Sets

June 23, 2021 7:45 PM

Definition: as set is a collection of objects. These objects are called the elements of the set
Notation: N = {1,2,3,...},Z={...,—3,—2,—1,0,1,2,3, ...}, R =all real number.
Remark: two sets are equal if they have the same elements

Set builder notation
e Set of all even natural numbers= {Zn: nis a number of N} = {2n:n € N}
e For A asetand x an element of A, write x € A.

Special kind of sets: intervals in R
e {xeR0<x<8}=1[08].
e {x€eR,0<x<8}=(0,8).
e {xeR,0<x<8}=1(08]=]0,8].
e {xeR0<x<8}=[08)=][08]
e (@isalso an interval of R.

Subset
e LetX,Y be sets, we say X is a subset of Y and write X € Y whenVx € Y, wehavex €Y.
e ForanysetY,@cY.

Well ordering principle
e Definition: Let S be a set of numbers, let a € S, a is the smallest element of S if Vs € S, we have
s=a.

o Z does not have a smallest element.
o N does not have a smallest element.

e Aset S of real number is well ordered if any non-empty subset of S has a smallest element.
o Niswell ordered.
o [0,1] is not well ordered.
o Any non empty subset of Z which is bounded below is well ordered

Power set
e Let X be a set, the power set of X denoted by P(X) is P(X) = {Y:Y c X}
e |tisasetof sets
e Lemma: |X| =n=|P(X)| = 2™

Set operations
e Union:AUB ={x:x € Aor x € B}
e Intersection:ANB = {x:x € Aand x € B}
Difference: AAB=A — B = {x:x € Aand x ¢ B}
Complement:
o Fixauniverse U or ().
o For A c Q, we call complement of A and denote byZ the set A = {xeQxe¢ A}
Cartesian product
o Let A and B be 2 sets, the cartesian product of Aand BisA X B = {(a,b):a € A,b € B}.

Proofs involving sets
e Let A and B be two sets
e Toprove A c B, we have to prove if a € A4, thena € B.
e Toprove A = B,wehavetoproveAd c BandB c A,i.e.a € Aifandonlyif a € B.
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Identities

e A=A

e« ANB=AUB.

e« AUB=ANB.
ANBUC)=(ANB)UANC).
Au(BNC)=(AUB)N(AUQC).
AX(BUC)=(AXB)U((AxC0).
AX(BNC)=((AXB)n(Ax0).
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Statements and proves

June 24, 2021 8:53 AM

Statements: a statement is a claim that is either true or false
Direct proof: proof of conditional statement in direct style

Modify, combine statements (logic operations)
e Negation
o Notation: =P, ~P.
o =Pistrue, if P is false.
o =(=P) and P have the same truth values, they are logically equivalent.
o not all= at least one

o Notation: P A Q.
o PAQ=QAP.
o P AQistrueifand onlyif both P and Q are true.

o Notation: PV Q.
o a(PvQ)=-PA-Q.
o =a(PAQ)=-PV Q.

Conditional statement
e Given statements P and @, consider the statement if P then Q.
e Notation: P = Q.
e |tisequivalentto =PV Q.
e a(P=0Q)=PA0Q.

Biconditional statements (&)

e Let P and Q be 2 statements, we consider the statement P = Q and Q = P.
Notation: P & Q (P if and only if Q)
To prove biconditional statements, need to prove both P = Q and Q = P.
Toprove A © B & (,itis equivalentto proveA = B = C = A.

Contrapositive
e The contrapositive of P = Q is =Q = —P.
e They are logically equivalent

Quantifiers
e There exists 3
Forall v
Such that :
Negation of Vx € 4, P(x) is 3x € A, =P(x).
Negation of 3x € A, P(x) is Vx € A, =P (x).

Disproof
e if | have a statement of the form Vx € X, P(x), | can disprove it if | prove the negation is
true, namely, 3x € X, =P (x).
e if | have a statement of the form 3x € X, P(x), | can disprove it if | prove the negation is
true, namely, Vx € X, =P (x).

Induction
e Questions are in the form: Prove the statementforalln € N,oralln € Z, n = b.
e Base step: prove that P(b) or P(1) is true.
* Induction step: provethatvn = born =1, P(n) = P(n+ 1).
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Double induction
e Prove P(n)foralln € N.
e Base step: prove P(1) and P(2).
* Induction step: Vn € N, prove Pm) AP(n+ 1) = P(n + 2).

Definition (even, odd, divisors, prime/composite numbers):
e Letx € Z, x is called even if there exists y € Z such that x = 2y
Let x € Z, x is called odd if there exists y € Z such thatx = 2y + 1
Let a, b € Z, we say a divides b and write a|b if there exists ¢ € Z such that b = ac.
o Inthis case, we say that b is a multiple of a, a is a divisor of b
e Letm € N, we say mis a prime number if it has exactly 2 divisors in N, 4 divisors in Z
e Letn € N, ifn # 1andis not prime, then it is a composite number.

e ifabeZ thena+b€Z, a—b€eZ abel.
e ifa,beR,thena+beR,a—b€eR, abeR.

o |fb¢0,%elR.

Theorem(Euclidean division algorithm): Let a, b € Z, such that b # 0, there exists a unique g € Z
(quotient) and a unique r € Z (remainder), suchthat 0 <r < banda = bq + .

e g andr are unique.

e Letn € Z, if the remainder of the Euclidean division of n by 2 is 0, then n is even.

e Letn € Z, if the remainder of the Euclidean division of n by 2 is 1, then n is odd.

Definition:

e GCD(greatest common divisor): let a, b € Z, suppose they are not both zero, we call the
greatest common divisor of a and b and we denote by gcd(a, b) the greatest integer that
divides both a and b.

o gcd(a,b) = 1.

e leta,b €Z witha # 0and b # 0, we call the lowest common multiple of a and b, and we

denote by lem(a, b) the smallest natural number that is a multiple of both a and b.

Congruences
e Definition: Let a, b,n € Z, suppose n # 0, we say a and b are congruent mod n, or a is
congruent to b mod n, and write a = b mod n or b = a mod n when n|(a — b).
e Note:a = 0modn & n|a.
e Proposition:leta,b,c,d € Z,n € Zwithn + 0.
o Ifa=bmodnandb =cmodn, then a = c mod n.
o Ifa=bmodnandc =dmodn,thena+c=b+ dmodn.
o Ifa =bmodnandc =dmodn,thenac = bd mod n.
e leta€Z,n€Z n+*0Euclidean divisionof abyn:a =nqg+rwhereq,r €Z,0 <r <n,
thena =rmodn
e Congruence do not behave well with divisions.
e Remarks
o Va€Z a*=0or1mod3.
o Ya€Z a?=0or1mod4.

Limits and sequences of real numbers
¢ Notation: sequence (u .
q ( n)neN

e We say (un)neN is bounded if 3m, M € Rsuchthatvn e NNm <u,, <M.
o Wesay (up) _ isbounded aboveif 3M € R such that Vn € N, u, < M.
o We say (un)neN is bounded below if 3m € R such that Vn € N, u,, > m.
e Wesay (un)nEN converges to a real number [ when Ve > 0, 3m € N such that vn € N, n >
m= |un - l| <e
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e We say (u ) converges towards co when VA > 0, 3m € NsuchthatVn e N, n >2m =
N/neN
u, > A.
e We say (un) converges towards —co when VB < 0, 3m € NsuchthatVn e Nyn >m =
neN
u, <B.

Lemma: Vn € N, 3x € N such that Z—Xn_—l is odd.

Rational numbers:
e Arational number is a real number x that can be written as x = %, fora € Z,b € N.
* Simplify the fraction: can always pick a and b such that gcd(a, b) = 1.
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Relations and functions
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Relations
e Let X be a non-empty, a relation on X is a non-empty subset of X X X.
* Notation: given a relation R € X X X, we usually write xRy instead of (x, y) €R.
e Properties
o Reflexivity: a relation R on a set X is reflexive when Vx € X, xRx
= To prove R is not reflexive, give an example x € X, such that x is not related to x.
o Symmetry: a relation R on a set X is symmetric when Vx,y € X, xRy = yRx
= To prove R is not symmetric, give an example x, y € X, such that xRy but y is not
related to x
o Transitivity: a relation R on a set X is reflexive when Vx,y,z € X, xRy AyRz = xRz

Equivalence relation
e Given arelation R on a set X, we say R is an equivalence relation when R is reflexive, symmetric
and transitive
e Given an equivalence relation R on a set X and x € X, we call equivalence class of x the subset
of X by cl(x) or [x]g or clz(x) = {y € X: xRy} = {y € X: yRx}
e Let C be asubset of X and suppose it is an equivalence class (3x € X such that C = cl(x)), then
any y € C is called a representative of the class C, and C = cl(x) = cl(y)
e Remark: Given n € N, the relation on Z, xRy, when x = y mod n is an equivalence relation with
equivalence classes:
o [0] =[n] =[-n]=[2n]="-
o 1]l=Mn+1]=[-2n+1
o [n—-1]=[2n-1]=[-1] =

Partitions and equivalence relations
e Let X be anonemptysetand P is a set of subsets of X, P = {Xa: a € A}, where A4 is a set of «,
such that X, c X.

e Pisa partition of X where
o X, #0,Vae€EA.
o XanXﬂ th)ﬁXa=Xﬂ,a'=ﬁ.
O X =Ugea Xgo-

e If Ris an equivalence relation on X, the collection of all equivalence classes give a partition on X

Functions
e Let A4, B be two non-empty sets, a function f is a subset of A X B such that Va € 4, thereisa
unique (3!) b € B, such that (a, b) € f, this b is usually called f(a).
e Writef:A—=B,f(a)=0b
o A is the domain/source space of f.
o B isthe codomain/target space of f.
» Define: Range(f) = {b € B:3a € A such that f(a) = b] = {f(a): ac€ A] C B.
e fissurjective or onto if Range(f) = B, i.e. Vb € B,3a € A: f(a) = b.
e fisinjective or one-to-oneif Va,a’' € 4, f(a) = f(a') > a=ad'.
o OrVa,a' €A,a+a = f(a) # f(a).
e If f isinjective and surjective, then it is bijective, we call it a bijection

Cardinality of finite sets and functions
e Suppose A and B are finite sets, f: A = B.
e If fisinjective, then |A| < |B|
 If f is surjective, then |A| = |B|
o If f is bijective, then |A| = |B|
o Remark: we say 2 sets A and B have the same cardinality if 3f: A — B which is bijective.
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Composing functions
e letg:A— B, f:B — C, consider the function f o g:A - C,Va € A, fog(a) = f(g(a)) .
e Lemma:
o If f o g isinjective, then g is injective.
o If f o gissurjective, then f is surjective.

Image and preimage
e letf:A—> Banda € A4, wecall f(a) theimage of a by f
* LetX c A, we call image of X by f the subset f(x) of B defined by f(X) = {f(x):x € X}.
o Range(f) = f(4).
e LetY c B, we call preimage of Y by f the subset f~1(Y) c A.
e Foranyf:A— B,anyX c 4,X c f1(f(X)).
o If f is injective, then VX c A, X = f~1(f(X)).

Inverse function
* Let A, B be sets, the function f: A = A f(a) = a is called the identity function of A. It is denoted
by id4 or simply id when there is no ambiguity
o Letf:A — A, then f is bijective © 3f: A —» A, suchthat fo f = f o f = id,.

Let f: A = B be a function
e letXc A, yef(X)meansIx € X,y = f(x).
e letY c B,x € f~1(Y) means f(x) €Y.

Counting
e Given A, B two sets, we say that A and B have the same cardinality and we write |[A| = |B|
when 3f: A - B a bijection
o 3f:A - B abijection & 3g: B > A a bijection (g = f1).
e Let A beaset
o Aisfinite, if A = @ or 3n € N such that |4| = [{1,2,3, ..., n}
n, we write |A| = n.
= |f A and B are finite, then A X B is finite, C < A is finite and A U B is finite
o A s countably infinite if |[A| = |N|, namely 3f: N — A a bijection.
* |tmeansA = {f(l),f(Z), }
- |Z] = [NxN| = |N].
= Since Q € N X Z, Q is countably infinite.
= |f A and B are countably infinite, then A X B and A U B countably infinite, C € A
can be finite or countably infinite.
» If |A| = |B| = |N|then |AU B| = |A X B| = |N|, |C| = |N] if C is an infinite subset
of A.
o Aset Ais countable if A is finite or countably infinite.
= Equivalently 3f: A = N, injective.
= Equivalently 3f: N — A, surjective.

, in this case, A has cardinality

Comparing cardinalities
e A,Baresets, |A| < |B|if3f:A = B injective.
e If A c B, then |A| < |B].
e If|A| = |B|, then |A| < |B|.
e If|A| < |B|and|B| < |C|, then |A| < [C| (if f and g are injective, then f o g is injective).
e If|A| < |B|and|A| # |B|, then |A| < |B]| (f: A = B injective but not bijective).
o Al < |P(4)|.
o If |A] = n (finite), then |A] < |P(A)| = n < 2™
o SetU ={(ay,a, as, ..) a; € (0,1)}is not countable.
e If |A| < |B|and|B| < |A|, then |A| = |B].
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