Basics

October 9, 2020 9:07 PM

Arithmetic in ℂ:

- $(a + bi) \pm (c + di) = (a \pm c) + (b \pm di)$
- $(a + bi)(c + di) = (ac bd) + (ad + bc)i$
- α $\mathcal{C}_{0}^{(n)}$ (• $\frac{c}{c+di} = \frac{c}{c^2 + d^2}$
- \bullet z

$$
\circ \hspace{0.2cm} Re(z) = a, Im(z) = b
$$

- $|z| = \sqrt{(a^2 + b^2)}$
	- \circ \bar{z}

\n- $$
Z = z + z
$$
, $zz = zz$, $(z/z) = z/z$
\n- $|z| = |z|$
\n

 $\mathbf{1}$

$$
Re(z) = \frac{1}{2}(\bar{z} + z)
$$

\n- $$
Im(z) = \frac{1}{2i}(\bar{z} + z)
$$
\n- $$
\bar{z}z = |z|^2
$$
\n

$$
\bullet \quad \frac{z_1}{z_2} = \frac{z_1 \overline{z_2}}{|z_2|^2}, \frac{1}{z} = \frac{\overline{z}}{|z|^2}
$$

Polar forms

- $r cis \theta = r(cos \theta + i sin \theta)$
- $z_1 = r_1 \text{ cis}\theta$, $z_2 = r_2 \text{ cis}\theta$, then $z_1 z_2 = r_1 r_2 \text{ cis}(\theta_1 + \theta_2)$
- De Moivre's formula: $(cis\theta)^n$
- The m-th roots of $z=rcis\theta$ is $\zeta=r^{\frac{1}{m}}$ $\frac{1}{m}$ cis ($\frac{\theta}{\tau}$ • The m-th roots of $z = rcis\theta$ is $\zeta = r\overline{m}cis\left(\frac{\theta+2}{m}\right)$
- Can write $r cis \theta = re^{i}$ $\frac{1}{Z^m}$ $\frac{1}{m} = r^{\frac{1}{m}}$ $\frac{1}{m}e^{\theta}$ $\circ \ \frac{1}{z^m} = r^{\frac{1}{m}} e^{\frac{(z-\mu)^2}{m}}$

Planar sets

- Examples
	- $|z z_0| = \rho$, circle center at z_0 , radius ρ
	- \circ $|z z_0| < \rho$, open disk
	- \circ $|z|$ < 1, unit disk
- Open sets: A subset $S \subset \mathbb{C}$ is an open set if $\forall z_0 \in S$, $\exists \rho > 0$: $|z z_0| < \rho$ lies in
	- $0 \le |z| < 2$ is open
	- $0 \le |z| \le 2$ is not open
- Connected set: a set for which every pair of points in the set has some polygonal path (several straight lines) in the set that joins them
	- A domain is an open set
- A cut plane is defined as $\mathbb{C}\setminus(-\infty,0]$

Analytic functions

October 9, 2020 9:22 PM

Complex Functions

• Let $S \subset \mathbb{C}$, a function f with domain S is a mapping from S to \mathbb{C} , i.e. $\forall z \in S$, there is a unique $f(z) \in \mathbb{C}$

Limits

- $w_0 = \lim f(z)$ means $\forall \epsilon > 0$, $\exists \delta > 0$ such that $|f(z) w_0| < \epsilon$ whenever 0
- Continuity: f is continuous at z_0 if
	- f is defined in $\{z: |z-z_0| < \delta\}$ for some $\delta > 0$
	- \bullet $\lim_{ } f$
	- $f = u(x, y) + iv(x, y)$ is continuous at $z_0 = x_0 + iy_0$ if and only if $u(x, y)$ and $v(x, y)$ are continuous at (x_0, y_0)

Differentiation

- Write $\Delta z = z z_0 f'(z_0) = \frac{d}{dt}$ $\frac{dy}{dz}(z_0) = \frac{1}{4}$ f $\frac{f(z_0+\Delta z)-f(z_0)}{\Delta z}=\lim_{z\to z_0}\frac{f}{z}$ • Write $\Delta z = z - z_0 f'(z_0) = \frac{a f}{dz}(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = \lim_{z \to z_0} \frac{f(z)}{z}$
- $(f+g)' = f' + g'$, $(fg)' = f'g + fg'$, quotient rule, chain rule holds
- \boldsymbol{d} • $\frac{a}{dz}z^n = nz^{n-1}$ for n
- Differentiability and analyticity
	- \circ f is differentiable at z_0 if $f'(z_0)$ exists
	- \circ f is analytic at z_0 if $f'(z)$ exists for all z in some open disk centered at z_0
	- \circ f is analytic in a domain D if $f'(z)$ exists for all z in D
- To show a function is not differentiable, find the limit from two directions, $\Delta z = \Delta x$ and Δy , show that they are not equal

Cauchy-Riemann equations

- $f = u(x, y) + iv(x, y)$ is analytic if and only if $u_x = v_y$ and $v_x = -u_y$
- $f'(z_0) = u_x(x_0, y_0) + iv_x(x_0, y_0)$
- If $f(z)$ is analytic in D and if $f'(z) = 0$ everywhere in D, then $f(z)$ is constant in D

Harmonic functions

- $\phi(x, y)$ a real valued function is harmonic if $\phi_{xx}, \phi_{yy}, \phi_{xy}, \phi_{yx}$ are continuous and $\phi_{\rm vv} = 0$
- Cauchy-Riemann equations gives an easy way to find such functions
- If $f = u + iv$ is analytic, then u, v are harmonic
	- \circ If u is harmonic and $u + iv$ is analytic on D, then v is a harmonic conjugate of u
	- \circ Level curves of u, v always intersect at right angle when $f'(z) = 0$
- If u and v are harmonic, then
	- \circ $u + v$ is harmonic
	- \circ uv is harmonic if and only if u and v are harmonic conjugate

Elementary functions

October 9, 2020 9:22 PM

Polynomials: $p(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0, a_j \in \mathbb{C}$ and

- If all a_i are real and if z_0 is a zero, then $\bar{z_0}$ is also a zero
- Every non-constant polynomial with complex coefficients has at least one zero in \circ A polynomial of degree n has exactly n zeros counted according to multiplicity
- If z_1 is a zero pf $p(z)$, then $p(z) = (z z_1)q(z)$, with $deg(q) = n 1$, and we can continue to factor q
- Taylor form of polynomial: $p(z) = \sum_{k=0}^{n} \frac{p^{(k)}(z)}{p^{(k)}(z)}$ • Taylor form of polynomial: $p(z) = \sum_{k=0}^{n} \frac{p^{(k)}(z_0)}{k!} (z - z_0)^k$

Rational functions: $R(z) = \frac{p}{q}$ $\frac{p(z)}{q(z)} = a \frac{0}{0}$ $\frac{(\zeta - \zeta_1)(\zeta - \zeta_2)}{(\zeta - \zeta_1)(\zeta - \zeta_2)}$

• $z_1, z_2, ..., z_n$ are zeros of R and $\zeta_1, \zeta_2, ..., \zeta_m$ are <mark>poles</mark> of

Exponential functions: $f(z) = e^z = e^{x+iy} = e^x$

- $e^{z_1}e^{z_2}=e^{z_1+z_2}, \frac{e^{z_2}}{e^{z_2}}$ • $e^{z_1}e^{z_2} = e^{z_1+z_2}$, $\frac{e^{z_2}}{e^{z_2}} = e^{z}$
- \boldsymbol{d} • $\frac{a}{dz}e^z = e^z$, e^z is entire
- $\forall z \in \mathbb{C}, e^z \neq 0,$ Range (e^z)
- $\forall k \in \mathbb{Z}, z \in \mathbb{C}, e^z = e^z$ o If $e^{z_1} = e^{z_2}$, then

Trig and hyperbolic trig function

•
$$
\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}
$$
, $\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$

• Define
$$
z \in \mathbb{C}
$$
, $\cos z = \frac{e^{iz} + e^{-iz}}{2}$, $\sin z = \frac{e^{iz} - e^{-iz}}{2i}$

- Trig identity holds and $\frac{d}{dz}$ cos $z = -\sin z$, $\frac{d}{dz}$ \circ Trig identity holds and $\frac{a}{dz}$ cos $z = -\sin z$, $\frac{b}{d}$
- The range can become all complex numbers

• Define sinh
$$
z = \frac{e^z - e^{-z}}{2}
$$
, cosh $z = \frac{e^z + e^{-z}}{2}$

$$
\frac{\cosh iz = \cos z, \sinh iz = i \sin z}{\frac{d}{z} \cosh z = - \sinh z} = \frac{\sinh z}{\cosh z} = \cos z
$$

$$
\circ \frac{d}{dz}\cosh z = -\sinh z, \frac{d}{dz}\sinh z = \cosh z
$$

Logarithm functions

- $\text{Log } z = \log |z| + i Arg(z)$ is the *principal branch* of the log, where $Arg(z) \in [-\frac{\pi}{2}]$ $\frac{\pi}{2}, \frac{\pi}{2}$ • Log $z = \log |z| + i Arg(z)$ is the <mark>principal branch</mark> of the log, where $Arg(z) \in [-\frac{\pi}{2}, \frac{\pi}{2}]$ is the principal argument of z
	- We can have $\log z = \log |z| + i (Arg(z) + 2k\pi)$ to have all the branches
	- On the cut plane, each branch of Log z is analytic
- $\log z_1 + \log z_2$ holds if we choose branches correctly

•
$$
f(z) = \log g(z)
$$
, then $f'(z) = \frac{g'(z)}{g(z)}$

- $Arg z$ is harmonic in the domain
- Log|z| is harmonic in the entire plane except the origin
- $f(z) = Log(g(z))$ is analytic at z provided that $g(z)$ satisfies
	- \circ $|g(z)| > 0$
	- \circ $-\pi <$ Arg w $<$ π
- We take $\theta = -\pi$ to be the cut, we have $L_{-\pi}$: $= Log|z| + i Arg z$ to be the principle branch ○ If we take τ to be the cut, we have the domain $(\tau, \tau + 2\pi)$
	- \circ $L_{\tau} = Log|z| + i(Arg(z) + \pi + \tau)$
	- \circ $L_0 := Log|z| + i (Arg(z) + \pi)$ flips the domain
	- \circ E.g. $Log(-z) + i\pi = L_0(z)$ is analytic

MATH300 Page 3

General powers

- $z^{\alpha} = e^{\alpha \log z} = e^{\alpha}$
- $\frac{\pi}{2n} + \frac{2}{n}$
- $\frac{1}{i^n}$ $rac{1}{n}$ = $e^{\left(\frac{\pi}{2}\right)}$ • $i^{\frac{1}{n}} = e^{(\frac{n}{2n} + \frac{n}{n})i}$, but only n distinct values
- Properties
	- \circ When α is a positive integer $z^n = e^n$
	- \circ z^{α} has infinitely many values if and only if α is not a rational real number
	- In previous two cases, every branch of z^{α} is analytic for $z \neq 0$, $\frac{d}{dz}$ $\frac{d}{dz}z^{\alpha} = \frac{\alpha}{z}$ ○ In previous two cases, <mark>every branch of z^{α} is analytic for $z \neq 0$, $\frac{a}{dz}z^{\alpha} = \frac{a}{z}z^{\alpha}$ </mark>
	- \circ $z^{\alpha_1}z^{\alpha_2} = z^{\alpha_1+\alpha_2}$ for suitable choices of branches

Inverse trig functions

• Since we know the trig functions if we want to find $w = \arcsin z$, we just need to solve the function $\sin w = z$

•
$$
\arcsin z = -i \log (iz + (1 - z^2)^{\frac{1}{2}})
$$

•
$$
\arcsinh z = \log (z + (1 + z^2)^{\frac{1}{2}})
$$

Riemann surfaces

- Suppose we have a many-valued function 1 to n , we can produce a 1-1 function by taking the domain of z values to be n copies of the cut plane suitably glued together.
- This works even if the function is 1 to ∞ , such as $\log z$

Complex integration

October 9, 2020 9:22 PM

 $\gamma \subset \mathbb{C}$ is a smooth arc if it is the range of some $z = z(t)a \leq t \leq b$ such that

- $z'(t)$ exists and is continuous for
	- $z'(t) = x'(t) + i y'(t)$ is the tangent vector of $z(t)$
- $z'(t) \neq 0$ for any
- $z(t)$ is one-to-one on $[a, b]$, or for a <mark>smooth closed curve</mark>, $z(t)$ is one-to-one on $[a, b)$ but $z(a) = z(b)$ and $z'(a) = z'(b)$

Contour: directed piece-wise smooth curve (arc or closed curve) $\Gamma = \gamma_1 + \gamma_2 + \ldots + \gamma_n$

Parameterization by arc length

Suppose $z(t) = x(t) + iy(t)$, $t \in [a, b]$, then arclength $s(t) = \int_a^t \sqrt{x'(u)^2 + y'(u)^2} dx$ And $s'(t) = \sqrt{x'(u)^2 + y'(u)^2} =$ Total length of $\gamma = l(\gamma) = \int_a^b s'(t) dt = \int_a^t$

Partition γ is called p_n , let $\Delta z_k = z_k - z_{k-1}$, then <mark>Riemann sum $s(P_n) = \Sigma_k^n$ </mark> $\int_\gamma f(z) dz = \lim_{n \to \infty} s(P_n)$ where $mesh(P_n)$ =arclength of the longest bit of γ between any z_{k-1} and

If f is continuous on γ , then $\int_{\gamma} f(z) dz = \int_{a}^{t}$

If $f = u + iv$, then $\Delta z = \Delta x + i \Delta y$, $\int_{\gamma} f(z) dz = \int_{\gamma} (u dx - v dy) + i \int_{\gamma}$

If $\Gamma = \gamma_1 + \gamma_2 + \cdots + \gamma_n$, then $\int_{\Gamma} f(z) dz = \int_{\gamma_1} f(z) dz + \int_{\gamma_2} f(z) dz + \cdots + \int_{\gamma_n}$

Properties of integrals

- \perp γ $=$ γ \ddag γ • • If $\Gamma = \Gamma_1 + \Gamma_2 + \cdots + \Gamma_n$, then $\int_{\Gamma} f(z) dz = \int_{\Gamma} f(z) dz + \int_{\Gamma} f(z) dz + \int_{\Gamma}$
- $\left|\int_{\Gamma} f(z)dz\right| \leq Ml(\Gamma)$ where $M = max|f(z)|$ on Γ and $l(\Gamma)$ is the arclength of

Suppose f is continuous in a domain D and F is analytic in D and $F'(z) = f(z) \forall z \in D$, then for a contour Γ in D from α to β , $\int_{\Gamma} f(z) dz =$

Let f be continuous in a domain D . Then the following a equivalent

- $\exists F$ such that F' (
- $\int_{\Gamma} f(z) dz = 0$ for all closed contour Γ in
- $\int_{\Gamma_{\rm r}} f(z) dz = \int_{\Gamma_{\rm r}} f(z) dz$, if Γ_1 and Γ_2 are contours with the same initial and terminal points

Cauchy Integral theorem

- A simply connected domain D is one domain such that every simple (no self-intersecting) closed contour in D has every point inside it and in D
	- $D = \{z: |z| < 1\}$ is simply connected
	- $D = \{z: 0 < |z| < 1\}$ is not simply connected
	- Cut plane is simply connected
- If f is analytic in a simply connected domain D and Γ is a simple closed contour in D, then $\int_{\Gamma} f(z) dz =$
	- \circ f has an antiderivative F in D and integrals of f from α to β are path independent
	- <mark>Green's theorem</mark>: $\int_{\Gamma}(Pdx+Qdy)=\int\int_{R}(\frac{\partial}{\partial}$ д ∂ \circ Green's theorem: $\int_\Gamma (P dx + Q dy) = \int \int_R (\frac{\partial Q}{\partial x} - \frac{\partial Q}{\partial y})$

MATH300 Page 5

- Extensions
	- \circ Assume f is analytic inside and on a simple closed contour Γ , then $\int_{\Gamma} f(z) dz =$
	- \circ Γ_1 can be continuously deformed in D to Γ_2 but not to Γ_3 . Suppose f is analytic in D, then $\int_{\Gamma} f(z) dz =$
	- \circ Suppose f is analytic in a domain M which is not simply connected (such a domain is called **multiply connected**). Let $\gamma = \gamma_1 + \gamma_2 + \gamma_3$ (γ_i are all boundaries of M). Suppose f is analytic on M and γ , then $\int_{\gamma} f(z) dz =$
		- Convention: orient boundary contours such that M lies to our left as we traverse the boundary

If a function is analytic in D, then it has an antiderivative in D

Cauchy Integral Formula

- Suppose f is analytic inside and on a positively-oriented closed contour Γ . Let z_0 be a point inside Γ . Then $f(z_0) = \frac{1}{z_0}$ \overline{a} f $\frac{1}{2}$
	- When $f = 1$, $\int_{\Gamma} \frac{d}{dz}$ ○ When $f = 1$, $\int_{\Gamma} \frac{dz}{z-z_0} = 2\pi i$ doesn't matter if Γ is a general contour
	- \circ If f is analytic inside and on Γ , then the values of the integral on Γ determines everywhere in Γ
	- If z_0 lies outside Γ , then $\int_{\Gamma} \frac{f}{z}$ ○ If z_0 lies outside Γ , then $\int_{\Gamma} \frac{f(z)}{z-z_0} dz = 0$, given that $f(z)$ is analytic inside and on
- Consequences of Cauchy Integral Formula
	- An analytic function has derivatives of <mark>all</mark> orders
		- $f^{(n)}(z) = \frac{n}{2z}$ \overline{a} f $f^{(n)}(z) = \frac{\pi}{2\pi i} \int_{\Gamma} \frac{1}{\Gamma(z)}$
		- If $f = u + iv$ is analytic, then all partial derivatives of u, v must exist
	- If f is continuous in a domain D and $\int_{\Gamma} f(z) dz = 0$ for every closed contour Γ in D, then f is analytic
	- If we want to know $G(c) = \int \frac{g}{c}$ ○ If we want to know $G(c) = \int \frac{g(z)}{z-c} dz$, then

•
$$
G'(c) = 2\pi i g'(c)
$$
 and $G''(c) = 2\pi i g''(c)$

• Cauchy integral formula holds on a multiply-connected domain M provided we integrate over the complete boundary of M

Cauchy estimate: let f be analytic inside and on $C_R = \{z: |z - z_0| = R\}$. If $|f(z)| \le M$, $\forall z \in C_R$, then $|f^{(n)}(z_0)| \leq \frac{n}{n}$ $\frac{n!}{R^n}$ ($n = 0,1,2,...$)

• Liouville's theorem: If f is entire and bounded, then f is constant

Series representations for analytic functions

October 26, 2020 8:46 AM

A sequence is a list of complex numbers c_0 , c_1 , c_2 , ... We say $\{c_n\}$ converges to c and write $\lim_{n\to\infty} c_n = c$ if $\forall \epsilon > 0$, $\exists N$ such that $n > N$, $|c - c_n| < \epsilon$

An infinite series or series is an infinite sum $\Sigma_{i=0}^{\infty} c_j$. The nth partial sum $S_n = \Sigma_{i=0}^n c_j$

- The series converges and has sum $s = \lim c_n$ if the limit exists and is finite
- Otherwise it diverges

Basic facts and examples

- Geometric series: $\Sigma_{i=0}^{\infty} c_i = 1 + c + c^2 + \dots + c^n$
	- If $|c| < 1$, $\lim_{n \to \infty} S_n = \frac{1}{1}$ \circ If $|c| < 1$, $\lim_{n \to \infty} S_n = \frac{1}{1-c}$, converges
	- If $|c| > 1$, $S_n = \frac{c^n}{a}$ ○ If $|c| > 1$, $S_n = \frac{c-1}{c-1}$, diverges
	- o If $|c| = 1$ and $c = 1$, $S_n = n$, diverges
	- If $|c| = 1$ and $c \neq 1$, c^{n+1} oscillates and does not approach a limit, so it diverges • E.g. $(c = i)$
- P-series: $\Sigma_{i=}^{\infty}$ • P-series: $\Sigma_{j=0}^{\infty} \frac{1}{j^p}$
	- \circ If $p = 1$, diverges
	- \circ If $p \in (0,1)$, diverges
	- If $p \in (1, \infty)$, converges
- If $\Sigma_{i=0}^{\infty} c_i$ converges, then $\lim_{n \to \infty} c_n = 0$, if the limit is not zero then the series diverges ○ Reverse is false
- Comparison test: if $|c_j|\leq M_j$, and $\Sigma_{j=0}^\infty M_j$ converges, then $\Sigma_{j=0}^\infty |c_j|$ converges and $\Sigma_{j=0}^\infty$ converges
	- \circ When $\sum_{i=0}^{\infty} |c_i|$ converges, we say $\sum_{i=0}^{\infty} c_i$ is absolutely convergent

•
$$
\text{Ratio test: } \text{suppose } l = \lim_{j \to \infty} \left| \frac{c_{j+1}}{c_j} \right| \text{ exists}
$$

- If $L < 1$, then Σc_i converges absolutely
- If $L > 1$, then $\sum c_i$ diverges
- \circ If $L = 1$, cannot conclude

Sequences and series of functions

- The sequence $F_0(z)$, $F_1(z)$, ... converges uniformly to $F(z)$ on the set $T \subset \mathbb{C}$, if $\forall \epsilon > 0$, such that $n > N \Rightarrow |F(z) - F_n(z)| < \epsilon$ for all $z \in T$
- The series $\Sigma_{i=0}^{\infty} f_j(z)$ converges uniformly to $F(z)$ on T, if the sequence $F_n(z) = \Sigma_{i=0}^n$ converges uniformly to $F(z)$ on T
	- \circ $\Sigma_{j=0}^{\infty} z^{j}$ converges uniformly to $\frac{1}{1-z}$ on $|z| \leq r < 1$, but not on

Power series: $\Sigma_{n=0}^{\infty}a_{n}\big(z-z_{0}\big)^{n}$

- If $\sum_{n=0}^{\infty} a_n z^n$ converges for some value $z = z_1$, then it converges absolutely for all z with $|z_1|$.
	- If it diverges for some value $z = z_1$, then it diverges for $|z| > |z_1|$.
- Let R=radius of the largest circle within which $\Sigma_{n=0}^{\infty} a_n z^n$ converges, R is called the radius of <mark>convergence</mark> of $\Sigma_{n=0}^{\infty} a_n z^n$.
	- o If $\sum_{n=0}^{\infty} a_n z^n$ converges for all $z \in \mathbb{C}$, then
	- \circ If $\sum_{n=0}^{\infty} a_n z^n$ converges only for $z=0$, then
- If $\sum_{n=0}^{\infty} a_n z^n$ converges in $|z| < R$, then converges in every closed disk
- If $\lim_{n\to\infty}$ $\left|\frac{a}{n}\right|$ $\left| \frac{a_{n+1}}{a_n} \right| = L$ exists, then $R = \frac{1}{L}$ • If $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=L$ exists, then $R=\frac{1}{L}$

MATH300 Page 7

If $\sqrt[n]{|a_n|} = l$ exists, then $R = \frac{1}{l}$ \circ If $\lim_{n\to\infty}\sqrt[n]{|a_n|}=l$ exists, then $R=\frac{1}{l}$

- This may not always exist, we introduce <mark>limsup</mark> to fix this problem
	- □ $s =$ limsup s_n is the smallest number such that $\forall \epsilon > 0$, ∃N such that $N, s_n < s + \epsilon$
		- \bullet If $s_n \to \infty$, then $\limsup_{n \to \infty} s_n = \infty$, if $s_n \to -\infty$, then $limsup_{n\to\infty} s_n = -\infty$ If $\int_{0}^{\frac{\pi}{2}}\sqrt{|a_n|}=l$ exists, then $R=\frac{1}{l}$ \Box If $\limsup_{n\to\infty} \sqrt[n]{|a_n|} = l$ exists, then $R = \frac{1}{l}$

Uniform convergence

- If f_n are continuous on $T \subset \mathbb{C}$ and f_n converges uniformly to f on T, then f is continuous on T
- If f_n are continuous on $T \subset \mathbb{C}$, f_n converges to f uniformly and Γ is a contour in T, then $\lim_{n\to\infty}\int_{\Gamma} f_n(z)dz=$
- If f_n are analytic in a domain D and if f_n converges uniformly to f in D then f is analytic in D
- Let $\sum_{n=0}^{\infty} a_n z^n$ have radius of convergence R and define $f(z) = \sum_{n=0}^{\infty} a_n z^n$ for $|z| < R$, then is analytic in $|z| < R$

The derivative of $f(z) = \Sigma a_n z^n$ can be computed term by term, the <mark>radius of convergence are the</mark> same

Actually $a_m = \frac{f^{(m)}(m)}{m!}$ $\frac{f^{(m)}(z_0)}{m!}$, and $f(z) = \sum \frac{f^{(n)}(z)}{n!}$ • Actually $a_m = \frac{f^{(m)}(z_0)}{m!}$, and $f(z) = \sum \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$

Convergent power series are analytic functions and **analytic functions** can be represented by a power series in some disk

Taylor series

• Suppose f is analytic in a domain D, let $z_0 \in D$, C be a circle of radius r with r<distance from z_0 to boundary of D, then $f(z) = \frac{1}{z_0}$ $\overline{\mathbf{c}}$ f $\frac{f(S)}{\zeta - z} d\zeta$, for z inside C and by writing $\frac{1}{\zeta - z}$ $\mathbf{1}$ $\frac{1}{\zeta - z_0} \Sigma \left(\frac{z}{\zeta} \right)$ $\frac{2}{\zeta}$ \boldsymbol{n} , we can deduce that $f(z) = \sum \frac{f^{(n)}(z)}{n!}$ $\frac{f^{(n)}(z_0)}{n!}(z-z_0)^n$ $e^z = \Sigma \frac{1}{z}$ \boldsymbol{n} • $e^z = \sum_{n=1}^{\infty} z^n$ $\sin z = \sum \frac{(-1)^n z^2}{(2n+1)}$ • $\sin z = \sum \frac{(1)^2}{(2n+1)!}$ $\cos z = \sum \frac{(-1)^n z^2}{(2n)!}$ • $\cos z = \sum \frac{(-1)^2}{(2n)!}$ $Log z = \sum \frac{(-1)^n}{n}$ • $Log z = \sum_{n} \frac{(-1)^n}{n} (z-1)^n$, \overline{L} z^n • $Log(1 - z) = \sum - \frac{1}{n}$ $\mathbf{1}$ $\frac{1}{z} = \frac{d}{dz}$ • $\frac{1}{z} = \frac{a}{dz} Log z = \sum (-1)^n (z - 1)^n$,

Laurent series (usually used for functions with singularities)

•
$$
\sum_{n=-\infty}^{\infty} a_n (z - z_0)^n
$$

- \circ z_0 is called <mark>center</mark>
- \circ The function is undefined at z_0 if negative powers
- Radius of convergence is an annulus $(R_1 < |z z_0| < R_2)$

$$
\circ \quad \Sigma_{n=0}^{\infty} a_n (z - z_0)^n \text{ converges for } |z - z_0| < R_2
$$

- \circ $\Sigma_{n=-\infty}^{-1} a_n (z-z_0)^n$ converges for
- Series may or may not converge on the boundaries
- Possibly $R_1 = 0$ (with only finitely many negative terms)
 $\frac{1}{z} \sum_{n=0}^{\infty} \frac{1}{n} \left(\frac{1}{z}\right)^n$ converges for $0 \le |z| \le \infty$ ($z_0 = 0$)

•
$$
e^{\frac{1}{z}} = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{1}{z}\right)^n
$$
 converges for $0 < |z| < \infty$ $(z_0 = 0)$

•
$$
f(z) = \frac{z^2}{z-1} = \frac{z}{1-\frac{1}{z}} = z+1+\frac{1}{z}+\cdots = \sum_{n=-\infty}^1 z^n
$$
 for $1 < |z| < \infty$ $(z_0 = 0)$

•
$$
f(z) = \frac{z^2}{z-1} = \frac{((z-1)+1)^2}{z-1} = \frac{1}{z-1} + 2 + z - 1
$$
 for $0 < |z-1| < \infty$ $(z_0 = 1)$

MATH300 Page 8

- General properties
	- A Laurent series defines a (single valued) analytic function in its annulus of convergence
	- \circ Given f analytic (and single valued) in the annulus $R_1 < |z z_0| < R_2$, we can always expand f in a Laurent series
	- \circ The differentiation formula is no longer valid, but the integral is still valid with $\mathbf{1}$ $\overline{\mathbf{c}}$ f $\frac{1}{\sqrt{2}}$
	- Size of annulus determined by location of singularities (annulus goes up to the nearest singularities)
		- E.g. $f(z) = \frac{1}{z^2-z^2}$ $\frac{1}{z^2-z-2} = \frac{1}{(z-2)!}$ **E.g.** $f(z) = \frac{1}{z^2-z-2} = \frac{1}{(z-2)(z+1)}$ different Laurent series represents f in three regions, $|z| < 1$, $1 < |z| < 2$ with $f(z) = \left(-\frac{1}{z}\right)$ $\frac{1}{6}$) $\Sigma \left(\frac{z}{2}\right)$ $\left(\frac{z}{2}\right)^n - \frac{1}{3z}$ $rac{1}{3z}\Sigma\left(-\frac{1}{z}\right)$ $\frac{1}{z}\big)^n$,

 ∞

- Purpose of Laurent series
	- Expansion at a singularity
	- Expansion between singularities
	- Classification of singularities

Isolated singularities:

- An isolated singularity of f is a point z_0 such that f is not analytic at z_0 , but f is analytic in some punctured disk $0 < |z - z_0| < \delta$
	- $\mathbf{1}$ \circ $\frac{1}{\sin z}$ has isolated singularities at
	- \circ Log z has non-isolated singularities at each z_0 in $(-\infty,0]$
- Singularity categories
	- \circ Removable singularity: Laurent series has no negative powers ($\Sigma_{n=0}^{\infty} a_n(z-z_0)^n$)
		- $f(z) \rightarrow a_0$ as $z \rightarrow z_0$
		- If f is analytic on $0 < |z z_0| < \delta$ and bounded, then z_0 is a removable singularity
		- Can remove the singularity and get an analytic function by defining a piecewise function
		- It means that $f(z)$ has a limit point at $z₀$
	- \circ Pole of order m: finite number of negative powers $(\Sigma_{n=-m}^{\infty}a_n(z-z_0)^n)$
		- $\mid f(z)\mid \rightarrow \infty$ if $z_n \rightarrow z_0$
		- E.g. $f(z) = \frac{s}{z}$ **E.g.** $f(z) = \frac{\sin z}{z^4}$ has a pole $z_0 = 0$ of order 3
		- Poles of order 1 are called simple poles ($f(z) = \frac{s}{z}$ ■ Poles of order 1 are called simple poles $(f(z) = \frac{\sin z}{z^2} z_0 = 0$ has order 1)
		- The same terminology used for **zeros**: and $a_m \neq 0$ has a zero of order m at z_0 , if $\Sigma_{n=m}^{\infty} a_n(z-z_0)^n$, where
			- \Box $m = 1, z_0$ is a simple zero
	- \circ Essential singularity: infinite number of negative powers $(\Sigma_{n=-\infty}^{\infty} a_n(z-z_0)^n)$
		- Casorati Weierstrass theorem: $\forall b \in \mathbb{C}$, exists a sequence $z_n \to z_0$ such that $f(z_n) \to b$, also, $\exists z_n$ such that $|f(z_n)| \to z_0$
		- **Picard's theorem**: if f has an essential singularity at z_0 , then in every disk $|z_0| < \delta$, $f(z)$ assumes every complex value with possibly one exception
			- E.g. $f(z) = e^{\frac{1}{z}}$ $\frac{1}{z}$ has an essential singularity at z_0 , but $e^{\frac{1}{z}}$ □ E.g. $f(z) = e^{\frac{1}{z}}$ has an essential singularity at z_0 , but $e^{\frac{1}{z}}$ can never achieve 0

Residue theory

November 20, 2020 8:28 AM

Residue<mark>: Let $f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n$ be the Laurent series of f in the neighborhood of an</mark> isolated singularity z_0 of f. Then the residue of f at z_0 is a_{-1} , written as $a_{-1} = Res(f; z_0)$

- \boldsymbol{R} $\mathbf{1}$ • $Res(f; z_0) = a_{-1} = \frac{1}{2}$ $\mathcal{C}_{0}^{(n)}$
- If f has a simple pole at z_0 , then $Res(f; z_0) = \lim_{z\to z_0} ($
- If $f(z) = \frac{p}{q}$ • If $f(z) = \frac{P(z)}{Q(z)}$ with $P(z_0) \neq 0$, and Q has a simple zero at z_0 ($Q(z_0) = 0$ and $Q'(z_0) \neq 0$), then $Res(f; z_0) = \frac{P}{Q}$ $\frac{1}{Q}$
- Note: residue is always a finite number

Residue at a higher order pole

• Suppose f has a pole of order $m \geq 1$ at z_0 , $f(z) = \frac{a}{z}$ $\frac{a_{-m}}{(z-z_0)^m} + \cdots + \frac{a}{z}$ $\frac{a_{-1}}{z-z_0}$ + a_0 + $a_1(z-z_0)$ + …, then $(z - z_0)^m = a_{-m} + \dots + a_{-1}(z - z_0)^{m-1} + \dots$ And $Res(f; z_0) = a_{-1} = \lim_{z \to z_0} \frac{1}{z_0}$ $\frac{1}{(m-1)!} \frac{d}{dz}$ $\frac{d^{m-1}}{dz^{m-1}}\Big(\big(z-z_0\big)^m f$

Residue theorem:

• Let f be analytic inside and on a simple closed contour C except for a finite number of isolated singularities $z_1, z_2, ... z_k$ inside C, then $\int_c f(z) dz = 2\pi i \Sigma_{j=1}^k$

Trigonometric Integrals: $\int_0^{2\pi} f(\cos\theta\, , \sin\theta) d\theta$

- $\boldsymbol{0}$ • Change of variables $z = e^{i}$ E.g. $I = \int_0^{2\pi} \frac{d}{a+b}$ $\frac{2\pi}{a}$ $\int_0^{2\pi} \frac{d\theta}{a+b\cos\theta} = 4\pi Res \left(\frac{1}{bz^2 + 2} \right)$ $\frac{1}{bz^2+2az+b}$; z_1) = $\frac{4}{2bz_1}$ $\frac{4\pi}{2bz_1+2a}=\frac{2}{\sqrt{a^2}}$ • E.g. $I = \int_0^{2\pi} \frac{dv}{a+b\cos\theta} = 4\pi Res\left(\frac{1}{bz^2+2az+b}; z_1\right) = \frac{4\pi}{2bz_1+2a} = \frac{2\pi}{\sqrt{a^2-b^2}}$ (with $|b| < a$) Usually $\int_0^{2\pi} \frac{d}{a+b}$
- $\frac{2\pi}{a}$ $\int_0^{2\pi} \frac{d\theta}{a+b\cos\theta} = \int_{-\pi}^{\pi} \frac{d}{a+b}$ $\frac{\pi}{-\pi}$ $\frac{\pi}{a}$ $\int_{-\pi}^{\pi} \frac{d\theta}{a+b\cos\theta} = 2 \int_{0}^{\pi} \frac{d}{a+b}$ $\frac{\pi}{a}$ • Usually $\int_0^{2\pi} \frac{dv}{a+b\cos\theta} = \int_{-\pi}^{\pi} \frac{dv}{a+b\cos\theta} = 2 \int_0^{\pi}$

Improper integrals on $(-\infty, \infty)$

- $\int_{-\infty}^{\infty} f(x) dx$ with $f(x) = \frac{p}{Q}$ • $\int_{-\infty}^{\infty} f(x) dx$ with $f(x) = \frac{f(x)}{Q(x)}$, where $P(x)$ and $Q(x)$ are polynomials, with $deg Q \geq deg P + 2, f(x) = O\left(\frac{1}{\sqrt{2}}\right)$ \circ deg $Q \geq degP + 2$, $f(x) = O\left(\frac{1}{x^2}\right)$, so integral converges
	- \circ Q has no zeros on real axis

•
$$
\int_{-\infty}^{\infty} f(x) dx = \lim_{R \to \infty} \int_{-R}^{R} f(x) dx
$$

- Let S_R be a semi circle in the upper half plane, $C_R = [-R, R] + S_R$, then $\int_{C_R} f(z) dz = 2\pi i \Sigma_{z_j \in C_R} Res(f; z_j) = \int_{-R}^{\infty} f(x) dx +$ And as $R \to \infty$, $\left| \int_{S_{R}} f(z) dz \right| \leq O\left(\frac{1}{R} \right)$ $\left(\frac{1}{R^2}\right)\pi R = O\left(\frac{1}{R}\right)$ $\frac{1}{R}$ This gives that $\int_{-\infty}^{\infty} f(x) dx = 2\pi i \Sigma_{z_j \in \mathcal{C}_R} R$ Also, if choose lower half plane $\int_{-\infty}^{\infty} f(x) dx =$
- E.g. $\int_{-\infty}^{\infty} \frac{x^2}{x^4}$ $\int_{-\infty}^{\infty} \frac{x^2}{x^4 + a^4} dx = \frac{\sqrt{2}\pi}{4a}$ • E.g. $\int_{-\infty}^{\infty} \frac{x}{x^4 + a^4} dx = \frac{\sqrt{2}}{4}$
- The formula also gives that $\Sigma Res(f; z_j) = \Sigma_{LHP} Res(f; z_j) + \Sigma_{UHP} Res(f; z_j) = 0$

Principle value of $\int_{-\infty}^{\infty} f(x)dx$ is $p.v.$ $\int_{-\infty}^{\infty} f(x)dx = \lim_{R\to\infty} \int_{-R}^{R} f(x)dx$ if the limit exists

• Note: $\int_{-\infty}^{\infty} f(x) dx$ is defined to be $\lim_{R\to\infty} \int_{0}^{R} f(x) dx + \lim_{R\to\infty} \int_{-R}^{0} f(x) dx$ when both limits exist

- Principle value can exist even if neither of the limit exists
- E.g. $p.v. \int_{-\infty}^{\infty} x dx =$

Improper integrals of the form $\int_{-\infty}^{\infty} f(x)g(x)dx$ where $f(x)$ is a rational and $g(x) = \sin ax$ or $q(x) = \cos ax$

- We can consider $\int_{-\infty}^{\infty} f(x)e^{i\theta}$ • We can consider $\int_{-\infty}^{\infty} f(x)e^{iax}dx$, and this gives the cosine and sine integrals by real and imaginary parts
- Assume: $deg Q \geq deg P + 1$ and Q has no zeros on real axis
- Taking the upper half plane, we have $\int_{-R}^{R} f(x)e^{it}$ • Taking the upper half plane, we have $\int_{-R}^{R} f(x)e^{iax}dx = \int_{C_R} f(z)e^{iaz}dz - \int_{S_R} f(z)e^{iaz}dz$, **O** Jordan's lemma: if $deg Q \geq deg P + 1, a > 0$, then $\int_{S_R} f(z) e^{-iaz} dz \rightarrow 0$ as
- So $\int_{-\infty}^{\infty} f(x)e^{i\theta}$ • So $\int_{-\infty}^{\infty} f(x)e^{iax} dx = 2\pi i \Sigma_{z_j \in C_R} Res(f(z)e^{iaz};$
- If f is even, then $\int_0^\infty f(x) \cos ax \, dx = \frac{1}{2}$ $\frac{1}{2}\int_{-\infty}^{\infty}f(x)e^{i\theta}$ • If f is even, then $\int_0^\infty f(x) \cos ax \, dx = \frac{1}{2} \int_{-1}^{\infty}$
- If f is odd, then $\int_0^\infty f(x) \sin ax \, dx = \frac{1}{2}$ $\frac{1}{2}\int_{-\infty}^{\infty}f(x)e^{i\theta}$ • If f is odd, then $\int_0^\infty f(x) \sin ax \, dx = \frac{1}{2} \int_0^\infty$

Indented contours: $\int_{-\infty}^{\infty} f(x) dx$ when f has a singularity on the real axis

Note: $e^{iz} = \cos z + i \sin z$, that's why we take the imaginary part Then $\int_{S_n}\frac{e^{\tilde{t}}}{\tilde{t}}$ $\frac{e^{iz}}{z}dz \to -i\pi$ as $r \to 0$, we have $\int_{-\infty}^{\infty} \frac{s}{z}$

- $\int_{-\infty}^{\infty} \frac{\sin x}{x} dx =$ Actually, $\lim_{(r\to 0)} \int_S \frac{e^i}{r^2}$ $\frac{e^{iz}}{z}dz = 2\pi i Res\left(\frac{e^{iz}}{z}\right)$ • Actually, $\lim_{(r\to 0)} \int_{S_r} \frac{e}{z} dz = 2\pi i Res\left(\frac{e}{z};0\right) \cdot l$, where l is the fraction that we go through on the little circle
	- In our example, we go through half circle, so $l=\frac{1}{2}$ ○ In our example, we go through half circle, so $l=\frac{1}{2}$
- If f has a simple pole at $z = c$ and T_r is the circular arc of T_r : $z = c + re^{i\theta}$, $(\theta_1 \le \theta \le \theta_2)$
	- \circ Then $\lim_{(r\to 0)} \int_T f(z) dz =$
	- \circ If clockwise/lower half circle, then we have $\lim_{(r\to 0)} \int_T f(z) dz =$
	- \circ If there is sin ax or cos ax, take e^{iax} , then consider separate cases, if pole z_0 is on the real axis, then use $\pi i Res(z_0)$, otherwise, use $2\pi i Res(z_0)$

Mandelbrot set

November 30, 2020 8:34 AM

Given an entire function $f(z)$ and a point $z_0 \in \mathbb{C}$

- The orbit of z_0 is $\{z_0, z_1, z_2, ...\}$ where $z_i = f(z_{i-1})$, denote f^2 (
- z_0 is a fixed point of f if $f(z_0) = z_0$, its orbit is just

 \circ Behavior near a fixed point z_0 : $f(z) = f(z_0) + f'(z_0)(z - z_0) + \cdots$ So $f(z) - z_0 = f'(z_0)(z - z_0)$, $|f(z) - z_0| = |f'(z_0)||z - z_0|$

- If $|f'(z_0)| < 1$, then $f(z)$ is closer to z_0 than z
- If $|f'(z_0)| > 1$, then f(z) is further to z_0 than z
- Classification of fixed points:
	- Attracting: $|f'(z_0)| < 1$
	- **Repelling:** $|f'($
	- \blacksquare Indifferent (neutral): $\left|f'(x)\right|$
- E.g. $f(z) = z^2$ has fixed points $z = 0$ and
	- $f'(0) = 0, z = 0$ is attracting
	- \bullet $f'(1) = 2, z = 1$ is repelling
	- Orbit of $z = re^{i\theta}$ is $\{z, z^2, z^4, z^8, z^8\}$
		- $z_n \to 0$ if $r < 1$, and $z_n \to \infty$ if $r > 1$
	- Domain of attraction of 0 is $|z|$ < 1, and ∞ is $|z| > 1$
- A periodic point z_0 (period k) is attracting if $|(f^k)'(z_0)| < 1$ and repelling if $|(f^k)$
- The Julia set $J(f)$ is the closure of the set of all repelling fixed points of

\n- E.g. for
$$
f(z) = z^2
$$
, has a dense set of periodic points on $|z| = 1$,
\n- $|(f^k)'(z_0)| = \left| \frac{d}{dz} z^{2^k} \right| > 1$, $J(f) = \{z : |z| = 1\}$
\n

Mandelbrot set: let $f_c(z) = z^2 + c$ for c a complex number

- \bullet $M = \{c \in \mathbb{C}: f_c^n(0) < \infty \text{ as } n \to \infty\}$ i.e. the orbit $\{0, c, c^2 + c, (c^2 + c)^2 + c, ... \}$ does not go to infinity
- Theorem:
	- \circ *M* is connected
	- \circ $c \in M$ if and only if J_c is connected
	- For c near 0, the Hausdorff dimension of J_c is $1 + \frac{|c|^2}{4 \log n}$ ○ For *c* near 0, the Hausdorff dimension of J_C is $1 + \frac{|C|^2}{4 \log 2} + o(|C|^2)$
	- For real $c \in \left[-\frac{3}{4}\right]$ $\frac{3}{4}, \frac{1}{4}$ \circ For real $c \in \left[-\frac{3}{4}, \frac{1}{4}\right], J_c$ is simple closed curve
	- \circ M is a subset of $\{z: |z| \leq 2\}$

Brief review

January 10, 2022 11:17 AM

A domain in $\mathbb C$ is an open path-connected set

For f defined on a neighborhood of z_0 , $f'(z_0) = \lim_{z\to z_0} \frac{f}{z}$ $\frac{f(z)-f(z_0)}{z-z_0}$ if the limit exists

• f is analytic on D if $f'(z)$ exists for all $z \in D$.

Analyticity \Rightarrow Cauchy-Riemann equation: $f = u + iv$ has $u_x = v_y$, $u_y = -v_x$.

- If the partial derivatives u_x, u_y are continuous, then CR equation means analytic.
- If $f = u + iv$ is analytic on D, then u, v are harmonic $(u_{xx} + u_{yy} = v_{xx} + v_{yy} = 0)$
- All level curves of u, v intersect in right angles

Note: $f(z) = Log(z) = Log(r) + i\theta$, with $z = re^{i\theta}$, $\theta \in (-\pi, \pi]$.

• The principal branch has a branch cut at $\theta = \pi$ or $\{(x, y) : x \le 0, y = 0\}$.

Contour integral

- Contour: directed piecewise smooth curve Γ , $z = z(t)$ for $t \in [a, b]$.
- Integral: $\int_{\Gamma} f(z) dz = \int_a^b f(z(t)) z'(t) dt$. \circ It obeys $\left| \int_{\Gamma} f(z) dz \right| \leq \max_{z \in \Gamma} \left| f(z) \right| \cdot length(\gamma).$
- Theorem: suppose f is continuous on D and there is an analytic function F such that F' on D, then $\int_{\Gamma} f(z) dz = F(\beta) - F(\alpha)$.
	- Independent of the contour
	- \circ Zero for closed contour (F must be analytic)

Cauchy integral theorem

- Simply connected domain: a connected set with subset enclosed by every simple closed contour is contained in the domain
	- Any closed curve can be deformed to a point without leaving the domain
	- There is no hole
- If f is analytic on a simply connected domain D and Γ is a closed contour in D, then $\int_{\Gamma} f(z) dz = 0.$
- Corollary: if D is a domain and Γ_1 can be continuously deformed into Γ_2 and f is analytic on D, then $\int_{\Gamma} f(z) dz = \int_{\Gamma} f(z) dz$.
- Cauchy integral formula: if f is analytic inside and on a positively oriented (counter clockwise) closed contour and if z_0 is inside Γ , then $\frac{f(z_0)}{z_0} = \frac{1}{z_0}$ $\overline{\mathbf{c}}$ \overline{f} $\frac{f(z)}{z-z_0}dz.$
	- f has derivatives of all orders and $f^{(n)}(z_0) = \frac{n}{2\pi}$ $\overline{\mathbf{c}}$ f \circ f has derivatives of all orders and $f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_{\Gamma} \frac{f(z)}{(z-z_0)^{n+1}} dz$.

Also works on a multiply-connected domain $f(z_0) = \frac{1}{2\pi}$ $\overline{\mathbf{c}}$ f ○ Also works on a multiply-connected domain $f(z_0) = \frac{1}{2\pi i} \int_{\Gamma_1 + \Gamma_2} \frac{f(z)}{z - z_0} dz$.

Taylor series

If f is analytic on D and $z_0 \in D$, then f has a Taylor series $f(z) = \sum_{n=1}^{\infty}$

$$
\circ \ \ a_n = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{(z-z_0)^{n+1}} dz = \frac{f^{(n)}(z_0)}{n!}.
$$

• It converges at least in the largest disk in D centered at z_0

Laurent series

- If f is analytic on D and $z_0 \in D$, then f has a Laurent series $f(z) = \sum_{n=1}^{\infty}$ $a_n = \frac{1}{2\pi}$ $\overline{\mathbf{c}}$ f $a_n = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{(z-z_0)^{n+1}} dz.$
- Typically, the inner circle deforms to the isolated singularity z_0

Residue

- If z_0 is an isolated singularity, then $Res(f; z_0) = a_{-1} = \frac{1}{2\pi}$ • If z_0 is an isolated singularity, then $Res(f; z_0) = a_{-1} = \frac{1}{2\pi i} \int_{\Gamma} f(z) dz$.
	- If $f(z) = \frac{p}{q}$ \circ If $f(z) = \frac{P(z)}{Q(z)}$ with $P(z_0) \neq 0$, and Q has a simple zero at z_0 ($Q(z_0) = 0$ and Q') 0), then $Res(f; z_0) = \frac{P}{Q}$ $\frac{1}{Q}$
	- Suppose f has a pole of order $m \geq 1$ at z_0 , $\lim_{z\to z_0} \frac{1}{(m+1)^{n+1}}$ $\frac{1}{(m-1)!} \frac{d}{dz}$ $\frac{d^{m-1}}{dz^{m-1}}\Big(\big(z-z_0\big)^m f$ \circ
- Residue theorem: Let f be analytic inside and on a simple closed contour C except for a finite number of singularities $z_1, ..., z_k$ inside C, then $\int_C f(z) dz = 2\pi i \sum_{j=1}^k Res(f; z_j)$.

Residue theory cont.

January 7, 2022 9:44 PM

Keyhole contour

Integration of rational functions $\int_0^\infty f(x)x^a$ $\int_0^{\infty} f(x) x^a dx$.

- \bullet a not an integer
- f a rational function with no poles on positive x-axis
- Choose $C = L_{+} + L_{-} + C_{R} + C_{\delta}$.
- Require:

$$
\circ
$$
 $f(z)z^a = O\left(\frac{1}{R^p}\right)$, for $p > 1$ as $R \to \infty$, so that $\left|2\pi R f(z)z^a\right| \to 0$.
 \circ $f(z)z^a = O\left(\frac{1}{\delta^q}\right)$, for $q < 1$ as $\delta \to 0$.

- Choose branch of z^a with cut along $[0, \infty)$.
- $\int_{C_R} f(z)z^a dz = \int_{C_R} f(z)z^a dz = 0$ with the $M \cdot l$ bound.
- $\int_{I} f(z)z^{a} dz = \int_{R}^{0} f(x)x^{a} e^{2}$ $\int_R^{\infty} f(x)x^a e^{2\pi i a} dz = -e^{2\pi i a} \int_{\delta}^{\kappa} f(x)x^a$ • $\int_{L_{-}} f(z) z^a dz = \int_{R}^{0} f(x) x^a e^{2\pi i a} dz = -e^{2\pi i a} \int_{\delta}^{R} f(x) x^a dx = -e^{2\pi i a} \int_{L_{+}} f(z) z^a dz.$
- Finally, $\left(1-e^{2\pi i a}\right)\int_0^\infty f(x)x^a$ • Finally, $\left(1-e^{2\pi i a}\right)\int_0^\infty f(x)x^a dx = 2\pi i \sum Res\left(f(z)z^a; z_j\right)$. \circ z_i are poles of f.

Argument principle

- Def: A function f on a domain D is <mark>meromorphic</mark> if at every $z \in D$ either f is anlytic or has a pole (no branch cuts or singularities)
	- \circ A function f on D is **holomorphic** if it is differentiable at every $z \in D$ (no poles).
- Theorem (Argument principle): Let C be a simple closed positively-oriented contour. Let f be analytic and non-zero on ${\cal C}$ and meromorphic inside ${\cal C}.$ Then $\frac{1}{2}$ $f'($ $\frac{f'(z)}{f(z)}dz = N_0(f) - N_p(f).$
	- \circ $N_0(f)$ is the number of zeros of f in C with multiplicity
	- \circ $N_p(f)$ is the number of poles of f in C with multiplicity
- Reason for the name
	- For $\frac{c}{d}$ \boldsymbol{d} \boldsymbol{d} \boldsymbol{d} \boldsymbol{d} $f'($ \circ For $\frac{a}{dz}$ log $f(z) = \frac{a}{dz}$ Log $|f(z)| + \frac{a}{dz}i$ arg $f(z) = \frac{f(z)}{f(z)}$.
	- o arg z may not be globally well-defined for all $z \in C$.
	- \circ Solution: break C into small pieces, small enough that arg f is well-defined on each piece.
		- On this piece, $\int_C \frac{f'(t)}{f(t)}$ $\frac{f(z)}{f(z)}dz = \text{Log}|f(z)|\Big|_z^2$ • On this piece, $\int_{C} \frac{f'(z)}{f(z)} dz = \text{Log}|f(z)| \Big|_{z}^{z_2} + i$ (change in arg z from z_1 to z_2).
	- **O** Sum over pieces, if C is closed, $\text{Log}|f(z)|$ cancels.
	- Then $N_0(f)-N_p(f)=\frac{1}{2\pi}$ \circ Then $N_0(f) - N_p(f) = \frac{1}{2\pi} \Delta_C(\arg f).$
		- $\Delta_c(\arg f)$ is the total change in arg f over C.

Rouche's theorem

- Let f and h be analytic inside and on a simple closed contour C, and suppose $|h(z)| < |f(z)|$ for each $z \in \mathcal{C}$. Then f and $f + h$ have the same number of zeros inside C with multiplicity
- Corollary: zeros of non-constant functions are isolated

Open mapping theorem

• If f is analytic on D and not constant on D, then its range $f(D) = \{f(z) : z \in D\}$ is an open set

Analytic continuation

January 21, 2022 11:03 AM

Consider the power series, $Log(1 + z) = z - \frac{z^2}{2}$ $rac{z^2}{2} + \frac{z^3}{3}$ $rac{z^3}{3} - \frac{z^4}{4}$ $\frac{2}{4}$ + …, which converges for $|z|$ < 1.

- Is any information loss in representing a function in the cut plane by a power series in the unit disk?
- In fact, a power series in a disk for a function contains all information about f , including its domain of analyticity, singularities, other branches etc.

E.g.
$$
f(z) = \frac{1}{z}
$$
, $z_0 = \epsilon > 0$.

- Compute power series $\frac{1}{z} = \sum_{n=0}^{\infty} (-1)^n \frac{(z-\epsilon)^n}{\epsilon^{n+1}}$ • Compute power series $\frac{1}{z} = \sum_{n=0}^{\infty} (-1)^n \frac{(z-\epsilon)^n}{\epsilon^{n+1}}$ converges for $|z-\epsilon| < \epsilon$.
- This power series for $|z \epsilon| < \epsilon$ determines $f(z)$, $\forall z \neq 0$.
- We can choose z_1 close to 2ϵ , and determine $f^{(n)}(z_1)$ from the power series, and form a new Taylor series at z_1 .

$$
\circ \quad f_1(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_1)}{n!} (z - z_1)^n
$$
 has radius of convergence $R_1 = |z_1|$.

• By repeating this procedure, can produce $f(z)$, $\forall z \neq 0$.

Terminology

- Power series of f at z_0 is the **element** of f at z_0
- The sequence of centers $z_0, z_1, ...$ is called a chain of centers
- The process of going from one element to another is **analytic continuation**

Fraction combinatorics

•
$$
\binom{C}{n} = \frac{c(c-1)...(c-n+1)}{n!}
$$
.
\n• e.g. $\left(\frac{1}{2}\right) = \frac{\frac{1}{2} \cdot \left(-\frac{1}{2}\right) ... \cdot \left(\frac{1}{2} - n + 1\right)}{n!}$.

As we move around the analytic continuation, we may change the branch

Conclusions and theorems

- Suppose f is analytic in a domain D and $f = 0$ on some arc $l \subset D$ or even just a sequence of points $z_n \to z_0$. Then $f(z) = 0$ on D.
- Suppose f_1, f_2 are analytic on D and $f_1 = f_2$ on $l \subset D$, then $f_1 = f_2$ on D.
- Principle of permanence: suppose $f_1, ..., f_n$ are analytic on D and $P(x_1, ..., x_n)$ is a polynomial in n variables. Then if $P\big(f_1(z),...,f_n(z)\big)=0$ for z on some arc $l\subset D$, then $P\big(f_1,...,f_n\big)=0.$ $\cos^2 x + \sin^2 x = 1$ for all $x \in \mathbb{R}$, then $\cos^2 z + \sin^2 z = 1$ for all $z \in \mathbb{C}$.
- Monodromy theorem: suppose analytic continuation of an element produces elements at all points of a simply-connected domain D . Then these elements determine a single valued analytic function on D .
- Analytic continuation can sometimes be done by summation
- If an element at z_0 has a finite radius of convergence R, then there must be a singularity of the function on the circle $|z - z_0| = R$.
	- Singularity: there cannot be an element at this point
- There are functions analytic in a disk which cannot be analytically continued beyond the disk.
	- The disk boundary is a natural boundary.
	- \circ $z + z^2 + z^4 + z^8 + \cdots = \sum_{n=1}^{\infty} z^{2^n}$ has natural boundary $|z| = 1$.
- Riemann surfaces</mark>: suppose we have a many-valued function 1 to n. We can produce a one-toone function by taking n copies of the cut plane suitably glued together
	- Analytic continuation via a chain of centers going twice around the origin yields a singlevalued function on the Riemann surface
	- \circ This also works if the function is 1 to ∞ such as $\log z$.

MATH301 Page 4

Conformal mapping

January 10, 2022 11:03 AM

Applications

- Fluid dynamics (2D problem):
	- Find the streamlines (level curves)
	- Solution: $u(x, y) = c$ where $\nabla^2 u = u_{xx} + u_{yy} = 0$ outside the wing.
	- \circ Method: find f mapping exterior of the wing to exterior of a disk with f analytic Then solve the problem on the disk and use f to pull back streamlines to D
- Heat conduction
	- Find the steady state temperature in the strip with given boundary conditions
	- \circ Method: find analytic f mapping strip to upper half plane, solve the equation and use to map back to the strip
- Electric potential
	- Same as heat conduction

Mapping

- $w = f(z) = u(x, y) + iv(x, y)$.
- e.g. •

$$
\circ \ \ D = \Big\{ z = re^{i\theta} \colon 0 < r < \infty, 0 < \theta < \frac{\pi}{2} \Big\}, w = z^2.
$$

- Then $w = r^2 e^{2i\theta}$, $|w| = r^2 \in (0, \infty)$, arg $w = 2\theta \in (0, \pi)$.
- Properties
	- If ϕ is harmonic on D' , then $\phi \circ f$ should be harmonic on
		- \bullet $\phi \circ f$ is called pull back
	- \circ $f: D \to D'$ should be a bijection (one to one and onto)
	- \circ Similarity: small figures in z plane maps to roughly similar figures in the w-plane
	- \circ Boundary behavior: if f maps ∂D bijectively onto $\partial D'$, then f maps D bijectively to D' .

Local vs. global invertible

- Def: f is <mark>locally invertible</mark> at z_0 if there is a neighborhood of z_0 on which f has an inverse. \circ e.g. $w = z^2$ is not globally invertible but it is locally invertible except at $z = 0$.
- If f is analytic at z_0 and $f'(z_0) \neq 0$, then there is an open disk D centered at z_0 such that f is one to one and onto $f(D)$.

Conformal mapping

- A mapping is conformal at z_0 if it preserves angles at z_0 (both magnitude and sign)
- Let f be anlytic at z_0 . Then f is conformal at z_0 if and only if $f'(z_0) \neq 0$.
- <mark>Remarks</mark>
	- $\sigma \cdot r = |f'(z_0)|$ is a magnification factor
	- \circ Let $w = f(z) = z^2$. Then $f'(z) = 2z$, so f is conformal except at $z = 0$. At $z = 0$, angles are doubled.
		- Since f' has simple zero at $z = 0$.
	- \circ Small figures are rotated and uniformly magnified where f is conformal
	- If $f: D \to D' = f(D)$ is bijective and conformal, then $f^{-1}: D' \to D$ is bijective and conformal, since by inverse function theorem $\frac{d}{dw}f^{-1}(w) = \frac{1}{f'(w)}$ $\frac{1}{f'(z)} \neq 0.$
		- Also, if $f: D \to D'$ and $g: D \to D'$ are both bijective and conformal, then so is since $(g \circ f)'(z) = g'(f(z))f'(z) \neq 0$.
		- **The set of bijective conformal maps** $f: D \to D$ forms a group (with identity $z \to z$)

Riemann mapping theorem:

• Main problem: given 2 domains (possibly unbounded) with boundaries C, C' , find a conformal bijective function $f: D \to D'$.

- Notation: $u = open$ unit $disk = \{z \in \mathbb{C} : |z| < 1\}$.
- Theorem: let D be a simply connected domain which is not the entire plane. Then there exists a conformal bijection $f: D \to u$. •
	- \circ In fact, for any fixed $z_0 \in D$, there is a unique such f with $f(z_0) = 0$ and $f'(z_0) > 0$.
- Drawback: don't know what f is, only that it exists
- The uniqueness entails 3 real degrees of freedom •
	- \circ Choose $z_0 = x_0 + iy_0$.
	- \circ Rotation of the disk to ensure $f'(z_0) > 0$ (in general $f'(z_0) = re^{i\phi}$)
- Corollary: if D_1, D_2 are any 2 simply-connected domains (both not C), then there is a conformal bijection $f: D_1 \rightarrow D_2$.

Mobius transformations (fractional linear transformations)

Maps of the form $w = \frac{a}{c}$ • Maps of the form $w = \frac{u+1}{cz+d}$ where $a, b, c, d \neq 0$ and $ad - bc \neq 0$.

$$
\circ \quad \text{If } ad - bc = 0 \text{, then } \frac{b}{a} = \frac{d}{c} \text{ and } w = \frac{a}{c} \frac{z + \frac{a}{b}}{z + \frac{d}{c}} = \frac{a}{c} \text{ constant.}
$$

- Derivative: $\frac{dw}{dz} = \frac{a}{(c)}$ • Derivative: $\frac{aw}{dz} = \frac{aa-bc}{(cz+d)^2}$.
	- Is never zero
	- So the map is conformal everywhere except at its unique pole $z=-\frac{d}{dz}$ ○ So the map is conformal everywhere except at its unique pole $z = -\frac{a}{c}$.
- Basic Mobius transformations
	- \circ Rotation by ϕ : $w = f_1(z) = e^{i\phi} z$ ($a = e^{i\phi}$, $b = c = 0, d = 1$)
	- Magnification by $r: w = f_2(z) = rz$ $(a = r > 0, b = c = 0, d = 1)$
	- Translation by *b*: $w = f_3(z) = z + b$ ($a = 1, c = 0, d = 1$)
	- \circ Affine transform: $w = f(z) = az + b = f_3 \circ f_2 \circ f_1(z)$, $a = re^{i\phi} \neq 0$.
		- Such a linear f maps lines to lines and circles to circles.
	- Inversion map: $w = f(z) = \frac{1}{z}$ ○ Inversion map: $w = f(z) = \frac{1}{z}$ ($a = 0, b = 1, c = 1, d = 0$).
		- $re^{i\theta} \rightarrow \frac{1}{\pi}$ $re^{i\theta} \rightarrow \frac{1}{r}e^{-i\theta}$.
		- **■** Inversion in unit circle and reflection in real axis.
- Let S be the set of circles and straight lines in the plane
	- \circ A line is a circle with radius ∞ .
	- $w = \frac{1}{2}$ \circ $w = \frac{1}{z}$ maps S to S.
		- A circle passes origin gets inverted to a line
		- An element of S has equation $az\bar{z} \alpha z \bar{\alpha}\bar{z} + d = 0$ with $\alpha\bar{\alpha} > \alpha d$ ($a, d \in \mathbb{R}$, $\alpha \in \mathbb{C}$
			- $a = 0$: a line.

□
$$
a ≠ 0
$$
: a circle $\left(x - \frac{b}{a}\right)^2 + \left(y - \frac{c}{a}\right)^2 = \frac{b^2}{a^2} + \frac{c^2}{a^2} - \frac{d}{a}$.

- Any Mobius transformation $w = \frac{a}{c}$ ○ Any Mobius transformation $w = \frac{az+b}{cz+d}$ maps S to S.
- A line in C is a "circle" that passes throuh ∞ . In this case all elements of S (formally lines and circles) can be thought of as "circles"
	- Mobius transformations map "circles" to "circles"
- $w = e^i$ • $w = e^{i\theta} \frac{z-z_0}{z-\overline{z_0}}$ maps the upper half plane to the unit disk with 3 degrees of freedom.
	- Choose $z_0 = a + bi \in UHP$ for which $w = 0$.
	- \circ Choose an angle θ for rotation of disk

Point at infinity

- Also called: Riemann sphere, stereographic projection, Alexandroff one-point compactification
- Geometric version 1

- \circ Get a 1-1 mapping between sphere without the north pole and \mathbb{C} .
- \circ Gives a bijection from sphere to $\mathbb{C} \cup \{ \infty \}$.
- Geometric version 2
	- Similar to 1, but have center of sphere at origin
	- North sphere outside the unit disk
	- South sphere inside the unit disk
- Analytic version
	- \circ Consider $\mathbb C$ U $\{\infty\}$, neighborhood of ∞ is ∞ U F^C for any closed bounded $F\subset\mathbb C$. ■ $\infty \cup F^C$ is open.
	- \circ Compliment of F on Riemann sphere is an open neighborhood of N.
	- The map $z \rightarrow \frac{1}{z}$ ○ The map $z \to \frac{1}{z}$ is a continuous map on $\mathbb{C} \cup \{ \infty \}.$
		- \bullet 0 $\rightarrow \infty$ and $\infty \rightarrow 0$.
	- \circ On \mathbb{R} , $F^{\mathcal{C}}$ is disconnected, so we need both $\pm \infty$.
	- \circ On, C, open disks around ∞ are connected, there is only one point at ∞ .

Schwarz-Christoffel transformation

- Transforms UHP to a polygon
- Let P be a polygon in the w-plane, with vertices $w_0, w_1, ..., w_n$ and exterior angles $\alpha_1\pi, \alpha_2\pi, \dots, \alpha_n\pi$ with $\alpha_i \in (-1,1)$. Then there are complex constants A, B and real ordered numbers $x_1, ..., x_n$ (2 of which can be arbitrary) such that $w = f(z)$ maps UHP conformally one to one onto P, where $f(z) = A \int_{z_0}^{z} (\zeta - x_1)^{-\alpha_1} ... (\zeta - x_n)^{-\alpha_n} d\zeta + B$.
	- \circ A is a magification and rotation, B is a translation.
		- $A = 1, B = 0$ gives a polygon similar to P (same angles $\alpha_1 \pi, \alpha_2 \pi, \dots \alpha_n \pi$).
	- \circ Note: sum of exterior angles $\sum_{i=1}^n \alpha_i \pi = 2\pi$.
	- Tangent vectors are not rotated except at x_i , where they are rotated by $\alpha_i \pi$.
	- \circ Freedom to choose x_1, x_2 doesn't extend to $x_3, ..., x_n$, which are needed to set scale of sides

Applications to boundary value problems

- \circ Find ϕ defined \overline{D} such that $\nabla^2 \phi = 0$ inside D , $\phi = f$ on ∂D .
- \circ Solution is unique if D is bounded
- \circ Solution exists for nice D and f.
- Poisson formula
	- $D = \{z : |z| < R\}.$

$$
\bullet \quad \phi(re^{i\theta}) = \frac{R^2 - r^2}{2\pi} \int_0^{2\pi} \frac{f\left(Re^{it}\right)}{R^2 - 2Rr\cos(\theta - t) + r^2} dt.
$$

○ For unbounded domains, the solution to the Dirichlet problem may not be unique, unless some condition at ∞ is imposed (e.g. solution remain bounded)

• e.g.
$$
D = UHP
$$
, $\nabla^2 \phi = 0$, $\phi = 0$ at $y = 0$, has solution $\phi(x, y) = \lambda y$ for any $\lambda \in \mathbb{R}$.

Neumann problem •

 \circ Find ϕ defined \overline{D} such that $\nabla^2 \phi = 0$ inside D , $\frac{\partial \phi}{\partial n} = f$ on ∂D .

- With $\phi = \phi(x, y)$, $\frac{\partial \phi}{\partial n} = (\phi_x, \phi_y) \cdot (n_1, n_2)$.
- \circ Theorem: if D is bounded, then the solution to the Neumann problem is unique, up to an additive constant
- Note: if $f: D \to D'$ is analytic (conformal), $\phi: \overline{D'} \to \mathbb{R}$ is harmonic with $\frac{\partial \phi}{\partial n}$ on $\partial D'$, then $\psi = \phi \circ f$ is harmonic on D with $\frac{\partial \psi}{\partial n} = 0$ on ∂D .

Heat conduction example

- $\nabla^2 T = 0$ in $D = \{z: 0 < Im(z) < \pi\}$ with indicated boundary conditions.
	- Step 1: map strip to UHP
		- $w = f(z) = \cosh z$.
- Step 2: solve the problem in UHP
	- \circ Note: the argument function $\arg z$ is harmonic in UHP since $\arg z = Im(log z)$.
	- $\phi(w) = \frac{T_0}{T}$ $\phi(w) = \frac{r_0}{\pi}(-Arg(w+1) + Arg(w-1)).$
	- Since $\phi(w) = Im\left(\frac{T}{\pi}\right)$ \circ Since $\phi(w) = Im \left(\frac{r_0}{\pi} (-Log(w+1) + Log(w-1)) \right)$, ϕ is harmonic in UHP and obeys the boundary conditions.
	- Write $w = u + iv$, $\phi(u, v) = \frac{T}{\pi}$ \circ Write $w = u + iv$, $\phi(u, v) = \frac{l_0}{\pi} Arg(u^2 + v^2 - 1 + 2iv)$.
- Step 3: pull back to strip by $T = \phi \circ f$.
	- o Let $z = x + iy$, $f(z) = \cosh z = \cosh x \cos y + i \sinh x \sin y$.
	- \circ So $u = \cosh x \cos y$, $v = \sinh x \sin y$.
	- Note: $u^2 + v^2 1 = \sinh^2 x \sin^2 y$.

$$
\circ \quad T(x,y) = \phi\left(u(x,y),v(x,y)\right) = \frac{2T_0}{\pi}\arctan\left(\frac{\sin y}{\sinh x}\right).
$$

• Isotherms are $T(x,y)=const.$ Given by $\sin y = C \sinh x.$

2D fluid flow

•

- Problem: determine $v(x, y)$ and streamlines
- Notation: $v = (v_1, v_2) = v_1 + iv_2$.
- Assume velocity satisfies $v(x, y) \rightarrow (a, 0)$ as $x \rightarrow -\infty$, $a > 0$.
- Assumptions
	- \circ v is independent of time (steady state), v is smooth.
	- Flow is irrotational (curl free, $\frac{\partial}{\partial x}$ ∂ $\frac{\partial v_2}{\partial x}$) and incompressible (<mark>divergence free $\frac{\partial}{\partial \theta}$ </mark> ∂ \circ Flow is irrotational (<mark>curl free, $\frac{\partial v_1}{\partial y} = \frac{\partial v_2}{\partial x}$)</mark> and incompressible (divergence free $\frac{\partial v_1}{\partial x} + \frac{\partial v_2}{\partial y}$ (0) .
	- There are streamlines along boundary of the obstacle
- Define $f(z) = v_1 iv_2 = \overline{v}$ where $z = x + iy$.
- Then f is analytic since $\frac{\partial}{\partial}$ $\frac{\partial(-v_2)}{\partial y}$ and $\frac{\partial}{\partial}$ • Then f is analytic since $\frac{\partial v_1}{\partial x} = \frac{\partial (-v_2)}{\partial y}$ and $\frac{\partial v_1}{\partial y} = -\frac{\partial (-v_2)}{\partial x}$ i.e. obeys CR equation.
- Let $F(z) = \int_{z_0}^{z} f(\zeta) d\zeta$ (complex potential) independent of path for a simply connected domain
- If we know F , we can
	- \circ Obtain $v: v = v_1 + iv_2 = \overline{f(z)} = \overline{F'(z)}$.
	- \circ Streamlines: write $F(z) = \psi(x, y) + i\phi(x, y)$, ψ , ϕ are harmonic, streamlines are the level curves $\phi(x, y) = const.$
		- *v* is orthogonal to $\nabla \phi$.
- Parallel flow •
	- ∽ \circ ュ
	- \circ Velocity $v = (a, 0), a > 0$ is constant everywhere
	- $F'(z) = \bar{v} = a$, so $F(z) = az = a(x + iy)$.
	- $\phi(x, y) = ay$, streamlines are $y = const.$
	- Any flows can be mapped to the parallel flow
- Flow around corner

- \circ Potential in the UHP is $G(w) = aw$.
- Potential in z-plane (pull back) is $F(z) = G(f(z)) = az^{\frac{\pi}{\alpha}}$ **O** Potential in z-plane (pull back) is $F(z) = G(f(z)) = az^{\frac{n}{\alpha}}$.

$$
\circ \quad \bar{v} = \overline{F'(z)} = \frac{a\pi}{\alpha} \frac{\overline{z} \overline{\alpha}}{z}.
$$

- $\phi(x, y) = 2axy$, streamlines are $xy = const.$
- Cylinder obstacle
	- $\omega = f(z) = z + \frac{1}{2}$ \circ

$$
\circ \ \ F(z) = G(f(z)) = a\left(z + \frac{1}{z}\right).
$$

$$
\circ \ \phi(x,y) = a\left(y - \frac{y}{x^2 + y^2}\right), \text{ streamlines are } y - \frac{y}{x^2 + y^2} = \text{const.}
$$

• Simple barrier

• This has genuine application to aircraft design (Joukowsky transformation)

Asymptotic evaluation of integrals

January 10, 2022 11:04 AM

Examples

- Stirling's formula: $n! \sim n^n e^{-n} \sqrt{2\pi n}$ as $n \to \infty$. In more detail, $n! = n^n e^{-n} \sqrt{2\pi n} \left(1 + \frac{1}{12} \right)$ $rac{1}{12n} + \frac{1}{288}$ ○ In more detail, $n! = n^n e^{-n} \sqrt{2\pi n} \left(1 + \frac{1}{12n} + \frac{1}{288n^2} + O\left(\frac{1}{n^3}\right) \right)$.
- Prime number theorem: let $\pi(x)$ be the number of primes less than or equal to x ($x > 0$), then $\pi(x) \sim \frac{x}{\log x}$ $\frac{x}{\log x}$ as $x \to \infty$. •

O-Notations

- $A_R = \{z = re^{i\theta}, \alpha \le \theta \le \beta, r > R\}.$
- $f(z) = O(g(z))$ means $\exists R, M$ such that $|f(z)| \leq M|g(z)|$ for all $z \in A_R$. i.e. $\left| \frac{f}{a} \right|$ \circ i.e. $\left|\frac{f(z)}{g(z)}\right| \leq M$, for all $z \in A_R$.
- $f(z) = o(g(z))$ means $\forall \epsilon > 0$, $\exists R$ such that $|f(z)| \leq \epsilon |g(z)|$ for all $z \in A_R$. i.e. $\lim_{z\to\infty}\frac{f}{a}$ ○ i.e. $\lim_{z\to\infty} \frac{f(z)}{g(z)} = 0$.
- Examples
	- \circ $f(z) = O(1)$ means $f(z)$ is eventually bounded
	- \circ $f(z) = o(1)$ means $f(z) \to 0$.
	- o If $f(z) = o(g(z))$, then $f(z) = O(g(z))$.
	- Take $\alpha = \beta = 0$, then $e^{-x} = o\left(\frac{1}{x^2}\right)$ \circ Take $\alpha = \beta = 0$, then $e^{-x} = o\left(\frac{1}{x^n}\right)$ for all $n \ge 1$.
	- Take $\alpha = \beta = 0$, then $\frac{1}{2x^2 + x} = o\left(\frac{1}{x^2}\right)$ ○ Take $\alpha = \beta = 0$, then $\frac{1}{2x^2+x} = o\left(\frac{1}{x^2-p}\right)$ for $p ≥ 0$.

Def: We say $f(z) \sim S(z) = a_0 + \frac{a}{z}$ $rac{a_1}{z} + \frac{a}{z}$ $\frac{a_2}{z^2} + \cdots$, if $f(z) - S_n(z) = o\left(\frac{1}{z^n}\right)$ $\left(\frac{1}{z^n}\right)$, where $S_n(z) = \sum_{m=0}^n \frac{a}{z}$ Z $\frac{n}{m=0} \frac{a_m}{z^m}$, for all $n > 0$.

- $S(z)$ may not converge. • Write \sim instead of = because $S(z)$ may diverge even if f is finite.
- Properties
	- An improved remainder estimate is $\frac{f(z)-S_n(z)}{z^n} = O\left(\frac{1}{z^n}\right)$ ○ An improved remainder estimate is $f(z) - S_n(z) = O\left(\frac{1}{z^{n+1}}\right)$.
	- Uniqueness: if $f(z) \sim A(z) = \sum_{n=0}^{\infty} \frac{a}{n}$ $\sum_{n=0}^{\infty} \frac{a_n}{z^n}$ and $f(z) \sim B(z) = \sum_{n=0}^{\infty} \frac{b}{z}$ ○ <mark>Uniqueness</mark>: if $f(z) \sim A(z) = \sum_{n=0}^{\infty} \frac{a_n}{z^n}$ and $f(z) \sim B(z) = \sum_{n=0}^{\infty} \frac{b_n}{z^n}$, then $a_n = b_n$ for all $n > 0$.
	- Asymptotic expansions can be added or multiplied
	- Two different functions can have the same asymptotic expansion

$$
e^{-x}
$$
 \sim 0 + $\frac{0}{x}$ + $\frac{0}{x^2}$ + ..., 0 \sim 0 + $\frac{0}{x}$ + ...

• Example

○
$$
I(x) = \int_0^\infty \frac{e^{-t}}{t+x} dt \sim \sum_{n=0}^\infty \frac{(-1)^n n!}{x^{n+1}}
$$
 for large real $x > 0$.
○ $R_N(x) = I(x) - \sum_{n=0}^N \frac{(-1)^n n!}{x^{n+1}} = o\left(\frac{1}{x^{N+1}}\right)$.

Gamma function

- $\Gamma(z) = \int_0^\infty t^{z-1} e^{-t}$ • $\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$ for $Re(z) > 0$.
- The integral does converge for $Re(z) > 0$.
- $\Gamma(z)$ is analytic for $Re(z) > 0$, and $\Gamma'(z)$ can be computed by differentiating under the integral.
- Recursion, let $Re(z) > 0$, then $\Gamma(z + 1) = z \Gamma(z)$.
- Relation to factorial: $\Gamma(n + 1) = n!$ For $n \ge 0$.

•
$$
\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}
$$
.

• Analytic continuation.

- $\Gamma(z) = \frac{\Gamma}{(z+n)}$ $\Gamma(z) = \frac{1}{(z+n-1)...(z+1)z}$ with $Re(z) > 0$.
- \circ RHS is analytic for $Re(z + n) > 0$ or $Re(z) > -n$ except for simple poles at $0, -1, \ldots, -(n-1).$
- Since *n* is arbitrary, we get an analytic continuation of $\Gamma(z)$ to $\mathbb{C} \{0, -1, -2, ..., \}$.

Asymptotic equivalence

- Def: two functions $f(z)$ and $g(z)$ are asymptotically equivalent $f(z) \sim g(z)$ if $g(z)(1+o(1)).$
	- i.e. $\lim_{z\to\infty}\frac{f}{a}$ ○ i.e. $\lim_{z\to\infty}\frac{f(z)}{g(z)}=1$ (limit taken in a wedge).
	- A more detailed statement: $\frac{f(z)}{g(z)}$ ~ 1 + $\frac{b}{z}$ $rac{b_1}{z} + \frac{b}{z}$ ○ A more detailed statement: $\frac{f(z)}{g(z)}$ ~ 1 + $\frac{v_1}{z}$ + $\frac{v_2}{z^2}$ + …
	- \circ But often, just knowing $f(z) {\sim} g(z)$ is enough, f is hard to compute, g is easy to compute
- g provides an approximation to f with small relative error, but not necessarily small absolute error.

\n- \n
$$
f(z) = \frac{ze^z}{z+1}, \quad f(z) \sim e^z \text{ as } z \to \infty \text{ on } [0, \infty).
$$
\n
\n- \n**■** Absolute error: \n
$$
\left| f(z) - e^z \right| = \left| e^z \cdot \frac{1}{z+1} \right| \to \infty.
$$
\n
\n

$$
\bullet \quad \text{Relative error: } \left| \frac{f(z) - e^z}{f(z)} \right| = \left| \frac{e^z \frac{1}{z+1}}{\frac{ze^z}{z+1}} \right| = \left| \frac{1}{z} \right| \to 0.
$$

- Common f is $f(z) = \int_{\Gamma} e^{zh(\zeta)} g(\zeta) d\zeta$, Γ is some contour, $z \to \infty$ in some wedge.
	- $\Gamma(z + 1) = \int_0^\infty t^z e^{-t}$ $\int_0^{\infty} t^z e^{-t} dt = z^{z+1} \int_0^{\infty} e^{zt} dt$ $\int_0^{\infty} f(z+1) = \int_0^{\infty} t^z e^{-t} dt = z^{z+1} \int_0^{\infty} e^{z(\log u - u)} du, h(u) = \log u - u, g(u) = 1.$
	- Laplace transform: $\tilde{g}(z) = \int_{0}^{\infty} e^{-z}$ \circ Laplace transform: $\tilde{g}(z) = \int_0^{\infty} e^{-zt} g(t) dt$, $h(t) = -t$.
	- Fourier transform: $\hat{g}(z) = \int_{-\infty}^{\infty} e^{-z}$ \circ Fourier transform: $\hat{g}(z) = \int_{-\infty}^{\infty} e^{-izt} g(t) dt$, $h(t) = -it$.

Laplace transform

- $\tilde{g}(z) = \int_0^\infty e^{-zt} g(t) dt$. $\bf{0}$
- Expect $\tilde{g}(z)$ for large z to depend only on $g(t)$ for $t \approx 0$.
- If $g(t) = \sum_{n=0}^{\infty} a_n t^n$ for $|t| < t_0$, then $\tilde{g}(z) \sim \sum_{n=0}^{\infty} a_n \int_0^{\infty} e^{-zt} t^n$ $\bf{0}$ $\sum_{n=0}^{\infty} a_n \int_0^{\infty} e^{-zt} t^n dt.$ •
	- Let $u = zt$, $\int_0^\infty e^{-zt} t^n$ $\int_0^\infty e^{-zt}t^n dt = \frac{1}{z^n}$ $\frac{1}{z^{n+1}}\int_0^\infty e^{-u}u^n$ $\int_0^\infty e^{-u}u^n du = \frac{n}{z^n}$ o Let $u = zt$, $\int_0^{\infty} e^{-zt} t^n dt = \frac{1}{z^{n+1}} \int_0^{\infty} e^{-u} u^n du = \frac{u}{z^{n+1}}$. $\tilde{g}(z) \sim \sum_{n=0}^{\infty} \frac{a}{z}$ $\circ \ \ \tilde{g}(z) \sim \sum_{n=0}^{\infty} \frac{a_n n!}{z^{n+1}}$ Since $a_n = \frac{g^{(n)}(n)}{n!}$ $\frac{g^{(n)}(0)}{n!}$, $\tilde{g}(z) \sim \sum_{n=0}^{\infty} \frac{g^{(n)}(z)}{z^{n+1}}$ Since $a_n = \frac{g^{(0)}(0)}{n!}$, $\tilde{g}(z) \sim \sum_{n=0}^{\infty} \frac{g^{(0)}(0)}{z^{n+1}}$.
- Theorem: suppose g is continuous and bounded on $[0, \infty)$ and analytic at $t = 0$ with $\sum_{n=0}^{\infty} a_n t^n$ for $|t| \leq t_0$, then $\tilde{g}(z)$ \sim $\sum_{n=0}^{\infty} \frac{a}{z}$ $\sum_{n=0}^{\infty} \frac{a_n}{z^n}$ \boldsymbol{a} $\frac{a_0}{z} + \frac{a}{z}$ $\frac{a_1}{z^2} + \frac{a_1}{z}$ $\frac{u_2u_3}{z^3}$ + … as $z \to \infty$ along $[0, \infty)$.
- Watson's lemma: let $\tilde{g}(z) = \int_0^b e^{-z}$ • Watson's lemma: let $\tilde{g}(z) = \int_0^{\nu} e^{-zt} g(t) dt$, $b \in (0, \infty]$, where g is locally integrable and $g(t) {\sim} t^{\alpha} \sum_{n=0}^{\infty} a_n t^{\beta n}$ as $t \to 0$ with $\alpha > -1$, $\beta > 0$.
	- $\circ \text{ i.e. } g(t) t^{\alpha} \sum_{n=0}^{N} a_n t^{\beta n} = o(t^{\alpha+\beta_n}) \text{ as } t \to 0^+.$
	- If $b < \infty$, assume g is bounded $\left(|g(t)| \leq M, \forall t \in [0, b] \right)$.
	- $\vert \circ \vert$ if $b = \infty$, assume $\vert g(t) \vert \leq Me^{ct}$ for some $c, M > 0$, $\forall t \in [0, \infty)$.
	- Then $\tilde{g}(z) {\sim} \sum_{n=0}^{\infty} \frac{a}{z}$ ○ Then $\frac{\tilde{g}(z) \sim \sum_{n=0}^{\infty} \frac{a_n \Gamma(\alpha + \beta n + 1)}{z^{\alpha + \beta n + 1}}$ as $z \to \infty$ along $[0, \infty)$.
	- \circ For $\alpha = 0$, $\beta = 1$, matches the previous theorem.
- Improved Watson's lemma: Let $I(z) = \int_0^b e^{-zt} g(t) dt$, $b \in (0, \infty]$, with $g(t) \sim t^{\alpha} \sum_{n=1}^{\infty}$ $\bf{0}$ as $t \to 0$ with $\alpha > -1$, $\beta > 0$. Assume the integral exists for all sufficiently large z. Then $I(z)$ ~ $\sum_{0}^{\infty} a_n \frac{\Gamma}{z}$ $\int_{0}^{\infty} a_n \frac{1}{z^{\alpha}}$

• e.g.
$$
I(z) = \int_0^\infty \frac{e^{-zt}}{\sqrt{t^2 + 2t}} dt
$$
.
\n \circ $g(t) = \frac{1}{\sqrt{t^2 + 2t}} = \frac{1}{\sqrt{2t}} \frac{1}{\sqrt{1 + \frac{t}{2}}}$.
\n \circ Note: $(1 + x)^p = \sum_{n=0}^\infty {p \choose n} x^n$ for any $p \in \mathbb{R}$, $|x| < 1$.

MATH301 Page 11

And $\binom{p}{n}$ $\binom{p}{n} = \frac{p}{n}$ \circ And $\binom{P}{n} = \frac{P(P-1)\dots(P-n+1)}{n!}$ is the generalized binomial coefficient.

Laplace's method

- Informal: $I(z) = \int_a^b e^{-z}$ • Informal: $I(z) = \int_a^b e^{-zn(t)} g(t) dt$, $z \to \infty$ along $[0, \infty)$. Suppose g and h are smooth, a and may be infinite.
	- \circ Suppose h has a global minimum at $c \in (a, b)$, with $h'(c) = 0$, $h''(c) > 0$.
	- o Then $h(t) = h(c) + \frac{1}{2}h''(c)(t-c)^2 + \cdots$, $e^{-zh(t)} = e^{-zh(c)}e^{-z(h(t)-h(c))}$.
	- $\overline{\mathbf{c}}$ Expect $I(z) \sim \int_{c-\epsilon}^{c+\epsilon} e^{-zh(c)} e^{-\epsilon}$ $e^{c+\epsilon}e^{-zh(c)}e^{-z[h(t)-h(c)]}g(t)dt = e^{-zh(c)}\int_{c-\epsilon}^{c+\epsilon}e^{-z\frac{1}{2}}dt$ ○ Expect $I(z) \sim \int_{c-\epsilon}^{c+\epsilon} e^{-zh(c)} e^{-z[h(t)-h(c)]} g(t) dt = e^{-zh(c)} \int_{c-\epsilon}^{c+\epsilon} e^{-z\frac{1}{2}h''(c)(t-c)^2} g(c) dt$. Actually $I(z) \sim \frac{\sqrt{2\pi}e^{-z}}{\sqrt{2\pi}e^{-z}}$ \circ Actually $I(z) \sim \frac{\sqrt{2\pi c}}{\sqrt{z h''(c)}}$.
- Formal: let $I(z) = \int_{a}^{b} e^{-z}$ • Formal: let $I(z) = \int_a^z e^{-zn(t)} g(t) dt$. Suppose there exists a unique $c \in (a, b)$ such that $h'(c) = 0$, suppose also that $h''(c) > 0$ and that $h \in C^4$, $g \in C^2$, $g(c) \neq 0$. Then $\sqrt{2\pi}e^ \frac{\sqrt{2\pi e^{-2h(c)}g(c)}}{\sqrt{zh''(c)}}\Big[1+O\Big(\frac{1}{z}\Big)$ $\frac{1}{z}$)].

If c is an end point (a or b), instead $I(z) = \frac{1}{2}$ $\frac{1}{2} \frac{\sqrt{2\pi}e^{-}}{\sqrt{2}}$ $\frac{\sqrt{2\pi e^{-2R(C)}}g(c)}{\sqrt{2h''(c)}}\Bigg[1+O\Big(\frac{1}{\sqrt{2}}\Bigg)$ ○ If c is an end point (a or b), instead $I(z) = \frac{1}{2} \frac{\sqrt{z h^{\prime\prime}(c)}}{\sqrt{z h^{\prime\prime}(c)}} \left[1 + O\left(\frac{1}{\sqrt{z}}\right)\right]$.

•
$$
I(z) = \int_{-\infty}^{\infty} e^{-z \sinh^2 t} dt = \sqrt{\frac{\pi}{z}} [1 + O(\frac{1}{z})].
$$

 \circ $g(t) = 1, h(t) = \sinh^2 t, h'(t) = \sinh 2t, h''(t) = 2 \cosh 2t.$

Stirling's formula: $\Gamma(z+1) = \int_0^\infty t^z e^{-t}$ $\int_0^\infty t^ze^{-t}dt = z^ze^{-z}\sqrt{2\pi z}\left(1+O\left(\frac{1}{z}\right)\right)$ $\frac{1}{z}$)). •

• Let
$$
t = uz
$$
, $\int_0^\infty t^z e^{-t} dt = z^{z+1} \int_0^\infty e^{-z(u-\log u)} du$.
\n• $g(u) = 1$, $h(u) = u - \log u$, $h'(u) = 1 - \frac{1}{u'}$, $h''(u) = \frac{1}{u^2}$.

A useful contour integral

- $I_{\alpha,p}(v) = \int_0^\infty t^{\alpha-1} e^{ivt^p} dt$ where $v \in \mathbb{R}$, $v \neq 0$, $0 < \alpha < p$.
- $I_{\alpha,p}(\nu) = \frac{\Gamma(\frac{\alpha}{p})}{\Gamma(\frac{\alpha}{p})}$ $\frac{a}{p}$ $\frac{\Gamma\left(\frac{\alpha}{p}\right)}{p|v|^{a/p}}e^{i\frac{\pi}{2}}$ $\frac{\pi a}{2p}$ • $I_{\alpha,p}(\nu) = \frac{1}{p \ln(\alpha/p)} e^{i \frac{\pi}{2p} \text{sgn}(\nu)}$.
- Special case: Fresnel integral with $\alpha = 1, p = 2$.

$$
\circ I_{1,2}(\nu) = \int_0^\infty e^{i\nu t^2} dt = \frac{\Gamma(\frac{1}{2})}{2\sqrt{|\nu|}} e^{\operatorname{sgn}(\nu)\frac{i\pi}{4}}.
$$

or for $\nu > 0$, $I_{1,2}(\nu) = \frac{1}{2} \sqrt{\frac{\pi}{\nu} \frac{1+i}{\sqrt{2}}}$, so $\int_0^\infty \sin(\nu t^2) dt = \int_0^\infty \cos(\nu t^2) dt = \sqrt{\frac{\pi}{8} \frac{1}{\sqrt{\nu}}}$.

Stationary phase method

Change the variable names of the previous integral •

$$
\circ \quad I_{\lambda,\mu}(z) = \int_a^b t^{\lambda-1} e^{izt^{\mu}} dt = \frac{\Gamma(\frac{\lambda}{\mu})}{\mu |z|^{\lambda/\mu}} e^{i\frac{\pi\lambda}{2\mu}sgn(z)} \text{ for } 0 < \lambda < \mu, z \in \mathbb{R}, z \neq 0.
$$

- For Fourier type integrals, $I(z) = \int_a^b e^i$ • For Fourier type integrals, $I(z) = \int_{a}^{z} e^{izh(t)} g(t) dt$ for real-valued g, h.
	- Riemann-Lebesgue Lemma: $\int_{-\pi}^{\pi} f(x) \cos nx \, dx \to 0$ as $n \to \infty$ if f is Riemann integrable
	- \circ Thus $\int_{-\pi}^{\pi} f(x)e^{inx} dx \to 0$ as $n \to \infty$.
	- Idea: adjacent peaks and valleys create cancellation in the integral
	- Cancellations in $\int_{a}^{b} e^{i\theta}$ \circ Cancellations in $\int_{a}^{b} e^{izh(t)}g(t)dt$ are least at endpoints due to lack of symmetry and at peaks where $h'(t) = 0$ because $h(t)$ varies more slowly there.
- Endpoint behavior for $h(t) = t$.
	- $\int_a^b e^i$ $\int_a^b e^{izt} g(t) dt \sim \frac{1}{iz}$ i $\int_a^b e^{izt} g(t) dt \sim \frac{1}{\ln} \left(e^{izb} g(b) - e^{iza} g(a) \right)$ using IBP.
- Stationary point
	- O Suppose $h'(c) = 0$, $h''(c) \neq 0$, $h'(t) \neq 0$ for all $t \neq c$.
	- Then $\int_{c-\epsilon}^{c+\epsilon} e^i$ $\int_{c-\epsilon}^{c+\epsilon} e^{izh(t)} g(t) dt \approx \sqrt{\frac{2}{|h|}}$ $\frac{1}{\vert I \vert}$ ۳ e^i $\frac{1}{\sqrt{z}}e^{i\frac{\pi}{4}}$ \circ Then $\int_{c-c}^{c+\epsilon} e^{izh(t)} g(t) dt \approx \int_{\frac{|hH(c)|}{|h(H(c)|}}^{2\pi} e^{izh(c)} \frac{1}{\sqrt{c}} e^{i\frac{a}{4}\sigma}$, where $\sigma = \text{sgn } h''(c)$.

Stationary phase theorem

- Consider $I(z) = \int_a^b e^{iz}$ • Consider $I(z) = \int_a^z e^{izh(t)}g(t)dt$ with a finite $b > a$ (possibly infinite), assume:
	- In (a, b) , h' and g are continuous, $h''(t) > 0$ and $g'(t)$ and $\frac{g(t)}{h'(t)}$ are continuously differentiable with the latter integrable on (a, b) .
	- $\circ\;\;$ As $t\to a^+$, there are $\mu>\lambda>0$ such that $h(t)-h(a){\sim}c_1(t-a)^\mu$, $g(t){\sim}c_2(t-a)^\lambda$ and the first is twice differentiable, the second is once differentiable.
	- As $t \to b^-$, $\frac{g}{b^+}$ \circ As $t \to b^{-}$, $\frac{g(t)}{h'(t)} \to$ finite limit which is zero if $b \to \infty$.
- Then $I(z) {\sim} e^{i \pi \frac{-z}{2}}$ $\frac{c_2}{\mu} \Gamma\left(\frac{\lambda}{\mu}\right)$ $\left(\frac{\lambda}{\mu}\right)\frac{e^{\lambda}}{(c_1)}$ • Then $I(z) \sim e^{i\alpha z \mu} \frac{c_2}{\mu} \Gamma\left(\frac{\mu}{\mu}\right) \frac{c}{(c_1 z)^{\lambda/\mu}}$.
- Special case:
	- Conditions: $a = 0$, $h(t) {\sim} c_1 t^2$ as $t \to 0^+$ ($c_1 = \frac{h^2}{h^2}$ \circ Conditions: $a = 0$, $h(t) \sim c_1 t^2$ as $t \to 0^+$ $(c_1 = \frac{h'(0)}{2})$, $g(t) \sim g(0)$ as $t \to 0^+$.
	- \circ $\mu = 2, \lambda = 1.$ $I(z) \sim \frac{\pi}{2}$ $\frac{\pi}{2}$ $\frac{1}{\pi}$ 1 $rac{1}{\sqrt{h''(0)}}e^{\frac{i}{2}}$ $\frac{m}{4}g(0)\frac{1}{6}$ $0 \int_{Q} I(z) \sim \sqrt{\frac{n}{2} \frac{1}{\sqrt{h''(0)}} e^{\frac{1}{4}} g(0)} \frac{1}{\sqrt{z}}.$
	- \circ Half the previous example, the $\frac{1}{2}$ will disappear for an interior point.

Application to Bessel functions $J_n(z)$.

- Def: Let $\mathbf{1}$ $rac{1}{2}z\left(\zeta-\frac{1}{\zeta}\right)$ $\bar{\bar{z}}$) (generating function), $\zeta \in \mathbb{C} - \{0\}$. Fixed $z \in \mathbb{C}$. Since f is analytic on $\mathbb{C}-\{0\}$, it has a Laurent expansion $f\big(\zeta\big)=\sum_{-\infty}^{\infty}J_{n}(z)\zeta^{n}$ convergent for $z\neq0.$ •
- $J_n(z) = \frac{1}{2\pi}$ $\overline{\mathbf{c}}$ f • $J_n(z) = \frac{1}{2\pi i} \int_C \frac{f(s)}{\zeta^{n+1}} d\zeta.$
- If $C: |z| = 1$, we get $J_n(z) = \frac{1}{2i}$ $\frac{1}{2\pi} \int_0^{2\pi} e^{iz \sin \theta} e^{-i \theta}$ • If $C: |z| = 1$, we get $J_n(z) = \frac{1}{2\pi} \int_0^{2\pi} e^{iz \sin \theta} e^{-in \theta} d\theta$. o If $z \in \mathbb{R}$, $|J_n(z)| \leq 1$.
	-
- The power series: $J_n(z) = \left(\frac{z}{z}\right)$ $\left(\frac{z}{2}\right)^n \sum_{k=0}^{\infty} \frac{(-1)^k}{k!}$ $\frac{(-1)^k}{k!} \frac{1}{(n+1)}$ $\frac{1}{(n+k)!}\frac{1}{2^2}$ • The power series: $J_n(z) = \left(\frac{z}{2}\right)^{x} \sum_{k=0}^{\infty} \frac{(-1)^n}{k!} \frac{1}{(n+k)!} \frac{1}{2^{2k}} z^{2k}$.
	- \circ Ratio test gives radius of convergence ∞
	- \circ $J_n(z)$ is entire and has zero of order *n* at $z = 0$.
	- This is a solution to the Bessel equation $J''_n(z) + \frac{1}{z}$ $rac{1}{z}J'_n(z) + \left(1 - \frac{n^2}{z^2}\right)$ ○ This is a solution to the Bessel equation $J''_n(z) + \frac{1}{z}J'_n(z) + (1 - \frac{n}{z^2})J_n(z) = 0$.
- Asymptotic behavior of $J_n(z) = \frac{1}{2z}$ $\frac{1}{2\pi} \int_0^{2\pi} e^{iz \sin \theta} e^{-i \theta}$ • Asymptotic behavior of $J_n(z) = \frac{1}{2\pi} \int_0^{2\pi} e^{iz \sin \theta} e^{-in \theta} d\theta$.
	- $g(\theta) = e^{-in\theta}$, $h(\theta) = \sin \theta$, critical points at $\frac{\pi}{2}, \frac{3\pi}{2}$ \circ $g(\theta) = e^{-in\theta}$, $h(\theta) = \sin \theta$, critical points at $\frac{\pi}{2}, \frac{3\pi}{2}$, need spliting.
	- $J_n(z) = \frac{1}{2z}$ $\frac{1}{2\pi} \int_0^{\pi} e^{iz \sin \theta} e^{-i \theta}$ $\int_0^{\pi} e^{iz \sin \theta} e^{-in \theta} d\theta + \frac{1}{2i}$ $\frac{1}{2\pi}\int_{\pi}^{2\pi}e^{iz\sin\theta}e^{-i\theta}$ \circ $\int_{\mathcal{R}}(z) = \frac{1}{2\pi} \int_0^{\pi} e^{iz \sin \theta} e^{-in \theta} d\theta + \frac{1}{2\pi} \int_{\pi}^{2\pi} e^{iz \sin \theta} e^{-in \theta} d\theta.$

$$
\circ \quad \sim \frac{2}{\sqrt{2\pi z}} \cos \left(z - \frac{\pi}{4} - \frac{n\pi}{2} \right).
$$

$$
\frac{\pi}{4} - \frac{n\pi}{2}
$$
 is the phase shift

 $\frac{4}{2}$ and $\frac{2}{2}$ is the phase shift.

Method of steepest descent example (Airy function)

- Airy function: $Ai(x) = \frac{1}{x}$ $\frac{1}{\pi} \int_0^\infty \cos \left(\frac{1}{3} \right)$ $\frac{1}{3}t^3$ • Airy function: $Ai(x) = \frac{1}{\pi} \int_0^{\infty} \cos\left(\frac{1}{3}t^3 + xt\right) dt$.
- Consider the behavior as $x \to \infty$ along $[0, \infty)$.
- Rewrite in exponential form: $Ai(x) = \frac{1}{2x}$ $\frac{1}{2\pi}\int_{-\infty}^{\infty}e^{i\left(\frac{1}{3}\right)}$ $\frac{1}{3}t^3$ • Rewrite in exponential form: $Ai(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i(\frac{\pi}{3}t^2 + \lambda t)} dt$.
- Let $t = \sqrt{x}w$, $Ai(x) = \frac{\sqrt{x}}{2\pi}$ $\frac{\sqrt{x}}{2\pi} \int_{-\infty}^{\infty} e^{ix^{\frac{3}{2}} \left(w+\frac{1}{3}\right)}$ • Let $t = \sqrt{x}w$, $Ai(x) = \frac{\sqrt{x}}{2\pi} \int_{-\infty}^{\infty} e^{ix\overline{z}(w + \frac{1}{3}w^3)} dw$.
- Let $z = \sqrt{x}$, $Ai(z) = \frac{z}{z}$ $\frac{z}{2\pi} \int_{-\infty}^{\infty} e^{iz^3 \left(w + \frac{1}{3}\right)}$ • Let $z = \sqrt{x}$, $Ai(z) = \frac{z}{2\pi} \int_{-\infty}^{\infty} e^{iz^3 (w + \frac{1}{3}w^3)} dw$.
- Let $h(w) = w + \frac{1}{2}$ • Let $h(w) = w + \frac{1}{3}w^3$, $h'(w) = 1 + w^2$, $h''(w) = 2w$.
	- Critical points: $w = \pm i$, $h'(\pm i) = 0$, $h''(\pm i) = \pm 2i$, $ih(i) = -\frac{2}{3}$ ○ Critical points: $w = \pm i$, $h'(\pm i) = 0$, $h''(\pm i) = \pm 2i$, $ih(i) = -\frac{2}{3}$.
- \bullet Idea: deform the contour from the real axis to a new contour C which passes through a critical point
- Write $h(w) = u(w) + iv(w)$.
	- \circ We want that on C, we have $Im(ih(w)) = u(w) = const = u_0$, C is a level curve of passing through a critical point. Then $\int_{C} e^{iz^{3}h(w)} dw = e^{iz^{3}u_{0}} \int_{C} e^{-z^{3}v(w)} dw$.
- \circ $iz^3h = iz^3u z^3v$.
- $u(w) = x xy^2 + \frac{1}{2}$ \circ $u(w) = x - xy^2 + \frac{1}{3}x^3$.
	- Level curves through $i=(0,1)$ is $x\left(1-y^2+\frac{1}{x}\right)$ ■ Level curves through $i = (0,1)$ is $x(1 - y^2 + \frac{1}{3}x^2) = 0 = u_0$.
	- $x = 0$ or $3y^2 x^3 = 3$.
	- **•** Choose the upper branch of the hyperbola (passing through i) as C , because it is the part of **steepest descent** of $-v(w)$.
	- **•** The $x = 0$ is the path of **steepest ascent**.
- $v(w) = y \frac{1}{3}$ $v(w) = y - \frac{1}{3}y^3 + x^2y.$
	- **•** Gradient of $-v$ is parallel to level curves of u.
- Deformation from the real axis to
	- Want to show $\int_{-\infty}^{\infty} e^{iz^3}$ \circ Want to show $\int_{-\infty}^{\infty} e^{iz^3h(w)} dw = \int_{C} e^{iz^3h(w)} dw$.
	- The integrand is entire, so local deformation are OK by Cauchy integral theorem
	- The only difficulty is at infinity
	- Claim: we can deform the contour to any contour going to ∞ as $\lambda e^{i\theta}$ with $\theta \in \left[0, \frac{\pi}{2}\right]$ ○ Claim: we can deform the contour to any contour going to ∞ as $\lambda e^{i\theta}$ with $\theta \in \left[0, \frac{\pi}{3}\right)$, similarly on left side with $\theta \in \left(\frac{2}{3}\right)$ $\frac{2\pi}{3}, \pi$.
		- Verification: $\int_{\Gamma_{\rm n}} e^{z^3ih(w)} dw = \int_0^\beta e^{z^3ih\left(Re^{i\theta}\right)} Rie^{i\theta}$ ■ Verification: $\int_{\Gamma_R} e^{z^3 \ln(w)} dw = \int_0^{\rho} e^{z^3 \ln(e^{i\theta})} R i e^{i\theta} d\theta$. $\left| \int_{\Gamma_{\rm D}} e^{z^3 i h(w)} dw \right| \leq \int_0^{\beta} e^{-\frac{1}{3}}$ $\frac{1}{3}R^3$ s $r^{\beta} e^{-\frac{1}{3}R^3 \sin 3\theta} R d\theta \le R \int_0^{\beta} e^{-\frac{1}{3}R^3}$ $\int_0^\beta e^{-\frac{1}{3}R^3m_\beta\theta}d\theta=O\left(\frac{1}{R^3}\right)$ $\left| \int_{\Gamma_R} e^{z^3 \ln(w)} dw \right| \leq \int_0^p e^{-\frac{z}{3} K^2 \sin 3\theta} R d\theta \leq R \int_0^p e^{-\frac{z}{3} K^2 m} \theta^{\theta} d\theta = O \left(\frac{1}{R^2} \right).$

$$
\circ \quad \text{So } Ai(z^2) = \frac{z}{2\pi} \int_C e^{-z^3 v(w)} dw.
$$

- Apply Laplace's method (asymptotic behavior is dominated by $w = i$ critical point)
	- On the contour C , $-v(w) = ih(w) = i\Big(h(i) + h'(i)(w i) + \frac{h'(i)}{2}$ ○ On the contour $C, -v(w) = ih(w) = i (h(i) + h'(i)(w - i) + \frac{h'(i)}{2}(w - i)^2).$

$$
\circ \ h(i) = \frac{2}{3}i, h'(i) = 0, h''(i) = 2i.
$$

 $ih(w) = -\frac{2}{3}$ \circ $ih(w) = -\frac{2}{3} - (w - i)^2$.

$$
\circ \int_{C} e^{-z^{3}v(w)} dw = \int_{C} e^{iz^{3}h(w)} dw \sim e^{-\frac{2}{3}z^{3}} \int_{C_{\epsilon}} e^{-z^{3}(w-i)^{2}} dw = e^{-\frac{2}{3}z^{3}} \int_{-\epsilon}^{\epsilon} e^{-z^{3}t^{2}} dt.
$$

$$
\circ \sim e^{-\frac{2}{3}z^3} \int_{-\infty}^{\infty} e^{-z^3 t^2} dt = \frac{\sqrt{\pi}}{z^{3/2}} e^{-\frac{2}{3}z^3}.
$$

o Put $x = z^2$, $Ai(x) \sim \frac{1}{2\sqrt{\pi}} \frac{1}{x^{1/4}} e^{-\frac{2}{3}x^2}$ as $x \to \infty$ along $[0, \infty)$.

Steepest descent theorem

- Let $\gamma : (a, b) \to \mathbb{C}$ be a C^1 curve $(a = -\infty$ and/or $b = \infty$ is allowed).
- Let $f(w)$ be continuous along γ and analytic at $w_0 = \gamma(t_0)$, $t_0 \in (a, b)$.
- Let g be a bounded and continuous funciton on γ with $g(t_0) \neq 0$.
- Suppose that for $|z| \geq R$ and arg *z* fixed.
	- $\int_{\gamma} e^z$ $\circ \ \ \int_{\gamma}e^{zf(w)}g(w)dw$ converges absolutely.
	- \circ $f'(w_0) = 0, f''(w_0) \neq 0.$
	- \circ $Im(zf(w)) = const$ for w on y in some neighborhood of w_0 .
	- \circ Re $\big(zf(w_0)\big)$ > Re $\big(zf(\gamma(t))\big)$ for all $t \neq t_0$. ($-v(w)$ takes its unique max on γ at the critical point)
- Then $\int_{\nu}e^{z}$ $\int\limits_{\gamma}e^{zf(w)}g(w)dw\!\sim\!e^{z}$ \cdot $\frac{\sqrt{2\pi}}{\sqrt{2\pi}}$ • Then $\int_{\gamma} e^{z f(w)} g(w) dw \sim e^{z f(w)} \frac{\sqrt{2\pi}}{\sqrt{z}} \int_{-\epsilon''(w_0)} \frac{1}{\sqrt{z}} g(w_0)$ as $z \to \infty$, arg z fixed.

• Application to Airy function
$$
Ai(x) = \frac{x}{2\pi} \int_{-\infty}^{\infty} e^{ix^{\frac{3}{2}}(w + \frac{1}{3}w^3)} dw
$$
.

$$
f(w) = ih(w) = i\left(w + \frac{1}{3}w^3\right), g(w) = 1, z = x^{\frac{3}{2}}.
$$

 \circ Deform to a contour C such that $Im(ih) = u = const$, $Re(ih) = -v$ is maximal at i.

$$
\circ \quad f(w_0) = -\frac{2}{3}, \quad f''(w_0) = -2.
$$

$$
\circ A_i(x) \sim \frac{\sqrt{x}}{2\pi} e^{-\frac{2}{3}x^{\frac{3}{2}}}\frac{\sqrt{2\pi}}{\sqrt{2}}\frac{1}{\sqrt{x^{\frac{3}{2}}}} = \frac{1}{2\sqrt{\pi}}\frac{1}{x^{1/4}}e^{-\frac{2}{3}x^{\frac{3}{2}}}.
$$

MATH301 Page 14

- Example: $I(z) = \int_{-\infty}^{\infty} e^{izt} (1 + t^2)^{-z} dt$ as $z \to \infty$ along $[0, \infty)$.
	- \circ Rewrite as $I(z) = \int_{-\infty}^{\infty} \exp(z(it \text{Log}(1 + t^2))) dt$.
	- \circ Take the branch cut for $\text{Log}(1+t^2)$ at $t > i$ and $t < -i$.
		- **IF** In the cut plane, $Log(1 + t^2)$ is analytic.
	- o Let $f(w) = iw \text{Log}(1 + w^2)$.

•
$$
f'(w) = i - \frac{2w}{1 + w^2}
$$
, $w_0 = i(\sqrt{2} - 1)$.
\n• $f''(w) = \frac{2(w^2 - 1)}{(w - 2)^2}$, $f''(w_0) = -\frac{c^2 + 1}{2} = -\frac{c^2 + 1}{2} = -\frac{c^2}{2} = -\$

- $\frac{2(w^2-1)}{(1+w^2)^2}f''(w_0)=-\frac{c}{2}$ • $f''(w) = \frac{2(w-1)}{(1+w^2)^2} f''(w_0) = -\frac{c+1}{2c^2}$. • $f(w_0) = -c - \log 2c$ $(c = \sqrt{2} - 1).$
- $Re(f(w)) = -y log|1 + w^2| = -y \frac{1}{2}log((1 + x^2 y^2) + 4x^2y^2)$. $\overline{\mathbf{c}}$
- $Im(f(w)) = x \arctan \frac{2xy}{1 + x^2 y^2}Im(f(w_0)) = 0.$
- \circ Path of steepest descent: $Im(f(w_0)) = 0$.

○ Substitute into the theorem:
$$
I(z) \sim \frac{2c}{\sqrt{c^2+1}} \sqrt{\frac{\pi}{z}} e^{-cz} \frac{1}{(2c)^2}
$$
.

Laplace transform

- Def: for $f: [0, \infty) \to \mathbb{C}$ of exponential order (i.e. $\exists A > 0, D \in \mathbb{R}$ such that $|f(t)| \leq Ae^{Bt}$ for all
	- $t\geq 0$), its Laplace transform is $\tilde{f}(z)=\int_0^\infty e^{-z}$ $\int_0^\infty e^{-zt} f(t) dt$.
- Facts
	- There exists a unique $\sigma \in [-\infty, \infty)$ such that the integral converges if $Re(z) > \sigma$, diverges if $Re(z) < \sigma$.
	- \tilde{f} is analytic on $Re(z) > \sigma$ and $(z) = -\int_0^\infty e^{-z}$ \circ \hat{f} is analytic on $Re(z) > \sigma$ and $(z) = -\int_0^\infty e^{-zt}tf(t)dt$.
	- \circ If $f(t)$ and $g(t)$ are continuous and $\tilde{f}(z) = \tilde{g}(z)$ for $Re(z) > x_0$ for some x_0 , then $f(t) = g(t)$ for all $t \in [0, \infty)$.

Inverse Laplace transform

• Complex inversion formula: suppose $F: \mathbb{C} \to \mathbb{C}$ is analytic except for a finite number of isolated singularities z_j and that F is analytic on $\{z: Re(z) > \sigma\}$. Suppose $|F(z)| \leq \frac{M}{|z|}$ $\frac{m}{|z|^{\beta}}$ for all

with $\beta > 0$. For $t \geq 0$, let $\frac{f(t) = \sum_{j} Res(e^{zt}F(z); z_j)}{s}$. Then $\tilde{f}(z) = F(z)$ for $Re(z) > \sigma$.

- Note: decay condition is satisfied if $F(z) = \frac{P}{Q}$ • Note: decay condition is satisfied if $F(z) = \frac{F(z)}{Q(z)}$, P, Q polynomials, deg $P \ge \deg Q + 1$.
	- With $Q(z)$ having simple zeros at $z_1, ..., z_n$, $f(t) = \sum_{i=1}^n e^{z_j t} \frac{F(z_i)}{g}$ ○ With $Q(z)$ having simple zeros at $z_1, ..., z_n$, $f(t) = \sum_{j=1}^n e^{z_j t} \frac{f(z_j)}{q'(z_j)}$ (special case of Heaviside expansion theorem).
	- \circ The abscissa of convergence is $\sigma(f) = \max\{Re(z_1), ..., Re(z_n)\}.$
- Integral form of inverse theorem: suppose the theorem's hypothesis hold, with the rightmost singularities z_j of F on the line $Re(z) = \sigma$, then the abscissa of convergence of F is σ , and $f(t) = \frac{1}{2\pi}$ \overline{c} $\int_{\alpha - i\infty}^{\alpha + i\infty} e^{zt} F(z) dz$ for $\alpha > \sigma$.

Fourier and inverse Fourier transform

- The Fourier transform of an integrable function $f: \mathbb{R} \to \mathbb{C}$ is $\hat{f}(y) = \int_{-\infty}^{\infty} e^{-y}$ • The Fourier transform of an integrable function $f: \mathbb{R} \to \mathbb{C}$ is $f(y) = \int_{-\infty}^{\infty} e^{-iyt} f(t) dt$.
- The inverse transform is $f(t) = \frac{1}{2t}$ $\frac{1}{2\pi}\int_{-\infty}^{\infty}\hat{f}(y)e^{i\theta}$ • The inverse transform is $f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(y) e^{iyt} dy$.