1 ≤ k ≤ p−1

2 , 2 ≤ 2k ≤ p− 1, so 2k mod p = 2k

Case 1: p ≡ 1 mod 4, p−1
4 ∈ Z, µ(2, p) = p−1

2 − p−1
4 = p−1

4

Case 2: p ≡ 3 mod 4, p−1
4 = p−3

4 + 1
2 , so p−1

4 < k ⇔ p−3
4 +1 ≤ k. Hence, µ(2, p) = p−1

2 − p−3
4 −1+1 = p+1

4

Now, we compute (−1)µ(2,p). All that matters is if µ(2, p) is even. This is a condition on p mod 8 and
there are 4 cases to consider.
Case 1: p ≡ 1 mod 8. This gives p ≡ 1 mod 4, µ(2, p) = p−1

4 ≡ 0 is even.
Case 2: p ≡ 5 mod 8. This gives p ≡ 1 mod 4, µ(2, p) = p−1

4 ≡ 1 is odd.
Case 3: p ≡ 3 mod 8. This gives p ≡ 3 mod 4, µ(2, p) = p+1

4 ≡ 1 is odd.
Case 4: p ≡ 7 mod 8. This gives p ≡ 3 mod 4, µ(2, p) = p+1

4 ≡ 0 is even.

Because we know how to compute
(
2
p

)
and

(
bc
p

)
=
(

b
p

)(
c
p

)
. We just need to know how to compute

(
a
p

)
when a is odd.
Recall that there are unique qk, rk ∈ Z s.t. ka = qkp+ rk, where −p−1

2 ≤ rk ≤ p−1
2 .

Then ka
p = qk +

rk
p , −1

2 < rk
p < 1

2 . Therefore
⌊
ka
p

⌋
=

{
qk, if rk > 0

qk − 1, if rk < 0
.

p−1
2∑

k=1

⌊
ka

p

⌋
=

p−1
2∑

k=1

qk − µ(a, p), where µ(a, p) =number of 1 ≤ k ≤ p−1
2 s.t. ka mod p > p−1

2 (negative

value).

Theorem: 6.6:

Let p be an odd prime, a be odd s.t. a ̸≡ 0 mod p. Then µ(a, p) =

p−1
2∑

k=1

⌊
ka

p

⌋
mod 2
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Proof. From before, µ(a, p) ≡

p−1
2∑

k=1

⌊
ka

p

⌋
+

p−1
2∑

k=1

qk mod 2. (plus and minus are interchangeable when mod

2)
Since a, p are odd, ka ≡ qkp+ rk mod 2, k ≡ qk + rk mod 2.

So

p−1
2∑

k=1

qk ≡

p−1
2∑

k=1

k +

p−1
2∑

k=1

rk mod 2.

The list of rk is exactly ϵ11, ϵ22, ..., ϵ p−1
2

p−1
2 where ϵj = ±1.

But −1 ≡ 1 mod 2, so the list of rk mod 2 is 1, 2, ..., p−1
2

So

p−1
2∑

k=1

rk ≡

p−1
2∑

k=1

k mod 2 and

p−1
2∑

k=1

qk ≡ 2

p−1
2∑

k=1

k ≡ 0 mod 2

Example: a = 7, p = 11, find µ(7, 11)
p−1
2 = 5,

⌊
1·7
11

⌋
= 0,

⌊
2·7
11

⌋
= 1,

⌊
3·7
11

⌋
= 1,

⌊
4·7
11

⌋
= 2,

⌊
5·7
11

⌋
= 3.

µ(7, 11) ≡ (0 + 1 + 1 + 2 + 3) ≡ 1 mod 2
Also, consider the list 7, 14 ≡ 3, 10, 6, 2, µ(7, 11) = 3.

Geometric perspective:
Firstly notice that

⌊
ka
p

⌋
count the integers 1 ≤ m < ka

p = a
pk.

p−1
2∑

k=1

⌊
ka

p

⌋
=number of lattice points (integer coordinate points) inside the triangle with vertices (0, 0),(p

2 ,
a
2

)
,
(p
2 , 0
)
. Write as T (a, p).

Theorem: 6.7: Quadratic Reciprocity

Let p, q be distinct odd primes. Then
(
p
q

)
=
(
q
p

)
(−1)

p−1
2

q−1
2 . Equivalently,

(
p
q

)(
q
p

)
= (−1)

p−1
2

q−1
2 .

Specifically, if p ≡ 1 mod 4 or q ≡ 1 mod 4, then x2 ≡ p mod q has a solution ⇔ x2 ≡ q mod p
has a solution; if p ≡ q ≡ 3 mod 4, then x2 ≡ p mod q has a solution ⇔ x2 ≡ q mod p does not
have a solution.

Proof.
(
p
q

)(
q
p

)
= (−1)µ(p,q)(−1)µ(q,p) = (−1)µ(p,q)+µ(q,p) = (−1)T (p,q)+T (q,p)

Now, we use symmetry from triangle argument.
T (p, q) =number of interior points with y = p

qx. T (q, p) =number of integer points with y = q
px.

The two triangles form a rectangle. Also, there is no lattice point on the diagonal, otherwise, p, q are not
coprime.
Thus T (p, q) + T (q, p) =number of interior points in the rectangle (0, 0),

(p
2 ,

q
2

)
= p−1

2
q−1
2 .

Example: Let p be an odd prime, p ̸= 5, when is x2 ≡ 5 mod p solvable?

Proof. We want to find
(
5
p

)
, we know by Theorem 6.7 that

(
5
p

)
=
(p
5

)
(−1)

p−1
2

5−1
2 =

(p
5

)
.

x = 1, 2, x2 = 1, 4 ≡ −1.
(p
5

)
=

{
−1, if p ≡ 2, 3 mod 5

1, if p ≡ 1, 4 mod 5
.

Example: p ̸= 7, find
(
7
p

)
25



Proof.
(
7
p

)
=
(p
7

)
(−1)

p−1
2

7−1
2 =

(p
7

)
(−1)

p−1
2 .

x = 1, 2, 3, x2 = 1, 4, 9 ≡ 2.
(p
7

)
=

{
−1, if p ≡ 3, 5, 6 mod 7

1, if p ≡ 1, 2, 4 mod 7
. Also, (−1)

p−1
2 =

{
1, if p ≡ 1 mod 4

−1, if p ≡ 3 mod 4

And we can combine the results using Thereom 2.4

6.1 Sum of Two Squares

Which primes can be written as a sum of two squares? i.e. p = x2 + y2, x, y ∈ Z.
e.g. if p = 2, p = 12 + 12.

Theorem: 6.8:

If p is an odd prime and p = x2 + y2, then p ≡ 1 mod 4

Proof. Check squares mod 4, x ≡ 0, 1, 2, 3, x2 ≡ 0, 1, 0, 1
so x2 + y2 ≡ 0, 1, 2 mod 4. But p is odd, so p ≡ 1 mod 4.

Theorem: 6.9:

If p ≡ 1 mod 4, then p is a sum of two squares.

Recall that
(
−1
p

)
=

{
1, if p ≡ 1 mod 4

−1, if p ≡ 3 mod 4
, so if p ≡ 1 mod 4, then there is some a with a2 ≡ −1 mod p

or equivalently, p|a2 + 1, which we can write as a2 + 12 = pk, k ∈ Z.
The argument is x2 + y2 + pk, k > 2, then we can find x, y, t s.t. x2 + y2 = pt, 1 ≤ t < k.
This follows from the following two facts: 1) (x2+y2)(u2+v2) = (xu−vy)2+(yu+vx)2; 2) if x2+y2 = zw2,
then z should be a sum of two squares

(
x
w

)2
+
( y
w

)2
= z. The second is not literally true, because we don’t

always have w|x and w|y.

Theorem: 6.10: Descent Procedure

Input: write A2 +B2 = pk, 1 ≤ k < p
1. If k = 1, then A2 +B2 = p, done
2. Find −k

2 ≤ u, v ≤ k
2 , with u ≡ A mod k, v ≡ B mod k

3. Notice u2 + v2 ≡ A2 +B2 ≡ 0 mod k, so u2 + v2 = kt, where 1 ≤ t < k
4. Multiply k2pt = (kt)(pt) = (u2 + v2)(A2 +B2) = (vA− uB)2 + (uA+ vB)2

5. Notice k|vA− uB and k|uA+ vB, so pt =
(
vA−uB

k

)2
+
(
uA+vB

k

)2
Proof. 1. is fine

2. We can do this because of Division Algo (Theorem 1.1)

3. u2 + v2 ≡ A2 +B2 ≡ 0 mod k is clear, so we can write u2 + v2 = kt.
kt = u2 + v2 ≤ k2

4 + k2

4 = k2

2 , so t ≤ k
2 < k

Now we show that t ≤ 1. Since u2 + v2 > 0, obviously, t ≥ 0.
If t = 0, then u = v = 0, k|A and k|B. Since A2 +B2 = pk, also we have A = ka and B = kb. Then
k2(a2 + b2) = A2 +B2 = pk, then k|p, k = 1 contradiction. Thus t ≥ 1.

4. algebraic manipulation
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5. vA− uB ≡ BA−AB ≡ 0 mod k, uA+ vB ≡ A2 +B2 ≡ 0 mod k

Proof. (Theorem 6.9) We can write a1 + 12 = pk for some a, k ∈ Z, 1 ≤ k < o, apply Descent proceudure
(Theorem 6.10) until it terminates with p = x2 + y2. It takes O(log k) steps.
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7 Arithmetic Functions

Definition: 7.1: Arithmetic Functions

An arithmetic function is a function f : N → C.

Example: τ(n) =# positive divisors, τ(3) = 2, τ(12) = 6, τ(33) = 4
For n > 1, τ(n) = 2 ⇔ n is prime.

Example: ϕ(n) = |{Z/nZ}n| (Euler’s totient function), ϕ(3) = 2, ϕ(12) = 4, ϕ(33) = 30

Example: σ(n) =sum of all positive divisors of n,
σ(3) = 1 + 3 = 4, σ(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28, σ(33) = 1 + 3 + 11 + 33 = 48

Example: w(n) =# prime divisors of n, w(3) = 1, w(12) = w(33) = 2

1. w(n) is roughly log logn

2. w(n) behaves like a normally distributed random variable.

Definition: 7.2: Multiplicative Arithmetic Functions

An arithmetic function f is multiplicative if
1. f(1) = 1
2. For all n,m ∈ N, gcd(n,m) = 1, f(nm) = f(n)f(m)

Theorem: 7.1:

Let f be multiplicative. For any n > 1, n = pk11 · · · pkrr , f(n) = f(pk11 ) · · · f(pkrr ).

Proof. By induction that if m1, ...,mt are s.t. gcd(mi,mj) = 1, i ̸= j,
then f(m1 · · ·mt) = f(m1) · · · f(mt).

Note: f(p2) ̸= f(p)2.

Definition: 7.3: Totally Multiplicative

An arithmetic function is totally multiplicative if
1. f(1) = 1
2. For all n,m ∈ N, f(nm) = f(n)f(m)

Theorem: 7.2:

Let f be totally multiplicative. For any n > 1, n = pk11 · · · pkrr , f(n) = f(p1)
k1 · · · f(pr)kr .

Lemma: 7.1:

Let n,m ∈ Z, gcd(n,m) = 1. Then ∀d|nm, d > 0, there exists unique divisors d1|n, d2|m s.t.
d = d1d2.

Proof. Take d1 = gcd(d, n), d1|n. Let d2 = d
d1

. Then d1d2 = d. Also gcd
(

d
d1
, n
d1

)
= 1. So d1d2|nm ⇒

d2| nd1m ⇒ d2|m.
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Suppose e1|n, e2|m, with d = e1e2, then d1d2 = d = e1e2.
Since gcd(n,m) = 1, gcd(e1, d2) = 1, so e1|d1. By a similar argument, d1|e1. So d1 = ±e1, but e1 ≥ d1 > 0.
So d1 = e1.
Similarly, d2 = e2.

Note: there is a bijection ϕ : {positive divisors of n}×{positive divisors of m} → {positive divisors of nm}
s.t. ϕ(d1, d2) = d1d2.
So if n,m are coprime, then

∑
d|nm

· =
∑

d1|n,d2|m

· =
∑
d1|n

·
∑
d2|m

·.

Theorem: 7.3:

τ(n) =
∑
d|n

1 and σ(n) =
∑
d|n

d are multiplicative.

Proof. τ(1) = σ(1) = 1.
Let n,m ∈ N, gcd(n,m) = 1, τ(nm) =

∑
d|nm

1 =
∑
d1|n

∑
d2|m

1 =
∑
d1|n

1
∑
d2|m

1 = τ(n)τ(m)

Similarly, σ(nm) =
∑
d|nm

d =

∑
d1|n

d1

∑
d2|m

d2

 = σ(n)σ(m).

7.1 Dirichlet Series

Definition: 7.4: Generating Series

A generating series is

∑
n≥1

anz
n

∑
m≥1

bmzm

 =
∑
k≥1

 ∑
i+j=k

ajbi

 zk.

Definition: 7.5: Riemann Zeta Function

The Riemann zeta function is ζ(s) =
∞∑
n=1

1

nζ
.

Consider D(s) =
∞∑
n=1

f(n)

nζ
, E(s) =

∞∑
n=1

g(n)

nζ
, D(s)E(s) =

∞∑
n=1

(∑
ab=n

f(a)g(b)

)
1

ns
.

We can rewrite the first term as
∑
d|n

f(d)g
(n
d

)
.

Definition: 7.6: Dirichlet Convolution

If f, g are arithmetic functions, the Dirichlet convolution is an arithmetic function f∗g s.t. (f∗g)(n) =∑
d|n

f(d)g
(n
d

)
.

Example: Let 1 be s.t. 1(n) = 1, ∀n.
Then (1 ∗ 1)(n) =

∑
d|n

1(d)1
(n
d

)
=
∑
d|n

1 · 1 =
∑
d|n

1 = τ(n).
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Example: Let I(n) = n.
Then (I ∗ 1)(n) =

∑
d|n

I(d)1
(n
d

)
=
∑
d|n

d = σ(n).

Theorem: 7.4:

Let f, g be multiplicative, then f ∗ g is multiplicative.

Proof. (f ∗ g)(1) =
∑
d|1

f(d)g

(
1

d

)
= f(1)g(1) = 1

Let n,m ∈ N, gcd(n,m) = 1. Then

(f ∗ g)(nm) =
∑
d|nm

f(d)g
(nm

d

)
=
∑
d1|n

∑
d2|m

f(d1d2)g

(
n

d1

m

d2

)

=
∑
d1|n

∑
d2|m

f(d1)f(d2)g

(
n

d1

)
g

(
m

d2

)

=
∑
d1|n

f(d1)g

(
n

d1

)∑
d2|m

f(d2)g

(
m

d2

)
= (f ∗ g)(n)(f ∗ g)(m)

Definition: 7.7: Identity

Let i(n) =

{
1, if n = 1

0, otherwise

Claim 1. If f is an arithmetic function, then f ∗ i = f

Proof. (f ∗ i)(n) =
∑
d|n

f(d)i
(n
d

)
= f(n)

There is a special class of arithmetic functions f for which there is an arithmetic function g s.t. f ∗ g =
i.

Example: Let f = 1, f(n) = 1. For g to be an inverse of f , we need f ∗ g = i or (f ∗ g)(n) = i(n). i.e.∑
d|n

g(d) =

{
1, if n = 1

0, otherwise

n = 1, g(1) = 1; n = 2, g(2) + g(1) = 0 gives g(2) = −1; similarly, n = 3, g(3) + g(1) = 0 gives g(3) = −1
n = 4, g(4) + g(2) + g(1) = 0 gives g(4) = 0

Note g(n) =
∑

d|n,d<n

g(d) = 0.
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Definition: 7.8: Mobius Function

µ(n) =


1, if n is square free and has even number of prime factors
1, if n is square free and has odd number of prime factors
0, otherwise

,

Square free means no square divisors. i.e. pt with t ≥ 2 are not divisors.

Theorem: 7.5:

∑
d|n

µ(d) =

{
1, if n = 1

0, otherwise

Proof. RHS is multipicative. µ(n) is multiplicative and thus LHS is multiplicative.
Then it suffices to check if this equality holds for n = pk, p prime, k ≥ 1.

∑
d|pk

µ(d) =

k∑
j=0

µ(pj) = µ(p0) + µ(p1) = µ(1) + µ(p) = 1 + (−1) = 0

Note that anything larger will have a square divisor and µ(pj) = 0.

Theorem: 7.6: Mobius Inversion Formula

Let f, g be arithmetic functions, then

f(n) =
∑
d|n

g(d) ⇔ g(n) =
∑
d|n

f(d)µ
(n
d

)

Proof. (⇒) Suppose f(n) =
∑
d|n

g(d)

∑
d|n

f(d)µ
(n
d

)
=
∑
d|n

∑
e|d

g(e)

µ
(n
d

)
=
∑
d|n

∑
e|d

g(e)µ
(n
d

)
=
∑
e|d

g(e)
∑

d|n,e|d

µ
(n
d

)
(switching sums)

Note d|n, e|d ⇔ d = ed′ and ed′|n or d′|ne .
Continuing the transformation, we get

=
∑
e|n

g(e)
∑
d′|n

e

µ

(
n/e

e′

)
=
∑
e|n

g(e)i
(n
e

)
= g(n)

i.e. f = g ∗ 1 ⇔ f ∗ µ = g ∗ 1 ∗ µ = g ∗ i = g.

Example: ϕ(n) = n
∏
p|n

(
1− 1

p

)
=
∑
d|n

µ(d)
n

d
⇔ n =

∑
d|n

ϕ(d).
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8 Extra Topics

8.1 Probability in Number Theory (Analytic Number Theory)

Q1: If I pick two positive integers n,m at random, how likely is it that they are coprime?
Q: If I pick two positive integers n,m at random from {1, 2, ..., N}, how likely is it that they are coprime?
If we call this probability pN , then the limit lim

N→∞
pN , if exists, is a descent answer to Q1.

Total number of outcomes = total number of pairs (n,m) s.t. 1 ≤ n,m ≤ N = N2

Total number of pairs (n,m) s.t. 1 ≤ n,m ≤ N, gcd(n,m) = 1 =
∑

1≤n,m≤N,gcd(n,m)=1

1

Substitute M = gcd(n,m) into the Mobius function (Definition 7.8), we get
∑
n|M

µ(d) =

{
1, if M = 1

0, otherwise
,

we get
∑

n|gcd(n,m)=1

µ(d) =

{
1, if gcd(n,m) = 1

0, otherwise
. Then,

∑
1≤n,m≤N,gcd(n,m)=1

1 =
∑

n,m≤N

∑
d|gcd(n,m)

µ(d)

=
∑
d≤N

µ(d)#pairs (n,m) s.t. d|n, d|m, 1 ≤ n,m ≤ N

=
∑
d≤N

µ(d)

⌊
N

d

⌋2
Note that N

d −
{
N
d

}
=
⌊
N
d

⌋
.

Square both sides
(
N
d −

{
N
d

})2
=
⌊
N
d

⌋2, we get N2

d2
− 2N

d

{
N
d

}
+
{
N
d

}2
=
⌊
N
d

⌋2
Since 0 ≤

{
N
d

}
< 1, by triangle inequality,∣∣∣∣−2

N

d

{
N

d

}
+
{ n

D

}2
∣∣∣∣ ≤ ∣∣∣∣2Nd

{
N

d

}∣∣∣∣+ ∣∣∣∣{ n

D

}2
∣∣∣∣ ≤ 2

N

d
+ 1 ≤ 3

N

d

Then
⌊
N
d

⌋2
= N2

d2
+O

{
N
d

}
.

∑
1≤n,m≤N,gcd(n,m)=1

1 =
∑
d≤N

µ(d)

⌊
N

d

⌋2

=
∑
d≤N

µ(d)
N2

d2
+O

∑
d≤N

N

d


= N2

∑
d≤N

µ(d)

d2
+O

N
∑
d≤N

1

d


= N2

∑
d≤N

µ(d)

d2
+O (N logN)

32



pN =
1

N2

∑
1≤n,m≤N,gcd(n,m)=1

1

=
1

N2

∑
d≤N

(
N2µ(d)

d2
+O (N logN)

)

=
∑
d≤N

µ(d)

d2
+O

(
logN

N

)

Therefore, p = lim
N→∞

pN =

∞∑
d=1

µ(d)

d2
=

6

π2
.

i.e. If we pick two positive integers n,m at random, they are coprime with probability 6
π2

We know that
∞∑
n=1

1

n2
=

π2

6
, how is that related to

∞∑
n=1

µ(n)

n2
=

6

π2
?

Consider the Dirichlet convolution (Definition 7.6),
∞∑
n=1

µ(n)

ns

∞∑
n=1

1

ns
=

∞∑
n=1

(µ ∗ 1)(n)
ns

= 1,

so
∑∞

n=1
µ(n)
ns = 1

ζ(s) .

Euler’s Product: Consider∏
p

(
1

1− 1/p

)
=
∏
p

(
1 +

1

p
+

1

p2
+ · · ·

)
=

(
1 +

1

2
+

1

4
+ · · ·

)(
1 +

1

3
+

1

9
+ · · ·

)

=

∞∑
n=1

1

n

This is due to the unique prime factorization of integers.
This also shows that there must be infinitely many primes, because RHS is infinite.

If f is multiplicative,

∞∑
n=1

f(n)

ns
=
∏
p

(
1 +

f(p)

ps
+

f(p2)

p2s
+ · · ·

)
.

If f is totally multiplicative,

∞∑
n=1

f(n)

ns
=
∏
p

(
1 +

f(p)

ps
+

(
f(p)

ps

)2

+ · · ·

)
=
∏
p

1

1− f(p)/ps

For Mobius function,

∞∑
n=1

µ(n)

ns
=
∏
p

(
1 +

µ(p)

ps
+

µ(p2)

p2s
· · ·
)

=
∏
p

(
1− 1

ps

)
=

1

ζ(s)

Then,

6

π2
=

∞∑
n=1

µ(n)

n2
=
∏
p

(
1− 1

p2

)
= probability n,m are not both divisible by p
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Q: If I pick two positive integers n,m at random, how likely is it that m|n?
Start with finite N , qN = #(n,m) s.t. n,m≤N,m|n

N2∑
n,m≤N,m|n

1 =
∑
n≤N

∑
m|n

1 =
∑
n≤N

τ(N)

Note that 1
N

∑
n≤N τ(N) ≈ logN , so qN ≈ logN

N → 0 as N → ∞.

Why the same technique won’t work for the first problem?
Fix n, how many m ≤ N are there with gcd(n,m) = 1?
Example: N = 15, n = 4, ϕ(n) = 2. There are 8 such n with gcd(n,m) = 1
In each modular partition, there are exactly ϕ(n) occurrence. But there are either

⌊
N
n

⌋
or
⌊
N
n

⌋
+1 different

partitions. The error term cannot be ignored.
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8.2 Fermat’s Last Theorem (Algebraic Number Theory)

Find solutions to x2 − y2 = z2 for gcd(x, y, z) = 1, i.e. gcd(x, y) = gcd(y, z) = gcd(x, z) = 1.
This means that exactly two of x, y, z are odd. WLOG, assume x, z are odd, y is even.
By difference of square (x− y)(x+ y) = z2.
Since x+ y = x− y + 2y, gcd(x− y, x+ y) = gcd(x− y, 2y) = gcd(x− y, y) = gcd(x, y) = 1.
Write z = pk11 · · · pkrr , z2 = p2k11 · · · p2krr , so (x− y)(x+ y) = p2k11 · · · p2krr .

As a result, there are coprime s and t s.t.


x− y = s2

x+ y = t2

z = st

.

This gives


x = s2+t2

2

y = t2−s2

2

z = st

. So we find all possible integer solutions to x2 = y2 + z2.

However, this idea can fail for x3 + y3 = z3, gcd(x, y, z) = 1
x3 = z3 − y3 = (z − y)(z2 + zy + y2), which cannot be factored anymore in integers.

For x2 + y2 = z2, we can also consider x2 − (iy)2 = z2 where i2 = −1. Then (x− iy)(x+ iy) = z2.
Now, we are wroking with Gaussian integer Z[i]. Since Z[i] has unique prime factorization, this still
works.

With a similar idea, we consider ω = e
2πi
3 , ω3 = 1 with ω ̸= 1.

x3 − 1 = (x− 1)(x2 + x+ 1) = (x− 1)(x− ω)(x− ω2).
Then z3 = x3 + y3 = (x+ y)(x+ ωy)(x+ ω2y).
Now, we we work with the Eisenstein integers Z[ω].

More geneerally, for an odd prime p, there is ζp = e
2πi
p with ζpp = 1 and ζp, ζ

2
p , ..., ζ

p−1
p ̸= 1.

zp = xp + yp = (x+ y)(x+ ζpy) · · · (x+ ζp−1
p y)

Now, we are in Z[ζp]. As long as we can show that ζp, ζ
2
p , ..., ζ

p−1
p are coprime and there is unique prime

factorization in Z[ζp], we are done.
However, it fails. Consider Z[

√
5i], 6 = (1 +

√
5i)(1−

√
5i) = 2 · 3 has multiple factorizations. x2 + 5y2 =

(x+
√
5iy)(x−

√
5iy) = z2 won’t work the same way.

This is the issue in Lame’s proof of Fermat’s Last Theorem.

Theorem: 8.1: Fermat’s Last Theorem

For n ≥ 3, there are no positive integer solutions to xn + yn = zn.
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