Limits & continuity

2019年7月4日 18:57

Limits 1.

a. Drawing tangents and a first limit

To find the tangent line to $y = x^2$ at point P(1,1), consider a nearby point Q(1+h,1 + h^2), the line that goes through PQ is called the secant line. It has slope $\frac{\Delta y}{\Delta x} = \frac{(1+h)^2}{1+h-1}$ $\frac{(1+h)^{-1}}{1+h-1} = h + 2$, take the limit as h goes to 0, $\lim_{h \to 0}$ Δ $\frac{dy}{dx}$ = 2, this is the slope of the tangent line($y = 2x - 1$)

b. Another limit and computing velocity

E.g. $s(t) = 4.9t^2$, $s(t)$ is the distance travelled after t seconds, average velocity between t=1s and t=1.1s is $\bar{v} = \frac{change \text{ in position}}{change \text{ in time}} = \frac{s(1.1) - s(1)}{1.1 - 1} = 10.29 \text{ m/s}.$ change in time $1.1 - 1$

As interval becomes arbitrarily small, \bar{v} approaches 9.8m/s which is the instantaneous velocity, also the slope of the tangent line to $s(t) = 4.9t^2$ at t=1

Definition: Let $s(t)$ be the position as a function of time, the instantaneous velocity at t=a is l:
h $\frac{s}{1}$ \boldsymbol{h}

c. The limit of a function

 $\lim f$

Meaning: as x gets arbitrarily close to a, but not equal to a, $f(x)$ gets arbitrarily close to L

Definition(one-sided limits):

 $\lim f(x) = L$, $f(x)$ approaches L as x approaches a from left

 $\lim_{x \to a} f(x) = L$, $f(x)$ approaches L as x approaches a from right

X **Theorem:** $\lim_{x\to a} f(x) = L$ if and only if $\lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x)$ Limits can approach $\pm \infty$

Calculating limits with limit laws d.

i. $\lim c = c$, $\lim x$

ii. Limits can interchange with basic arithmetic operations

Assume $\lim_{x \to a} f(x) = L$, $\lim_{x \to a} g(x) = K$ both exist, then $\lim_{x \to a} f(x) \pm g(x) = L \pm K$, $\lim_{x \to a} f(x) \times g(x) = L \times K$, $\lim_{x \to a} cf(x) = cL$, $\lim_{x \to a} \frac{f(x)}{g(x)}$ $\frac{f(x)}{g(x)} = \frac{L}{R}$ $\frac{2}{K}$ (assuming K \neq 0) \boldsymbol{n}

- iii. Limits and powers: $\lim_{x\to 0} (f(x))^n = (\lim_{x\to 0} f)(x)$
- iv. Suppose $f(x) = g(x)$ except when x=a, and $\lim_{x \to a} g(x)$ exists, then $\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$
- **v. Squeeze theorem**: let $f(x)$, $g(x)$, $h(x)$ be functions such that $g(x) \le f(x) \le h(x)$, except possibly at $x = a$, suppose $\lim h(x) = \lim g(x)$, then $\lim f(x) = \lim h$ $\lim g$

e. Limits at infinity

Definition: $\lim_{x \to b} f(x) = L f(x)$ approaches L as x becomes arbitrarily large **Remark**: when the limit exists, it is a horizontal asymptote

2. Continuity

Definition: a function is continuous at a , if $\lim f$

- i. $\lim_{x \to \infty} f(x)$ exists
- ii. a is in domain
- iii. $\lim f$

Left continuous: $\lim f$

Right continuous: $\lim_{x\to a^+} f$

Continuous on $(a, b) \Leftrightarrow$ continuous at every point in (a, b)

Continuous on $[a, b] \Leftrightarrow$ continuous at every point in (a, b) + right continuous at $a +$ left continuous at b

Theorem: Arithmetic operations (+-×÷) preserves continuity, providing that no zero-division

- a. All elementary functions (polynomials, rational, trig, inverse, log, exponential) are continuous on their domain
- b. **Continuity of composed functions:** $g(x)$ is continuous at a , $\lim_{x\to a} g(x) = b$, and is continuous at b, then $f \circ g(x)$ is continuous at a

c. Intermediate value theorem (IVT)

Let f be a continuous function on [a, b], L be a constant between $f(a)$, $f(b)$, then there is a point $c \in (a, b)$, so that $f(c) = L$

Derivatives

2019年7月6日 14:15

1. Derivative:

Definition: The derivative of a function at a point A is $f'(a) = \frac{1}{h}$ f $rac{f(a+h)}{h}$ **Meaning:**

- i. the instantaneous rate of change
- ii. Slope of the tangent line

Differentiability a.

- i. If $f'(a)$ exists (the definition of limit exists), then $f(x)$ is differentiable at
- ii. If $f(x)$ is differentiable at every point in an interval (a, b) , we say $f(x)$ is differentiable on (a, b)
- iii. If $f(x)$ is differentiable at a, then $f(x)$ is continuous at a

b. Higher order derivatives

$$
f''(x) = \frac{d}{dx}f'(x) = \frac{d}{dx}\frac{df}{dx} = \frac{d^2f}{dx^2}
$$

c. Interpretation of derivatives The general equation for tangent line to $f(x)$ at $x = a$ is $y = f(a) + f'(a)$

2. Differentiation rules

If $s(x) = af(x) + bg(x)$, then $s'(x) = af'(x) + bg'(x)$ $\mathbf d$ $\frac{d}{dx}x^r = rx^r$ $\mathbf d$ $\frac{d}{dx}f(x)g(x) = f'(x)g(x) + f(x)g'(x)$ $\mathbf d$ $\frac{1}{d}$ f '
g $f'(x)g(x) - f(x)g'(x)$ $\frac{g(x)^2}{g(x)^2}$ $\mathbf d$ $\frac{d}{dx}a^x = a^x l$ $\mathbf d$ $\frac{1}{d}$ $\mathbf d$ $\frac{1}{d}$ a. **Chain rule:** $\frac{d}{dx} f(g(x)) = f'(g(x))g'(x)$ **Implicit differentiation:** $\frac{d}{dx}f(x)^2 = 2f(x)f'(x)$, $\frac{d}{dx}$ $\frac{a}{dx}y^2$ b. **Implicit differentiation:** $\frac{d}{dx}f(x)^2 = 2f(x)f'(x)$, $\frac{d}{dx}y^2 = 2y\frac{d}{dx}$ **c. Inverse trigonometry functions:** $\mathbf d$ $\frac{1}{d}$ $\mathbf{1}$ $\sqrt{1-x^2}$ $\mathbf d$ $\frac{1}{d}$ $\mathbf{1}$ $\sqrt{1-x^2}$ $\mathbf d$ $\frac{1}{d}$ $\mathbf{1}$ $\frac{1}{1+x^2}$ **Applications of derivative 3. Optimization a. i. Max and min values Definition**: Let $f(x)$ be a function with domain D, $f(x)$ has a **global max** at $c \in D \Leftrightarrow f(c) \ge f(x)$ for all $x \in D \Leftrightarrow f(c)$ is the maximum of $f(x)$

 $f(x)$ has a **global min** at $c \in D \Leftrightarrow f(c) \leq f(x)$ for all $x \in D \Leftrightarrow f(c)$ is the minimum of $f(x)$

 $f(x)$ has a **local max** at $c \in D \Leftrightarrow f(c) \geq f(x)$ for all x near c

 $f(x)$ has a **local min** at $c \in D \Leftrightarrow f(c) \leq f(x)$ for all x near c

Theorem: Every local max/min is a critical point or singular point. i.e. $f'(c) = 0$ if exists

ii. Finding max and min values

Theorem: if $f(x)$ has a global max/min in [a, b] at $x = c \in [a, b]$, there are three possibilities

- 1) $f'(x) = 0$ critical point
- 2) $f'(x)$ DNE singular point
- 3) $c = a$, $c = b$ endpoint

Further, if $f(x)$ is continuous on [a, b], it must have a global max and min on $[a, b]$

Mean value theorem b.

i. Rolle's Theorem

Let $f(x)$ be a function satisfying: $f(x)$ is continuous on $[a, b]$, differentiable on (a, b) , and $f(a) = f(b)$. Then there exists at least one point $(c, f(c))$, $c \in (a, b)$ with $f'($

ii. Mean Value Theorem

Let $f(x)$ be a function satisfying: $f(x)$ is continuous on [a, b] and differentiable on (a, b) . Then there exists at least one $c \in (a, b)$, such that $f'(c) = \frac{f}{c}$ $rac{f(b)}{b}$

iii. Corollary

 $f(x)$ and $g(x)$ are differentiable on [a, b]

- 1) If $f'(x) = 0$ on [a, b], then $f(x)$ is constant on
- 2) If $f'(x) = g'(x)$ on [a, b], then $f(x) g(x)$ is constant on
- 3) if $f'(x) > 0$ on [a, b], then $f(x)$ is increasing on
- 4) if $f'(x) < 0$ on [a, b], then $f(x)$ is decreasing on

c. Graph sketching

Domain, range, $x - int$, $y - int$

Horizontal asymptotes: $y = \lim f(x)$ and/or $\lim f(x)$ if exist

Vertical asymptotes: $x = a$ if $\lim_{x \to a^{-}} f(x) = \pm \infty$ and/or $\lim_{x \to a^{+}} f(x)$

Monotonicity: $f'(x) > 0$ increasing; $f'(x) < 0$ decreasing; $f'(x) = 0$ local max/min **Concavity:** $f''(x) > 0$ concave up $(f(x))$ lies above all tangent lines); $f''(x) < 0$ concave down ($f(x)$ lies below all tangent lines); $f''(x) = 0$ point of inflection (if $f(x)$ is continuous and its concavity changes at $f''(x) = 0$) **Theorem**: c is a critical point, if $f''(c) > 0$, $f(c)$ is a local min;if $f''(c) < 0$, $f(c)$ is a local max

Symmetry:

- i. Even function $f(x) = f(-x)$
- ii. odd function $f(x) + f(-x) = 0$
- iii. Periodic $f(x + T) = f(x)$

Applications of derivative in real world 4.

a. Velocity & acceleration

 $v(t) = s'(t)$, $a(t) = v'(t) = s'$

b. Exponential growth & decay

Quantity $y(t)$, whose rate of change is proportional to $y(t)$ $\mathbf d$ $\frac{dy}{dt} = ky(t)$, then $y(t) = ce^{kt}$, c is the initial value

General formula for doubling time: $t = \frac{1}{2}$ $\frac{1}{k}$

c. Carbon dating (half life problem)

 $y(t) = ce^{kt}, k = -\frac{1}{be^{kt}}$ $\boldsymbol{\mathsf{h}}$

d. Newton's law of cooling

Rate of change of temperature is proportional to the difference between temperatures $\mathbf d$ $\frac{du}{dt} = k(T - A)$, A is the environment temperature $T(t) = ce^{kt} + A$,

e. Related rates

E.g. Air is being pumped into a spherical balloon at a constant rate of $100 cm³/s$. How fast is the radius r changing when r=25cm?

Solution:
$$
V = \frac{4}{3}\pi r^3
$$

\n
$$
\frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}
$$
\n
$$
100 = 4\pi \times 25^2 \frac{dr}{dt}
$$
\n
$$
\frac{dr}{dt} = \frac{1}{25\pi}
$$

5. Taylor polynomials

Definition: The nth degree Taylor Polynomial for $f(x)$ about $x = a$ is $T_n = f(a) +$

$$
f'(a)(x-a) + \frac{f''(x)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n = \sum_{k=0}^n \frac{f^k(a)}{k!}(x-a)^k
$$

Specially, when $a = 0$, it is an **Maclaurin polynomial**

a. **Lagrange remainder theorem:** suppose $f^{n+1}(x)$ exists for all points in $[b, d]$, if $x,a\in[b,d]$, then the nth degree Taylor approximation around satisfies $R_n($ $f(x) - T_n(x) = \frac{1}{a^n}$ $\frac{1}{(n+1)!} f^{n+1}(c) (x-a)^{n+1}$ for c some between x and a. c is not specified.

Let
$$
|f^{n+1}(c)| \le M
$$
, then $|R_n(x)| \le \frac{M}{(n+1)!} |(x-a)^{n+1}|$

6. Indeterminant forms and L'Hopital's rule

- **Definition:** consider $\lim_{n \to \infty} \frac{f}{a}$ j
g
	- If $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$, it's called an indeterminant form of type $\frac{0}{0}$

If
$$
\lim_{x\to a} f(x) = \pm \infty
$$
 and $\lim_{x\to a} g(x) = \pm \infty$, it's called an indeterminant form of type $\frac{\infty}{\infty}$
Theorem: L'Hopital's rule

Suppose \lim_{a} $\frac{f(x)}{g(x)}$ is an indeterminant form, then $\lim_{x\to a} \frac{f}{g}$ $\frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$ $\frac{f(x)}{g'(x)}$, provided right-hand side exists or $=\pm \infty$

7. Antiderivatives

(intro to integral) **Definition:** a function F is called an antiderivative of f on an interval I when $F'(x) = f(x)$ on Ι

Integrals

2019年7月10日 13:23

1. Summation notation ∑

If $j \leq k$ are integers and $a_j, a_{j+1}, ..., a_k \in R$, then $\sum_{i=1}^k a_i$ $\sum_{i=j}^{n} a_i =$

a.
$$
\sum_{i=1}^{n} i = \frac{n(n+1)}{2}
$$

\nb.
$$
\sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}
$$

\nProof: $(1 + i)^{3} - i^{3} = 3i^{2} + 3i + 1$
\nSum both sides, we can get
\n
$$
(1 + n)^{3} - 1 = 3 \sum_{i=1}^{n} i^{2} + 3 \frac{n(n+1)}{2} + n
$$

\n
$$
\Rightarrow \sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}
$$

\nc.
$$
\sum_{i=0}^{n} r^{i} = \frac{r^{n+1}-1}{r-1}
$$
, for $r \neq 1$

Least Upper Bound

Definition: Let A be a non-empty set in R bounded above, i.e. $\exists k \in R$, such that $\forall a \in A$, $a \leq k$ A real number u^* is the <mark>least upper bound (supremum/sup)</mark> of A if and only if

- a. u^* is an upper bound
- b. If u is any upper bound of A, then $u^* \leq u$

Write <mark>supA = u*</mark>

Proposition: If A has a least upper bound, then it is unique

Proof: let u_1 , u_2 be the least upper bounds of A,

 u_2 is an uper bound, u_1 is the least upper bound, by definition, $u_1 \le u_2$

By symmetry,
$$
u_2 \leq u_1
$$

Thus, $u_2 = u_1$, A has only one least upper bound

Proposition: let A be a non-empty set in R with a largest element M, then $supA = M$

Greatest lower bound

Definition: Let A be a non-empty set in R bounded below, i.e. $\exists k \in R$, such that $\forall a \in A$, $a \geq k$ A real number l^* is the least upper bound (infimum/inf) of A if and only if

a. l^* is an lower bound

b. If *l* is any lower bound of A, then $l^* \leq l$

Write <mark>inf $A = l^*$ </mark>

Proposition: If A is a non-empty set in R bounded below, then $infA$ exists and $infA = -sup(-A)$ **Completeness Axiom (for real numbers):** if $A \neq \phi$, $A \subseteq R$, and A is bounded above, then A has a least upper bound. (A is bounded below, then A has a greatest lower bound) (Axiom does not follow from any other properties of R)

2. The Riemann Integral

Let $f: [a, b] \to R$ be bounded, i.e. $\exists k \in R$, such that $\forall x \in [a, b]$, $|f(x)| \leq k$ If $f \ge 0$ on [a, b], the Riemann Integral finds and defines the area A between $f(x)$ and $y = 0$ If f can be negative, A will be the **signed area** where $f < 0$ contributes negative area **Definition:** A partition P of [a, b] is a finite collection of points in [a, b], $P = \{x_0, x_1, ..., x_n\}$, where $a =$ $x_0 < x_1 < \cdots < x_n = b$ Let $\Delta x_i = x_i - x_{i-1} > 0$, $i = 1, 2, ..., n, \sum_{i=1}^{n}$ $\sum_{i=1}^{n} \Delta x_i =$ Let $M_i = \sup\{f(x): x_{i-1} \le x \le x_i\}$, $m_i = \inf\{f(x): x_{i-1} \le x \le x_i\}$ $M_i \Delta x_i$ = area of the larger rectangle (outer rectangle) \boldsymbol{m} Upper Riemann sum for P: $U(f, P) = \sum_{i=1}^{n}$ $\int_{i=1}^{n} M_i \Delta x_i =$

 $\ddot{}$

Lower Riemann sum for P: $L(f, P) = \sum_{i=1}^{n}$ $\sum_{i=1}^{n} m_i \Delta x_i =$

Area inequality: However you define A, it must satisfy $L(f, P) \le A \le U(f, P)$ Lemma: Let $P \subset Q$ be subdivisions of $[a, b]$, then $L(f, P) \le L(f, Q) \le A \le U(f, Q) \le U(f, P)$ Proof for $L(f, Q) \le U(f, Q)$: $Q = \{x_0, x_1, ..., x_n\}$, $m_i \Delta x_i \leq M_i \Delta x_i$, thus $\sum_{i=1}^n$ $\sum_{i=1}^n m_i \Delta x_i \leq \sum_{i=1}^n$ $\int_{i=1}^{R} M_i \Delta x_i(L(f, Q) \leq U(f, Q))$ Proof for $U(f,Q) \leq U(f,P)$: start with special case $Q = P \cup \{y\}$, choose j such that $y \in (x_{i-1}, x_i)$ $M_j = \sup\{f(x): x \in (x_{j-1}, x_j)\},\$ $M'_i = s$ $M_i^{\prime\prime} = S$ $M_i(x_i - x_{i-1}) = M_i$ $\geq M'_i(x_i - y) + M'_i$ \sum j i \ddag \boldsymbol{n} i \geq j i $+ M'_i(x_i - y) + M'_i$ \boldsymbol{n} į $\Rightarrow U(f, P) \geq U(f, Q)$

In general case, we can construct $P = P_1 \subset P_2 \subset \cdots \subset P_m = Q$, by adding one point at a time. **Correlation:** For any partitions P, P' of $[a, b]$,

Proof: Let Q=P \cup P' (still a partition of $[a, b]$), Apply Lemma $U(f, P')$

Definition: Let $f: [a, b] \rightarrow R$ be bound, and the Riemann(or definite) integred, then f is Riemann integrable on [a, b] if and only if $supL = inf U$ al of f over [a, b] is \int_a^b $\int_{a}^{b} f(x) dx = supL = infU.$ It is the unique real number sub that for $\forall P, L(f, P) \leq \int_a^b$ $\int_{a}^{b} f(x) dx \leq$

If $f \geq 0$ on $[a, b]$, then \int_{a}^{b} $\int_a^b f(x) dx$ is the area between $f(x)$ and x-axis

Lemma: let $\Delta \ge 0$, if $\forall \varepsilon > 0$, $\Delta < \varepsilon$, then $\Delta = 0$ (can be proved by contradiction)

Theorem (Integral test): Let $f: [a, b] \to R$ be bounded, f is integrable if and only if $\forall \varepsilon > 0$, 3 subdivision P such that $U(f, P) - L(f, P) < \varepsilon$, and in this case:

- I \boldsymbol{b} \boldsymbol{a} a. $|U(f, P) - | f(x) dx|$ b
- I α b. $|L(f, P) - | f(x) dx|$

Proof: let $\varepsilon > 0$, by hypothesis $\exists P$ such that $U(f, P) - L(f, P) < \varepsilon$ $U(f, P) \ge \inf U$, $L(f, P) \le \sup L$ $\Rightarrow U(f, P) - L(f, P) \ge \inf U - \sup L \ge 0 \Rightarrow \inf U = \sup L$ \Rightarrow \boldsymbol{b} α $\overline{}$

Theorem (Additivity of domain):

a. Let $f: [a, b] \to R$ be bounded and integrable on $[a, b]$, $a < c < b$, then f is integrable on $[a, c]$ and $[c, b]$, and \int_a^b $\int_a^b f(x) dx = \int_a^c$ $\int_a^c f(x) dx + \int_c^b$ ϵ

Proof: let $\varepsilon > 0$, by integral test, $\exists P$ such that $U(f, P) - L(f, P) < \varepsilon$

Let $P^* = P \cup \{c\}$ be partitions of $[a, c]$, $P^* = \{x_0, x_1, ..., x_j\}$ $P_1 = \{x_0, x_1, ..., x_i\}$, be a partition of [a, c] $P_2 = \{x_j, x_{j+1}, ..., x_n\}$, be a partition of Then $U\big(f, P^*\big)=U\big(f, P_1\big)+U\big(f, P_2\big)$ and $L\big(f, P^*\big)$ $\varepsilon > U(f, P) - L(f, P) \ge U(f, P^*) - L(f, P^*)$ $\Rightarrow \varepsilon > U(f, P_1) - L(f, P_1)$ and $\varepsilon > U(f, P_2) - L(f, P_2)$ By integral test, f is integrable on $[a, b]$, $[a, c]$ and $[c, b]$ $L(f, P) \le L(f, P^*) \le \int_a^c$ $\int_{a}^{c} f(x) dx + \int_{c}^{b}$ $\int_{c}^{b} f(x) dx \le U(f, P^*) \le U(f, P)$ holds for all partitions Since \int_a^b $\int_a^b f(x) \, \mathrm{d}x$ has the only real number, \int_a^b $\int_a^b f(x) dx = \int_a^c$ $\int_a^c f(x) dx + \int_c^b$ ϵ

b. If f is integrable on $[a, c]$ and $[c, b]$, then f is integrable on $[a, b]$ **Theorem (Squeeze Theorem):**

- a. Assume three sequences $l_n \leq r_n \leq u_n$, and $l_n, u_n \to L$, then $r_n \to L$
- b. Arithmetic of limits holds for sequences

Riemann Sum

Definition: If $P = \{x_0, x_1, ..., x_n\}$ is a partition of $[a, b]$, the norm of P is $||P|| = \max{\{\Delta x_i\}}$. If $[x_{i-1}, x_i]$ for all $1 \le i \le n$, call $c = (c_1, c_2, ..., c_n)$ a choice vector for P, and $R(f, P, c) = \sum_{i=1}^{n}$ į is a Riemann sum. $m_i \leq f(c_i) \leq M_i$, $L(f, P) \leq \sum_{i=1}^n A_i$ $\int_{i=1}^{n} f(c_i) \Delta x_i \leq$

- **Theorem:** Let $f: [a, b] \rightarrow R$ be bounded and continuous, if
	- a. f is integrable on $[a, b]$
	- b. If $\{P_n\}$ is a sequence of partition such that $||P_n|| \to 0$,

then \int_a^b $\int_a^b f(x) \,\mathrm{d} x = \lim_{n \to \infty} L(f, P_n) = \lim_{n \to \infty} U(f, P_n)$; if $C^{(n)}$ is a choice function for P_n , then \int_a^b $\int_{a}^{b} f(x) dx =$ $\lim R(f, P_n, C^{(n)})$

Monotonicity

Definition: f is monotone if f is always increasing/decreasing **Theorem:** Let f : $[a, b] \rightarrow R$ be monotone,

- a. f is integrable on $[a, b]$
- b. let ${P_n}$ is a sequence of partition such that $||P_n|| \to 0$,
	- i. $L(f, P_n) \to \int_a^b f(x) dx$, $U(f, P_n) \to \int_a^b f(x) dx$ $a^{j(x)}$ and $c^{j,n}$ n^{j}
	- If $C^{(n)}$ is a choice function for P_n , then \int_a^b ii. If $C^{(n)}$ is a choice function for P_n , then $\int_a^b f(x) dx = \lim_{n \to \infty} R(f, P_n, C^{(n)})$

Remark: if f is integrable on $[a, b]$ then theorem b always holds;

If f is monotone, it will be much easier to show that $\exists \{P_n\}$ such that $\text{L}(f,P_n) \to \int_a^b$ $\int_{a}^{b} f(x) dx$,

 $U(f, P_n) \to \int_a^b$ \boldsymbol{a} Proof: take $\varepsilon = \frac{1}{n}$ $\frac{1}{n'}$ ∃ P_n such that 0 $\leq U(f, P) - L(f, P) < \frac{1}{n}$ $\frac{1}{n}$ $\Rightarrow U(f, P) - L(f, P) \rightarrow 0$ by squeeze theorem By integral test, $L(f, P_n) \rightarrow \int_a^b$ $\int_a^b f(x) dx$, $U(f, P_n) \rightarrow \int_a^b$ \boldsymbol{a}

3. Properties of integral

Theorem (linearity of integrals): Let f, g : [a, b] \rightarrow R and A, B \in R. If f, g are integrable, then $Af + Bg$ is integrable and \int_a^b $\int_{a}^{b} Af(x) + Bg(x) dx = A \int_{a}^{b}$ $\int_a^b f(x) dx + B \int_a^b$ \boldsymbol{a}

Proof (Assume f , g are continuous, $Af + Bg$ is continuous and intergrable):

By theorem of Riemann Sum, if $\{P_n\}$ satisfies $||P_n|| \rightarrow 0$, then

$$
\int_{a}^{b} Af(x) + Bg(x) dx = \lim_{n \to \infty} \sum_{i=1}^{N} Af(C_i^n) \Delta x_i^n + Bg(C_i^n) \Delta x_i^n
$$

= $A \lim_{n \to \infty} \sum_{i=1}^{N} f(C_i^n) \Delta x_i^n + B \lim_{n \to \infty} \sum_{i=1}^{N} g(C_i^n) \Delta x_i^n = A \int_{a}^{b} f(x) dx + B \int_{a}^{b} g(x) dx$

Remark: Assume $Af + Bg$ is integrable, one can use monotonicity remark to make the above argument work and show \int_a^b $\int_{a}^{b} Af(x) + Bg(x) dx = A \int_{a}^{b}$ $\int_a^b f(x) dx + B \int_a^b$ \boldsymbol{a} **Theorem (order property of integral):**

- If f , g are integrable and $f \leq g$ for all $x \in [a, b]$, then \int_a^b $\int_a^b f(x) dx \leq \int_a^b$ a. If f , g are integrable and $f \leq g$ for all $x \in [a, b]$, then $\int_a^b f(x) dx \leq \int_a^b f(x) dx$ Proof: Assume $h(x) \geq 0$ is integrable and \forall partition P, $U(h, P) \geq 0$, inf $U \geq 0$, \int_{a}^{b} $\int_{a}^{b} h(x) dx \ge$ 0, Take $h(x) = g(x) - f(x) \ge 0$ on $[a, b]$ ($f \le g$ for all $x \in [a, b]$) $\boldsymbol{0}$ \boldsymbol{b} \boldsymbol{a} $=$ \boldsymbol{b} \boldsymbol{a} $=$ \boldsymbol{b} \boldsymbol{a} $\overline{}$ \boldsymbol{b} \boldsymbol{a} \Rightarrow \boldsymbol{b} \leq \boldsymbol{b}
- a Ja If f is integrable, then $|f(x)|$ is integrable and $\left|\int_a^b\right|$ $\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b}$ b. If f is integrable, then $|f(x)|$ is integrable and $\left|\int_a^{\infty} f(x) dx\right| \leq \int_a |f(x)| dx$ (triangle inequality) Proof: $-|f(x)| \le f(x) \le |f(x)|$ for all x Both $\pm |f(x)|$ are integrable, by a, \int_{a}^{b} $\int_{a}^{b} -|f(x)| dx \leq \int_{a}^{b}$ $\int_a^b f(x) dx \leq \int_a^b$ \boldsymbol{a} $\Rightarrow \left| \int_a^b \right|$ $\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b}$ \boldsymbol{a}

Definition (<mark>Mean Value</mark>): Let f be integrable on $[a, b]$, the mean value of f is $\bar{f} = \frac{\int_a^b}{a}$ <u>'a</u> $\frac{a}{b}$

Theorem (Mean Value Theorem for Integrals): Assume $f: [a, b] \rightarrow R$ is continuous, then there is a $c \in$ [a, b] such that $\bar{f} = f(c)$.

Proof: By min-max theorem, $\exists c_{min}$, c_{max} such that $\forall x \in [a, b]$, $f(c_{min}) \leq f(x) \leq f(c_{max})$. Then, by the order property of integrals, \int_a^b $\int_a^b f(c_{min}) dx \leq \int_a^b$ $\int_a^b f(x) dx \leq \int_a^b$ \boldsymbol{a}

 \int_{a}^{b} \overline{a} $\frac{\int_a^b f(c_{min})dx}{b-a} \leq \frac{\int_a^b g(a_{min})dx}{b-a}$ \overline{a} $\frac{\int_a^b f(x) dx}{b-a} \leq \frac{\int_a^b g(x) dx}{a}$ \overline{a} $\frac{f_a f(max)}{b-a}$ \Rightarrow $f(c_{min}) \leq f \leq f(c_{max})$.

Because f is continuous, by Intermediate Value Theorem, $\exists c \in [a, b]$, such that

Fundamental Theorem of Calculus:

Assume $f: [a, b] \to R$ is continuous, let $d \in [a, b]$, and $\frac{F(x) = \int_{d}^{x}}{F(x)}$ a. Assume $f: [a, b] \to R$ is continuous, let $d \in [a, b]$, and $F(x) = \int_a^x f(t) dt$, then $F'(x) = f(x)$, $[a, b]$

Proof: Let
$$
F(x) = \int_{a}^{x} f(t) dt
$$

\nThen $F'(x) = \lim_{h \to 0} \frac{\int_{a}^{x+h} f(x) dx - \int_{a}^{x} f(x) dx}{h}$ by definition of derivatives
\n
$$
= \lim_{h \to 0} \frac{\int_{x}^{x+h} f(x) dx}{h}
$$
 by additivity of domain
\nThis Is the mean value on $[x, x + h]$
\nBy mean value theorem for integrals,
\n $\exists c(h) \in [x, x + h]$, such that $\overline{f} = f(c(h))$
\n $F'(x) = \lim_{h \to 0} f(c(h)) = f(x)$ by squeeze theorem and continuity

b. Assume $f: [a, b] \to R$ is integrable, let G be an antidetrivative of f, i.e. $G'(x) = f(x)$, $\forall x \in [a, b]$, then \int_a^b $\int_{a}^{b} f(x) dx = G(b) - G(a) = G \Big|_{a}^{b} = G(x) \Big|_{x}^{x}$ x

Proof: Let
$$
P = \{x_0, x_1, ..., x_n\}
$$
 be a partition of [a, b]

$$
G(b) - G(a) = \sum_{i=1} [G(x_i) - G(x_{i-1})]
$$

٦

By the ordinary mean value theorem, $\exists c_i \in [x_{i-1}, x_i]$ such that $G'(c_i)\Delta x_i = f(c_i)\Delta x_i$ $m_i \Delta x_i \leq f(c_i) \Delta x \leq M_i \Delta x_i$ \sum_{i}^{n} $\sum_{i=1}^{n} m_i \Delta x_i \leq$ \boldsymbol{n} i $\leq \sum_{i=1}^n$ i

$$
\Rightarrow \sum_{i=1}^{n} m_i \Delta x_i \le \sum_{i=1}^{n} [G(x_i) - G(x_{i-1})] \Delta x_i \le \sum_{i=1}^{n} M_i \Delta x_i
$$

\n
$$
L(f, P) \le \sum_{i=1}^{n} [G(x_i) - G(x_{i-1})] \Delta x_i \le U(f, P)
$$

\nSince $\int_a^b f(x) dx$ is the only real number that is in $[L(f, P), U(f, P)]$ for all P, $\int_a^b f(x) dx = G(b) - G(a)$

Remark: differentiation and integration are inverse operations. Write the general antiderivative of f as $\int f(x) dx = G(x) + C$. Call $\int f(x) dx$ the indefinite integral.

Integrability of continuous functions

Definition: $f: I \to R$ is **continuous** (*I* is an interval), if and only if $\forall x_0 \in I, \forall \epsilon > 0, \exists \delta = \delta(x_0, \epsilon) >$ 0, such that $\forall x \in I, |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \epsilon;$

 $f: I \to R$ is continuous (*I* is an interval), if and only if $\forall \varepsilon > 0$, $\exists \delta = \delta(\varepsilon) > 0$, such that $\forall x_0, x \in I$, $|x-x_0| < \delta \Rightarrow |f(x)-f(x_0)| < \varepsilon$

Uniform continuity requires that there is a $\delta = \delta(\epsilon) > 0$ which works for $\forall x_0 \in I$ simultaneously. **Proposition:** $f: I \to R$ is differentiable and f' is bounded on $I \Rightarrow f$ is uniformly continuous on I

Proof: Let
$$
M = \{ [f'(x)] : x \in I \}
$$
 be bounded, then $|f'(c)| \le M$ for $\forall c \in I$,
\nLet $\varepsilon > 0$, $\delta = \frac{\varepsilon}{M}$, x_0 , $x \in I$ satisfy $|x - x_0| < \delta$
\n $|f(x) - f(x_0)| = |f'(c)||x - x_0|$ for some $c \in (x, x_0)$ by MVT
\n $\le M|x - x_0| < M \frac{\varepsilon}{M} = \varepsilon$

Theorem (<mark>uniform continuity</mark>): f : $[a,b]\rightarrow R$ is continuous $\Rightarrow f$ is uniformly continuous on **Proof (continuous functions are integrable):**

Let
$$
\varepsilon > 0
$$
, $f: [a, b] \to R$ is continuous \Rightarrow f is uniformly continuous on $[a, b]$.
So $\exists \delta > 0$ such that (1) $x, x' \in [a, b]$, $|x - x'| < \delta$, $|f(x) - f(x')| < \frac{\varepsilon}{4(b-a)}$

Let P be a partition such that (2) $\|P_n\| < \delta$, $P = \{x_0, x_1, ..., x_n\}$, m_i , M_i defined as usual Let $x \in [x_{i-1}, x_i]$, then $|x - x_i|$ By (1), $|f(x) - f(x_i)| < \frac{\varepsilon}{4(h)}$ $\frac{1}{4}$ this means $\forall x \in [x_{i-1}, x_i]$, $f(x_i) - \frac{\varepsilon}{4(h_i)}$ $\frac{\varepsilon}{4(b-a)} < f(x) < f(x_i) + \frac{\varepsilon}{4(b-a)}$ $\frac{1}{4}$ \Rightarrow ϵ $\overline{4}$ έ $\overline{4}$ \Rightarrow $M_i - m_i \leq \frac{1}{2}$ ε \Rightarrow \boldsymbol{n} i \leq ϵ $\overline{2}$ \boldsymbol{n} i \equiv ϵ $\frac{1}{2}$

By integrability test, $f: [a, b] \rightarrow R$ is integrable

4. Techniques of finding integrals

 $\int x^r dx = \frac{x^r}{r}$ $\frac{x^{r+1}}{r+1}$ + $C(r \neq -1)$ $\int x^{-1}$ $\int e^{ax} dx = \frac{1}{a}$ $\frac{1}{a}e^{ax} + C$ $\int b^{ax} dx = \frac{1}{ah}$ $\frac{1}{a^{lnb}}b^a$ \int sin ax dx = $-\frac{1}{a}$ $\frac{1}{a}$ cos ax + C $\int \cos ax \, dx = \frac{1}{a}$ $\frac{1}{a}$ $\int (\sec ax)^2 dx = \frac{1}{a}$ $\frac{1}{a}$ tan $ax + C \quad \int (\csc ax)^2 dx = -\frac{1}{a}$ $\frac{1}{a}$ $\int \sec ax \tan ax \, dx = \frac{1}{a}$ $\frac{1}{a}$ sec $ax + C$ $\int \csc ax \cot ax \, dx = -\frac{1}{a}$ $\frac{1}{a}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{a^2-x^2}}dx = \arcsin{\frac{x}{a}} + C$ $\int \frac{1}{a^2+x^2}dx$ $\frac{1}{a^2+x^2}dx=\frac{1}{a}$ $\frac{1}{a}$ arctan $\frac{2}{a}$

a. Substitution (Chain rule):

$$
\int F'(g(x))g'(x) dx = F(g(x)) + C
$$

Theorem (substitution for definite integrals):

Let $g: [a, b] \rightarrow R$, g', f are both continuous, $f \circ g$ is well defined, then \int_{a}^{b} $\int_{a}^{b} f'(g(x))g'(x) dx =$ $\int_{a_1}^g$ \overline{g}

Integrating $\int (\sin x)^m (\cos x)^n dx$:

i. If m is odd, let $u = \cos x$, $du = -\sin x dx$; If n is odd, let $u = \sin x$, $du = \cos x dx$

If m and n are both even, use $\cos^2 x = \frac{1}{2}$ $\frac{1+\cos 2x}{2}$ or $\sin^2 x = \frac{1}{2}$ ii. If m and n are both even, use $cos^2 x = \frac{1 + cos 2x}{2}$ or $sin^2 x = \frac{1 - cos 2x}{2}$ to reduce m or n to odd Integrating $\int (\sec x)^m (\tan x)^n \, \mathrm{d}x$ if m is even or n is odd:

- i. Use $1 + \tan^2 x = \sec^2 x$, $\tan' x = \sec^2 x$, $\sec' x$
- ii. If n is odd, reduce n to 1, let $u = \sec x$, $du = \sec x \tan x dx$
- iii. If m is even, let $u = \tan x$, $du = \sec^2 x$
- **b. Integration by parts (Product rule):**

Theorem: Assume $u, v: [a, b] \rightarrow R$ have continuous derivatives

i. $\int uv' dx = uv - \int u'v$ $| uv'$ \boldsymbol{b} a 'a a $= u v \big|_a$ $\int u'$ \boldsymbol{b} ii.

Since $dv = v' dx$, $du = u' dx$, we can write

c. Reduction formula (extended from integrating by parts)
 $I_0 = \ln|\sec x + \tan x|, I_m = \int \sec^{2m+1} x \, dx = \frac{1}{2m} \sec^{2m-1} x \tan x + \frac{2m-1}{2m} I_{m-1}$

$$
I_1 = \frac{1}{a} \arctan\left(\frac{x}{a}\right), I_n = \int \frac{1}{(x^2 + a^2)^n} dx = \frac{1}{a^{2n-1}} \left[\frac{1}{2n-2} \frac{\frac{x}{a}}{\left(\frac{x^2}{a^2} + 1\right)^{n-1}} + \frac{2n-3}{2n-2} I_{n-1} \right]
$$

\n
$$
I_0 = -e^{-x}, I_n = \int x^n e^{-x} dx = -x^n e^{-x} + nI_{n-1}
$$

\n
$$
I_0 = x, I_1 = \ln|\sec x|, I_n = \int \tan^n x dx = \frac{1}{n-1} \tan^{n-1} x - I_{n-2}
$$

\n
$$
\int \csc x dx = \ln|\csc x - \cot x|, \int \csc^m x dx = -\frac{1}{m-1} \csc^{m-2} x \cot x + \frac{m-2}{m-1} \int \csc^{m-2} x dx
$$

d. Integration of rational functions

Definition: A polynomial is a function of the form $P(x) = a_0 + a_1x + \cdots + a_nx^n$, $a_i \in R$, If 0, deg(P) = n; A rational function f is a function of the form $f = \frac{P}{Q}$ $\frac{P(x)}{Q(x)}$ $D = {x: Q(x) \neq 0}$, where $P(x)$, $Q(x)$ are polynomials

Theorem(Factor a Polynomial): Let $Q(x)$ be a polynomial, then $\exists c, \alpha_i, \beta_i, \gamma_i \in \mathrm{R}$, $m_i, n_i \in \mathrm{N}$ such that $Q(x) = c(x - \alpha_1)^{m_1} \cdot \cdots \cdot (x - \alpha_k)^{m_k} \cdot (x^2 + \beta_1 x + \gamma_1)^{n_1} \cdot \cdots \cdot (x^2 + \beta_i x + \gamma_i)^{n_i}$, where β_i^2

To find $\int f dx$ for a rational function f:

- i. Do long division of polynomials to reduce to the case where $deg(P) < deg(Q)$
- ii. Factor $Q(x)$
- iii. Find the partial fraction decomposition of $\frac{1}{Q}$

In practice you will find the PFD by solving N linear equations in N unknowns

iv. Integrate each term.

e. Inverse substitutions:

Instead of substituting $u = g(x)$, try $x = g(u)$, $dx = g'(u)du$, $\int f dx = \int f(g(u))g'(u)du$,

- Integrals involving $\sqrt{a^2-x^2}$, try $x=a\sin\theta$, $\theta\in[-\frac{\pi}{2}]$ $\frac{\pi}{2}, \frac{\pi}{2}$ i. Integrals involving $\sqrt{a^2 - x^2}$, try $x = a \sin \theta$, $\theta \in [-\frac{\pi}{2}, \frac{\pi}{2}]$,
- ii. Integrals involving $\sqrt{x^2-a^2}$, try $x=a\sec\theta$, Be cautious with the signs
- Integrals involving $\sqrt{x^2 + a^2}$ or $\frac{1}{x^2 + a^2}$ iii. Integrals involving $\sqrt{x^2 + a^2}$ or $\frac{1}{x^2 + a^2}$, try $x = a \tan \theta$, $dx = \sec^2 \theta$

iv. For integrals like
$$
\int \frac{d\theta}{3+\sin \theta}
$$
, try $x = \tan \frac{\theta}{2}$, $d\theta = \frac{2 dx}{1+x^2}$, $\sin \theta = \frac{2x}{1+x^2}$, $\cos \theta = \frac{1-x^2}{1+x^2}$

f. Numerical Methods

Often \int_a^b $\int_a^b f(x) dx$ cannot be expressed in terms of elementary functions, we can approximate

 \int_a^b $\int_a^b f(x) \,\mathrm{d} x$ by Riemann sums/ trapezoid method/midpoint method

i. Trapezoid method:

 \int_a^b $\int_a^b f(x) \, \mathrm{d} x \approx$ Nth trapezoidal approximation area $T_n = \sum_{i=1}^n \frac{1}{n_i}$ $\frac{n}{i=1}A_i =$ \overline{a} $f(x_{i-1})+f(x_i)$ i **Theorem (Trapezoidal rule)**: Let f : [a , b] \rightarrow R such that f'' is continuous and $\sup\{|f''(x)|, x \in [a, b]\}.$ Then $\left|\int_a^b$ $\left| \int_{a}^{b} f(x) dx - T_n \right| \leq \frac{k}{12}$ $\frac{\kappa}{12}(b-a)(\Delta x)^2$ **Lemma:** $f: [a, b] \to R$, f'' is continuous and $f(a) = f(b) = 0$, then $-2 \int_a^b f(a) g(a)$ $\int_{a}^{b} f(x) dx =$ \int_a^b \boldsymbol{a}

 \boldsymbol{n}

ii. Midpoint method:

$$
\mathcal{F}\left(\frac{\chi_i + \chi_{i-1}}{2}\right)
$$
\n
$$
\mathcal{F}\left(\frac{\chi_{i-1}}{2}\right)
$$
\n
$$
\mathcal{F}\left(\frac{\chi_{i-1}}{2}\right)
$$
\n
$$
\mathcal{F}\left(\frac{\chi_{i-1}}{2}\right)
$$
\n
$$
\mathcal{F}\left(\frac{\chi_{i-1} + \chi_{i}}{2}\right)
$$
\n
$$
\mathcal{F}\left(\frac{\
$$

Improper integrals 5.

a. Type 1 improper integral:

Definition: Let $F: [a, \infty) \to R$, $\lim F(x) = L$, if and only if $\forall \varepsilon > 0$, $\exists x_0 \ge a$, such that $|F(x) - L| < \varepsilon$ (converge $F(x) \to L$ as $R \to \infty$) $\lim F(x) = \infty$, if and only if $\forall M \in R$, $\exists x_0 \ge a$, such that $x > x_0 \Rightarrow F(x) > M$ ($F(x)$ diverges) Let $f: [a, \infty) \to R$ be such that $\forall R > a$, f is integrable on $[a, R]$ \int_{a}^{∞} $\int_{a}^{\infty} f(x) dx = \lim_{R \to \infty} \int_{a}^{R}$ $\int_{a}^{R} f(x) dx \in [-\infty, \infty]$ if the limit exists \int_{a}^{∞} $\int_a^{\infty} f(x) dx$ converges if and only if $\lim_{R\to\infty} \int_a^R f(x) dx$ $\int_{a}^{x} f(x) dx \neq$ \int_{a}^{∞} $\int_{a}^{\infty} f(x) dx$ diverges if and only if $\lim_{R\to\infty} \int_{a}^{R}$ $\int_{a}^{x} f(x) dx =$ **Theorem (p-integral):** \overline{p} $\mathbf{1}$ $\frac{1}{x^p}$ ∞ $\mathbf{1}$ $=$ $\mathbf{1}$ $\frac{1}{p}$ $\mathbf{1}$ $\frac{1}{x^p}$ ∞ $\mathbf{1}$ $=$

b. Type 2 improper integral:

Definition: Let $F: (a, b] \to R$, $\lim_{x \to a^+} F(x) = L$, if and only if $\forall \varepsilon > 0$, $\exists \delta > 0$ such that $\delta \Rightarrow |F(x) - L| < \varepsilon$ $\lim_{x \to a} F(x) = \infty$, if and only if $\forall M \in \mathbb{R}, \exists \delta > 0$ such that X Let $f: (a, b] \rightarrow R$ be such that $\forall c \in (a, b)$, f is integrable on $[c, b]$ and f is unbounded on \int_a^b $\int_{a}^{b} f(x) dx = \lim_{c \to a^{+}} \int_{c}^{b}$ $\int_{c}^{b} f(x) dx \in [-\infty, \infty]$ if the limit exists

 \int_a^b $\int_a^b f(x) dx$ converges if and only if $\lim_{c \to a^+} \int_c^b f(x) dx$ $\int_{c}^{b} f(x) dx \neq$ \int_a^b $\int_a^b f(x) dx$ diverges if and only if $\lim_{c \to a^+} \int_c^b$ $\int_{c}^{b} f(x) dx =$ Note: if $f: [a, b) \rightarrow R$ is integrable on $[c, b]$, $\forall c \in (a, b)$ and f is unbounded on $[a, b)$, then \int_a^b $\int_{a}^{b} f(x) dx = \lim_{c \to b^{-}} \int_{c}^{b}$ $\int_{c}^{b} f(x) dx \in$ **Theorem (p-integral):**

$$
0 < p < 1, \int_0^1 \frac{1}{x^p} = \frac{1}{p-1}; \qquad p \ge 1, \int_0^1 \frac{1}{x^p} = \infty
$$

 $\int_{-\infty}^{+}$ **c.** $\int_{-\infty}^{\infty} f(x) dx$ type

Definition: Let $f: R \to R$ be integrable on every bounded interval $[a, b]$, Then \int_{-a}^{+b} $\int_{-\infty}^{\infty} f(x) dx =$ \int_{-}^{0} $\int_{-\infty}^{0} f(x) dx + \int_{0}^{+}$ $\int_{0}^{+\infty} f(x) dx$, provided that this is not $\infty - \infty$ or $-\infty + \infty$, in which case $\int_{-\alpha}^{+}$ $\int_{-\infty}^{\infty} f(x) dx$ does not exist. Note that \int_{-a}^{+} $\int_{-\infty}^{+\infty} x\,\mathrm{d}x$ does not exist even though $\lim\limits_{\mathrm{c}\to\infty}\int_{-\mathrm{c}}^{\mathrm{c}}$ $\int_{-c}^{c} f(x) dx =$ **Definition (Probability density):** Let $f:R\to[0,\infty)$ satisfy $\int_{-\alpha}^{+}$ $\int_{-\infty}^{+\infty} f(x) dx = 1$, call $f(x)$ a probability density, the mean value of this density is \int_{-a}^{b} Ξ

d. More improper integrals:

 \int_a^b $\int_a^b f(x) dx = \int_a^c$ $\int_a^c f(x) dx + \int_c^b$ $\int_{c}^{\infty} f(x) dx$ this can extends to more singularities, given that it is not $\infty - \infty$ or $-\infty + \infty$

Theorem: Let $F: [a, \infty) \rightarrow R$ be increasing

a. if F is bounded above, then $F(u) \to \sup R$ as

Proof: By completeness Axiom, $L = \sup R \in \mathbb{R}$ (because F is bounded above)

Let $\varepsilon > 0$, $\exists u_0 \ge a$ such that $L - \varepsilon < F(u_0) < L$ Let $u > u_0$, $L - \varepsilon < F(u_0) \leq F(u) \leq \sup R = L$ \Rightarrow $|F(x) - L| < \varepsilon \Rightarrow F(u) \rightarrow \sup R$ as $u \rightarrow \infty$

b. if F is not bounded above, then $F(u)$ diverges to ∞ as

Proof: let $M \in R$,

F is not bounded above $\Rightarrow \exists u_0 \ge a$ such that $F(u_0) > M$ Take $u > u_0$, then $F(u) \ge F(u_0) > M$ because F is increasing $F(u)$ diverges to ∞

Note: let $F(\infty) = \lim F(u) \in (-\infty, \infty]$, in either case, $\forall u \in [a, \infty)$, $F(u) \leq F(\infty)$, write **Theorem (Comparison test for Type 1 Integrals):** Assume $f, g: [a, \infty) \to [0, \infty)$, $f \leq g$, and f, g are integrable on $[a, R]$ for all $R > a$

- If \int_{a}^{∞} $\int_a^{\infty} g(x) dx$ converges, then \int_a^{∞} $\int_a^{\infty} f(x) dx$ converges and \int_a^{∞} $\int_{a}^{\infty} f(x) dx \leq \int_{a}^{\infty}$ a. If $\int_a^{\infty} g(x) dx$ converges, then $\int_a^{\infty} f(x) dx$ converges and $\int_a^{\infty} f(x) dx \leq \int_a^{\infty} f(x) dx$ Proof: let $R > a$, \int_a^R $\int_a^R f(x) dx \leq \int_a^R g(x) dx$ (order property) \boldsymbol{a} \leq ∞ \boldsymbol{a} \lt Then \int_a^R \boldsymbol{a} ∞ $\int_{a}^{\infty} f(x) dx <$ $\leq \int_{a}^{\infty}$ $\int_a^\infty g(x)\,\mathrm{d} x$ (an upper bound for \int_a^R $\int_a^{\infty} f(x) dx$
- If \int_{a}^{∞} $\int_a^\infty f(x)\,\mathrm{d} x$ diverges, then \int_a^∞ b. If $\int_a^{\infty} f(x) dx$ diverges, then $\int_a^{\infty} g(x) dx$ diverges (the contrapositive of part a)
- c. Same applies to type 2 integral

Piecewise Continuous Functions:

Lemma: let $h_{x_0}(x) = \begin{cases} 1 & \text{if } x \neq 0 \end{cases}$ $\begin{array}{ll} 1 & x = x_0 \ 0 & x \neq x_0 \end{array}$, $\forall a < b$, $\forall x_0$, h_{x_0} is integrable on $[a, b]$, and $\int_a^b h_{x_0}(b)$ $\int_a^{\infty} h_{x_0}(x) dx =$ **Proposition (singular point does not affect integration):** Let $g: [a, b] \rightarrow \mathbb{R}$ be integrable, assume $f:[a,b]\to\mathbb{R}$ is such that $\{x:f(x)\neq g(x)\}=\{x_1,x_2,...,x_n\}$ *is finite. Then f is integrable on* [a, b] and \int_a^b $\int_{a}^{b} f(x) dx = \int_{a}^{b}$ \boldsymbol{a} Proof: let $c_i = f(x_i) - g(x_i)$, $i = 1, 2, ..., k$ Then $f(x) = g(x) + \sum c_i h_{x_i}$ \boldsymbol{k} i , which is integrable \boldsymbol{k}

And
$$
\int_{a}^{b} f(x) dx = \int_{a}^{b} g(x) dx + \sum_{i=1}^{k} c_i \int_{a}^{b} h_{x_i}(x) dx = \int_{a}^{b} g(x) dx
$$

Definition: $f: [a, b] \to \mathbb{R}$ is piecewise continuous if and only if $\exists a = c_0 < c_1 < \cdots < c_k = b$ and there exist continuous functions g_i : $[c_{i-1}, c_i] \rightarrow \mathbb{R}$ such that $f(x) = g_i(x)$ for **Fact:** f is piecewise continuous \Rightarrow f is bounded and $\sup f(x) = \max\{\sup g_i$, **Proposition (piecewise continuous functions are integrable):** Let f : [a, b] \rightarrow R be piecewise continuous

and g_i , c_i are as in the definition. Then f is integrable and \int_a^b $\int_{a}^{b} f(x) dx = \sum_{i=1}^{n} \int_{c_{i-1}}^{c_i} g_i(x) dx$ ϵ \boldsymbol{k} i

Proof: g_i is continuous and integrable on $[c_{i-1}, c_i]$ ${x : x \in [c_{i-1}, c_i], f(x) \neq g_i(x)}$ is finite f is integrable on $[c_{i-1}, c_i]$ and $\int_{c_i}^{c}$ $\int_{c_{i-1}}^{c_i} f(x) dx = \int_{c_i}^{c_i}$ $\int_{c_{i-1}}^{c_i} g(x) dx$ since a singular point does not affect an integration

By additivity of domain, f is integrable on $[a, b]$ and \int_a^b $\int_{a}^{b} f(x) dx = \sum_{i=1}^{n} \int_{c_{i-1}}^{c_i} g_i(x)$ ϵ \boldsymbol{k} i

Application of integrals 6.

a. Area

To find area between f and $g \times \in [a, b]$ using Riemann sum, the height of ith rectangle is $|f(c_i) - g(c_i)|$, $Area = \int_a^b$ \int_{a} $|f(c_i) - g(c_i)| dx$.

To find the solution, split up into intervals where $f \ge g$ and $f < g$

Volumes b.

i. Method of slices

Assume $V(S)$ = volume of a solid in $R^3 = \{(x, y, z): x, y, z \in R\}$ is well-defined satisfying reasonable properties and formula

Let S be a bounded solid in R^3 between planes $x = a$ and $x = b$ To find the volume:

 $S(x)$ = intersection of S with the plane perpendicular to $x - axis$ at $(x, 0, 0)$
 $A(x)$ = area of $S(x)$, $P = \{x_0, x_1, ..., x_n\}$ be a partition of $[a, b]$ $P = \{x_0, x_1, ..., x_n\}$ be a partition of $[a, b]$ Let S_i = slice of S between the planes $x = x_{i-1}$ and $x = x_i$ $\Delta V_i = V(S_i)$ $M_i = \sup\{A(x): x \in [x_{i-1}, x_i], m_i = \inf\{A(x): x \in [x_{i-1}, x_i]\}\}$ Then $m_i\Delta\,x_i\leq \Delta\,V_i\leq M_i\Delta\,x_i$, $\sum_{i=1}^N\,$ $\sum_{i=1}^N m_i \Delta x_i \leq \sum_{i=1}^N$ $\sum_{i=1}^N \Delta V_i \leq \sum_{i=1}^N$ i \Rightarrow $L(A, P) \leq V(S) \leq U(A, P)$ for all P

Assume $A(x)$ is integrable on $[a, b]$ we know that \int_a^b $\int_{a}^{b} A(x) dx$ is the unique real number such that $L(A, P) \leq \int_a^b$ $\int_{a}^{b} A(x) dx \leq$

Thus, we have the method of slices: $V(S) = \int_{a}^{b}$ \overline{a}

ii. Solid of revolution (disk method)

Let $f: [a, b] \to [0, \infty)$ integrable, $R = \{(x, y): a \le x \le b, 0 \le y \le f(x)\}\$ Rotate R about $x - axis$ to form a solid S

 $S(x)$ =disk of radius $f(x)$, $A(x) = \pi f(x)^2$, $V(S) = \int_a^b \pi f(x)^2$ \overline{a}

iii. Solids of Revolution (cylindrical shell)

Let $0 \le a < b$ $f: [a, b] \to [0, \infty)$ integrable, $R = \{(x, y): a \le x \le b, 0 \le y \le f(x)\}$ Rotate R about $y - axis$ to form a solid S

 $P = \{x_0, x_1, ..., x_n\}$ be a partition of $[a, b]$, $R_i = \{(x, y) : x_{i-1} \le x \le x_i,$ C_i =cylindrical shell obtained by rotating R_i by the $y - axis$

Unroll the shell, we get a thin rectangular solid $\Delta V_i = V(C_i) \approx 2\pi x_i f(x_i) \Delta x_i$

$$
V(S) = \sum_{i=1}^{N} \Delta V_i = \sum_{i=1}^{N} 2\pi x_i f(x_i) \Delta x_i \rightarrow \int_{a}^{b} 2\pi x f(x) dx
$$

Mass, center of mass and centroid c.

i. Mass

Definition: let $B \subset R^d$ $(d = 1,2,3)$, the density of B at $P \in B$ is $\rho(P)$ where the density function $\rho: B \to [0, \infty)$ is continuous. Then the mass of B is $m(B) = \int_{B} \rho dV$

If $\rho = 1$, this defines the volume of B, $V(B) = \int_B dV$

If
$$
d = 1
$$
, $B = [a, b]$ then $m(B) = \int_a^b \rho \, dx$

ii. Moment

In 3-D, the
$$
x
$$
 –moment of B is $M_x = \int_B x \rho(x, y, z) dV$

 y —moment of B is $M_y = \int_B$

z –moment of B is
$$
M_z = \int_B z \rho(x, y, z) dV
$$

iii. Center of mass

iv. Centroid

If $\rho = 1$, the center of mass becomes the centroid, which depends on the geomery of B only, $\left(\bar{x},\bar{y},\bar{z}\right)=\left(\frac{\int d\bar{z}}{\int d\bar{z}}\right)$ $\frac{\int_B x \, \mathrm{d}V}{V}$, $\frac{\int_B y \, \mathrm{d}V}{V}$, $\frac{J B^2}{V}$

d. Pappus Theorem

Definition: A plane region lie on one side of a line L in R^3 , R is rotated aound line L to form a solid of revolution, then the volume=distance travelled by the centroid of $R \times \text{Area} = 2\pi r A$

$$
\frac{1}{\sqrt{2}}\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \mathbf{A}_{ij} \mathbf{A}_{ij}
$$

Remark: it is related to volume by shells; Pappus theorem is more general Proof: WOLOG, let L be the y-axis, R lies to the right of y-axis

Centroid of
$$
R
$$
, $\vec{r} = \frac{\int_R x \, dA}{A} = \frac{\int \int_R x \, dx \, dy}{A}$

\nConsider the volume swept out by a little box, $\Delta V = 2\pi x \Delta x \Delta y$

\n
$$
V = \sum_{x,y} \Delta V = \sum_{x,y} 2\pi x \Delta x \Delta y = \sum_{x,y} \frac{2\pi x \Delta x \Delta y A}{A} = \frac{\int \int_R 2\pi x \, dx \, dy A}{A} = 2\pi \bar{r} A
$$

Parametric and polar curves

2019年7月21日 9:54

1. Parametric curve

Definition: A parametric curve is a function γ : $[a, b] \to \mathbb{R}^2$ if f : $[a, b] \to \mathbb{R}$, derive γ : [a, b] $\rightarrow \mathbb{R}^2$ by $\gamma = (x, f(x))$

a. Arc length

Ξ

Definition: γ : [a, b] $\rightarrow \mathbb{R}^2$ is a parametric curve let $P = \{t_0, t_1, ..., t_n\}$ be a partition of $[a, b]$. Let \boldsymbol{N} i =length of the piecewise linear approximation of y. The arc length of y is $l(y) =$ $\sup\{D(\gamma, P): P \text{ is a partition of } [a, b]\} \in [0, \infty]$ $(l(\gamma))$ is the distance travelled by the particle whose position at time t_i is $\gamma(t_i)$ **Lemma** (*Triangle inequality*): if P , Q , $R \in \mathbb{R}^2$, then **Lemma:** Let $P' \subset P$ be a partition of $[a, b]$ and $\gamma: [a, b] \to \mathbb{R}^2$, then $D(\gamma, P') \leq D(\gamma, P)$ Proof by triangular inequality **Lemma:** γ : $[a, b] \to \mathbb{R}^2$, \exists a sequence $\{P_n : n \in \mathbb{N}\}$ such that $||P_n|| \to 0$ and $D(\gamma, P) \rightarrow l(\gamma)$ Proof: $\forall n \in \mathbb{N}$, $\exists P_n'$ such that $l(\gamma) - \frac{1}{n}$ $\frac{1}{n}$ We can find Q_n such that $||Q_n|| < 2^{-n} \rightarrow 0$, let $P_n = P_n' \cup Q_n$, $||P_n|| \to 0$ \Rightarrow $\mathbf{1}$ $\frac{1}{n}$ $\Rightarrow D(\gamma, P) \rightarrow l(\gamma)$ by squeeze theorem **Theorem:** let $f: [a, b] \to \mathbb{R}$ and f' is continuous, let $\gamma = (x, f(x))$ $x \in [a, b]$, Then $l(x) = \int_0^b \sqrt{1 + f'(x)^2} \, dx$ \boldsymbol{b} \overline{a} $< \infty$ is the arc length of the graph Proof: let $P = \{x_0, x_1, ..., x_n\}$ be a partition of $[a, b]$, \sum \boldsymbol{N} i $D(\gamma, P) = \sum_{i=1}^{N} \sqrt{(x_i - x_{i-1})^2 + (f(x_i) - f(x_{i-1}))^2}$ i $=$ f $\frac{x}{x}$ $\frac{f(x)}{f(x) - f(x-1)^2}$ Δ N i $=\sum^{N}\sqrt{1+(f'(c_i))^2}$ Δ \boldsymbol{N} i (by mean value theorem) $l(x) = \frac{1}{N}$ $\frac{1}{4 \cdot (c/c)^2}$ Δ N i $=\int_{0}^{b} \sqrt{1 + f'(x)^2} dx$ b \boldsymbol{a} **Definition:** let $\gamma(t) = (x(t), y(t))$ be a parametric curve, $\gamma: [a, b] \to \mathbb{R}^2$ is c^1 (differentiable and its first derivative is continuous) if and only if $\frac{dx}{dt}$ and $\frac{d}{dt}$ are continuous on $[a, b]$, the velocity is $\gamma'(t) = (x'(t), y'(t))$, the speed is

$$
|\gamma'(t)| = \sqrt{(x'(t))^2 + (y'(t))^2}
$$

Theorem: let γ : [a, b] $\rightarrow \mathbb{R}^2$ be c^1 , then γ has finite arc length $l(\gamma)$ =

2. Polar Coordinates

Definition: the polar coordinates of a point $P = (x, y)$ are r, θ , where $r =$ $\sqrt{x^2 + y^2}$, and θ is the angle between \overrightarrow{OP} and $+x - axis$ if $P = (0,0)$, θ is arbitrary. Let $P = [r, \theta]$ denote the point in the cartesian plane with polar coordinates r, θ

$$
\frac{\rho(x,y)}{\sqrt{\theta}}
$$

If we restrict $\theta \in [0, 2\pi)$, then θ is unique

Note: $[r, \theta] = [r, \theta + 2\pi k]$, $k \in \mathbb{Z}$; $[0, \theta] = [0, 0]$; $[r, \theta] = (r \cos \theta, r \sin \theta)$; $[-r, \theta] = [r, \theta + \pi] = -[r, \theta]$

We call the set of $[r, \theta]$ such that $r = f(\theta), \theta \in [\alpha, \beta]$ the polar graph of f

Areas of polar graphs

Let $S(r, \Delta\theta)$ =sector of a circle with radius r subtending angle $\Delta\theta$ Let $A(r, \Delta \theta)$ = area of $S(r, \Delta \theta) = \frac{1}{2}r^2$ $\overline{\mathbf{c}}$

Let $P=\{\theta_0,\theta_1,...,\theta_n\}$ be a partition of $[\alpha,\beta]$, ΔA_i be the area swepted by r $f(\theta), \theta \in [\theta_{i-1}, \theta_i] \approx A(f(\theta_i), \Delta \theta_i) = \frac{1}{2}$ $\frac{1}{2}f(\theta_i)^2$

Total area
$$
A = \lim_{N \to \infty} \sum_{i=1}^{N} \Delta A_i = \lim_{N \to \infty} \sum_{i=1}^{N} \frac{1}{2} f(\theta_i)^2 \Delta \theta_i = \int_{\alpha}^{\beta} \frac{(f(\theta))^2}{2} d\theta
$$

Arclength of polar graphs

Let f : $\lbrack \alpha,\beta\rbrack\rightarrow R$ be c^{1} , then the polar graph $r=f(\theta)$ can be viewed as a c^{1} parametric graph $r(\theta) = (r \cos \theta, r \sin \theta)$, we can then use the arclength formula

for parametric curve to derive the arc length $l = \int^{\beta} \sqrt{f(\theta)^2 + f'(\theta)^2}$

 \overline{d}

 α

Sequences and series

2019年7月21日 9:55

1. Basics

Definition (Sequence): A sequence is a function $a: \{n_0, n_0 + 1, ...\} \rightarrow R$ for some $n_0 \in \mathbb{Z}$, denote a by $\{a_n : n \geq n_0\}$ or $\{a_n\}$, usually $n_0 = 0$ or 1

Definition (Converges/diverges): $\{a_n\}$ converges to $L \in R$ if and only if $\forall \varepsilon > 0$, $\exists N \in \mathbb{R}$ such that $n > N \Rightarrow$ $|a_n - L| < \varepsilon$ (write $a_n \to L$ or $\lim_{n \to \infty} a_n = L$); $\{a_n\}$ diverges if and only if $\forall M, \exists N \in \mathbb{R}$ such that $M(a_n \to \infty \text{ or } \lim a_n = \infty)$

Theorem (Algebra of limits): Assume $a_n \to L_a$, $b_n \to L_b$ and $L_a, L_b \in \mathbb{R}$

 $\forall c \in R$, $a_n + cb_n \rightarrow L_a + cL_b$; $a_n b_n \rightarrow L_a L_b$; $\frac{a_n}{b_n}$ $\frac{a_n}{b_n} \rightarrow \frac{L}{L}$ $\frac{a_n}{L_b}$ (given that $L_b \neq 0$); $\lim_{n \to \infty} c = c$; $a_n \leq b_n$ ultimately, then $L_a \leq L_b$

Sequences 2.

a. Limits and sequential limits

Theorem: Assume $\lim_{x \to a} f(x) = L$, c , $L \in [-\infty, \infty]$, if $x_n \to c$, and $x_n \in \text{Dom}(f)$ and $x_n \neq c$ ultimately, then $f(x_n) \rightarrow L$

Proof: let $\varepsilon > 0$, $\exists \delta > 0$ such that $0 < |x - c| < \varepsilon$ and $x \in \text{Dom}(f)$, then $|f(x) - L| < \varepsilon$ (since $\lim f(x) = L$

 $s_n \to c$ so $\exists N_1$ such that $n > N_1 \Rightarrow |x_n - c| < \delta$

The ultimate hypothesis on $\{x_n\}$ implies that $\exists N_2$ such that $n > N_2 \Rightarrow x_n \neq c$ and $x_n \in Dom(f)$ Let $n > \max(N_1, N_2)$, then $0 < |x_n - c| < \delta$ and $x_n \in \text{Dom}(f)$

Let
$$
x = x_n
$$
, $|f(x_n) - L| < \varepsilon$

Theorem: let f be continuous at c, if $x_n \to c$ and $x_n \in \text{Dom}(f)$ ultimately, then $f(x_n) \to f(c)$ $(\lim (f(x_n)) = f(\lim (x_n)))$

Proof: let $\varepsilon > 0$, by continuity at c, $\exists \delta$ such that $|x - c| < \delta$, $x \in Dom(f)$, $|f(x_n) - f(c)| < \varepsilon$, then substitute L with $f(c)$ in the previous proof

Definition: $\{a_n\}$ is bounded if and only if $\exists M$ such that $\forall n, |a_n| \leq M$ **Theorem:**

i. $\{a_n\}$ is convergent \Rightarrow $\{a_n\}$ is bounded

Proof: take $\varepsilon = 1$, $\exists N$ such that $n > N \Rightarrow |a_n - L| < 1$ ($\lim a_n = L$)

By triangular inequality, $|a_n| \leq |L| + 1$

Let $M = \max\{|a_n|: n \leq N\} + |L| + 1$,

Then $|a_n| \leq M$ for $\forall n$

ii. $\{a_n\}$ is bounded $nRightarrow \ \{a_n\}$ is convergent (e.g. $a_n = (-1)^n$)

b. Monotone sequences

Definition: $\{a_n\}$ is an increasing sequence if and only if $\forall n$, $a_{n+1} \ge a_n$ and decreasing if and only if $\forall n$, $a_{n+1} \le a_n$; $\{a_n\}$ is monotone if and only if it is increasing or decreasing all the time **Theorem (Increasing sequence theorem)**: Let $\{a_n\}$ be an increasing sequence, $L = \sup\{a_n : n \in \mathbb{N}\}\in$ $(-\infty, \infty]$, then $a_n \to L$ i.e. if $\{a_n\}$ is bounded above, $a_n \to L \in \mathbb{R}$, if $\{a_n\}$ is not bounded above $a_n \to \infty$

Questions can be solved by induction.

3. Series

Definition: Let $\{b_k : k \in \mathbb{N}\}$ be a sequence, and set $S_n = \sum_{k=1}^n$ $\sum_{k=1}^{n} b_k (n \geq 1)$ The series \sum_{ν}^{∞} $\sum_{k=1}^{\infty} b_k$ converges if and only if $\lim_{n\to\infty} S_n = L \in \mathbb{R}$, write $\sum_{k=1}^{\infty}$ $\sum_{k=1}^{\infty} b_k =$ The series \sum_{ν}^{∞} $\sum\limits_{k=1}^{\infty}b_k$ diverges if and only if $\{S_n\}$ diverges $\sum_{k=1}^{\infty}$ $\sum_{k=1}^{\infty} b_k =$ **Proposition:**

a. For any sequence $\{a_n\}$, $\{a_n\}$ converges \Rightarrow $\varlimsup a$ Proof: let $\lim a_n = L$, then $\lim a_{n+1} = L$ by definition of limits $\lim_{n \to \infty} a_{n+1} - a_n = \lim_{n \to \infty} a_{n+1} - \lim_{n \to \infty} a_n$

If $\sum_{k=1}^{\infty}$ $\sum\limits_{k=1}^{\infty}b_k$ converges, then $\lim\limits_{n\to\infty}b_k=0$, but $\lim\limits_{n\to\infty}b_k=0$ does not imply $\sum\limits_{k=1}^{\infty}\frac{1}{k}$ $\sum_{k=1}^{n} b_k$ converges Proof: apply (a) to $\{S_n\}$, $S_n = \sum_{k=1}^{n}$ b.

 $\lim_{k=1} b_k \to L$, so $S_{n+1} - S_n \to 0 \Rightarrow \lim_{n \to \infty} b_{n+1} = 0 \Rightarrow \lim_{n \to \infty} b_n$ Theorem (Algebra of series): $\sum_{k=1}^{\infty}$ $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} a_k$ $\sum_{k=1}^{\infty} b_k$ are convergent, and $c_1, c_2 \in \mathbb{R}$, then $\sum_{k=1}^{\infty}$ $\sum_{k=1}^{8} c_1 a_k +$ \sum_{ν}^{∞} $\sum_{k=1}^{\infty} c_2 b_k = c_1 \sum_{k=1}^{\infty} c_k$ $\sum_{k=1}^{\infty} a_k + c_2 \sum_{k=1}^{\infty}$ $a_{k=1}$ b_k and both sides are convergent

Theorem (<mark>Positive series dichotomy</mark>): assume $a_k \geq 0$ for all $k \in \mathrm{N}$, let $S_n = \sum_{k=1}^n a_k$ \boldsymbol{k}

- If $\{S_n\}$ is bounded above, then $\sum_{k=1}^{\infty}$ a. If $\{S_n\}$ is bounded above, then $\sum_{k=1}^{\infty} a_k = \sup\{S_n\}$ is convergent
- b. If $\{\mathcal{S}_n\}$ is not bounded above, then $\sum_{k=1}^{\infty}$ Proof by increasing sequence theorem, since $a_{n+1} = S_{n+1} - S_n \geq 0$, S_n is increasing

Convergence test 4.

a. Integral test

Theorem: let $f: [1, \infty) \to [0, \infty)$ be decreasing, then $\sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty} f(n)$ is convergent $\Leftrightarrow \int_1^{\infty}$ $\int_1^\infty f(x) dx$ is convergent

Proof: Assume \int_{1}^{∞} $\int_{1}^{\infty} f(x) dx$ is convergent, apply the following lemma with $N=1$,

$$
\sum_{k=2}^{n} f(k) \le \int_{1}^{n} f(x) dx \le \int_{1}^{\infty} f(x) dx \in R
$$

\n
$$
\forall n \in \mathbb{N}, \sum_{k=1}^{n} f(k) \le \int_{1}^{\infty} f(x) dx + f(1)
$$

\nBy positive series dichotomy, $\sum_{k=1}^{\infty} f(k)$ converges
\nAssume $\sum_{k=1}^{\infty} f(k)$ is convergent, apply the following lemma with $N = 0$,
\n
$$
\forall n \in \mathbb{N}, \int_{1}^{n+1} f(x) dx \le \sum_{k=1}^{n} f(k) \le \sum_{k=1}^{\infty} f(k) = \sup\{S_n\}
$$

\n
$$
F(R) = \int_{1}^{R} f(x) dx
$$
 is increasing in R and $F(R) \le \sum_{k=1}^{\infty} f(k)$ $\forall R > 1$
\n
$$
\Rightarrow F(R) \rightarrow \int_{0}^{\infty} f(x) dx
$$
 (a finite number) as $R \rightarrow \infty$
\n**n**: for $p > 0$, $\sum_{k=1}^{\infty} f(k) \Rightarrow p > 1$

Correlatio $\frac{1}{n}$ \boldsymbol{n} \lt

Lemma: let $f: [1, \infty) \to [0, \infty)$ be increasing, $\forall n > N \in \mathbb{N}$, \int_{N}^{n} $\int_{N+1}^{n+1} f(x) dx \leq \sum_{k=1}^{n}$ $\frac{n}{k=N+1}f(k) \leq \int_N^n$ \overline{N} Proof: let $h(x) = f(k + 1), x \in [k, k + 1), k \in \mathbb{N}$,

$$
h(x) \le f(x) \Rightarrow \int_{N}^{n} f(x) dx \ge \int_{N}^{n} h(x) dx = \sum_{k=N}^{n-1} \int_{k}^{k+1} h(x) dx = \sum_{k=N}^{n-1} f(k+1) = \sum_{k=N+1}^{n} f(k)
$$

Let
$$
g(x) = f(k), x \in [k, k+1), k \in \mathbb{N}
$$
,
\n $f(x) \le g(x) \Rightarrow \int_{N+1}^{n+1} f(x) dx \le \int_{N+1}^{n+1} g(x) dx = \sum_{k=N+1}^{n} \int_{k}^{k+1} h(x) dx = \sum_{k=N+1}^{n} f(k)$

Note: this lemma gives an **error bound** on the approximation of $S = \sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty} f(k)$ using $S_n = \sum_{k=1}^{n}$ \boldsymbol{k} **Remark:** $\sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=1}^{\infty} a_n$ $\sum\limits_{n=n_0}^{\infty} a_n$ converges

b. Comparison test

Theorem: let $a_n, b_n \geq 0$ assume $k > 0$ and $a_n \leq k b_n$ ultimately, then

- $\sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty} b_n$ converges $\Rightarrow \sum_{n=1}^{\infty}$ i. $\sum_{n=1} b_n$ converges $\Rightarrow \sum_{n=1} a_n$ converges
- $\sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty} a_n$ diverges $\Rightarrow \sum_{n=1}^{\infty} a_n$ ii. $\sum_{n=1}^{\infty} a_n$ diverges $\Rightarrow \sum_{n=1}^{\infty} b_n$ diverges Proof: choose n_0 such that $n \geq n_0$, $\forall n \geq n_0$, $\sum_{i=1}^n$ $\sum_{i=n_0}^n a_i \leq k \sum_{i=1}^n$ $\sum_{i=n_0}^{n} b_i \leq k \sum_{i=1}^{\infty}$ i By positive series dichotomy, $\sum_{i=1}^{n}$ $\frac{n}{i=n_0}a_i$ converges, by the last remark, $\sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty} a_n$ converges

c. Limit comparison test

Theorem: let $a_n, b_n \geq 0$ assume $\frac{a}{b}$ \boldsymbol{b}

- L is finite, then if $\sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty} b_n$ is convergent, so is $\sum_{n=1}^{\infty}$ i. L is finite, then if $\sum_{n=1}^{\infty} b_n$ is convergent, so is $\sum_{n=1}^{\infty}$ Proof: $\frac{a_n}{b_n} \to L$ is finite, take $\varepsilon = 1$, $\exists n \geq n_0 \Rightarrow \left| \frac{a_n}{b_n} \right|$ $rac{a}{b}$ $\Rightarrow \frac{a}{b}$ $\frac{u_n}{b_n}$ $<$ L + 1 \Rightarrow a_n $<$ $(L$ + 1) b_n ultimately By comparison test, if $\sum_{n=1}^{\infty} b_n$ is convergent, so is $\sum_{n=1}^{\infty}$ $n=1$ of $n=1$ contemporary so $\sum_{n=1}^{\infty}$
- $L > 0$, then if $\sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty} a_n$ is divergent, so is $\sum_{n=1}^{\infty} a_n$ \boldsymbol{n} Proof: $\frac{a_n}{b_n} \to L \in (0, \infty]$, take inverse $\frac{b_n}{a_n} \to \frac{1}{L}$ $\frac{1}{L} \in [0, \infty)$, apply (i) with a_n, b_n reversed ii.

d. Root test

Theorem: let $a_n \geq 0$, assume $\mathbf{1}$ $\frac{1}{n} \rightarrow$

- $\rho < 1, \sum_{n=1}^{\infty}$ i. $\rho < 1$, $\sum_{n=1}^{\infty} a_n$ converges
- $\rho > 1, \sum_{n=1}^{\infty}$ ii. $\rho > 1$, $\sum_{n=1}^{\infty} a_n$ diverges
- $\rho = 1, \sum_{n=1}^{\infty}$ iii. $\rho = 1$, $\sum_{n=1}^{\infty} a_n$ may converge or diverge

e. Ratio test

Theorem: let $a_n \geq 0$, assume $\frac{a}{a}$ \boldsymbol{a}

- $\rho < 1, \sum_{n=1}^{\infty}$ i. $\rho < 1$, $\sum_{n=1}^{\infty} a_n$ converges
- $\rho > 1, \sum_{n=1}^{\infty}$ ii. $\rho > 1$, $\sum_{n=1}^{\infty} a_n$ diverges
- $\rho = 1, \sum_{n=1}^{\infty}$ iii. $\rho = 1$, $\sum_{n=1}^{\infty} a_n$ may converge or diverge

Remark: ratio test tends to be easier to implement arithmetically than root test (especially with n!); root test implies ratio test, but ratio test does not imply root test

Lemma: $a_n \geq 0$, $\frac{a}{a_n}$ $\frac{a_n}{a}$ $\mathbf{1}$ $\frac{\pi}{n}$ \rightarrow ρ converse fails

Absolute convergence

Definition: a series $\sum_{n=1}^{\infty}$ $\sum\limits_{n=1}^{\infty}a_{n}$ converges absolutely if and only if $\ \sum\limits_{n=1}^{\infty}\alpha_{n}$ $\sum_{n=1}^{\infty} |a_n|$ converges **Theorem:**

 $\sum_{n=1}^{\infty}$ $_{\mathrm{n=1}}^{\infty}$ a_{n} converges absolutely ($\sum_{\mathrm{n=1}}^{\infty}$ $\sum_{n=1}^{\infty} |a_n|$ converges) $\Rightarrow \sum_{n=1}^{\infty}$ a. $\sum_{n=1}^{\infty} a_n$ converges absolutely ($\sum_{n=1}^{\infty} |a_n|$ converges) $\Rightarrow \sum_{n=1}^{\infty} a_n$ converges Proof: let $a_n^+ = \max\{a_n, 0\} a_n^-$ Then $a_n = a_n^+ - a_n^-$, $|a_n| = a_n^+ + a_n^-$, and $0 \le a_n^+$ Since $\sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty} |a_n|$ converges, by comparison test, $\sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^ \sum_{n=1}^{\infty} a_n$ converges By algebra of series, $\sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} a_n^+$ $\sum_{n=1}^{\infty} a_n^+ + a_n^-$ converges

b. However, inverse is false

Lemma: let $\{l_n : n \in \mathbb{N}\}$ be a sequence, if $l_{2n} \to L$ and $l_{2n-1} \to L$, then **Theorem (Alternating Series Test):** let $b_n \searrow 0$ ($b_n \geq 0$ for $\forall n$) then $\sum_{n=1}^{\infty} (-1)^n$ $\sum_{n=1}^{\infty}(-1)^{n-1}b_n$ converges

Proof: let $S_n = \sum_{i=1}^n (-1)^i$ $\sum_{i=1}^{n}(-1)^{i-1}b_i, a_i=(-1)^i$ $S_{2(n+1)} - S_{2n} = a_{2n+2} + a_{2n+1} = -b_{2n+2} + b_{2n+1} \ge 0$ (since $b_{2n+1} \ge b_{2n+2} \Rightarrow S_{2n}$ is increasing $S_{2n+1} - S_{2n-1} = a_{2n+1} + a_{2n} = b_{2n+1} - b_{2n} \le 0 \Rightarrow S_{2n-1}$ is decreasing $S_{2n-1} - S_{2n} = b_{2n} \ge 0 \Rightarrow S_{2n-1} \ge S_{2n}$ for $\forall n$ S_{2n} is increasing and it has an upper bound of S_1 , thus limit S_{even} exists S_{2n-1} is decreasing and it has an lower bound S_2 , thus limit S_{odd} exists And $S_{odd} - S_{even} = \lim S_{2n-1} - S_{2n} = \lim b$

By the previous lemma, $\sum_{n=1}^{\infty}(-1)^n$ $\sum_{n=1}^{\infty}(-1)^{n-1}b_n$ converges to

Remark (Alternating Series Bounds): $\forall n$, $S_{2n} \leq S \leq S_{2n+1} \leq S_{2n-1}$, then b_{2n+1} , and $0 \leq S_{2n-1} - S \leq S_{2n-1} - S_{2n} = b_{2n}$, so $\forall m \in \mathbb{N}$, $|S_m - S| \leq b_{m+1}$ is the approximation error by the mth sum.

Conditional convergence

Definition: a series $\sum_{n=1}^{\infty}$ $\sum\limits_{n=1}^{\infty}a_{n}$ converges conditionally if and only if $\sum\limits_{n=1}^{\infty}\frac{1}{n}$ $\sum_{n=1}^{\infty} a_n$ converges, but $\sum_{n=1}^{\infty} a_n$ $\sum_{n=1}^{\infty} |a_n|$ does not converge

Proposition: let $\sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty} a_n$ be convergent, $\sum_{n=1}^{\infty}$ $\sum\limits_{n=1}^{\infty}a_{n}$ converges conditionally $\Leftrightarrow\,\sum\limits_{n=1}^{\infty}\frac{1}{n^{n}}$ $\sum_{n=1}^{\infty} a_n^+ = \infty$ and $\sum_{n=1}^{\infty} a_n^+$ $\sum_{n=1}^{\infty} a_n =$ ∞

Proof:(1) $|a_n| = a_n^+ + a_n^- = a_n^+ + a_n^+ - (a_n^+ - a_n^-) = 2a_n^+$ suppose $\sum_{n=1}^{\infty} a_n^+$ converges, by algebra of series $\sum_{n=1}^{\infty} |a_n|$ converges $n=1$ on α converges, by algebra or series $\sum_{n=1}^{\infty}$ But this contradicts, so $\sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty} |a_n| = \infty \Rightarrow \sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty} a_n^+ =$ Similarly, $|a_n| = a_n^+ + a_n^- = a_n^- + a_n^- + (a_n^+ - a_n^-) = 2a_n^-$ We can get that $\sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty} |a_n| = \infty \Rightarrow \sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty} a_n^ (2)\sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty} a_n^+ = \infty$, $|a_n| \ge a_n^+$, by comparison test, $\sum_{n=1}^{\infty} a_n^+$ $\sum_{n=1}^{\infty} |a_n| = \infty \sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty} a_n = \infty$, $\sum_{n=1}^{\infty} a_n$ $\mathbf n$ converges conditionally

Remark: Assume $\sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty} a_n$ converges conditionally, by adding a lot of positive terms and then a few negative terms and a lot of positive terms and keeping going, as long as $a_n\to 0$, $\sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty} a_n$ can be $\pm \infty$ or any number

5. Power series

Definition: A power series centered at $c \in R$ is a series of the form $\sum_{n=1}^{\infty}$ $\sum_{n=0}^{\infty} a_n (x-c)^n$, where $a_n \in \mathbb{R}$, and x is an independent variable.

Let $C_a = \{x: \sum_{n=1}^{\infty}$ $\sum_{n=0}^{\infty} a_n(x-c)^n$ } be a set of convergence of the power series, $C_a = (c - R, c + R)$ (end points may be included), c is the center of convergence and R is the convergence radius

If $f(x) = \sum_{n=1}^{\infty}$ $\sum_{n=0}^{\infty} a_n (x-c)^n$, $x \in C_a$, then it is a power series representation of **Theorem:** a power series $\sum_{n=0}^{\infty} a_n(x-c)^n$, there exists $R \in [0,\infty]$ such that \boldsymbol{n}

- $|x-c| < R$, $\sum_{n=1}^{\infty}$ a. $|x-c| < R$, $\sum_{n=0}^{\infty} a_n(x-c)^n$ converges absolutely
- $|x-c| > R$, $\sum_{n=1}^{\infty}$ b. $|x-c| > R$, $\sum_{n=0}^{\infty} a_n (x-c)^n$ diverges
- c. $|x-c| = R$, $\sum_{n=0}^{\infty} a_n (x-c)^n$ may converge or diverge ∞ Proof: (1) WOLOG, let $c = 0$ (let $x' = x - c$ if not)

$$
\sum_{n=0}^{\infty} a_n (x - c)^n = \sum_{n=0}^{\infty} a_n (x')^n
$$

By result for $c = 0$, $\exists R \in [0, \infty]$ such that $|x'| < R \Rightarrow \sum_{n=1}^{\infty}$ $\sum_{n=0}^{\infty} a_n (x')^n$ converges (2) Let $R = \sup\{|x| : x \in C_a\}$, $|x| < R$, if $R < \infty$, $\exists x_0 \in C_a$ such that $|x| < |x_0| < R$ $x_0 \in C_a \Rightarrow \sum^{\infty} a_n(x_0)^n$ \boldsymbol{n} converges $\Rightarrow \lim a_n(x_0)^n = 0 \Rightarrow \exists k \text{ such that } \left| a_n(x_0)^n \right|$ $|a_n(x_0)^n| = |a_n| |(x_0)^n| \Big(\frac{1}{L} \Big)$ $\frac{1}{\sqrt{2}}$ \boldsymbol{n} $\leq kr^n$ where $r=\frac{1}{k}$ $\frac{1}{\sqrt{2}}$ ∞

By comparison test, since $\sum_{n=0}^{\infty} k r^n$ is convergent, then $\sum_{n=0}^{\infty} |a_n(x_0)|^n$ \boldsymbol{n} converges, $\sum^{\infty} a_n(x_0)^n$

 \boldsymbol{n} converges absolutely **Theorem:** Let R be the convergence radius of $\sum_{n=1}^{\infty}$ \boldsymbol{n}

If $\mathbf{1}$ $\frac{1}{n} \rightarrow \sigma \in [0, \infty]$, then $R = \frac{1}{\sigma}$ a. If $|a_n|^n \to \sigma \in [0, \infty]$, then $R = \frac{1}{\sigma}$ If $\left| \frac{a}{b} \right|$ $\left|\frac{a_{n+1}}{a_n}\right| \to \sigma \in [0,\infty]$, then $R = \frac{1}{\sigma}$ b. If $\left|\frac{a_{n+1}}{a_n}\right| \to \sigma \in [0,\infty]$, then $R = \frac{1}{\sigma}$

Lemma: $H > 0$, then $\forall |h| \leq H \ \forall x \in R$, $|(x+h)^n - x^n - nx^{n-1}h| \leq \left|\frac{h}{h}\right|$ $\left(\frac{h}{H}\right)^2 (|x|+H)^n$ **Remark:** if $|x| < r$, then $\sum_{n=0}^{\infty} |a_n(x)^n|$ $\sum_{n=0}^{\infty} |a_n(x)^n|$ converges

Theorem (differentiation and integration of power series): Assume $f(x) = \sum_{n=1}^{\infty}$ $\sum_{n=0}^{\infty} a_n x^n$ for radius of convergence, then

 $f'(x) = \sum_{n=1}^{\infty}$ a. $f'(x) = \sum_{n=0}^{\infty} n a_n x^{n-1}$ for Proof: (1)first check convergence let $0 < |x| < r$, claim $\sum_{n=0}^{\infty} |na_nx^{n-1}|$ $\sum_{n=0}^{\infty} |na_n x^{n-1}| <$ Choose r_0 such that $|x| < r_0 < r$, then $\sum_{n=1}^{\infty}$ $\sum_{n=0}^{\infty} a_n r^n$ converges $\Rightarrow a_n r^n$ \Rightarrow $\exists k$ such that $|a_n r_0^n| \leq k$ for all $|na_nx^{n-1}|$ $n|a_nr_0^n|$ $\frac{1}{\sqrt{2}}$ $|x|$ ⁿ $\frac{1}{r_0^n}$ $(|a_n r_0^n|)$ $\overline{}$ $\frac{1}{r}$ Then $|na_nx^{n-1}|\leq \frac{k}{|x|}n\alpha^n$ I Recall that $\sum_{n=1}^{\infty}$ $\sum_{n=0}^{\infty} n \alpha^n$ is convergent , so $\sum_{n=0}^{\infty} |na_nx^{n-1}|$ $\sum_{n=0}^{\infty} |na_nx^{n-1}|$ converges by comparison (2)Let $g(x) = \sum_{n=1}^{\infty}$ $\sum_{n=0}^{\infty} n a_n x^{n-1}$ I f $\frac{1}{h}$ $(a_n(x+h)^n - a_nx^n)$ $\frac{a_n(x+h)-a_nx}{h}-na_nx^n$ ∞ \boldsymbol{n} $\overline{}$ $=\lim_{N\to\infty}\left|\frac{1}{h}\right|$ $\frac{1}{h} \sum_{n=0}^{N} a_n ((x+h)^n - x^n - nx^n)$ \boldsymbol{n} $\leq \frac{1}{k}$ $\frac{1}{h}$ $\lim_{N\to\infty}$ $\sum_{n=1}^{N}$ $\sum_{n=0}^{N} a_n \left| \frac{h}{H} \right|$ $\left| \frac{h}{H} \right|^2 (|x|+H)^n$ (by triangular inequality and previous lemma) Since $\sum_{n=1}^{\infty}$ $\sum_{n=0}^{\infty} a_n \left| \frac{h}{H} \right|$ $\left(\frac{h}{H}\right)^2(|x|+H)^n$ converge to 0. By squeeze theorem, $\left| \frac{f}{f} \right|$ $\frac{f(x+h)-f(x)}{h} - g(x) \rightarrow 0$ as By definition $\frac{1}{h}$ f $rac{f(x+h)}{h}$ \int_0^x $\int_0^x f(t) dt = \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^n$ \overline{n} b. $\int_0^x f(t) dt = \sum_{n=1}^{\infty} \frac{a_n}{n+1} x^{n+1}$ for Proof: $\frac{a}{n}$ $\left|\frac{a_n}{n+1}x^{n+1}\right| \leq |x| \left|a_n x^n\right|$ RHS converges By comparison test, $\sum_{n=0}^{\infty} \frac{a_n}{n+1} x^n$ \boldsymbol{n} converges absolutely for Let $h(x) = \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^n$ \boldsymbol{n} By (a) $h'(x) = \sum_{n=1}^{\infty}$ $\sum_{n=0}^{\infty} a_n x^n =$ \int_0^x $\int_0^x f(t) dt = \int_0^x$ h''_0 $h'(t)$ dt = $h(x) - h(0) = \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^n$ \boldsymbol{n} by FTC c. Note: with this theorem, we can generate new power series representations from old ones like $\frac{1}{1}$

 Σ_n^{∞} \boldsymbol{n} **Correlation:** Assume $f(x) = \sum_{n=1}^{\infty}$ $\sum_{n=0}^{\infty} a_n(x)^n$ for $|x| < r \leq$ radius of convergence, then $f(x)$ is infinitely differentiable for $|x| < r$, write $f \in c^{\infty}$

Theorem <mark>(Abel's Theorem)</mark>: assume $f(x) = \sum_{n=1}^{\infty}$ $\sum_{n=0}^{\infty}a_nx^n$ for $|x| < R$, and $\sum_{n=1}^{\infty}$ $\sum_{n=0}^{\infty} a_n R^n$ converges, then $\lim_{x \to \infty} F(x) = \sum_{n=1}^{\infty}$ \boldsymbol{n}

Remark: if $R(f)$ is the radius of convergence for $f(x) = \sum_{n=1}^{\infty}$ $\sum_{n=0}^{\infty} a_n x^n$, then $R(f) = R(f')$ **Remark:** everything works for $\sum_{n=1}^{\infty}$ $\sum_{n=0}^{\infty} a_n(x-c)^n$ with any

6. Taylor series

Theorem: Assume f is c^{∞} on $(c - R, c + R)$, if $f(x) = \sum_{n=1}^{\infty}$ $\sum_{n=0}^{\infty} a_n (x-c)^n$ for $|x-c| < r$, then $\forall k \in \mathbb{Z}^+$, $a_k = \frac{f^{(k)}(k)}{k!}$ $\frac{f^{(n)}(c)}{k!}$, where $f^{(0)}(c)$ ∞

 $\frac{f^{(n)}(c)}{n!}(x-c)^n$

 $\frac{f^{(0)}(c)}{k!}(x-c)^k$

, if

 \overline{n}

 ∞

 \boldsymbol{k}

Remark: a power series representation (if exists) for $f(x)$ is unique and must be $\sum_{n=1}^{\infty} \frac{f^{(n)}(x)}{n!}$

Definition: Assume $f^{(k)}(c)$ exists for all $k \in N$. The taylor series of f about $x = c$ is $\sum_{k=1}^{\infty} \frac{f^{(k)}(c)}{k!}$

 $c = 0$, it is called the Maclaurin series

Assume $f^{(k)}(c)$ exists for all $k \leq n \in N$, the nth degree Taylor polynomial for f about $x = c$ is $P_{n,c}(x)$

Theorem (Taylor series test): Assume f is c^∞ on $(c-R,c+R)$, let $M_n(r)=\sup\bigl\{|f^{(n)}(x)|\colon |x-c|< R\bigr\},$ if $M_n(r)r^n$ $\frac{M_n(r)r^n}{n!} = 0$, then $f(x) = \sum_{k=1}^{\infty} \frac{f^{(k)}(x)}{k!}$ $\frac{f^{(0)}(c)}{k!}(x-c)^k$ ∞ \boldsymbol{k} for all

Theorem (Taylor's Theorem): Assume f^{n+1} exists on $(c - R, c + R)$, $\forall x \in (c - R, c + R)$, $\exists t = t(x)$ such that $f(x) - P_{n,c}(x) = \frac{f^n}{a}$ $\frac{\sqrt{n+1}(t)}{(n+1)!}(x-c)^n$

First order differential equations

2019年7月23日 14:27

Definition: A first order differential equation is an equation relating $y = f(x)$, $\frac{d}{dx}$ $rac{dy}{dx}$ and

1. Separation of variables

Definition: A separable first order differential equation is one in the form of $\frac{a}{d}$ $f(g(y(t))f(t))$ for some continuous functions. (LGE is a special case where $g(y(t)) =$ $\left(1-\frac{y}{x}\right)$ $\left(\frac{y(t)}{L}\right)$ y(t) and $f(t) = k$) To derive a formula for $y(t)$: $\mathbf d$ $\frac{1}{d}$ $\mathbf d$ \overline{g} -Integrate both sides \perp $\mathbf d$ \overline{g} - \perp $\mathbf d$ \boldsymbol{d} $\mathbf{1}$ \overline{g} $\overline{}$ $G(y(t)) = \int f(t) dt$ $y(t) = G^{-}$

In fact, this works until t_1 where $g\left(y(t_1)\right)$ is first zero, if $g(y_0) \neq 0$ and $t_1 > 0$,

$$
G^{-1}
$$
 exists and $\int \frac{dy}{g(y(t))}$ will be increasing or decreasing until $g(y) = 0$

a. Easy case:

$$
\frac{dy}{dt} = ky(t); y(0) = y_0 \Rightarrow y = y_0 e^{kt}
$$

b. Logistic Growth Equation

 $\mathbf d$ $\frac{1}{d}$ \mathcal{Y} $\frac{2}{L}$

It has two trivial solutions $y(t) = 0$ and $y(t) = L$, corresponding to initial conditions $y_0 = L$ and $y_0 = 0$

$$
\int \frac{dy}{\left(1 - \frac{y}{L}\right)y} = \int k \, dt
$$
\n
$$
\int \frac{L \, dy}{(L - y)y} = kt + C
$$
\n
$$
\int \left(\frac{1}{L - y} + \frac{1}{y}\right) dy = kt + C
$$
\n
$$
\ln|y| - \ln|L - y| = kt + C
$$
\n
$$
\ln\left|\frac{y}{L - y}\right| = kt + C
$$
\n
$$
\frac{y}{L - y} = C_1 e^{kt}
$$
\n
$$
y = \frac{C_1 I e^{kt}}{1 + C_1 e^{kt}} \text{ until first time } y(t) \notin (0, L) \text{ so } \frac{y}{L - y} > 0
$$
\n
$$
\Leftrightarrow y = \frac{L}{\frac{y}{y_0} e^{-kt} + 1} \in (0, L), \text{ for all } t \ge 0
$$

Remark: The presence of y^2 in separable equations makes $y(x) \rightarrow \infty$ at some finite x. If $g(y) \leq k(1+|y|)$, then the solution of $\frac{dy}{dt} = g(y(t))f(t)$ will not have a

2. First order linear differential equations

 $\mathbf d$ $\frac{dy}{dx}$ + $p(x)y = q(x)$, where $p(x)$ and $q(x)$ are continuous functions Note: if $p(x) = 0$, it is a separable equation $p(x) \neq 0$, consider multiplying both sides by e^μ

$$
e^{\mu(x)}\left|\frac{dy}{dx} + p(x)y\right| = e^{\mu(x)}q(x)
$$

If we choose $\mu(x)$ such that $e^{\mu(x)}\left[\frac{d}{dx}\right]$ $\frac{dy}{dx} + p(x)y$ = $\frac{d(e^{\mu})}{dt}$ $\frac{d(c - y)}{dx}$, call $\mu(x)$ the integrating factor

Then, the LDE can be rewritten as $\frac{d(e^{\mu})}{d}$ $\frac{d(e^{i\pi(x)}y)}{dx} = e^{\mu}$ Integrate both sides, $e^{\mu(x)}y = \int e^{\mu x}$ To find $\mu(x)$, solve $e^{\mu(x)}\left[\frac{dx}{dt}\right]$ $\frac{dy}{dx} + p(x)y$ = $\frac{d(e^{\mu})}{dt}$ $\frac{u(c)}{d}$ $e^{\mu(x)}$ $\mathbf d$ $\left| \frac{dy}{dx} + p(x)y \right| = e^{\mu(x)}$ \mathbf{d} $\frac{dy}{dx} + \mu'$ $\Rightarrow p(x)y = \mu'$ $\Rightarrow \mu(x) = \int p(x) dx$

Note that adding constant to $\mu(x)$ does not affect y

Theorem: y solves a linear differential equation $\frac{dy}{dx} + p(x)y = q(x)$ if and only if $y = e^{-\mu(x)} \int e^{\mu(x)} q(x) dx$ where

Vectors and geometry

June 23, 2021 7:44 PM

Vectors in \mathbb{R}^2 and

- A vector is a quantity with both magnitude and direction indicated by arrows
- Magnitude $|\vec{a}|$ is the length of the vector \vec{a} .
- Two vectors are the same if they have the same direction and magnitude
- Addition: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$.
- Scalar multiplication $c\vec{a} = \vec{a} + \vec{a} + \cdots + \vec{a}$.
- Zero vector $\vec{0}$: the only vector of magnitude 0, has no direction.
- The vector from $(0,0,0)$ to (a, b, c) is denoted as $\lt a, b, c >$.
- Unit vectors:
	- \circ \vec{i} = < 1,0,0 >.
	- \circ $\vec{j} = 0.10$.

$$
\circ \vec{k} = <0, 0, 1> .
$$

Dot product

- Geometric definition: $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$.
- Algebraic: $\vec{a} = \langle a_1, a_2, a_3 \rangle$, $\vec{b} = \langle b_1, b_2, b_3 \rangle$, then $\vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + a_3b_3$.
- Remark: $\vec{a} \cdot \vec{b} = 0 \Leftrightarrow \vec{a} \perp \vec{b}$.

Cross product

- Geometric: $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta$.
	- \circ Direction of $\vec{a} \times \vec{b}$ is normal to both \vec{a} and \vec{b} .
- Algebraic: i α \boldsymbol{b} • Algebraic: $\vec{a} \times \vec{b} = |a_1 \ a_2 \ a_3|$.
- Remark: $\vec{a} \times \vec{b} = 0 \Leftrightarrow \vec{a} \parallel \vec{b}$

Triple product:
$$
\vec{a} \cdot (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}
$$
.

Equations for lines in \mathbb{R}^3

• A line is determined by a point (x_0, y_0, z_0) on the line and a vector $\vec{v} =$ in the direction of the line

$$
\begin{cases}\nx = x_0 + at \\
y = y_0 + bt.\n\end{cases}
$$

• Parametric equation:
$$
\begin{cases} y = y_0 + bt, \\ z = z_0 + ct \end{cases}
$$

2 linear equation when $a, b, c \neq 0, \frac{x^2}{2}$ $\frac{x-x_0}{a} = \frac{y}{x}$ $\frac{y-y_0}{b} = \frac{z}{a}$ • 2 linear equation when $a, b, c \neq 0$, $\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$.

Equation for a plane:

- $\vec{N} \cdot \langle x x_0, y y_0, z z_0 \rangle = 0.$
- $a(x-x_0)+b(y-y_0)+c(z-z_0)=0$ or equivalently $d=ax+by+cz$.

Equations and surfaces

- Planes are solutions to linear equations
- For quadratic equations in 2 variables (x^2, y^2, xy, x, y, c) , we get circles, ellipses, parabolas, hyperbolas
- A quadratic surface in \mathbb{R}^3 is given by an equation which is a linear combination of $x^2, y^2, z^2, xy, yz, xz, x, y, z, c.$

MATH253 Page 1

- If the equation only involves 2 of the 3 variables, it is a cylinder
- To sketch/understand surfaces, we use the curves obtained by planes parallel to coordinate planes
	- \circ Contour curves: setting $z = c$ constant.
	- Trace curves: $x = c$ or $y = c$ constant.

Functions of 2 and 3 variables

- A function of 2 variables with domain $D \subset \mathbb{R}^2$ is a rule f which assigns to each point D, a $f(x, y) \in \mathbb{R}$, write $f: D \to \mathbb{R}$
- Often the domain is implicit
- For functions of 3 variables, we can only draw the contour/level surfaces

Partial Derivatives

June 23, 2021 7:48 PM

Continuity and limits

- For $\lim_{(x,y)\to(a,b)} f(x,y)$, there are infinite number of directions which (x, y) can approach (a, b) along, we need them all to be the same
- For limits to the origin, the easiest way is setting $x = tx_0$, $y = ty_0$.

Partial derivatives

- For a function $f(x, y)$, we can treat x as a variable and y as a constant or vice versa
- \bullet $\frac{\partial f}{\partial x} = f_x$ is the derivative of f with respect to x .
- $\frac{\partial f}{\partial y} = f_y$ is the derivative of f with respect to y.

• In terms of limits,
$$
f_x(x_0, y_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}
$$
.

Higher derivatives

 $f_{xy} = \frac{\partial}{\partial x}$ ∂ ∂ ∂ • $f_{xy} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 z}{\partial y \partial x}$.

•
$$
f_{xx} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 z}{\partial x^2}
$$
.

- Theorem: partial derivatives commute $f_{xy} = f_{yx}$.
- f_{xx} , f_{yy} tells the concavity in xz, yz plane.
- f_{xy} tells how f_y changes as we change x.

Implicit differentiation

- For any 3 variable function $f(x, y, z)$, we can implicitly define z as a function of x, y.
- z is dependent on x, y, and we can calculate z_x , z_y directly.

Linear approximation

- Consider $l_1: z = f(x_0, y_0) + f_x(x_0, y_0)(x x_0)$ and $l_2: z = f(x_0, y_0) + f_y(x_0, y_0)(y y_0)$.
- They lie in the tangent plane
- Then $f(x,y) \approx f(x_0, y_0) + f_x(x_0, y_0)(x x_0) + f_y(x_0, y_0)(y y_0)$.

Chain rule

Given $z = f(x, y)$, $x = g(t)$, $y = h(t)$, we have $z_t = z_x x_t + z_y y_t$.

• Similarly, if
$$
z = f(g(s, t), h(s, t))
$$
, then $\begin{pmatrix} z_s \\ z_t \end{pmatrix} = \begin{pmatrix} x_s & y_s \\ x_t & y_t \end{pmatrix} \begin{pmatrix} z_x \\ z_y \end{pmatrix}$.

- $\overline{ }$ \circ $\begin{pmatrix} x_s & y_s \\ x_t & y_t \end{pmatrix}$ is the Jacobian matrix
- In polar coordinates $x = r \cos \theta$, $y = r \sin \theta$, $z = f(x, y)$.
	- $z_r = z_x \cos \theta + z_y \sin \theta$.
	- $z_{\theta} = z_{\gamma}(-r \sin \theta) + z_{\gamma}(r \cos \theta).$

Directional derivative

- Let \vec{u} be the directional vector, $D_{\vec{u}}f(x_0, y_0)$ =rate of change at (x_0, y_0) , as we move in the direction \vec{u} at unit speed, $|\vec{u}| = 1$.
- $D_{\vec{u}}f = \frac{d}{d}$ $\frac{df}{dt} = f_x \frac{d}{dt}$ • $D_{\vec{u}}f = \frac{df}{dt} = f_x \frac{dx}{dt} + f_y \frac{dy}{dt} = f_x(x_0, y_0)a + f_y(x_0, y_0)b = < f_x, f_y > \vec{u}.$
- $\nabla f = \langle f_x, f_y \rangle$ is the gradient of f, it is a vector field. $D_{\vec{u}}f = \nabla f \cdot \vec{u}.$
- If \vec{u} is tangent to a contour line, then $D_{\vec{u}}f = 0 \Rightarrow \nabla f \cdot \vec{u} = 0$, $\nabla f \perp$ contour.
- $D_{\vec{u}}f$ is greatest when \vec{u} is in the direction of ∇f .
	- \circ ∇f points to the direction in which f increases the fastest.
- If $F(x, y, z)$ is a function of 3 variables, then ∇F is a vector field in \mathbb{R}^3 , properties hold.

MATH253 Page 3

○ Tangent plane:
$$
z = z_0 - \frac{F_x}{F_z}(x - x_0) - \frac{F_y}{F_z}(y - y_0)
$$
.

Classification of critical points

- For $f: D \to \mathbb{R}$, if D is closed and bounded, $f(x, y)$ will achieve its global max/min at either a critical point or on the boundary.
- A point (x_0, y_0) is critical if $\nabla f(x_0, y_0) = 0$.
- Discriminant (determinant of Hessian matrix) •

$$
\circ \quad D = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix} = f_{xx}f_{yy} - f_{xy}^2.
$$

- Classification:
	- $D(x_0, y_0) > 0, f_{xx} > 0$, local min.
	- $0 \quad D(x_0, y_0) > 0, f_{xx} < 0$, local max.
	- $\overline{D(x_0, y_0)} = 0$ not a critical point (inconclusive).
	- $\overrightarrow{D(x_0, y_0)}$ < 0, saddle point.

Lagrange multiplier

- Max/min of $f(x, y)$ restricted to boundary curve occurs when the contour curve is tangent to the boundary curve.
- Look for points (x_0, y_0) on the boundary curve $g(x, y)$ where $\nabla f(x_0, y_0) = \lambda \nabla g(x_0, y_0)$.
	- \circ λ is the Lagrange multiplier.
	- \circ This means $f_x = \lambda g_x$, $f_y = \lambda g_y$, $g = 0$.

Multiple integrals

June 23, 2021 7:48 PM

Definition: $\iint_D^{\ldots} f(x, y) dx dy = \lim_{N \to \infty, M \to \infty} \sum_{i=1}^M \sum_{j=1}^N f(x_i, y_j) \Delta x_i \Delta y_j$. Average value of f in $D = \frac{1}{4 \pi \epsilon_0}$ $\frac{1}{Area(D)}$ \iint_D

Properties

• FTC still apply

• Linearity:
$$
\iint_D \mathbb{I}af(x,y) + Bg(x,y)dxdy = A \iint_D \mathbb{I}f(x,y)dxdy + B \iint_D \mathbb{I}g(x,y)dxdy.
$$

Theorem:

- If $D = [a, b] \times [c, d]$, $\iint_D^{f(x)} f(x, y) dx dy = \int_c^a \int_a^b f(x, y) dx dy$. $D^{(1)}(x, y)$ below $J_c^{(1)}(x, y)$
- Fubini Theorem: $\iint_D f(x,y) dx dy = \int_c^{\alpha} \int_a^b f(x,y) dx dy = \int_a^b \int_c^{\alpha} f(x,y) dy dx$.

D is vertically sliceable if it is of the form $D = \{(x,y): g_1(x) \leq y \leq g_2(x), a \leq x \leq b\}.$

• Then $\iint_D f(x,y) dx dy = \int_c^{\alpha} \int_{g_1(x)}^{g_2(x)} f(x,y) dy dx$.

D is horizontally sliceable if it is of the form $D = \{(x, y) : g_1(y) \le x \le g_2(y), a \le y \le b\}.$

• Then
$$
\iint_D f(x, y) dxdy = \int_C^a \int_{g_1(y)}^{g_2(y)} f(x, y) dx dy
$$
.

Sometimes in a region that is both vertically and horizontally sliceable, an integral is possible to do in only one way

If $f(x, y)$ is odd in $x, f(-x, y) = -f(x, y)$, and R is symmetric under reflection about $y - axis$, then $\iint_R f(x,y)dxdy =$

Integration in polar coordinates

- $x = r \cos \theta$, $y = r \sin \theta$, $\theta = \arctan \frac{y}{x}$. \mathcal{X}
- Let $R = \{(r, \theta): \alpha \leq r \leq b, \alpha \leq \theta \leq \beta\}, \Delta r = \frac{b}{r}$ $\frac{b-a}{N}$, $\Delta \theta = \frac{\beta}{N}$ • Let $R = \{(r, \theta) : a \le r \le b, \alpha \le \theta \le \beta\}, \Delta r = \frac{b-a}{N}, \Delta \theta = \frac{b-a}{M}.$
- Then $\iint_R^{\ldots} f(r,\theta) dA = \lim_{N \to \infty, M \to \infty} \sum_{i=1}^M \sum_{j=1}^N f(r_j,\theta_i) \Delta r_j \Delta \theta_i = \int_a^b \int_\alpha^\beta f(r,\theta) r d\theta dr$.
- Radially sliceable region: $R = \{(r, \theta) : g_r(\theta) \le r \le g_2(\theta), \alpha \le \theta \le \beta\}.$ \int_{R} Then \iint_{R} if $(r, \theta)dA = \int_{\alpha}^{P} \int_{g_1(\theta)}^{g_2(\theta)} f(r, \theta) r dr d\theta$.

Applications

- Mass
	- \circ Metal object of shape R, suppose it is made of a metal of density ρ ,
		- then $m(R) = \rho Area(R)$

$$
\circ \quad \text{Suppose } \rho = \rho(x, y).
$$

• Mass =
$$
\iint_R \omega \rho(x, y) dx dy.
$$

• Center of mass

$$
\circ \quad (\overline{x}, \overline{y}) = \left(\frac{\iint_R \Box x \rho(x, y) dx dy}{\iint_R \Box \rho(x, y) dx dy}, \frac{\iint_R \Box y \rho(x, y) dx dy}{\iint_R \Box \rho(x, y) dx dy} \right).
$$

• Surface area

$$
Area(P_{ij}) = |\vec{a} \times \vec{b}| = \sqrt{1 + f_x^2 + f_y^2} ΔxΔy.
$$

○ Total area $S(A) = \iint_R$ $\frac{d}{dx} \sqrt{1 + f_x^2 + f_y^2} dxdy.$

$$
\circ \ \ S(A) \geq Area(R).
$$

 \circ $z = f(x, y) + C$ has the same surface area as $f(x, y)$.

Triple integral

- $\iiint_E F(x, y, z) dV$.
- $Volume(E) = \iiint_E dV$.
- Type I: solid between two graphs $z=u_1(x,y)$, $z=u_2(x,y)$, $\big(x,y\big)\in R.$ •

$$
\begin{array}{ll} \circ & E = \{ (x, y, z) : (x, y) \in R, u_1 \le z \le u_2 \}. \\ \circ & \iiint_E \mathcal{F} dV = \iint_R \mathcal{F} u_1 \mathcal{F} dz \, dx dy. \end{array}
$$

• Type II: solid between two graphs $x = u_1(y, z)$, $x = u_2(y, z)$, $(y, z) \in R$.

$$
\begin{aligned}\n&\circ \quad E = \{ (x, y, z) : (y, z) \in R, u_1 \le x \le u_2 \}. \\
&\circ \quad \text{for} \quad E \le u - \text{if} \quad \text{if} \quad u_2 \le u_3 \text{ if } u_4. \\
&\circ \quad \text{if} \quad E \le u_4. \\
&\circ \quad \text{if} \quad \text{if} \quad u_5 \le u_6. \\
&\circ \quad \text{if} \quad u_6 \le u_7. \\
&\circ \quad \text{if} \quad u_7 \le u_8. \\
&\circ \quad \text{if} \quad u_8 \le u_9. \\
&\circ \quad \text{if} \quad u_9 \le u_9. \\
$$

 $\int \iint_E^{\ldots} F dV = \iint_R^{\ldots} \int_{u_1}^{u_2} F dx dz dy.$ • Type III: solid between two graphs $y = u_1(x, z)$, $y = u_2(x, z)$, $(x, z) \in R$.

$$
\circ \quad E = \{ (x, y, z) : (x, z) \in R, u_1 \le y \le u_2 \}.
$$

$$
\circ \quad \iiint_{E} F dV = \iint_{R}^{u} \int_{u_1}^{u_2} F dy dx dz.
$$

Cylindrical coordinates

- Let $x = r \cos \theta$, $y = r \sin \theta$, then (r, θ, z) forms the cylindrical coordinates.
- Let $E = \{(x, y, z) : (x, y) \in R, g_1 \le z \le g_2\}, R = \{(r, \theta) : h_1 \le r \le h_2, \theta \in [\alpha, \beta]\}.$
- Then \iiint_E $FdV = \iint_R$ $\int_{g_1}^{g_2} F dz dA = \int_{\alpha}^{\rho} \int_{h_1}^{h_2} \int_{g_1}^{g_2} Fr dz dr d\theta$.

Spherical coordinates

- $x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \sin \theta$, $z = \rho \cos \phi$, $\theta \in [0, 2\pi]$, $\phi \in [0, \pi]$. \circ ϕ measured from positive $z - axis$.
- $\Delta V = \rho^2 \sin \phi \Delta \rho \Delta \phi \Delta \theta$.
- \iiint_E ^{i...;} $FdV = \iiint_E$ ^{i...;} $F \rho^2 \sin \phi \, d\rho d\phi d\theta$.

Vectors and curves

June 23, 2021 7:45 PM

Vectors in \mathbb{R}^2 and

- A vector is a quantity with both magnitude and direction indicated by arrows
- Magnitude $|\vec{a}|$ is the length of the vector \vec{a} .
- Two vectors are the same if they have the same direction and magnitude
- Addition: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$.
- Scalar multiplication $c\vec{a} = \vec{a} + \vec{a} + \cdots + \vec{a}$.
- Zero vector $\vec{0}$: the only vector of magnitude 0, has no direction.
- The vector from $(0,0,0)$ to (a, b, c) is denoted as $\lt a, b, c >$.
- Unit vectors:
	- \circ \vec{i} = < 1,0,0 >.
	- \circ $\vec{j} = 0.1, 0 >$.
	- $\vec{k} = 0.0.1$.

Dot product

- Geometric definition: $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$.
- Algebraic: $\vec{a} = \langle a_1, a_2, a_3 \rangle$, $\vec{b} = \langle b_1, b_2, b_3 \rangle$, then $\vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + a_3b_3$.
- Remark: $\vec{a} \cdot \vec{b} = 0 \Leftrightarrow \vec{a} + \vec{b}$.

Cross product

- Geometric: $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta$.
	- \circ Direction of $\vec{a} \times \vec{b}$ is normal to both \vec{a} and \vec{b} .

• Algebraic:
$$
\vec{a} \times \vec{b} = \begin{vmatrix} i & j & k \\ a_1 & a_2 & a_3 \\ a_1 & a_2 & a_3 \end{vmatrix}
$$
.

• Remark:
$$
\vec{a} \times \vec{b} = 0 \Leftrightarrow \vec{a} \parallel \vec{b}
$$
.

Curves

• Define
$$
r: \{(x(t), y(t)) \in \mathbb{R}^2 : r(t) = \langle x(t), y(t) \rangle\}
$$
.

Derivatives

- $r'(t) = \frac{d}{dt}$ $\frac{d}{dt} r(t) = \lim_{h\to 0} \frac{r}{h}$ • $r'(t) = \frac{a}{dt} r(t) = \lim_{h \to 0} \frac{r(t_0 + h) r(t_0)}{h}$. • Rules: \boldsymbol{d} $\int_a^b \frac{a}{dt}(a \cdot b) = a' \cdot b + a \cdot b'.$ \boldsymbol{d} $\int_a^b (a \times b) = a' \times b + a \times b'.$ \boldsymbol{d} \circ $\frac{a}{dt}\Big(a\big(s(t)\big)\Big) = a'\big(s(t)\big)s'(t)$, $s(t)$ is a scalar.
- Derivative of $r(t)$ is tangent to $r(t)$, $r'(t)$

$$
\circ \quad \text{Unit tangent } T = \frac{r'(t)}{|r'(t)|}.
$$

Arclength is related to the magnitude of the local velocity vector: $\frac{ds}{dt} = \left|\frac{d}{dt}\right|$ • Arclength is related to the magnitude of the local velocity vector: $\frac{ds}{dt} = \left| \frac{dr}{dt} \right|$.

$$
\circ \ \ s(T) = \int_{T_0}^{T} |r'(t)| dt + s(T_0).
$$

For 3D inputs

- Position $r(t) = \langle x(t), y(t), z(t) \rangle$.
- Velocity $r'(t) = \langle x', y', z' \rangle$.
- Acceleration $r''(t) = \langle x'', y'', z'' \rangle$. Ļ,
- Speed $|r'(t)| = \sqrt{(x')^2 + (y')^2 + (z')^2}$ • Speed $|r'(t)| = \sqrt{(x')^2 + (y')^2 + (z')^2}$.

• Distance travelled $s(T) - S(T_0) = \int_{T_0}^1 |r'(t)| dt$.

Parametrization methods

- Polar coordinates
- Cartesian coordinates
- Arclength

Curvature

• ρ is the radius of curvature.

$$
\circ \ \rho = \left|\frac{ds}{d\theta}\right|.
$$

- \circ Center of curvature: $p + \rho N$.
- $k = \frac{1}{2}$ • $k=\frac{1}{\rho}$ is the curvature and is a measure of how tight the curve turns.

 $^{\prime\prime}$.

$$
\circ \ k = \left| \frac{ds}{d\theta} \right|^{-1} = \frac{|r' \times r''|}{|r'|^3}.
$$

- \circ When k is max, $a \perp v$ iff v is constant.
- \circ When $k = 0$, $a \parallel v$.
- o If $r \parallel a$, then $r \times v$ is constant, $a = v'T + kvN$.

Unit tangent and normal

\n- \n
$$
T = \frac{r'}{|r'|} = \frac{dr}{ds}.
$$
\n
\n- \n
$$
N = \frac{T'}{|T'|}, \text{ it is in the direction of } r'.
$$
\n
\n- \n
$$
\frac{dT}{ds} = N(s)k(s).
$$
\n
\n

Frenet Frame

• Binormal vector $B = T \times N$ is orthogonal to both T and N.

$$
\bullet \quad \begin{pmatrix} T \\ N \\ B \end{pmatrix}' = \begin{pmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0 \end{pmatrix} \begin{pmatrix} T \\ N \\ B \end{pmatrix}.
$$

• Torsion:
$$
\tau(s) = -B' \cdot N = \frac{r' \times r'' \cdot r'''}{|r' \times r''|^2}
$$
.
 $\circ \tau > 0$, rotation is counter clockwise.

Path integral

- A measure of work done on a particle moving along a curve γ inside a scalar force field $f(x, y, z)$.
- $\int_{\gamma} f(x, y, z) ds = \int_{a}^{b} f(r(t)) |r'(t)| dt.$
- In general, if γ_1 and γ_2 are reversed, $\gamma_1 = -\gamma_2$,
	- \circ then $-\int_{\gamma_1} f(r(t)) |r'(t)| dt = \int_{\gamma_2} f(r(t)) |r'(t)| dt$.
	- But it does not affect the integration with respect to arclength
	- Need to ensure $a \le t \le b$ and the curve is positvely oriented.

Vector fields

- Velocity field and force field
- V field $v(x, y, z) = \langle v_x, v_y, v_z \rangle$. \circ E.g. $v = \langle y, x \rangle$.

Gradients

- $\nabla = \langle \frac{\partial}{\partial x}$ д д д • $\nabla = \langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \rangle.$
- Potential function: a vector field is said to be conservative if there exists a scalar and a continuous function ϕ such that $v = \nabla \phi$ or $F = \nabla \phi$.

Irrotational flow (curls)

• Curl describe the rotation of a vector field

- They also help check if a vector field is conservative
- $curl F = \nabla \times F$.
- If $\nabla \times F = 0$, then the vector field is conservative

Some important operations

- grad $f = \nabla f = \langle f_x, f_y, f_z \rangle$.
- div $F = \nabla \cdot F = \frac{\partial}{\partial x}$ ∂ ∂ ∂ • $div F = \nabla \cdot F = \frac{\partial}{\partial x} F_1 + \frac{\partial}{\partial y} F_2 + \frac{\partial}{\partial z} F_3$. The rate of which fluid is exiting a volume

•
$$
\operatorname{curl} F = \nabla \times F = \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{vmatrix}.
$$

Streamlines

- It maps out trajectories of massless particles in a vector field
- $r' \times v(r(t)) = 0.$
- This gives a family of curves that are instantaneously tangent to the vector field, so the vector field can be defined as: $v = \nabla \times \psi$, where ψ is the stream function (velocity potential).

Line integrals in vector fields

- We want the work done on a particle travelling inside a vector field
- $W = \int_{\gamma} F(t) \cdot T(t) ds = \int_{\gamma} F \cdot dr = \int_{a}^{b} F(r(t)) \cdot r'(t) dt.$
- If a vector field is conservative, then $\int_{\gamma} F \cdot dr = \phi(r(b)) \phi(r(a)).$

Path independence

- F is conservative if there exists a scalar and continuous potential function such that $F = \nabla \phi$.
- F if conservative if the curl of the vector field is zero, $\nabla \times F = 0$.
- For conservative fields, $\int_{\gamma_1} F\cdot dr = \int_{\gamma_2} F\cdot dr = \phi(p_1) \phi(p_0)$ for any path from p_0 to p_1 .

Summary for a continuous vector field in \mathbb{R}^2 or \mathbb{R}^3 .

- $F = \nabla \phi$ if F is conservative.
- $\bullet\quad \int_{\gamma} F\cdot dr = 0$ for closed curves.
- The integral is path independent for curves that start and end at the same point.
- If F is continuous and differentiable, then F is conservative if and only if $\nabla \times F = 0$.

Green's theorem

- The line integral of $F(x, y)$ around a simple closed curve is the same as the double integral of F with the boundary.
- Define $\partial\Omega$ to be the boundary.
- Orientation:
	- Counter clockwise is positive.
	- Clockwise is negative

•
$$
\int_{\partial\Omega} F \cdot dr = \iint_{\Omega} \nabla \times F dA.
$$

- \circ F_x , F_y need to be continuous and differentiable.
- \circ $\int_{\partial\Omega} F \cdot dr > 0$ if F on average is along the direction of dr.
- \circ $\int_{\partial\Omega} F \cdot dr < 0$ if F on average is against the direction of dr .
- \circ A counter clockwise rotation within Ω and on $\partial\Omega$ is when $\nabla \times F > 0$.
- If $\nabla \times F = 1$, we have $\int_{\partial \Omega} F \cdot dr = Area(\Omega)$.

$$
\circ \quad \text{Need } \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} = 1.
$$

- It surrounds vector fields that are not continuous/differentiable at every point with the surface Ω .
- Suppose we have a region Ω_1 with a hole Ω_2 in it, $\partial\Omega_1$ is positively oriented and $\partial\Omega_2$ is negative oriented. Then \iint_{Ω} $\nabla \times F dA = \iint_{\Omega_1}$ $\nabla \times F dA + \iint_{\Omega_2}$ $\nabla \times F dA$.

$$
\circ \quad \iint_{\Omega} \overline{\nabla} \times F dA = \int_{\partial \Omega_1} F \cdot dr + \int_{\partial \Omega_2} F \cdot dr = \int_{\partial \Omega} F \cdot dr.
$$

Divergence theorem

- 2D divergence theorem is to diverge what Green's theorem is to curl
- The flux F through a boundary curve $\partial\Omega$ is the same as the differentiable integral of $\nabla\cdot F$ over all Ω . $\frac{1}{2}$

• 2D:
$$
\int_{\partial \Omega} F \cdot n ds = \iint_{\Omega} \nabla \cdot F dA.
$$

• 3D:
$$
\iint_{S} \mathbb{I} F \cdot nd\Sigma = \iiint_{V} \nabla \cdot F dV.
$$

Surface integrals and theorems

June 23, 2021 9:26 PM

Parametrized surfaces

- Build a function for the surface: root finding method to find x, y, z at the surface.
- Parametrize the surface such that each point is described by two parameters u, v , and get $(u, v) \in \mathbb{R}^2$, $r(u, v) = \langle x(u, v), y(u, v), z(u, v) \rangle \in \mathbb{R}^3$.
- Parametrized plane: $r(u, v) = < u, v, -\frac{A}{C}$ $rac{A}{C}u-\frac{B}{C}$ $rac{B}{C}v-\frac{D}{C}$ • Parametrized plane: $r(u, v) = < u, v, -\frac{\pi}{c}u - \frac{\pi}{c}v - \frac{\pi}{c} >.$

Tangent plane: $n < x - x_0$, $y - y_0$, $z - z_0 > 0$.

- Given $r(u, v) = \langle x(u, v), y(u, v), z(u, v) \rangle$.
- $T_u = \langle x_u, y_u, z_u \rangle$.
- $T_v = \langle x_v, y_v, z_v \rangle$.
- $n = T_u \times T_v$.

A surface Ω is smooth if it has a smooth parametrization $r(u, v)$ such that x, y, z are smooth functions and $T_u \times T_v \neq 0$ for any u, v .

Surface area

- To find the surface area of a complex surface, construct a tangent plane at $r(u_0, v_0)$ such that $r_{u} = T_{u}, r_{v} = T_{v}.$
- The surface area is $\iint_{D}^{T} |r_u \times r_v| dA$, where D is the parametrized region.
- If we isolate a small region, we can see that the surface can be linearly approximated. $P = r(u_0, v_0) + r_u \Delta u + r_v \Delta v$, when Δu , Δv are small.
- The area of the cell is equivalent to the magnitude of the vector that is orthogonal to the plane

A useful parametrization (surface of revolution)

- $r(u, v) = \langle f(v) \cos u, f(v) \sin u, v \rangle$.
- This ensures a rectangular parameterization domain.

Surface integral

- Surface integral of a scalar function: \iint_{Ω} • Surface integral of a scalar function: $\iint_{\Omega} f(x,y,z) d\Omega = \iint_{\Omega} f(r(u,v)) |r_u \times r_v| dA$.
- Surface integral of a continuous vector field. To find the flux of F through a surface Ω . Outward normal: $n = \frac{r}{\ln r}$ **O** Outward normal: $n = \frac{r_u \times r_v}{|r_u \times r_v|}$.
	- \iint_{Ω} $\int_{\Omega} \mathbb{D} F \cdot nd\Omega = \iint_{D} \mathbb{D}$ \int_{Ω} \int_{Ω} $F \cdot nd\Omega = \int_{D}$ $F(r(u,v)) \cdot (r_u \times r_v) dA$.
	- For a continuously differentiable and smooth vector field, we can apply divergence theorem: \iint_{Ω} $\int_{\Omega}^{\mathbb{L}} F \cdot nd\Omega = \iiint_{V}^{\mathbb{L}} \nabla \cdot F dV.$

Stokes' theorem

- It relates the surface integral of the curl of a vector field with the line integral of that same vector field around the boundary of the surface integral
- For each small piece $\int_{\partial\Omega} F \cdot dr = (\nabla \times F) \cdot nd\Omega_i$.
- $\int_{\partial\Omega} F \cdot dr = \iint_{\Omega}$ • $\int_{\partial\Omega} F \cdot dr = \iint_{\Omega} (\nabla \times F) \cdot nd\Omega.$
- Must make sure that n is oriented positively with counter clockwise rotation and negatively with clockwise rotation.
- There are thus two ways to calculate the surface integral of complex shapes
	- Project the surface to the plane the boundary curve $\partial\Omega$ creates.
	- \circ Cur the hemisphere into sectors instead of the plane that's bounded within the boundary curve.

If there is no bounding curve, for a closed surface, $\int_{\partial\Omega} F \cdot dr = \iint_{\Omega}$ • If there is no bounding curve, for a closed surface, $\int_{\partial\Omega} F \cdot dr = \iint_{\Omega} (\nabla \times F) \cdot nd\Omega = 0$.

MATH317 Page 5