June 23, 2021 7:45 PM

Definition: as set is a collection of objects. These objects are called the elements of the set Notation: $\mathbb{N} = \{1,2,3,...\}, \mathbb{Z} = \{...,-3,-2,-1,0,1,2,3,...\}, \mathbb{R}$ =all real number. Remark: two sets are equal if they have the same elements

Empty set: $\emptyset = \{ \square \}.$

Set builder notation

- Set of all even natural numbers = $\{2n: n \text{ is a number of } \mathbb{N}\} = \{2n: n \in \mathbb{N}\}$
- For A a set and x an element of A, write $x \in A$.

Special kind of sets: intervals in $\ensuremath{\mathbb{R}}$

- $\{x \in \mathbb{R}, 0 \le x \le 8\} = [0,8].$
- { $x \in \mathbb{R}, 0 < x < 8$ } = (0,8).
- { $x \in \mathbb{R}, 0 < x \le 8$ } = (0,8] =]0,8].
- { $x \in \mathbb{R}, 0 \le x < 8$ } = [0,8] = [0,8[
- \emptyset is also an interval of \mathbb{R} .

Subset

- Let X, Y be sets, we say X is a subset of Y and write $X \subset Y$ when $\forall x \in Y$, we have $x \in Y$.
- For any set $Y, \emptyset \subset Y$.

Well ordering principle

- Definition: Let S be a set of numbers, let a ∈ S, a is the smallest element of S if ∀s ∈ S, we have s ≥ a.
 - $\circ ~~\mathbb{Z}$ does not have a smallest element.
 - \circ N does not have a smallest element.
- A set *S* of real number is well ordered if any non-empty subset of *S* has a smallest element.
 - \circ N is well ordered.
 - \circ [0,1] is not well ordered.
 - $\circ~$ Any non empty subset of $\mathbb Z$ which is bounded below is well ordered

Power set

- Let X be a set, the power set of X denoted by P(X) is $P(X) = \{Y: Y \subset X\}$
- It is a set of sets
- Lemma: $|X| = n \Rightarrow |P(X)| = 2^n$.

Set operations

- Union: $A \cup B = \{x : x \in A \text{ or } x \in B\}$
- Intersection: $A \cap B = \{x: x \in A \text{ and } x \in B\}$
- Difference: $A \setminus B = A B = \{x : x \in A \text{ and } x \notin B\}$
- Complement:
 - Fix a universe U or Ω .
 - For $A \subset \Omega$, we call complement of A and denote by \overline{A} the set $\overline{A} = \{x \in \Omega : x \notin A\}$.
- Cartesian product
 - Let A and B be 2 sets, the cartesian product of A and B is $A \times B = \{(a, b) : a \in A, b \in B\}$.

Proofs involving sets

- Let *A* and *B* be two sets
- To prove $A \subset B$, we have to prove if $a \in A$, then $a \in B$.
- To prove A = B, we have to prove $A \subset B$ and $B \subset A$, i.e. $a \in A$ if and only if $a \in B$.

Identities

- $\overline{\overline{A}} = A$.
- $\overline{A \cap B} = \overline{A} \cup \overline{B}$.
- $\overline{A \cup B} = \overline{A} \cap \overline{B}$.
- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$
- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$
- $A \times (B \cup C) = (A \times B) \cup (A \times C).$
- $A \times (B \cap C) = (A \times B) \cap (A \times C).$

Statements and proves

June 24, 2021 8:53 AM

Statements: a statement is a claim that is either true or false Direct proof: proof of conditional statement in direct style

Modify, combine statements (logic operations)

- Negation
 - Notation: $\neg P$, $\sim P$.
 - $\circ \neg P$ is true, if *P* is false.
 - $\circ \neg(\neg P)$ and P have the same truth values, they are logically equivalent.
 - not all= at least one
- And
 - Notation: $P \wedge Q$.
 - $\circ P \wedge Q = Q \wedge P.$
 - $P \land Q$ is true if and only if both P and Q are true.
- Or
 - Notation: $P \lor Q$.
 - $\circ \neg (P \lor Q) = \neg P \land \neg Q.$
 - $\circ \neg (P \land Q) = \neg P \lor \neg Q.$

Conditional statement

- Given statements *P* and *Q*, consider the statement if *P* then *Q*.
- Notation: $P \Rightarrow Q$.
- It is equivalent to $\neg P \lor Q$.
- $\neg (P \Rightarrow Q) = P \land \neg Q.$

Biconditional statements (\Leftrightarrow)

- Let P and Q be 2 statements, we consider the statement $P \Rightarrow Q$ and $Q \Rightarrow P$.
- Notation: $P \Leftrightarrow Q$ (*P* if and only if *Q*)
- To prove biconditional statements, need to prove both $P \Rightarrow Q$ and $Q \Rightarrow P$.
- To prove $A \Leftrightarrow B \Leftrightarrow C$, it is equivalent to prove $A \Rightarrow B \Rightarrow C \Rightarrow A$.

Contrapositive

- The contrapositive of $P \Rightarrow Q$ is $\neg Q \Rightarrow \neg P$.
- They are logically equivalent

Quantifiers

- There exists \exists
- For all \forall
- Such that :
- Negation of $\forall x \in A, P(x)$ is $\exists x \in A, \neg P(x)$.
- Negation of $\exists x \in A, P(x)$ is $\forall x \in A, \neg P(x)$.

Disproof

- if I have a statement of the form ∀x ∈ X, P(x), I can disprove it if I prove the negation is true, namely, ∃x ∈ X, ¬P(x).
- if I have a statement of the form $\exists x \in X, P(x), I$ can disprove it if I prove the negation is true, namely, $\forall x \in X, \neg P(x)$.

Induction

- Questions are in the form: Prove the statement for all $n \in \mathbb{N}$, or all $n \in \mathbb{Z}$, $n \ge b$.
- Base step: prove that P(b) or P(1) is true.
- Induction step: prove that $\forall n \ge b$ or $n \ge 1$, $P(n) \Rightarrow P(n+1)$.

Double induction

- Prove P(n) for all $n \in \mathbb{N}$.
- Base step: prove P(1) and P(2).
- Induction step: $\forall n \in \mathbb{N}$, prove $P(n) \land P(n+1) \Rightarrow P(n+2)$.

Definition (even, odd, divisors, prime/composite numbers):

- Let $x \in \mathbb{Z}$, x is called even if there exists $y \in \mathbb{Z}$ such that x = 2y
- Let $x \in \mathbb{Z}$, x is called odd if there exists $y \in \mathbb{Z}$ such that x = 2y + 1
- Let a, b ∈ Z, we say a divides b and write a|b if there exists c ∈ Z such that b = ac.
 In this case, we say that b is a multiple of a, a is a divisor of b
- Let $m \in \mathbb{N}$, we say m is a prime number if it has exactly 2 divisors in \mathbb{N} , 4 divisors in \mathbb{Z}
- Let $n \in \mathbb{N}$, if $n \neq 1$ and is not prime, then it is a composite number.

Fact:

- if $a, b \in \mathbb{Z}$, then $a + b \in \mathbb{Z}$, $a b \in \mathbb{Z}$, $ab \in \mathbb{Z}$.
- if $a, b \in \mathbb{R}$, then $a + b \in \mathbb{R}$, $a b \in \mathbb{R}$, $ab \in \mathbb{R}$. \circ If $b \neq 0, \frac{a}{b} \in \mathbb{R}$.

Theorem(Euclidean division algorithm): Let $a, b \in \mathbb{Z}$, such that $b \neq 0$, there exists a unique $q \in \mathbb{Z}$ (quotient) and a unique $r \in \mathbb{Z}$ (remainder), such that $0 \leq r < b$ and a = bq + r.

- q and r are unique.
- Let $n \in \mathbb{Z}$, if the remainder of the Euclidean division of n by 2 is 0, then n is even.
- Let $n \in \mathbb{Z}$, if the remainder of the Euclidean division of n by 2 is 1, then n is odd.

Definition:

• GCD(greatest common divisor): let *a*, *b* ∈ Z, suppose they are not both zero, we call the greatest common divisor of *a* and *b* and we denote by gcd(*a*, *b*) the greatest integer that divides both *a* and *b*.

 $\circ \operatorname{gcd}(a,b) \geq 1.$

Let a, b ∈ Z, with a ≠ 0 and b ≠ 0, we call the lowest common multiple of a and b, and we denote by lcm(a, b) the smallest natural number that is a multiple of both a and b.

Congruences

- Definition: Let a, b, n ∈ Z, suppose n ≠ 0, we say a and b are congruent mod n, or a is congruent to b mod n, and write a ≡ b mod n or b ≡ a mod n when n|(a b).
- Note: $a \equiv 0 \mod n \Leftrightarrow n | a$.
- Proposition: let $a, b, c, d \in \mathbb{Z}$, $n \in \mathbb{Z}$ with $n \neq 0$.
 - If $a \equiv b \mod n$ and $b \equiv c \mod n$, then $a \equiv c \mod n$.
 - If $a \equiv b \mod n$ and $c \equiv d \mod n$, then $a + c \equiv b + d \mod n$.
 - If $a \equiv b \mod n$ and $c \equiv d \mod n$, then $ac \equiv bd \mod n$.
- Let $a \in \mathbb{Z}$, $n \in \mathbb{Z}$, $n \neq 0$ Euclidean division of a by n: a = nq + r where $q, r \in \mathbb{Z}$, $0 \le r < n$, then $a \equiv r \mod n$
- Congruence do not behave well with divisions.
- Remarks
 - $\forall a \in \mathbb{Z}, a^2 \equiv 0 \text{ or } 1 \text{ mod } 3.$
 - $\forall a \in \mathbb{Z}, a^2 \equiv 0 \text{ or } 1 \mod 4.$

Limits and sequences of real numbers

- Notation: sequence $(u_n)_{n \in \mathbb{N}}$.
- We say $(u_n)_{n \in \mathbb{N}}$ is bounded if $\exists m, M \in \mathbb{R}$ such that $\forall n \in \mathbb{N}, m \le u_n \le M$.
 - We say $(u_n)_{n\in\mathbb{N}}$ is bounded above if $\exists M\in\mathbb{R}$ such that $\forall n\in\mathbb{N}, u_n\leq M$.
 - We say $(u_n)_{n\in\mathbb{N}}$ is bounded below if $\exists m\in\mathbb{R}$ such that $\forall n\in\mathbb{N}, u_n\geq m$.
- We say $(u_n)_{n\in\mathbb{N}}$ converges to a real number l when $\forall \epsilon > 0, \exists m \in \mathbb{N}$ such that $\forall n \in \mathbb{N}, n \ge m \Rightarrow |u_n l| < \epsilon$.

- We say $(u_n)_{n\in\mathbb{N}}$ converges towards ∞ when $\forall A > 0$, $\exists m \in \mathbb{N}$ such that $\forall n \in \mathbb{N}$, $n \ge m \Rightarrow$
- $u_n > A$. We say $(u_n)_{n \in \mathbb{N}}$ converges towards $-\infty$ when $\forall B < 0, \exists m \in \mathbb{N}$ such that $\forall n \in \mathbb{N}, n \ge m \Rightarrow$ $u_n < B$.

Lemma: $\forall n \in \mathbb{N}, \exists x \in \mathbb{N} \text{ such that } \frac{n}{2^{x-1}} \text{ is odd.}$

Rational numbers:

- A rational number is a real number x that can be written as x = ^a/_b, for a ∈ Z, b ∈ N.
 Simplify the fraction: can always pick a and b such that gcd(a, b) = 1.

Relations and functions

June 24, 2021 9:10 AM

Relations

- Let X be a non-empty, a relation on X is a non-empty subset of $X \times X$.
- Notation: given a relation $R \subset X \times X$, we usually write xRy instead of $(x, y) \in R$.
- Properties
 - Reflexivity: a relation R on a set X is reflexive when $\forall x \in X, xRx$
 - To prove R is not reflexive, give an example $x \in X$, such that x is not related to x.
 - Symmetry: a relation *R* on a set *X* is symmetric when $\forall x, y \in X, xRy \Rightarrow yRx$
 - To prove R is not symmetric, give an example x, y ∈ X, such that xRy but y is not related to x
 - Transitivity: a relation R on a set X is reflexive when $\forall x, y, z \in X, xRy \land yRz \Rightarrow xRz$

Equivalence relation

- Given a relation *R* on a set *X*, we say *R* is an equivalence relation when *R* is reflexive, symmetric and transitive
- Given an equivalence relation R on a set X and $x \in X$, we call equivalence class of x the subset of X by cl(x) or $[x]_R$ or $cl_R(x) = \{y \in X : xRy\} = \{y \in X : yRx\}$
- Let C be a subset of X and suppose it is an equivalence class $(\exists x \in X \text{ such that } C = cl(x))$, then any $y \in C$ is called a representative of the class C, and C = cl(x) = cl(y)
- Remark: Given $n \in \mathbb{N}$, the relation on \mathbb{Z} , xRy, when $x \equiv y \mod n$ is an equivalence relation with equivalence classes:
 - $[0] = [n] = [-n] = [2n] = \cdots$.
 - \circ [1] = [n + 1] = [-2n + 1] =
 - \circ $[n-1] = [2n-1] = [-1] = \cdots$.

Partitions and equivalence relations

- Let X be a non empty set and P is a set of subsets of X, $P = \{X_{\alpha} : \alpha \in A\}$, where A is a set of α , such that $X_{\alpha} \subset X$.
- *P* is a partition of *X* where
 - $\circ \ X_{\alpha}\neq \emptyset, \, \forall \alpha\in A.$
 - $\circ \ X_{\alpha} \cap X_{\beta} \neq \emptyset \Rightarrow X_{\alpha} = X_{\beta}, \alpha = \beta.$
 - $\circ \quad X = \cup_{\alpha \in A} X_{\alpha}.$
- If R is an equivalence relation on X, the collection of all equivalence classes give a partition on X

Functions

- Let A, B be two non-empty sets, a function f is a subset of A × B such that ∀a ∈ A, there is a unique (∃!) b ∈ B, such that (a, b) ∈ f, this b is usually called f(a).
- Write $f: A \rightarrow B$, f(a) = b
 - A is the domain/source space of f.
 - \circ *B* is the codomain/target space of *f*.
- Define: $Range(f) = \{b \in B : \exists a \in A \text{ such that } f(a) = b\} = \{f(a) : a \in A\} \subset B$.
- f is surjective or onto if Range(f) = B, i.e. $\forall b \in B$, $\exists a \in A: f(a) = b$.
- f is injective or one-to-one if $\forall a, a' \in A, f(a) = f(a') \Rightarrow a = a'.$ • Or $\forall a, a' \in A, a \neq a' \Rightarrow f(a) \neq f(a').$
- If *f* is injective and surjective, then it is bijective, we call it a bijection

Cardinality of finite sets and functions

- Suppose A and B are finite sets, $f: A \rightarrow B$.
- If *f* is injective, then $|A| \leq |B|$
- If f is surjective, then $|A| \ge |B|$
- If *f* is bijective, then |A| = |B|
 - Remark: we say 2 sets A and B have the same cardinality if $\exists f: A \rightarrow B$ which is bijective.

Composing functions

- Let $g: A \to B$, $f: B \to C$, consider the function $f \circ g: A \to C$, $\forall a \in A$, $f \circ g(a) = f(g(a))$.
- Lemma:
 - If $f \circ g$ is injective, then g is injective.
 - If $f \circ g$ is surjective, then f is surjective.

Image and preimage

- Let $f: A \to B$ and $a \in A$, we call f(a) the image of a by f
- Let X ⊂ A, we call image of X by f the subset f(x) of B defined by f(X) = {f(x): x ∈ X}.
 Range(f) = f(A).
- Let $Y \subset B$, we call preimage of Y by f the subset $f^{-1}(Y) \subset A$.
- For any $f: A \to B$, any $X \subset A$, $X \subset f^{-1}(f(X))$. • If f is injective, then $\forall X \subset A$, $X = f^{-1}(f(X))$.

Inverse function

- Let A, B be sets, the function $f: A \to A f(a) = a$ is called the identity function of A. It is denoted by id_A or simply id when there is no ambiguity
- Let $f: A \to A$, then f is bijective $\Leftrightarrow \exists \tilde{f}: A \to A$, such that $f \circ \tilde{f} = \tilde{f} \circ f = id_A$.

Let $f: A \to B$ be a function

- Let $X \subset A$, $y \in f(X)$ means $\exists x \in X$, y = f(x).
- Let $Y \subset B$, $x \in f^{-1}(Y)$ means $f(x) \in Y$.

Counting

- Given A, B two sets, we say that A and B have the same cardinality and we write |A| = |B| when ∃f: A → B a bijection
 - $\exists f: A \rightarrow B$ a bijection $\Leftrightarrow \exists g: B \rightarrow A$ a bijection $(g = f^{-1})$.
- Let *A* be a set
 - A is finite, if $A = \emptyset$ or $\exists n \in \mathbb{N}$ such that $|A| = |\{1, 2, 3, ..., n\}|$, in this case, A has cardinality n, we write |A| = n.
 - If A and B are finite, then $A \times B$ is finite, $C \subset A$ is finite and $A \cup B$ is finite
 - *A* is countably infinite if |A| = |ℕ|, namely $\exists f : ℕ \rightarrow A$ a bijection.
 - It means $A = \{f(1), f(2), ...\}$.
 - $|\mathbb{Z}| = |\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|.$
 - Since $\mathbb{Q} \subset \mathbb{N} \times \mathbb{Z}$, *Q* is countably infinite.
 - If A and B are countably infinite, then A × B and A ∪ B countably infinite, C ⊂ A can be finite or countably infinite.
 - If $|A| = |B| = |\mathbb{N}|$ then $|A \cup B| = |A \times B| = |\mathbb{N}|$, $|C| = |\mathbb{N}|$ if C is an infinite subset of A.
 - A set *A* is countable if *A* is finite or countably infinite.
 - Equivalently $\exists f: A \to \mathbb{N}$, injective.
 - Equivalently $\exists f : \mathbb{N} \to A$, surjective.

Comparing cardinalities

- A, B are sets, $|A| \le |B|$ if $\exists f : A \to B$ injective.
- If $A \subset B$, then $|A| \leq |B|$.
- If |A| = |B|, then $|A| \le |B|$.
- If $|A| \le |B|$ and $|B| \le |C|$, then $|A| \le |C|$ (if f and g are injective, then $f \circ g$ is injective).
- If $|A| \le |B|$ and $|A| \ne |B|$, then |A| < |B| ($f: A \rightarrow B$ injective but not bijective).
- |A| < |P(A)|.
 - If |A| = n (finite), then $|A| < |P(A)| \Rightarrow n < 2^n$.
 - Set $U = \{(a_1, a_2, a_3, ...), a_i \in (0, 1)\}$ is not countable.
- If $|A| \le |B|$ and $|B| \le |A|$, then |A| = |B|.