Limits & continuity

2019年7月4日 18:57

1. Limits

a. Drawing tangents and a first limit

To find the tangent line to $y = x^2$ at point P(1,1), consider a nearby point Q(1+h,1 + h^2), the line that goes through PQ is called the secant line. It has slope $\frac{\Delta y}{\Delta x} = \frac{(1+h)^2 - 1}{1+h-1} = h + 2$, take the limit as h goes to 0, $\lim_{h \to 0} \frac{\Delta y}{\Delta x} = 2$, this is the slope of the tangent line(y = 2x - 1)

b. Another limit and computing velocity

E.g. $s(t) = 4.9t^2$, s(t) is the distance travelled after t seconds, average velocity between t=1s and t=1.1s is $\bar{v} = \frac{change \text{ in position}}{change \text{ in time}} = \frac{s(1.1)-s(1)}{1.1-1} = 10.29m/s$.

As interval becomes arbitrarily small, \bar{v} approaches 9.8m/s which is the instantaneous velocity, also the slope of the tangent line to $s(t) = 4.9t^2$ at t=1

Definition: Let s(t) be the position as a function of time, the instantaneous velocity at t=a is $\lim_{h\to 0} \frac{s(a+h)-s(a)}{h}$

c. The limit of a function

 $\lim_{x \to a} f(x) = L \text{ or } f(x) \to L \text{ as } x \to a$

Meaning: as x gets arbitrarily close to a, but not equal to a, f(x) gets arbitrarily close to L

Definition(one-sided limits):

 $\lim_{x \to a} f(x) = L$, f(x) approaches L as x approaches a from left

 $\lim_{x \to a} f(x) = L$, f(x) approaches L as x approaches a from right

Theorem: $\lim_{x \to a} f(x) = L$ if and only if $\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = L$ Limits can approach $\pm \infty$

d. Calculating limits with limit laws

i. $\lim_{x \to a} c = c, \lim_{x \to a} x = a$

ii. Limits can interchange with basic arithmetic operations

Assume $\lim_{x \to a} f(x) = L$, $\lim_{x \to a} g(x) = K$ both exist, then $\lim_{x \to a} f(x) \pm g(x) = L \pm K$, $\lim_{x \to a} f(x) \times g(x) = L \times K$, $\lim_{x \to a} cf(x) = cL$, $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L}{K}$ (assuming K≠0)

- iii. Limits and powers: $\lim_{x \to a} (f(x))^n = (\lim_{x \to a} f(x))^n$
- iv. Suppose f(x) = g(x) except when x=a, and $\lim_{x \to a} g(x)$ exists, then $\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$
- v. Squeeze theorem: let f(x), g(x), h(x) be functions such that $g(x) \leq f(x) \leq h(x)$, except possibly at x = a, suppose $\lim_{x \to a} h(x) = \lim_{x \to a} g(x)$, then $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = b$ $\lim g(x)$

x→a e. Limits at infinity

> **Definition**: $\lim f(x) = L f(x)$ approaches *L* as *x* becomes arbitrarily large Remark: when the limit exists, it is a horizontal asymptote

2. Continuity

Definition: a function is continuous at *a*, if $\lim_{x \to a} f(x) = f(a)$

- i. $\lim_{x \to a} f(x)$ exists
- ii. *a* is in domain
- iii. $\lim f(x) = f(a)$ x→a

Left continuous: $\lim_{x \to a^{-}} f(x) = f(a)$ Right continuous: $\lim_{x \to a^{+}} f(x) = f(a)$

Continuous on $(a, b) \Leftrightarrow$ continuous at every point in (a, b)

Continuous on $[a, b] \Leftrightarrow$ continuous at every point in (a, b) + right continuous at a + left continuous at b

Theorem: Arithmetic operations $(+-x \div)$ preserves continuity, providing that no zero-division

- a. All elementary functions (polynomials, rational, trig, inverse, log, exponential) are continuous on their domain
- b. Continuity of composed functions: g(x) is continuous at a, $\lim_{x \to a} g(x) = b$, and f(x)is continuous at b, then $f \circ g(x)$ is continuous at a

c. Intermediate value theorem (IVT)

Let f be a continuous function on [a, b], L be a constant between f(a), f(b), then there is a point $c \in (a, b)$, so that f(c) = L

Derivatives

2019年7月6日 14:15

1. Derivative:

Definition: The derivative of a function at a point A is $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$ **Meaning:**

- i. the instantaneous rate of change
- ii. Slope of the tangent line

a. Differentiability

- i. If f'(a) exists (the definition of limit exists), then f(x) is differentiable at a
- ii. If f(x) is differentiable at every point in an interval (a, b), we say f(x) is differentiable on (a, b)
- iii. If f(x) is differentiable at a, then f(x) is continuous at a

b. Higher order derivatives

$$f''(x) = \frac{\mathrm{d}}{\mathrm{d}x}f'(x) = \frac{\mathrm{d}}{\mathrm{d}x}\frac{\mathrm{d}f}{\mathrm{d}x} = \frac{\mathrm{d}^2f}{\mathrm{d}x^2}$$

c. Interpretation of derivatives The general equation for tangent line to f(x) at x = a is y = f(a) + f'(a)(x - a)

2. Differentiation rules

If s(x) = af(x) + bg(x), then s'(x) = af'(x) + bg'(x) $\frac{\mathrm{d}}{\mathrm{d}x}x^r = rx^{r-1}$ $\frac{\mathrm{d}}{\mathrm{d}x}f(x)g(x) = f'(x)g(x) + f(x)g'(x)$ $\frac{d}{dx}\frac{f(x)}{g(x)} = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$ $\frac{\mathrm{d}}{\mathrm{d}x}a^x = a^x lna$ $\frac{dx}{dx}sinx = cosx \quad \frac{d}{dx}cosx = -sinx \quad \frac{d}{dx}tanx = secx^2 \quad \frac{d}{dx}cotx = cscx^2$ $\frac{d}{dx}secx = secxtanx$ $\frac{d}{dx}cscx = -cscxcotx$ a. Chain rule: $\frac{d}{dx}f(g(x)) = f'(g(x))g'(x)$ b. Implicit differentiation: $\frac{d}{dx}f(x)^2 = 2f(x)f'(x)$, $\frac{d}{dx}y^2 = 2y\frac{dy}{dx}$ c. Inverse trigonometry functions: $\frac{d}{dx} \arcsin x = \frac{1}{\sqrt{1 - x^2}} \qquad \frac{d}{dx} \arccos x = -\frac{1}{\sqrt{1 - x^2}}$ $\frac{d}{dr}arctanx = \frac{1}{1+r^2}$ 3. Applications of derivative a. Optimization i. Max and min values **Definition**: Let f(x) be a function with domain D, f(x) has a **global max** at $c \in D \Leftrightarrow f(c) \ge f(x)$ for all $x \in D \Leftrightarrow f(c)$ is the

maximum of f(x)

f(x) has a **global min** at $c \in D \Leftrightarrow f(c) \le f(x)$ for all $x \in D \Leftrightarrow f(c)$ is the minimum of f(x)

f(x) has a **local max** at $c \in D \Leftrightarrow f(c) \ge f(x)$ for all x near c

f(x) has a **local min** at $c \in D \Leftrightarrow f(c) \le f(x)$ for all x near c

Theorem: Every local max/min is a critical point or singular point. i.e. f'(c) = 0 if exists

ii. Finding max and min values

Theorem: if f(x) has a global max/min in [a, b] at $x = c \in [a, b]$, there are three possibilities

1) f'(x) = 0 critical point

2) f'(x) DNE singular point

3) c = a, c = b endpoint

Further, if f(x) is continuous on [a, b], it must have a global max and min on [a, b]

b. Mean value theorem

i. Rolle's Theorem

Let f(x) be a function satisfying: f(x) is continuous on [a, b], differentiable on (a, b), and f(a) = f(b). Then there exists at least one point $(c, f(c)), c \in (a, b)$ with f'(c) = 0

ii. Mean Value Theorem

Let f(x) be a function satisfying: f(x) is continuous on [a, b] and differentiable on (a, b). Then there exists at least one $c \in (a, b)$, such that $f'(c) = \frac{f(b)-f(a)}{b}$

iii. Corollary

f(x) and g(x) are differentiable on [a, b]

- 1) If f'(x) = 0 on [a, b], then f(x) is constant on [a, b]
- 2) If f'(x) = g'(x) on [a, b], then f(x) g(x) is constant on [a, b]
- 3) if f'(x) > 0 on [a, b], then f(x) is increasing on [a, b]
- 4) if f'(x) < 0 on [a, b], then f(x) is decreasing on [a, b]

c. Graph sketching

Domain, range, x - int, y - int

Horizontal asymptotes: $y = \lim_{x \to \infty} f(x)$ and/or $\lim_{x \to -\infty} f(x)$ if exist Vertical asymptotes: x = a if $\lim_{x \to a^-} f(x) = \pm \infty$ and/or $\lim_{x \to a^+} f(x) = \pm \infty$

Monotonicity: f'(x) > 0 increasing; f'(x) < 0 decreasing; f'(x) = 0 local max/min **Concavity:** f''(x) > 0 concave up (f(x) lies above all tangent lines); f''(x) < 0 concave down (f(x) lies below all tangent lines); f''(x) = 0 point of inflection (if f(x) is continuous and its concavity changes at f''(x) = 0) **Theorem**: c is a critical point, if f''(c) > 0, f(c) is a local min; if f''(c) < 0, f(c) is a

local max

Symmetry:

- i. Even function f(x) = f(-x)
- ii. odd function f(x) + f(-x) = 0
- iii. Periodic f(x + T) = f(x)

4. Applications of derivative in real world

a. Velocity & acceleration

 $v(t) = s'(t), \qquad a(t) = v'(t) = s''(t)$

b. Exponential growth & decay

Quantity y(t), whose rate of change is proportional to y(t) $\frac{dy}{dt} = ky(t)$, then $y(t) = ce^{kt}$, c is the initial value General formula for doubling time: $t = \frac{\ln 2}{k}$

c. Carbon dating (half life problem)

 $y(t) = ce^{kt}, k = -\frac{\ln 2}{\operatorname{half life}}$

d. Newton's law of cooling

Rate of change of temperature is proportional to the difference between temperatures $\frac{dT}{dt} = k(T - A)$, A is the environment temperature $T(t) = ce^{kt} + A$, c = T(0) - A

e. Related rates

E.g. Air is being pumped into a spherical balloon at a constant rate of $100cm^{3}/s$. How fast is the radius r changing when r=25cm?

Solution:
$$V = \frac{4}{3}\pi r^3$$

 $\frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}$
 $100 = 4\pi \times 25^2 \frac{dr}{dt}$
 $\frac{dr}{dt} = \frac{1}{25\pi}$

5. Taylor polynomials

Definition: The nth degree Taylor Polynomial for f(x) about x = a is $T_n = f(a) + c$

$$f'(a)(x-a) + \frac{f''(x)}{2!}(x-a)^2 + \dots + \frac{f^n(a)}{n!}(x-a)^n = \sum_{k=0}^n \frac{f^k(a)}{k!}(x-a)^k$$

Specially, when a = 0, it is an **Maclaurin polynomial**

a. **Lagrange remainder theorem:** suppose $f^{n+1}(x)$ exists for all points in [b, d], if $x, a \in [b, d]$, then the nth degree Taylor approximation around satisfies $R_n(x) = f(x) - T_n(x) = \frac{1}{(n+1)!} f^{n+1}(c)(x-a)^{n+1}$ for c some between x and a. c is not specified.

Let
$$|f^{n+1}(c)| \le M$$
, then $|R_n(x)| \le \frac{M}{(n+1)!} |(x-a)^{n+1}|$

6. Indeterminant forms and L'Hopital's rule

- **Definition:** consider $\lim_{x \to a} \frac{f(x)}{g(x)}$
 - If $\lim_{x \to 0} f(x) = \lim_{x \to 0} g(x) = 0$, it's called an indeterminant form of type $\frac{0}{0}$

If
$$\lim_{x\to a} f(x) = \pm \infty$$
 and $\lim_{x\to a} g(x) = \pm \infty$, it's called an indeterminant form of type $\frac{\infty}{\infty}$
Theorem: L'Hopital's rule

Suppose $\lim_{x \to a} \frac{f(x)}{g(x)}$ is an indeterminant form, then $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$, provided right-hand side exists or $=\pm\infty$

7. Antiderivatives

(intro to integral) **Definition:** a function F is called an antiderivative of f on an interval I when F'(x) = f(x) on I

Integrals

2019年7月10日 13:23

1. Summation notation \sum

If $j \leq k$ are integers and $a_j, a_{j+1}, \dots, a_k \in \mathbb{R}$, then $\sum_{i=j}^k a_i = a_j + a_{j+1} + \dots + a_k$

a.
$$\sum_{\substack{i=1\\n}}^{n} i = \frac{n(n+1)}{2}$$

b.
$$\sum_{\substack{i=1\\n}}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

Proof: $(1+i)^3 - i^3 = 3i^2 + 3i + 1$
Sum both sides, we can get
 $(1+n)^3 - 1 = 3\sum_{\substack{i=1\\i=1}}^{n} i^2 + 3\frac{n(n+1)}{2} + n$
 $\Rightarrow \sum_{\substack{i=1\\i=1}}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$
c.
$$\sum_{\substack{i=0\\i=0}}^{n} r^i = \frac{r^{n+1}-1}{r-1}, \text{ for } r \neq 1$$

Least Upper Bound

Definition: Let A be a non-empty set in R bounded above, i.e. $\exists k \in R$, such that $\forall a \in A, a \leq k$ A real number u^* is the least upper bound (supremum/sup) of A if and only if

- a. u^* is an upper bound
- b. If u is any upper bound of A, then $u^* \le u$

Write $supA = u^*$

Proposition: If A has a least upper bound, then it is unique

Proof: let u_1 , u_2 be the least upper bounds of A,

 u_2 is an uper bound, u_1 is the least upper bound, by definition, $u_1 \leq u_2$

By symmetry,
$$u_2 \leq u_1$$

Thus, $u_2 = u_1$, A has only one least upper bound

Proposition: let A be a non-empty set in R with a largest element M, then supA = M

Greatest lower bound

Definition: Let A be a non-empty set in R bounded below, i.e. $\exists k \in R$, such that $\forall a \in A$, $a \ge k$ A real number l^* is the least upper bound (infimum/inf) of A if and only if

a. l^* is an lower bound

b. If l is any lower bound of A, then $l^* \leq l$

Write $\frac{infA = l^*}{dt}$

Proposition: If A is a non-empty set in R bounded below, then infA exists and $infA = -\sup(-A)$ **Completeness Axiom (for real numbers):** if $A \neq \phi$, $A \subset R$, and A is bounded above, then A has a least upper bound. (A is bounded below, then A has a greatest lower bound) (Axiom does not follow from any other properties of R)

2. The Riemann Integral

Let $f: [a, b] \to R$ be bounded, i.e. $\exists k \in R$, such that $\forall x \in [a, b], |f(x)| \leq k$ If $f \geq 0$ on [a, b], the Riemann Integral finds and defines the area A between f(x) and y = 0If f can be negative, A will be the signed area where f < 0 contributes negative area **Definition:** A partition P of [a, b] is a finite collection of points in $[a, b], P = \{x_0, x_1, ..., x_n\}$, where $a = x_0 < x_1 < \cdots < x_n = b$ Let $\Delta x_i = x_i - x_{i-1} > 0$, i = 1, 2, ..., n, $\sum_{i=1}^n \Delta x_i = b - a$ Let $M_i = \sup\{f(x): x_{i-1} \leq x \leq x_i\}$, $m_i = \inf\{f(x): x_{i-1} \leq x \leq x_i\}$ $M_i \Delta x_i = area of the larger rectangle (outer rectangle)$ $m_i \Delta x_i = area of the smaller rectangle (inner rectangle)$ Upper Riemann sum for P: $U(f, P) = \sum_{i=1}^n M_i \Delta x_i = total area of outer rectangles (if <math>f > 0$) Lower Riemann sum for P: $L(f, P) = \sum_{i=1}^{n} m_i \Delta x_i = total area of inner rectangles (if <math>f > 0$)

Area inequality: However you define A, it must satisfy $L(f, P) \le A \le U(f, P)$ Lemma: Let $P \subset Q$ be subdivisions of [a, b], then $L(f, P) \le L(f, Q) \le A \le U(f, Q) \le U(f, P)$ Proof for $L(f, Q) \le U(f, Q)$: $Q = \{x_0, x_1, ..., x_n\}, m_i \le M_i$ $m_i \Delta x_i \le M_i \Delta x_i$, thus $\sum_{i=1}^n m_i \Delta x_i \le \sum_{i=1}^n M_i \Delta x_i (L(f, Q) \le U(f, Q))$ Proof for $U(f, Q) \le U(f, P)$: start with special case $Q = P \cup \{y\}$, choose j such that $y \in (x_{j-1}, x_j)$ $M_j = \sup\{f(x): x \in (x_{j-1}, x_j)\},$ $M'_j = \sup\{f(x): x \in (x_{j-1}, y_j)\} \le M_j$ $M'_j = \sup\{f(x): x \in (y, x_j)\} \le M_j$ $M_j(x_j - x_{j-1}) = M_j[(x_j - y) + (y - x_{j-1})] = M_j(x_j - y) + M_j(y - x_{j-1})$ $\ge M'_j(x_j - y) + M''_j(y - x_{j-1})$ $\sum_{i=1}^{j-1} M_i \Delta x_i + M_j \Delta x_j + \sum_{i=j+1}^n M_i \Delta x_i \ge \sum_{i=1}^{j-1} M_i \Delta x_i + M'_j(x_j - y) + M''_j(y - x_{j-1}) + \sum_{i=j+1}^n M_i \Delta x_i$ $\Rightarrow U(f, P) \ge U(f, Q)$

In general case, we can construct $P = P_1 \subset P_2 \subset \cdots \subset P_m = Q$, by adding one point at a time. **Correlation:** For any partitions P, P' of $[a, b], L(f, P') \leq U(f, P) \Rightarrow supL \leq A \leq infU$

Proof: Let $Q=P \cup P'$ (still a partition of [a, b]), Apply Lemma $L(f, P') \leq L(f, Q) \leq A \leq U(f, Q) \leq U(f, P')$

Definition: Let $f:[a,b] \to R$ be bound, and the Riemann(or definite) integred, then f is Riemann integrable on [a,b] if and only if supL = inf Ual of f over [a,b] is $\int_a^b f(x) dx = supL = inf U$. It is the unique real number sub that for $\forall P, L(f,P) \le \int_a^b f(x) dx \le U(f,P)$

If $f \ge 0$ on [a, b], then $\int_a^b f(x) dx$ is the area between f(x) and x-axis

Lemma: let $\Delta \ge 0$, if $\forall \varepsilon > 0$, $\Delta < \varepsilon$, then $\Delta = 0$ (can be proved by contradiction)

Theorem (Integral test): Let $f: [a, b] \to R$ be bounded, f is integrable if and only if $\forall \varepsilon > 0$, \exists subdivision P such that $U(f, P) - L(f, P) < \varepsilon$, and in this case:

- a. $\left| U(f, P) \int_{a}^{b} f(x) \, \mathrm{d}x \right| < \varepsilon$
- b. $\left| L(f,P) \int_{a}^{b} f(x) \, \mathrm{d}x \right| < \varepsilon$

Proof: let $\varepsilon > 0$, by hypothesis $\exists P$ such that $U(f, P) - L(f, P) < \varepsilon$ $U(f, P) \ge \inf U, L(f, P) \le \sup L$ $\Rightarrow U(f, P) - L(f, P) \ge \inf U - \sup L \ge 0 \Rightarrow \inf U = \sup L$ $\Rightarrow 0 \le \int_{a}^{b} f(x) dx - L(f, P) \le U(f, P) - L(f, P) < \varepsilon$

Theorem (Additivity of domain):

a. Let $f:[a,b] \to R$ be bounded and integrable on [a,b], a < c < b, then f is integrable on [a,c] and [c,b], and $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$

Proof: let $\varepsilon > 0$, by integral test, $\exists P$ such that $U(f, P) - L(f, P) < \varepsilon$

Let $P^* = P \cup \{c\}$ be partitions of [a, c], $P^* = \{x_0, x_1, \dots, x_j, \dots, x_n\}$, $x_j = c$ $P_1 = \{x_0, x_1, \dots, x_j\}$, be a partition of [a, c] $P_2 = \{x_j, x_{j+1}, \dots, x_n\}$, be a partition of [c, b]Then $U(f, P^*) = U(f, P_1) + U(f, P_2)$ and $L(f, P^*) = L(f, P_1) + L(f, P_2)$ $\varepsilon > U(f, P) - L(f, P) \ge U(f, P^*) - L(f, P^*) \ge U(f, P_1) + U(f, P_2) - L(f, P_1) + L(f, P_2)$ $\Rightarrow \varepsilon > U(f, P_1) - L(f, P_1)$ and $\varepsilon > U(f, P_2) - L(f, P_2)$ By integral test, f is integrable on [a, b], [a, c] and [c, b] $L(f, P) \le L(f, P^*) \le \int_a^c f(x) dx + \int_c^b f(x) dx \le U(f, P^*) \le U(f, P)$ holds for all partitions Since $\int_a^b f(x) dx$ has the only real number, $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$

b. If f is integrable on [a, c] and [c, b], then f is integrable on [a, b]**Theorem (Squeeze Theorem):**

- a. Assume three sequences $l_n \leq r_n \leq u_n$, and $l_n, u_n \rightarrow L$, then $r_n \rightarrow L$
- b. Arithmetic of limits holds for sequences

Riemann Sum

Definition: If $P = \{x_0, x_1, ..., x_n\}$ is a partition of [a, b], the norm of P is $||P|| = \max\{\Delta x_i\}$. If $c_i \in [x_{i-1}, x_i]$ for all $1 \le i \le n$, call $c = (c_1, c_2, ..., c_n)$ a choice vector for P, and $R(f, P, c) = \sum_{i=1}^n f(c_i)\Delta x_i$ is a Riemann sum. $m_i \le f(c_i) \le M_i$, $L(f, P) \le \sum_{i=1}^n f(c_i)\Delta x_i \le U(f, P)$

- **Theorem:** Let $f:[a,b] \rightarrow R$ be bounded and continuous, if
 - a. f is integrable on [a, b]
 - b. If $\{P_n\}$ is a sequence of partition such that $||P_n|| \to 0$,

then $\int_{a}^{b} f(x) dx = \lim_{n \to \infty} L(f, P_n) = \lim_{n \to \infty} U(f, P_n)$; if $C^{(n)}$ is a choice function for P_n , then $\int_{a}^{b} f(x) dx = \lim_{n \to \infty} R(f, P_n, C^{(n)})$

Monotonicity

Definition: f is monotone if f is always increasing/decreasing **Theorem:** Let $f: [a, b] \rightarrow R$ be monotone,

- a. f is integrable on [a, b]
- b. let $\{P_n\}$ is a sequence of partition such that $||P_n|| \rightarrow 0$,
 - i. $L(f, P_n) \rightarrow \int_a^b f(x) dx$, $U(f, P_n) \rightarrow \int_a^b f(x) dx$
 - ii. If $C^{(n)}$ is a choice function for P_n , then $\int_a^b f(x) dx = \lim_{n \to \infty} R(f, P_n, C^{(n)})$

Remark: if f is integrable on [a, b] then theorem b always holds;

If f is monotone, it will be much easier to show that $\exists \{P_n\}$ such that $L(f, P_n) \rightarrow \int_a^b f(x) dx$,

 $U(f, P_n) \to \int_a^b f(x) \, dx$ Proof: take $\varepsilon = \frac{1}{n}$, $\exists P_n$ such that $0 \le U(f, P) - L(f, P) < \frac{1}{n} \to 0$ $\Rightarrow U(f, P) - L(f, P) \to 0$ by squeeze theorem By integral test, $L(f, P_n) \to \int_a^b f(x) \, dx$, $U(f, P_n) \to \int_a^b f(x) \, dx$

3. Properties of integral

Theorem (linearity of integrals): Let $f, g: [a, b] \to R$ and $A, B \in \mathbb{R}$. If f, g are integrable, then Af + Bg is integrable and $\int_a^b Af(x) + Bg(x) dx = A \int_a^b f(x) dx + B \int_a^b g(x) dx$

Proof (Assume f, g are continuous, Af + Bg is continuous and intergrable):

By theorem of Riemann Sum, if $\{P_n\}$ satisfies $||P_n|| \rightarrow 0$, then

$$\int_{a}^{b} Af(x) + Bg(x) dx = \lim_{n \to \infty} \sum_{i=1}^{N} Af(C_{i}^{n}) \Delta x_{i}^{n} + Bg(C_{i}^{n}) \Delta x_{i}^{n}$$
$$= A \lim_{n \to \infty} \sum_{i=1}^{N} f(C_{i}^{n}) \Delta x_{i}^{n} + B \lim_{n \to \infty} \sum_{i=1}^{N} g(C_{i}^{n}) \Delta x_{i}^{n} = A \int_{a}^{b} f(x) dx + B \int_{a}^{b} g(x) dx$$

Remark: Assume Af + Bg is integrable, one can use monotonicity remark to make the above argument work and show $\int_a^b Af(x) + Bg(x) dx = A \int_a^b f(x) dx + B \int_a^b g(x) dx$ **Theorem (order property of integral):**

- a. If f, g are integrable and $f \leq g$ for all $x \in [a, b]$, then $\int_a^b f(x) dx \leq \int_a^b g(x) dx$ Proof: Assume $h(x) \ge 0$ is integrable and \forall partition P, $U(h, P) \ge 0$, $\inf U \ge 0$, $\int_a^b h(x) dx \ge 0$ Take $h(x) = g(x) - f(x) \ge 0$ on [a, b] $(f \le g$ for all $x \in [a, b])$ $0 \le \int_{a}^{b} h(x) \, \mathrm{d}x = \int_{a}^{b} g(x) - f(x) \, \mathrm{d}x = \int_{a}^{b} g(x) \, \mathrm{d}x - \int_{a}^{b} f(x) \, \mathrm{d}x$ $\Rightarrow \int^{b} f(x) \, \mathrm{d}x \le \int^{b} g(x) \, \mathrm{d}x$
- b. If f is integrable, then |f(x)| is integrable and $\left|\int_{a}^{b} f(x) dx\right| \leq \int_{a}^{b} |f(x)| dx$ (triangle inequality) Proof: $-|f(x)| \le f(x) \le |f(x)|$ for all x Both $\pm |f(x)|$ are integrable, by a, $\int_a^b -|f(x)| dx \le \int_a^b f(x) dx \le \int_a^b |f(x)| dx$ $\Rightarrow \left| \int_{a}^{b} f(x) \, \mathrm{d}x \right| \leq \int_{a}^{b} \left| f(x) \right| \, \mathrm{d}x$

Definition (Mean Value): Let f be integrable on [a, b], the mean value of f is $\bar{f} = \frac{\int_a^b f(x) \, dx}{b-a}$

Theorem (Mean Value Theorem for Integrals): Assume $f: [a, b] \to R$ is continuous, then there is a $c \in C$ [a, b] such that $\overline{f} = f(c)$.

Proof: By min-max theorem, $\exists c_{min}, c_{max}$ such that $\forall x \in [a, b], f(c_{min}) \leq f(x) \leq f(c_{max})$. Then, by the order property of integrals, $\int_a^b f(c_{min}) dx \le \int_a^b f(x) dx \le \int_a^b f(c_{max}) dx$

 $\frac{\int_{a}^{b} f(c_{min})dx}{b-a} \leq \frac{\int_{a}^{b} f(x) dx}{b-a} \leq \frac{\int_{a}^{b} f(c_{max}) dx}{b-a} \Rightarrow f(c_{min}) \leq \bar{f} \leq f(c_{max}).$ Because f is continuous, by Intermediate Value Theorem, $\exists c \in [a, b]$, such that $\bar{f} = f(c)$

Fundamental Theorem of Calculus:

a. Assume $f:[a,b] \to R$ is continuous, let $d \in [a,b]$, and $F(x) = \int_a^x f(t) dt$, then F'(x) = f(x), $\forall x \in [a,b]$ [a, b]

Proof: Let
$$F(x) = \int_{a}^{x} f(t) dt$$

Then $F'(x) = \lim_{h \to 0} \frac{\int_{a}^{x+h} f(x) dx - \int_{a}^{x} f(x) dx}{h}$ by definition of derivatives
 $= \lim_{h \to 0} \frac{\int_{x}^{x+h} f(x) dx}{h}$ by additivity of domain
This Is the mean value on $[x, x + h]$
By mean value theorem for integrals,
 $\exists c(h) \in [x, x + h]$, such that $\overline{f} = f(c(h))$
 $F'(x) = \lim_{h \to 0} f(c(h)) = f(x)$ by squeeze theorem and continuity

b. Assume $f: [a, b] \to R$ is integrable, let G be an antidetrivative of f, i.e. $G'(x) = f(x), \forall x \in [a, b]$, then $\int_{a}^{b} f(x) dx = G(b) - G(a) = G \Big|_{a}^{b} = G(x) \Big|_{a}^{x=b}$

Proof: Let
$$P = \{x_0, x_1, ..., x_n\}$$
 be a partition of $[a, b]$
 $G(b) - G(a) = \sum_{i=1}^{N} [G(x_i) - G(x_{i-1})]$
By the ordinary mean value theorem, $\exists c_i \in [x_{i-1}, x_i]$ such that $G(x_i) - G(x_{i-1}) = G'(c_i)\Delta x_i = f(c_i)\Delta x_i$
 $m_i\Delta x_i \leq f(c_i)\Delta x \leq M_i\Delta x_i$
 $\sum_{i=1}^{n} m_i\Delta x_i \leq \sum_{i=1}^{n} f(c_i)\Delta x_i \leq \sum_{i=1}^{n} M_i\Delta x_i$

$$\Rightarrow \sum_{i=1}^{n} m_i \Delta x_i \leq \sum_{i=1}^{n} [G(x_i) - G(x_{i-1})] \Delta x_i \leq \sum_{i=1}^{n} M_i \Delta x_i$$

$$L(f, P) \leq \sum_{i=1}^{n} [G(x_i) - G(x_{i-1})] \Delta x_i \leq U(f, P)$$

Since $\int_a^b f(x) \, dx$ is the only real number that is in $[L(f, P), U(f, P)]$ for all P, $\int_a^b f(x) \, dx = G(b) - G(a)$

Remark: differentiation and integration are inverse operations. Write the general antiderivative of f as $\int f(x) dx = G(x) + C$. Call $\int f(x) dx$ the indefinite integral.

Integrability of continuous functions

Definition: $f: I \to R$ is continuous (*I* is an interval), if and only if $\forall x_0 \in I, \forall \varepsilon > 0, \exists \delta = \delta(x_0, \varepsilon) > 0$, such that $\forall x \in I, |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon$;

 $f: I \to R$ is continuous (*I* is an interval), if and only if $\forall \varepsilon > 0, \exists \delta = \delta(\varepsilon) > 0$, such that $\forall x_0, x \in I$, $|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon$

Uniform continuity requires that there is a $\delta = \delta(\varepsilon) > 0$ which works for $\forall x_0 \in I$ simultaneously. **Proposition:** $f: I \to R$ is differentiable and f' is bounded on $I \Rightarrow f$ is uniformly continuous on IProof: Let $M = \{|f'(x)|: x \in I\}$ be bounded, then $|f'(c)| \le M$ for $\forall c \in I$.

Let
$$\varepsilon > 0$$
, $\delta = \frac{\varepsilon}{M}$, $x_0, x \in I$ satisfy $|x - x_0| < \delta$
 $|f(x) - f(x_0)| = |f'(c)||x - x_0|$ for some $c \in (x, x_0)$ by MVT
 $\leq M|x - x_0| < M\frac{\varepsilon}{M} = \varepsilon$

Theorem (uniform continuity): $f:[a,b] \rightarrow R$ is continuous $\Rightarrow f$ is uniformly continuous on [a,b]**Proof (continuous functions are integrable):**

Let
$$\varepsilon > 0$$
, $f: [a, b] \to R$ is continuous $\Rightarrow f$ is uniformly continuous on $[a, b]$
So $\exists \delta > 0$ such that (1) $x, x' \in [a, b], |x - x'| < \delta, |f(x) - f(x')| < \frac{\varepsilon}{4(b-a)}$

Let P be a partition such that (2) $||P_n|| < \delta$, $P = \{x_0, x_1, \dots, x_n\}$, m_i , M_i defined as usual Let $x \in [x_{i-1}, x_i]$, then $|x - x_i| \le \Delta x_i \le ||P_n|| < \delta$ By (1), $|f(x) - f(x_i)| < \frac{\varepsilon}{4(b-a)}$ this means $\forall x \in [x_{i-1}, x_i]$, $f(x_i) - \frac{\varepsilon}{4(b-a)} < f(x) < f(x_i) + \frac{\varepsilon}{4(b-a)}$ $\Rightarrow f(x_i) - \frac{\varepsilon}{4(b-a)} \le m_i \le M_i \le f(x_i) + \frac{\varepsilon}{4(b-a)}$ $\Rightarrow M_i - m_i \le \frac{\varepsilon}{2(b-a)}$ $\Rightarrow U(f, P) - L(f, P) = \sum_{i=1}^n (M_i - m_i) \Delta x_i \le \frac{\varepsilon}{2(b-a)} \sum_{i=1}^n \Delta x_i = \frac{\varepsilon}{2} < \varepsilon$

By integrability test, $f:[a,b] \rightarrow R$ is integrable

4. Techniques of finding integrals

 $\int x^{r} dx = \frac{x^{r+1}}{r+1} + C(r \neq -1) \int x^{-1} dx = \ln|x| + C$ $\int e^{ax} dx = \frac{1}{a} e^{ax} + C \qquad \int b^{ax} dx = \frac{1}{a \ln b} b^{ax} + C \ (b > 0)$ $\int \sin ax dx = -\frac{1}{a} \cos ax + C \qquad \int \cos ax dx = \frac{1}{a} \sin ax + C$ $\int (\sec ax)^{2} dx = \frac{1}{a} \tan ax + C \qquad \int (\csc ax)^{2} dx = -\frac{1}{a} \cot ax + C$ $\int \sec ax \tan ax dx = \frac{1}{a} \sec ax + C \qquad \int \csc ax \cot ax dx = -\frac{1}{a} \csc ax + C$ $\int \frac{1}{\sqrt{a^{2} - x^{2}}} dx = \arcsin \frac{x}{a} + C \qquad \int \frac{1}{a^{2} + x^{2}} dx = \frac{1}{a} \arctan \frac{x}{a} + C$

a. Substitution (Chain rule):

$$\int F'(g(x))g'(x) \, \mathrm{d}x = F(g(x)) + C$$

Theorem (substitution for definite integrals):

Let $g: [a, b] \to R, g', f$ are both continuous, $f \circ g$ is well defined, then $\int_a^b f'(g(x))g'(x) dx = \int_{g(a)}^{g(b)} f(u) du$

Integrating $\int (\sin x)^m (\cos x)^n dx$:

i. If m is odd, let $u = \cos x$, $du = -\sin x dx$; If n is odd, let $u = \sin x$, $du = \cos x dx$

ii. If m and n are both even, use $\cos^2 x = \frac{1+\cos 2x}{2}$ or $\sin^2 x = \frac{1-\cos 2x}{2}$ to reduce m or n to odd Integrating $\int (\sec x)^m (\tan x)^n dx$ if m is even or n is odd:

- i. Use $1 + \tan^2 x = \sec^2 x$, $\tan' x = \sec^2 x$, $\sec' x = \sec x \tan x$
- ii. If n is odd, reduce n to 1, let $u = \sec x$, $du = \sec x \tan x dx$
- iii. If m is even, let $u = \tan x$, $du = \sec^2 x \, dx$

b. Integration by parts (Product rule):

Theorem: Assume $u, v: [a, b] \rightarrow R$ have continuous derivatives

i.
$$\int uv' \, dx = uv - \int u'v \, dx$$

ii.
$$\int_{a}^{b} uv' \, dx = uv \Big|_{a}^{b} - \int_{a}^{b} u'v \, dx$$

Since dv = v' dx, du = u' dx, we can write $\int u dv = uv - \int v du$

c. Reduction formula (extended from integrating by parts)

$$I_0 = \ln|\sec x + \tan x|, I_m = \int \sec^{2m+1} x \, dx = \frac{1}{2m} \sec^{2m-1} x \tan x + \frac{2m-1}{2m} I_{m-1}$$

$$\begin{split} I_1 &= \frac{1}{a} \arccos\left(\frac{x}{a}\right), I_n = \int \frac{1}{(x^2 + a^2)^n} dx = \frac{1}{a^{2n-1}} \left[\frac{1}{2n-2} \frac{\frac{x}{a}}{\left(\frac{x^2}{a^2} + 1\right)^{n-1}} + \frac{2n-3}{2n-2} I_{n-1} \right] \\ I_0 &= -e^{-x}, I_n = \int x^n e^{-x} dx = -x^n e^{-x} + n I_{n-1} \\ I_0 &= x, I_1 = \ln|\sec x|, I_n = \int \tan^n x \, dx = \frac{1}{n-1} \tan^{n-1} x - I_{n-2} \\ \int \csc x \, dx = \ln|\csc x - \cot x|, \int \csc^m x \, dx = -\frac{1}{m-1} \csc^{m-2} x \cot x + \frac{m-2}{m-1} \int \csc^{m-2} x \, dx \end{split}$$

d. Integration of rational functions

Definition: A polynomial is a function of the form $P(x) = a_0 + a_1 x + \dots + a_n x^n$, $a_i \in \mathbb{R}$, If $a_n \neq 0$, deg(P) = n; A rational function f is a function of the form $f = \frac{P(x)}{Q(x)}$ $D = \{x: Q(x) \neq 0\}$, where P(x), Q(x) are polynomials

Theorem(Factor a Polynomial): Let Q(x) be a polynomial, then $\exists c, \alpha_i, \beta_i, \gamma_i \in \mathbb{R}, m_i, n_i \in \mathbb{N}$ such that $Q(x) = c(x - \alpha_1)^{m_1} \bullet \cdots \bullet (x - \alpha_k)^{m_k} \bullet (x^2 + \beta_1 x + \gamma_1)^{n_1} \bullet \cdots \bullet (x^2 + \beta_i x + \gamma_i)^{n_i}$, where $\beta_i^2 - 4\gamma_i < 0$

To find $\int f \, dx$ for a rational function f:

- i. Do long division of polynomials to reduce to the case where deg(P) < deg(Q)
- ii. Factor Q(x)
- iii. Find the partial fraction decomposition of $\frac{P(x)}{Q(x)}$

In practice you will find the PFD by solving N linear equations in N unknowns

iv. Integrate each term.

e. Inverse substitutions:

Instead of substituting u = g(x), try x = g(u), dx = g'(u)du, $\int f dx = \int f(g(u))g'(u)du$,

- i. Integrals involving $\sqrt{a^2 x^2}$, try $x = a \sin \theta$, $\theta \in [-\frac{\pi}{2}, \frac{\pi}{2}]$, $dx = a \cos \theta d\theta$
- ii. Integrals involving $\sqrt{x^2 a^2}$, try $x = a \sec \theta$, $dx = \sec \theta \tan \theta d\theta$ Be cautious with the signs
- iii. Integrals involving $\sqrt{x^2 + a^2}$ or $\frac{1}{x^2 + a^2}$, try $x = a \tan \theta$, $dx = \sec^2 \theta \, d\theta$

iv. For integrals like
$$\int \frac{d\theta}{3+\sin\theta}$$
, try $x = \tan\frac{\theta}{2}$, $d\theta = \frac{2 dx}{1+x^2}$, $\sin\theta = \frac{2x}{1+x^2}$, $\cos\theta = \frac{1-x^2}{1+x^2}$

f. Numerical Methods

Often $\int_a^b f(x) dx$ cannot be expressed in terms of elementary functions, we can approximate $\int_a^b f(x) dx$ by Riemann sums/ trapezoid method/midpoint method

i. Trapezoid method:

 $\int_{a}^{b} f(x) dx \approx \text{Nth trapezoidal approximation area} \quad T_{n} = \sum_{i=1}^{n} A_{i} = \sum_{i=1}^{n} \frac{f(x_{i-1}) + f(x_{i})}{2} \Delta x_{i}$ **Theorem (Trapezoidal rule)**: Let $f: [a, b] \rightarrow R$ such that f'' is continuous and $k = \sup\{|f''(x)|, x \in [a, b]\}$. Then $\left|\int_{a}^{b} f(x) dx - T_{n}\right| \leq \frac{k}{12}(b-a)(\Delta x)^{2}$ Lemma: $f: [a, b] \rightarrow R, f''$ is continuous and f(a) = f(b) = 0, then $-2 \int_{a}^{b} f(x) dx = \int_{a}^{b} (x-a)(b-x)f'' dx$

ii. Midpoint method:

$$\int_{a}^{b} f(x) dx \approx \frac{M_{n} = \sum_{i=1}^{n} A_{i} = \sum_{i=1}^{n} f(\frac{x_{i-1} + x_{i}}{2})\Delta x_{i}}{Midpoint rule: \left|\int_{a}^{b} f(x) dx - M_{n}\right| \leq \frac{k}{24}(b-a)(\Delta x)^{2}}$$

5. Improper integrals

a. Type 1 improper integral:

Definition: Let $F: [a, \infty) \to R$, $\lim_{x \to \infty} F(x) = L$, if and only if $\forall \varepsilon > 0$, $\exists x_0 \ge a$, such that $x > x_0 \Rightarrow |F(x) - L| < \varepsilon$ (converge $F(x) \to L$ as $R \to \infty$) $\lim_{x \to \infty} F(x) = \infty$, if and only if $\forall M \in \mathbb{R}$, $\exists x_0 \ge a$, such that $x > x_0 \Rightarrow F(x) > M$ (F(x) diverges) Let $f: [a, \infty) \to R$ be such that $\forall \mathbb{R} > a$, f is integrable on $[a, \mathbb{R}]$ $\int_a^{\infty} f(x) \, dx = \lim_{\mathbb{R} \to \infty} \int_a^{\mathbb{R}} f(x) \, dx \in [-\infty, \infty]$ if the limit exists $\int_a^{\infty} f(x) \, dx$ converges if and only if $\lim_{\mathbb{R} \to \infty} \int_a^{\mathbb{R}} f(x) \, dx \neq \pm \infty$ Theorem (p-integral): $p > 1, \int_a^{\infty} \frac{1}{x^p} = \frac{1}{p-1}; \qquad 0$

b. Type 2 improper integral:

Definition: Let $F: (a, b] \to R$, $\lim_{x \to a^+} F(x) = L$, if and only if $\forall \varepsilon > 0$, $\exists \delta > 0$ such that $0 < x - a < \delta \Rightarrow |F(x) - L| < \varepsilon$ $\lim_{x \to a^+} F(x) = \infty$, if and only if $\forall M \in \mathbb{R}$, $\exists \delta > 0$ such that $0 < x - a < \delta \Rightarrow F(x) > M$ Let $f: (a, b] \to R$ be such that $\forall c \in (a, b)$, f is integrable on [c, b] and f is unbounded on (a, b] $\int_a^b f(x) dx = \lim_{c \to a^+} \int_c^b f(x) dx \in [-\infty, \infty]$ if the limit exists $\int_{a}^{b} f(x) dx \text{ converges if and only if } \lim_{c \to a^{+}} \int_{c}^{b} f(x) dx \neq \pm \infty$ $\int_{a}^{b} f(x) dx \text{ diverges if and only if } \lim_{c \to a^{+}} \int_{c}^{b} f(x) dx = \pm \infty$ Note: if $f: [a, b] \to R$ is integrable on $[c, b], \forall c \in (a, b)$ and f is unbounded on [a, b), then $\int_{a}^{b} f(x) dx = \lim_{c \to b^{-}} \int_{c}^{b} f(x) dx \in [-\infty, \infty]$ Theorem (p-integral):

$$0$$

c. $\int_{-\infty}^{+\infty} f(x) \, \mathrm{d}x$ type

Definition: Let $f: R \to R$ be integrable on every bounded interval [a, b], Then $\int_{-\infty}^{+\infty} f(x) dx = \int_{-\infty}^{0} f(x) dx + \int_{0}^{+\infty} f(x) dx$, provided that this is not $\infty - \infty$ or $-\infty + \infty$, in which case $\int_{-\infty}^{+\infty} f(x) dx$ does not exist. Note that $\int_{-\infty}^{+\infty} x dx$ does not exist even though $\lim_{c\to\infty} \int_{-c}^{c} f(x) dx = 0$ **Definition (Probability density):** Let $f: R \to [0, \infty)$ satisfy $\int_{-\infty}^{+\infty} f(x) dx = 1$, call f(x) a probability density, the mean value of this density is $\int_{-\infty}^{+\infty} xf(x) dx$

d. More improper integrals:

 $\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$ this can extends to more singularities, given that it is not $\infty - \infty$ or $-\infty + \infty$,

Theorem: Let $F: [a, \infty) \rightarrow R$ be increasing

a. if *F* is bounded above, then $F(u) \rightarrow \sup R$ as $u \rightarrow \infty$

Proof: By completeness Axiom, $L = \sup R \in \mathbb{R}$ (because F is bounded above)

Let $\varepsilon > 0$, $\exists u_0 \ge a$ such that $L - \varepsilon < F(u_0) < L$ Let $u > u_0$, $L - \varepsilon < F(u_0) \le F(u) \le \sup R = L$ $\Rightarrow |F(x) - L| < \varepsilon \Rightarrow F(u) \Rightarrow \sup R$ as $u \Rightarrow \infty$

b. if F is not bounded above, then F(u) diverges to ∞ as $u \to \infty$ Proof: let $M \in \mathbb{R}$,

F is not bounded above $\Rightarrow \exists u_0 \geq a$ such that $F(u_0) > M$ Take $u > u_0$, then $F(u) \geq F(u_0) > M$ because *F* is increasing F(u) diverges to ∞

Note: let $F(\infty) = \lim_{u \to \infty} F(u) \in (-\infty, \infty]$, in either case, $\forall u \in [a, \infty), F(u) \le F(\infty)$, write $F(u) \nearrow F(\infty)$ **Theorem** (Comparison test for Type 1 Integrals): Assume $f, g: [a, \infty) \to [0, \infty), f \leq g$, and f, g are integrable on [a, R] for all R > a

- a. If $\int_a^{\infty} g(x) \, dx$ converges, then $\int_a^{\infty} f(x) \, dx$ converges and $\int_a^{\infty} f(x) \, dx \le \int_a^{\infty} g(x) \, dx$ Proof: let R > a, $\int_{a}^{R} f(x) dx \leq \int_{a}^{R} g(x) dx$ (order property) $\leq \int_{a}^{\infty} g(x) \, \mathrm{d}x < \infty$ Then $\int_{a}^{R} f(x) dx \nearrow \int_{a}^{\infty} f(x) dx < \infty$ b. If $\int_a^{\infty} f(x) dx$ diverges, then $\int_a^{\infty} g(x) dx$ diverges (the contrapositive of part a)
- c. Same applies to type 2 integral

Piecewise Continuous Functions:

Lemma: let $h_{x_0}(x) = \begin{cases} 1 & x = x_0 \\ 0 & x \neq x_0 \end{cases}$, $\forall a < b, \forall x_0, h_{x_0}$ is integrable on [a, b], and $\int_a^b h_{x_0}(x) dx = 0$ **Proposition** (singular point does not affect integration): Let $g: [a, b] \rightarrow \mathbb{R}$ be integrable, assume $f:[a,b] \rightarrow \mathbb{R}$ is such that $\{x: f(x) \neq g(x)\} = \{x_1, x_2, \dots, x_n\}$ is finite. Then f is integrable on [a, b] and $\int_{a}^{b} f(x) \, dx = \int_{a}^{b} g(x) \, dx$ Proof: let $c_i = f(x_i) - g(x_i), i = 1, 2, ..., k$ Then $f(x) = g(x) + \sum_{i=1}^{k} c_i h_{x_i}(x)$, which is integrable

And
$$\int_{a}^{b} f(x) dx = \int_{a}^{b} g(x) dx + \sum_{i=1}^{b} c_{i} \int_{a}^{b} h_{x_{i}}(x) dx = \int_{a}^{b} g(x) dx$$

Definition: $f:[a,b] \rightarrow \mathbb{R}$ is piecewise continuous if and only if $\exists a = c_0 < c_1 < \cdots < c_k = b$ and there exist continuous functions $g_i: [c_{i-1}, c_i] \to \mathbb{R}$ such that $f(x) = g_i(x)$ for $\forall x \in (c_{i-1}, c_i)$ **Fact:** *f* is piecewise continuous \Rightarrow *f* is bounded and sup $f(x) = \max\{\sup g_i, \sup f\}$ **Proposition** (piecewise continuous functions are integrable): Let $f: [a, b] \rightarrow \mathbb{R}$ be piecewise continuous

and g_i, c_i are as in the definition. Then f is integrable and $\int_a^b f(x) dx = \sum_{i=1}^k \int_{c_{i-1}}^{c_i} g_i(x) dx$

Proof: g_i is continuous and integrable on $[c_{i-1}, c_i]$ $\{x: x \in [c_{i-1}, c_i], f(x) \neq g_i(x)\}$ is finite f is integrable on $[c_{i-1}, c_i]$ and $\int_{c_{i-1}}^{c_i} f(x) dx = \int_{c_{i-1}}^{c_i} g(x) dx$ since a singular point does not affect an integration

By additivity of domain, f is integrable on [a, b] and $\int_a^b f(x) dx = \sum_{i=1}^k \int_{c_{i-1}}^{c_i} g_i(x) dx$

6. Application of integrals

a. Area

To find area between f and $g x \in [a, b]$ using Riemann sum, the height of ith rectangle is $|f(c_i) - g(c_i)|,$ Area $= \int_a^b |f(c_i) - g(c_i)| dx.$

To find the solution, split up into intervals where $f \ge g$ and f < g

b. Volumes

i. Method of slices

Assume V(S) = volume of a solid in $R^3 = \{(x, y, z): x, y, z \in R\}$ is well-defined satisfying reasonable properties and formula

Let S be a bounded solid in R^3 between planes x = a and x = b To find the volume:

$$\begin{split} S(x) &= intersection of S \text{ with the plane perpendicular to } x - axis \text{ at } (x, 0, 0) \\ A(x) &= area \text{ of } S(x), \qquad P = \{x_0, x_1, \dots, x_n\} \text{ be a partition of } [a, b] \\ \text{Let } S_i &= \text{slice of S between the planes } x = x_{i-1} \text{ and } x = x_i \\ \Delta V_i &= V(S_i) \qquad M_i = \sup\{A(x): x \in [x_{i-1}, x_i], m_i = \inf\{A(x): x \in [x_{i-1}, x_i] \\ \text{Then } m_i \Delta x_i \leq \Delta V_i \leq M_i \Delta x_i, \sum_{i=1}^N m_i \Delta x_i \leq \sum_{i=1}^N \Delta V_i \leq \sum_{i=1}^N M_i \Delta x_i \\ &\Rightarrow L(A, P) \leq V(S) \leq U(A, P) \text{ for all P} \end{split}$$

Assume A(x) is integrable on [a, b] we know that $\int_a^b A(x) dx$ is the unique real number such that $L(A, P) \le \int_a^b A(x) dx \le U(A, P)$

Thus, we have the method of slices: $V(S) = \int_a^b A(x) dx$

ii. Solid of revolution (disk method)

Let $f: [a, b] \to [0, \infty)$ integrable, $R = \{(x, y): a \le x \le b, 0 \le y \le f(x)\}$ Rotate R about x - axis to form a solid S

S(x)=disk of radius f(x), $A(x) = \pi f(x)^2$, $V(S) = \int_a^b \pi f(x)^2 dx$

iii. Solids of Revolution (cylindrical shell)

Let $0 \le a < b \ f: [a, b] \to [0, \infty)$ integrable, $R = \{(x, y): a \le x \le b, 0 \le y \le f(x)\}$ Rotate R about y - axis to form a solid S

 $P = \{x_0, x_1, \dots, x_n\}$ be a partition of $[a, b], R_i = \{(x, y): x_{i-1} \le x \le x_i, 0 \le y \le f(x)\}$ $C_i = cylindrical shell obtained by rotating <math>R_i$ by the y - axis

Unroll the shell, we get a thin rectangular solid $\Delta V_i = V(C_i) \approx 2\pi x_i f(x_i) \Delta x_i$

$$V(S) = \sum_{i=1}^{N} \Delta V_i = \sum_{i=1}^{N} 2\pi x_i f(x_i) \Delta x_i \rightarrow \int_a^b 2\pi x f(x) \, dx$$

c. Mass, center of mass and centroid

i. Mass

Definition: let $B \subset \mathbb{R}^d$ (d = 1,2,3), the density of B at $P \in B$ is $\rho(P)$ where the density function $\rho: B \to [0, \infty)$ is continuous. Then the mass of B is $m(B) = \int_B \rho \, dV$ If $\rho = 1$, this defines the volume of B, $V(B) = \int_B dV$

If
$$d = 1$$
, $B = [a, b]$ then $m(B) = \int_a^b \rho \, dx$

ii. Moment

In 3-D, the x – moment of B is
$$M_x = \int_{D} x \rho(x, y, z) dV$$

y -moment of B is $M_y = \int_B y \rho(x, y, z) dV$

$$z$$
 –moment of B is $M_z = \int_B^z z \rho(x, y, z) dV$

iii. Center of mass

In 3-D, the center of mass of *B* is
$$\left(\bar{x}, \bar{y}, \bar{z}\right) = \left(\frac{\int_{B} x \rho \, dV}{\int_{B} \rho \, dV}, \frac{\int_{B} y \rho \, dV}{\int_{B} \rho \, dV}, \frac{\int_{B} z \rho \, dV}{\int_{B} \rho \, dV}\right) = \left(\frac{M_x}{m}, \frac{M_y}{m}, \frac{M_z}{m}\right)$$

iv. Centroid

If $\rho = 1$, the center of mass becomes the centroid, which depends on the geomery of *B* only, $\left(\bar{x}, \bar{y}, \bar{z}\right) = \left(\frac{\int_B x \, dV}{V}, \frac{\int_B y \, dV}{V}, \frac{\int_B z \, dV}{V}\right)$

d. Pappus Theorem

Definition: A plane region lie on one side of a line *L* in R^3 , *R* is rotated aound line *L* to form a solid of revolution, then the volume=distance travelled by the centroid of $R \times \text{Area}=\frac{2\pi \overline{r}A}{R}$

Remark: it is related to volume by shells; Pappus theorem is more general Proof: WOLOG, let L be the y-axis, R lies to the right of y-axis

Centroid of
$$R$$
, $\bar{r} = \frac{\int_R x \, dA}{A} = \frac{\int \int_R x \, dx \, dy}{A}$
Consider the volume swept out by a little box, $\Delta V = 2\pi x \Delta x \Delta y$
 $V = \sum_{x,y} \Delta V = \sum_{x,y} 2\pi x \Delta x \Delta y = \sum_{x,y} \frac{2\pi x \Delta x \Delta y A}{A} = \frac{\int \int_R 2\pi x \, dx \, dy A}{A} = 2\pi \bar{r}A$

Parametric and polar curves

2019年7月21日 9:54

1. Parametric curve

Definition: A parametric curve is a function $\gamma: [a, b] \to \mathbb{R}^2$ if $f: [a, b] \to \mathbb{R}$, derive $\gamma: [a, b] \to \mathbb{R}^2$ by $\gamma = (x, f(x))$

a. Arc length

Definition: $\gamma: [a, b] \to \mathbb{R}^2$ is a parametric curve let $P = \{t_0, t_1, \dots, t_n\}$ be a partition of [a, b]. Let $D(\gamma, P) = \sum_{i=1}^{N} |\gamma(t_{i-1})\gamma(t_i)|$ =length of the piecewise linear approximation of γ . The arc length of γ is $l(\gamma) =$ $\sup\{D(\gamma, P): P \text{ is a partition of } [a, b]\} \in [0, \infty]$ $(l(\gamma))$ is the distance travelled by the particle whose position at time t_i is $\gamma(t_i)$ **Lemma** (Triangle inequality): if $P, Q, R \in \mathbb{R}^2$, then $|PR| \leq |PQ| + |QR|$ **Lemma:** Let $P' \subset P$ be a partition of [a, b] and $\gamma: [a, b] \to \mathbb{R}^2$, then $D(\gamma, P') \leq D(\gamma, P)$ Proof by triangular inequality **Lemma:** $\gamma: [a, b] \to \mathbb{R}^2$, \exists a sequence $\{P_n: n \in \mathbb{N}\}$ such that $||P_n|| \to 0$ and $D(\gamma, P) \rightarrow l(\gamma)$ Proof: $\forall n \in \mathbb{N}, \exists P_n' \text{ such that } l(\gamma) - \frac{1}{n} < D(\gamma, P_n') \le l(\gamma)$ We can find Q_n such that $||Q_n|| < 2^{-n} \to 0$, $\operatorname{let} P_n = P_n' \cup Q_n, \ \left\| P_n \right\| \to 0$ $\Rightarrow l(\gamma) - \frac{1}{n} < D(\gamma, P_n') \le D(\gamma, P_n) \le l(\gamma)$ $\Rightarrow D(\gamma, P) \rightarrow l(\gamma)$ by squeeze theorem **Theorem:** let $f: [a, b] \to \mathbb{R}$ and f' is continuous, let $\gamma = (x, f(x)) x \in [a, b]$, Then $l(x) = \int_{-\infty}^{\infty} \sqrt{1 + f'(x)^2} \, dx < \infty$ is the arc length of the graph y = f(x)Proof: let $P = \{x_0, x_1, \dots, x_n\}$ be a partition of $[a, b], D(\gamma, P) =$ $\sum_{i=1}^{N} |\gamma(t_{i-1})\gamma(t_i)|$ $D(\gamma, P) = \sum_{i=1}^{N} \sqrt{(x_i - x_{i-1})^2 + (f(x_i) - f(x_{i-1}))^2}$ $= \sum \sqrt{1 + \left(\frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}}\right)^2} \Delta x_i$ $\sqrt{1 + (f'(c_i))^2} \Delta x_i$ (by mean value theorem) $l(x) = \lim_{N \to \infty} \sum_{i=1}^{N} \sqrt{1 + (f'(c_i))^2} \Delta x_i = \int_a^b \sqrt{1 + f'(x)^2} \, \mathrm{d}x$ **Definition:** let $\gamma(t) = (x(t), y(t))$ be a parametric curve, $\gamma: [a, b] \to \mathbb{R}^2$ is c^1 (differentiable and its first derivative is continuous) if and only if $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are continuous on [a, b], the velocity is $\gamma'(t) = (x'(t), y'(t))$, the speed is

$$|\gamma'(t)| = \sqrt{(x'(t))^2 + (y'(t))^2}$$

Theorem: let $\gamma: [a, b] \to \mathbb{R}^2$ be c^1 , then γ has finite arc length $l(\gamma)$

=

2. Polar Coordinates

Definition: the polar coordinates of a point P = (x, y) are r, θ , where r = $\sqrt{x^2 + y^2}$, and θ is the angle between \overrightarrow{OP} and +x - axis if $P = (0,0), \theta$ is arbitrary. Let $P = [r, \theta]$ denote the point in the cartesian plane with polar coordinates r, θ

If we restrict $\theta \in [0, 2\pi)$, then θ is unique

Note: $[r, \theta] = [r, \theta + 2\pi k], k \in \mathbb{Z}; [0, \theta] = [0, 0]; [r, \theta] = (r \cos \theta, r \sin \theta);$ $[-r,\theta] = [r,\theta + \pi] = -[r,\theta]$

We call the set of $[r, \theta]$ such that $r = f(\theta), \theta \in [\alpha, \beta]$ the polar graph of f

Areas of polar graphs

Let $S(r, \Delta \theta)$ =sector of a circle with radius r subtending angle $\Delta \theta$ Let $A(r, \Delta \theta)$ = area of $S(r, \Delta \theta) = \frac{1}{2}r^2\Delta \theta$

Let $P = \{\theta_0, \theta_1, ..., \theta_n\}$ be a partition of $[\alpha, \beta]$, ΔA_i be the area swepted by r = $f(\theta), \theta \in [\theta_{i-1}, \theta_i] \approx A(f(\theta_i), \Delta \theta_i) = \frac{1}{2}f(\theta_i)^2 \Delta \theta_i$

Total area
$$A = \lim_{N \to \infty} \sum_{i=1}^{N} \Delta A_i = \lim_{N \to \infty} \sum_{i=1}^{N} \frac{1}{2} f(\theta_i)^2 \Delta \theta_i = \int_{\infty}^{P} \frac{(f(\theta))^2}{2} d\theta$$

Arclength of polar graphs

Let $f: [\alpha, \beta] \to R$ be c^1 , then the polar graph $r = f(\theta)$ can be viewed as a c^1 parametric graph $r(\theta) = (r \cos \theta, r \sin \theta)$, we can then use the arclength formula

for parametric curve to derive the arc length $l = \int_{-\infty}^{\beta} \sqrt{f(\theta)^2 + f'(\theta)^2} d\theta$

Sequences and series

9:55 2019年7月21日

1. Basics

Definition (Sequence): A sequence is a function $a: \{n_0, n_0 + 1, ...\} \rightarrow R$ for some $n_0 \in \mathbb{Z}$, denote a by $\{a_n: n \ge n_0\}$ or $\{a_n\}$, usually $n_0 = 0$ or 1

Definition (Converges/diverges): $\{a_n\}$ converges to $L \in R$ if and only if $\forall \varepsilon > 0, \exists N \in \mathbb{R}$ such that $n > N \Rightarrow$ $|a_n - L| < \varepsilon$ (write $a_n \to L$ or $\lim a_n = L$); $\{a_n\}$ diverges if and only if $\forall M, \exists N \in \mathbb{R}$ such that $n > N \Rightarrow a_n > 0$ $M (a_n \to \infty \text{ or } \lim a_n = \infty)$

Theorem (Algebra of limits): Assume $a_n \rightarrow L_a$, $b_n \rightarrow L_b$ and $L_a, L_b \in \mathbb{R}$

 $\forall c \in R, a_n + cb_n \rightarrow L_a + cL_b; a_nb_n \rightarrow L_aL_b; \frac{a_n}{b_n} \rightarrow \frac{L_a}{L_b}$ (given that $L_b \neq 0$); $\lim_{n \to \infty} c = c; a_n \leq b_n$ ultimately, then $L_a \leq L_b$

2. Sequences

a. Limits and sequential limits

Theorem: Assume $\lim f(x) = L$, $c, L \in [-\infty, \infty]$, if $x_n \to c$, and $x_n \in \text{Dom}(f)$ and $x_n \neq c$ ultimately, then $f(x_n) \to L$

Proof: let $\varepsilon > 0$, $\exists \delta > 0$ such that $0 < |x - c| < \varepsilon$ and $x \in \text{Dom}(f)$, then $|f(x) - L| < \varepsilon$ (since $\lim f(x) = L$

 $x_n \to c$ so $\exists N_1$ such that $n > N_1 \Rightarrow |x_n - c| < \delta$

The ultimate hypothesis on $\{x_n\}$ implies that $\exists N_2$ such that $n > N_2 \Rightarrow x_n \neq c$ and $x_n \in \text{Dom}(f)$ Let $n > \max(N_1, N_2)$, then $0 < |x_n - c| < \delta$ and $x_n \in \text{Dom}(f)$

Let
$$x = x_n$$
, $\left| f(x_n) - L \right| < \varepsilon$

Theorem: let f be continuous at c, if $x_n \to c$ and $x_n \in \text{Dom}(f)$ ultimately, then $f(x_n) \to f(c)$ $(\lim(f(x_n)) = f(\lim(x_n)))$

Proof: let $\varepsilon > 0$, by continuity at $c, \exists \delta$ such that $|x - c| < \delta, x \in \text{Dom}(f), |f(x_n) - f(c)| < \varepsilon$, then substitute L with f(c) in the previous proof

Definition: $\{a_n\}$ is bounded if and only if $\exists M$ such that $\forall n$, $|a_n| \leq M$

Theorem:

i. $\{a_n\}$ is convergent \Rightarrow $\{a_n\}$ is bounded

Proof: take $\varepsilon = 1$, $\exists N$ such that $n > N \Rightarrow |a_n - L| < 1$ ($\lim_{n \to \infty} a_n = L$)

By triangular inequality, $|a_n| \le |L| + 1$

Let $M = \max\{|a_n|: n \le N\} + |L| + 1$,

Then $|a_n| \leq M$ for $\forall n$

ii. $\{a_n\}$ is bounded $\neq \{a_n\}$ is convergent (e.g. $a_n = (-1)^n$)

b. Monotone sequences

Definition: $\{a_n\}$ is an increasing sequence if and only if $\forall n, a_{n+1} \ge a_n$ and decreasing if and only if $\forall n$, $a_{n+1} \leq a_n$; $\{a_n\}$ is monotone if and only if it is increasing or decreasing all the time **Theorem** (Increasing sequence theorem): Let $\{a_n\}$ be an increasing sequence, $L = \sup\{a_n : n \in \mathbb{N}\} \in \mathbb{N}$ $(-\infty,\infty]$, then $a_n \to L$ i.e. if $\{a_n\}$ is bounded above, $a_n \to L \in \mathbb{R}$, if $\{a_n\}$ is not bounded above $a_n \to \infty$ Questions can be solved by induction.

3. Series

Definition: Let $\{b_k : k \in \mathbb{N}\}$ be a sequence, and set $S_n = \sum_{k=1}^n b_k (n \ge 1)$ The series $\sum_{k=1}^{\infty} b_k$ converges if and only if $\lim_{n \to \infty} S_n = L \in \mathbb{R}$, write $\sum_{k=1}^{\infty} b_k = L$ The series $\sum_{k=1}^{\infty} b_k$ diverges if and only if $\{S_n\}$ diverges $\sum_{k=1}^{\infty} b_k = \pm \infty$ **Proposition:**

a. For any sequence $\{a_n\}, \{a_n\}$ converges $\Rightarrow \lim_{n \to \infty} a_{n+1} - a_n = 0$ Proof: let $\lim_{n\to\infty} a_n = L$, then $\lim_{n\to\infty} a_{n+1} = L$ by definition of limits

 $\lim_{n \to \infty} a_{n+1} - a_n = \lim_{n \to \infty} a_{n+1} - \lim_{n \to \infty} a_n = L - L = 0$ b. If $\sum_{k=1}^{\infty} b_k$ converges, then $\lim_{n \to \infty} b_k = 0$, but $\lim_{n \to \infty} b_k = 0$ does not imply $\sum_{k=1}^{\infty} b_k$ converges Proof: apply (a) to $\{S_n\}$, $S_n = \sum_{k=1}^n b_k \to L$, so $S_{n+1} - S_n \to 0 \Rightarrow \lim_{n \to \infty} b_{n+1} = 0 \Rightarrow \lim_{n \to \infty} b_n = 0$ **Theorem (Algebra of series):** $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$ are convergent, and $c_1, c_2 \in \mathbb{R}$, then $\sum_{k=1}^{\infty} c_1 a_k + \sum_{k=1}^{\infty} c_1 b_k = 0$. $\sum_{k=1}^{\infty} c_2 b_k = c_1 \sum_{k=1}^{\infty} a_k + c_2 \sum_{k=1}^{\infty} b_k$ and both sides are convergent

Theorem (Positive series dichotomy): assume $a_k \ge 0$ for all $k \in \mathbb{N}$, let $S_n = \sum_{k=1}^n a_k$

- a. If $\{S_n\}$ is bounded above, then $\sum_{k=1}^{\infty} a_k = \sup\{S_n\}$ is convergent b. If $\{S_n\}$ is not bounded above, then $\sum_{k=1}^{\infty} a_k = \infty$ Proof by increasing sequence theorem, since $a_{n+1} = S_{n+1} - S_n \ge 0$, S_n is increasing

4. Convergence test

a. Integral test

Theorem: let $f: [1, \infty) \to [0, \infty)$ be decreasing, then $\sum_{n=1}^{\infty} f(n)$ is convergent $\Leftrightarrow \int_{1}^{\infty} f(x) dx$ is **convergent**

Proof: Assume $\int_{1}^{\infty} f(x) dx$ is convergent, apply the following lemma with N = 1,

$$\sum_{k=2}^{n} f(k) \leq \int_{1}^{n} f(x) dx \leq \int_{1}^{\infty} f(x) dx \in \mathbb{R}$$

$$\forall n \in \mathbb{N}, \sum_{k=1}^{n} f(k) \leq \int_{1}^{\infty} f(x) dx + f(1)$$

By positive series dichotomy,
$$\sum_{k=1}^{\infty} f(k) \text{ converges}$$

Assume
$$\sum_{k=1}^{\infty} f(k) \text{ is convergent, apply the following lemma with } N = 0,$$

$$\forall n \in \mathbb{N}, \int_{1}^{n+1} f(x) dx \leq \sum_{k=1}^{n} f(k) \leq \sum_{k=1}^{\infty} f(k) = \sup\{S_n\}$$

$$F(R) = \int_{1}^{R} f(x) dx \text{ is increasing in } \mathbb{R} \text{ and } F(R) \leq \sum_{k=1}^{\infty} f(k) \forall R > 1$$

$$\Rightarrow F(R) \rightarrow \int_{0}^{\infty} f(x) dx \text{ (a finite number) as } R \rightarrow \infty$$

n: for $p > 0, \sum_{k=1}^{\infty} \frac{1}{2^{k}} < \infty \Leftrightarrow p > 1$

Correlatio $\Delta_{n=1}^{n^p}$

Lemma: let $f: [1, \infty) \to [0, \infty)$ be increasing, $\forall n > N \in \mathbb{N}$, $\int_{N+1}^{n+1} f(x) dx \leq \sum_{k=N+1}^{n} f(k) \leq \int_{N}^{n} f(x) dx$ Proof: let $h(x) = f(k + 1), x \in [k, k + 1), k \in \mathbb{N}$,

$$h(x) \le f(x) \Rightarrow \int_{N}^{n} f(x) \, \mathrm{d}x \ge \int_{N}^{n} h(x) \, \mathrm{d}x = \sum_{k=N}^{n-1} \int_{k}^{k+1} h(x) \, \mathrm{d}x = \sum_{k=N}^{n-1} f(k+1) = \sum_{k=N+1}^{n} f(k)$$

Let
$$g(x) = f(k), x \in [k, k+1), k \in \mathbb{N}$$
,
 $f(x) \le g(x) \Rightarrow \int_{N+1}^{n+1} f(x) \, dx \le \int_{N+1}^{n+1} g(x) \, dx = \sum_{k=N+1}^{n} \int_{k}^{k+1} h(x) \, dx = \sum_{k=N+1}^{n} f(k)$

Note: this lemma gives an error bound on the approximation of $S = \sum_{n=1}^{\infty} f(k)$ using $S_n = \sum_{k=1}^{n} f(k)$ **Remark:** $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=n_0}^{\infty} a_n$ converges

b. Comparison test

Theorem: let $a_n, b_n \ge 0$ assume k > 0 and $a_n \le kb_n$ ultimately, then

- i. $\sum_{n=1}^{\infty} b_n$ converges $\Rightarrow \sum_{n=1}^{\infty} a_n$ converges ii. $\sum_{n=1}^{\infty} a_n$ diverges $\Rightarrow \sum_{n=1}^{\infty} b_n$ diverges
- Proof: choose n_0 such that $n \ge n_0$, $a_n \le kb_n$ $\forall n \ge n_0, \ \sum_{i=n_0}^n a_i \le k \ \sum_{i=n_0}^n b_i \le k \ \sum_{i=n_0}^\infty b_i$ By positive series dichotomy, $\sum_{i=n_0}^{n} a_i$ converges, by the last remark, $\sum_{n=1}^{\infty} a_n$ converges

c. Limit comparison test

Theorem: let $a_n, b_n \ge 0$ assume $\frac{a_n}{b_n} \to L \in [0, \infty]$

- i. *L* is finite, then if $\sum_{n=1}^{\infty} b_n$ is convergent, so is $\sum_{n=1}^{\infty} a_n$ Proof: $\frac{a_n}{b_n} \to L$ is finite, take $\varepsilon = 1$, $\exists n \ge n_0 \Rightarrow \left| \frac{a_n}{b_n} - L \right| < 1$ $\Rightarrow \frac{a_n}{b_n} < L + 1 \Rightarrow a_n < (L + 1)b_n$ ultimately By comparison test, if $\sum_{n=1}^{\infty} b_n$ is convergent, so is $\sum_{n=1}^{\infty} a_n$
- ii. L > 0, then if $\sum_{n=1}^{\infty} a_n$ is divergent, so is $\sum_{n=1}^{\infty} b_n$ Proof: $\frac{a_n}{b_n} \to L \in (0, \infty]$, take inverse $\frac{b_n}{a_n} \to \frac{1}{L} \in [0, \infty)$, apply (i) with a_n, b_n reversed

d. Root test

Theorem: let $a_n \ge 0$, assume $a_n^{\frac{1}{n}} \to \rho \in [0, \infty]$ i. $\rho < 1$, $\sum_{n=1}^{\infty} a_n$ converges

ii.
$$\rho > 1$$
, $\sum_{n=1}^{\infty} a_n$ diverges

ii. $\rho > 1$, $\sum_{n=1}^{\infty} a_n$ diverges iii. $\rho = 1$, $\sum_{n=1}^{\infty} a_n$ may converge or diverge

e. Ratio test

Theorem: let $a_n \ge 0$, assume $\frac{a_{n+1}}{a_n} \rightarrow \rho \in [0, \infty]$

i. $\rho < 1$, $\sum_{n=1}^{\infty} a_n$ converges ii. $\rho > 1$, $\sum_{n=1}^{\infty} a_n$ diverges iii. $\rho = 1$, $\sum_{n=1}^{\infty} a_n$ may converge or diverge

Remark: ratio test tends to be easier to implement arithmetically than root test (especially with n!); root test implies ratio test, but ratio test does not imply root test

Lemma: $a_n \ge 0, \frac{a_{n+1}}{a_n} \rightarrow \rho \in [0, \infty] \Rightarrow a_n^{\frac{1}{n}} \rightarrow \rho$ converse fails

Absolute convergence

Definition: a series $\sum_{n=1}^{\infty} a_n$ converges absolutely if and only if $\sum_{n=1}^{\infty} |a_n|$ converges Theorem:

a. $\sum_{n=1}^{\infty} a_n$ converges absolutely ($\sum_{n=1}^{\infty} |a_n|$ converges) $\Rightarrow \sum_{n=1}^{\infty} a_n$ converges Proof: let $a_n^+ = \max\{a_n, 0\} a_n^- = \min\{a_n, 0\}$ Then $a_n = a_n^+ - a_n^-$, $|a_n| = a_n^+ + a_n^-$, and $0 \le a_n^\pm \le |a_n|$ Since $\sum_{n=1}^{\infty} |a_n|$ converges, by comparison test, $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ converges By algebra of series, $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} a_n^+ + a_n^-$ converges

b. However, inverse is false

Lemma: let $\{l_n: n \in \mathbb{N}\}$ be a sequence, if $l_{2n} \to L$ and $l_{2n-1} \to L$, then $l_n \to L$ **Theorem** (Alternating Series Test): let $b_n \ge 0$ ($b_n \ge 0$ for $\forall n$) then $\sum_{n=1}^{\infty} (-1)^{n-1} b_n$ converges

Proof: let $S_n = \sum_{i=1}^n (-1)^{i-1} b_i$, $a_i = (-1)^{i-1} b_i$ $S_{2(n+1)} - S_{2n} = a_{2n+2} + a_{2n+1} = -b_{2n+2} + b_{2n+1} \ge 0$ (since $b_{2n+1} \ge b_{2n+2}$) $\Rightarrow S_{2n}$ is increasing $S_{2n+1} - S_{2n-1} = a_{2n+1} + a_{2n} = b_{2n+1} - b_{2n} \le 0 \Rightarrow S_{2n-1}$ is decreasing $S_{2n-1} - S_{2n} = b_{2n} \ge 0 \implies S_{2n-1} \ge S_{2n} \text{ for } \forall n$ S_{2n} is increasing and it has an upper bound of S_1 , thus limit S_{even} exists S_{2n-1} is decreasing and it has an lower bound S_2 , thus limit S_{odd} exists And $S_{odd} - S_{even} = \lim_{n \to \infty} S_{2n-1} - S_{2n} = \lim_{n \to \infty} b_{2n} = 0$

By the previous lemma, $\sum_{n=1}^{\infty} (-1)^{n-1} b_n$ converges to $S = S_{odd} = S_{even}$

Remark (Alternating Series Bounds): $\forall n, S_{2n} \leq S \leq S_{2n+1} \leq S_{2n-1}$, then $0 \leq S - S_{2n} \leq S_{2n+1} - S_{2n} = S_{2n+1} + S_{2n} = S_{2n} = S_{2n+1} + S_{2n} = S_{2$ b_{2n+1} , and $0 \le S_{2n-1} - S \le S_{2n-1} - S_{2n} = b_{2n}$, so $\forall m \in \mathbb{N}$, $|S_m - S| < b_{m+1}$ is the approximation error by the mth sum.

Conditional convergence

Definition: a series $\sum_{n=1}^{\infty} a_n$ converges conditionally if and only if $\sum_{n=1}^{\infty} a_n$ converges, but $\sum_{n=1}^{\infty} |a_n|$ does not converge

Proposition: let $\sum_{n=1}^{\infty} a_n$ be convergent, $\sum_{n=1}^{\infty} a_n$ converges conditionally $\Leftrightarrow \sum_{n=1}^{\infty} a_n^+ = \infty$ and $\sum_{n=1}^{\infty} a_n^- = 0$ ∞

Proof:(1) $|a_n| = a_n^+ + a_n^- = a_n^+ + a_n^+ - (a_n^+ - a_n^-) = 2a_n^+ - a_n$ suppose $\sum_{n=1}^{\infty} a_n^+$ converges, by algebra of series $\sum_{n=1}^{\infty} |a_n|$ converges But this contradicts, so $\sum_{n=1}^{\infty} |a_n| = \infty \Rightarrow \sum_{n=1}^{\infty} a_n^+ = \infty$ Similarly, $|a_n| = a_n^+ + a_n^- = a_n^- + a_n^- + (a_n^+ - a_n^-) = 2a_n^- + a_n^-$ We can get that $\sum_{n=1}^{\infty} |a_n| = \infty \Rightarrow \sum_{n=1}^{\infty} a_n^- = \infty$ (2) $\sum_{n=1}^{\infty} a_n^+ = \infty$, $|a_n| \ge a_n^+$, by comparison test, $\sum_{n=1}^{\infty} |a_n| = \infty \sum_{n=1}^{\infty} a_n = \infty$, $\sum_{n=1}^{\infty} a_n$

converges conditionally **Remark:** Assume $\sum_{n=1}^{\infty} a_n$ converges conditionally, by adding a lot of positive terms and then a few negative terms and a lot of positive terms and keeping going, as long as $a_n \to 0$, $\sum_{n=1}^{\infty} a_n$ can be $\pm \infty$ or any number

5. Power series

Definition: A power series centered at $c \in \mathbb{R}$ is a series of the form $\sum_{n=0}^{\infty} a_n (x-c)^n$, where $a_n \in \mathbb{R}$, and x is an independent variable.

Let $C_a = \{x: \sum_{n=0}^{\infty} a_n (x-c)^n\}$ be a set of convergence of the power series, $C_a = (c-R, c+R)$ (end points

may be included), c is the center of convergence and R is the convergence radius If $f(x) = \sum_{n=0}^{\infty} a_n (x-c)^n$, $x \in C_a$, then it is a power series representation of f(x)**Theorem:** a power series $\sum_{n=0}^{\infty} a_n (x-c)^n$, there exists $R \in [0, \infty]$ such that

- a. |x c| < R, $\sum_{n=0}^{\infty} a_n (x c)^n$ converges absolutely b. |x c| > R, $\sum_{n=0}^{\infty} a_n (x c)^n$ diverges c. |x c| = R, $\sum_{n=0}^{\infty} a_n (x c)^n$ may converge or diverge Proof: (1)WOLOG, let c = 0 (let x' = x - c if not)

$$\sum_{n=0}^{\infty} a_n (x-c)^n = \sum_{n=0}^{\infty} a_n (x')^n$$

By result for $c = 0, \exists R \in [0, \infty]$ such that $|x'| < R \Rightarrow \sum_{n=0}^{\infty} a_n (x')^n$ converges (2)Let $R = \sup\{|x|: x \in C_a\}, |x| < R$, if $R < \infty, \exists x_0 \in C_a$ such that $|x| < |x_0| < R$ $x_0 \in C_a \Rightarrow \sum_{m=0}^{\infty} a_n(x_0)^n$ converges $\Rightarrow \lim_{n \to \infty} a_n(x_0)^n = 0 \Rightarrow \exists k \text{ such that } |a_n(x_0)^n| \le k$ $\left|a_n(x_0)^n\right| = \left|a_n\right| \left|(x_0)^n\right| \left(\frac{|x|}{|x_0|}\right)^n \le kr^n \text{ where } r = \frac{|x|}{|x_0|} < 1$

By comparison test, since $\sum_{n=0}^{\infty} kr^n$ is convergent, then $\sum_{n=0}^{\infty} |a_n(x_0)^n|$ converges,

$$\sum_{n=0}^{\infty} a_n(x_0)^n \text{ converges absolutely}$$

Theorem: Let *R* be the convergence radius of $\sum_{n=0}^{\infty} a_n (x-c)^n$

a. If $|a_n|^{\frac{1}{n}} \to \sigma \in [0, \infty]$, then $R = \frac{1}{\sigma}$ b. If $\left|\frac{a_{n+1}}{a_n}\right| \to \sigma \in [0,\infty]$, then $R = \frac{1}{\sigma}$

Lemma: H > 0, then $\forall |h| \le H \ \forall x \in \mathbb{R}$, $|(x+h)^n - x^n - nx^{n-1}h| \le \left|\frac{h}{H}\right|^2 (|x|+H)^n$ **Remark:** if |x| < r, then $\sum_{n=0}^{\infty} |a_n(x)^n|$ converges

Theorem (differentiation and integration of power series): Assume $f(x) = \sum_{n=0}^{\infty} a_n x^n$ for $|x| < r \le 1$ radius of convergence, then

a. $f'(x) = \sum_{n=0}^{\infty} n a_n x^{n-1}$ for |x| < rProof: (1)first check convergence let 0 < |x| < r, claim $\sum_{n=0}^{\infty} |na_n x^{n-1}| < \infty$ Choose r_0 such that $|x| < r_0 < r$, then $\sum_{n=0}^{\infty} a_n r^n$ converges $\Rightarrow a_n r^n \to 0$ $\Rightarrow \exists k \text{ such that } |a_n r_0^n| \leq k \text{ for all } n$ $\left|na_{n}x^{n-1}\right| = \frac{n\left|a_{n}r_{0}^{n}\right|}{|x|} \frac{|x|^{n}}{r_{0}^{n}} \left(\left|a_{n}r_{0}^{n}\right| \le k, \alpha = \frac{|x|}{r_{0}} \in (0,1)\right)$ Then $\left|na_n x^{n-1}\right| \leq \frac{k}{|x|} n\alpha^n$ Recall that $\sum_{n=0}^{\infty} n\alpha^n$ is convergent, so $\sum_{n=0}^{\infty} |na_n x^{n-1}|$ converges by comparison (2)Let $g(x) = \sum_{n=0}^{\infty} na_n x^{n-1}$, |x| < r $\left|\frac{f(x+h) - f(x)}{h} - g(x)\right| = \left|\sum_{n=1}^{\infty} \left(\frac{a_n(x+h)^n - a_n x^n}{h} - na_n x^{n-1}\right)\right|$ $= \lim_{N \to \infty} \left| \frac{1}{h} \sum_{n=0}^{N} a_n \left((x+h)^n - x^n - nx^{n-1}h \right) \right| \le \left| \frac{1}{h} \right| \lim_{N \to \infty} \left| \sum_{n=0}^{N} a_n \left| \frac{h}{H} \right|^2 (|x|+H)^n \right|$ (by triangular inequality and previous lemma) Since $\sum_{n=0}^{\infty} a_n \left| \frac{h}{H} \right|^2 (|x| + H)^n$ converge to 0. By squeeze theorem, $\left|\frac{f(x+h)-f(x)}{h} - g(x)\right| \to 0$ as $h \to 0$ By definition $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = g(x) = f'(x)$ b. $\int_0^x f(t) dt = \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$ for |x| < rProof: $\left|\frac{a_n}{n+1}x^{n+1}\right| \le |x||a_nx^n|$ RHS converges By comparison test, $\sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$ converges absolutely for |x| < rLet $h(x) = \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$ By (a) $h'(x) = \sum_{n=0}^{\infty} a_n x^n = f(x)$ $\int_0^x f(t) dt = \int_0^x h'(t) dt = h(x) - h(0) = \sum_{n=0}^\infty \frac{a_n}{n+1} x^{n+1} \text{ by FTC}$

c. Note: with this theorem, we can generate new power series representations from old ones like $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$

Correlation: Assume $f(x) = \sum_{n=0}^{\infty} a_n(x)^n$ for $|x| < r \le$ radius of convergence, then f(x) is infinitely differentiable for |x| < r, write $f \in c^{\infty}$

Theorem (Abel's Theorem): assume $f(x) = \sum_{n=0}^{\infty} a_n x^n$ for |x| < R, and $\sum_{n=0}^{\infty} a_n R^n$ converges, then $\lim_{x \to R^-} F(x) = \sum_{n=0}^{\infty} a_n R^n$

Remark: if R(f) is the radius of convergence for $f(x) = \sum_{n=0}^{\infty} a_n x^n$, then $R(f) = R(f') = R(\int f \, dx)$ **Remark:** everything works for $\sum_{n=0}^{\infty} a_n (x-c)^n$ with any $c \in \mathbb{R}$

6. Taylor series

Theorem: Assume f is c^{∞} on (c - R, c + R), if $f(x) = \sum_{n=0}^{\infty} a_n (x - c)^n$ for |x - c| < r, then $\forall k \in Z^+$, $a_k = \frac{f^{(k)}(c)}{k!}$, where $f^{(0)}(c) = f(c)$

Remark: a power series representation (if exists) for f(x) is unique and must be $\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n$

Definition: Assume $f^{(k)}(c)$ exists for all $k \in N$. The taylor series of f about x = c is $\sum_{k=1}^{\infty} \frac{f^{(k)}(c)}{k!} (x-c)^k$, if

c = 0, it is called the Maclaurin series

Assume $f^{(k)}(c)$ exists for all $k \le n \in N$, the nth degree Taylor polynomial for f about x = c is $P_{n,c}(x) = c$

Theorem (Taylor series test): Assume f is c^{∞} on (c - R, c + R), let $M_n(r) = \sup\left\{\left|f^{(n)}(x)\right|: |x - c| < R\right\}$, if $\frac{M_n(r)r^n}{n!} = 0$, then $f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(c)}{k!} (x - c)^k$ for all |x - c| < r**Theorem (Taylor's Theorem)**: Assume f^{n+1} exists on (c - R, c + R), $\forall x \in (c - R, c + R)$, $\exists t = t(x)$ such that

Theorem (Taylor's Theorem): Assume f^{n+1} exists on (c - R, c + R), $\forall x \in (c - R, c + R)$, $\exists t = t(x)$ such that $f(x) - P_{n,c}(x) = \frac{f^{n+1}(t)}{(n+1)!}(x-c)^{n+1}$

First order differential equations

2019年7月23日 14:27

Definition: A first order differential equation is an equation relating y = f(x), $\frac{dy}{dx}$ and x

1. Separation of variables

Definition: A separable first order differential equation is one in the form of $\frac{dy}{dt} = g(y(t))f(t)$ for some continuous functions. (LGE is a special case where $g(y(t)) = (1 - \frac{y(t)}{L})y(t)$ and f(t) = k) To derive a formula for y(t): $\frac{dy}{dt} = g(y(t))f(t) \Rightarrow \frac{dy}{g(y(t))} = f(t) dt$ Integrate both sides $\int \frac{dy}{g(y(t))} = \int f(t) dt$ $\int \frac{dy}{dt} \frac{1}{g(y(t))} dt = \int f(t) dt$ $G(y(t)) = \int f(t) dt$ $y(t) = G^{-1} \left(\int f(t) dt \right)$ In fact, this works until t_1 where $g(y(t_1))$ is first zero, if $g(y_0) \neq 0$ and $t_1 > 0$,

 G^{-1} exists and $\int \frac{\mathrm{d}y}{g(y(t))}$ will be increasing or decreasing until g(y) = 0

a. Easy case:

$$\frac{dy}{dt} = ky(t); y(0) = y_0 \Rightarrow y = y_0 e^{kt}$$

b. Logistic Growth Equation

 $\frac{\mathrm{d}y}{\mathrm{d}t} = k \left(1 - \frac{y(t)}{L} \right) y(t); y(0) = y_0$

It has two trivial solutions y(t) = 0 and y(t) = L, corresponding to initial conditions $y_0 = L$ and $y_0 = 0$

$$\int \frac{dy}{\left(1 - \frac{y}{L}\right)y} = \int k \, dt$$

$$\int \frac{L \, dy}{\left(L - y\right)y} = kt + C$$

$$\int \left(\frac{1}{L - y} + \frac{1}{y}\right) dy = kt + C$$

$$\ln|y| - \ln|L - y| = kt + C$$

$$\ln\left|\frac{y}{L - y}\right| = kt + C$$

$$\frac{y}{L - y} = C_1 e^{kt}$$

$$\frac{y}{L - y} = C_1 e^{kt}$$
until first time $y(t) \notin (0, L)$ so $\frac{y}{L - y} > 0$

$$\Leftrightarrow y = \frac{L - y^0 e^{-kt + 1}}{y_0} \in (0, L)$$
, for all $t \ge 0$

Remark: The presence of y^2 in separable equations makes $y(x) \to \infty$ at some finite x. If $g(y) \le k(1 + |y|)$, then the solution of $\frac{dy}{dt} = g(y(t))f(t)$ will not have a $y(x) \to \infty$

2. First order linear differential equations

 $\frac{dy}{dx} + p(x)y = q(x)$, where p(x) and q(x) are continuous functions Note: if p(x) = 0, it is a separable equation $p(x) \neq 0$, consider multiplying both sides by $e^{\mu(x)} > 0$

$$e^{\mu(x)}\left[\frac{\mathrm{d}y}{\mathrm{d}x}+p(x)y\right]=e^{\mu(x)}q(x)$$

If we choose $\mu(x)$ such that $e^{\mu(x)} \left[\frac{dy}{dx} + p(x)y \right] = \frac{d(e^{\mu(x)}y)}{dx}$, call $\mu(x)$ the integrating factor

Then, the LDE can be rewritten as $\frac{d(e^{\mu(x)}y)}{dx} = e^{\mu(x)}q(x)$ Integrate both sides, $e^{\mu(x)}y = \int e^{\mu(x)}q(x) dx$ To find $\mu(x)$, solve $e^{\mu(x)}\left[\frac{dy}{dx} + p(x)y\right] = \frac{d(e^{\mu(x)}y)}{dx}$ $e^{\mu(x)}\left[\frac{dy}{dx} + p(x)y\right] = e^{\mu(x)}\left[\frac{dy}{dx} + \mu'(x)y\right]$ $\Rightarrow p(x)y = \mu'(x)y$ $\Rightarrow \mu(x) = \int p(x) dx$

Note that adding constant to $\mu(x)$ does not affect y

Theorem: y solves a linear differential equation $\frac{dy}{dx} + p(x)y = q(x)$ if and only if $y = e^{-\mu(x)} \int e^{\mu(x)}q(x) dx$ where $\mu(x) = \int p(x) dx$

Vectors and geometry

June 23, 2021 7:44 PM

Vectors in \mathbb{R}^2 and \mathbb{R}^3

- A vector is a quantity with both magnitude and direction indicated by arrows
- Magnitude $|\vec{a}|$ is the length of the vector \vec{a} .
- Two vectors are the same if they have the same direction and magnitude
- Addition: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$.
- Scalar multiplication $c\vec{a} = \vec{a} + \vec{a} + \dots + \vec{a}$.
- Zero vector $\vec{0}$: the only vector of magnitude 0, has no direction.
- The vector from (0,0,0) to (*a*, *b*, *c*) is denoted as < *a*, *b*, *c* >.
- Unit vectors:
 - $\vec{\iota} = < 1,0,0 >$.
 - $\circ \ \vec{j} = < 0,1,0 >.$
 - $\vec{k} = < 0, 0, 1 >.$

Dot product

- Geometric definition: $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$.
- Algebraic: $\vec{a} = \langle a_1, a_2, a_3 \rangle$, $\vec{b} = \langle b_1, b_2, b_3 \rangle$, then $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$.
- Remark: $\vec{a} \cdot \vec{b} = 0 \Leftrightarrow \vec{a} \perp \vec{b}$.

Cross product

- Geometric: $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta$.
 - Direction of $\vec{a} \times \vec{b}$ is normal to both \vec{a} and \vec{b} .
- Algebraic: $\vec{a} \times \vec{b} = \begin{vmatrix} i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$.
- Remark: $\vec{a} \times \vec{b} = 0 \Leftrightarrow \vec{a} \parallel \vec{b}$.

Triple product:
$$\vec{a} \cdot (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$
.

Equations for lines in \mathbb{R}^3

A line is determined by a point (x₀, y₀, z₀) on the line and a vector v
 [→] =< a, b, c > in the direction of the line

$$\int_{x=x_0}^{x=x_0+at} x = x_0 + bt$$

• Parametric equation:
$$\begin{cases} y = y_0 + bt \\ z = z_0 + ct \end{cases}$$

• 2 linear equation when $a, b, c \neq 0, \frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$.

Equation for a plane:

- $\vec{N} \cdot \langle x x_0, y y_0, z z_0 \rangle = 0.$
- $a(x x_0) + b(y y_0) + c(z z_0) = 0$ or equivalently d = ax + by + cz.

Equations and surfaces

- Planes are solutions to linear equations
- For quadratic equations in 2 variables (x², y², xy, x, y, c), we get circles, ellipses, parabolas, hyperbolas
- A quadratic surface in \mathbb{R}^3 is given by an equation which is a linear combination of $x^2, y^2, z^2, xy, yz, xz, x, y, z, c$.

MATH253 Page 1

- If the equation only involves 2 of the 3 variables, it is a cylinder
- To sketch/understand surfaces, we use the curves obtained by planes parallel to coordinate planes
 - Contour curves: setting z = c constant.
 - Trace curves: x = c or y = c constant.

Functions of 2 and 3 variables

- A function of 2 variables with domain $D \subset \mathbb{R}^2$ is a rule f which assigns to each point $(x, y) \in D$, a $f(x, y) \in \mathbb{R}$, write $f: D \to \mathbb{R}$
- Often the domain is implicit
- For functions of 3 variables, we can only draw the contour/level surfaces

Partial Derivatives

June 23, 2021 7:48 PM

Continuity and limits

- For $\lim_{(x,y)\to(a,b)} f(x,y)$, there are infinite number of directions which (x,y) can approach (a, b) along, we need them all to be the same
- For limits to the origin, the easiest way is setting $x = tx_0$, $y = ty_0$.

Partial derivatives

- For a function f(x, y), we can treat x as a variable and y as a constant or vice versa
- $\frac{\partial f}{\partial x} = f_x$ is the derivative of f with respect to x.
- $\frac{\partial x}{\partial f} = f_y$ is the derivative of f with respect to y.

• In terms of limits,
$$f_x(x_0, y_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}$$
.

Higher derivatives

• $f_{xy} = \frac{\partial}{\partial v} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 z}{\partial v \partial v}.$

•
$$f_{rr} = \frac{\partial}{\partial r} \left(\frac{\partial f}{\partial r} \right) = \frac{\partial^2 z}{\partial r^2}$$

- $f_{xx} = \frac{1}{\partial x} \left(\frac{1}{\partial x} \right) = \frac{1}{\partial x^2}$. Theorem: partial derivatives commute $f_{xy} = f_{yx}$.
- *f_{xx}*, *f_{yy}* tells the concavity in *xz*, *yz* plane.
- f_{xy} tells how f_y changes as we change x.

Implicit differentiation

- For any 3 variable function f(x, y, z), we can implicitly define z as a function of x, y.
- z is dependent on x, y, and we can calculate z_x , z_y directly.

Linear approximation

- Consider $l_1: z = f(x_0, y_0) + f_x(x_0, y_0)(x x_0)$ and $l_2: z = f(x_0, y_0) + f_y(x_0, y_0)(y y_0)$.
- They lie in the tangent plane
- Then $f(x,y) \approx f(x_0,y_0) + f_x(x_0,y_0)(x-x_0) + f_y(x_0,y_0)(y-y_0).$

Chain rule

• Given z = f(x, y), x = g(t), y = h(t), we have $z_t = z_x x_t + z_y y_t$.

Similarly, if
$$z = f(g(s,t), h(s,t))$$
, then $\begin{pmatrix} z_s \\ z_t \end{pmatrix} = \begin{pmatrix} x_s & y_s \\ x_t & y_t \end{pmatrix} \begin{pmatrix} z_x \\ z_y \end{pmatrix}$.

- $\begin{pmatrix} x_s & y_s \\ x_t & y_t \end{pmatrix}$ is the Jacobian matrix
- In polar coordinates $x = r \cos \theta$, $y = r \sin \theta$, z = f(x, y).
 - $\circ \quad z_r = z_x \cos \theta + z_y \sin \theta.$
 - $\circ \ z_{\theta} = z_{\gamma}(-r\sin\theta) + z_{\gamma}(r\cos\theta).$

Directional derivative

- Let \vec{u} be the directional vector, $D_{\vec{u}}f(x_0, y_0) = rate of change at <math>(x_0, y_0)$, as we move in the direction \vec{u} at unit speed, $|\vec{u}| = 1$.
- $D_{\vec{u}}f = \frac{df}{dt} = f_x \frac{dx}{dt} + f_y \frac{dy}{dt} = f_x(x_0, y_0)a + f_y(x_0, y_0)b = \langle f_x, f_y \rangle \cdot \vec{u}.$ $\nabla f = \langle f_x, f_y \rangle$ is the gradient of f, it is a vector field.
- $\circ \quad D_{\vec{u}}f = \nabla f \cdot \vec{u}.$
- If \vec{u} is tangent to a contour line, then $D_{\vec{u}}f = 0 \Rightarrow \nabla f \cdot \vec{u} = 0, \nabla f \perp \text{contour}.$
- $D_{\vec{u}}f$ is greatest when \vec{u} is in the direction of ∇f . • ∇f points to the direction in which *f* increases the fastest.
- If F(x, y, z) is a function of 3 variables, then ∇F is a vector field in \mathbb{R}^3 , properties hold.

• Tangent plane:
$$z = z_0 - \frac{F_x}{F_z}(x - x_0) - \frac{F_y}{F_z}(y - y_0)$$
.

Classification of critical points

- For $f: D \to \mathbb{R}$, if D is closed and bounded, f(x, y) will achieve its global max/min at either a critical point or on the boundary.
- A point (x_0, y_0) is critical if $\nabla f(x_0, y_0) = 0$.
- Discriminant (determinant of Hessian matrix)

$$\circ \quad D = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix} = f_{xx}f_{yy} - f_{xy}^2.$$

- Classification:
 - $D(x_0, y_0) > 0, f_{xx} > 0$, local min.
 - $D(x_0, y_0) > 0, f_{xx} < 0$, local max.
 - $D(x_0, y_0) = 0$ not a critical point (inconclusive).
 - $D(x_0, y_0) < 0$, saddle point.

Lagrange multiplier

- Max/min of f(x, y) restricted to boundary curve occurs when the contour curve is tangent to the boundary curve.
- Look for points (x_0, y_0) on the boundary curve g(x, y) where $\nabla f(x_0, y_0) = \lambda \nabla g(x_0, y_0)$.
 - \circ λ is the Lagrange multiplier.
 - This means $f_x = \lambda g_x$, $f_y = \lambda g_y$, g = 0.

Multiple integrals

June 23, 2021 7:48 PM

Definition: $\iint_{D}^{\square} f(x, y) dx dy = \lim_{N \to \infty, M \to \infty} \sum_{i=1}^{M} \sum_{j=1}^{N} f(x_i, y_j) \Delta x_i \Delta y_j.$ Average value of f in $D = \frac{1}{Area(D)} \iint_{D}^{\square} f(x, y) dA$

Properties

• FTC still apply

• Linearity:
$$\iint_D^{\square} Af(x,y) + Bg(x,y)dxdy = A \iint_D^{\square} f(x,y)dxdy + B \iint_D^{\square} g(x,y)dxdy.$$

Theorem:

- If $D = [a, b] \times [c, d]$, $\iint_D f(x, y) dx dy = \int_c^d \int_a^b f(x, y) dx dy$.
- Fubini Theorem: $\iint_D f(x, y) dx dy = \int_c^d \int_a^b f(x, y) dx dy = \int_a^b \int_c^d f(x, y) dy dx.$

D is vertically sliceable if it is of the form $D = \{(x, y) : g_1(x) \le y \le g_2(x), a \le x \le b\}$.

• Then $\iint_D^{\square} f(x,y) dx dy = \int_c^d \int_{g_1(x)}^{g_2(x)} f(x,y) dy dx.$

D is horizontally sliceable if it is of the form $D = \{(x, y) : g_1(y) \le x \le g_2(y), a \le y \le b\}$. • Then $\iint_D^{\square} f(x, y) dx dy = \int_c^d \int_{g_1(y)}^{g_2(y)} f(x, y) dx dy$.

Sometimes in a region that is both vertically and horizontally sliceable, an integral is possible to do in only one way

If f(x, y) is odd in x, f(-x, y) = -f(x, y), and R is symmetric under reflection about y - axis, then $\iint_{R}^{E} f(x, y) dx dy = 0$

Integration in polar coordinates

- $x = r \cos \theta$, $y = r \sin \theta$, $\theta = \arctan \frac{y}{r}$.
- Let $R = \{(r, \theta) : a \le r \le b, \alpha \le \theta \le \beta\}, \Delta r = \frac{b-a}{N}, \Delta \theta = \frac{\beta-\alpha}{M}.$
- Then $\iint_R^{\square} f(r,\theta) dA = \lim_{N \to \infty, M \to \infty} \sum_{i=1}^M \sum_{j=1}^N f(r_j,\theta_i) \Delta r_j \Delta \theta_i = \int_a^b \int_\alpha^\beta f(r,\theta) r d\theta dr.$
- Radially sliceable region: $R = \{(r, \theta) : g_r(\theta) \le r \le g_2(\theta), \alpha \le \theta \le \beta\}.$ • Then $\iint_R f(r, \theta) dA = \int_{\alpha}^{\beta} \int_{g_1(\theta)}^{g_2(\theta)} f(r, \theta) r dr d\theta.$

Applications

- Mass
 - Metal object of shape *R*, suppose it is made of a metal of density ρ ,
 - then $m(R) = \rho Area(R)$ • Suppose $\rho = \rho(x, y)$.

• Mass=
$$\iint_R^{\square} \rho(x, y) dx dy$$
.

• Center of mass

$$\circ \quad \left(\overline{x}, \overline{y}\right) = \left(\frac{\iint_R^{\square} x\rho(x,y)dxdy}{\iint_R^{\square} \rho(x,y)dxdy}, \frac{\iint_R^{\square} y\rho(x,y)dxdy}{\iint_R^{\square} \rho(x,y)dxdy}\right)$$

Surface area

•
$$Area(P_{ij}) = |\vec{a} \times \vec{b}| = \sqrt{1 + f_x^2 + f_y^2} \Delta x \Delta y.$$

• Total area $S(A) = \iint_R \sqrt{1 + f_x^2 + f_y^2} dx dy.$

$$\circ S(A) \geq Area(R).$$

• z = f(x, y) + C has the same surface area as f(x, y).

MATH253 Page 5

Triple integral

- $\iiint_E F(x, y, z) dV.$
- $Volume(E) = \iiint_E^{\square} dV.$
- Type I: solid between two graphs $z = u_1(x, y), z = u_2(x, y), (x, y) \in R$. $E = \{(x, y, z) : (x, y) \in R, u_1 \le z \le u_2\}.$

$$\circ E = \{(x, y, z) : (x, y) \in R, u_1 \le z \\ \circ \iiint_E^{\square} FdV = \iint_R^{\square} \int_{u_1}^{u_2} Fdz \, dxdy.$$

• Type II: solid between two graphs $x = u_1(y, z), x = u_2(y, z), (y, z) \in \mathbb{R}$.

$$\circ \quad E = \{ (x, y, z) : (y, z) \in R, u_1 \le x \le u_2 \}.$$

- $\circ \quad \iiint_E FdV = \iint_R \int_{u_1}^{u_2} Fdx \, dzdy.$
- Type III: solid between two graphs $y = u_1(x, z), y = u_2(x, z), (x, z) \in \mathbb{R}$. ○ $E = \{(x, y, z) : (x, z) \in R, u_1 \le y \le u_2\}.$

$$\circ \quad \iiint_E^{\square} F dV = \iint_R^{\square} \int_{u_1}^{u_2} F dy \, dx dz.$$

Cylindrical coordinates

- Let $x = r \cos \theta$, $y = r \sin \theta$, then (r, θ, z) forms the cylindrical coordinates.
- Let $E = \{(x, y, z) : (x, y) \in R, g_1 \le z \le g_2\}, R = \{(r, \theta) : h_1 \le r \le h_2, \theta \in [\alpha, \beta]\}.$ Then $\iiint_E^{\square} FdV = \iint_R^{\square} \int_{g_1}^{g_2} Fdz \, dA = \int_{\alpha}^{\beta} \int_{h_1}^{h_2} \int_{g_1}^{g_2} Frdz \, dr \, d\theta.$

Spherical coordinates

- $x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \sin \theta$, $z = \rho \cos \phi$, $\theta \in [0, 2\pi]$, $\phi \in [0, \pi]$. • ϕ measured from positive z - axis.
- $\Delta V = \rho^2 \sin \phi \Delta \rho \Delta \phi \Delta \theta$.
- $\iiint_E^{\square} F dV = \iiint_E^{\square} F \rho^2 \sin \phi \, d\rho d\phi d\theta.$

Vectors and curves

June 23, 2021 7:45 PM

Vectors in \mathbb{R}^2 and \mathbb{R}^3

- A vector is a quantity with both magnitude and direction indicated by arrows
- Magnitude $|\vec{a}|$ is the length of the vector \vec{a} .
- Two vectors are the same if they have the same direction and magnitude
- Addition: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$.
- Scalar multiplication $c\vec{a} = \vec{a} + \vec{a} + \dots + \vec{a}$.
- Zero vector $\vec{0}$: the only vector of magnitude 0, has no direction.
- The vector from (0,0,0) to (*a*, *b*, *c*) is denoted as < *a*, *b*, *c* >.
- Unit vectors:

$$\circ$$
 $\vec{\iota} = < 1,0,0 >.$

 $\circ \vec{j} = < 0,1,0 >.$

$$\circ k = < 0,0,1 >.$$

Dot product

- Geometric definition: $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$.
- Algebraic: $\vec{a} = \langle a_1, a_2, a_3 \rangle$, $\vec{b} = \langle b_1, b_2, b_3 \rangle$, then $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$.
- Remark: $\vec{a} \cdot \vec{b} = 0 \Leftrightarrow \vec{a} \perp \vec{b}$.

Cross product

- Geometric: $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta$.
 - Direction of $\vec{a} \times \vec{b}$ is normal to both \vec{a} and \vec{b} .

• Algebraic:
$$\vec{a} \times \vec{b} = \begin{vmatrix} i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_2 \end{vmatrix}$$

• Remark: $\vec{a} \times \vec{b} = 0 \Leftrightarrow \vec{a} \parallel \vec{b}$.

Curves

• Define
$$r: \{ (x(t), y(t)) \in \mathbb{R}^2 : r(t) = \langle x(t), y(t) \rangle \}.$$

Derivatives

- $r'(t) = \frac{d}{dt} r(t) = \lim_{h \to 0} \frac{r(t_0 + h) r(t_0)}{h}$. • Rules: • $\frac{d}{dt}(a \cdot b) = a' \cdot b + a \cdot b'$. • $\frac{d}{dt}(a \times b) = a' \times b + a \times b'$. • $\frac{d}{dt}(a(s(t))) = a'(s(t))s'(t), s(t)$ is a scalar.
- Derivative of r(t) is tangent to r(t), $r'(t) \cdot r(t) = 0$

• Unit tangent
$$T = \frac{r'(t)}{|r'(t)|}$$
.

• Arclength is related to the magnitude of the local velocity vector: $\frac{ds}{dt} = \left| \frac{dr}{dt} \right|$.

•
$$s(T) = \int_{T_0}^T |r'(t)| dt + s(T_0)$$

For 3D inputs

- Position $r(t) = \langle x(t), y(t), z(t) \rangle$.
- Velocity r'(t) = < x', y', z' >.
- Acceleration $r''(t) = \langle x'', y'', z'' \rangle$.
- Speed $|r'(t)| = \sqrt{(x')^2 + (y')^2 + (z')^2}$.

• Distance travelled $s(T) - S(T_0) = \int_{T_0}^T |r'(t)| dt$.

Parametrization methods

- Polar coordinates
- Cartesian coordinates
- Arclength

Curvature

• ρ is the radius of curvature.

$$\circ \ \rho = \left| \frac{ds}{d\theta} \right|.$$

- Center of curvature: $p + \rho N$.
- $k = \frac{1}{\rho}$ is the curvature and is a measure of how tight the curve turns.

r''.

$$\circ k = \left|\frac{ds}{d\theta}\right|^{-1} = \frac{|r' \times r''|}{|r'|^3}$$

- When k is max, $a \perp v$ iff v is constant.
- When $k = 0, a \parallel v$.
- If $r \parallel a$, then $r \times v$ is constant, a = v'T + kvN.

Unit tangent and normal

•
$$T = \frac{r'}{|r'|} = \frac{dr}{ds}$$
.
• $N = \frac{T'}{|T'|}$, it is in the direction of $r' \times \frac{dT}{ds} = N(s)k(s)$.

Frenet Frame

• Binormal vector $B = T \times N$ is orthogonal to both T and N.

•
$$\begin{pmatrix} T\\N\\B \end{pmatrix}' = \begin{pmatrix} 0 & \kappa & 0\\ -\kappa & 0 & \tau\\ 0 & -\tau & 0 \end{pmatrix} \begin{pmatrix} T\\N\\B \end{pmatrix}.$$

• Torsion:
$$\tau(s) = -B' \cdot N = \frac{r' \times r'' \cdot r'''}{|r' \times r''|^2}$$
.
 $\tau > 0$, rotation is counter clockwise.

Path integral

- A measure of work done on a particle moving along a curve γ inside a scalar force field f(x, y, z).
- $\int_{Y} f(x, y, z) ds = \int_{a}^{b} f(r(t)) |r'(t)| dt.$
- In general, if γ_1 and γ_2 are reversed, $\gamma_1 = -\gamma_2$,
 - then $-\int_{\gamma_1} f(r(t)) |r'(t)| dt = \int_{\gamma_2} f(r(t)) |r'(t)| dt$.
 - \circ $\;$ But it does not affect the integration with respect to arclength
 - Need to ensure $a \le t \le b$ and the curve is positively oriented.

Vector fields

- Velocity field and force field
- V field $v(x, y, z) = \langle v_x, v_y, v_z \rangle$. • E.g. $v = \langle y, x \rangle$.

Gradients

- $\nabla = < \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} >.$
- Potential function: a vector field is said to be conservative if there exists a scalar and a continuous function ϕ such that $v = \nabla \phi$ or $F = \nabla \phi$.

Irrotational flow (curls)

• Curl describe the rotation of a vector field

- They also help check if a vector field is conservative
- $curl F = \nabla \times F$.
- If $\nabla \times F = 0$, then the vector field is conservative

Some important operations

- $grad f = \nabla f = \langle f_x, f_y, f_z \rangle$. $div F = \nabla \cdot F = \frac{\partial}{\partial x} F_1 + \frac{\partial}{\partial y} F_2 + \frac{\partial}{\partial z} F_3$. The rate of which fluid is exiting a volume

•
$$curl F = \nabla \times F = \begin{vmatrix} l & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{vmatrix}$$

Streamlines

- It maps out trajectories of massless particles in a vector field
- $r' \times v(r(t)) = 0.$
- This gives a family of curves that are instantaneously tangent to the vector field, so the vector field can be defined as: $v = \nabla \times \psi$, where ψ is the stream function (velocity potential).

Line integrals in vector fields

- · We want the work done on a particle travelling inside a vector field
- $W = \int_{Y} F(t) \cdot T(t) ds = \int_{Y} F \cdot dr = \int_{a}^{b} F(r(t)) \cdot r'(t) dt.$
- If a vector field is conservative, then $\int_{\mathcal{V}} F \cdot dr = \phi(r(b)) \phi(r(a))$.

Path independence

- F is conservative if there exists a scalar and continuous potential function such that $F = \nabla \phi$.
- *F* if conservative if the curl of the vector field is zero, $\nabla \times F = 0$.
- For conservative fields, $\int_{\gamma_1} F \cdot dr = \int_{\gamma_2} F \cdot dr = \phi(p_1) \phi(p_0)$ for any path from p_0 to p_1 .

Summary for a continuous vector field in \mathbb{R}^2 or \mathbb{R}^3 .

- $F = \nabla \phi$ if *F* is conservative.
- $\int_{\mathcal{V}} F \cdot dr = 0$ for closed curves.
- The integral is path independent for curves that start and end at the same point.
- If F is continuous and differentiable, then F is conservative if and only if $\nabla \times F = 0$.

Green's theorem

- The line integral of F(x, y) around a simple closed curve is the same as the double integral of $\nabla \times$ F with the boundary.
- Define $\partial \Omega$ to be the boundary.
- Orientation:
 - Counter clockwise is positive.
 - Clockwise is negative

•
$$\int_{\partial \Omega} F \cdot dr = \iint_{\Omega} \nabla \times F dA.$$

- $\circ F_x, F_y$ need to be continuous and differentiable.
 - $\circ \int_{\partial\Omega} F \cdot dr > 0$ if F on average is along the direction of dr.
 - $\int_{\partial\Omega} F \cdot dr < 0$ if F on average is against the direction of dr.
 - A counter clockwise rotation within Ω and on $\partial \Omega$ is when $\nabla \times F > 0$.
- If $\nabla \times F = 1$, we have $\int_{\partial \Omega} F \cdot dr = Area(\Omega)$.

$$\quad \text{Need} \, \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} = 1.$$

- It surrounds vector fields that are not continuous/differentiable at every point with the surface Ω.
- Suppose we have a region Ω_1 with a hole Ω_2 in it, $\partial \Omega_1$ is positively oriented and $\partial \Omega_2$ is negative oriented. Then $\iint_{\Omega}^{\square} \nabla \times F dA = \iint_{\Omega}^{\square} \nabla \times F dA + \iint_{\Omega}^{\square} \nabla \times F dA$.

$$\circ \quad \iint_{\Omega}^{\square} \nabla \times F dA = \int_{\partial \Omega_1} F \cdot dr + \int_{\partial \Omega_2} F \cdot dr = \int_{\partial \Omega} F \cdot dr.$$

Divergence theorem

- 2D divergence theorem is to diverge what Green's theorem is to curl
- The flux F through a boundary curve ∂Ω is the same as the differentiable integral of ∇ · F over all Ω.

• 2D:
$$\int_{\partial\Omega} F \cdot nds = \iint_{\Omega} \nabla \cdot F dA.$$

• 3D:
$$\iint_{S}^{\square} F \cdot nd\Sigma = \iiint_{V}^{\square} \nabla \cdot FdV.$$

Surface integrals and theorems

June 23, 2021 9:26 PM

Parametrized surfaces

- Build a function for the surface: root finding method to find x, y, z at the surface.
- Parametrize the surface such that each point is described by two parameters u, v, and get $(u, v) \in \mathbb{R}^2$, $r(u, v) = \langle x(u, v), y(u, v), z(u, v) \rangle \in \mathbb{R}^3$.
- Parametrized plane: $r(u, v) = \langle u, v, -\frac{A}{c}u \frac{B}{c}v \frac{D}{c} \rangle$.

Tangent plane: $n < x - x_0, y - y_0, z - z_0 > = 0$.

- Given $r(u, v) = \langle x(u, v), y(u, v), z(u, v) \rangle$.
- $T_u = \langle x_u, y_u, z_u \rangle$.
- $T_v = \langle x_v, y_v, z_v \rangle$.
- $n = T_{n} \times T_{n}$.

A surface Ω is smooth if it has a smooth parametrization r(u, v) such that x, y, z are smooth functions and $T_u \times T_v \neq 0$ for any u, v.

Surface area

- To find the surface area of a complex surface, construct a tangent plane at $r(u_0, v_0)$ such that $r_u = T_u, r_v = T_v.$
- The surface area is $\iint_{D} |r_u \times r_v| dA$, where D is the parametrized region.
- If we isolate a small region, we can see that the surface can be linearly approximated. • $P = r(u_0, v_0) + r_u \Delta u + r_v \Delta v$, when $\Delta u, \Delta v$ are small.
- The area of the cell is equivalent to the magnitude of the vector that is orthogonal to the plane

A useful parametrization (surface of revolution)

- $r(u, v) = \langle f(v) \cos u, f(v) \sin u, v \rangle$.
- This ensures a rectangular parameterization domain.

Surface integral

- Surface integral of a scalar function: $\iint_{\Omega}^{\square} f(x, y, z) d\Omega = \iint_{D}^{\square} f(r(u, v)) |r_u \times r_v| dA.$
- Surface integral of a continuous vector field. To find the flux of F through a surface Ω . • Outward normal: $n = \frac{r_u \times r_v}{|r_u \times r_v|}$

 - $\iint_{\Omega} F \cdot nd\Omega = \iint_{D} F(r(u,v)) \cdot (r_u \times r_v) dA.$ For a continuously differentiable and smooth vector field, we can apply divergence theorem: $\iint_{\Omega} F \cdot nd\Omega = \iiint_{V} \nabla \cdot FdV.$

Stokes' theorem

- It relates the surface integral of the curl of a vector field with the line integral of that same vector field around the boundary of the surface integral
- For each small piece $\int_{\partial \Omega_i} F \cdot dr = (\nabla \times F) \cdot nd\Omega_i$.
- $\int_{\partial\Omega} F \cdot dr = \iint_{\Omega}^{\square} (\nabla \times F) \cdot nd\Omega.$
- Must make sure that n is oriented positively with counter clockwise rotation and negatively with clockwise rotation.
- There are thus two ways to calculate the surface integral of complex shapes
 - Project the surface to the plane the boundary curve $\partial \Omega$ creates.
 - Cur the hemisphere into sectors instead of the plane that's bounded within the boundary curve.

• If there is no bounding curve, for a closed surface, $\int_{\partial\Omega} F \cdot dr = \iint_{\Omega}^{\square} (\nabla \times F) \cdot nd\Omega = 0.$

MATH317 Page 5