Limits & continuity

20195E784H 18:57

1. Limits
a. Drawing tangents and a first limit

¥
2

-1 0 / 1 M

To find the tangent line to y = x?2 at point P(1,1), consider a nearby point Q(1+h,1 + h?), the
Ay _ (1+h)*-1 _
T i h + 2, take the

limit as h goes to 0, 111“%% = 2, this is the slope of the tangent line(y = 2x — 1)

line that goes through PQ is called the secant line. It has slope

b. Another limit and computing velocity

E.g.s(t) = 4.9t2, s(t) is the distance travelled after t seconds, average velocity between t=1s
andt=1.1sis v = change in position _ s(1.1)=s(1) _ 10.29m/s.

change in time 1.1-1
As interval becomes arbitrarily small, 7 approaches 9.8m/s which is the instantaneous velocity,
also the slope of the tangent line to s(t) = 4.9t2 at t=1

Definition: Let s(t)be the position as a function of time, the instantaneous velocity at t=a is
lim S@+th)-s(@
h-0 h

c. The limit of a function
)l(irréf(x) =Lorf(x)>Lasx—a

Meaning: as x gets arbitrarily close to a, but not equal to a, f (x) gets arbitrarily close to L
i fOo) = {’7‘ x # 3,lirr§f(x) =3

x=3"x
i. f(x)= { X x<3 limf (x)DNE, because lim f(x) # lim f(x)
) x—1 x>3'x-3 ! X—-3~ x-3t

Definiffon(one-sided limits):
lim f(x) =L, f(x) approaches L as x approaches a from left
X—-a
lim+f(x) = L, f(x) approaches L as x approaches a from right
X—-a
Theorem: limf(x) = L ifand only if lim f(x) = lim f(x) =L
X—a X->a~ x-at
Limits can approach oo

d. Calculating limits with limit laws
i. imc=c limx=a
X—a X—a
ii. Limits can interchange with basic arithmetic operations
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Assume limf (x) = L,limg(x) = K both exist, then limf(x) + g(x) = L £ K,
X—a X—-a X—a

limf(x) X g(x) =L XK, limcf(x) = cL, lim o _L (assuming K=0)
X—a x—a x»>ag(x) K

n
iii. Limits and powers: lim(f(x))n = (lim f(x))
X—a x—a
iv. Suppose f(x) = g(x) except when x=a, and limg(x) exists, then limf(x) = limg(x)
X—a X—=a X—a
v. Squeeze theorem: let f(x), g(x), h(x) be functions such that g(x) < f(x) < h(x),
except possibly at x = a, suppose limh(x) = limg(x), then limf(x) = limh(x) =
X—a X—a X—=a X—=a
limg(x)
X—a
e. Limits at infinity
Definition: lim f(x) = L f(x) approaches L as x becomes arbitrarily large
X—00
Remark: when the limit exists, it is a horizontal asymptote
2. Continuity
Definition: a function is continuous at a, if limf (x) = f(a)
X—-a
i. limf(x) exists
X—a
ii. aisindomain
ii. limf(x) = f(a)
X—=a
Left continuous: lim f(x) = f(a)
X—-a
Right continuous: lim+f(x) = f(a)
X—-a
Continuous on (a, b) ©continuous at every pointin (a, b)

Continuous on [a, b] <continuous at every point in (a, b) + right continuous at a + left
continuous at b

Theorem: Arithmetic operations (+-x+) preserves continuity, providing that no zero-division

a. All elementary functions (polynomials, rational, trig, inverse, log, exponential) are continuous
on their domain

b. Continuity of composed functions: g(x) is continuous at a, limg(x) = b, and f(x)
X—=a
is continuous at b, then f o g(x) is continuous at a

c. Intermediate value theorem (IVT)

Let f be a continuous function on [a, b], L be a constant between f(a), f (b), then there is a
pointc € (a,b), sothat f(c) =L
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Derivatives

20195E786H 14:15

1. Derivative:
Definition: The derivative of a function at a pointAis f'(a) = ’liirr(l) flath)-f(a)

Meaning:
i. theinstantaneous rate of change
ii. Slope of the tangent line
a. Differentiability
i. If f'(a) exists (the definition of limit exists), then f(x) is differentiable at a
ii. If f(x) is differentiable at every point in an interval (a, b), we say f(x) is
differentiable on (a, b)
ii. If f(x) is differentiable at a, then f(x) is continuous at a

b. Higher order derivatives

y d d df d3f
f (X)Zd_x-f(x):d_x-d_x-zai

c. Interpretation of derivatives
The general equation for tangent lineto f(x) atx = aisy = f(a) + f'(a)(x — a)
2. Differentiation rules
If s(x) = af(x) + bg(x), thens’'(x) = af'(x) + bg'(x)

—x" =rx"!

dx

d

d—x'f(x)g(X) =f'(x)gx) + f(x)g'(x)
d fix) f'x)glx)—fx)g'(x)

d(icg(x) g(x)?

—a* = a¥lna

dx

d . d . d ) d 2
—Sinx = cosx —cosx = —sinx —tanx = secx — cotx = cscx
dx dx dx dx

d d

— Secx = secxtanx — CSCX = —cSscxcotx

dx dx

a. Chain rule: ad;f(g(x)) =f"(g(x))g’ (x)
b. Implicit differentiation: %f(x)2 = 2f()f"'(x), Ed;yz = Zyd—z
c. Inverse trigonometry functions:

d 1 d 1
— arcsinx = ——— —arccosx = — ————
dx 1o dx 1-x?
d 1

dox arctanx = 1+ x2

3. Applications of derivative

a. Optimization
i. Max and min values

Definition: Let f(x) be a function with domain D,
f(x) hasaglobalmaxatc € D & f(c) = f(x) forallx € D & f(c) is the
maximum of f(x)
f(x) hasaglobalminatc € D & f(c) < f(x) forallx € D & f(c) is the
minimum of f(x)
f(x) hasalocalmaxatc € D f(c) = f(x) forall x near c
f(x) hasalocalminatc € D & f(c) < f(x) forall x near ¢

Theorem: Every local max/min is a critical point or singular point.i.e. f'(c) = 0 if

exists
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ii. Finding max and min values
Theorem: if f(x)has a global max/minin [a, b] at x = ¢ € [a, b], there are three
possibilities
1) f'(x) = O critical point
2) f'(x) DNE singular point
3) ¢ =a, ¢ = bendpoint
Further, if f (x) is continuous on [a, b], it must have a global max and min on
[a, b]
b. Mean value theorem
i. Rolle's Theorem
Let f(x) be a function satisfying: f (x) is continuous on [a, b], differentiable on
(a,b), and f(a) = f(b). Then there exists at least one point (c,f(c)), c €(a,b)
with f'(c) =0

&

{0

r = lf\
iy
ii. Mean Value Theorem
Let f(x) be a function satisfying: f(x) is continuous on [a, b] and differentiable
on (a, b). Then there exists at least one ¢ € (a, b), such that f'(c) = fb)-fa)

b-a
_(@\i (2))

‘F’(c)
b, FIb)
iii. Corollary
f(x) and g(x) are differentiable on [a, b]

1) If f'(x) = 0on [a, b], then f(x) is constant on [a, b]
2) Iff'(x) =g'(x)on[a,b], then f(x) — g(x) is constant on [a, b]
3) if f'(x) > 0on [a,b], then f(x) isincreasing on [a, b]
4) if f'(x) < 0on [a, b], then f(x) is decreasing on [a, b]

c. Graph sketching

Domain, range, x — int,y — int
Horizontal asymptotes: y = lim f(x) and/or lim f(x) if exist
X—00 X—>—00

P

7
7

Vertical asymptotes: x = a if lim f(x) = +oo0 and/or lim+f(x) =400
X-a X-a

Monotonicity: f'(x) > 0 increasing; f'(x) < 0 decreasing; f'(x) = 0 local max/min
Concavity: f"'(x) > 0 concave up (f (x) lies above all tangent lines); f''(x) < 0 concave
down (f (x) lies below all tangent lines); f''(x) = 0 point of inflection (if f(x) is
continuous and its concavity changes at f''(x) = 0)
Theorem: c is a critical point, if f"'(c) > 0, f(c) is a local min;if f''(c) <0, f(c)isa
local max
Symmetry:

i. Even function f(x) = f(—x)

ii. odd function f(x) + f(—x) =0

iii. Periodicf(x +T) = f(x)

4. Applications of derivative in real world
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5.

a. Velocity & acceleration
v() =s'"(t), a@®)=v()=s"()
b. Exponential growth & decay
Quantity y(t), whose rate of change is proportional to y(t)

= ky(t), then y(t) = ce®t, c is the initial value

General formula for doubling time: t = I—Il?
c. Carbon dating (half life problem)
In2
y(©) = ce¥' k= - ——

d. Newton's law of cooling

Rate of change of temperature is proportional to the difference between temperatures

dr

e k(T — A), A is the environment temperature

T(t) =cef*+A4,c=T0O)-A
e. Related rates
E.g. Air is being pumped into a spherical balloon at a constant rate of 100cm 3/;. How

fast is the radius r changing when r=25cm?

. 4
Solution: V = 57”3

dV_4 2dr
ac . T
dr
100 = 47w x 252 —
dt
dr_ 1
dt 257

Taylor polynomials
Definition: The nth degree Taylor Polynomial for f(x) aboutx = ais T, = f(a) +

n

Fr@e-a) + 52— ayz4 -+ L8 o —a)”=z B2 -a)t

k=0
Specially, when a = 0, it is an Maclaurin polynomial

a. Lagrange remainder theorem: suppose f™+*(x) exists for all points in [b, d], if
X,a € [b,d], then the nth degree Taylor approximation around satisfies R, (x) =

f(x) —T,(x) = a:ﬁf"“(c)(x — a)™*? for c some between x and a. c is not
specified.
Let [f™*1(c)| < M, then |R,(x)| < (—7:17|(x )|
Indeterminant forms and L'Hopital's rule
fx)

Definition: consider lim =
x—a g(x)

If limf(x) = limg(x) = 0, it's called an indeterminant form of typeg
X—a X—a

If limf(x) = £ and limg(x) = too, it's called an indeterminant form of type =
X-a X-a o

Theorem: L'Hopital's rule

199 F0) o £
Suppose )l(l_rgg(x) is an indeterminant form, then )1(1_1}611 e )1(_)a o provided
right-hand side exists or =+
Antiderivatives

(intro to integral)
Definition: a function F is called an antiderivative of f on an interval I when F'(x) = f(x) on
I
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Integrals

2019578 10H 13:23

1.

Summation notation );

. . k
Ifj < kareintegers and aj, @j;1, ..., ax € R, then Zi:j a; =a; +ajq + -+ ag

_n(n+1)(2n+1)
> Z F =

Proof (1+i)3—-i3=3i2+3i+1
Sum both sides, we can get

(1+n)3—1—32 E(—nii)+n

_n(n+ 1)(2n +1)
= Z 6

C. Z? Or' = l;—- forr#1
Least Upper Bound
Definition: Let A be a non-empty set in R bounded above, i.e. 3k € R, suchthatVa € A, a <k
A real number u* is the least upper bound (supremum/sup) of A if and only if
a. u”isan upper bound
b. If uisany upper bound of A, thenu* <u
Write supA = u*
Proposition: If A has a least upper bound, then it is unique
Proof: let uy, u, be the least upper bounds of A,
U, is an uper bound, u4 is the least upper bound, by definition, u; < u,
By symmetry, u, < uq
Thus, u, = u4, A has only one least upper bound
Proposition: let A be a non-empty set in R with a largest element M, then supA = M

Greatest lower bound
Definition: Let A be a non-empty set in R bounded below, i.e. 3k € R, suchthatVa € A,a > k
A real number [* is the least upper bound (infimum/inf) of A if and only if

a. l"isanlowerbound

b. If Lis any lower bound of A, then [* < [
Write infA = [*
Proposition: If A is a non-empty set in R bounded below, then infA exists and infA = — sup(—A4)
Completeness Axiom (for real numbers): if A # ¢, A C R, and A is bounded above, then A4 has a least
upper bound. (A4 is bounded below, then A has a greatest lower bound) (Axiom does not follow from any
other properties of R)

The Riemann Integral

Let f:[a, b] —» R be bounded, i.e. 3k € R, such that Vx € [a, b], <k

If f = 0 on [a, b], the Riemann Integral finds and defines the area A between f(x) andy =0

If f can be negative, A will be the signed area where f < 0 contributes negative area

Definition: A partition P of [a, b] is a finite collection of pointsin [a, b], P = {x¢, X4, ..., X}, Where a =
Xg<x < <xp,=b

letAx; =x;—x;_, >0, i=12,..,n, Z?zlei =b—a

Let M; = sup{f(x):x;_; < x < x;}, m; = inf{f(x):x;_; < x < x;}

M;Ax; = area of the larger rectangle (outer rectangle)

m;Ax; = area of the smaller rectangle (inner rectangle)

Upper Riemann sum for P: U(f, P) = Z?leiAxi = total area of outer rectangles (if f> 0)
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Lower Riemann sum for P: L(f,P) = Z?zlmiAxi = total area of inner rectangles (if f > 0)

A
= ca |

‘ ' lower

{

\ )

\

a b
Area inequality: However you define A, it must satisfy L(f,P) < A < U(f, P)

Lemma: Let P c Q be subdivisions of [a, b], then L(f, P) < L(f, Q) <A< U(f, Q) < U(f,P)

Proof for L(f,Q) < U(f,Q): Q = {x0, X1, ., Xn}, m; < M;

m;Ax; < M;Ax;, thus Z;;lmiAxi < Z;;lMl-Axi(L(f,Q) < U(f,Q))

Proof for U(f, Q) < U(f, P):
start with special case Q = P U {y}, choose j such thaty € (xj_l, xj)

M; = sup(f (0):x € (-1, ),

Mj’=sup{f(x):x € (xj_l,y)} < M;

M;'=sup{f(x):x € (y, xj)} <M;

My (g = xj2) = M| (= ) + (v = 9-0) | = M,y = ) + M, (v = %04
> Mj(x; = ) + M (v = x4

j—1 n j—1
Z M;Ax; + M;Ax; + Z MAx; > Z Midx; + Mj(x; = ) + M}/ (y = x4 ) + z M;Ax;
i=1 i=1 i

- i=j+1
= U(f,P) > U(f,Q)
In general case, we can construct P = P; € P, c -- € B, = @, by adding one point at a time.
Correlation: For any partitions P, P' of [a, b], L(f, P") < U(f,P) = supL < A < infU
Proof: Let Q=P U P’ (still a partition of [a, b]), Apply Lemma L(f, P’) < L(f, Q) <A< U(f, Q) <
u(f,P)
Definition: Let f: [a, b] — R be bound, and the Riemann(or definite) integred, then f is Riemann
integrable on [a, b] if and only if supL = inf Ual of f over [a, b] is f;f(x) dx = supL = infU.
It is the unique real number sub that for VP, L(f,P) < fff(x) dx < U(f,P)

If f>=0on]la,b],then fabf(x) dx is the area between f(x) and x-axis

Lemma:let A > 0, if Ve > 0, A < g, then A = 0 (can be proved by contradiction)

Theorem (Integral test): Let f: [a, b] — R be bounded, f is integrable if and only if Ve > 0, Isubdivision P
such that U(f, P) — L(f,P) < g, and in this case:

b
a. |U(f,P)—ff(x)dx

>

<Eg

b. <e

b
L(f,P)—J f(x)dx

Proof: let € > 0, by hypothesis 3P such that U(f,P) — L(f,P) < &
U(f,P) = infU,L(f,P) < suplL
= U(f,P) — L(f,P) = infU —supL > 0 = infU = supL

=0< jbf(x) dx — L(f,P) <U(f,P)—L(f,P) <e

Theorem (Additivity of domain):
a. Letf:[a,b] » R be bounded and integrable on [a, b], a < ¢ < b, then f is integrable on [a, c] and

b b
[c,b],and [ f(x)dx = facf(x) dx + [ f(x)dx
Proof: let € > 0, by integral test, 3P such that U(f,P) — L(f,P) <eg
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Let P* = P U {c} be partitions of [a, c], P* = {xo,xl, s X ...,xn}, Xj=c
P, = {xo,xl, ...,xj}, be a partition of [a, c]

P, = {xj,xj+1, ...,xn}, be a partition of [c, b]
Then U(f,P*) = U(f,Py) + U(f,P,) and L(f, P*) = L(f, Py) + L(f, P,)
e>U(f,P)—L(f,P) = U(f,P*) = L(f,P*) = U(f,P,) + U(f,P,) — L(f,P,) + L(f, P;)

=e>U(f,P,) — L(f,P,) and e > U(f,P;) — L(f, P,)
By integral test, f isintegrable on [a, b], [a,c] and [c, b]

L(f,P) < L(f,P") < [ f() dx + [ f(x) dx < U(f,P*) < U(f, P) holds for all partitions
Since fff(x) dx has the only real number, f;f(x) dx = facf(x) dx + fcb f(x)dx
b. If f isintegrable on [a, c] and [c, b], then f is integrable on[a, b]
Theorem (Squeeze Theorem):

a. Assume three sequences [, <1, < u,,and l,,,u, = L,thenn, = L
b. Arithmetic of limits holds for sequences

Riemann Sum
Definition: If P = {x,, X1, ..., X,, } is a partition of [a, b], the norm of P is || P|| = max{Ax;}. If ¢; €
[xi_l,xi] forall 1 <i < n,callc = (cq,cy, ..., ¢,,) a choice vector for P, and R(f, P, c) = Z?zlf(ci)Axi
is a Riemann sum. m; < f(c;) < M;, L(f,P) < Z’;lf(ci)Axi < U(f,P)
Theorem: Let f: [a, b] = R be bounded and continuous, if
a. fisintegrable on [a, b]
b. If {B,}is a sequence of partition such that ||Pn|| -0,
then f;f(x) dx = lim L(f, B,) = lim U(f, B,); if €™ is a choice function for P,, then f; f(x)dx =
n—-»oo n—-oo
lim R(f, B,, C™)
n—-oo
Monotonicity
Definition: f is monotone if f is always increasing/decreasing
Theorem: Let f: [a, b] —» R be monotone,
a. fisintegrable on [a, b]
b. let{P,}is a sequence of partition such that || B,|| = 0,

L L(F B = [, OO dx, U B = [ FG0 dx
ii. If C™ isa choice function for P,, then f; f(x)dx = &i—{goR(f' P, C™)
Remark: if f is integrable on [a, b] then theorem b always holds;
If f is monotone, it will be much easier to show that 3{P,} such that L(f, B,) — f; f(x)dx,
U(f,Ba) = [, fG) dx
Proof: take & = =, 3P, such that 0< U(f,P) — L(f,P) <= > 0
= U(f, P) — L(f,P) — 0 by squeeze theorem
By integral test, L(f, P,) — fff(x) dx, U(f,P,) - fff(x) dx
Properties of integral
Theorem (linearity of integrals): Let f, g: [a,b] - R and A, B € R. If f, g are integrable, then Af + Bg is
integrable and ff Af(x)+Bg(x)dx = A f; f(x)dx + B f;g(x) dx
Proof (Assume f, g are continuous, Af + Bg is continuous and intergrable):
By theorem of Riemann Sum, if {P,} satisfies || P, || = 0, then
N

b
f Af(x) + Bg(x) dx = lim ZAf(Cl-")Axi" + Bg(CMAXD
a n—-oo i

N N b b
= Alim E f(CHAX]* + B lim E g(CHAX] = Af f(x)dx + Bf g(x) dx
n—»>oo n—oo
i=1 i=1 a a

Remark: Assume Af + Bg is integrable, one can use monotonicity remark to make the above argument
work and show f‘f Af(x) + Bg(x)dx = A f:f(x) dx + B f;g(x) dx
Theorem (order property of integral):
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a. If f, g areintegrable and f < g for all x € [a, b], then fff(x) dx < ffg(x) dx
Proof: Assume h(x) = 0 is integrable and Vpartition P, U(h, P) = 0,infU = 0, f; h(x)dx >

0,
Take h(x) = g(x) — f(x) = 0on[a,b] (f < g forall x € [a, b])

0< fbh(x) dx = Jbg(x) — f(x)dx = ng(x) dx — Lbf(x) dx

a a
b b
=>J f(x)dx SJ g(x)dx
a a
b. If f isintegrable, then |f(x)| is integrable and |fabf(x) dx| < ff |f(x)| dx (triangle inequality)

Proof: —|f(x)| < f(x) < |f(x)| forall x
Both £|f(x)| are integrable, by a, f; -|f ()| dx < f;f(x) dx < f; |f ()| dx

= |f:f(x)dx| < f; |f ()] dx

b
Definition (Mean Value): Let f be integrable on [a, b], the mean value of f is f = f“’;(%
4
A A
/
I -
| / / / | A
L_ A=
| A\ A ‘
- —>
A b

Theorem (Mean Value Theorem for Integrals): Assume f:[a, b] = R is continuous, then thereisac €

[a, b] such that f = f(c).
Proof: By min-max theorem, 3¢,,in, Cmax SUCh that Vx € [a, b], f(cmin) < f(X) < f(Crmax)-

Then, by the order property of integrals, f;f(cmm) dx < fff(x) dx < fff(cmax) dx

? flemin)dx [P dx [ f(cmax) dx F
faf( min)d <faf()d <faf( )d :f(cmin)ﬁfgf(cmax)'

b-a - b-a b-a _
Because f is continuous, by Intermediate Value Theorem, 3¢ € [a, b], such that f = f(c)
Fundamental Theorem of Calculus:
a. Assume f:[a, b] —» Ris continuous, letd € [a, b], and F(x) = f;f(t) dt, then F'(x) = f(x), Vx €

[a, b]
Proof: Let F(x) = f;f(t) dt
ffhf(x)dx—f;f(x)dx
h

by definition of derivatives

Then F'(x) = lim
o
X+ d
=}11in(1) L‘—Lh(ﬂ—x by additivity of domain
This Is the mean value on [x, x + h]

By mean value theorem for integrals,
Ac(h) € [x,x + h], suchthat f = f(c(h))
F'(x) = %irr(l)f(c(h)) = f(x) by squeeze theorem and continuity

b. Assume f:[a, b] - R is integrable, let G be an antidetrivative of f, i.e. G'(x) = f(x),Vx € [a, b],

then f:f(x) dx =G(b) —G(a) = G|Z=G(x)|3:2

Proof: Let P = {xg, X4, ..., X, } be a partition of [a, b]
N

6(b) — @ = ) [60x) = 6(xi-1)]
i=1
By the ordinary mean value theorem, 3c; € [xl-_l, xi] such that G(xi) — G(xi_l) =

G'(ci)Axi = f(ci)Axi
m;Ax; < f(cl-)Ax < M;Ax;
n
Zn miAxi < Zi=1f(ci)Axi < Z?:l MiAxi

i=1
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= Z?:l mAx; < Z?zl[G(xl-) — G(x;_1)]Ax; < Z?zl M;Ax;
L(f,P) < Y1 [6(x) — G(x;—1)]Ax; < U(f, P)
Since fabf(x) dx is the only real number that is in [L(f, P), U(f, P)| for all P, f: f(x)dx =
G(b) —G(a)
Remark: differentiation and integration are inverse operations. Write the general antiderivative of f as
[f(x)dx = G(x) + C.Call [f(x)dx the indefinite integral.

Integrability of continuous functions
Definition: f: I — R is continuous (I is an interval), if and only if Vx, € [,Ve > 0,36 = 5(x0,s) >
0, such that Vx € I,|x —x0| <d= |f(x) —f(x0)| <g
f:1 = Ris continuous (I is an interval), if and only if Ve > 0,38 = §(¢) > 0, such that Vxg, x € I,
|x —x0| <éf=> |f(x) —f(x0)| <eg
Uniform continuity requires that there isa § = §(€) > 0 which works for Vx,, € I simultaneously.
Proposition: f: I — R is differentiable and f' is bounded on I = f is uniformly continuous on I
Proof: Let M = {|f'(x)|: x € I} be bounded, then |f'(c)| < M forvc €1,
lete> 0,68 = 1\%’ X0, x € I satisfy [x — xo| < &

|F ) = F(xo)| = |F'(©||x = xo]| for some ¢ € (x,x,) by MVT

3
SM|x—x0| <MM=E
Theorem (uniform continuity): f: [a, b] — R is continuous= f is uniformly continuous on [a, b]

Proof (continuous functions are integrable):
Let €> 0, f:[a,b] = R is continuous= f is uniformly continuous on [a, b]
So 38 > Osuchthat (1) x,x’ € [a,b], |x —x'| < &, |[f(x) — f(x")| < =

4(b—a)
Let P be a partition such that (2) ||Pn | <4, P = {xg,xq, ..., X}, m;, M; defined as usual

Letx € [x;_1,x;], then |x — x;| < Ax; < ||By|| < 6
€

By (1), [f(x) — f(x)| < 7=—

4(b—a)
€

this means Vx € [xi_l,xl-], f(xl-) ~ -9 <f(x)< f(xi) +

= f(xi) - 4—(1)—8_—65 <Sm; <M; < f(xi) +

€
4(b—a)

€
4b-a

n n
= U(f,P) - L(f,P) = Z(Mi — m;)Ax; < Z(b—s_a)z Ax; = % <e
By integrability test, f:[a,b] = R is integr;f)lle =
4. Techniques of finding integrals
fxrdx=£r%1+6(r¢ -1 fx ldx =In|x|+C
[e™dx=—e®+C  [b¥dx=——Db%+C (b>0)

. 1 1.
[sinaxdx = —-cosax+C [cosaxdx =-sinax +C
1 1
[ (secax)?dx = —tanax + C [ (cscax)?dx = ——cotax +C
1 1

fsecaxtanaxdx = secax +C fcscaxcotaxdx = —cscax +C

1 LX 1 1 x
f\/—a—z——_—;—z dx = arcsma +C fa—z_‘:z' dx = Earctanz +C

a. Substitution (Chain rule):
fF’(g(x))g'(x) dx=F(g(x))+C

Theorem (substitution for definite integrals):

Let g:[a,b] = R, g’, f are both continuous, f o g is well defined, then f; f(g(x)g'(x)dx =

b
;((a)) f(u)du
Integrating [ (sin x)™ (cos x)™ dx:
i. Ifmisodd,letu = cosx,du = —sinxdx; If nisodd, let u = sinx, du = cosxdx
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1+cos 2x 1-cos 2x

ii. If mand n are both even, use cos? x = — —or sin? x = — to reduce m or n to odd

Integrating [ (secx)™ (tanx)™ dx if m is even or n is odd:
i. Use1+tan?x = sec?x, tan’x = sec® x, sec’x = secx tanx
ii. Ifnisodd, reducentol, letu = secx,du = secx tanx dx
iii. Ifmiseven,letu=tanx,du = sec?xdx

Integration by parts (Product rule):

Theorem: Assume u, v: [a, b] = R have continuous derivatives

i fuv’dx=uv—fu’vdx

b b b
ii. J uv' dx = uv| —J u'vdx
a a a

Since dv = v’ dx, du = u’ dx, we can write [ udv = uv — [ vdu

Reduction formula (extended from integrating by parts)

1 _ 2m-1
Io = In|secx + tanx|, 1, = [ sec®™* 1 xdx = Esecz'” L xtanx + 5 — Iy
x
1 x 1 1 1 p 2n-3
I =—arctan(—),1 =) ———dx = a _
1 a a n J‘(.\c2+n|'2)“ a1 |a2n-2 (ﬁ 1)” 1 an—2 N1
ﬂ2

Ip=—e*1I,=[x"e*dx = —x"e™* +nl,_,
1 -
- tan" 'x —1,_,

n—

Iy = x,I; = In|secx|, I, = [ tan" x dx =

1 - m—2 -
[ csexdx = In|cscx — cotx|, [ csc™ xdx = ——csc” Zxcotx + mf csc™ % x dx

Integration of rational functions
Definition: A polynomial is a function of the form P(x) = ay + a;x + .- + a,x", a; ER, Ifa, #
0,deg(P) = n; A rational function f is a function of the form f = %ﬁ% D = {x: Q(x) # 0}, where
P(x),Q(x) are polynomials
Theorem(Factor a Polynomial): Let Q (x) be a polynomial, then 3¢, a;, B;,7; € R, m;,n; € N such
that Q(x) = c(x — ay)™e o (x — ak)mk o (x2+ fyx + Yl)nl oo (x4 Bix +y)™, where
B —4y; <0
To find [ f dx for a rational function f:

i. Do long division of polynomials to reduce to the case where deg(P) < deg(Q)

ii. Factor Q(x)

iii. Find the partial fraction decomposition of — b@)

Q)
In practice you will find the PFD by solving N linear equations in N unknowns

iv. Integrate each term.
Inverse substitutions:
Instead of substituting u = g(x), try x = g(w), dx = g'(W)du, [ fdx = ff(g(u))g’(u)du,
i. Integralsinvolving \/le_—_x_z, tryx = asinf, 6 € [—g,%], dx = acos0do

ii. Integrals involving Vx2 — a2, try x = asec@, dx = secf tanf do
Be cautious with the signs

iii. Integrals mvolvmg\/a_c +a? or——- tryx = atan®, dx = sec® 6 do
. d 2dx . 2x 1-x2
iv. Forintegrals like f———- try x = tan ,dO = Toxz’ sinf = Tox?’ cosf = Tin?

Numerical Methods
Often fabf(x) dx cannot be expressed in terms of elementary functions, we can approximate

f:f(x) dx by Riemann sums/ trapezoid method/midpoint method
i. Trapezoid method:
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N

~——

~
L

n

f;f(x) dx ~Nth trapezoidal approximation area T,, = Z:lzlAi = E MAM
i=1
Theorem (Trapezoidal rule): Let f: [a, b] = R such that f" is continuous and k =

sup{|f" (x)|, x € [a, b]}. Then |f: f(x)dx — Tn| < TkE (b — a)(Ax)?
Lemma: f:[a,b] - R, f" is continuous and f(a) = f(b) = 0, then —2 f:f(x) dx =
[2(x = a)(b - x)f" dx

ii. Midpoint method:

AN

'\,___‘_

v

n

b It . .
[ reoax~my =" 4= Zf(x—‘izi’ﬁ)mi
a i=1 .

=1
Midpoint rule: |f:f(x) dx — Mn| < Ekg (b — a)(Ax)?
5. Improper integrals
a. Type 1 improper integral:
Definition: Let F: [a,0) = R, lim F(x) = L, ifand only if Ve > 0, 3x, = a, such that x > x; =
X—00

|F(x) — L| < £ (converge F(x) » Las R — )
lim F(x) = oo, ifand only if YM € R, 3x, > a, such that x > x, = F(x) > M (F(x) diverges)

X—00

Let f:[a, o0) = R be such that VR > a, f is integrable on [a, R]
faoof(x) dx = él_l)go faRf(x) dx € [—o0, 00] if the limit exists

faoof(x) dx converges if and only if 1%1_{{)10 faRf(x) dx # + o
® . . e (R
J, f(x)dx diverges if and only if &1_1){)10 J, fx)dx = too

Theorem (p-integral):

o 0<p<1| ==
p>1 J—C;—Et—l, <p=l ﬁ-_oo
1 1

b. Type 2 improper integral:
Definition: Let F:(a,b] = R, lim+F(x) = L,ifandonlyif Ve > 0,36 > Osuchthat0 < x —a <
X—a

0=>|Fx)—Ll<e
lim F(x) = oo, ifand only if VM € R,3§ > 0suchthat0 <x—a<§ =>Fx)>M
X—-a

Let f: (a, b] = R be such that Vc € (a, b), f is integrable on [c, b] and f is unbounded on (a, b]
f:f(x) dx = lim fcbf(x) dx € [—oo, 0] if the limit exists
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f;f(x) dx converges if and only if lim_ fcbf(x) dx # +oo
c—a
b . . . b
fa f(x) dx diverges if and only if JH;L fc f(x)dx = oo
Note: if f:[a, b) — R is integrable on [c, b], Vc € (a, b) and f is unbounded on [a, b), then

Jy fG)dx = lim [7f(x) dx € [~o0, 0]
Theorem (p-integral):

1 1
0<p<1 ! ! >1 !
_——=— — = 00
PS4 %™ p—1’ P=2] %o
0 0

77 F(x) dx type

Definition: Let f: R = R be integrable on every bounded interval [a, b], Then fj;o f(x)dx =
f_ooof(x) dx + f0+oof(x) dx, provided that this is not co — 0o or —oo + oo, in which case

f_J:o f(x) dx does not exist.

Note that fjozo x dx does not exist even though Cll_)l’l; f_ccf(x) dx =0

Definition (Probability density): Let f: R — [0, ) satisfy f:: f(x)dx =1, call f(x) a probability
density, the mean value of this density is fj; xf (x) dx

More improper integrals:

f:f(x) dx = facf(x) dx + fcbf(x) dx this can extends to more singularities, given that it is not

00 — 00 Or —00 + 00,

A

4 L [l ry
T T t >

A d h

Theorem: Let F: [a, ) — R be increasing

a.

b.

if F is bounded above, then F(u) = supR asu — oo
Proof: By completeness Axiom, L = sup R € R (because F is bounded above)
Lete > 0,3uy = asuchthat L —e < F(uo) <L
Letu>uy, L —e<F(up) <F(u) <supR=1L
= |F(x)— L <e=F(u) >supRasu > o

if F is not bounded above, then F(u) diverges to oo as u — oo
Proof:let M € R,
F is not bounded above= Ju; = a such that F(uo) > M
Take u > uy,then F(u) = F(uo) > M because F is increasing
F(u) diverges to o
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L U
Note: let F(0) = lim F(u) € (—, ], in either case, Vu € [a, ©), F(u) < F(), write F(u) 2 F()
Theorem (Comparlil;oo; test for Type 1 Integrals): Assume f, g: [a, ) — [0,2), f < g,and f, g are

integrable on [a,R] forallR > a
a. If faoo g(x) dx converges, then faoo f (x) dx converges and faoo fx)dx < faoo g(x)dx

Proof:letR > a, faRf(x) dx < faRg(x) dx (order property)
< f g(x)dx <
a

Then faRf(x) dx 2 faoof(x) dx < o
< faoo g(x) dx (an upper bound for f;f(x) dx)

b. If faoo f(x) dx diverges, then faoo g(x) dx diverges (the contrapositive of part a)

c. Same applies to type 2 integrals
Piecewise Continuous Functions:
1 x=x,
0 x+x
Proposition (singular point does not affect integration): Let g: [a, b] = R be integrable, assume
fi[a,b] = Ris such that {x: f(x) # g(x)} = {x1,%3, ..., X} is finite. Then f is integrable on [a, b] and
[ f)dx = [ g(x) dx

Proof: let ¢; = f(xl-) — g(xl-),i =12, ..,k

k
Then f(x) = g(x) + Z cihy,(x), which is integrable
i=1

b
Lemma: let h,, (x) = { ,Va < b,Vx,, hy is integrable on [a, b], and fa hy,(x)dx =0

And fff(x) dx = ffg(x) dx + Zk o fb hy, (x) dx = f;g(x) dx
i=1 a

Definition: f: [a, b] — R is piecewise continuous if and only if 3a = ¢y < ¢; < -** < ¢ = b and there
exist continuous functions g;: [c;_1, ¢;] = R such that f(x) = g;(x) for Vx € (¢;_1,¢;)
Fact: f is piecewise continuous = f is bounded and sup f (x) = max{sup g;,sup f}
Proposition (piecewise continuous functions are integrable): Let f: [a, b] = R be piecewise continuous
k
and g;,c; are as in the definition. Then f is integrable and f: f(x)dx = z fcc_‘ 1gl-(x) dx
i=1" ‘i~
Proof: g; is continuous and integrable on [c;_1, ¢;]
{x:x € [ci1, ¢i], fF(X) # gi(x)} s finite
f is integrable on[c;_4, ¢;] and fcc,i_lf(x) dx = fccli_l g(x) dx since a singular point does not

affect an integration

k .
By additivity of domain, f is integrable on[a, b] and fff(x) dx = E fcc,‘ gi(x) dx
i=1 1

6. Application of integrals

a. Area
To find area between f and g x € [a, b] using Riemann sum, the height of ith rectangle is

[£(e)) - gCeol. Area = [, 1f(er) — gco)| d.

To find the solution, split up into intervals where f = gand f < g
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A
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b. Volumes
i. Method of slices
Assume V(S) = volume of a solid in R = {(x, v, Z): x,y,z € R} is well-defined satisfying

reasonable properties and formula
Let S be a bounded solid in R® between planes x = a and x = b To find the volume:

Oh ‘/‘1,
" g
pdry.

<

S

S(x) = intersection of S with the plane perpendicular to x — axis at (x,0,0)
A(x) = area of S(x), P = {xy, X1, ..., X, } be a partition of [a, b]
Let S; = slice of S between the planes x = x;_; and x = x;

AV; = V( Sl-) M; = sup{A(x):x € [x;_1,x;], m; = inf{A(x): x € [x;_1,%;]
ThenmAx; < AV; < M;A xi,ZivzlmiA x; < Zliv:lA v, < Z?’leiA x;

= L(A,P) <V(S)<U(A,P)forallP

Assume A(x) is integrable on [a, b] we know that f; A(x) dx is the unique real number such
that L(4,P) < [7 A(x) dx < U(A, P)

Thus, we have the method of slices: V(S) = f;A(x) dx
ii. Solid of revolution (disk method)

[ R
A
o

Let f:[a, b] - [0, ) integrable, R = {(x,y):a <x < bh,0 <y < f(x)}
Rotate R about x — axis to form a solid S
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S(x)=disk of radius f(x), A(x) = nf(x)?, V(S) = f‘f nf(x)?dx
iii. Solids of Revolution (cylindrical shell)

1
<>
ys:

g A L, X

I~/

z

Let0 <a<bf:[a b] - [0,)integrable, R = {(x,y):a <x<bh0<y<f(x)}
Rotate R about y — axis to form a solid S

P = {xg, x4, ..., x,} be a partition of [a,b], R; = {(x,y):1x;-1 S x < x;,0 < y < f(x)}
C; =cylindrical shell obtained by rotating R; by the y — axis

LK,

Unroll the shell, we get a thin rectangular solid A V; = V(Cl-) = 21x; f (x;)Ax;

N N 5
V(S) = Z AV; = Z 21x; f (x)Ax; — j 2mxf (x) dx
i=1 i=1 <

c. Mass, center of mass and centroid
i. Mass

Definition: let B € R? (d = 1,2,3), the density of B at P € B is p(P) where the density
function p: B — [0, ) is continuous. Then the mass of B is m(B) = fB pdV
If p = 1, this defines the volume of B, V(B) = fB dv
Ifd =1, B = [a,b] thenm(B) = f:p dx

ii. Moment
In 3-D, the x —moment of B is M,, = fB xp(x, v, Z) dv
y —moment of B is M,, = fB yp(x, v, Z) dv
z —momentof Bis M, = fB Zp(x, v, Z) dv

iii. Center of mass

Jgxpdv [pypdv fszdV> _ (ﬂ My &)

In 3-D, the center of mass of B is (X, 7,2) = (f o dv [ pdv’ [ pdv T m
B B B

iv. Centroid
If p = 1, the center of mass becomes the centroid, which depends on the geomery of B only,

(f,}‘/,z_) _ (fodV fodV fBde)

v ' v ' v
d. Pappus Theorem _
Definition: A plane region lie on one side of a line L in R3, R is rotated aound line L to form a solid
of revolution, then the volume=distance travelled by the centroid of R X Area=2nrA
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Remark: it is related to volume by shells; Pappus theorem is more general
Proof: WOLOG, let L be the y-axis, R lies to the right of y-axis

dA x dx dy
Centroid of R, 7 = IRZ = [ e 7

Consider the volume swept out by a little box, AV = 2nxAxAy

2nxhxAyA | Jp2mxdxdy A
V=ZAV=ZZ1TxAxAy= =
A A
x’y x’y

x,y
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Parametric and polar curves

201957H21H 9:54

1. Parametric curve
Definition: A parametric curve is a function y: [a, b] = R? if f:[a, b] - R, derive
y:la,b] » R? by y = (x, f (x))
a. Arclength
Definition: y: [a, b] - R? is a parametric curve let P = {tq,ty, ..., t,} be a

N
partition of [a, b]. Let D(y, P) = Z ¥ (ti=1)v(¢&;)|=length of the
piecewise linear approximation ofy.lT}11e arclengthof yis I(y) =
sup{D(y, P): P is a partition of [a, b]} € [0, =]

(I(y) is the distance travelled by the particle whose position at time t; is
()
Lemma (Triangle inequality): if P, Q, R € R?, then |PR| < |PQ| + |QR]|
Lemma: Let P’ c P be a partition of [a, b] and y: [a, b] = R?, then
D(y,P)<D(y,P)

Proof by triangular inequality
Lemma: y:[a, b] > R?, 3 asequence {P,:n € N} such that ||B,|| > 0 and
D(y,P) - l(y)

Proof: Vn € N, 3P, such that I(y) —% <D(y,R) < U(y)

We can find Q,, such that||Q,|| < 2™ - 0,

let B, = B, U Qp, ||P.|| = 0

1 !
=1 ——<D(nh)<D(r. ) <11
= D(y,P) - l(y) by squeeze theorem
Theorem: let f: [a, b] » R and f'is continuous, lety = (x, f(x)) x € [a, b],

b
Then l(x) = J 1+ f'(x)?dx < o is the arc length of the graph y = f(x)
a
Proof: let P = {xg, X1, ..., X, } be a partition of [a, b], D(y, P) =

> (@)

D(y,P) = ZJ (i = xie1)” + (F &) = f(xi-0)

i=1
N

2
_ JH(f(xi) SN

Xi — Xi—1

=t
= E \/17+ (f’(ci))zAxi (by mean value theorem)
i=1

Definition: let ¥ (t) = (x(t), y(t)) be a parametric curve, y: [a, b] - R? is ¢!

(differentiable and its first derivative is continuous) if and only if% and %
are continuous on [a, b], the velocity is y'(t) = (x'(t),y'(t)), the speed is

y©l = (#©) + ©)

Theorem: let y: [a, b] = R? be c?, then ¥ has finite arc length [(y) =
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2. Polar Coordinates
Definition: the polar coordinates of a point P = (x,y) arer, 8, wherer =
\/F:?Z, and @ is the angle between OP and +x — axis if P = (0,0),8is
arbitrary. Let P = [r, 8] denote the point in the cartesian plane with polar
coordinatesr, 8

e T),

N

If we restrict @ € [0,2), then 0 is unique

Note: [r,0] = [r,0 + 2wk],k € Z; [0,6] = [0,0];[r,0] = (r cos 8,7 sin O);
[-r,0] =[r,0 + ] = —[r,0]

We call the set of [r, 8] such that r = f(0), 8 € [a, B] the polar graph of f
Areas of polar graphs

Let S(r, A@) =sector of a circle with radius r subtending angle A8

Let A(r, AG) = area of S(r, A8) = %rZAH

Let P = {6, 04, ..., 0, } be a partition of [a, B], AA; be the area swepted by r =

£(6), 6 € [6;-1,6:] =~ A(f(6),46;) = %f(Qi)ZAQi

N-oo = N—-oo

B
N 2
Totalarea A = lim ZN AA; = lim %f(@i)ZAHi =f (i(z—))—de
i=1
a

A

=f1o)

>

Arclength of polar graphs
Let f: [a,,B] - R be c?, then the polar graph r = f(8) can be viewed as a ¢!
parametric graph r(6) = (r cos 8, r sin ), we can then use the arclength formula

B
for parametric curve to derive the arc length [ = f \/f(H)Z + f'(6)?do
a
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Sequences and series

20195E7821H 9:55

1. Basics
Definition (Sequence): A sequence is a function a: {no, ng+1, } — R for some ny € Z, denote a by
{an: n= no} or {an}, usuallyng =0o0r1
Definition (Converges/diverges): {an} convergesto L € Rifand onlyif Ve > 0, IN € Rsuchthatn > N =
|an - L| < & (writea, = L or rlli_r)r.}oan = L); {an} diverges if and only if VM,3N € R suchthatn > N = a, >
M (a, - ooorii_r}gloan = o0)
Theorem (Algebra of limits): Assume a,, = L,, b, = Lpand L, L, €ER
Vc €R,a, +cby, = Ly +cLy; apb, = LyLy; Z—: - Z—: (given that Ly, # 0); AI_I){)IOC = ¢; ap < buultimately,
then L, < Ly
2. Sequences
a. Limits and sequential limits
Theorem: Assume }Ci_r}}f(x) =1L,c L € [—,],if x, = c,and x, € Dom(f) and x,, # c ultimately,
then f(x,) = L
Proof:let e > 0,36 > 0 suchthat 0 < |x — c¢| < € and x € Dom(f), then |f(x) - L| < g (since
limf(x) = L)
X—C
xp = ¢s03N; suchthat n > Ny = |x, —c| <6
The ultimate hypothesis on {x, } implies that 3N, such thatn > N, = x,, # c and x;,, € Dom(f)
Let n > max(Ny, N;), then 0 < |xn - c| < § and x, € Dom(f)
Letx = xp, |f(xp) — L| <e
Theorem: let f be continuous at ¢, if x, = c and x;,, € Dom(f) ultimately, then f(x,) = f(c)
(im(f (x5)) = f (lim(xy,)))
Proof: let € > 0, by continuity at ¢, 38 such that |[x — c| < §, x € Dom(f),
then substitute L with f(c) in the previous proof
Definition: {a,,} is bounded if and only if 3M such that ¥n,
Theorem:
i {an} is convergent = {an} is bounded
Proof:take e =1, AN suchthat n > N = |an - L| <1 (T%i_r)rgoan =1)

fla) = f0] <e,

an|SM

By triangular inequality, |an| <|Ll+1
Let M = max{ |a,|:n < N} + |L| + 1,
Then |a,| < M for vn
ii. {an} is bounded# {an} is convergent (e.g. a, = (—1)")
b. Monotone sequences
Definition: {an} is an increasing sequence if and only if Vn, a,,.1 = a,, and decreasing if and only if Vn,
Api1 < Ap; {an} is monotone if and only if it is increasing or decreasing all the time
Theorem (Increasing sequence theorem): Let {an} be an increasing sequence, L = sup{a,:n € N} €
(—o0, 0], thena, - L
ie.if {an} is bounded above, a,, = L € R, if {an} is not bounded above a,, - ©
Questions can be solved by induction.

3. Series
Definition: Let {bk: k € N} be a sequence, and set S, = Z:=1 bi(n = 1)

The series 2:)—1 by convergesifand only if lim S,, = L € R, write 2:)—1 b, =1L
= o =

The series 2:;1 by diverges if and only if {S, } diverges Z:J:l by, =

Proposition:

a. Foranysequence {a,}, {a,} converges = lima,; —a, =0
n—-oo

Proof: let lim a,, = L, thenlim a, ., = L by definition of limits
n—-oo n—-oo
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limay,y1 —a, = limayyq — lima, =L—L =0
n—-oo

n—->oo n—-oco
b. If 2:;1 by, converges, then%i_r)rc}obk = 0, but r{i_r)rc}obk = 0 does not imply 2:;1 b, converges
Proof: apply (a) to {Sn}, Sp = ZZ—1 by - L,so Syy1—S,»0=limb,;,; =0= limb, =0
- n—-oo n—-oo

Theorem (Algebra of series): Z:;l ay and Zzo:l b, are convergent, and ¢, ¢, € R, then Z:):l cay +
Yke1 C2be =c1 ), _ ax + ¢z )., _, by and both sides are convergent
Theorem (Positive series dichotomy): assume a;, = Oforallk € N, let S,, = ZZ=1 ag
a. If {Sn} is bounded above, then 2:;1 ay = sup{S,} is convergent
b. If {S,} is not bounded above, then }' _ a; = oo
Proof by increasing sequence theorem, since a1 = Sp4+1 — Sp = 0, S, is increasing
4. Convergence test

a. Integral test
Theorem: let f:[1,0) — [0, ©) be decreasing, then Z:;lf(n) is convergent& floof(x) dx is
convergent
Proof: Assume floo f(x) dx is convergent, apply the following lemma with N = 1,

zf(k) < fnf(X)dx < foof(x)dx ER
k=2 1 1
VneN, Y i f) < [7fe)dx+f(1)

By positive series dichotomy, Z:;lf(k) converges

Assume Zzozlf(k) is convergent, apply the following lemma with N = 0,
vneN, [ f@ de < 3 f0) < 37 (k) = sup{Sy)

F(R) = flRf(x) dx isincreasinginRand F(R) < Z:J:lf(k) VR >1

= F(R) » fooof(x) dx (a finite number)as R — o

[ee]
Correlation: for p > O,Z nip <ooep>1
n=1

Lemma: let f: [1, ) — [0, o) be increasing, ¥n > N € N, f;:ll flx)dx < Z:=N+1f(k) < f;;f(x) dx
Proof:let h(x) = f(k+ 1),x € [k,k+ 1),k €N,

n-1
n n k+1 n-1 n
h(x) < f(x) = fN f(x)dx = fN h(x) dx = E fk h(x) dx = z flk+1) = z £ (k)
k=N k=N k=N+1

hiX ](b()
{}{\"II‘

>

N n
Letg(x) = f(k),x € [k,k+ 1),k €N,
n+1 n+1 k+1 n
fo<g= | fwars[ geod= Y [ hedx= Y 0
N+1 N+1 P k k=N+1

: ﬁlx)
LT fix)
||
i RN
N n”
Note: this lemma gives an error bound on the approximation of § = Z:zlf(k) using S, = Z:zlf(k)

[ee] . . (o)
Remark: zn=1 a, converges if and only if Zn=n0 a, converges
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b. Comparison test
Theorem: let a,,,b, = 0 assume k > 0 and a,, < kb,, ultimately,then

i 2:;1 b, converges= 2:;1 a, converges
.. o . [ee] .
ii. ) _ andiverges ) _ by diverges
Proof: choose ng such that n = ny, a, < kb,
n n [ee]
vn = ny, Zi:no a; <k Zi:no b; <k Zi:no b;
By positive series dichotomy, z;;no a; converges, by the last remark, Z:lo:l a, converges
¢. Limit comparison test
Theorem: let a,,b, = 0 assume Z—" - L €[0,00]
n
. . . . . oo . . oo
i. L is finite, then if anl b, is convergent, so is anl a,

an
E;_L| <1

Proof: % — Lisfinite, takee =1, In>ny=>

n

= %Ti <L+1=a, <(L+ 1)b, ultimately

By comparison test, if Z:zl b, is convergent, so is Z:zl an
e . oo . . . [e%)
i. L>0,thenif Zn=1 ay, is divergent, so is Zn=1 b,
Proof: % — L € (0, 0], take inverse Z—” - % € [0, ), apply (i) with a,,b,, reversed
n n

d. Root test

1
Theorem: let a,, = 0, assume ay — p € [0, o]
[ee]
i p<l, Zn=1 a, converges
i. p>1, Z:;l a, diverges
ii. p=1, 2:;1 a, may converge or diverge

e. Ratio test

Theorem: let a,, > 0, assume % - p € [0, ]
n

i p<1, Z:;l a, converges
i. p>1, z:_l a,, diverges
see m_ .
i. p=1, Zn=1 a, may converge or diverge
Remark: ratio test tends to be easier to implement arithmetically than root test (especially with n!); root test

implies ratio test, but ratio test does not imply root test
1

a T .
Lemma: a, = 0, —Zﬂ — p € [0,] = a - p converse fails
n

Absolute convergence
. ey . o . . [els)
Definition: a series zn:l a, converges absolutely if and only if anl |a,,| converges
Theorem:
(0] [0.0) [ee]
a. anl a, converges absolutely ( anl |a,,| converges)= anl a, converges
Proof: let a;; = max{ay,, 0} a; = min{a,, 0}
Thena, = aff —ay, |an|=aj +ay,and 0 < af < |ay|
. o . [ee] oo} _
Since ), _. |an| converges, by comparisontest, . _ aj and ), _ a converges
. o _ o + —
By algebra of series, ), _ a, = ) _ ai + a; converges

b. However, inverse is false

Lemma: let {/,,: n € N} be a sequence, ifl,, = Land l,,,_; = L,thenl, = L

Theorem (Alternating Series Test): let b,, N 0 (b,, = 0 for ¥n) then Z:;l(—l)"‘lbn converges
Proof: let S, = le(—l)i‘lbi, a; = (1)t
Sa2tm+1) — S2n = Q2n+z T Aant1 = —bansz2 + bant1 = 0 (since by g = bapy2)= Sy is increasing
Son+1 — Son-1 = Qan+1 + Azn = bany1 — ban < 0 = Sy, 4 is decreasing
Son—1 = Son = b2n 2 0 = Spp1 = Sy forvn
S,y is increasing and it has an upper bound of S;, thus limit S,,,e,, exists
Son—1 is decreasing and it has an lower bound §,, thus limit S, 44 exists

And Soqq — Seven = Tlli_r)r(}oSZn—l =S = Ty_r)rolobZn =0
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By the previous lemma, Z:;l(—l)”‘lbn convergesto S = Syqq = Seven
Remark (Alternating Series Bounds): Vn, Sy, < S < Soniq < Son-1,then0 <S5 =85, £ Sopni1 — Son =
bypni1,and 0 < So 1 —S < Sopq1 — Son = by, s0VmMm EN, |S), — S| < bjp41 is the approximation error by
the mth sum.
Conditional convergence
Definition: a series 2:;1 a, converges conditionally if and only if z:;l a, converges, but 2:;1 |a,| does
not converge

iee co oo L. co + _ [e] - _
Proposition: let zn=1 a, be convergent, zn=1 a, converges conditionally & Zn=1 a, = % and Zn=1 a, =
(0]
. — 4t - — o+ + + -\ — 9+
Proof:(1) |an| =ay +a, =a, +a, — (an - an) = 2a, —a,
suppose ZOO a, converges, by algebra of series zm |a,| converges
pp n=1%n ges, by alg n=119n g

But this contradicts, so 2:21 la,| = o = 2,010:1 ay; = o

Similarly, |a,| = a} + an = ay + an + (af —ay) = 2a; +a,

[e] o —
Wecangetthat ), _ [ap| =0 = ) _ a7 =0
oo . [} %) o)
(2))),_, @ = %, |an| = aj;, by comparisontest, )| _ |a| =0 ) _ ap =0, ) _ an
converges conditionally
Remark: Assume 210;1 a, converges conditionally, by adding a lot of positive terms and then a few negative

terms and a lot of positive terms and keeping going, as long as a,, — 0, 2:21 a, can be +oo or any number

Power series
Definition: A power series centered at ¢ € R is a series of the form 27010:0 a,(x —c)", where a,, € R,and x is
an independent variable.
Let C, = {x: ZZO:O a,(x — c)™} be a set of convergence of the power series, C, = (¢ — R, ¢ + R)(end points
may be included), c is the center of convergence and R is the convergence radius
If f(x) = ZZO:o a,(x —c)", x € Cg, then it is a power series representation of f(x)
Theorem: a power series 210;0 a,(x — c)", there exists R € [0, o] such that
a. |x—c| <R, 2:20 a, (x — c)™ converges absolutely
b. |x —c| >R, 2:):0 a,(x — c)™ diverges
c. |x—c|=R, Z:;o a,(x — c)™ may converge or diverge
Proof: (1)WOLOG, let ¢ = 0 (let x' = x — c if not)
o ©

Dt —on =) ()"

n=0 n=0
By result forc = 0,3 R € [0, ] such that |[x'| <R = z:;o a, (x")™ converges

(2)Let R = sup{|x|: x € C,}, x| <R, if R < o, 3xy € C, such that |x| < |x0| <R

[00]
Xo € Cp = Z an(xo)n converges= 7%im an(xo)n = 0 = Fk such that |an(x0)n| <k
TL:O —00

n
|an(XO)n| = |an| |(xo)n| <%) < kr"™ wherer = LIPS

|%ol

(00
By comparison test, since Y.;—o kr™ is convergent, then Z

|an(x0)n|convergeg
n=0

*® n
Z . an(xo) converges absolutely
n=

Theorem: Let R be the convergence radius of z:;o a,(x —c)"

1
a. If|a,|" - o € [0,0], then R =§
b, If [fztt —>a€[0,00],thenR=l
an o

2
Lemma: H > 0,thenV|h| < HVx €R, |(x +h)" —x™ — nx"‘1h| < |§| (Ix] + H)™

Remark: if [x| < r, then Z:S:o |a,, (x)™| converges

[oe)

Theorem (differentiation and integration of power series): Assume f(x) = ).
radius of convergence, then

n
neo@nx™ for x| <r <
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a. f'(x) = Z::):o na,x" 1 for|x| <r
Proof: (1)first check convergence
[o¢]
: -1
let 0 < |x| <7, claim ), _ |na,x" ! < oo
[ee]

Choose 1y such that [x] < ry < r, then Zn=0 a,r™ converges= a,r" - 0
= Jk such that |an | < kforalln

n
|na, x| = n|—6|lZ| il ljfl (|lantd| <k a = l:—l € (0,1))
0 0
Then |na, x| < < lnan

Recall that Z , o™ is convergent, so 2::0 |na,x™ 1| converges by comparison
(2)Let g(x) = Zn Onanxn Lxl<r

flx+h)—f(x) a,(x+ h)" — a,x™ 1
—gx)| = —na,x"
h h
n=0
= lim [ EN an((x + )™ — x™ — nx™"1h) <|l| lim ZN a | | (Jx| + H)™
Noow [h Ly = |nl NS [ &n=0"T

(by triangular inequality and previous lemma)

o 2
Since zn=0 an |£| (Ix| + H)™ converge to 0.
f(x+h) flx)

By squeeze theorem, (x)| —»0ash—-0

By definition 11rr(1) f(x+h; f(x) gx) =f'(x)
b. [y f(&)dt = Zn i —Ix™+ for |x| <7

a
Proof: |—- x"*1
1™

| < |x||anx™| RHS converges
[ee]

. a
By comparison test, E n—:lx”“ converges absolutely for |x| < r
n=0

[ee]
Let h(x) = Z In yntl
n=0

_gn+1
By () B'(x) = Y. anx™ = f(x)
[FF©de = [R@de=h() —h0) = ) Ly pyF1C

n=0 1 )
c. Note: with this theorem, we can generate new power series representations from old ones like =

Z’?]?:O xn
Correlation: Assume f(x) = Zn 0 a,(x)" for |x| < r < radius of convergence, then f(x) is infinitely
differentiable for |x| < r, write f € ¢®
Theorem (Abel's Theorem): assume f(x) = z

then hm | F(x) = Zn o anR"

Remark. if R(f) is the radius of convergence for f(x) = Z::o anx", thenR(f) =R(f') =R (ff dx)
Remark: everything works for Z:;O a,(x — c)™ withany c € R

Taylor series

Theorem: Assume fisc® on(c —R,c +R), if f(x) = Z
ay = f( )( ) ,where f©(¢) = f(c)

-0 a,x™ for |x| <R, and Z anR” converges,

an(x —c)for|x —c| <r,thenvVk € Z%,

n=0

(00
()
Remark: a power series representation (if exists) for f(x) is unique and must be E f—n,(—c) x—c)"
n=0

[oe]

T (k) . . o L(k)(c) Nk
Definition: Assume f "/ (c) exists for all k € N. The taylor series of f about x = c is — (x —c)%,if

k=0
c = 0, itis called the Maclaurin series

Assume f %) (¢) exists for all k < n € N, the nth degree Taylor polynomial for f about x = c is P c(x) =

MATH(Single Variable Calculus) Page 24



Theorem (Taylor series test): Assume f isc® on (c —R,c + R), let M, (r) = sup{|f(") (x)|: [x —c| < R}, if

n * )
ML(nT')L: 0, then f(x) = E fk—'(c)(x—c)k forall[x —c| <r
k=0

Theorem (Taylor's Theorem): Assume f™*1 exists on (c — R, ¢ + R), Vx € (c — R, c + R), 3t = t(x) such that

_ MO gt
F) = Boo) =20 5 — )
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First order differential equations

20195E7823H 14:27

) . . . . . d
Definition: A first order differential equation is an equation relating y = f(x), d—i and x

1. Separation of variables
Definition: A separable first order differential equation is one in the form of % =
g(y(t))f(t) for some continuous functions. (LGE is a special case where g(y(t)) =

(1-22)y() and £ (1) = k)
To derive a formula for y(t):

dy _ _dy
b)r©= g(y@®)

dt
Integrate both sides

dy
—_— = d
j 9(r®) e

dy 1 _
fa;@a)—) dt = —[f(t) dt

6o = [F@d

y(©) =G ( f £ dt)

In fact, this works until t; where g (y( tl)) is first zero, if g( ) # Oand t; > 0,

= £(t) dt

G~ exists and J-E(%)(lﬁ) will be increasing or decreasing until g(y) =0

a. Easy case:
2 = ky(£);¥(0) = yo = ¥ = ypekt
b. Logistic Growth Equation

dy y(©)
w-k <1 —= |y@;y(0) =y
It has two trivial solutions y(t) = 0 and y(t) = L, corresponding to initial

conditionsyg = Landy, =0

ln|y| - ln|L - y| =kt+C

In ‘—y—-’ —kt+C

L—-y

Y kt
—_— C
Ly e

CiLe o . y
y = 1+101ekt until first time y(t) € (0,L) so = >0
L

SV = o, © (0,L), forallt >0

Yo
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Remark: The presence of y? in separable equations makes y(x) — oo at some finite x. If
g(y) <k(1+ |y|), then the solution of% = g(y(®))f () will not have a y(x) -
2. First order linear differential equations

% + p(x)y = q(x), where p(x) and q(x) are continuous functions
Note: if p(x) = 0, it is a separable equation
p(x) # 0, consider multiplying both sides by e*®) > 0

d
emwb§+p@b,=emw“@

u(x)
If we choose u(x) such that e [% + p(x)y] = %a—y)-, call u(x) the

integrating factor
ux)
Then, the LDE can be rewritten as E(e—dx—y—) = et@g(x)
Integrate both sides, e®)y = f et g (x) dx

. uGo) [42 = 4 Wy)
To find pu(x), solve e [dx + p(x)y] ==
dy dy
ux) ) N E9) p !
e [dx +pX)y|=e [dx + 1 (x)y]

= p(x)y = p'(x)y
= 1) = [ () da
Note that adding constant to u(x) does not affect y

Theorem: y solves a linear differential equation 3—1 + p(x)y = q(x) if and only if
y = e H® f e @ q(x) dx where pu(x) = [ p(x) dx
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Vectors and geometry

June 23, 2021 7:44 PM

Vectors in R? and R3
e Avectoris a quantity with both magnitude and direction indicated by arrows
e Magnitude |d| is the length of the vector a.
e Two vectors are the same if they have the same direction and magnitude
e Addition: @ +b = b + d.
e Scalar multiplicationca =a +d + -+ + a.
e Zero vector 0: the only vector of magnitude 0, has no direction.
e The vector from (0,0,0) to (a, b, ¢) is denoted as < a, b, ¢ >.
e Unit vectors:
o 1=<1,00>.
o J=<0,1,0>.
o k=<0,01>.

Dot product

E| cos 8.
e Algebraic: @ =< ay,a,,a3 >, b =< by, by, by >, thend - b = a;by + azb, + azbs.
e Remark:d-b=0&d L b.

e Geometric definition: @ - b = |d]

Cross product
e Geometric:d X b = |d] |B| sin 8.

o Direction of @ X b is normal to both @ and b.

i j ok
e Algebraiccaxb=|a; a, as
by by b3

e Remark:dxb=0<dlb.

a, az 4as
Triple product: d - (b X 5) = (& X b) -¢=|by by b3
L € C3

Equations for lines in R3
e Alineis determined by a point (xo,yo,zo) on the line and a vector ¥ =< a, b, ¢ > in the
direction of the line

X =x,+at
e Parametric equation:{y = Yo + bt.
zZ=2zy+ct

. . X=X
e 2 linear equation when a, b, c # 0, - 0=

Equation for a plane:
. ﬁ~<x—x0,y—y0,z—zo >=0.
o a(x—x0)+b(y—y0)+c(z—2)=0orequivalentlyd = ax + by + cz.

Equations and surfaces
e Planes are solutions to linear equations
e For quadratic equations in 2 variables (xz,yz, Xy, x,y, c), we get circles, ellipses, parabolas,
hyperbolas
e A quadratic surface in R? is given by an equation which is a linear combination of
x%,y2%,2%,xy,yz,x2,x,y, 2, C.
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¢ |f the equation only involves 2 of the 3 variables, it is a cylinder

* To sketch/understand surfaces, we use the curves obtained by planes parallel to coordinate
planes

o Contour curves: setting z = ¢ constant.
o Trace curves: x = c ory = ¢ constant.

Functions of 2 and 3 variables

e A function of 2 variables with domain D © R? is a rule f which assigns to each point (x, y) €
D,af(x,y) ER, writef:D - R

e Often the domain is implicit

For functions of 3 variables, we can only draw the contour/level surfaces
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Partial Derivatives

June 23, 2021 7:48 PM

Continuity and limits
e Forlim(y ) ap) f(x,y), there are infinite number of directions which (x, y) can approach
(a, b) along, we need them all to be the same
e For limits to the origin, the easiest way is setting x = txy, y = ty,.

Partial derivatives

e Fora function f(x, y), we can treat x as a variable and y as a constant or vice versa
of

* = fy is the derivative of f with respect to x.
d , — .
. é = fy is the derivative of f with respectto y.

f(xo+Ax,Y0)—f (X0,Y0)

e In terms of limits, fx(xo,yo) = limp,_o A

Higher derivatives
_ 9 (9F\ _ 9%z
for =55/ (5%) = 3w
9 (9f\ _ 9%z
foo =52 (52) = 5
e Theorem: partial derivatives commute fy, = fx.

frx» fyy tells the concavity in xz, yz plane.
fxy tells how f;, changes as we change x.

Implicit differentiation
e For any 3 variable function f(x, y, z), we can implicitly define z as a function of x, y.
» zisdependentonx,y, and we can calculate zy, z,, directly.

Linear approximation

e Considerl;:z = f(xO'YO) + fx (X0, Y0) (x — xo) and l,: z = f(xo')’o) + £, (%0, Y0) (Y — Yo)-
e They lie in the tangent plane

e Then f(x,¥) = f(x0,¥0) + fu(x0, ¥0) (x —x) + fy(xo'}’o)(}’ — ).

Chain rule
e Givenz = f(x,y), x = g(t),y = h(t), we have z; = z,x; + z,y;.

e Similarly, if z = f(g(s, t), h(s, t)), then (Z) = (zi ii) (Z)

X
o (xi ;’{Z) is the Jacobian matrix

e In polar coordinatesx =rcosf,y =rsinf, z = f(x,y).
O Zy =7, C0s 8 + z,sin6.
o zg = Zy(—7sinf) + z,(r cos ).

Directional derivative
e Let be the directional vector, Dgf(xo,yo) =rate of change at (x,,y,), as we move in the

direction i at unit speed, Ti| =1.

af d d —
* Daf =4 = fog t fygr = f(%0.v0)a + fy(x0,70)b =< f. fy, >

o Vf =<f fy >isthe gradient of f, it is a vector field.
o Dyf =Vf-u.
e If 1 istangent to a contour line, then Dy f = 0 = Vf -1 = 0, Vf Lcontour.
e Dyf is greatest when 1 is in the direction of Vf.
o Vf points to the direction in which f increases the fastest.
e If F(x,,z) is a function of 3 variables, then VF is a vector field in R3, properties hold.
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o Tangentplane: z = z; — %’25 (x - xg) - % (y - 3’0)-

Classification of critical points

For f:D — R, if D is closed and bounded, f (x, y) will achieve its global max/min at either a
critical point or on the boundary.

e A point (xg,y,) is critical if Vf(xo,yo) =0.

Discriminant (determinant of Hessian matrix)

fx fxy = f.f _f2
fox  fyy| Xy Ty
Classification:

o D(xo,yo) > 0, fyx > 0, local min.

o D(xo,yo) > 0, frx <0, local max.

o D(xo,yo) = 0 not a critical point (inconclusive).

o D(xo,yo) < 0, saddle point.

o D=

Lagrange multiplier
e Max/min of f(x,y) restricted to boundary curve occurs when the contour curve is tangent to

the boundary curve.

e Look for points (xo,yo) on the boundary curve g(x, y) where Vf(xo,yo) = AVg(xg,Vo)-

o Aisthe Lagrange multiplier.
o Thismeans fy = Agy, f, = Agy, g = 0.
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Multiple integrals

June 23, 2021 7:48 PM

Definition: [f " f(x, y)dxdy = limy_,e0 o0 Die1 2m1 f(xi, y]-)Axiij.
1

Average value of f in D = Aread) 5 f(x,y)dA

Properties
e FTCstill apply

e Linearity: ffD Af(x,y) + Bg(x,y)dxdy = A ffo(x y)dxdy + B [[" g(x,y)dxdy.

Theorem:

e IfD =[a,b] X [c, d], ff];"f(x, y)dxdy = fcd fff(x, y)dx dy.
e Fubini Theorem: ffo(x y)dxdy = fcd f;f(x, y)dxdy = f; fcdf(x, y)dy dx.

D is vertically sliceable if it is of the form D = {(x, y) 1g1(x)<y<g,(x),as<x< b}.

o Then [[" f(x,y)dxdy = fcd iz((;;) f(x,y)dy dx.

D is horizontally sliceable if it is of the form D = {(x,y) : g1(y) < x < g2(¥),a < y < b}.

o Then [f," f(x,y)dxdy = [ [ f(x,y)dx dy.

Sometimes in a region that is both vertically and horizontally sliceable, an integral is possible to do in
only one way

If f(x,y)isoddin x, f(—x, y) = —f(x,y), and R is symmetric under reflection about y — axis, then
Wy f(xy)dxdy = 0

Integration in polar coordinates
e x=rcosf,y=rsinf, 0 = arctan%.
L-a

b—a
. LetR—m{(r,G)-aSer,aSGSB},Ar——N—,AG——M

..... . b
e Then ffR f(r,0)dA = limy_e p—0 Z?’ilzﬁyzlf(rj, Hi)ArjAQi = fa fff(r,&)rd& dr.
« Radially sliceable region: R = {(r,0) : g,(8) <7 < g,(8),a < 0 < B}.

o Then ff;"gf(r,G)dA = ff fgglz((:))f(r,e)rdrd&

Applications
e Mass
o Metal object of shape R, suppose it is made of a metal of density p,
» thenm(R) = pArea(R)
o Suppose p = p(x,y).

* Mass= ff;"gp(x,y)dxdy.
e Center of mass

o (Z?) — (ffR ''''' xp(x,y)dxdy [[5 }’P(x,y)dxdy).

[ pGey)axdy ' [ pGxy)axdy
e Surface area

o Area(Pi ) =

o TotalareaS(A) = [[.° |1+ f + f;}dxdy.

R
o S(A4) = Area(R).
o z= f(x, y) + C has the same surface area as f(x,y).
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Triple integral

Volume(E) = fffE dv.
Type I: solid between two graphs z = u;(x,y), z = u,(x,y), (x, y) €R.
o E={(xy2):(x,y) ERu <z <u,}

o | ffE Fav = ffR f;lz Fdz dxdy.

Type II: solid between two graphs x = u,(y, 2), x = u,(y, 2), (y, z) €R.
o k= {(x’y’z) : (y;Z) € R,ul S X S uZ}.

o [y Fav = [f;' I} Fax dzdy.

Type IlI: solid between two graphs y = u,(x,2), y = u,(x, 2), (x,z) € R.
(@] E:{(X,Y;Z):(X,Z)ER,ul SySuz]

o [ff; Fav = [J;" [\ Fdy dxdz.

Cylindrical coordinates
e Letx =rcosf,y =rsing, then (r, 6, z) forms the cylindrical coordinates.

Spherical coordinates
e x=psingcosh,y=psingsinb,z=pcos¢, 8 €[0,2n], ¢ € [0, r].
o ¢ measured from positive z — axis.
o AV = p?sin pApAPAS.

o [[f;Fav = [[f; Fp?®sin¢ dpdpde.
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Vectors and curves

June 23, 2021 7:45 PM

Vectors in R? and R3
e Avectoris a quantity with both magnitude and direction indicated by arrows
e Magnitude |a| is the length of the vector a.
e Two vectors are the same if they have the same direction and magnitude
e Addition:d+b =b +d.
e Scalar multiplicationcd = a+d + -+ + d.
e Zero vector 0: the only vector of magnitude 0, has no direction.
e The vector from (0,0,0) to (a, b, ¢) is denoted as < a, b, ¢ >.
e Unit vectors:
o 1=<1,00>.
o J=<0,1,0>.
o k=<0,01>

Dot product

| B| cos 8.

e Algebraic: @ =< ay,a,,as >, b =< by, by, by >, thend - b = a;by + azb, + asbs.
e Remark:d-b=0ea L b.

e Geometric definition: @ - b = |&

Cross product
e Geometric:d x b = |d| |I_5| sin 6.

o Direction of @ X b is normal to both @ and b.

ik
e Algebraiccaxb=|a; a, a3
by by bs

e Remark:dxb=0cdlb.

Curves
o Definer: {(x(6), y(t)) € R%:7(t) =< x(t), y(t) >}.

Derivatives
o P(0) = 2 (D) = limy,,, T,
* Rules:
o £(a-b)=a'-b+a-b'
© f;(aXb)=a’><b+axb’.

d , , .
o — (a(s(t))) = a'(s())s’(t), s(t) is a scalar.
 Derivative of r(t) is tangent to r(t), r'(t) - r(t) = 0
i _r®
o UnittangentT = EIOl

. . . d
e Arclength is related to the magnitude of the local velocity vector: ==

dt
o s(T) = fTTo|r'(t)|dt+s(To).

ar

dt

For 3D inputs

e Position r(t) =< x(t), y(t), z(t) >.
Velocity r'(t) =< x',y', 2" >.
Acceleration ' (t) =< x",y",z" >.

Speed |r'(t)] = J(x')z +(y') + (22
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e Distance travelled s(T) — S(TO) = fTTo |7 (t)|dt.

Parametrization methods
e Polar coordinates
e Cartesian coordinates
e Arclength

Curvature
e pisthe radius of curvature.

ds
o p=

o Center of curvature: p + pN.

ae

o k= % is the curvature and is a measure of how tight the curve turns.
ds

aol

o When kis max, a L v iff vis constant.

o Whenk=0,al v.

o Ifr |l a thenr X visconstant,a = v'T + kvN.

-1 Iy d!
T Xr
Ok: :l l

Unit tangent and normal

r' dr
o T = — =",

'] ds

T ... . . ’ 17
e N= T itis in the direction of r’ X r"’.

o %g = N(s)k(s).

Frenet Frame
e Binormalvector B =T X N is orthogonal to both T and N.

!

T 0 k O\/T
e IN|=|l-x 0 <t]|N
B 0O -1 0 B
e Torsion:t(s)=—-B'-N=22"T_
|TI><T.II|

o T > 0, rotation is counter clockwise.

Path integral
* A measure of work done on a particle moving along a curve y inside a scalar force field f(x, y, z).

o [ f(xy.2)ds = [} frO)|r©]de.

* Ingeneral, if y; and y, are reversed, y; = =y,
o then—[ f(r®)|r'®|dt = [ _f(r®)['®]dt.
o But it does not affect the integration with respect to arclength
o Needtoensure a <t < b and the curve is positvely oriented.

Vector fields
¢ Velocity field and force field
e Vfield v(x, Y, Z) =< Uy, Uy, Uy >.
o Egv=<yx>.

Gradients

a 8 9
* VE<aaya
e Potential function: a vector field is said to be conservative if there exists a scalar and a continuous
function ¢ suchthat v = Vg or F = V¢.

Irrotational flow (curls)
e Curl describe the rotation of a vector field
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¢ They also help check if a vector field is conservative
e curl F=VXF.
e IfV X F =0, then the vector field is conservative

Some important operations
e grad f =Vf =< fx'fy'fz >.
e divF=V-F= %Fl + :—yFZ + 5621:3' The rate of which fluid is exiting a volume

i j k

d d d
e curlF =VXF = % 5; 21

Fi F, F

Streamlines
¢ |t maps out trajectories of massless particles in a vector field
o ' X v(r(t)) = 0.
* This gives a family of curves that are instantaneously tangent to the vector field, so the vector
field can be defined as: v = V X 1y, where i is the stream function (velocity potential).

Line integrals in vector fields
e We want the work done on a particle travelling inside a vector field

« W=[F@®) T(t)ds=[F dr= [ F(r®) - r'(©ad.
 If a vector field is conservative, then fy F-dr = d)(r(b)) — d)(r(a)).

Path independence
* Fisconservative if there exists a scalar and continuous potential function such that F = V¢.
e F if conservative if the curl of the vector field is zero, VX F = 0.
e For conservative fields, fyl F-dr = fl/z F-dr= ¢(p1) — ¢ (py) for any path from p, to p;.

Summary for a continuous vector field in R? or R3.
e F =V¢if Fisconservative.
. fyF -dr = 0 for closed curves.

e The integral is path independent for curves that start and end at the same point.
e |f F is continuous and differentiable, then F is conservative if and only if VX F = 0.

Green's theorem
e The line integral of F(x,y) around a simple closed curve is the same as the double integral of V X
F with the boundary.
e Define 01} to be the boundary.
e Orientation:
o Counter clockwise is positive.
o Clockwise is negative

o F, F, need to be continuous and differentiable.
o fan F - dr > 0 if F on average is along the direction of dr.
o fan F - dr < 0 if F on average is against the direction of dr.
o A counter clockwise rotation within 2 and on dQ is whenV X F > 0.
* IfVXF =1,wehave [, F-dr = Area(Q).
OFy _ 0Fy

o Need p ay—=1.

e It surrounds vector fields that are not continuous/differentiable at every point with the surface Q.

Q
o [fg VXFdA= [ F-dr+ [, F-dr=[F-dr

oriented. Then [['V x FdA = ff(;‘; Vx FdA + ff;i; V x FdA.
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Divergence theorem
e 2D divergence theorem is to diverge what Green's theorem is to curl

e The flux F through a boundary curve d(Q is the same as the differentiable integral of V - F over all
Q.

* 2D: [, F nds = ffg'i_y-FdA.
e 3D: [[;"F -ndX = [[f,"V-FaV.
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Surface integrals and theorems

June 23, 2021 9:26 PM

Parametrized surfaces
e Build a function for the surface: root finding method to find x, y, z at the surface.
e Parametrize the surface such that each point is described by two parameters u, v, and get
(u,v) € R?, r(u,v) =< x(u,v), y(u, v), z(u, v) >€ R3.
B D

. A
e Parametrized plane: r(u, v) =< u, v, —TU—Zv—o >

Tangentplane:n -< x — X, ¥ — ¥0,Z — 29 > = 0.
Givenr(u,v) =< x(u,v),y(u,v), z(u, v) >.
Ty =< Xy, Yur Zy >

o T, =< Xy, Yy, Zy >.

e n=T, XT,.

A surface Q is smooth if it has a smooth parametrization r(u, v) such that x, y, z are smooth
functions and Ty, X T, # 0 for any u, v.

Surface area
e To find the surface area of a complex surface, construct a tangent plane at r(uo, vo) such that
r,="T,1="T,.

e The surface area is ffD|ru X rv|dA, where D is the parametrized region.
e |f we isolate a small region, we can see that the surface can be linearly approximated.
o P =r1(ug,vp) + ryAu + 1,Av, when Au, Av are small.
e The area of the cell is equivalent to the magnitude of the vector that is orthogonal to the plane

A useful parametrization (surface of revolution)
e r(u,v) =< f()cosu, f(v)sinu,v >.
e This ensures a rectangular parameterization domain.

Surface integral

e Surface integral of a scalar function: ffnf(x y,z)dQ = ff];"gf(r(u, V)| % 7, |dA.
e Surface integral of a continuous vector field. To find the flux of F through a surface ().
o Outward normal: n = 2t
|y x|

o [[F -ndQ = [["F(r(u,v)) - (r, x7,)dA.
o For a continuously differentiable and smooth vector field, we can apply divergence

theorem: foF -ndQ = [[[,"V-Fdv.
Stokes' theorem
e |t relates the surface integral of the curl of a vector field with the line integral of that same
vector field around the boundary of the surface integral
¢ For each small piece faQ_F -dr = (VX F) - ndQ;.

. faQF -dr = ffﬂ(V X F) - ndQ.
e Must make sure that n is oriented positively with counter clockwise rotation and negatively
with clockwise rotation.
e There are thus two ways to calculate the surface integral of complex shapes
o Project the surface to the plane the boundary curve 01} creates.
o Cur the hemisphere into sectors instead of the plane that's bounded within the
boundary curve.

* Ifthere is no bounding curve, for a closed surface, [, F - dr = fo(V X F) -ndQ = 0.

MATH317 Page 5



	Limits & continuity
	Derivatives
	Integrals
	Parametric and polar curves
	Sequences and series
	First order differential equations
	Vectors and geometry
	Partial derivatives
	Multiple Integrals
	Vectors and curves
	Surface integrals and theorems

