Vectors and geometry

20195E785H 16:00

1. Vectors:

a
Column vector: (b)

c
Row vector: (a, b, c)

a, a; a, +a,
Addition: v =| by |W= by |v=| b, + b,
€1 C2 c;+c;

aq caq

Scalar product: ¥ = | b1 |, ¢c¥ = cby

Cq1 cCcq

Zero vector: 0 0% =0
A vector space is a set of vectors with 2 operations satisfying properties: F(R,R) = {f(x)}

2. Geometry
Lengthofd = (Z)

o |2 =@ 452
b. |d|20|d| =0ifandonlyifd =0
c |sd| slci

d. |d+b|<|d|+ p|

Unit vector
U is a unit vector if and only if |1_Z| =1

If d is a non-zero vector, then | | is a unit vector
Distance

Distance of (c‘i, B) is |B -
Dot product

a- b—a1b1+a2b2+ -+ a,b, | ||b|c059

Ifd-b = 0anda,b are non-zero vectors, then d L b

i-d=|dl
i-b=b-d
i-(b+¢)=d-b+d-¢
s-d-b=s(d-b)
0-d=0

Projection

X is the projection of @ onto b
, a- b-
X=5—=b
b-b
Cross product
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i ]k
dxb=|a; a, as| wherei,j,k arethe unitvectorsin R3
by by bs

—
Cal

- -

dxbldanddxb Lb

i xb| = A(P)
The direction of @ X b satisfies right hand rule.
dxb=-bxd

3. Lines and planes

a.

d.

Lines in R?

Equation form I: ax + by + ¢ = 0, n = (a, b) is the normal vector

Parametric form I: OP + s, P is a point on the line, ¥ is the direction vector

Parallel lines: v; = cv, orv; -, =0

Planes in R3

Equation form: ax + by + ¢z = d, n = (a, b, ¢) is the normal vector

Parametric form: OP + s + tw, P is a point on the line, #, W are two direction vectors
onthe plane. ¥ # kw, s,t,k € R

Lines in R3

x Xo u R u
Parametric form: (y) =|Yo |+t (V) whered = (V) is the direction vectorand t €

VA Z() w w
R
Distances:
\ o - . g = laxotbyote]
i. Pointtoline (2D):d = N
o7

ii. Pointto plane (3D):d = T
#

/7

iii. Distance between skew line
Common normal vector 1 = v; X U,

7o
d=—1

7l
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Linear system

2019578 26H 9:40

1.

Systems of linear equations

A system of linear equations contains m equations of n variables, the highest order is 1
A solutionis (xl,xl, ...,xn) that satisfies all equations

Any system of linear equations has 0,1, co solutions

Linear independence

Definition (Linear relationship): a relation between vectors vy, V5, ..., Uy, is a; V7 + a,v, +
et apv, = 0, if all a; are 0, then it is a trivial relation

Definition (Linear independence): v;,7,, ..., 7, are linearly dependent if there is a non-trivial
relation among them. Otherwise, they are independent

i.e. a; = 0is the only solution for U7 + a7, + - + a, ¥y, = 0 if Uy, Vs, ..., Uy, are linearly
independent

If some v; = 0, then V1, Vg, eue, Vi -, Uy, are dependent

n + 1 vectorsin R™ are dependent

A basis for R™ is a set of n linearly independent vectors in R™

If 3 vectors in R® are dependent, then they lie on the same plane and [v,| = 0

Solving a linear equation by Gaussian elimination
Matrix of coefficients:

a1 b1 C1 d1 a1x + bly + C1Z = dl
a, b, c; d, ]isanaugmented matrix of the system<{ a,x + b,y +c,z =d,
a3 b3 C3 d3 a3x + b3y + C3Z == d3
1 0 0 xg
Use Gaussian elimination to make the matrixin the formof{ 0 1 0 1y, |if the system has
0 0 1 2z

one solution (xg, Yo, Zo)
If one row is all zeros, then the system has infinite solutions
If one row has the pivot (the first 1) in the last column, then the system has no solution

Homogeneous system

a, by ¢ O

a, b, ¢, 0

as; b3 c3 0
Solutions are lines/planes which go through the origin
i.e. X = av + bw + cu which is a span of (17, w, 17)
The solution of a homogeneous system is always a span
Properties of spans:

a. 0 liesin span

b. If U,W lie in a span, then? + W lies in the span

c. If ¥ liesin aspan, then cv lies in the span

Applications

a. Traffic network
n intesections = n equations
For each section total in=total out

E.g.
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/\400 /lw
S
20 Xy ~
pd
AL Y p "
- - =
400 \ Xy 30
A 59-3 i
V/
L'
x; =200+t

500+X1 = 300 +x2

200 +x, = 400+ x; _ izfgggit

X3+100=300+x4 3; =t

300 + x4 = x1 + x5 X 4_100
=

If there are n blocks, then there are n free variables
b. Resistor networks

i. Method 1 is like traffic network, for each node, current in = current out
ii. Method 2: Loop current

Voltage drop around a loop is 0
Current source may contribute to the current difference, set its voltage be E

1 élv
1 1y l
V) L————D’/%

11R1+11R2+E_V1=0
12R4+12R3_E+V2=0
11_12=1
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Matrices and determinants

2019578 26H

9:40

1. Matrices

A matrix is a table of numbers
Apxn is @ matrix of m rows and n columns
The rank of a matrix is the number of pivots in its row reduced echelon form

a. Matrix linear combination

A matrix A,,xn can be written as a row of column vectors
Apsn = (@; a; ... @,;) a, isavectorin R™

. A matrix 4,,x, multiplying a column vector from the left, if defined, is equal to a linear

combination of its column vectors

X1
- — — — xZ — —_— —_—
Ax = (a; a, .. a, .| = X101 + X0, + 0+ Xpay
le

Matrix B multiplying A from the left if defined, can be expressed as BA =
B(a; a; .. a,) = (Ba; Ba; .. Ba,)

b. Linear transformation:
Definition: an m X n matrix 4,,x, multiplying a vector in R™ from the left if defined,
transform the vector to R™, ApmsnXnx1 = Xmx1- Amxn defines a transformation R™ - R™
Every linear map T: R™ — R™ is a matrix transformation for a unique matrix A,,xn
Special case: A, xp:R™ = R"
A transformation T: R™ — R™ is linear if and only if T(aX; + f%;) = aT (37) + BT(x3)
Linear transformation preserves properties of the original graph

Transpose:
=2 %) en = (2 )
(AB)T= BTAT

. Inverse transformation

Let T: R™ - R™ be a linear transformation with A, if there is a pivot in every row
and every column of rref(A) (only possible if m=n, det(A)#0), we can define the
inverse transformation T2, which associates to every ¥, the unique X, T(J_c’) =y and
T-1(y) =%

To find the inverse matrix, use the identity matrices

E.g.

_ (2 5 _1_<2 5 1 0>~(1 0 3 —5)
A‘<13)'A_1301 01 -1 2
The right side of the last matrix is the inverse of A

(AB)"l'=B"1471
Projection

1\ -
b _,
P = (proj (é) proj (2)) where proj ((1)) = %lg_ ,

projection line

S

is the direction vector of the

7
Vv

“od)

iv. Rotation

MATH(Linear Algebra) Page 6



C.

_ (cos@ —sin@

. , it rotates a graph about origin counterclockwise by an angle 6
sinf@ cos6@ ) Srep & Y 8

PN

v. Reflection
If P is the projection of ¥ onto a line L through the origin, S is the reflection of ¥ across

L, then 5(17) = 2P(13) — ¥, the matrix for Sis § = 2P — I, where I is the identity
matrix

ST}
S Qk\l)

L

Y

vi. Composition of matrix transformations
B__A
RP-SR™SR™, Ao B is the composition of A and B, [A o B]X = A(BX)

Every composition of transformation is another transformation because the
composition of linear transformation is linear

Definition: A o B = AB if A, B exists and can be multiplied

The (i, ) entry of AB is the dot product of ith row of A and jth column of B

Dynamic Systems

Definition: RniRn outputs vectors of the same type as the input systems, A is an X n square
matrix. We can then iterate A and get a dynamic system. Call vectors in R™ the state vectors.
A describe change of the state of the systems.
Example: Fibonacci's rabbits
Start with 1 pair, after 1 month, each pair of rabbits produce one pair of rabbits every
month.
We have two types of rabbits:
Let j,, = # of pairs of juveniles; a, = # of pairs of adults;

n

. . 1 0 1 .
SRR T

A= (0 1) is the transition matrix of the dynamic system

<Zl”> is the state vector after n months.

1 1

J1 is the initial vector, In =A" J1 is the solution
a, an aq

Markov process/Random walk
Definition: it is a dynamic system with a transition matrix such that all columns add up to 1
It may/ may not have a equilibrium state depending on the initial condition.
Ways to think of random walks:
i. Many users, the state describes the number of users on each node
ii. One user, the state describes the likelihood of the user being on each node
Example (has equilibrium state): Internet webpages
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A<z B

N Y

1
Ani1 ==by, +c, 0 - 1
3 a 3 a
1 n+1 1 n
A bpy1 = 5 a, = bpiq | = 5 0 0f{bn
1 2 Cn+1 1 1 Cn
c =—-a,+=b - =0
(T T3 2 3
0 11
3
% 0 0 |isthe transition matrix, its columns all add to 1, because the total number
11
2 3
of users is constant
An+1 an
It has an equilibrium state, where | bp+1 | = | by | by definition of limits
Cn+1 Cn

= the proportion in equilibrium state is 6: 3: 5
Example (does not have equilibrium state):
0 1

A=(1 0

if we start with ((1)) or (2), it will oscillate between these two states and never reaches
the equilibrium state.

2. Determinant

det(A) is a number, A must be a n X n matrix
Geometry:
In R?

Ve

det <%> = +A(P)
In R3

) is the transition matrix, even thoutgh the equilibrium is unique eq = t G),

det =XV (P)

O S
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If det =0,d,b,cliesina plane (¢ = sa + th)

0 S QL

Determinant operations:

a b
‘ =ad — bc
c d
a11 Q12 Q413
Ay, Gy Qo3| = a Azz Q23| az1 Az az1 Az
Hlas, ass 12laz; ass Blaz; as
az1 04z dAszz
a1 - Qip
Ingeneral | =\ : =alldet(All)—alzdet(Alz)+---+(—1)"‘1a1ndet(A1n)
An1 -+ Ann
n .
= Z ) (—1)1_1611]' det (All)
j=1

This is the Laplace expansion of det(4) along the first row
We can use the expansion recursively to reduce the rank of the determinant to 2

a1 - Qipn
Aqj is the matrix of | \ ] deleting the first row and jth column.

An1 .« Apn
n

The Laplace expansion can be used along any row det(4) = Z (—1)i+jal-j det(Al-j) and

j=1
n . .
any column, det(4) = z (=D ay; det(Al-j)

i=1
a1 .. Qip
A;jis the matrixof | \  : ]deleting the ith row and jth column.
Api - Qpp
The determinant of a lower/upper triangle matrix is the product of the diagonal terms
a1 O 0 a1 A1z g3
Example:[az; ay, 0 |=|[0 axp az3|=a;;a,,a53
az1 Qzz dsz 0 0 ass

Determinant & row operations
i. Replace operations (e.g. a;;=a4i-a,;) do not affect the determinant
ii. Rescale a row, rescale the determinant by the same factor
iii. Row swap changes sign of the determinant
Properties:
det(AT) = det(4)
det(4AB) = det(4) det(B)
det(A) # 0 if and only if A is invertible
For 2 X 2 matrix A = (a b), A= ——1—( d _b)
c d ad-bc \—¢ a

If there is a row/column with only O, the determinantis O
An n X n determinant has n! Terms
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Complex numbers

2019578 26H 9:41

1.

2.

basics
C = R?

rowrte
O write y

Addition in C & Addition in R?
multiplication in C, use distribution law and i? = —1
Properties: let z = x 4+ yi be a complex number

|z| = \/ﬁ:? is the modulus

|zw| = |z||w] if w is defined as z

Z = x — yi is the complex conjugate of z

Zw = Zw

|z|? = zz

a+bi (a+bi)(c—di) (a+ bi)(c—di)

c+di (c+di)(c—di)  c?2+d?
Theorem: Every polynomial with complex coefficient factors completely using complex
numbers
Theorem: All of matrix algebra can be done with C

Complex Plane

) € R? as a complex number: x + yi

Polar form of complex numbers
Complex numbers of modulus 1 (|z| = 1) lies on the unit circle, we can define z = cos 8 +
i sin @, where 0 is the angle of z with the positive real axis.
0 is called the argument of z, it is not unique (but we can make it unique by restricting the
domain of )
Claim that multiplication by cos 8 + i sin @ is equivalent to rotation by angle 6

Proof:letz = a + bi, (cos@ + isinf)z = (acosf — bsinB) + i(asinf + b cosb)

_ (cos 6 —sin 9) (a)
sin@ cos@ /\b

Polar form of an arbitrary z

z = |z|(cos @ + isin0)

Letr = |z|, z = r(cos 8 + isin ) is the polar form

Multiplication by z is equivalent to rotation by angle 8 and scale by a factor of

Complex exponentials

Lets, t € R, eStit = eSell js a complex exponential

Define et = cost +isint
Proof: let ¢(t) = cost + isint, then ¢'(t) = —sint + icost = ip(t), thisis the
property e't should have
Another way to justify is by Taylor series

z=r1r(cosf +isinf) = re'®
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Eigen-analysis

2019578 26H 9:41

1. Eigenvalues and eigenvectors

a. Real eigenvalues and eigenvectors
Recall Fibonacci's rabbit problem (with offspring changed from 1 to 2)

()= 3()

Letx, = <é’;>, X1 = (g i) X,, initial state x, = (é)

If we plot x,, on a coordinate, the vector seems to get closer to a line j = a, which
is important for this dynamic system.

The property of this line: if a state vector X,, is on the line, then x,,,; is also on the
line

i.e. X4, = Ax, forsome 1 € R

= Ax,, = Ax,, = AX = A% which means applying a transition matrix 4 is
equivalent to multiplying a scalar A

0 2\(Jn\ _ ,(Jn (0 2) _ (/1 0) Jn) _ (0)
(1 1)<an>_’1<an>:><1 1) o /) a.)™ o

-1 2 Jn) _ (0O . .
= = , this homogeneous system shall have a non-trivial

1 1-1/\ay 0
solution (we need the coefficient matrix be not invertible)

. —A 2 _ _ - _
|.e.det(1 1_/,1)—0:/1—20”1— 1

_o(—2 2 jnz(O) ._jn:(1> L
If A 2(1 _1)<an> 0'SOIUt'°n‘(an> a 1,thelmelsspannedby

the vector (1) (has slope 1). (é) = G) is an eigenvector correspoding to the

eigenvalue A = 2
If X is a non-zero vector and A is a scalar such that AX = A%, then A is an eigenvalue of A
and X is an eigenvector of A. 1 and X do not depend on the initial vector

lim 5,’—1 = 1 = the slope of the eigenvector, is the limiting proportion from slope of

n-oo jn

eigenvectors

lim 242 = ]im 221 = 2 is the limiting growth rate=eigenvalue
n-oo Jn n-oo Qan
To complete the problem, we still have 1 = —1

Eigenvector is (_12), the eigen space is spanned by (_12>

A
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e A
wi

Key fact: (_12) and G) forms a basis of R?, consisting of eigenvectors of matrix

_ (0 2
4= (1 1)
The initial condition x; = ((1)) can be expressed by ¢; G) +c, (_2)

1

11
=60=30=3

We can then find <é’1‘l> = A" <£‘:}> = %(Z)n(i) + % (_1)n<—12>

Now, the dynamic system is solved completely
b. Complex eigenvalues and eigenvectors
In general, complex eigenvalues are associated with rotational behavior in dynamic
systems.
Example: rotation by g counter-clockwise

(0 -1 .
A_(l 0)=>/1—il

TR S l __.—>: _l
When)l—t,v-(l),when A=—i,v (1)

Summary:
Characteristic equation of a matrix A: det(Al — A) = 0, A is the eigenvalue
To find eigenvectors: AV = Av, ¥ is the eigenvector
The general solution is x,, = A"xy = ¢, ATV; + A5V, + - + cx ARy, where ¢;
can be solved by initial condition
This works because there exists a basis of the state space consisting of
eigenvectors for the transition matrix
Note: if one eigenvalue 1, > |4;], forall i # 1, then the long-term behavior is
determined by 4; and its eigenspace, it is the limiting growth rate

Note: random walk where the column of A sum to 1 (4 is a stochastic matrix), then 1 is
always an eigenvalue of A

Theorem: if in addition to being a stochastic matrix, all entries of 4 are positive, then

i. The multiplicity of 1 as an eigenvalue of A is 1 (up to scaling a unique fixed
vector/equilibrium)

ii. All other eigenvalues satisfies |Ai| < 1, no matter what the initial condition is, the
system will converge to the equilibrium

iii. If all |Ai| = 1, and A; are complex numbers, then the system will not converge,
instead, it is periodic

iv. All eigenvectors corresponding to eigenvalues |/'Ll-| # 1 have the property that
their components sumto 0. (e.g.inR?, x + y = 0)

2. Diagonalization
P and D are two matrix
If P: the columns are eigenvectors, D has the corresponding eigenvalues on diagonal then
AP =PD

4 0 .. O
ie.P=wW{vy..v,),D = : 02 . 0
0 .. 0 4,
Then APP~' = pPDP~ ' = A= PDP?
lim A} 0 0
n—-oo
) 0 limA} 0 :
lim A" = (PDP~!)"= P n—co P
n—oo 0 0
0 0 limAy

n—->oo
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Theorem: A is a k x k matrix with entries from R, then R* admits a basis consisting of
eigenvectors for A(A is diagonizable)
If the characteristic polynomial of A(det(4] — A) = 0) has to factor into linear factors (this
problem can be solved by passing to C) and for eigenvalues of A, the algebraic multiplicity has
to equal the number of independent eigenvectors (geometric multiplicity)
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Vector differential equations/Continuous dynamic systems

20195E7828H 11:40

1. Discrete model vs. continuous model
Continuous models are better model with shorter time intervals
Example: 2m?3 chemical spill in upper lake, a beach resort is in the lower lake, 0.008
parts/billion is safe for swimming, predict the concentration of this pollutant in the lower lake.
River flow rate: 3km?/day, volume of lakes: Vpper = 50km?, Vipyper = 100km?
Let x be the amount of pollutant in the upper lake in m3, y be the amount of pollutant

X
y) € R? is the state vector with initial condition (g)

Discrete model with time interval 1 day:
Concentration: 955—3 m3/km3

in the lower lake in m3, (

Xn+1 = Xn — gﬁxn

Yn+1 =Yn+ g%xn - E%) Yn
47
(xn+1) (50 ° (xn>
Yn+1 3 97 |\
50 100

Continuous model take h as small time interval:

x(t+h)y=x(t)—h- g%x(t)

3 3
y(t+h)=y()+ h's—o'x(t) — h'ia)}’(t)

In terms of change over a small time interval:
x(t+h)—x(t 3
(C+h -2 __3
50

h
yt+h)—y) 3 3

A —S—O'X(t)—ﬁﬁﬂt)

Take limits of both sides and we get a system of differential equations:

3
x'(t) = — S—O-x(t)

3 3
y'(6) = 552(8) = 755 ()

100
5 0
_(*®\_ (50 x(®)
y®)~\ 3 3 Lo
50 100
3
T 0 3 3
LetA4A = 3 5 | its eigenvalues are A; = T R corresponding
50 100

. 0 1
eigenvectors are 1 and _9

. [x(®) ~3:/0 _3:/1
The general solution is <y(t)> = ¢;e 100" (1) + cpe 750" (_2)

€1, €3 depends on the initial conditions,c; = —535, cy = %
The general solution for a 2-variable differential equation is y@0)) = c1e"1°'v; + ey,
x'(t x(t .
where 44, 1, are the eigenvalues of the transition matrix 4 in (y'%t%) =A <y%t§>, and v, v,

are the corresponding eigenvectors. ¢4, ¢, depends on the initial conditions.
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Differential equations:
m is a state vector in R™ depending on time t
x'—(t)) = Am, A is a constant n X n matrix
If A admits a basis v, V5, ..., 1, of R™ of eigenvectors for A with corresponding
eigenvalues A;,1,, ..., A,.. The general solution is : x() = c;eMtT; + c,e®2tT, + -+ +
c ety i, ¢y, ..., ¢,y are coefficient determined by initial condition m =cv, +
€25 + e+

2. Differential equations with complex eigenvalues

Example: A = (:i _21) initial condition: y(0) = ((2))
eigenvalues: ; = —2 + i,4, = —2 — i, corresponding eigenvectors: v; = (1 I l),v_z’ =
1+
(1),C1:1,C2:1

. . -2t
i a2+t (1— l) (~2-D)t (1 + l) _ 2e “tcost
v =e ( 1)7Fe 1 2e %t (cost + sint)

It spirals to the origin
Remarks:
complex eigenvalues: 44 = a+ bi,A, =a—>bi,a,bER, b #0
Complex eigenvectors: U + iV
General solutions: x(t) = ¢,e(@*PDt5 4 ¢, e(a-bDt7
= CyRe[e@PVE(T + iB)| + C,Im[e@ PV (T + iD)]
Note: e(@*+PDt = et (cos bt + sin bt)

If a = 0, i.e. eigenvalues are purely imaginary, then the system is purely periodic
21

with T = 5"
If a > 0, the system rotates away from the origin with rate e®t
If a < 0, the system rotates towards the origin with rate e%*

3. Real application

a. Damping oscillators
Start with non-damping

n n F k
F=—ky F=my",y"=—=-—y
i (®) = y2(b)
! rn k 7
Y2 () =y" ==~y

<}’1’(t)> _ Ok 1 <}’1 (t)>
y2'(6) o 0 [\y2(®)
Add damping

14 k ! 0 1
y'=—y-—cy A=\ _k _ .

k

___m

- c+ (C)Z k
27 \2 m

") -

Takey;, = yandy, =/, {

= 0, eigenvalues are real negative numbers

3=

ﬂ\

2
c k .
If (E) - < 0, eigenvalues are complex numbers
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2
St + f(f) Ky . . -
e 2 e N\2/ m have no eigen spaces, the state vectors spiral to the origin

VAN
N

If ¢ = 0, state vectors spiral/rotate in an ellipse
L-C-R circuits
v _ _iw

Capacitors: voltage source with variable voltage i
v(t)

L e di
Inductors: current source with time dependent current Friir

Example:

lS\ 2
Inponl
__‘_ b 24 &lz

Unknown: loop currents (i1,i,) & voltage drops across inductors (e)
Known: voltages at capacitors (E;,E,) & current at inductors (I)
Loopl:e+1i; +E; =0

Loop2: —e+2i, —E, =0

Current atinductor: [ =i, — i3

—E; 1 0 1 i
EZ = 0 2 -1 iz
I -1 1 0 e
Differential equation:
dE;
dr
de | 18 o 2
dl 6 3 6 I
dt
0.3
A =-02,v,=|-09
—0.4
—0.1+ 0.6i
A, =—=02+0.3i,v, = 0.3+0.1i
0.7
The general solution:
E
E, |(©
I
0.3 0.1 0.6
=c,;e7%2t( —0.9 |+ c,e7%%t |cos 0.3t 0.3 | —sin 0.3t 0.1
-0.4 0.7 0
[ 0.6 0.1
+ c3e7%2 [cos 0.3t| 0.1 | —sin 0.3t 0.3
0 0.7

If cy,c3 = d, then no osillation, exponential decay
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0.1 0.6
If c;, = 0, then we always stay in the span<| 0.3 |,{ 0.1 ] ; inside state space of
0.7 0

R3
The graph in general will be a helix with demolishing radius

—
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