Basics

October 9, 2020 9:07 PM

Arithmetic in \mathbb{C} :

- $(a + bi) \pm (c + di) = (a \pm c) + (b \pm di)$
- (a + bi)(c + di) = (ac bd) + (ad + bc)i
- $\frac{a+bi}{c+di} = \frac{(ac+bd)+(bc-ad)i}{c^2+d^2}$
- z = a + bi

$$\circ Re(z) = a, Im(z) = b$$

- $\circ |z| = \sqrt{(a^2 + b^2)}$
 - $\circ \ \bar{z} = a bi$

•
$$Z = z + z, zz = zz, (z/z) = z/z$$

• $|\bar{z}| = |z|$

•
$$Re(z) = \frac{1}{2}(\overline{z} + z)$$

•
$$lm(z) = \frac{1}{2i}(\bar{z} + z)$$

•
$$\frac{z_2}{z_2} = \frac{|z|}{|z_2|^2}, \frac{1}{z} = \frac{\bar{z}}{|z|^2}$$

Polar forms

- $r \operatorname{cis} \theta = r(\cos \theta + i \sin \theta)$
- $z_1 = r_1 \operatorname{cis} \theta$, $z_2 = r_2 \operatorname{cis} \theta$, then $z_1 z_2 = r_1 r_2 \operatorname{cis} (\theta_1 + \theta_2)$
- De Moivre's formula: $(cis\theta)^n = cis(n\theta)$
- The m-th roots of $z = rcis\theta$ is $\zeta = r\frac{1}{m}cis\left(\frac{\theta + 2k\pi}{m}\right)$
- Can write $r cis\theta = re^{i\theta}$ $\circ z \frac{1}{m} = r \frac{1}{m} e^{\frac{\theta + 2k\pi}{m}}$

Planar sets

- Examples
 - $\circ \ \ |z-z_0|=\rho \text{, circle center at } z_0 \text{, radius } \rho$
 - $|z z_0| < \rho$, open disk
 - $\circ |z| < 1$, unit disk
- Open sets: A subset $S \subset \mathbb{C}$ is an open set if $\forall z_0 \in S, \exists \rho > 0: |z z_0| < \rho$ lies in S
 - \circ 1 < |z| < 2 is open
 - $\circ 1 \leq |z| \leq 2$ is not open
- Connected set: a set for which every pair of points in the set has some polygonal path (several straight lines) in the set that joins them
 - A domain is an open set
- A cut plane is defined as $\mathbb{C}\setminus(-\infty, 0]$

Analytic functions

October 9, 2020 9:22 PM

Complex Functions

• Let $S \subset \mathbb{C}$, a function f with domain S is a mapping from S to \mathbb{C} , i.e. $\forall z \in S$, there is a unique $f(z) \in \mathbb{C}$

Limits

- $w_0 = \lim_{z \to z_0} f(z)$ means $\forall \epsilon > 0$, $\exists \delta > 0$ such that $|f(z) w_0| < \epsilon$ whenever $0 < |z z_0| < \delta$
- Continuity: f is continuous at z_0 if
 - *f* is defined in $\{z: |z z_0| < \delta\}$ for some $\delta > 0$
 - $\lim_{z \to z} f(z) = f(z_0)$
 - f = u(x, y) + iv(x, y) is continuous at $z_0 = x_0 + iy_0$ if and only if u(x, y) and v(x, y) are continuous at (x_0, y_0)

Differentiation

- Write $\Delta z = z z_0$, $f'(z_0) = \frac{df}{dz}(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) f(z_0)}{\Delta z} = \lim_{z \to z_0} \frac{f(z) f(z_0)}{z z_0}$
- (f+g)' = f' + g', (fg)' = f'g + fg', quotient rule, chain rule holds
- $\frac{d}{dz}z^n = nz^{n-1}$ for $n = 0, +-1, +-2 \dots$
- Differentiability and analyticity
 - f is differentiable at z_0 if $f'(z_0)$ exists
 - f is analytic at z_0 if f'(z) exists for all z in some open disk centered at z_0
 - f is analytic in a domain D if f'(z) exists for all z in D
- To show a function is not differentiable, find the limit from two directions, $\Delta z = \Delta x$ and $\Delta z =$ Δy , show that they are not equal

Cauchy-Riemann equations

- f = u(x, y) + iv(x, y) is analytic if and only if $u_x = v_y$ and $v_x = -u_y$
- $f'(z_0) = u_x(x_0, y_0) + iv_x(x_0, y_0)$
- If f(z) is analytic in D and if f'(z) = 0 everywhere in D, then f(z) is constant in D

Harmonic functions

- $\phi(x, y)$ a real valued function is harmonic if ϕ_{xx} , ϕ_{yy} , ϕ_{xy} , ϕ_{yx} are continuous and ϕ_{xx} + $\phi_{\nu\nu} = 0$
- · Cauchy-Riemann equations gives an easy way to find such functions
- If f = u + iv is analytic, then u, v are harmonic
 - If u is harmonic and u + iv is analytic on D, then v is a harmonic conjugate of u
 - Level curves of u, v always intersect at right angle when f'(z) = 0
- If *u* and *v* are harmonic, then
 - \circ *u* + *v* is harmonic
 - $\circ uv$ is harmonic if and only if u and v are harmonic conjugate

Elementary functions

October 9, 2020 9:22 PM

Polynomials: $p(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$, $a_i \in \mathbb{C}$ and $a_n \neq 0$

- If all a_i are real and if z_0 is a zero, then $\overline{z_0}$ is also a zero
- Every non-constant polynomial with complex coefficients has at least one zero in ${\mathbb C}$ • A polynomial of degree *n* has exactly *n* zeros counted according to multiplicity
- If z_1 is a zero pf p(z), then $p(z) = (z z_1)q(z)$, with deg(q) = n 1, and we can continue to factor q
- Taylor form of polynomial: $p(z) = \sum_{k=0}^{n} \frac{p^{(k)}(z_0)}{k!} (z z_0)^k$

Rational functions: $R(z) = \frac{p(z)}{q(z)} = a \frac{(z-z_1)(z-z_2)...(z-z_n)}{(\zeta-\zeta_1)(\zeta-\zeta_2)...(\zeta-\zeta_m)}$ • $z_1, z_2, ..., z_n$ are zeros of R and $\zeta_1, \zeta_2, ..., \zeta_m$ are poles of R

Exponential functions: $f(z) = e^{z} = e^{x+iy} = e^{x}(\cos y + i \sin y)$

- $e^{z_1}e^{z_2} = e^{z_1+z_2}, \frac{e^{z_1}}{e^{z_2}} = e^{z_1-z_2}$
- $\frac{d}{dz}e^z = e^z$, $\frac{e^z}{e^z}$ is entire
- $\forall z \in \mathbb{C}, e^z \neq 0, \frac{Range(e^z)}{e^z} = \mathbb{C} \setminus \{0\}$
- $\forall k \in \mathbb{Z}, z \in \mathbb{C}, e^z = e^{z + 2k\pi i}$ • If $e^{z_1} = e^{z_2}$, then $z_2 = z_1 + 2k\pi i$

- Trig and hyperbolic trig function $\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}, \sin \theta = \frac{e^{i\theta} e^{-i\theta}}{2i}$ Define $z \in \mathbb{C}, \cos z = \frac{e^{iz} + e^{-iz}}{2}, \sin z = \frac{e^{iz} e^{-iz}}{2i}$
 - Trig identity holds and $\frac{d}{dz}\cos z = -\sin z$, $\frac{d}{dz}\sin z = \cos z$, $T = 2\pi$
 - The range can become all complex numbers $e^{z} e^{-z}$

• Define
$$\sinh z = \frac{e^z - e^{-z}}{2}$$
, $\cosh z = \frac{e^z + e^{-z}}{2}$

$$\circ \frac{d}{dz}\cosh z = -\sinh z, \frac{d}{dz}\sinh z = \cosh z$$

Logarithm functions

- $\operatorname{Log} z = \log |z| + i \operatorname{Arg}(z)$ is the principal branch of the log, where $\operatorname{Arg}(z) \in [-\frac{\pi}{2}, \frac{\pi}{2}]$ is the principal argument of z
 - We can have $\log z = \log |z| + i (Arg(z) + 2k\pi)$ to have all the branches
 - On the cut plane, each branch of Log z is analytic
- $\log z_1 + \log z_2$ holds if we choose branches correctly

•
$$f(z) = \log g(z)$$
, then $f'(z) = \frac{g'(z)}{g(z)}$

- Arg z is harmonic in the domain
- Log|z| is harmonic in the entire plane except the origin
- f(z) = Log(g(z)) is analytic at z provided that g(z) satisfies
 - $\circ |g(z)| > 0$
 - $\circ -\pi < Arg w < \pi$
- We take $\theta = -\pi$ to be the cut, we have $L_{-\pi} := Log|z| + i \operatorname{Arg} z$ to be the principle branch • If we take τ to be the cut, we have the domain $(\tau, \tau + 2\pi)$
 - $\circ L_{\tau} = Log|z| + i(Arg(z) + \pi + \tau)$
 - $L_0 := Log|z| + i (Arg(z) + \pi)$ flips the domain
 - E.g. $Log(-z) + i\pi = L_0(z)$ is analytic

General powers

- $z^{\alpha} = e^{\alpha \log z} = e^{\alpha \left(\log |z| + i \left(Arg(z) + 2k\pi \right) \right)}$
- $i\frac{1}{n} = e^{\left(\frac{\pi}{2n} + \frac{2k\pi}{n}\right)i}$, but only n distinct values
- Properties
 - When α is a positive integer $z^n = e^{n \log z} = z \cdot z \cdot \cdots z$
 - $\circ z^{\alpha}$ has infinitely many values if and only if α is not a rational real number
 - In previous two cases, every branch of z^{α} is analytic for $z \neq 0$, $\frac{d}{dz}z^{\alpha} = \frac{\alpha}{z}z^{\alpha}$
 - $z^{\alpha_1} z^{\alpha_2} = z^{\alpha_1 + \alpha_2}$ for suitable choices of branches

Inverse trig functions

• Since we know the trig functions if we want to find $w = \arcsin z$, we just need to solve the function $\sin w = z$. .

•
$$\arcsin z = -i \log \left(iz + (1 - z^2)^{\frac{1}{2}} \right)$$

•
$$\operatorname{arcsinh} z = \log \left(z + (1 + z^2)^{\frac{1}{2}} \right)$$

Riemann surfaces

- Suppose we have a many-valued function 1 to n, we can produce a 1-1 function by taking the domain of z values to be n copies of the cut plane suitably glued together.
- This works even if the function is 1 to ∞ , such as *Log* z

Complex integration

October 9, 2020 9:22 PM

 $\gamma \subset \mathbb{C}$ is a smooth arc if it is the range of some $z = z(t)a \leq t \leq b$ such that

- z'(t) exists and is continuous for $t \in [a, b]$
 - z'(t) = x'(t) + i y'(t) is the tangent vector of z(t)
- $z'(t) \neq 0$ for any $t \in [a, b]$
- z(t) is one-to-one on [a, b], or for a smooth closed curve, z(t) is one-to-one on [a, b] but z(a) = z(b) and z'(a) = z'(b)

Contour: directed piece-wise smooth curve (arc or closed curve) $\Gamma = \gamma_1 + \gamma_2 + ... \gamma_n$

Parameterization by arc length

Suppose $z(t) = x(t) + iy(t), t \in [a, b]$, then arclength $s(t) = \int_a^t \sqrt{x'(u)^2 + y'(u)^2} du$ And $s'(t) = \sqrt{x'(u)^2 + y'(u)^2} = |z'(t)|$ Total length of $\gamma = l(\gamma) = \int_a^b s'(t) dt = \int_a^b |z'(t)| dt$

Partition γ is called p_n , let $\Delta z_k = z_k - z_{k-1}$, then Riemann sum $s(P_n) = \sum_{k=1}^n f(c_k) \Delta z_k = \int_{\gamma} f(z) dz = \lim_{n \to \infty} s(P_n)$ where $mesh(P_n)$ =arclength of the longest bit of γ between any z_{k-1} and z_k

If f is continuous on γ , then $\int_{\gamma} f(z) dz = \int_{a}^{b} f(z(t)) z'(t) dt$

If f = u + iv, then $\Delta z = \Delta x + i\Delta y$, $\int_{Y} f(z)dz = \int_{Y} (udx - vdy) + i \int_{Y} (vdx + udy)$

If $\Gamma = \gamma_1 + \gamma_2 + \dots + \gamma_n$, then $\int_{\Gamma} f(z)dz = \int_{\gamma_1} f(z)dz + \int_{\gamma_2} f(z)dz + \dots + \int_{\gamma_n} f(z)dz$

Properties of integrals

- $\int_{\gamma} \alpha f(z) + \beta g(z) dz = \alpha \int_{\gamma} f(z) dz + \beta \int_{\gamma} g(z) dz$ • $\int_{\gamma} f(z) dz = \int_{\gamma} f(z) dz = \int_{\gamma} f(z) dz + \int_{\gamma} f(z$
- If $\Gamma = \Gamma_1 + \Gamma_2 + \dots + \Gamma_n$, then $\int_{\Gamma} f(z)dz = \int_{\Gamma_1} f(z)dz + \int_{\Gamma_2} f(z)dz + \dots + \int_{\Gamma_n} f(z)dz$
- $\left| \int_{\Gamma} f(z) dz \right| \leq M l(\Gamma)$ where M = max |f(z)| on Γ and $l(\Gamma)$ is the arclength of Γ

Suppose f is continuous in a domain D and F is analytic in D and $F'(z) = f(z) \forall z \in D$, then for a contour Γ in D from α to β , $\int_{\Gamma} f(z) dz = F(\beta) - F(\alpha)$

Let f be continuous in a domain D. Then the following a equivalent

- $\exists F$ such that $F'(z) = f(z) \forall z \in D$
- $\int_{\Gamma} f(z) dz = 0$ for all closed contour Γ in D
- $\int_{\Gamma_1} f(z) dz = \int_{\Gamma_2} f(z) dz$, if Γ_1 and Γ_2 are contours with the same initial and terminal points

Cauchy Integral theorem

- A simply connected domain D is one domain such that every simple (no self-intersecting) closed contour in D has every point inside it and in D
 - $D = \{z: |z| < 1\}$ is simply connected
 - $D = \{z: 0 < |z| < 1\}$ is not simply connected
 - Cut plane is simply connected
- If f is analytic in a simply connected domain D and Γ is a simple closed contour in D, then $\int_{\Gamma} f(z) dz = 0$
 - $\circ f$ has an antiderivative F in D and integrals of f from α to β are path independent
 - Green's theorem: $\int_{\Gamma} (Pdx + Qdy) = \int \int_{R} (\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y}) dx dy$

- Extensions
 - Assume f is analytic inside and on a simple closed contour Γ , then $\int_{\Gamma} f(z) dz = 0$
 - Γ_1 can be continuously deformed in D to Γ_2 but not to Γ_3 . Suppose f is analytic in D, then $\int_{\Gamma_1} f(z) dz = \int_{\Gamma_2} f(z) dz$
 - \circ Suppose f is analytic in a domain M which is not simply connected (such a domain is called multiply connected). Let $\gamma = \gamma_1 + \gamma_2 + \gamma_3$ (γ_i are all boundaries of M). Suppose fis analytic on M and γ , then $\int_{\gamma} f(z) dz = 0$
 - Convention: orient boundary contours such that M lies to our left as we traverse the boundary

If a function is analytic in D, then it has an antiderivative in D

Cauchy Integral Formula

- Suppose f is analytic inside and on a positively-oriented closed contour Γ . Let z_0 be a point inside Γ . Then $f(z_0) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{(z-z_0)} dz$ \circ When f = 1, $\int_{\Gamma} \frac{dz}{z-z_0} = 2\pi i$ doesn't matter if Γ is a general contour

 - \circ If *f* is analytic inside and on Γ, then the values of the integral on Γ determines *f* everywhere in Γ
 - If z_0 lies outside Γ , then $\int_{\Gamma} \frac{f(z)}{z-z_0} dz = 0$, given that f(z) is analytic inside and on Γ
- Consequences of Cauchy Integral Formula
 - An analytic function has derivatives of all orders

 - $f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{(\zeta z)^{n+1}} d\zeta$ If f = u + iv is analytic, then all partial derivatives of u, v must exist
 - If f is continuous in a domain D and $\int_{\Gamma} f(z) dz = 0$ for every closed contour Γ in D, then f is analytic
 - If we want to know $G(c) = \int \frac{g(z)}{z-c} dz$, then $G'(c) = 2\pi i g'(c)$ and $G''(c) = 2\pi i g''(c)$
- Cauchy integral formula holds on a multiply-connected domain M provided we integrate over the complete boundary of M

Cauchy estimate: let f be analytic inside and on $C_R = \{z: |z - z_0| = R\}$. If $|f(z)| \le M$, $\forall z \in C_R$, then $\left| f^{(n)}(z_0) \right| \le \frac{n!M}{n!}$ (n = 0, 1, 2, ...)

• Liouville's theorem: If f is entire and bounded, then f is constant

Series representations for analytic functions

October 26, 2020 8:46 AM

A sequence is a list of complex numbers $c_0, c_1, c_2, ...$ We say $\{c_n\}$ converges to c and write $\lim_{n\to\infty} c_n = c$ if $\forall \epsilon > 0$, $\exists N$ such that n > N, $|c - c_n| < \epsilon$

An infinite series or series is an infinite sum $\sum_{j=0}^{\infty} c_j$. The nth partial sum $S_n = \sum_{j=0}^n c_j$

- The series converges and has sum $s = \lim_{n \to \infty} c_n$ if the limit exists and is finite
- Otherwise it diverges

Basic facts and examples

- Geometric series: $\sum_{i=0}^{\infty} c_i = 1 + c + c^2 + \dots + c^n + \dots$
 - If |c| < 1, $\lim_{n \to \infty} S_n = \frac{1}{1-c}$, converges If |c| > 1, $S_n = \frac{c^{n+1}-1}{c-1}$, diverges

 - If |c| = 1 and c = 1, $S_n = n$, diverges
 - If |c| = 1 and $c \neq 1$, c^{n+1} oscillates and does not approach a limit, so it diverges ■ E.g. (*c* = *i*)
- P-series: $\sum_{j=0}^{\infty} \frac{1}{i^p}$
 - If p = 1, diverges
 - If $p \in (0,1)$, diverges
 - If $p \in (1, \infty)$, converges
- If $\sum_{j=0}^{\infty} c_j$ converges, then $\lim_{n \to \infty} c_n = 0$, if the limit is not zero then the series diverges • Reverse is false
- Comparison test: if $|c_j| \le M_j$, and $\sum_{j=0}^{\infty} M_j$ converges, then $\sum_{j=0}^{\infty} |c_j|$ converges and $\sum_{j=0}^{\infty} c_j$ converges
 - When $\sum_{j=0}^{\infty} |c_j|$ converges, we say $\sum_{j=0}^{\infty} c_j$ is absolutely convergent

Ratio test: suppose
$$l = \lim_{j \to \infty} \left| \frac{c_{j+1}}{c_j} \right|$$
 exists

- If L < 1, then Σc_i converges absolutely
- If L > 1, then Σc_i diverges
- If L = 1, cannot conclude

Sequences and series of functions

- The sequence $F_0(z), F_1(z), \dots$ converges uniformly to F(z) on the set $T \subset \mathbb{C}$, if $\forall \epsilon > 0, \exists N$ such that $n > N \Rightarrow |F(z) - F_n(z)| < \epsilon$ for all $z \in T$
- The series $\sum_{j=0}^{\infty} f_j(z)$ converges uniformly to F(z) on T, if the sequence $F_n(z) = \sum_{i=0}^{n} f_i(z)$ converges uniformly to F(z) on T
 - $\sum_{j=0}^{\infty} z^j$ converges uniformly to $\frac{1}{1-z}$ on $|z| \le r < 1$, but not on |z| < 1

Power series: $\sum_{n=0}^{\infty} a_n (z - z_0)^n$

- If $\sum_{n=0}^{\infty} a_n z^n$ converges for some value $z = z_1$, then it converges absolutely for all z with |z| < 1 $|z_1|.$
 - If it diverges for some value $z = z_1$, then it diverges for $|z| > |z_1|$.
- Let R=radius of the largest circle within which $\sum_{n=0}^{\infty} a_n z^n$ converges, R is called the radius of convergence of $\sum_{n=0}^{\infty} a_n z^n$.
 - If $\sum_{n=0}^{\infty} a_n z^n$ converges for all $z \in \mathbb{C}$, then $R = \infty$
 - If $\sum_{n=0}^{\infty} a_n z^n$ converges only for z = 0, then R = 0
- If $\sum_{n=0}^{\infty} a_n z^n$ converges in |z| < R, then converges in every closed disk $|z| \le R' < R$
- If $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L$ exists, then $R = \frac{1}{L}$

• If $\lim_{n \to \infty} \sqrt[n]{|a_n|} = l$ exists, then $R = \frac{1}{l}$

- This may not always exist, we introduce limsup to fix this problem
 - □ $s = \frac{\limsup s_n}{\sup s_n}$ is the smallest number such that $\forall \epsilon > 0$, $\exists N$ such that $\forall n > N$, $s_n < s + \epsilon$
 - If $s_n \to \infty$, then $\limsup_{n \to \infty} s_n = \infty$, if $s_n \to -\infty$, then $\limsup_{n \to \infty} \frac{s_n}{\sqrt{|a_n|}} = l$ exists, then $R = \frac{1}{l}$

Uniform convergence

- If f_n are continuous on $T \subset \mathbb{C}$ and f_n converges uniformly to f on T, then f is continuous on T
- If f_n are continuous on $T \subset \mathbb{C}$, f_n converges to f uniformly and Γ is a contour in T, then $\lim_{n\to\infty} \int_{\Gamma} f_n(z) dz = \int_{\Gamma} f(z) dz$
- If f_n are analytic in a domain D and if f_n converges uniformly to f in D then f is analytic in D
- Let $\sum_{n=0}^{\infty} a_n z^n$ have radius of convergence R and define $f(z) = \sum_{n=0}^{\infty} a_n z^n$ for |z| < R, then f is analytic in |z| < R

The derivative of $f(z) = \Sigma a_n z^n$ can be computed term by term, the radius of convergence are the same

• Actually $a_m = \frac{f^{(m)}(z_0)}{m!}$, and $f(z) = \Sigma \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$

Convergent power series are analytic functions and analytic functions can be represented by a power series in some disk

Taylor series

- Suppose f is analytic in a domain D, let $z_0 \in D$, C be a circle of radius r with r < distance from z_0 to boundary of D, then $f(z) = \frac{1}{2\pi i} \int_C \frac{f(\zeta)}{\zeta z} d\zeta$, for z inside C and by writing $\frac{1}{\zeta z} = \frac{1}{\zeta z_0} \sum \left(\frac{z z_0}{\zeta z_0}\right)^n$, we can deduce that $f(z) = \sum \frac{f^{(n)}(z_0)}{n!} (z z_0)^n$ • $e^z = \sum \frac{1}{n!} z^n$, $R = \infty$ • $\sin z = \sum \frac{(-1)^n z^{2n+1}}{(2n+1)!}$, $R = \infty$ • $\cos z = \sum \frac{(-1)^n z^{2n}}{(2n)!}$, $R = \infty$ • $\log z = \sum \frac{(-1)^n (z - 1)^n}{n}$, R = 1• $\log(1 - z) = \sum -\frac{z^n}{n}$ • $\frac{1}{z} = \frac{d}{dz} \log z = \sum (-1)^n (z - 1)^n$, R = 1Laurent series (usually used for functions with singularities)
 - $\sum_{n=-\infty}^{\infty} a_n (z-z_0)^n$
 - $\circ z_0$ is called center
 - The function is undefined at z_0 if negative powers
 - Radius of convergence is an annulus ($R_1 < |z z_0| < R_2$)
 - $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ converges for $|z-z_0| < R_2$
 - $\sum_{n=-\infty}^{-1} a_n (z-z_0)^n$ converges for $|z-z_0| > R_1$
 - Series may or may not converge on the boundaries
 - Possibly $R_1 = 0$ (with only finitely many negative terms)

•
$$e^{\frac{1}{z}} = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{1}{z}\right)^n$$
 converges for $0 < |z| < \infty$ $(z_0 = 0)$

•
$$f(z) = \frac{z^2}{z-1} = \frac{z}{1-\frac{1}{z}} = z+1+\frac{1}{z}+\dots = \sum_{n=-\infty}^{1} z^n$$
 for $1 < |z| < \infty$ $(z_0 = 0)$

•
$$f(z) = \frac{z^2}{z-1} = \frac{((z-1)+1)^2}{z-1} = \frac{1}{z-1} + 2 + z - 1$$
 for $0 < |z-1| < \infty$ $(z_0 = 1)$

MATH300 Page 8

- General properties
 - A Laurent series defines a (single valued) analytic function in its annulus of convergence
 - Given f analytic (and single valued) in the annulus $R_1 < |z z_0| < R_2$, we can always expand f in a Laurent series
 - The differentiation formula is no longer valid, but the integral is still valid with $a_n = \frac{1}{2\pi i} \int \frac{f(\zeta)}{(\zeta z_0)^{n+1}} d\zeta$, $n \in \mathbb{Z}$
 - Size of annulus determined by location of singularities (annulus goes up to the nearest singularities)
 - E.g. $f(z) = \frac{1}{z^2 z 2} = \frac{1}{(z 2)(z + 1)}$ different Laurent series represents f in three regions, |z| < 1, 1 < |z| < 2 with $f(z) = \left(-\frac{1}{6}\right) \Sigma \left(\frac{z}{2}\right)^n \frac{1}{3z} \Sigma \left(-\frac{1}{z}\right)^n$, 2 < |z| < 2

 ∞

- Purpose of Laurent series
 - $\circ~$ Expansion at a singularity
 - Expansion between singularities
 - $\circ \ \ \, {\rm Classification \ of \ singularities}$

Isolated singularities:

- An isolated singularity of f is a point z₀ such that f is not analytic at z₀, but f is analytic in some punctured disk 0 < |z − z₀| < δ
 - $\frac{1}{\sin z}$ has isolated singularities at $n\pi$
 - Log z has non-isolated singularities at each z_0 in $(-\infty, 0]$
- Singularity categories
 - Removable singularity: Laurent series has no negative powers $(\sum_{n=0}^{\infty} a_n (z z_0)^n)$
 - $f(z) \rightarrow a_0 as z \rightarrow z_0$
 - If f is analytic on $0 < |z z_0| < \delta$ and bounded, then z_0 is a removable singularity
 - Can remove the singularity and get an analytic function by defining a piecewise function
 - It means that f(z) has a limit point at z₀
 - Pole of order m: finite number of negative powers $(\sum_{n=-m}^{\infty} a_n (z-z_0)^n)$
 - $|f(z)| \to \infty \text{ if } z_n \to z_0$
 - E.g. $f(z) = \frac{\sin z}{z^4}$ has a pole $z_0 = 0$ of order 3
 - Poles of order 1 are called simple poles ($f(z) = \frac{\sin z}{z^2} z_0 = 0$ has order 1)
 - The same terminology used for zeros: and $a_m \neq 0$ has a zero of order m at z_0 , if $\sum_{n=m}^{\infty} a_n (z z_0)^n$, where m > 0 $\square m = 1, z_0$ is a simple zero
 - Essential singularity: infinite number of negative powers $(\sum_{n=-\infty}^{\infty} a_n (z-z_0)^n)$
 - Casorati Weierstrass theorem: $\forall b \in \mathbb{C}$, exists a sequence $z_n \to z_0$ such that $f(z_n) \to b$, also, $\exists z_n$ such that $|f(z_n)| \to z_0$
 - Picard's theorem: if f has an essential singularity at z_0 , then in every disk $0 < |z z_0| < \delta$, f(z) assumes every complex value with possibly one exception
 - \Box E.g. $f(z) = e^{\frac{1}{z}}$ has an essential singularity at z_0 , but $e^{\frac{1}{z}}$ can never achieve 0

Residue theory

November 20, 2020 8:28 AM

Residue: Let $f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n$ be the Laurent series of f in the neighborhood of an isolated singularity z_0 of f. Then the residue of f at z_0 is a_{-1} , written as $a_{-1} = Res(f; z_0)$

- $Res(f; z_0) = a_{-1} = \frac{1}{2\pi i} \int_C f(z) dz$
- If f has a simple pole at z_0 , then $\frac{Res(f; z_0) = \lim_{z \to z_0} (z z_0)f(z)}{Im}$
- If $f(z) = \frac{P(z)}{Q(z)}$ with $P(z_0) \neq 0$, and Q has a simple zero at z_0 ($Q(z_0) = 0$ and $Q'(z_0) \neq 0$), then $\frac{Res(f;z_0)}{Q'(z_0)} = \frac{P(z_0)}{Q'(z_0)}$
- Note: residue is always a finite number

Residue at a higher order pole

• Suppose *f* has a pole of order $m \ge 1$ at z_0 , $f(z) = \frac{a_{-m}}{(z-z_0)^m} + \dots + \frac{a_{-1}}{z-z_0} + a_0 + a_1(z-z_0) + \dots$, then $(z - z_0)^m = a_{-m} + \dots + a_{-1}(z - z_0)^{m-1} + \dots$, And $\frac{Res(f; z_0) = a_{-1} = \lim_{z \to z_0} \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} ((z - z_0)^m f(z))$

Residue theorem:

• Let f be analytic inside and on a simple closed contour C except for a finite number of isolated singularities $z_1, z_2, ..., z_k$ inside C, then $\int_C f(z) dz = 2\pi i \Sigma_{i=1}^k Res(f; z_i)$

Trigonometric Integrals: $\int_0^{2\pi} f(\cos\theta,\sin\theta)d\theta$

- Change of variables $z = e^{i\theta}$ E.g. $I = \int_0^{2\pi} \frac{d\theta}{a+b\cos\theta} = 4\pi Res\left(\frac{1}{bz^2+2az+b}; z_1\right) = \frac{4\pi}{2bz_1+2a} = \frac{2\pi}{\sqrt{a^2-b^2}}$ (with |b| < a) Usually $\int_0^{2\pi} \frac{d\theta}{a+b\cos\theta} = \int_{-\pi}^{\pi} \frac{d\theta}{a+b\cos\theta} = 2\int_0^{\pi} \frac{d\theta}{a+b\cos\theta}$

Improper integrals on $(-\infty, \infty)$

- $\int_{-\infty}^{\infty} f(x) dx$ with $f(x) = \frac{P(x)}{Q(x)}$, where P(x) and Q(x) are polynomials, with • $deg \ Q \ge deg P + 2$, $f(x) = O\left(\frac{1}{x^2}\right)$, so integral converges
 - $\circ Q$ has no zeros on real axis

•
$$\int_{-\infty}^{\infty} f(x) dx = \lim_{R \to \infty} \int_{-R}^{R} f(x) dx$$

- Let S_R be a semi circle in the upper half plane, $C_R = [-R, R] + S_R$, then $\int_{C_R} f(z)dz = 2\pi i \Sigma_{z_j \in C_R} \operatorname{Res}(f; z_j) = \int_{-R}^{R} f(x)dx + \int_{S_R} f(z)dz$ And as $R \to \infty$, $\left| \int_{S_R} f(z) dz \right| \le O\left(\frac{1}{R^2}\right) \pi R = O\left(\frac{1}{R}\right) \to 0$ This gives that $\int_{-\infty}^{\infty} f(x) dx = 2\pi i \Sigma_{z_j \in C_R} Res(f; z_j)$ Also, if choose lower half plane $\int_{-\infty}^{\infty} f(x) dx = -2\pi i \Sigma_{LHP} Res(f; z_i)$
- E.g. $\int_{-\infty}^{\infty} \frac{x^2}{x^4 + a^4} dx = \frac{\sqrt{2\pi}}{4a}$
- The formula also gives that $\Sigma Res(f; z_j) = \Sigma_{LHP} Res(f; z_j) + \Sigma_{UHP} Res(f; z_j) = 0$

Principle value of $\int_{-\infty}^{\infty} f(x) dx$ is $p. v. \int_{-\infty}^{\infty} f(x) dx = \lim_{R \to \infty} \int_{-R}^{R} f(x) dx$ if the limit exists

• Note: $\int_{-\infty}^{\infty} f(x) dx$ is defined to be $\lim_{R \to \infty} \int_{0}^{R} f(x) dx + \lim_{R \to \infty} \int_{-R}^{0} f(x) dx$ when both limits exist

- Principle value can exist even if neither of the limit exists
- E.g. $p. v. \int_{-\infty}^{\infty} x dx = 0$

Improper integrals of the form $\int_{-\infty}^{\infty} f(x)g(x)dx$ where f(x) is a rational and $g(x) = \sin ax$ or $g(x) = \cos ax$

- We can consider $\int_{-\infty}^{\infty} f(x)e^{iax}dx$, and this gives the cosine and sine integrals by real and imaginary parts
- Assume: $deg Q \ge deg P + 1$ and Q has no zeros on real axis
- Taking the upper half plane, we have $\int_{-R}^{R} f(x)e^{iax}dx = \int_{C_R} f(z)e^{iaz}dz \int_{S_R} f(z)e^{iaz}dz$, • Jordan's lemma: if $deg \ Q \ge degP + 1$, a > 0, then $\int_{S_R} f(z)e^{-iaz}dz \to 0$ as $R \to \infty$
- So $\int_{-\infty}^{\infty} f(x)e^{iax}dx = 2\pi i \Sigma_{z_j \in C_R} Res(f(z)e^{iaz}; z_j)$
- If f is even, then $\int_0^\infty f(x) \cos ax \, dx = \frac{1}{2} \int_{-\infty}^\infty f(x) e^{iax} dx$
- If f is odd, then $\int_0^\infty f(x) \sin ax \, dx = \frac{1}{2} \int_{-\infty}^\infty f(x) e^{iax} dx$

Indented contours: $\int_{-\infty}^{\infty} f(x) dx$ when f has a singularity on the real axis

Note: $e^{iz} = \cos z + i \sin z$, that's why we take the imaginary part Then $\int_{S_r} \frac{e^{iz}}{z} dz \to -i\pi$ as $r \to 0$, we have $\int_{-\infty}^{\infty} \frac{\sin x}{x} dx = \pi$

- Actually, $\lim_{(r \to 0)} \int_{S_r} \frac{e^{iz}}{z} dz = 2\pi i Res\left(\frac{e^{iz}}{z}; 0\right) \cdot l$, where l is the fraction that we go through on the little circle
 - In our example, we go through half circle, so $l = \frac{1}{2}$
- If f has a simple pole at z = c and T_r is the circular arc of $T_r: z = c + re^{i\theta}$, $(\theta_1 \le \theta \le \theta_2)$
 - Then $\lim_{(r\to 0)} \int_{T_r} f(z) dz = i(\theta_2 \theta_1) Res(f; c)$
 - If clockwise/lower half circle, then we have $\lim_{(r\to 0)} \int_{T_r} f(z) dz = -i\pi Res(f;c)$
 - If there is $\sin ax$ or $\cos ax$, take e^{iax} , then consider separate cases, if pole z_0 is on the real axis, then use $\pi i Res(z_0)$, otherwise, use $2\pi i Res(z_0)$

Mandelbrot set

November 30, 2020 8:34 AM

Given an entire function f(z) and a point $z_0 \in \mathbb{C}$

- The orbit of z_0 is $\{z_0, z_1, z_2, ...\}$ where $z_i = f(z_{i-1})$, denote $f^2(z) = f(f(z)) = (f \circ f)(z)$
- z_0 is a fixed point of f if $f(z_0) = z_0$, its orbit is just $\{z_0\}$

• Behavior near a fixed point z_0 : $f(z) = f(z_0) + f'(z_0)(z - z_0) + \cdots$ So $f(z) - z_0 = f'(z_0)(z - z_0), |f(z) - z_0| = |f'(z_0)||z - z_0|$

- If $|f'(z_0)| < 1$, then f(z) is closer to z_0 than z
- If $|f'(z_0)| > 1$, then f(z) is further to z_0 than z
- $\circ~$ Classification of fixed points:
 - Attracting: $|f'(z_0)| < 1$
 - Repelling: $|f'(z_0)| > 1$
 - Indifferent (neutral): $|f'(z_0)| = 1$
- E.g. $f(z) = z^2$ has fixed points z = 0 and z = 1
 - *f*′(0) = 0, *z* = 0 is attracting
 - *f*′(1) = 2, *z* = 1 is repelling
 - Orbit of $z = re^{i\theta}$ is $\{z, z^2, z^4, z^8, ...\}$
 - $\Box \quad z_n \to 0 \text{ if } r < 1 \text{, and } z_n \to \infty \text{ if } r > 1$
 - Domain of attraction of 0 is |z| < 1, and ∞ is |z| > 1
- A periodic point z_0 (period k) is attracting if $|(f^k)'(z_0)| < 1$ and repelling if $|(f^k)'(z_0)| > 1$
- The Julia set J(f) is the closure of the set of all repelling fixed points of f

• E.g. for
$$f(z) = z^2$$
, has a dense set of periodic points on $|z| = 1$,
 $|(f^k)'(z_0)| = \left|\frac{d}{dz}z^{2^k}\right| > 1, J(f) = \{z: |z| = 1\}$

Mandelbrot set: let $f_c(z) = z^2 + c$ for c a complex number

- $M = \{c \in \mathbb{C}: f_c^n(0) < \infty \text{ as } n \to \infty\}$ i.e. the orbit $\{0, c, c^2 + c, (c^2 + c)^2 + c, ...\}$ does not go to infinity
- Theorem:
 - \circ *M* is connected
 - $\circ c \in M$ if and only if J_C is connected
 - For c near 0, the Hausdorff dimension of J_c is $1 + \frac{|c|^2}{4 \log 2} + o(|c|^2)$
 - For real $c \in \left[-\frac{3}{4}, \frac{1}{4}\right]$, J_c is simple closed curve
 - M is a subset of $\{z: |z| \le 2\}$

Brief review

January 10, 2022 11:17 AM

A domain in \mathbb{C} is an open path-connected set

For f defined on a neighborhood of z_0 , $f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$ if the limit exists

• f is analytic on D if f'(z) exists for all $z \in D$.

Analyticity \Rightarrow Cauchy-Riemann equation: f = u + iv has $u_x = v_y$, $u_y = -v_x$.

- If the partial derivatives u_x , u_y are continuous, then CR equation means analytic.
- If f = u + iv is analytic on D, then u, v are harmonic $(u_{xx} + u_{yy} = v_{xx} + v_{yy} = 0)$
- All level curves of *u*, *v* intersect in right angles

Note: $f(z) = Log(z) = Log(r) + i\theta$, with $z = re^{i\theta}$, $\theta \in (-\pi, \pi]$.

• The principal branch has a branch cut at $\theta = \pi$ or $\{(x, y) : x \le 0, y = 0\}$.

Contour integral

- Contour: directed piecewise smooth curve Γ , z = z(t) for $t \in [a, b]$.
- Integral: $\int_{\Gamma} f(z)dz = \int_{a}^{b} f(z(t))z'(t)dt.$ • It obeys $\left|\int_{\Gamma} f(z)dz\right| \le \max_{z \in \Gamma} |f(z)| \cdot length(\gamma).$
- Theorem: suppose f is continuous on D and there is an analytic function F such that F' = f on D, then $\int_{\Gamma} f(z) dz = F(\beta) F(\alpha)$.
 - $\circ \ \ \, \text{Independent of the contour}$
 - Zero for closed contour (*F* must be analytic)

Cauchy integral theorem

- Simply connected domain: a connected set with subset enclosed by every simple closed contour is contained in the domain
 - $\circ~$ Any closed curve can be deformed to a point without leaving the domain
 - $\circ \ \ \, {\rm There} \ \, {\rm is \ no \ hole}$
- If f is analytic on a simply connected domain D and Γ is a closed contour in D, then $\int_{\Gamma} f(z) dz = 0$.
- Corollary: if *D* is a domain and Γ_1 can be continuously deformed into Γ_2 and *f* is analytic on *D*, then $\int_{\Gamma_2} f(z) dz = \int_{\Gamma_2} f(z) dz$.
- Cauchy integral formula: if f is analytic inside and on a positively oriented (counter clockwise) closed contour and if z_0 is inside Γ , then $f(z_0) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z-z_0} dz$.
 - f has derivatives of all orders and $f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_{\Gamma} \frac{f(z)}{(z-z_0)^{n+1}} dz$.

• Also works on a multiply-connected domain $f(z_0) = \frac{1}{2\pi i} \int_{\Gamma_1 + \Gamma_2} \frac{f(z)}{z - z_0} dz$.

Taylor series

• If f is analytic on D and $z_0 \in D$, then f has a Taylor series $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$

$$\circ \quad a_n = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{(z-z_0)^{n+1}} dz = \frac{f^{(n)}(z_0)}{n!}$$

• It converges at least in the largest disk in D centered at z_0

Laurent series

- If f is analytic on D and $z_0 \in D$, then f has a Laurent series $f(z) = \sum_{n=-\infty}^{\infty} a_n (z z_0)^n$ $\circ a_n = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{(z-z_0)^{n+1}} dz.$
- Typically, the inner circle deforms to the isolated singularity z_0

Residue

- If z_0 is an isolated singularity, then $Res(f; z_0) = a_{-1} = \frac{1}{2\pi i} \int_{\Gamma} f(z) dz$.
 - If $f(z) = \frac{P(z)}{Q(z)}$ with $P(z_0) \neq 0$, and Q has a simple zero at z_0 ($Q(z_0) = 0$ and $Q'(z_0) \neq 0$), then $Res(f; z_0) = \frac{P(z_0)}{Q(z_0)}$
 - 0), then $\frac{Res(f; z_0) = \frac{P(z_0)}{Q'(z_0)}}{Q'(z_0)}$ • Suppose f has a pole of order $m \ge 1$ at z_0 , $\frac{Res(f; z_0) = a_{-1}}{Res(f; z_0) = a_{-1}} = \lim_{z \to z_0} \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} \left((z - z_0)^m f(z) \right)$
- Residue theorem: Let f be analytic inside and on a simple closed contour C except for a finite number of singularities $z_1, ..., z_k$ inside C, then $\int_C f(z)dz = 2\pi i \sum_{j=1}^k Res(f; z_j)$.

Residue theory cont.

January 7, 2022 9:44 PM

Keyhole contour

Integration of rational functions $\int_0^\infty f(x) x^a dx$.

- *a* not an integer
- *f* a rational function with no poles on positive x-axis
- Choose $C = L_{+} + L_{-} + C_{R} + C_{\delta}$.
- Require:

- Choose branch of z^a with cut along $[0, \infty)$.
- $\int_{C_P} f(z) z^a dz = \int_{C_s} f(z) z^a dz = 0$ with the $M \cdot l$ bound.

•
$$\int_{L_{-}} f(z) z^{a} dz = \int_{R}^{\delta} f(x) x^{a} e^{2\pi i a} dz = -e^{2\pi i a} \int_{\delta}^{R} f(x) x^{a} dx = -e^{2\pi i a} \int_{L_{+}}^{\delta} f(z) z^{a} dz.$$

• Finally, $(1 - e^{2\pi i a}) \int_0^\infty f(x) x^a dx = 2\pi i \sum Res(f(z)z^a; z_j)$. • z_i are poles of f.

Argument principle

- Def: A function f on a domain D is meromorphic if at every $z \in D$ either f is anlytic or has a pole (no branch cuts or singularities)
 - A function f on D is holomorphic if it is differentiable at every $z \in D$ (no poles).
- Theorem (Argument principle): Let *C* be a simple closed positively-oriented contour. Let *f* be analytic and non-zero on *C* and meromorphic inside *C*. Then $\frac{1}{2\pi i} \int_{C} \frac{f'(z)}{f(z)} dz = N_0(f) N_p(f)$.
 - $N_0(f)$ is the number of zeros of f in C with multiplicity
 - $N_p(f)$ is the number of poles of f in C with multiplicity
- Reason for the name

• For
$$\frac{d}{dz}\log f(z) = \frac{d}{dz}\log |f(z)| + \frac{d}{dz}i\arg f(z) = \frac{f'(z)}{f(z)}$$

- $\arg z$ may not be globally well-defined for all $z \in C$.
- \circ Solution: break C into small pieces, small enough that $\arg f$ is well-defined on each piece.

• On this piece,
$$\int_{C} \frac{f'(z)}{f(z)} dz = \operatorname{Log} |f(z)||_{z_{1}}^{z_{2}} + i \ (change \ in \arg z \ from \ z_{1} \ to \ z_{2}).$$

- Sum over pieces, if C is closed, Log|f(z)| cancels.
- Then $N_0(f) N_p(f) = \frac{1}{2\pi} \Delta_C(\arg f)$.
 - $\Delta_C(\arg f)$ is the total change in $\arg f$ over C.

Rouche's theorem

- Let f and h be analytic inside and on a simple closed contour C, and suppose |h(z)| < |f(z)| for each $z \in C$. Then f and f + h have the same number of zeros inside C with multiplicity
- Corollary: zeros of non-constant functions are isolated

Open mapping theorem

• If f is analytic on D and not constant on D, then its range $f(D) = \{f(z) : z \in D\}$ is an open set

Analytic continuation

January 21, 2022 11:03 AM

Consider the power series, $Log(1 + z) = z - \frac{z^2}{2} + \frac{z^3}{3} - \frac{z^4}{4} + \cdots$, which converges for |z| < 1.

- Is any information loss in representing a function in the cut plane by a power series in the unit disk?
- In fact, a power series in a disk for a function contains all information about f, including its domain of analyticity, singularities, other branches etc.

E.g.
$$f(z) = \frac{1}{z'}, z_0 = \epsilon > 0.$$

- Compute power series $\frac{1}{z} = \sum_{n=0}^{\infty} (-1)^n \frac{(z-\epsilon)^n}{\epsilon^{n+1}}$ converges for $|z-\epsilon| < \epsilon$. This power series for $|z-\epsilon| < \epsilon$ determines $f(z), \forall z \neq 0$.
- We can choose z_1 close to 2ϵ , and determine $f^{(n)}(z_1)$ from the power series, and form a new Taylor series at z_1 .

$$f_1(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_1)}{n!} (z - z_1)^n$$
 has radius of convergence $R_1 = |z_1|$.

• By repeating this procedure, can produce f(z), $\forall z \neq 0$.

Terminology

- Power series of f at z_0 is the element of f at z_0
- The sequence of centers z_0, z_1, \dots is called a chain of centers
- The process of going from one element to another is analytic continuation

Fraction combinatorics

•
$$\binom{C}{n} = \frac{c(c-1)\dots(c-n+1)}{n!}$$

• e.g. $\binom{\frac{1}{2}}{n} = \frac{\frac{1}{2}\cdot\left(-\frac{1}{2}\right)\cdot\dots\cdot\left(\frac{1}{2}-n+1\right)}{n!}$

As we move around the analytic continuation, we may change the branch

Conclusions and theorems

- Suppose f is analytic in a domain D and f = 0 on some arc $l \subset D$ or even just a sequence of points $z_n \rightarrow z_0$. Then f(z) = 0 on D.
- Suppose f_1, f_2 are analytic on D and $f_1 = f_2$ on $l \subset D$, then $f_1 = f_2$ on D.
- Principle of permanence: suppose $f_1, ..., f_n$ are analytic on D and $P(x_1, ..., x_n)$ is a polynomial in *n* variables. Then if $P(f_1(z), ..., f_n(z)) = 0$ for *z* on some arc $l \subset D$, then $P(f_1, ..., f_n) = 0$. ○ $\cos^2 x + \sin^2 x = 1$ for all $x \in \mathbb{R}$, then $\cos^2 z + \sin^2 z = 1$ for all $z \in \mathbb{C}$.
- Monodromy theorem: suppose analytic continuation of an element produces elements at all points of a simply-connected domain D. Then these elements determine a single valued analytic function on D.
- Analytic continuation can sometimes be done by summation
- If an element at z_0 has a finite radius of convergence R, then there must be a singularity of the function on the circle $|z - z_0| = R$.
 - Singularity: there cannot be an element at this point
- There are functions analytic in a disk which cannot be analytically continued beyond the disk.
 - The disk boundary is a natural boundary.
 - $z + z^2 + z^4 + z^8 + \dots = \sum_{n=1}^{\infty} z^{2^n}$ has natural boundary |z| = 1.
- Riemann surfaces: suppose we have a many-valued function 1 to n. We can produce a one-toone function by taking n copies of the cut plane suitably glued together
 - Analytic continuation via a chain of centers going twice around the origin yields a singlevalued function on the Riemann surface
 - This also works if the function is 1 to ∞ such as $\log z$.

MATH301 Page 4

Conformal mapping

January 10, 2022 11:03 AM

Applications

- Fluid dynamics (2D problem):
 - Find the streamlines (level curves)
 - Solution: u(x, y) = c where $\nabla^2 u = u_{xx} + u_{yy} = 0$ outside the wing.
 - Method: find f mapping exterior of the wing to exterior of a disk with f analytic Then solve the problem on the disk and use f to pull back streamlines to D
- Heat conduction
 - Find the steady state temperature in the strip with given boundary conditions
 - \circ Method: find analytic f mapping strip to upper half plane, solve the equation and use f to map back to the strip
- Electric potential
 - Same as heat conduction

Mapping

- w = f(z) = u(x, y) + iv(x, y).
- e.g.

$$D = \{ z = re^{i\theta} : 0 < r < \infty, 0 < \theta < \frac{\pi}{2} \}, w = z^2.$$

- D = {z = re^w: 0 < r < ∞, 0 < θ < -/2}, w = z².
 Then w = r²e^{2iθ}, |w| = r² ∈ (0,∞), arg w = 2θ ∈ (0,π).
- Properties
 - If ϕ is harmonic on D', then $\phi \circ f$ should be harmonic on D
 - $\phi \circ f$ is called pull back
 - $\circ f: D \rightarrow D'$ should be a bijection (one to one and onto)
 - Similarity: small figures in z plane maps to roughly similar figures in the w-plane
 - Boundary behavior: if f maps ∂D bijectively onto $\partial D'$, then f maps D bijectively to D'.

Local vs. global invertible

- Def: f is locally invertible at z₀ if there is a neighborhood of z₀ on which f has an inverse.
 e.g. w = z² is not globally invertible but it is locally invertible except at z = 0.
- If f is analytic at z₀ and f'(z₀) ≠ 0, then there is an open disk D centered at z₀ such that f is one to one and onto f(D).

Conformal mapping

- A mapping is conformal at z_0 if it preserves angles at z_0 (both magnitude and sign)
- Let f be anlytic at z_0 . Then f is conformal at z_0 if and only if $f'(z_0) \neq 0$.
- Remarks
 - $\circ r = |f'(z_0)|$ is a magnification factor
 - Let $w = f(z) = z^2$. Then f'(z) = 2z, so f is conformal except at z = 0. At z = 0, angles are doubled.
 - Since f' has simple zero at z = 0.
 - Small figures are rotated and uniformly magnified where *f* is conformal
 - If $f: D \to D' = f(D)$ is bijective and conformal, then $f^{-1}: D' \to D$ is bijective and conformal, since by inverse function theorem $\frac{d}{dw}f^{-1}(w) = \frac{1}{f'(z)} \neq 0$.
 - Also, if f: D → D' and g: D → D' are both bijective and conformal, then so is g ∘ f since (g ∘ f)'(z) = g'(f(z))f'(z) ≠ 0.
 - The set of bijective conformal maps $f: D \to D$ forms a group (with identity $z \to z$)

Riemann mapping theorem:

• Main problem: given 2 domains (possibly unbounded) with boundaries C, C', find a conformal bijective function $f: D \rightarrow D'$.

- Notation: $u = open unit disk = \{z \in \mathbb{C} : |z| < 1\}.$
- Theorem: let *D* be a simply connected domain which is not the entire plane. Then there exists a conformal bijection $f: D \rightarrow u$.
 - In fact, for any fixed $z_0 \in D$, there is a unique such f with $f(z_0) = 0$ and $f'(z_0) > 0$.
- Drawback: don't know what f is, only that it exists
- The uniqueness entails 3 real degrees of freedom
 - Choose $z_0 = x_0 + iy_0$.
 - Rotation of the disk to ensure $f'(z_0) > 0$ (in general $f'(z_0) = re^{i\phi}$)
- Corollary: if D₁, D₂ are any 2 simply-connected domains (both not C), then there is a conformal bijection f: D₁ → D₂.

Mobius transformations (fractional linear transformations)

• Maps of the form $w = \frac{az+b}{cz+d}$ where $a, b, c, d \neq 0$ and $ad - bc \neq 0$.

• If
$$ad - bc = 0$$
, then $\frac{b}{a} = \frac{d}{c}$ and $w = \frac{a}{c} \frac{z + \frac{a}{b}}{z + \frac{d}{c}} = \frac{a}{c}$ constant.

- Derivative: $\frac{dw}{dz} = \frac{ad-bc}{(cz+d)^2}$.
 - Is never zero
 - So the map is conformal everywhere except at its unique pole $z = -\frac{d}{c}$.
- Basic Mobius transformations
 - Rotation by $\phi: w = f_1(z) = e^{i\phi} z$ ($a = e^{i\phi}, b = c = 0, d = 1$)
 - Magnification by $r: w = f_2(z) = rz$ (a = r > 0, b = c = 0, d = 1)
 - Translation by $b: w = f_3(z) = z + b$ (a = 1, c = 0, d = 1)
 - Affine transform: $w = f(z) = az + b = f_3 \circ f_2 \circ f_1(z)$, $a = re^{i\phi} \neq 0$.
 - Such a linear f maps lines to lines and circles to circles.

• Inversion map:
$$w = f(z) = \frac{1}{2}(a = 0, b = 1, c = 1, d = 0)$$
.

- $re^{i\theta} \rightarrow \frac{1}{r}e^{-i\theta}$.
- Inversion in unit circle and reflection in real axis.
- Let S be the set of circles and straight lines in the plane
 - A line is a circle with radius ∞ .
 - $\circ w = \frac{1}{z}$ maps S to S.
 - A circle passes origin gets inverted to a line
 - An element of S has equation azz̄ αz ᾱz̄ + d = 0 with αᾱ > ad (a, d ∈ ℝ, α ∈ ℂ)
 - \Box a = 0: a line.

$$\Box \ a \neq 0: \text{ a circle } \left(x - \frac{b}{a}\right)^2 + \left(y - \frac{c}{a}\right)^2 = \frac{b^2}{a^2} + \frac{c^2}{a^2} - \frac{d}{a}.$$

- Any Mobius transformation $w = \frac{d2+b}{cz+d}$ maps S to S.
- A line in C is a "circle" that passes throuh ∞. In this case all elements of S (formally lines and circles) can be thought of as "circles"
 - Mobius transformations map "circles" to "circles"
- $w = e^{i\theta} \frac{z-z_0}{z-\overline{z_0}}$ maps the upper half plane to the unit disk with 3 degrees of freedom.
 - Choose $z_0 = a + bi \in UHP$ for which w = 0.
 - $\circ~$ Choose an angle θ for rotation of disk

Point at infinity

- Also called: Riemann sphere, stereographic projection, Alexandroff one-point compactification
- Geometric version 1

- $\circ~$ Get a 1-1 mapping between sphere without the north pole and $\mathbb{C}.$
- Gives a bijection from sphere to $\mathbb{C} \cup \{\infty\}$.
- Geometric version 2
 - $\circ~$ Similar to 1, but have center of sphere at origin
 - \circ $\;$ North sphere outside the unit disk
 - South sphere inside the unit disk
- Analytic version
 - Consider C ∪ {∞}, neighborhood of ∞ is ∞ ∪ F^C for any closed bounded F ⊂ C.
 ∞ ∪ F^C is open.
 - Compliment of F on Riemann sphere is an open neighborhood of N.
 - The map $z \to \frac{1}{z}$ is a continuous map on $\mathbb{C} \cup \{\infty\}$.
 - $0 \to \infty \text{ and } \infty \to 0.$
 - On \mathbb{R} , F^C is disconnected, so we need both $\pm \infty$.
 - $\circ~$ On, \mathbb{C} , open disks around ∞ are connected, there is only one point at $\infty.$

Schwarz-Christoffel transformation

- Transforms UHP to a polygon
- Let *P* be a polygon in the w-plane, with vertices $w_0, w_1, ..., w_n$ and exterior angles $\alpha_1 \pi, \alpha_2 \pi, ..., \alpha_n \pi$ with $\alpha_i \in (-1, 1)$. Then there are complex constants *A*, *B* and real ordered numbers $x_1, ..., x_n$ (2 of which can be arbitrary) such that w = f(z) maps UHP conformally one to one onto *P*, where $f(z) = A \int_{z_0}^{z} (\zeta x_1)^{-\alpha_1} ... (\zeta x_n)^{-\alpha_n} d\zeta + B$.
 - A is a magification and rotation, B is a translation.
 A = 1, B = 0 gives a polygon similar to P (same angles α₁π, α₂π, ... α_nπ).
 - Note: sum of exterior angles $\sum_{i=1}^{n} \alpha_i \pi = 2\pi$.
 - Tangent vectors are not rotated except at x_i , where they are rotated by $\alpha_i \pi$.
 - Freedom to choose x_1, x_2 doesn't extend to $x_3, ..., x_n$, which are needed to set scale of sides

Applications to boundary value problems

- Find ϕ defined \overline{D} such that $\nabla^2 \phi = 0$ inside D, $\phi = f$ on ∂D .
- Solution is unique if *D* is bounded
- Solution exists for nice D and f.
- Poisson formula
 - $D = \{z : |z| < R\}.$

•
$$\phi(re^{i\theta}) = \frac{R^2 - r^2}{2\pi} \int_0^{2\pi} \frac{f(Re^{it})}{R^2 - 2Rr\cos(\theta - t) + r^2} dt.$$

 $\circ~$ For unbounded domains, the solution to the Dirichlet problem may not be unique, unless some condition at ∞ is imposed (e.g. solution remain bounded)

• e.g.
$$D = UHP$$
, $\nabla^2 \phi = 0$, $\phi = 0$ at $y = 0$, has solution $\phi(x, y) = \lambda y$ for any $\lambda \in \mathbb{R}$.

- With $\phi = \phi(x, y), \frac{\partial \phi}{\partial n} = (\phi_x, \phi_y) \cdot (n_1, n_2).$
- Theorem: if *D* is bounded, then the solution to the Neumann problem is unique, up to an additive constant
- Note: if $f: D \to D'$ is analytic (conformal), $\phi: \overline{D'} \to \mathbb{R}$ is harmonic with $\frac{\partial \phi}{\partial n}$ on $\partial D'$, then $\psi = \phi \circ f$ is harmonic on *D* with $\frac{\partial \psi}{\partial n} = 0$ on ∂D .

Heat conduction example

- $\nabla^2 T = 0$ in $D = \{z: 0 < Im(z) < \pi\}$ with indicated boundary conditions.
 - Step 1: map strip to UHP
 - $\circ w = f(z) = \cosh z.$
- Step 2: solve the problem in UHP
 - Note: the argument function $\arg z$ is harmonic in UHP since $\arg z = Im(\log z)$.
 - $\circ \quad \phi(w) = \frac{T_0}{\pi} \Big(-Arg(w+1) + Arg(w-1) \Big).$
 - Since $\phi(w) = Im\left(\frac{T_0}{\pi}\left(-Log(w+1) + Log(w-1)\right)\right)$, ϕ is harmonic in UHP and obeys the boundary conditions.
 - Write w = u + iv, $\phi(u, v) = \frac{T_0}{\pi} Arg(u^2 + v^2 1 + 2iv)$.
- Step 3: pull back to strip by $T = \phi \circ f$.
 - Let z = x + iy, $f(z) = \cosh z = \cosh x \cos y + i \sinh x \sin y$.
 - So $u = \cosh x \cos y$, $v = \sinh x \sin y$.
 - Note: $u^2 + v^2 1 = \sinh^2 x \sin^2 y$.
- Isotherms are $T(x, y) = \phi\left(u(x, y), v(x, y)\right) = \frac{2T_0}{\pi} \arctan\left(\frac{\sin y}{\sinh x}\right)$.

2D fluid flow

- Problem: determine v(x, y) and streamlines
- Notation: $v = (v_1, v_2) = v_1 + iv_2$.
- Assume velocity satisfies $v(x, y) \rightarrow (a, 0)$ as $x \rightarrow -\infty$, a > 0.
- Assumptions
 - $\circ v$ is independent of time (steady state), v is smooth.
 - Flow is irrotational (curl free, $\frac{\partial v_1}{\partial y} = \frac{\partial v_2}{\partial x}$) and incompressible (divergence free $\frac{\partial v_1}{\partial x} + \frac{\partial v_2}{\partial y} =$ 0).
 - There are streamlines along boundary of the obstacle
- Define $f(z) = v_1 iv_2 = \overline{v}$ where z = x + iy.
- Then f is analytic since $\frac{\partial v_1}{\partial x} = \frac{\partial (-v_2)}{\partial y}$ and $\frac{\partial v_1}{\partial y} = -\frac{\partial (-v_2)}{\partial x}$ i.e. obeys CR equation.
- Let $F(z) = \int_{z_0}^{z} f(\zeta) d\zeta$ (complex potential) independent of path for a simply connected domain

- If we know *F*, we can
 - Obtain $v: v = v_1 + iv_2 = \overline{f(z)} = \overline{F'(z)}$.
 - Streamlines: write $F(z) = \psi(x, y) + i\phi(x, y)$, ψ , ϕ are harmonic, streamlines are the level curves $\phi(x, y) = const$.
 - v is orthogonal to $\nabla \phi$.
- Parallel flow
 - 0 **X**
 - Velocity v = (a, 0), a > 0 is constant everywhere
 - $F'(z) = \bar{v} = a$, so F(z) = az = a(x + iy).
 - $\phi(x, y) = ay$, streamlines are y = const.
 - Any flows can be mapped to the parallel flow
- Flow around corner

- Potential in the UHP is G(w) = aw.
- Potential in z-plane (pull back) is $F(z) = G(f(z)) = az^{\frac{\pi}{\alpha}}$.

$$\circ \quad \bar{v} = \overline{F'(z)} = \frac{a\pi}{\alpha} \frac{z^{\frac{\pi}{\alpha}}}{z}.$$

- $\phi(x, y) = 2axy$, streamlines are xy = const.
- Cylinder obstacle
 - $O \qquad D \qquad |z \qquad \omega = f(z) = 2 + \frac{1}{2}$

$$\circ F(z) = G(f(z)) = a\left(z + \frac{1}{z}\right).$$

•
$$\phi(x,y) = a\left(y - \frac{y}{x^2 + y^2}\right)$$
, streamlines are $y - \frac{y}{x^2 + y^2} = const.$

• Simple barrier

- Streamlines are $Im\left(a\sqrt{z^2+1}\right) = const.$
- This has genuine application to aircraft design (Joukowsky transformation)

Asymptotic evaluation of integrals

January 10, 2022 11:04 AM

Examples

- Stirling's formula: $n! \sim n^n e^{-n} \sqrt{2\pi n}$ as $n \to \infty$. • In more detail, $n! = n^n e^{-n} \sqrt{2\pi n} \left(1 + \frac{1}{12n} + \frac{1}{288n^2} + O\left(\frac{1}{n^3}\right) \right)$.
- Prime number theorem: let $\pi(x)$ be the number of primes less than or equal to x (x > 0), then $\pi(x) \sim \frac{x}{\log x}$ as $x \to \infty$.

O-Notations

- $A_R = \{ z = re^{i\theta}, \alpha \le \theta \le \beta, r > R \}.$
- f(z) = O(g(z)) means $\exists R, M$ such that $|f(z)| \le M|g(z)|$ for all $z \in A_R$. • i.e. $\left|\frac{f(z)}{g(z)}\right| \le M$, for all $z \in A_R$.
- f(z) = o(g(z)) means $\forall \epsilon > 0$, $\exists R$ such that $|f(z)| \le \epsilon |g(z)|$ for all $z \in A_R$. • i.e. $\lim_{z \to \infty} \frac{f(z)}{g(z)} = 0$.
- Examples
 - f(z) = O(1) means f(z) is eventually bounded
 - f(z) = o(1) means $f(z) \to 0$.
 - If f(z) = o(g(z)), then f(z) = O(g(z)).
 - Take $\alpha = \beta = 0$, then $e^{-x} = o\left(\frac{1}{x^n}\right)$ for all $n \ge 1$.
 - Take $\alpha = \beta = 0$, then $\frac{1}{2x^2 + x} = o\left(\frac{1}{x^{2-p}}\right)$ for $p \ge 0$.

Def: We say $f(z) \sim S(z) = a_0 + \frac{a_1}{z} + \frac{a_2}{z^2} + \cdots$, if $f(z) - S_n(z) = o\left(\frac{1}{z^n}\right)$, where $S_n(z) = \sum_{m=0}^n \frac{a_m}{z^m}$, for all n > 0.

- *S*(*z*) may not converge.
- Write ~ instead of = because S(z) may diverge even if f is finite.
- Properties
 - An improved remainder estimate is $\frac{f(z) S_n(z) = O\left(\frac{1}{z^{n+1}}\right)}{1}$.
 - Uniqueness: if $f(z) \sim A(z) = \sum_{n=0}^{\infty} \frac{a_n}{z^n}$ and $f(z) \sim B(z) = \sum_{n=0}^{\infty} \frac{b_n}{z^n}$, then $a_n = b_n$ for all $n \ge 0$.
 - Asymptotic expansions can be added or multiplied
 - \circ $\;$ Two different functions can have the same asymptotic expansion

•
$$e^{-x} \sim 0 + \frac{0}{x} + \frac{0}{x^2} + \cdots, 0 \sim 0 + \frac{0}{x} + \cdots$$

• Example

$$\circ I(x) = \int_0^\infty \frac{e^{-t}}{t+x} dt \sim \sum_{n=0}^\infty \frac{(-1)^n n!}{x^{n+1}} \text{ for large real } x > 0.$$

$$\circ R_N(x) = I(x) - \sum_{n=0}^N \frac{(-1)^n n!}{x^{n+1}} = o\left(\frac{1}{x^{N+1}}\right).$$

Gamma function

- $\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$ for Re(z) > 0.
- The integral does converge for Re(z) > 0.
- Γ(z) is analytic for Re(z) > 0, and Γ'(z) can be computed by differentiating under the integral.
- Recursion, let Re(z) > 0, then $\Gamma(z + 1) = z\Gamma(z)$.
- Relation to factorial: $\Gamma(n + 1) = n!$ For $n \ge 0$.

•
$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}.$$

• Analytic continuation.

- $\circ \quad \Gamma(z) = \frac{\Gamma(z+n)}{(z+n-1)\dots(z+1)z} \text{ with } Re(z) > 0.$
- RHS is analytic for Re(z + n) > 0 or Re(z) > -n except for simple poles at $0, -1, \dots, -(n-1).$
- Since *n* is arbitrary, we get an analytic continuation of $\Gamma(z)$ to $\mathbb{C} \{0, -1, -2, ..., \}$.

Asymptotic equivalence

- Def: two functions f(z) and g(z) are asymptotically equivalent $f(z) \sim g(z)$ if f(z) =g(z)(1+o(1)).
 - i.e. $\lim_{z\to\infty} \frac{f(z)}{q(z)} = 1$ (limit taken in a wedge).
 - A more detailed statement: $\frac{f(z)}{g(z)} \sim 1 + \frac{b_1}{z} + \frac{b_2}{z^2} + \cdots$.
 - But often, just knowing $f(z) \sim g(z)$ is enough, f is hard to compute, g is easy to compute
- g provides an approximation to f with small relative error, but not necessarily small absolute error.

$$f(z) = \frac{ze^{z}}{z+1}, f(z) \sim e^{z} \text{ as } z \to \infty \text{ on } [0, \infty).$$

- Absolute error: $|f(z) e^z| = \left|e^z \cdot \frac{1}{z+1}\right| \to \infty$. • Relative error: $\left|\frac{f(Z) - e^Z}{f(Z)}\right| = \left|\frac{e^Z \frac{1}{Z+1}}{\frac{Z^{e^Z}}{Z+1}}\right| = \left|\frac{1}{Z}\right| \to 0.$
- Common f is $f(z) = \int_{\Gamma} e^{zh(\zeta)} g(\zeta) d\zeta$, Γ is some contour, $z \to \infty$ in some wedge. $\circ \Gamma(z+1) = \int_{0}^{\infty} t^{z} e^{-t} dt = z^{z+1} \int_{0}^{\infty} e^{z(\log u u)} du$, $h(u) = \log u u$, g(u) = 1.

 - Laplace transform: $\tilde{g}(z) = \int_0^\infty e^{-zt} g(t) dt$, h(t) = -t.
 - Fourier transform: $\hat{g}(z) = \int_{-\infty}^{\infty} e^{-izt} g(t) dt$, h(t) = -it.

Laplace transform

- $\tilde{g}(z) = \int_0^\infty e^{-zt} g(t) dt$.

- Expect $\tilde{g}(z)$ for large z to depend only on g(t) for $t \approx 0$. If $g(t) = \sum_{n=0}^{\infty} a_n t^n$ for $|t| < t_0$, then $\tilde{g}(z) \sim \sum_{n=0}^{\infty} a_n \int_0^{\infty} e^{-zt} t^n dt$. Let u = zt, $\int_0^{\infty} e^{-zt} t^n dt = \frac{1}{z^{n+1}} \int_0^{\infty} e^{-u} u^n du = \frac{n!}{z^{n+1}}$. $\circ \quad \tilde{g}(z) \sim \sum_{n=0}^{\infty} \frac{a_n n!}{z^{n+1}}.$ $\circ \quad \text{Since } a_n = \frac{g^{(n)}(0)}{n!}, \quad \tilde{g}(z) \sim \sum_{n=0}^{\infty} \frac{g^{(n)}(0)}{z^{n+1}}.$
- Theorem: suppose g is continuous and bounded on $[0, \infty)$ and analytic at t = 0 with g(t) = $\underline{\sum_{n=0}^{\infty} a_n t^n \text{ for } |t|} \le t_0, \text{ then } \tilde{g}(z) \sim \sum_{n=0}^{\infty} \frac{a_n n!}{z^{n+1}} = \frac{a_0}{z} + \frac{a_1}{z^2} + \frac{a_2 2!}{z^3} + \dots \text{ as } z \to \infty \text{ along } [0, \infty).$
- Watson's lemma: let $\tilde{g}(z) = \int_0^b e^{-zt} g(t) dt$, $b \in (0, \infty]$, where g is locally integrable and
 - $\begin{array}{l} \overline{g(t)} \sim t^{\alpha} \sum_{n=0}^{\infty} a_n t^{\beta n} \text{ as } t \to 0 \quad \text{with } \alpha > -1, \beta > 0. \\ \circ \quad \text{i.e. } g(t) t^{\alpha} \sum_{n=0}^{N} a_n t^{\beta n} = o(t^{\alpha + \beta_n}) \text{ as } t \to 0^+. \end{array}$
 - If $b < \infty$, assume g is bounded $(|g(t)| \le M, \forall t \in [0, b])$.
 - If b = ∞, assume |g(t)| ≤ Me^{ct} for some c, M > 0, ∀t ∈ [0,∞).
 Then g̃(z)~ Σ_{n=0}[∞] a_n Γ(α+βn+1)/(z^{α+βn+1}) as z → ∞ along [0,∞).

 - For $\alpha = 0$, $\beta = 1$, matches the previous theorem.
- Improved Watson's lemma: Let $I(z) = \int_0^b e^{-zt} g(t) dt$, $b \in (0, \infty]$, with $g(t) \sim t^{\alpha} \sum_{n=0}^{\infty} a_n t^{\beta n}$ as $t \to 0$ with $\alpha > -1$, $\beta > 0$. Assume the integral exists for all sufficiently large z. Then $I(z) \sim \sum_{0}^{\infty} a_n \frac{\Gamma(\alpha + \beta n + 1)}{z^{\alpha + \beta n + 1}}$

• e.g.
$$I(z) = \int_0^\infty \frac{e^{-zt}}{\sqrt{t^2 + 2t}} dt.$$

• $g(t) = \frac{1}{\sqrt{t^2 + 2t}} = \frac{1}{\sqrt{2t}} \frac{1}{\sqrt{1 + \frac{t}{2}}}.$

• Note: $(1+x)^p = \sum_{n=0}^{\infty} {p \choose n} x^n$ for any $p \in \mathbb{R}, |x| < 1$.

MATH301 Page 11

• And $\binom{p}{n} = \frac{p(p-1)\dots(p-n+1)}{n!}$ is the generalized binomial coefficient.

Laplace's method

- Informal: $I(z) = \int_a^b e^{-zh(t)}g(t)dt$, $z \to \infty$ along $[0, \infty)$. Suppose g and h are smooth, a and b may be infinite.
 - Suppose h has a global minimum at $c \in (a, b)$, with h'(c) = 0, h''(c) > 0.
 - Then $h(t) = h(c) + \frac{1}{2}h''(c)(t-c)^2 + \cdots, e^{-zh(t)} = e^{-zh(c)}e^{-z(h(t)-h(c))}$
- Expect $I(z) \sim \int_{c-\epsilon}^{c+\epsilon} e^{-zh(c)} e^{-z[h(t)-h(c)]} g(t) dt = e^{-zh(c)} \int_{c-\epsilon}^{c+\epsilon} e^{-z\frac{1}{2}h''(c)(t-c)^2} g(c) dt.$ Actually $I(z) \sim \frac{\sqrt{2\pi}e^{-zh(c)}g(c)}{\sqrt{zh''(c)}}.$ Formal: let $I(z) = \int_a^b e^{-zh(t)} g(t) dt$. Suppose there exists a unique $c \in (a, b)$ such that
- h'(c) = 0, suppose also that h''(c) > 0 and that $h \in C^4$, $g \in C^2$, $g(c) \neq 0$. Then I(z) = I(z) $\frac{\sqrt{2\pi}e^{-zh(c)}g(c)}{\sqrt{zh''(c)}} \left[1 + O\left(\frac{1}{z}\right)\right].$

• If c is an end point (a or b), instead $\frac{I(z)}{2} = \frac{1}{2} \frac{\sqrt{2\pi}e^{-zh(c)}g(c)}{\sqrt{zh''(c)}} \left[1 + O\left(\frac{1}{\sqrt{z}}\right)\right].$

•
$$I(z) = \int_{-\infty}^{\infty} e^{-z \sinh^2 t} dt = \sqrt{\frac{\pi}{z}} \left[1 + O\left(\frac{1}{z}\right) \right].$$

• $g(t) = 1, h(t) = \sinh^2 t, h'(t) = \sinh 2t, h''(t) = 2 \cosh 2t.$

• Stirling's formula: $\Gamma(z+1) = \int_0^\infty t^z e^{-t} dt = z^z e^{-z} \sqrt{2\pi z} \left(1 + O\left(\frac{1}{z}\right)\right).$

• Let
$$t = uz$$
, $\int_0^\infty t^z e^{-t} dt = z^{z+1} \int_0^\infty e^{-z(u-\log u)} du$.
• $g(u) = 1$, $h(u) = u - \log u$, $h'(u) = 1 - \frac{1}{u}$, $h''(u) = \frac{1}{u^2}$.

A useful contour integral

- $I_{\alpha,p}(\nu) = \int_0^\infty t^{\alpha-1} e^{i\nu t^p} dt$ where $\nu \in \mathbb{R}, \nu \neq 0, 0 < \alpha < p$.
- $I_{\alpha,p}(\nu) = \frac{\Gamma\left(\frac{\alpha}{p}\right)}{p|\nu|^{\alpha/p}} e^{i\frac{\pi\alpha}{2p}\operatorname{sgn}(\nu)}.$
- Special case: Fresnel integral with $\alpha = 1, p = 2$.

$$I_{1,2}(\nu) = \int_0^\infty e^{i\nu t^2} dt = \frac{\Gamma(\frac{1}{2})}{2\sqrt{|\nu|}} e^{\operatorname{sgn}(\nu)\frac{i\pi}{4}}.$$

$$For \nu > 0, I_{1,2}(\nu) = \frac{1}{2} \sqrt{\frac{\pi}{\nu}} \frac{1+i}{\sqrt{2}}, \text{ so } \int_0^\infty \sin(\nu t^2) dt = \int_0^\infty \cos(\nu t^2) dt = \sqrt{\frac{\pi}{8}} \frac{1}{\sqrt{\nu}}.$$

Stationary phase method

• Change the variable names of the previous integral

$$I_{\lambda,\mu}(z) = \int_a^b t^{\lambda-1} e^{izt^{\mu}} dt = \frac{\Gamma(\frac{\lambda}{\mu})}{\mu |z|^{\lambda/\mu}} e^{i\frac{\pi\lambda}{2\mu} \operatorname{sgn}(z)} \text{ for } 0 < \lambda < \mu, z \in \mathbb{R}, z \neq 0.$$

- For Fourier type integrals, $I(z) = \int_a^b e^{izh(t)}g(t)dt$ for real-valued g, h.
 - Riemann-Lebesgue Lemma: $\int_{-\pi}^{\pi} f(x) \cos nx \, dx \to 0$ as $n \to \infty$ if f is Riemann integrable • Thus $\int_{-\pi}^{\pi} f(x) e^{inx} dx \to 0$ as $n \to \infty$.
 - Idea: adjacent peaks and valleys create cancellation in the integral
 - Cancellations in $\int_a^b e^{izh(t)}g(t)dt$ are least at endpoints due to lack of symmetry and at peaks where h'(t) = 0 because h(t) varies more slowly there.
- Endpoint behavior for h(t) = t.
 - $\int_{a}^{b} e^{izt}g(t)dt \sim \frac{1}{iz} \left(e^{izb}g(b) e^{iza}g(a) \right)$ using IBP.
- Stationary point

 - Suppose h'(c) = 0, $h''(c) \neq 0$, $h'(t) \neq 0$ for all $t \neq c$. Then $\int_{c-\epsilon}^{c+\epsilon} e^{izh(t)}g(t)dt \approx \sqrt{\frac{2\pi}{|h''(c)|}}e^{izh(c)}\frac{1}{\sqrt{z}}e^{i\frac{\pi}{4}\sigma}$, where $\sigma = \operatorname{sgn} h''(c)$.

Stationary phase theorem

- Consider $I(z) = \int_a^b e^{izh(t)}g(t)dt$ with a finite b > a (possibly infinite), assume:
 - In (a, b), h' and g are continuous, h''(t) > 0 and g'(t) and $\frac{g(t)}{h'(t)}$ are continuously differentiable with the latter integrable on (a, b).
 - As $t \to a^+$, there are $\mu > \lambda > 0$ such that $h(t) h(a) \sim c_1(t-a)^{\mu}$, $g(t) \sim c_2(t-a)^{\lambda}$ and the first is twice differentiable, the second is once differentiable.
 - As $t \to b^-$, $\frac{g(t)}{h'(t)}$ \to finite limit which is zero if $b \to \infty$.
- Then $I(z) \sim e^{i\pi \frac{\lambda}{2\mu}} \frac{c_2}{\mu} \Gamma\left(\frac{\lambda}{\mu}\right) \frac{e^{izh(a)}}{(c_1z)^{\lambda/\mu}}$
- Special case:
 - Conditions: a = 0, $h(t) \sim c_1 t^2$ as $t \to 0^+$ ($c_1 = \frac{h''(0)}{2}$), $g(t) \sim g(0)$ as $t \to 0^+$.
 - $\circ \ \mu=2, \lambda=1.$

$$I(z) \sim \sqrt{\frac{\pi}{2}} \frac{1}{\sqrt{h''(0)}} e^{\frac{i\pi}{4}} g(0) \frac{1}{\sqrt{z}}.$$

• Half the previous example, the $\frac{1}{2}$ will disappear for an interior point.

Application to Bessel functions $J_n(z)$.

- Def: Let $f(\zeta) = e^{\frac{1}{2}z(\zeta \frac{1}{\zeta})}$ (generating function), $\zeta \in \mathbb{C} \{0\}$. Fixed $z \in \mathbb{C}$. Since f is analytic on $\mathbb{C} \{0\}$, it has a Laurent expansion $f(\zeta) = \sum_{-\infty}^{\infty} J_n(z)\zeta^n$ convergent for $z \neq 0$.
- $J_n(z) = \frac{1}{2\pi i} \int_C \frac{f(\zeta)}{z^{n+1}} d\zeta.$
- If C: |z| = 1, we get $J_n(z) = \frac{1}{2\pi} \int_0^{2\pi} e^{iz \sin \theta} e^{-in \theta} d\theta$. • If $z \in \mathbb{R}$, $|J_n(z)| \le 1$.
- The power series: $J_n(z) = \left(\frac{z}{2}\right)^n \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} \frac{1}{(n+k)!} \frac{1}{2^{2k}} z^{2k}$
 - Ratio test gives radius of convergence ∞
 - $J_n(z)$ is entire and has zero of order n at z = 0.
 - This is a solution to the Bessel equation $J_n''(z) + \frac{1}{z}J_n'(z) + \left(1 \frac{n^2}{z^2}\right)J_n(z) = 0.$
- Asymptotic behavior of $J_n(z) = \frac{1}{2\pi} \int_0^{2\pi} e^{iz \sin \theta} e^{-in \theta} d\theta$

 - $g(\theta) = e^{-in\theta}$, $h(\theta) = \sin\theta$, critical points at $\frac{\pi}{2}$, $\frac{3\pi}{2}$, need spliting. $J_n(z) = \frac{1}{2\pi} \int_0^{\pi} e^{iz\sin\theta} e^{-in\theta} d\theta + \frac{1}{2\pi} \int_{\pi}^{2\pi} e^{iz\sin\theta} e^{-in\theta} d\theta$.

$$\circ \sim \frac{2}{\sqrt{2\pi z}} \cos\left(z - \frac{\pi}{4} - \frac{\pi \pi}{2}\right)$$

- $\circ -\frac{\pi}{4} \frac{n\pi}{2}$ is the phase shift
- This is a damped cosine wave

Method of steepest descent example (Airy function)

- Airy function: Ai(x) = ¹/_π ∫₀[∞] cos (¹/₃t³ + xt) dt.
 Consider the behavior as x → ∞ along [0,∞).
- Rewrite in exponential form: $Ai(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i(\frac{1}{3}t^3 + xt)} dt$.
- Let $t = \sqrt{x}w$, $Ai(x) = \frac{\sqrt{x}}{2\pi} \int_{-\infty}^{\infty} e^{ix^{\frac{3}{2}} \left(w + \frac{1}{3}w^{3}\right)} dw$.
- Let $z = \sqrt{x}$, $Ai(z) = \frac{z}{2\pi} \int_{-\infty}^{\infty} e^{iz^3 \left(w + \frac{1}{3}w^3\right)} dw$.
- Let $h(w) = w + \frac{1}{3}w^3$, $h'(w) = 1 + w^2$, h''(w) = 2w.
 - Critical points: $w = \pm i$, $h'(\pm i) = 0$, $h''(\pm i) = \pm 2i$, $ih(i) = -\frac{2}{2}$.
- Idea: deform the contour from the real axis to a new contour C which passes through a critical point
- Write h(w) = u(w) + iv(w).
 - We want that on C, we have $Im(ih(w)) = u(w) = const = u_0$, C is a level curve of u passing through a critical point. Then $\int_C e^{iz^3h(w)}dw = e^{iz^3u_0}\int_C e^{-z^3v(w)}dw$

- $\circ iz^{3}h = iz^{3}u z^{3}v.$
- $u(w) = x xy^2 + \frac{1}{3}x^3$.
 - Level curves through i = (0,1) is $x \left(1 y^2 + \frac{1}{3}x^2\right) = 0 = u_0$.
 - $x = 0 \text{ or } 3y^2 x^3 = 3.$
 - Choose the upper branch of the hyperbola (passing through *i*) as *C*, because it is the part of steepest descent of -v(w).
 - The x = 0 is the path of steepest ascent.
- $v(w) = y \frac{1}{2}y^3 + x^2y.$
 - Gradient of -v is parallel to level curves of u.
- Deformation from the real axis to *C*
 - Want to show $\int_{-\infty}^{\infty} e^{iz^3h(w)}dw = \int_{C} e^{iz^3h(w)}dw$.
 - The integrand is entire, so local deformation are OK by Cauchy integral theorem
 - The only difficulty is at infinity
 - Claim: we can deform the contour to any contour going to ∞ as $\lambda e^{i\theta}$ with $\theta \in \left[0, \frac{\pi}{3}\right]$, similarly on left side with $\theta \in \left(\frac{2\pi}{3}, \pi\right]$.
 - Verification: $\int_{\Gamma_R} e^{z^3 i h(w)} dw = \int_0^\beta e^{z^3 i h\left(Re^{i\theta}\right)} Rie^{i\theta} d\theta.$

•
$$\left| \int_{\Gamma_R} e^{z^3 i h(w)} dw \right| \leq \int_0^\beta e^{-\frac{1}{3}R^3 \sin 3\theta} R d\theta \leq R \int_0^\beta e^{-\frac{1}{3}R^3 m_\beta \theta} d\theta = O\left(\frac{1}{R^2}\right)$$

 $\circ \quad \text{So } Ai(z^2) = \frac{z}{2\pi} \int_C e^{-z^3 v(w)} dw.$

- Apply Laplace's method (asymptotic behavior is dominated by w = i critical point)
 - On the contour *C*, $-v(w) = ih(w) = i\left(h(i) + h'(i)(w-i) + \frac{h''(i)}{2}(w-i)^2\right)$.

•
$$h(i) = \frac{2}{3}i, h'(i) = 0, h''(i) = 2i.$$

• $ih(w) = -\frac{2}{3} - (w - i)^2$.

$$\circ \int_{C} e^{-z^{3}v(w)} dw = \int_{C} e^{iz^{3}h(w)} dw \sim e^{-\frac{2}{3}z^{3}} \int_{C_{\epsilon}} e^{-z^{3}(w-i)^{2}} dw = e^{-\frac{2}{3}z^{3}} \int_{-\epsilon}^{\epsilon} e^{-z^{3}t^{2}} dt.$$

Steepest descent theorem

- Let $\gamma : (a, b) \to \mathbb{C}$ be a C^1 curve ($a = -\infty$ and/or $b = \infty$ is allowed).
- Let f(w) be continuous along γ and analytic at $w_0 = \gamma(t_0), t_0 \in (a, b)$.
- Let g be a bounded and continuous funciton on γ with $g(t_0) \neq 0$.
- Suppose that for $|z| \ge R$ and $\arg z$ fixed.
 - $\int_{v} e^{zf(w)}g(w)dw$ converges absolutely.
 - ∘ $f'(w_0) = 0, f''(w_0) \neq 0.$
 - Im(zf(w)) = const for w on γ in some neighborhood of w_0 .
 - $Re(zf(w_0)) > Re(zf(\gamma(t)))$ for all $t \neq t_0$. (-v(w)) takes its unique max on γ at the critical point)
- Then $\int_{\gamma} e^{zf(w)} g(w) dw \sim e^{zf(w)} \frac{\sqrt{2\pi}}{\sqrt{-f''(w_0)}} \frac{1}{\sqrt{z}} g(w_0) \text{ as } z \to \infty, \arg z \text{ fixed.}$

• Application to Airy function
$$Ai(x) = \frac{x}{2\pi} \int_{-\infty}^{\infty} e^{ix^{\frac{3}{2}} \left(w + \frac{1}{3}w^{3}\right)} dw.$$

•
$$f(w) = ih(w) = i\left(w + \frac{1}{3}w^3\right), g(w) = 1, z = x^{\frac{3}{2}}.$$

• Deform to a contour C such that Im(ih) = u = const, Re(ih) = -v is maximal at $w_0 = i$.

•
$$f(w_0) = -\frac{2}{3}, f''(w_0) = -2.$$

$$\circ A_{i}(x) \sim \frac{\sqrt{x}}{2\pi} e^{-\frac{2}{3}x^{\frac{3}{2}}} \frac{\sqrt{2\pi}}{\sqrt{2}} \frac{1}{\sqrt{x^{\frac{3}{2}}}} = \frac{1}{2\sqrt{\pi}} \frac{1}{x^{1/4}} e^{-\frac{2}{3}x^{\frac{3}{2}}}.$$

- Example: $I(z) = \int_{-\infty}^{\infty} e^{izt} (1+t^2)^{-z} dt$ as $z \to \infty$ along $[0, \infty)$.
 - Rewrite as $I(z) = \int_{-\infty}^{\infty} \exp\left(z(it \log(1 + t^2))\right) dt$.
 - Take the branch cut for $Log(1 + t^2)$ at t > i and t < -i.
 - In the cut plane, $Log(1 + t^2)$ is analytic.
 - Let $f(w) = iw Log(1 + w^2)$.
 - $f'(w) = i \frac{2w}{1+w^2}, w_0 = i(\sqrt{2}-1).$ $f''(w) = \frac{2(w^2-1)}{(1+w^2)^2}, f''(w_0) = -\frac{c^2+1}{2c^2}.$
 - $f(w_0) = -c \log 2c \ (c = \sqrt{2} 1).$
 - $Re(f(w)) = -y \log|1 + w^2| = -y \frac{1}{2}\log((1 + x^2 y^2) + 4x^2y^2)$
 - $Im(f(w)) = x \arctan \frac{2xy}{1+x^2-y^2}, Im(f(w_0)) = 0.$
 - Path of steepest descent: $Im(f(w_0)) = 0$.

• Substitute into the theorem:
$$I(z) \sim \frac{2c}{\sqrt{c^2+1}} \sqrt{\frac{\pi}{z}} e^{-cz} \frac{1}{(2c)^z}$$
.

Laplace transform

- Def: for $f: [0, \infty) \to \mathbb{C}$ of exponential order (i.e. $\exists A > 0, D \in \mathbb{R}$ such that $|f(t)| \le Ae^{Bt}$ for all
 - $t \ge 0$), its Laplace transform is $\tilde{f}(z) = \int_0^\infty e^{-zt} f(t) dt$.
- Facts
 - There exists a unique $\sigma \in [-\infty, \infty)$ such that the integral converges if $Re(z) > \sigma$, diverges if $Re(z) < \sigma$.
 - $\circ \quad \tilde{f} \text{ is analytic on } Re(z) > \sigma \text{ and } (z) = -\int_0^\infty e^{-zt} tf(t) dt.$
 - If f(t) and g(t) are continuous and $\tilde{f}(z) = \tilde{g}(z)$ for $Re(z) > x_0$ for some x_0 , then f(t) = g(t) for all $t \in [0, \infty)$.

Inverse Laplace transform

• Complex inversion formula: suppose $F: \mathbb{C} \to \mathbb{C}$ is analytic except for a finite number of isolated singularities z_j and that F is analytic on $\{z : Re(z) > \sigma\}$. Suppose $|F(z)| \le \frac{M}{|z|^{\beta}}$ for all $|z| \ge R$

with $\beta > 0$. For $t \ge 0$, let $f(t) = \sum_{i} Res(e^{zt}F(z); z_i)$. Then $\tilde{f}(z) = F(z)$ for $Re(z) > \sigma$.

- Note: decay condition is satisfied if $F(z) = \frac{P(z)}{Q(z)}$, P, Q polynomials, deg $P \ge \deg Q + 1$.
 - With Q(z) having simple zeros at $z_1, ..., z_n$, $f(t) = \sum_{j=1}^n e^{z_j t} \frac{P(z_j)}{O'(z_j)}$ (special case of Heaviside expansion theorem).
 - The abscissa of convergence is $\sigma(f) = \max\{Re(z_1), \dots, Re(z_n)\}$.
- Integral form of inverse theorem: suppose the theorem's hypothesis hold, with the rightmost singularities z_j of F on the line $Re(z) = \sigma$, then the abscissa of convergence of F is σ , and $f(t) = \frac{1}{2\pi i} \int_{\alpha - i\infty}^{\alpha + i\infty} e^{zt} F(z) dz$ for $\alpha > \sigma$.

Fourier and inverse Fourier transform

- The Fourier transform of an integrable function $f: \mathbb{R} \to \mathbb{C}$ is $\hat{f}(y) = \int_{-\infty}^{\infty} e^{-iyt} f(t) dt$.
- The inverse transform is $f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(y) e^{iyt} dy$.