Introduction & ODEs

May 10, 2021 10:01 AM

Differential equation is an equation that defines a function implicitly by giving a relationship between a function and its derivatives

ODES: $f(x, y, y', ..., y^{(n)}) = 0$. PDES: $f(x, y, u(x, y), u_x, u_y, u_{xx}, u_{xy}, u_{yy}) = 0.$

Let L be the differential operator.

First order ODEs

- Separable equations: $\frac{dy}{dx} = P(x)Q(y)$.
	- Then $\int \frac{d}{\alpha}$ ○ Then <mark>∫ ⊖</mark>
- Linear equations: $\frac{dy}{dx} + P(x)y = Q(x)$.
	- General form: $Ly = \left(\frac{d}{dt}\right)$ **General form:** $Ly = \left(\frac{a}{dx} + P\right)y = Q(x)$.

• Recall
$$
\frac{d}{dx}(F(x)y) = F\frac{dy}{dx} + F'y
$$
.

- So we can choose F such that $\frac{dF}{dx} = FP(x)$, and get $FLy = F\frac{d}{d}$ ○ So we can choose F such that $\frac{dr}{dx} = FP(x)$, and get $FLy = F\frac{dy}{dx} + FPy = FQ$.
	- \bullet $F = Ae^{\int P(x)dx}$ is the integration factor.
	- **Then we have** $\frac{d}{dx}(e^{\int P(x)dx}y) = e^{\int P(x)dx}Q(x)$ **.**
	- Integrating both sides gives the solution

Second order linear ODEs

- Constant coefficient equations: $Ly = ay'' + by' + cy = 0$, $(a, b, c$ are constants)
	- **The differential operator is** $L \coloneqq aD^2 + bD + c$.
	- \circ Look for y such that $y' = ry$, then we can apply first order techniques.

■ This gives
$$
y = Ae^{rx}
$$
.

- To solve for the second order equation, guess $y = e^{rx}$, r is a parameter to be determined.
	- Then $Ly = ar^2e^{rx} + bre^{rx} + ce^{rx} = 0$.
	- Since $e^{rx} \neq 0$, we are actually solving $ar^2 + br + c = 0$.
	- $r=\frac{1}{2}$ $rac{-b}{2a} \pm \frac{\sqrt{2}}{2a}$ $\frac{\sqrt{b^2-4ac}}{2a}$ with discriminant $\Delta = b^2 - 4ac$. ▪
		- □ If $\Delta > 0$, two distinct real roots r_1, r_2 , general solution $y = Ae^{r_1x} + Be^{r_2x}$.
		- If $\Delta = 0$, double root $r = -\frac{b}{2}$ \Box If $\Delta = 0$, double root $r = -\frac{b}{2a}$, general solution $y = (A + Bx)e^{rx}$.
		- If $\Delta < 0$, complex conjugate pair $r_{\pm} = -\frac{b}{2}$ $\frac{b}{2a} \pm \frac{\sqrt{4}}{2a}$ $\frac{\sqrt{4ac} b}{2a} i = \lambda \pm i\mu,$ \Box
			- general solution $y = Ae^{(\lambda + i\mu)x} + Be^{(\lambda i\mu)x} = e^{\lambda}$ $(A - B)i \sin \mu x$
- Cauchy-Euler/Equidimensional equations: $Ly = x^2y'' + axy' + by = 0$.
	- \circ Note: The dimension of x^2y'' , xy' , y are the same
	- Look for y such that $x\frac{d}{dt}$ ○ Look for y such that $x \frac{dy}{dx} = ry$, then it is the separable case
		- This gives $y = Ax^r$.
	- To solve for the equation, guess $y = x^r$, r is a parameter
		- Then $Ly = x^2r(r-1)x^{r-2} + axrx^{r-1} + bx^r = (r(r-1) + ar + b)x^r = 0$.
		- We need $r(r-1) + ar + b = r^2 + (a-1)r + b = 0$.
		- $r=-\frac{a}{x}$ $\frac{a-1}{2} \pm \frac{\sqrt{(a-1)^2}}{2}$ • $r = -\frac{a-1}{2} \pm \frac{\sqrt{(a-1)^2 - 4b}}{2}$ with discriminant $\Delta = (a-1)^2 - 4b$.
			- □ If $\Delta > 0$, two distinct real roots r_1, r_2 , general solution $y = Ax^{r_1} + Bx^{r_2}$.
			- If $\Delta = 0$, double root $r = -\frac{a}{\tau}$ □ If $\Delta = 0$, double root $r = -\frac{a-1}{2}$, general solution $y = (A + B \ln x) x^r$.

Series solutions of differential equations

May 10, 2021 10:12 AM

Taylor series

- Power series $S(x) = a_0 + a_1 x + \dots + a_n x^n + \dots = \sum_{n=0}^{\infty} a_n x^n$.
- Suppose we have a function f and know all its derivatives
	- o Let $f(x) = a_0 + a_1 x + \cdots + a_n x^n$.
	- o Then $f'(x) = a_1 + 2a_2x + \dots + na_nx^{n-1} + \dots$
	- And $f^{(n)}(x) = n! a_n + \frac{0}{x}$ \circ And $f^{(n)}(x) = n! a_n + \frac{(n+1)!}{1!} a_{n+1} x + \cdots$
	- This gives that $f'(0) = a_1, f''(0) = 2a_2, ..., \frac{f^{(n)}(0)}{n!}$ ○ This gives that $f'(0) = a_1, f''(0) = 2a_2, ..., \frac{f''(0)}{n!} = a_n.$

$$
\circ \quad \text{So } f(x) = f(0) + \frac{f'(0)}{1}x + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}x^n.
$$

• If it is about a point
$$
x_0
$$
, we have $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$.

We can generate the derivatives of the solution from the ODE

Undetermined coefficients

- \bullet E.g.
	- \circ Assume $y = \sum_{n=0}^{\infty} a_n x^n$, $y' = \sum_{n=1}^{\infty} n a_n x^{n-1}$.
	- o Then $Ly = a_1x^0 + a_22x + a_33x^2 + \dots 2(a_0 + a_1x + a_2x^2 + \dots).$ $= (a_1 - 2a_0) + (2a_2 - 2a_1)x + (3a_3 - 2a_2)x^2 + \cdots = 0.$
		- Then $a_1 = 2a_0$, $a_2 = a_1 = 2a_0$, $3a_3 = 2a_2$, $a_n = \frac{2^n}{n}$ • Then $a_1 = 2a_0$, $a_2 = a_1 = 2a_0$, $3a_3 = 2a_2$, $a_n = \frac{2a_0}{n!}$.
		- So $y(x) = a_0 \left(1 + 2x + \frac{(2x)^2}{2}\right)$ • So $y(x) = a_0 \left(1 + 2x + \frac{(2x)^2}{2} + \cdots \right) = a_0 e^2$
	- \circ Another way: $Ly = \sum_{n=0}^{\infty} a_{n+1}(n+1)x^{n} 2\sum_{n=0}^{\infty} a_n$ ■ Then check the coefficients
- E.g. $Ly = y'' xy = 0$ (Airy equation)
	- Note: $y'' c^2y = 0$ gives exponential solutions
		- $y'' + c^2y = 0$ gives sin and cos
	- \circ Let $y = \sum_{n=0}^{\infty} a_n x^n$, $y' = \sum_{n=1}^{\infty} n a_n x^{n-1}$, $y'' = \sum_{n=2}^{\infty} n(n-1) a_n x^{n-2}$.
	- o Then $Ly = \sum_{n=-1}^{\infty} (n+3)(n+2)a_{n+3}x^{n+1} \sum_{n=0}^{\infty} a_n x^{n+1} = 0.$
		- $2 \cdot 1a_2 = 0$.
		- And $(n + 3)(n + 2)a_{n+3} = a_n$.

• So
$$
y(x) = a_0 \left(1 + \frac{x^3}{3 \cdot 2} + \frac{x^6}{6 \cdot 5 \cdot 3 \cdot 2} + \cdots \right) + a_1 \left(x + \frac{x^4}{4 \cdot 3} + \frac{x^7}{7 \cdot 6 \cdot 4 \cdot 3} + \cdots \right)
$$

Ordinary points and singular points

- E.g. $Ly = (x 1)y'' + y' = 0$.
	- \circ The solution is $y = C \ln |x 1| + D$.
	- \circ Consider a Taylor series expansion about $x_0 = 0$, $y = \sum_{n=1}^{\infty} x_n^{\alpha}$
		- $\textbf{L}y = \sum_{n=2}^{\infty} n(n-1)a_n x^{n-1} \sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} + \sum_{n=1}^{\infty} n a_n x^{n-1}.$
		- Then $Ly = \sum_{n=2}^{\infty} n(n-1)a_n x^{n-1} \sum_{n=1}^{\infty} n(n+1)a_{n+1} x^{n-1} + \sum_{n=1}^{\infty} n a_n x^{n-1}$.
			- $-1 \cdot 2a_2 + a_1 = 0.$
			- $n(n-1)a_n n(n+1)a_{n+1} + na_n = 0.$
			- So $a_{n+1} = \frac{n}{n+1}$ □ So $a_{n+1} = \frac{n}{n+1} a_n$.

□ So
$$
y(x) = a_0 + a_1 \left(x + \frac{x^2}{2} + \dots + \frac{x^n}{n} + \dots \right)
$$
.

- Consider the expansion about $x_0 = 1$, $y = \sum_{n=0}^{\infty} a_n (x 1)^n$. \circ
	- Then $Ly = \sum_{n=2}^{\infty} a_n n(n-1)(x-1)^{n-1} + \sum_{n=1}^{\infty} a_n n(x-1)^{n-1}$.
	- This gives $y = a_0$.
- ∞ $x_0 = 0$ yields two solutions, a_0 and $-a_1 \ln|x-1|$.
	- $x_0 = 0$ is the <mark>ordinary point</mark> of this ODE
- ∞ $x_0 = 1$ yields only the regular part of the solution $y = a_0$ and does not capture the

singular behavior that occurs as $x_0 = 1$, namely, $-a_1 \ln|x-1|$.

- \circ When expanding about the ordinary point $x_0 = 0$, the <mark>radius of convergence</mark> of the series is at least as far as the distance between $x_0 = 0$ and the nearest singular point $x_0 = 1$
- Def: Consider the general second order linear ODE, $P(x)y'' + Q(x)y' + R(x)y = 0$ Equivalently, we have $y'' + \frac{Q}{R}$ $\frac{Q(x)}{P(x)}y' + \frac{R}{P}$ $\frac{f(x)}{P(x)}y=0,$
	- If $p(x) = \frac{Q}{R}$ $\frac{Q(x)}{P(x)} = p_0 + p_1(x - x_0) + \cdots$ and $q(x) = \frac{R}{P}$ o If $p(x) = \frac{\partial f(x)}{\partial x} = p_0 + p_1(x - x_0) + \cdots$ and $q(x) = \frac{f(x)}{p(x)} = q_0 + q_1(x - x_0) + \cdots$, (i.e. p(x) and q(x)a are analytic at $x = x_0$), then $x = x_0$ is an ordinary point
		- A Taylor expansion of the form $y = \sum_{0}^{\infty} a_n (x x_0)^n$ will yield two independent solutions
	- If $p(x)$ or $q(x)$ are not analytic about $x = x_0$, then x_0 is a singular point
- If x_0 is an ordinary point, then the radius of convergence of the power series $\sum_{n=0}^{\infty}a_n(x-x_0)^n$ is at least as large as the distance from x_0 to the nearest singular point

Frobenius Series

- \bullet E.g.
	- \circ Singular point at $x = 0$.
		- Solution: $y = \frac{A}{x^1}$ ○ Solution: $y = \frac{A}{x^{1/2}}e^{-x}$.
		- \circ We should try a solution of the form $y=x^r\sum_0^\infty a_nx^n$ (Frobenius Series).
			- Let $y = \sum_{n=0}^{\infty} a_n x^{n+r}$, $y' = \sum_{n=0}^{\infty} a_n (n+r) x^{n+r-1}$.
			- Then $\sum_{n=0}^{\infty} 2a_n(n+r)x^{n+r} + \sum_{n=0}^{\infty} a_n x^{n+r} + \sum_{n=0}^{\infty} 2a_n x^{n+r+1} = 0.$ $a_0(2r+1)=0.$
				- $a_m(2m+2r+1)+2a_{m-1}=0.$
- Around certain classes of singular points x_0 , we can assume a Frobenius series $\sum_{n=0}^{\infty} a_n (x - x_0)^{n+r}$.
- If we have a coefficient that vanishes even more radically

○ E.g.
$$
Ly = 2x^2y' + (2x + 1)y = 0
$$
, solution is $y = \frac{A}{x}e^{\frac{1}{2x}}$ (essential singularity at 0).

- Consider the general second order linear ODE •
	- We can rewrite it as $\overline{\left(x-x_0\right)^2y''+\left(x-x_0\right)\left(\frac{\overline{x}^2}{2}\right)^2}$ $\frac{(x-x_0)Q(x)}{P(x)}y' + (x-x_0)^2$ ○ We can rewrite it as $\left(x-x_0\right)^2 y'' + \left(x-x_0\right) \left(\frac{(x-x_0)Q(x)}{P(x)}\right) y' + \left(x-x_0\right)^2 \frac{R(x)}{P(x)} y = 0$.
	- If $\frac{(x-x_0)Q(x)}{P(x)}$ and $(x-x_0)^2$ \circ If $\frac{(x-x_0)e(x)}{P(x)}$ and $(x-x_0)^2 \frac{R(x)}{P(x)}$ are analytic, then $x=x_0$ is a regular singular point,
		- the Frobenius series $y = \sum_{n=0}^{\infty} a_n (x x_0)^{n+1}$ will yield 2 independent solutions to the ODE which satisfies the equation $r(r-1) + p_0r + q_0 = 0$ (indicial equation)
			- $p_0 = \lim_{x\to x_0} (x x_0) \frac{Q}{R}$ $p_0 = \lim_{x \to x_0} (x - x_0) \frac{\varphi(x)}{P(x)}$ $q_0 = \lim_{x \to x_0} (x - x_0)^2$ \Box $q_0 = \lim_{x \to x_0} (x - x_0)^2 \frac{\ln(x)}{P(x)}$.
			- □ This gives $(x-x_0)^2y'' + (x-x_0)p_0y''$
		- **Radius of convergence** is the distance from x_0 to the nearest different singular point in the complex plane
	- If $\frac{(x-x_0)Q(x)}{P(x)}$ or $(x-x_0)^2$ \circ If $\frac{(x-x_0)Q(x)}{P(x)}$ or $(x-x_0)^2 \frac{R(x)}{P(x)}$ are not analytic, then $x=x_0$ is not regular (integular singular point).
- E.g. $Ly = 4x^2y'' (x^2 + x)y' + y = 0$.
	- \circ $x_0 \neq 0$ are all ordinary points, we can use Taylor expansion directly.
	- \circ $x_0 = 0$ is a regular singular point
		- NOTE: $p_0 = \lim_{x \to 0} x \frac{-(x^2)}{4x}$ $\frac{-(x^2+x)}{4x^2}=-\frac{1}{4}$ $\frac{1}{4}$ and $q_0 = \lim_{x \to 0} x^2 \frac{1}{4x}$ $\frac{1}{4x^2} = \frac{1}{4}$ • NOTE: $p_0 = \lim_{x\to 0} x \frac{-(x+2)}{4x^2} = -\frac{1}{4}$ and $q_0 = \lim_{x\to 0} x^2 \frac{1}{4x^2} = \frac{1}{4}$.
		- $r(r-1) \frac{1}{4}$ $\frac{1}{4}r + \frac{1}{4}$ $\frac{1}{4}$ = 0 gives $r = \frac{1}{4}$ • $r(r-1) - \frac{1}{4}r + \frac{1}{4} = 0$ gives $r = \frac{1}{4}$, 1.
		- Then $y_1(x) = a_0 x \left(1 + \frac{x}{7} \right)$ $\frac{x}{7} + \frac{x^2}{77}$ $\left(\frac{x^2}{77} + \cdots \right)$ and $y_2(x) = a_0 x^{\frac{1}{4}}$ $rac{1}{4}$ $\left(1+\frac{x}{4}\right)$ $\frac{x}{4} + \frac{x^2}{32}$ ■ Then $y_1(x) = a_0 x \left(1 + \frac{x}{7} + \frac{x}{77} + \cdots \right)$ and $y_2(x) = a_0 x^{\frac{1}{4}} \left(1 + \frac{x}{4} + \frac{x}{32} + \cdots \right)$. \Box The radius of convergence is ∞ .
		- **•** We can also plug in the series to calculate r directly.

MATH316 Page 4

Radius of convergence

- For a series of numbers $\sum_{0}^{\infty} c_n$, the ratio test is $\lim_{n\to\infty}$ $\Big|\frac{c}{n}\Big|$ • For a series of numbers $\sum_{0}^{\infty} c_n$, the ratio test is $\lim_{n\to\infty} \left| \frac{c_n+1}{c_n} \right| = r$,
	- \circ If $r < 1$, converges
	- \circ If $r = 1$, test fails
	- \circ If $r > 1$, diverges

Then $\lim_{n\to\infty}\left|\frac{a}{a}\right|$ • Then $\lim_{n\to\infty} \left|\frac{\alpha_m x}{a_{m-1}x^{m+r-1}}\right|$ will give the radius of convergence.

• $Ly = x^2y'' + xy' + (x^2 - v^2)y = 0$ with $v \notin \mathbb{Z}$.

Bessel functions

• $x = 0$ is a regular singular point $p_0 = \lim_{x\to 0} \frac{x}{x}$ $\frac{x}{x^2}x = 1$, $q_0 = \lim_{x\to 0} \frac{x^2 - v^2}{x^2}$ $p_0 = \lim_{x\to 0} \frac{x}{x^2} x = 1, q_0 = \lim_{x\to 0} \frac{x^2 - y^2}{x^2} x^2 = -v^2.$ • Indicial equation: $r(r - 1) + r - v^2 = r^2 - v^2 = 0, r = \pm v$. • Using Frobenius Series $y = \sum_{0}^{\infty} a_n x^{n+r}$, we get $a_0(r^2-v^2)=0, r=\pm v.$ $a_1((r+1)^2-v^2)=a_1(1+2v)=0.$ If $\nu=-\frac{1}{2}$ If $\nu = -\frac{1}{2}$, a_1 is arbitrary ■ Otherwise, $a_1 = 0$. • When $v \notin \mathbb{Z}$, and $v \neq -\frac{1}{2}$ $\overline{\mathbf{c}}$ $a_n = -\frac{a}{(n+1)}$ $\frac{u_{n-2}}{(n+v)^2-v^2}$. If $r = v$, $a_n = -\frac{a}{n}$ If $r = v$, $a_n = -\frac{u_{n-2}}{n(n+2v)}$. $a_{2n} = \frac{(-1)^n}{n! \cdot 2^n (1+n)}$ $a_{2n} = \frac{(-1) u_0}{n!2^{2n}(1+v)...(n+v)}$. This gives $y_+(x) = a_0 x^{\nu} \sum_{0}^{\infty} \frac{(-1)^n x^2}{n! \cdot 2n! \cdot (1+x)}$ • This gives $y_+(x) = a_0 x^{\nu} \sum_{0}^{\infty} \frac{(-1)^{\nu} x^{2\nu}}{n! 2^{2n} (1+\nu) \dots (n+\nu)}$. And $y_-(x) = a_0 x^{\nu} \sum_{0}^{\infty} \frac{(-1)^n x^2}{n! 2n! (1-x)}$ • And $y_-(x) = a_0 x^{\nu} \sum_{0}^{\infty} \frac{(-1)^{\nu} x^{2\nu}}{n! 2^{2n} (1-\nu) \dots (n-\nu)}$. \circ • When $v = 0$. \circ This gives $r = 0$.

\n- o
$$
a_m = -\frac{a_{m-2}}{m^2}
$$
, $a_{2m} = \frac{(-1)^m a_0}{2^{2m}(m!)^2}$, $y_1(x) = a_0 \sum_{0}^{\infty} \frac{(-1)^m x^{2m}}{2^{2m}(m!)^2}$.
\n- o To get the second solution, use $\frac{\partial}{\partial x} a_0 x^r \left(1 - \frac{x^2}{(2+x)^2} + \frac{x^4}{(2+x)^2(4+x)^2} \right)$.
\n

To get the second solution, use
$$
\frac{\partial}{\partial r} a_0 x^r \left(1 - \frac{x^2}{(2+r)^2} + \frac{x^4}{(2+r)^2 (4+r)^2} \dots \right)
$$
 at $r = 0$.
\n• This gives $y_0(x) = a_0 \ln x \sum_{0}^{\infty} \frac{(-1)^m x^{2m}}{2^{2m} (m!)^2} + a_0 \left(\frac{x^2}{4} - \dots \right)$.

When $\nu = \frac{1}{2}$ • When $\nu = \frac{1}{2}$.

• When
$$
r = \frac{1}{2}
$$
, $a_1 \left(1 + 2 \cdot \frac{1}{2}\right) = 2a_1 = 0$ gives $a_1 = 0$.
\n• $a_n = -\frac{a_{n-2}}{\left(n + \frac{1}{2}\right)^2 - \frac{1}{2}} = -\frac{a_{n-2}}{n(n+1)}$.
\n• $y_1(x) = a_0 x^{\frac{1}{2}} \left(1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \dots\right) = a_0 \frac{\sin x}{x^{1/2}}$.

When $r=-\frac{1}{3}$ ○ When $r = -\frac{1}{2}$, $a_1(1 + 2r) = a_1(1 - 1) = 0$, a_1 is arbitrary.

$$
a_n = -\frac{a_{n-2}}{\left(n - \frac{1}{2}\right)^2 - \frac{1}{2}^2} = -\frac{a_{n-2}}{n(n-1)}.
$$

- $y_1(x) = a_0 x^{-\frac{1}{2}}$ $rac{1}{2}$ $\left(1-\frac{x^2}{2!}\right)$ $\frac{x^2}{2!} + \frac{x^4}{4!}$ $\left(\frac{x^4}{4!} - \cdots\right) = a_0 \frac{c}{x^2}$ • $y_1(x) = a_0 x^{-\frac{1}{2}} \left(1 - \frac{x}{2!} + \frac{x}{4!} - \dots \right) = a_0 \frac{\cos x}{x^{1/2}}.$
- Third solution spawned by a_1 . $y_3(x) = a_1 \frac{S}{x}$ $y_3(x) = a_1 \frac{\sin x}{x^{1/2}}$.
- The general solution is $y(x) = a_0 \frac{c}{x}$ $\frac{\cos x}{x^{1/2}} + a_1 \frac{s}{x^{1/2}}$ **The general solution is** $y(x) = a_0 \frac{\cos x}{x^{1/2}} + a_1 \frac{\sin x}{x^{1/2}}$.

PDEs

May 10, 2021 10:12 AM

Classifications

- ODEs: $f(x, u(x), u'(x)) = 0$.
- PDEs:
	- $\circ \;\;$ First order linear PDEs: $a(x,y) u_x + b(x,y) u_y = c(x,y) u.$
		- Solutions are surfaces
	- Second order linear PDEs: $au_{xx} + 2bu_{xy} + cu_{yy} + du_x + eu_y + fu = g$.
		- *a*, *b* are functions of *x* and *y*.
		- Solutions are surfaces
		- Recall quadric surfaces: $Ax^2 + 2Bxy + Cy^2 + Dx + Ey = F$. □ Discriminant $\Delta = B^2 - AC$.
			- \Box If $\Delta < 0$, ellipse
			- \Box If $\Delta > 0$, hyperbola
			- \Box If $\Delta = 0$, parabola
		- **•** Define discriminant $\Delta = b^2 ac$.
			- \Box If $\Delta < 0$, elliptic, e.g. Laplace's, Poisson equation
			- \Box If $\Delta > 0$, hyperbolic, e.g. wave equation
			- \Box If $\Delta = 0$, parabolic, e.g. heat equation

Conservation law and wave equation

- Let $u(x, t)$ be the density of cars at x at time t, $q(x, t)$ be the flux of cars.
- Conservation principle: cars are neither created nor destroyed
	- Change in # cars in $[x, x + \Delta x]$ over period $[t, t + \Delta t]$ =# cars entering # cars leaving
	- \circ i.e. $u(t + \Delta t)\Delta x u(x, t)\Delta x = q(x, t)\Delta t q(x + \Delta x, t)\Delta t$.
- Divide both sides by Δx and Δt , we get $\frac{\partial}{\partial x}$ ∂ • Divide both sides by Δx and Δt , we get $\frac{\partial u}{\partial t} + \frac{\partial q}{\partial x} = 0$.
- And $q = cu$, so $\frac{\partial}{\partial q}$ • And $q = cu$, so $\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0$. (constant coefficient equation)
- ∂ • Guess $u(x, t) = e^{ikx + \sigma t}$, given that $\sigma = -ikc$.
- In fact $u(x, t) = f(x ct)$ is a solution

Galilean transform

- $x' = x ct$, $u(x, t) = f(x ct) = f(x')$.
- $\left(\frac{\partial}{\partial x}\right)$ ∂ ∂ ∂ ∂ ∂ ∂ • $\left(\frac{\partial}{\partial t}+c\,\frac{\partial}{\partial x}\right)\left(\frac{\partial}{\partial t}-c\,\frac{\partial}{\partial x}\right)u=u_{tt}-c^2u_{xx}=0$. (wave equations)

Motion of an elastic bar

Then $u_{tt} = \frac{E}{c}$ • Then $u_{tt} = \frac{2}{\rho} u_{xx}$.

Random walks and heat equation

$$
t + 4t
$$

- Let $u(x, t)$ be the density of fruit flies on the tree at x at time t. $u(x, t + \Delta t) = pu(x - \Delta x, t) + (1 - 2p)u(x, t) + pu(x + \Delta x, t).$
- ∂ ∂ ∂^2 • $\frac{\partial u}{\partial t} = D \frac{\partial u}{\partial x^2}$. (heat equation)
- In 2D, $\frac{3}{\theta}$ ∂^2 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2}{\partial y}$ • In 2D, $\frac{\partial u}{\partial t} = D \left(\frac{\partial u}{\partial x^2} + \frac{\partial u}{\partial y^2} \right)$.
- Obtaining the heat equation from a conservation law $\frac{3}{\theta}$ • Obtaining the heat equation from a conservation law $\frac{\partial u}{\partial t} + \frac{\partial q}{\partial x} = 0$.
	- Fourier's law: $q = -\alpha^2$ **•** Fourier's law: $q = -\alpha^2 \frac{\partial u}{\partial x}$. Then $\frac{3}{\partial}$ $2\frac{\partial^2}{\partial x^2}$ o Then $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial u}{\partial x^2}$.

• Solution:
$$
u(x, t) = e^{ikx}e^{-\alpha^2 k^2 t}
$$
.

Finite difference method

- Taylor series gives:
	- First derivative approximation: $\frac{f(x+\Delta x)-f(x)}{\Delta x} = f'(x) + \frac{\Delta x}{2}$ **Example 1** First derivative approximation: $\frac{f(x+\Delta x)-f(x)}{\Delta x}=f'(x)+\frac{\Delta x}{2!}f''(x)+\cdots$

• Or
$$
\frac{f(x+\Delta x)-f(x-\Delta x)}{2\Delta x} = f'(x) + \frac{\Delta x^2}{3!}f^{(3)}(x) + \cdots
$$
 (More accurate)
 $f(x+\Delta x)-2f(x)+f(x-\Delta x)$

• Second derivative approximation
$$
\frac{f(x+\Delta x)-2f(x)+f(x-\Delta x)}{\Delta x^2} = f''(x) + \frac{\Delta x^2}{12}f^{(4)}(x) + \cdots
$$

• Forward difference approximation

$$
\circ \frac{f(x+\Delta x)-f(x)}{\Delta x}=f'(x)+\frac{\Delta x}{2!}f''(x) \text{ (order } \Delta x).
$$

- Central difference approximation f $\frac{f(x+\Delta x)-f(x-\Delta x)}{2\Delta x}=f'(x)+\frac{\Delta x^2}{3!}$ $\circ \frac{f(x+\Delta x)-f(x-\Delta x)}{2\Delta x}=f'(x)+\frac{\Delta x}{3!}f^{(3)}(x)$ (order Δx^2).
- Approximation to second derivative by central differences f $\frac{f(x+\Delta x)-2f(x)+f(x-\Delta x)}{\Delta x^2} = f''(x) + \frac{\Delta x^2}{12}$ $\frac{f(x+\Delta x)-2f(x)+f(x-\Delta x)}{\Delta x^2}=f''(x)+\frac{\Delta x^2}{12}f^{(4)}(x).$

• 1D heat equation
$$
\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2} u(0, t) = u(1, t) = 0, u(x, 0) = f(x).
$$

$$
u(x, t+\Delta t) - u(x, t) = u(x+\Delta x, t) - 2u(x, t) + u(x-\Delta x, t).
$$

- Discretion: $\frac{u(x,t+\Delta t)-u(x,t)}{\Delta t}\approx \alpha^2$ O Discretion: $\frac{d(x,t+dx)-d(x,t)}{\Delta t}\approx \alpha^2 \frac{d(x+\Delta x,t)-2d(x,t)+d(x-\Delta x,t)}{\Delta x^2}$
- This gives $u_n^{k+1} = u_n^k + \alpha^2 \left(\frac{\Delta}{\Delta n} \right)$ ○ This gives $u_n^{k+1} = u_n^k + a^2 \left(\frac{Δt}{Δx^2}\right) \left(u_{n+1}^k - 2u_n^k + u_{n-1}^k\right).$ ■ k for time step, n for position.

• Swift-Honhenberg equation
$$
\frac{\partial u}{\partial t} = \epsilon u - \left(1 + \frac{\partial^2}{\partial x^2}\right)^2 u - u^3
$$
.

- With heat equation in 2D, if $\frac{\partial u}{\partial t} = 0$, we have $\frac{\partial^2 u}{\partial x^2}$ ∂x^2 ∂ • With heat equation in 2D, if $\frac{\partial u}{\partial t} = 0$, we have $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ (Laplace's equation)
	- $\circ u(x_n, y_m) \approx u_{n,m}.$ Discretion $\frac{u_{n+1,m}-2u_{n,m}+u_{n-1,m}}{\Delta x^2}+\frac{u_{n+1,m}-u_{n-1,m}}{x^2}$ O Discretion $\frac{a_{n+1,m}-2a_{n,m}+a_{n-1,m}}{\Delta x^2}+\frac{a_{n,m+1}-2a_{n,m}+a_{n,m-1}}{\Delta x^2}=0.$
	- Suppose $\Delta x = \Delta y$, we have $u_{n,m} = \frac{u}{x}$ O Suppose $\Delta x = \Delta y$, we have $u_{n,m} = \frac{u_{n+1,m} + u_{n-1,m} + u_{n,m+1} + u_{n,m-1}}{4}$.
	- $v_n^k+1} = \frac{u_{n+1,m}^k + u_{n-1,m}^k + u_{n,m+1}^k + u_{n,m-1}^k}{4}.$ $k \neq l_1, k \neq l_2, k \neq l_3, k$ $\overline{\mathbf{r}}$
- Wave equation $u_{tt} = c^2 u_{xx}$, $u(0,t) = u(L,t) = 0$, $u(x, 0) = f(x)$, $u_t(x)$ Discretion: $\frac{u_n^{k+1}-2u_n^k+u_n^k}{\Delta t^2}$ $\frac{u_n^{k+1} - 2u_n^k + u_n^{k-1}}{\Delta t^2} = c^2 \frac{u_{n+1}^k - 2u_n^k + u_n^k}{\Delta x^2}$ O Discretion: $\frac{a_n}{\Delta t^2} = c^2 \frac{a_{n+1} - 2a_n + a_{n-1}}{\Delta x^2}$ •

Fourier series

May 27, 2021 1:29 PM

Fourier series example

- $f(x) = x, L = 1.$ Then $b_n = \frac{2}{1}$ $\frac{2}{1}\int_0^1 x \sin(n\pi x) dx = \frac{2(-1)^n}{n\pi}$ Then $b_n = \frac{2}{1} \int_0^1 x \sin(n\pi x) dx = \frac{2(-1)}{n}$ So $f(x) = x^2 - \frac{2}{\pi}$ $\frac{2}{\pi} \sum_{1}^{\infty} \frac{(-1)^n}{n}$ \circ So $f(x) = x \sim \frac{2}{\pi} \sum_{1}^{\infty} \frac{(-1)^{n+1}}{n} \sin(n\pi x).$
- Eigen function $f(x) = \sin(3\pi x)$.

$$
\circ \text{ Then } b_n = 2 \int \sin(3\pi x) \sin(n\pi x) \, dx = \begin{cases} 0, n \neq 3 \\ 1, n = 3 \end{cases} = \delta_{n3}.
$$

- Note: $\delta_{nk} = \begin{cases} 0 \\ 1 \end{cases}$ \circ Note: $\delta_{nk} = \begin{cases} \delta_{nk} = \kappa \\ 1, n = k \end{cases}$ is called the Kroneker delta function.
- Eigenvalue problems in the real world
	- Euler's beam $X'' + \left(\frac{P}{E}\right)^2$ $\frac{1}{EI}X = 0, X(0) = X(L) = 0.$ \overline{P} $\frac{P_n}{EI} = -\lambda_n = \left(\frac{n}{i}\right)$ $\left(\frac{n\pi}{L}\right)^2$, then $P_n = EI\left(\frac{n}{L}\right)$ $\blacksquare \frac{P_n}{EI} = -\lambda_n = \left(\frac{n\pi}{L}\right)^2$, then $P_n = EI\left(\frac{n\pi}{L}\right)^2$. $P_1 = \frac{E I \pi^2}{l^2}$ $\frac{E I \pi^2}{L^2}$ is the critical value (the first mode $\sin\left(\frac{\pi}{L}\right)$ • $P_1 = \frac{EIR}{L^2}$ is the critical value (the first mode sin $\left(\frac{hx}{L}\right)$). \circ

Quantum mechanics ∞ well $V(x) = \begin{cases} V_x & \text{if } 0 \leq x \leq 1 \end{cases}$ $|V_0, |X| \le L$, $\psi'' + \left(\frac{E}{\hbar^2}\right)$ Quantum mechanics ∞ well $V(x) = \begin{cases} \n\int_0^x |x| \leq \frac{L}{2} \cdot \psi'' + \left(\frac{L}{\hbar^2 / 2m} \right) \psi = 0, \\
\infty, |x| \geq L' \end{cases}$ $\overline{0}$

$$
\mathcal{L}_{\mathcal{L}}
$$

$$
\bullet \quad \frac{E-V_0}{\hbar^2/2m} = -\lambda = \left(\frac{n\pi}{L}\right)^2, \text{ then } E_n = V_0 + \frac{\hbar^2}{2m} \left(\frac{n\pi}{L}\right)^2.
$$

Full Fourier series

•
$$
f(x) = \frac{a_0}{2} + \sum_{1}^{\infty} a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right)
$$

\n• $a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx = \frac{1}{L} \int_{C-L}^{C+L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx$
\n• $b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx = \frac{1}{L} \int_{C-L}^{C+L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx$

• If
$$
f(x)
$$
 is odd, then $a_n = 0$, $b_n = \frac{2}{L} \int_0^L f(x) \sin(\frac{n\pi x}{L}) dx$ and $f(x) = \sum_1^{\infty} b_n \sin(\frac{n\pi x}{L})$.

$$
\begin{array}{c|c}\n & & & \\
0 & & \\
0 & & \\
\hline\n & & & \\
\h
$$

If $f(x)$ is even, then $b_n = 0$, $a_n = \frac{2}{b}$ $\frac{2}{L}\int_0^L f(x) \cos \left(\frac{n}{2}\right)$ $\int_0^L f(x) \cos\left(\frac{n\pi x}{L}\right) dx$ and $f(x) = \frac{a}{2}$ $\frac{a_0}{2} + \sum_{1}^{\infty} a_n \cos\left(\frac{n}{2}\right)$ • If $f(x)$ is even, then $b_n = 0$, $a_n = \frac{2}{L} \int_0^L f(x) \cos(\frac{n\pi x}{L}) dx$ and $f(x) = \frac{a_0}{2} + \sum_1^{\infty} a_n \cos(\frac{n\pi x}{L})$. \circ

E.g. $f(x) = \begin{cases} 0 \\ 0 \end{cases}$ • E.g. $f(x) = \begin{cases} 0, & n < x < \infty \\ x, 0 < x < \pi \end{cases}$, find the Fourier series with period 2π , $L = \pi$. $a_0 = \frac{1}{\pi} \int_0^{\pi} x dx = \frac{\pi}{2}$. $a_n = \frac{1}{n}$ $a_n = \frac{1}{\pi} \int_0^{\pi} x \cos(nx) dx = -\frac{2}{\pi n^2}$ if *n* is odd. $b_n = \frac{1}{n}$ $\frac{1}{\pi} \int_0^{\pi} x \sin(nx) dx = \frac{(-1)^n}{n}$ \circ $b_n = \frac{1}{\pi} \int_0^n x \sin(nx) dx = \frac{(-1)^n}{n}$. So $f(x) = \frac{\pi}{4}$ $\frac{\pi}{4} - \frac{2}{\pi}$ $\frac{2}{\pi} \sum_{0}^{\infty} \frac{c}{\pi}$ $\int_{0}^{\infty} \frac{\cos(2k+1)}{(2k+1)^2}$ $(-1)^n$ \circ So $f(x) = \frac{\pi}{4} - \frac{2}{\pi} \sum_{0}^{\infty} \frac{\cos(2k+1)x}{(2k+1)^2} + \sum_{1}^{\infty} \frac{(-1)^{n+1}}{n} \sin(nx).$

• E.g. find the Fourier sine series for $f(x) = x$ on

MATH316 Page 8

$$
\circ \ \ b_n = \frac{2}{\pi} \int_0^{\pi} x \sin(nx) \, dx = 2 \frac{(-1)^n}{n}.
$$

$$
\circ \quad f(x) = 2\sum_{1}^{\infty} \frac{(-1)^n}{n} \sin(nx).
$$

E.g. Fourier cosine series for $f(x) = x$ on $[0, \pi]$.

$$
\begin{array}{ll} \circ & a_0 = \frac{2}{\pi} \int_0^{\pi} x \, dx = \pi. \\ \circ & a_n = \frac{2}{\pi} \int_0^{\pi} x \cos(nx) \, dx = -\frac{4}{\pi n^2} \text{ if } n \text{ is odd.} \end{array}
$$

- So $f(x) = \frac{\pi}{2}$ $\frac{\pi}{2} - \frac{4}{\pi}$ $rac{4}{\pi} \sum_{0}^{\infty} \frac{c}{\pi}$ ○ So $f(x) = \frac{\pi}{2} - \frac{4}{\pi} \sum_{0}^{\infty} \frac{\cos(2k+1)x}{(2k+1)^2}$.
- E.g. determining the Fourier series of period π for the function $f(x) = x$ sampled on $[0, \pi]$. \circ Period: $2L = \pi$.

Convergence of Fourier series and the Gibbs phenomenon

- Let f and f' be piecewise continuous functions defined on $[-L, L]$ and let f be periodic with period 2L, then $f(x) = \frac{a}{b}$ $\frac{a_0}{2} + \sum_{1}^{\infty} a_n \cos\left(\frac{n}{2}\right)$ $\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n}{L}\right)$ $\int_{1}^{\infty} a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right).$ $a_n = \frac{1}{1}$ $\frac{1}{L}\int_{-L}^{L} f(x) \cos \left(\frac{n}{2}\right)$ $\int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx = \frac{1}{L}$ $\frac{1}{L}\int_{C-L}^{C+L} f(x) \cos\left(\frac{n}{L}\right)$ $a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx = \frac{1}{L} \int_{C-L}^{C+L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx.$ $b_n = \frac{1}{1}$ $\frac{1}{L}\int_{-L}^{L}f(x)\sin\left(\frac{n}{2}\right)$ $\int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx = \frac{1}{L}$ $\frac{1}{L} \int_{C-L}^{C+L} f(x) \sin \left(\frac{n}{L}\right)$ $\int_{0}^{\infty} b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx = \frac{1}{L} \int_{C-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx.$
- And the Fourier series converges to $\frac{f(x)}{f(x)}$ at points where f is continuous and to $\frac{1}{2}$ $f(x_{0-})$ at x_0 where f is discontinuous
	-
- The Gibbs phenomenon: jump is equivalent to a step function

- All jumps can be expressed by the Heaviside function
- The Fourier series for the Heaviside function
	- $b_n = \frac{4}{3}$ $\frac{4}{\pi} \frac{1}{2k}$ $\frac{1}{2k+1}$, $k = 0,1, ..., s(x) = \frac{4}{\pi}$ $rac{4}{\pi} \sum_{0}^{\infty} \frac{s}{\pi}$ • $b_n = \frac{4}{\pi} \frac{1}{2k+1}$, $k = 0, 1, ..., s(x) = \frac{4}{\pi} \sum_{0}^{\infty} \frac{\sin(2k+1)x}{2k+1}$. $s'_N(x) \rightarrow \frac{4}{x}$ \bullet $s'_N(x) \rightarrow \frac{\Gamma(N+1)}{\pi}$ as $x \rightarrow 0$.

- If we want $s_N'(x_0) = 0$, then $x_0 = \frac{\pi}{2(N)}$ • If we want $s'_N(x_0) = 0$, then $x_0 = \frac{\pi}{2(N+1)}$,
- Convergence is pointwise but not uniform

Heat equation

May 10, 2021 10:12 AM

Dirichlet boundary value problems

- Given $u_t = \alpha^2 u_{xx}$ $0 < x < L$, $t > 0$ $u(0,t) = u(L,t) = 0$, $u(x, 0) = f(x)$.
- From previous info, $u(x,t) = e^{ikx}e^{-\alpha^2k^2t}$
	- \circ k is called the wave number, $e^{ik(x+\Delta)} = e^{ikx}$.
- Need to find the k values so that the soulution matches the boundary conditions. These values are determined by the solution of an eigenvalue problem
- Separation of variables
	- \circ Guess $u(x,t) = X(x)T(t)$.
	- \circ Plug into $u_t = \alpha^2 u_{xx}$, we have $X(x)T'(t) = \alpha^2 X''(x)T(t)$.
	- Divide both sides by $\alpha^2 X(x) T(t)$, $\frac{T'(x)}{2\alpha^2 T}$ $\frac{T'(t)}{\alpha^2 T(t)} = \frac{X'}{X}$ **Divide both sides by** $\alpha^2 X(x)T(t)$, $\frac{T(t)}{\alpha^2 T(t)} = \frac{\alpha}{X(x)}$.
	- They must equal to a constant $\lambda \left(\frac{T'(x)}{2\sigma^2}\right)$ $\frac{T'(t)}{\alpha^2 T(t)} = \frac{X'}{X}$ \circ They must equal to a constant $\lambda \left(\frac{P(t)}{\alpha^2 T(t)} \right) = \frac{\lambda'(x)}{X(x)} = t$ because x and t are independent.

$$
\circ \quad \text{For } \frac{T'}{\alpha^2 T} = \lambda \text{, we get } \frac{dT}{T} = \lambda \alpha^2, \, \frac{T}{T} = C e^{\alpha^2 \lambda t}.
$$

- \int For $\frac{X''}{Y} = \lambda$, $X(0) = X(L) = 0$ (by boundary condition $u(0,t) = u(L,t) = 0$)
	- we get an Eigenvalue problem $X'' = \lambda X$, $X(0) = X(L) = 0$.
		- If $\lambda = \mu^2 > 0$, $X'' \mu^2 X = 0$, we get
			- \Box In this case $0 = X(0) = A$. $0 = X(L) = B \sinh \mu L$, then $B = 0$.
			-
			- \Box Then $X = 0$.
	- If $\lambda = 0$, we get \Box still have the trivial solution $X = 0$.
	- If $\lambda = -\mu^2 < 0$, we get $X = A \cos \mu x + B \sin \mu x$.
		- \Box This gives $A = 0$, $\mu L = n\pi$
		- So $X_n(x) = \sin\left(\frac{n}{x}\right)$ □ So $X_n(x) = \sin\left(\frac{4\pi}{L}x\right)$ are eigen functions.
		- Then corresponding eigenvalues are $\lambda_n = -\left(\frac{n}{4}\right)$ □ Then corresponding eigenvalues are $\lambda_n = -\left(\frac{n\pi}{L}\right)^2$.

$$
\circ \quad \text{Final solution } u_n(x,t) = X_n(x)T_n(t) = \sin\left(\frac{n\pi}{L}x\right)e^{-\alpha^2\left(\frac{n\pi}{L}\right)^2t}.
$$

- Because the PDE is linear, a linear combination of solutions is also a solution.
	- Then we have the general solution $u(x,t)=\sum_1^{\infty}b_n\mathrm{sin}\left(\frac{n}{t}\right)$ $\left(\frac{n\pi}{L}x\right)e^{-\alpha^2\left(\frac{n}{4}\right)}$ **Then we have the general solution** $u(x,t) = \sum_{1}^{\infty} b_n \sin\left(\frac{n\pi}{L}x\right) e^{-\alpha^2 \left(\frac{n\pi}{L}\right)^2 t}$ **.**
	- Using the initial condition $u(x, 0) = f(x)$, we get $\sum_{1}^{\infty} b_n \sin(\frac{\pi}{2})$ ■ Using the initial condition $u(x, 0) = f(x)$, we get $\sum_1^{\infty} b_n \sin(\frac{n\pi}{L}x) = f(x)$.
		- \Box This is the Fourier series expansion of $f(x)$.

Neumann boundary conditions

- $u_t = \alpha^2 u_{xx}, \, u_x(0,t) = u_x(L,t) = 0, \, u(x,0) = f(x).$
- Using separation of variables, we get $T(t) = Ce^{\alpha^2 \lambda t}$.
- And eigenvalue problem gives $X(x) = A \cos \mu x + B \sin \mu x$.
	- \circ When $\lambda = -\mu^2 < 0$, $X'(x) = -A\mu \sin \mu x + B\mu \cos \mu x$, plugging in $X'(0) = X'(L) = 0$.

Then
$$
B = 0
$$
, $\mu_n = \frac{n\pi}{L}$, $\lambda_n = -\left(\frac{n\pi}{L}\right)^2$, $X_n(x) = \cos\left(\frac{n\pi x}{L}\right)$.

- \circ When $\lambda = 0$, eigen function $X_0 = 1$.
- \circ When $\lambda = \mu^2 > 0$, trivial solution $X = 0$.
- Overall, $\lambda_n \in \{0\} \cup \left\{-\left(\frac{n}{4}\right)\right\}$ $\left(\frac{n\pi}{L}\right)^2$ \overline{n} ∞ , and corresponding $X_n \in \{1\} \cup \left\{\cos\left(\frac{n}{2}\right)\right\}$ $\left(\frac{n\pi x}{L}\right)$ ○ Overall, $\lambda_n \in \{0\}$ U $\left\{-\left(\frac{n\pi}{l}\right)^2\right\}$, and corresponding $X_n \in \{1\}$ U $\left\{\cos\left(\frac{n\pi x}{l}\right)\right\}^{\infty}$.
- Period of eigen functions $\cos\left(\frac{n}{4}\right)$ $\left(\frac{n\pi}{L}\right), P_n = \frac{2}{n}$ \circ Period of eigen functions $\cos\left(\frac{nn}{L}\right)$, $P_n = \frac{2L}{n}$. **Fundamental period:** $P_1 = 2L$.

• General solution:
$$
u(x, t) = A_0 + \sum_{1}^{\infty} A_n e^{-\alpha^2 \left(\frac{n\pi}{L}\right)^2 t} \cos\left(\frac{n\pi x}{L}\right)
$$
.

MATH316 Page 11

- Initial condition: $f(x) = u(x, 0) = A_0 + \sum_1^{\infty} A_n \cos \left(\frac{n}{2}\right)$ • Initial condition: $f(x) = u(x, 0) = A_0 + \sum_{1}^{\infty} A_n \cos\left(\frac{n\pi x}{L}\right)$.
	- \circ $A_0 = \frac{1}{l} \int_0^L f(x) dx$. $L^{J}0$ $A_k = \frac{2}{l}$ $\frac{2}{L}\int_0^L f(x) \cos \left(\frac{k}{2}\right)$ $\int_{0}^{\infty} A_{k} = \frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{\pi nx}{L} \right) dx.$
	- Alternative form: let $a_n = \frac{2}{l}$ $\frac{2}{L}\int_0^L f(x) \cos \left(\frac{n}{2}\right)$ $\int_0^L f(x) \cos\left(\frac{n\pi x}{L}\right) dx = \begin{cases} A \\ 2A \end{cases}$ ○ Alternative form: let $a_n = \frac{2}{L} \int_0^L f(x) \cos\left(\frac{h\pi x}{L}\right) dx = \begin{cases} \frac{2}{L} \ 2 \end{cases}$
		- Then, $f(x) = \frac{a}{x}$ $\frac{a_0}{2} + \sum_{1}^{\infty} a_n \cos\left(\frac{n}{2}\right)$ • Then, $f(x) = \frac{a_0}{2} + \sum_{1}^{\infty} a_n \cos\left(\frac{n\pi x}{L}\right)$.

Periodic boundary conditions and full Fourier series

- $u_t = u_{rr} + \frac{1}{r}$ $\frac{1}{r}u_r + \frac{1}{r^2}$ • $u_t = u_{rr} + \frac{1}{r} u_r + \frac{1}{r^2} u_{\theta\theta}$.
- If $u(r, \theta) = u(\theta)$ (r constant, $u(r\pi) = u(-r\pi)$), we have $u_t = \frac{1}{r}$ • If $u(r, \theta) = u(\theta)$ (*r* constant, $u(r\pi) = u(-r\pi)$), we have $u_t = \frac{1}{r^2} u_{\theta\theta} = u_{ss}$ where $s = r\theta$.
- Let $L = r\pi$, $s = x$, we get $u_t = \alpha^2 u_{xx}$,
	- \circ Let the BC and IC be $u(-L, t) = u(L, t)$, $u_x(-L, t) = u_x(L, t)$, $u(x, 0) = f(x)$.
	- \circ Separation of variable, $T(t) = Ce^{\alpha^2 \lambda t}$.
	- \circ And the eigen value problem is $X'' = \lambda X$, $X(-L) = X(L)$, $X'(-L) = X'(L)$.
		- When $\lambda = \mu^2 > 0$, $X(x) = A \cosh \mu x + B \sinh \mu x$ and BC gives $X = 0$.
			- When $\lambda = 0$, $X(x) = Ax + B$, and BC gives $X = 1$.
			- When $\lambda = -\mu^2 < 0$, $X(x) = A \cos \mu x + B \sin \mu x$ and BC gives $\mu_n = \frac{n}{2}$ • When $\lambda = -\mu^2 < 0$, $X(x) = A \cos \mu x + B \sin \mu x$ and BC gives $\mu_n = \frac{n \pi}{L}$.
	- Eigenvalues: $\lambda_n \in \{0\} \cup \left\{-\left(\frac{n}{n}\right)\right\}$ ○ Eigenvalues: $\lambda_n \in \{0\} \cup \left\{-\left(\frac{n\pi}{L}\right)^2\right\}$.
	- Eigen functions: $X_n(x) \in \{1\} \cup \big\{A_n \cos\big(\frac{n}{2}\big)$ $\left(\frac{n\pi x}{L}\right) + B_n \sin\left(\frac{n}{L}\right)$ \circ Eigen functions: $X_n(x) \in \{1\} \cup \left\{A_n \cos\left(\frac{n\pi x}{L}\right) + B_n \sin\left(\frac{n\pi x}{L}\right)\right\}$.
	- General solution $u(x,t) = A_0 + \sum_{1}^{\infty} e^{-\alpha^2 (\frac{n}{4})^2}$ $\left(\frac{n\pi}{L}\right)^2 t \left\{A_n \cos\left(\frac{n\pi}{L}\right)\right\}$ $\left(\frac{n\pi x}{L}\right) + B_n \sin\left(\frac{n\pi x}{L}\right)$ **General solution** $u(x,t) = A_0 + \sum_{1}^{\infty} e^{-\alpha^2(\frac{t}{L})t} \left\{ A_n \cos\left(\frac{n\pi x}{L}\right) + B_n \sin\left(\frac{n\pi x}{L}\right) \right\}$
	- The IC gives the full Fourier series $u(x,t) = A_0 + \sum_1^{\infty} \big\{ A_n \cos \big(\frac{n}{t} \big)$ $\left(\frac{n\pi x}{L}\right) + B_n \sin\left(\frac{n}{L}\right)$ \circ The IC gives the full Fourier series $u(x,t) = A_0 + \sum_{1}^{\infty} \left\{ A_n \cos\left(\frac{n\pi x}{L}\right) + B_n \sin\left(\frac{n\pi x}{L}\right) \right\}$.

$$
A_0 = \frac{1}{2L} \int_{-L}^{L} f(x) dx = \frac{a_0}{2}.
$$

•
$$
A_k = \frac{1}{L} \int_{-L}^{L} f(x) \cos(\frac{k\pi x}{L}) dx = a_k.
$$

\n• $B_k = \frac{1}{L} \int_{-L}^{L} f(x) \sin(\frac{k\pi x}{L}) dx = b_k.$

Determining the Fourier coefficients

• Expanding a vector f in terms of basis vectors e_1 and e_2 .

If $e_1 \perp e_2$, we have $e_1 \cdot e_2 = 0$, $b_k = \frac{f}{g}$ \circ If $e_1 \perp e_2$, we have $e_1 \cdot e_2 = 0$, $b_k = \frac{f \cdot e_k}{e_k \cdot e_k}$.

- If $f = [f_1 f_2 ... f_n]$ and $g = [g_1 g_2 ... g_n]$ are vectors of points $f_i = f(x_i)$, then $f \cdot g = \sum_1^n f_i g_i$. o Then $\bf{0}$
- Using above, we have $b_k = \frac{2}{l}$ $\frac{2}{L}\int_0^L f(x) \sin\left(\frac{k}{2}\right)$ • Using above, we have $b_k = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{h\pi x}{L}\right) dx$.

Summary of eigen functions subject to homogeneous conditions (all $n \geq 1$)

- PDE $u_t = \alpha^2 u_{xx}$, IC: $u(x, 0) = f(x)$.
- Dirichlet boundary condition $u(0,t) = u(L,t) = 0$:
	- Eigen values: $\mu_n = \frac{n}{n}$ \circ Eigen values: $\mu_n = \frac{nn}{L}$.
		- Eigen functions: $X_n = \sin\left(\frac{n}{n}\right)$ **Eigen functions:** $X_n = \sin\left(\frac{n\pi x}{L}\right)$.
- Neumann boundary conditions $u_x(0,t) = u_x(L,t) = 0$:
	- Eigen values: $\mu_n \in \{0\} \cup \left\{ \frac{n}{2} \right\}$ $\frac{n}{L}\big\}$ ○ Eigen values: $\mu_n \in \{0\} \cup \left\{\frac{n\pi}{I}\right\}^{\infty}$
	- Eigen functions: $X_n \in \{1\} \cup \left\{\cos\left(\frac{n}{2}\right)\right\}$ $\left(\frac{n\pi}{L}\right)$ **Eigen functions:** $X_n \in \{1\} \cup \left\{\cos\left(\frac{n\pi x}{l}\right)\right\}^{\infty}$.
- Periodic boundary condition $u(-L,t) = u(L,t)$, $u_x(-L,t) = u_x(L,t)$: ○ Eigen values: $\mu_n \in \{0\} \cup \left\{\frac{n\pi}{I}\right\}^{\infty}$
	- Eigen values: $\mu_n \in \{0\} \cup \left\{ \frac{n}{2} \right\}$ $\frac{n}{L}\big\}$
	- Eigen functions: $X_n \in \{1\} \cup \left\{\cos\left(\frac{n}{2}\right)\right\}$ $\left(\frac{n\pi x}{L}\right)$, sin $\left(\frac{n}{L}\right)$ $\left(\frac{n\pi x}{L}\right)$ Eigen functions: $X_n \in \{1\} \cup \left\{\cos\left(\frac{n\pi x}{l}\right), \sin\left(\frac{n\pi x}{l}\right)\right\}^{\infty}$.
- Mixed boundary condition A $u(0,t) = u_x(L,t) = 0$:
	- \circ Eigen values: $\mu_n = \frac{a}{2}$ $\overline{\mathbf{c}}$
	- Eigen functions: $X_n = \sin\left(\frac{1}{n}\right)$ \circ Eigen functions: $X_n = \sin\left(\frac{\cos n\pi}{2}\right)$ \blacksquare Period: 4L
- Mixed boundary condition B $u_x(0,t) = u(L,t) = 0$:
	- Eigen values: $\mu_n = \frac{0}{1}$ **•** Eigen values: $\mu_n = \frac{2\pi}{2}$
	- Eigen functions: $X_n = \cos \left(\frac{1}{n} \right)$ **Eigen functions:** $X_n = \cos\left(\frac{2n}{2}\right)$

Heat equation subject to *inhomogeneities*

- PDE: $u_t = \alpha^2 u_{xx} + g(x, t)$, $u(0, t) = \phi_0(t)$, $u(L, t) = \phi_1(t)$, $u(x, 0) = f(x)$.
- Special case, $g = 0$, $\phi_0 = u_0$, $\phi_1 = u_1$ constant, this gives the **steady state solution**.

- Initial boundary value problem (IBVP): •
	- $u_t = \alpha^2 u_{xx}, u(0, t) = u_0, u(L, t) = u_1, u(x, 0) = f(x).$
	- \circ We want to find a steady state solution $w(x)$, such that $w(x, t) = w(x)$, $w_t = 0$.
		- **This gives that** $w = Ax + B$ **,**
		- Match BC, $w = \frac{u}{x}$ • Match BC, $w = \frac{u_1 - u_0}{L}x + u_0$.
	- \circ Transient solution: let $u(x,t) = w(x) + v(x,t)$.
		- $u_t = w_t + v_t = v_t = \alpha^2 u_{xx} = \alpha^2 (w_{xx} + v_{xx}) = \alpha^2 v_{xx}.$
			- Boundary condition $u_0 = u(0, t) + w(0) + v(0, t)$, so $v(0, t) = 0$, similarly, $v(L, t) = 0.$
			- Initial condition $v(x, 0) = f(x) w(x) = g(x)$.
			- \bullet $v(x, t)$ satisfies a homogenous PDE.
			- $v(x,t) = \sum_{1}^{\infty} b_n e^{-\alpha^2 (\frac{n}{4})t}$ $\left(\frac{n\pi}{L}\right)^2 t \sin\left(\frac{n\pi}{L}\right)$ $\psi(x,t) = \sum_{1}^{\infty} b_n e^{-\alpha^2 (\frac{t}{L}) t} \sin (\frac{n\pi x}{L}).$ $b_n = \frac{2}{l}$ $\frac{2}{L}\int_0^L (f(x)-w(x))\sin\left(\frac{n}{2}\right)$ \Box $b_n = \frac{2}{L} \int_0^L (f(x) - w(x)) \sin \left(\frac{mx}{L} \right) dx.$
	- Finally, $u(x,t) = \frac{u}{t}$ $\frac{u_1 - u_0}{L} x + u_0 + \sum_{1}^{\infty} b_n e^{-\alpha^2 (\frac{n}{4})}$ $\left(\frac{n\pi}{L}\right)^2 t \sin\left(\frac{n\pi}{L}\right)$ ○ Finally, $u(x,t) = \frac{u_1 - u_0}{L}x + u_0 + \sum_1^{\infty} b_n e^{-\alpha^2 (\frac{t}{L}) t} \sin(\frac{n\pi x}{L}).$
		- The transient part goes to 0 as $t \to \infty$.
- Heat equation with a loss term

$$
u_{t} = u_{xx} - \beta^{2}u, u(0, t) = u_{0}, u_{x}(L, t) = q_{1}, u(x, 0) = f(x).
$$
\n
$$
u_{0} = \frac{\sin \theta^{2}u}{u(x, 0)} = \frac{\cos \theta^{2}}{1}u_{1}
$$

○ Steady solution: w(x), with

$$
\bullet \quad w_t = 0 = w_{xx} - \beta^2 w.
$$

 $w(x) = A \cosh \beta x + B \sinh \beta x$, $w_x = A\beta \sinh \beta x + B\beta \cosh \beta x$. \boldsymbol{q}

\n- This gives
$$
A = u_0
$$
, $B = \frac{\frac{u_1}{\beta} - u_0 \sinh \beta L}{\cosh \beta L}$.
\n- So $w(x) = u_0 \cosh \beta x + \left(\frac{\frac{q_1}{\beta} - u_0 \sinh \beta L}{\cosh \beta L} \right) \sinh \beta x = u_0 \frac{\cosh \beta (L - x)}{\cosh \beta L} + \frac{q_1 \sinh \beta x}{\beta \cosh \beta L}$.
\n

○ F<mark>ransient solution</mark>

- Let $u(x, t) = w(x) + v(x, t)$, so $v_t = w_{xx} \beta^2 w + (v_{xx} \beta^2 v) = v_{xx} \beta^2 v$.
- The conditions are: $v(0, t) = v_x(L, t) = 0$, $v(x, 0) = f(x) w(x)$. Let $v(x,t) = XT$, then $XT' = X''T - \beta^2 XT$, $\frac{T'}{T}$ $\frac{T'}{T}+\beta^2=\frac{X'}{X}$
- Let $v(x,t) = XT$, then $XT' = X''T \beta^2 XT$, $\frac{1}{T} + \beta^2 = \frac{\alpha}{X}$ Then $\overline{T(t)} = C e^{(\lambda - \beta^2)t}$, $X_n = B_n \sin \left(\frac{\beta}{\beta} \right)$ $\frac{(2n-1)\pi}{2L}x\big), \lambda_n = -\bigg(\frac{0}{2}\bigg)$ ■ Then $T(t) = Ce^{(\lambda - \beta^2)t}$, $X_n = B_n \sin\left(\frac{(2n-1)\pi}{2L}x\right)$, $\lambda_n = -\left(\frac{(2n-1)\pi}{2L}\right)^2$.
- So $v(x, t) = \sum_{n=1}^{\infty} b_n e^{-\left(\frac{t}{2}\right)^2}$ $\overline{\mathbf{c}}$ $\int_{0}^{2} t e^{-\beta^2 t} \sin \left(\frac{t}{2} \right)$ • So $v(x,t) = \sum_{n=1}^{\infty} b_n e^{-\left(\frac{-2L}{2L}\right)t} e^{-\beta^2 t} \sin\left(\frac{(2n-1)\pi}{2L}x\right).$ $b_n = \frac{2}{l}$ $\frac{2}{L}\int_0^L (f(x)-w(x))\sin\left(\frac{dy}{dx}\right)$ \Box $b_n = \frac{2}{L} \int_0^L (f(x) - w(x)) \sin \left(\frac{(2R+1)R}{2L} x \right) dx.$

Inhomogeneous Neumman BC and a particular solution •

$$
u_t = \alpha^2 u_{xx}, u_x(0,t) = q_0, u_x(L,t) = q_1, u(x,0) = f(x).
$$

- \circ Steady solution: $w(x)$, with $w_t = 0$.
	- $w_{xx} = 0$, $w(x) = Ax + B$, but this gives $q_0 = w_x(0) = A = w_x(L) = q_1$.
	- **Unless** $q_0 = q_1$, there is **no steady solution**.
- \circ Particular solution $w(x,t) = Ax^2 + Bx + Ct$.
	- $C = w_t = \alpha^2 w_{xx} = 2\alpha^2 A$, so $C = 2A\alpha^2$.
	- $q_0 = w_x(0,t) = B$, $q_1 = w_x(L,t) = 2AL + B = 2AL + q_0$, then $A = \frac{q_1}{2}$ $q_0 = w_x(0,t) = B$, $q_1 = w_x(L,t) = 2AL + B = 2AL + q_0$, then $A = \frac{q_1 - q_0}{2L}$.
	- $C = 2A\alpha^2 = \alpha^2$ • $C = 2A\alpha^2 = \alpha^2 \frac{q_1 - q_0}{L}$.

•
$$
w(x,t) = \left(\frac{q_1 - q_0}{2L}\right) x^2 + q_0 x + \left(\alpha^2 \frac{q_1 - q_0}{L}\right) t.
$$

- \circ Let $u(x, t) = w(x, t) + v(x, t)$.
	- \bullet $v_t = \alpha^2 v_{xx}, v_x(0, t) = v_x(L, t) = 0, v(x, 0) = f(x) w(x, 0).$
	- $X_n \in \{1\} \cup \{\cos\left(\frac{n}{2}\right)$ • $X_n \in \{1\} \cup \{\cos\left(\frac{n\pi x}{L}\right)\}.$
	- So $v(x,t) = \frac{a}{x}$ $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n e^{-\alpha^2 (\frac{n}{4})}$ $\left(\frac{n\pi}{L}\right)^2 t \cos\left(\frac{n\pi}{L}\right)$ • So $v(x,t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n e^{-\alpha^2 (\frac{\pi}{L}) t} \cos (\frac{n\pi}{L} x).$ $a_n = \frac{2}{l}$ $\frac{2}{L}\int_0^L (f(x) - w(x, 0)) \cos \left(\frac{n}{L}\right)$ $a_n = \frac{2}{L} \int_0^L (f(x) - w(x, 0)) \cos(\frac{hc}{L}x) dx.$
- Heat equation with **space varying source**.
	- $u_t = u_{xx} + x$, $u(0, t) = 0$, $u(\pi, t) = u_1$, $u(x, 0) = f(x)$.
	- \circ Steady solution $w(x)$, $w_t = 0$.
		- $0 = w_{xx} + x.$
		- This gives $w(x) = -\frac{x^3}{6}$ • This gives $w(x) = -\frac{x}{6} + Ax + B$.
		- $B=0, u_1=-\frac{\pi^3}{6}$ $\frac{\pi^3}{6} + A\pi$, $A = \frac{u}{t}$ $\frac{u_1}{\pi} + \frac{\pi^3}{6}$ • $B = 0$, $u_1 = -\frac{h}{6} + A\pi$, $A = \frac{u_1}{\pi} + \frac{h}{6}$. So $w(x) = -\frac{x^3}{6}$
		- $rac{x^3}{6} + \left(\frac{u}{\tau}\right)$ $\frac{u_1}{\pi} + \frac{\pi^3}{6}$ • So $w(x) = -\frac{x}{6} + \left(\frac{u_1}{\pi} + \frac{u_2}{6}\right)x$.
	- <mark>Transient</mark> solution:
- $v_t = u_{xx} + x = (w_{xx} + x) + v_{xx}, v_t = v_{xx}, v(0, t) = v(\pi, t) = 0,$ $f(x) - w(x)$.
- \bullet $v(x,t) = \sum_{1}^{\infty} b_n e^{-n^2 t} \sin(nx) dx.$ $b_n = \frac{2}{n}$ \Box $b_n = \frac{2}{\pi} \int_0^n (f(x) - w(x)) \sin(nx) dx$.
- Second method (using an <mark>eigenfunction expansion</mark>):
	- Look for simplest function $w(x)$ that satisfies the boundary condition. $w(x) = \frac{u}{x}$ \Box $W(x) = \frac{u_1 x}{\pi}$.
	- Get rid of the inhomogeneous BC by letting $u(x,t) = w(x) + v(x,t)$.
		- $v_t = v_{xx} + x$, $v(0, t) = 0$, $v(\pi, t) = 0$, $v(x, 0) = f(x) w(x)$.
		- \Box Eigen values/functions for the homogeneous BC: $\lambda_n = -n^2$, $X_n = \sin(nx)$.
		- Expand $s(x) = x = \sum_{1}^{\infty} s_n \sin(nx)$, $s_n = 2 \frac{(-1)^n}{n}$ \Box Expand $s(x) = x = \sum_{1}^{\infty} s_n \sin(nx)$, $s_n = 2 \frac{(1)}{n}$.
		- \Box Let $v(x,t) = \sum_{1}^{\infty} v_n(t) \sin(nx)$.

• Then
$$
v_t = \sum_1^{\infty} v'_n(t) \sin(nx)
$$
, $v_{xx} = \sum_1^{\infty} v_n(t) (-n^2) \sin(nx)$.

- □ So $0 = v_t v_{xx} x = \sum_1^{\infty} (v'_n + n^2 v_n s_n) \sin(nx)$.
- \Box Then $v'_n(t) + n^2 v_n = s_n$ (since $\sin(nx)$ are lineary independent).
- So $v_n(t) = \frac{s}{n}$ □ So $v_n(t) = \frac{s_n}{n^2} + c_n e^{-n^2 t}$.
- $v(x,t) = \sum_{1}^{\infty} \left(\frac{s}{x}\right)$ $\nabla \cdot \mathbf{v}(x,t) = \sum_{1}^{\infty} \left(\frac{s_n}{n^2} + c_n e^{-n^2 t}\right) \sin(nx).$

$$
\Box \text{ Apply the IC, } f(x) - w(x) = \sum_{1}^{\infty} \left(\frac{s_n}{n^2} + c_n \right) \sin(nx).
$$

• $c_n = f_n - s_n \frac{u_1}{\pi} - \frac{s_n}{n^2}.$

Time and space varying source. •

$$
\circ u_t = u_{xx} + e^{-t} \sin 2x, \quad 0 \le x \le \pi, \quad u(0, t) = u(\pi, t) = 0, \quad u(x, 0) = 0.
$$

- Eigenvalues: $\lambda_n = -\left(\frac{n}{n}\right)$ ○ Eigenvalues: $\lambda_n = -\left(\frac{n\pi}{\pi}\right)^2 = -n^2$, X_n (
- Expand the source in terms of the eigen functions.

$$
e^{-t} \sin 2x = \sum_{n=1}^{\infty} s_n(t) \sin(nx), \text{ so } s_n(t) = \begin{cases} e^{-t}, n = 2\\ 0, n \neq 2 \end{cases} = e^{-t} \delta_{n2}.
$$

- \circ Expand $u(x,t)$ as a series of eigen functions.
	- Let $u(x, t) = \sum_{n=1}^{\infty} u_n(t) \sin(nx) = \sum_{n=1}^{\infty} T_n(t) X_n(x)$.
	- $u_t = \sum_{n=1}^{\infty} u'_n(t) \sin(nx), u_{xx} = \sum_{n=1}^{\infty} u_n(t) (-n^2) \sin(nx).$
- o Then $0 = u_t u_{xx} e^{-t} \sin(2x) = \sum_{n=1}^{\infty} (u'_n(t) + n^2 u_n e^{-t} \delta_{n2}) \sin(nx)$.
- \circ Then we have $u'_n(t) + n^2 u_n = e^{-t} \delta_{n2}$, since the terms are linearly independent.
- So $u_n(t) = \frac{1}{n^2}$ ○ So $u_n(t) = \frac{1}{n^2-1}e^{-t}\delta_{n2} + C_n e^{-n^2t}$.

\n- Then
$$
u(x, t) = \sum_{n=1}^{\infty} \left(\frac{1}{n^2 - 1} e^{-t} \delta_{n2} + C_n e^{-n^2 t} \right) \sin(nx).
$$
\n- Using the IC, $C_n = \begin{cases} -\frac{1}{3}, n = 2, \\ 0, n \neq 2 \end{cases}, u(x, t) = \frac{1}{3} (e^{-t} - e^{-4t}) \sin(2x).$
\n

- Time dependent boundary conditions
	- $u_t = u_{xx}, 0 < x < L, u(x, 0) = f(x).$
	- \circ Dirichelet: $u(0,t) = \phi_0(t)$, $u(L,t) = \phi_1(t)$.
		- **Simplest functions that match BC,** $w(x, t) = A(t)x + B(t)$. \Box $\phi_0(t) = w(0,t) = B(t), \phi_1(t) = w(L,t) = A(t)L + \phi_0(t)$, so $\frac{\phi_1(t) - \phi_0(t)}{l}$.

$$
\Box \, w(x,t) = \frac{\phi_1(t) - \phi_0(t)}{L} x + \phi_0(t).
$$

- Let $u(x, t) = w(x, t) + v(x, t)$, $v(x, 0) = f(x) w(x, 0)$.
	- $u_t = w_t + v_t = \frac{\phi'_1(t) \phi'_0(t)}{l}$ $u_t = w_t + v_t = \frac{\phi_1(t) - \phi_0(t)}{L}x + \phi'_0(t) = u_{xx} = w_{xx} + v_{xx} = v_{xx}$
	- So $v_t = v_{xx} \left(\frac{\phi'_1(t) \phi'_0(t)}{l}\right)$ □ So $v_t = v_{xx} - \left(\frac{\phi_1(t) - \phi_0(t)}{L}x + \phi'_0(t)\right)$, with homogeneous boundary conditions.
	- \Box We can then get the solutions by eigen expansion on $v(x, t)$.
- \circ Neumann: $u_x(0,t) = q_0(t)$, $u_x(L,t) = q_1(t)$.
	- **Functions that match BC,** $w(x, t) = A(t)x^2 + B(t)x$.
		- $q_0(t) = w_x(0,t) = B(t), q_1(t) = w_x(L,t) = 2A(t)L + q_0(t).$

 $w(x, t) = \frac{q_1(t)}{a_1(t)}$ \Box $w(x,t) = \frac{q_1(t) - q_0(t)}{2L}x^2 + q_0(t)x$.

- Let $u(x, t) = w(x, t) + v(x, t)$, $v(x, 0) = f(x) w(x, 0)$.
	- $u_t = w_t + v_t = u_{xx} = w_{xx} + v_{xx}.$
	- So $v_t = v_{xx} + \left(\frac{q}{\tau}\right)$ $\left(\frac{q_1 - q_0}{L}\right) - \left(\frac{q'_1 - q'_0}{2L}\right)$ □ So $v_t = v_{xx} + \left(\frac{q_1 - q_0}{L}\right) - \left(\frac{q_1 - q_0}{2L}x^2 + q'_0x\right)$, with homogeneous boundary conditions.
- \circ Mixed boundary: $u(0,t) = \phi_0(t)$, $u_x(L,t) = q_1(t)$.
	- Let $w(x, t) = A(t)x + B(t)$.
		- \Box $w(x,t) = q_1(t)x + \phi_0(t)$.
	- **•** Let $u(x, t) = w(x, t) + v(x, t)$, $v(0, t) = 0$, $v_x(L, t) = 0$.
		- $u_t = w_t + v_t = u_{xx} = w_{xx} + v_{xx}.$

$$
\Box \text{ So } v_t = v_{xx} - (q_1'(t)x + \phi_0'(t))
$$
 with homogeneous boundary conditions.

- \circ Mixed boundary: $u_x(0,t) = q_0(t)$, $u(L,t) = \phi_1(t)$.
	- Let $w(x, t) = A(t)x + B(t)$.
		- \Box $w(x,t) = q_0(t)(x-L) + \phi_1(t)$.
	- **•** Let $u(x, t) = w(x, t) + v(x, t)$, $v(0, t) = 0$, $v_x(L, t) = 0$.
		- $u_t = w_t + v_t = u_{xx} = w_{xx} + v_{xx}.$
		- □ So $v_t = v_{xx} (q'_0(t)(x L) + \phi'_1(t))$ with homogeneous boundary conditions.

 $\overline{0}$

E.g.
$$
u_t = u_{xx}
$$
, $u(0, t) = \frac{t^2}{2}$, $u_x(\frac{\pi}{2}, t) = 1$, $u(x, 0) = x$
\n• Let $w(x, t) = A(t)x + B(t), \frac{t^2}{2} = w(0, t) = B(t), 1 = w_x(\frac{\pi}{2}, t) = A(t)$.
\n• So $w(x, t) = x + \frac{t^2}{2}$.
\n• Let $u(x, t) = w(x, t) + v(x, t)$, then $v(0, t) = v_x(\frac{\pi}{2}, t) = 0$, $v(x, 0) = u(x, 0) - w(x, 0) = 0$
\n• $u_t = w_t + v_t = u_{xx} = w_{xx} + v_{xx}$.
\n• So $v_t = v_{xx} - t$.
\n• $\lambda_n = -(\frac{(2n-1)\pi}{2(\pi/2)})^2 = -(2n-1)^2$, $X_n = \sin((2n-1)x)$.
\n• This gives $s_n(t) = \frac{4}{\pi} \int_0^{\frac{\pi}{2}} -t \sin((2n-1)x)) dx = \frac{-4t}{(2n-1)\pi}$.
\n• Let $v(x, t) = \sum_{i=1}^{\infty} v_n(t) \sin((2n-1)x))$.
\n• $v_t = \sum_{i=1}^{\infty} v_n'(t) \sin((2n-1)x))$, $v_{xx} = \sum_{i=1}^{\infty} v_n(t)(-(2n-1)^2) \sin((2n-1)x)$.

Then
$$
0 = v_t - v_{xx} + t = \sum_{1}^{\infty} \left(v'_n + (2n-1)^2 v_n - \frac{4t}{(2n-1)\pi} \right) \sin((2n-1)x).
$$

So we must have $v'_n + (2n - 1)^2 v_n = \frac{4}{(2n - 1)^2}$ • So we must have $v'_n + (2n - 1)^2 v_n = \frac{4n}{(2n-1)\pi^2}$

•
$$
v_n = \frac{4}{\pi(2n-1)} \left(\frac{t}{(2n-1)^2} - \frac{1}{(2n-1)^4} + c_n e^{-(2n-1)^2 t} \right)
$$

\n• $v(x, 0) = \sum_{1}^{\infty} \frac{4}{\pi(2n-1)} \left(-\frac{1}{(2n-1)^4} + c_n \right) \sin((2n-1)x)$.

$$
\Box \quad \Box \quad \frac{1}{\pi(2n-1)} \quad (2n-1)^4 \quad \text{on } \quad \Box
$$
\n
$$
\Box \quad \text{So } c_n = \frac{1}{(2n-1)^4}.
$$

$$
v(x,t) = \sum_{1}^{\infty} \frac{4}{\pi(2n-1)} \left(\frac{t}{(2n-1)^2} + \frac{e^{-(2n-1)^2 t} - 1}{(2n-1)^4} \right) \sin((2n-1)x).
$$

$$
u(x,t) = x + \frac{t^2}{2} + \sum_{1}^{\infty} \frac{4}{(2n-1)^4} \left(\frac{t}{(2n-1)^4} + \frac{e^{-(2n-1)^2 t} - 1}{(2n-1)^4} \right) \sin((2n-1)x).
$$

$$
\circ \quad u(x,t) = x + \frac{t^2}{2} + \sum_{1}^{\infty} \frac{4}{\pi(2n-1)} \left(\frac{t}{(2n-1)^2} + \frac{e^{-(2n-1)t} - 1}{(2n-1)^4} \right) \sin((2n-1)x).
$$

Wave equation

May 27, 2021 1:26 PM

1D wave equation

- $u_{tt} = c^2 u_{xx}$.
- The exponential solution: $u = e^{ik(x \pm ct)}$ (oscillation).
	- \circ Lines $x \pm ct = x_0$ are characteristics.
- General solution to the wave equation
	- \circ Let $u(x, t) = F(x ct)$ (wave moving to the right), $u_{tt} = c^2 F''(x ct)$, F'
	- \circ Same for $F(x + ct)$ (wave moving to the left).
	- \circ So general solution is $u(x,t) = F(x ct) + G(x + ct)$.
- D'Alembert's solution to 1D wave equation for an <mark>infinite string</mark>
	- \circ $u_{tt} = c^2 u_{xx}, u(x,0) = f(x), u_t(x,0) = g(x), x \in \mathbb{R}.$
	- o Let $u(x, t) = F(x ct) + G(x + ct)$, $u_t = -cF'(x ct) + cG'(x ct)$
		- $u(x, 0) = F(x) + G(x) = f(x)$.
		- $u_t(x, 0) = -cF'(x) + cG'(x) = g(x).$ $C = -cF(x) + cG(x) = \int_0^x g(s)ds + A.$
		- This gives $G(x) = \frac{1}{2}$ $\frac{1}{2}f(x) + \frac{1}{20}$ $\frac{1}{2c} \int_0^t g(s) ds + \frac{A}{2c}$ **This gives** $G(x) = \frac{1}{2}f(x) + \frac{1}{2c}\int_0^c g(s)ds + \frac{A}{2c}$
		- And $F(x) = \frac{1}{2}$ $\frac{1}{2}f(x) - \frac{1}{2}$ $\frac{1}{2c} \int_0^t g(s) ds - \frac{A}{2d}$ • And $F(x) = \frac{1}{2}f(x) - \frac{1}{2c}\int_0^c g(s)ds - \frac{a}{2c}$

• General solution:
$$
u(x,t) = \frac{1}{2}(f(x-ct) + f(x+ct)) + \frac{1}{2c} \int_{x-ct}^{x+ct} g(s)ds
$$
.

- Initial boundary value problem on a finite string.
	- $v_1 = c^2 u_{xx}$, $u(0,t) = u(L,t) = 0$, $u(x, 0) = f(x)$, $u_t(x, 0) = g(x)$, $0 < x < L$.
	- By separation of variable, $XT'' = c^2 X''T$, this gives $\frac{T'}{c^2}$ $\frac{T''}{c^2T} = \frac{X'}{X}$ **O** By separation of variable, $XT'' = c^2 X''T$, this gives $\frac{1}{c^2T} = \frac{A}{X}$.
	- Solving eigenvalue problems

•
$$
X'' = \lambda X
$$
, only nontrivial solution $\lambda = -\mu^2 < 0$, $\mu_n = \frac{n\pi}{L}$, $X_n = \sin\left(\frac{n\pi x}{L}\right)$.

- $T''_n + c^2 \mu_n^2 T_n = 0$, $T_n = A_n \cos \mu_n ct + B_n \sin \mu_n ct$.
- \circ General solution, $u(x,t) = \sum_{1}^{\infty} (A_n \cos \mu_n ct + B_n \sin \mu_n ct) \sin \mu_n x$.
- \circ Using the initial condition, $f(x) = \sum_{1}^{\infty} A_n \sin \mu_n x = \sum_{1}^{\infty} f_n \sin \mu_n x$.

•
$$
A_n = f_n = \frac{2}{L} \int_0^L f(x) \sin \mu_n x \, dx.
$$

- \circ $g(x) = u_t(x, 0) = \sum_{1}^{\infty} B_n \mu_n c \sin \mu_n x = \sum_{1}^{\infty} g_n \sin \mu_n x$. $B_n \mu_n c = g_n = \frac{2}{l}$ • $B_n \mu_n c = g_n = \frac{2}{L} \int_0^L g(x) \sin \mu_n x \, dx.$
- So $u(x,t) = \sum_{1}^{\infty} \left(f_n \cos \mu_n ct + \frac{g}{\mu} \right)$ \circ So $u(x,t) = \sum_{1}^{\infty} \left(f_n \cos \mu_n ct + \frac{g_n}{\mu_n c} \sin \mu_n ct \right) \sin \mu_n x.$
	- $f_n = \frac{2}{l}$ \int_{n} = $\frac{2}{L} \int_{0}^{L} f(x) \sin \mu_n x \, dx$.
	- $g_n = \frac{2}{l}$ $\int g_n = \frac{2}{L} \int_0^L g(x) \sin \mu_n x \, dx.$
- Interpretation in terms of D'Alembert's solution
	- Using trig identities, $u(x,t) = \sum_{1}^{\infty} f_n \frac{1}{2}$ ■ Using trig identities, $u(x,t) = \sum_{1}^{\infty} f_n \frac{1}{2} (\sin \mu_n (x - ct) + \sin \mu_n)$ $\sum_{1}^{\infty} \frac{g}{n}$ $\frac{g_n}{\mu_n c} \frac{1}{2}$ $\int_{1}^{\infty} \frac{g_n}{\mu_n c} \frac{1}{2} \left(\cos \mu_n (x - ct) - \cos \mu_n (x + ct) \right).$
	- However, $\sum_{1}^{\infty} f_n \sin \mu_n z = f_{2L}^0(z)$, and $\sum_{1}^{\infty} g_n \sin \mu_n z = g_{2L}^0(z)$,
		- □ Where f_{2L}^O means the odd extenstion of f with period 2L.
			- □ So first term becomes $\frac{1}{2}(f_{2L}^0(x-ct)+f_{2L}^0(x+ct)).$
		- $\int g_{2L}^o(z)dz = -\sum_{1}^{\infty} \frac{g}{v}$ □ $\int g^o_{2L}(z)dz = -\sum_{1}^{\infty}\frac{g_n}{\mu_n}$ cos $\mu_n z + C$ gives second term $\frac{1}{2c}\int_{x-ct}^{x+ct}g^o_{2L}(z)dz$.
	- So $u(x,t) = \frac{1}{2}$ $\frac{1}{2}(f_{2L}^0(x-ct)+f_{2L}^0(x+ct))+\frac{1}{2a}$ • So $u(x,t) = \frac{1}{2} \left(f_{2L}^0(x-ct) + f_{2L}^0(x+ct) \right) + \frac{1}{2c} \int_{x-ct}^{x+ct} g_{2L}^0(z) dz$
- \square Essentially, we just replace the function with odd extension of period 2L. • If giving Neumann boundary condition:
	- $u_{tt} = c^2 u_{xx}, u_x(0,t) = u_x(L,t) = 0, u(x,0) = f(x), u_t(x,0) = g(x).$
	- We have an even extension

The eigen values and eigen functions are the same as the heat equation

Wave equations with time dependent BC and sources using eigen expansions.

• $u_{tt} = c^2 u_{xx} + s(x, t), u(x, 0) = f(x), u_t(x, 0) = g(x).$ • Dirichlet: $u(0,t) = \phi_0(t)$, $u(L,t) = \phi_1(t)$. $w(x,t) = \frac{\phi_1(t)}{t}$ \circ $w(x,t) = \frac{\varphi_1(t) - \varphi_0(t)}{L}x + \phi_0(t).$ \circ Let $u(x, t) = v(x, t) + w(x, t)$, \bullet $v(x, 0) = f(x) - w(x, 0), v_t(x, 0) = g(x) - w_t(x, 0).$ $v_{tt} = c^2 v_{xx} + s(x,t) - \left(\frac{\phi_1''(t) - \phi_0''(t)}{t}\right)$ • $v_{tt} = c^2 v_{xx} + s(x, t) - \left(\frac{\varphi_1(t) - \varphi_0(t)}{L} x + \varphi_0''(t)\right).$ • Mixed boundary: $u(0,t) = \phi_0(t)$, $u_x(L,t) = q_1(t)$. \circ $w(x, t) = q_1(t)x + \phi_0(t)$. E.g. $u_{tt} = u_{xx} + e^{-t} \sin 5x$, $u(0,t) = 0$, $u_x(\frac{\pi}{2})$ ○ E.g. $u_{tt} = u_{xx} + e^{-t} \sin 5x$, $u(0,t) = 0$, $u_x(\frac{\pi}{2}, t) = t$, $u(x, 0) = 0$, $u_t($ \mathcal{X} . $W(x,t) = tx.$ • Let $u(x, t) = v(x, t) + w(x, t)$. $v_{tt} = v_{xx} + e^{-t} \sin 5x$, $v(0, t) = v_x \left(\frac{\pi}{2}\right)$ $v_{tt} = v_{xx} + e^{-t} \sin 5x$, $v(0, t) = v_x(\frac{\pi}{2}, t) = t$, $v(x, 0) = 0$, $v_t(0, t) = 0$ $\sin 3x$ □ Eigen: $\lambda_n = -(2n-1)^2$, $X_n(x) = \sin((2n-1)x)$. □ e^{-t} sin(5x) = s(x, t) = \sum_1^{∞} s_n(t) sin((2n - 1)x). • $s_n(t) = e^{-t} \delta_{n3}$. \Box Let $v(x,t) = \sum_{1}^{\infty} v_n(x)$ $0 = v_{tt} - v_{xx} - e^{-t} \sin 5x = \sum_{1}^{\infty} (v_n''(t) + (2n - 1)^2)$ $e^{-t}\delta_{n3}$) sin $((2n-1)x)$. □ We then need to solve $v_n''(t) + (2n-1)^2 v_n = e^{-t} \delta_{n3}$. \bullet Homogeneous solution $v_n(t) = A_n \cos((2n-1)t) + B_n \sin((2n-1)t)$. • Particular solution: guess $v_n(t) = c_n e^{-t}$. $c_n = \frac{\delta}{1+\delta}$ $\Diamond c_n = \frac{b_{n3}}{1 + (2n-1)^2}.$ $v_n(t) = A_n \cos(2n-1)t + B_n \sin(2n-1)t + \frac{\delta}{1+\epsilon^2}$ • $v_n(t) = A_n \cos(2n-1)t + B_n \sin(2n-1)t + \frac{b_{n3}}{1 + (2n-1)^2}$ $v(x,t) = \sum_{1}^{\infty} \left(A_n \cos(2n-1)t + B_n \sin(2n-1)t + \frac{\delta}{1+\delta} \right)$ $v(x,t) = \sum_{1}^{\infty} (A_n \cos(2n-1)t) + B_n \sin(2n-1)t + \frac{\delta_{n3}}{1 + (2n-1)^2}$ $1)x$). Substituting the IC, we have $A_n = -\frac{\delta}{1+\epsilon^2}$ $\frac{\delta_{n3}}{1+(2n-1)^2}$, $B_n = \frac{\delta}{(2n-1)^2}$ □ Substituting the IC, we have $A_n = -\frac{6n3}{1+(2n-1)^2}$, $B_n = -\frac{6n3}{(2n-1)^2}$ δ $\frac{6n3}{(1+(2n-1)^2)(2n-1)}$ $u(x, t) = xt + \frac{1}{2}$ $\frac{1}{3}$ sin 3t sin 3x + $\left(-\frac{1}{2}\right)$ $\frac{1}{26}$ cos 5t + $\frac{1}{5 \cdot 2}$ $\frac{1}{5 \cdot 26} \sin 5t + \frac{e^{-}}{26}$ $u(x, t) = xt + \frac{1}{3}\sin 3t \sin 3x + \left(-\frac{1}{26}\cos 5t + \frac{1}{5 \cdot 26}\sin 5t + \frac{e}{26}\right)\sin 5x.$ • Mixed boundary: $u_x(0,t) = q_0(t)$, $u(L,t) = \phi_1(t)$. \circ $w(x,t) = q_1(t)(x-L) + \phi_0(t)$. • Neumann: $u_x(0,t) = q_0(t)$, $u_x(L,t) = q_1(t)$.

Laplace's equation

May 27, 2021 1:26 PM

Laplace's equation occurs as a steady solution heat or damped wave equation

- $u_t = \alpha^2 (u_{xx} + u_{yy})$, when $u_t = 0$, we have $\Delta u = u_{xx} + u_{yy} = 0$.
- $u_{tt} + \gamma u_t = c^2 (u_{xx} + u_{yy})$, when $u_t = u_{tt} = 0$, $\Delta u = u_{xx} + u_{yy} = 0$.
- In polar coordinates $\Delta u = u_{rr} + \frac{1}{r}$ $\frac{1}{r}u_r + \frac{1}{r^2}$ • In polar coordinates $\Delta u = u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0.$
- Need net flux =0.

Dirichlet problem on a rectangular domain

$$
u(\alpha,\beta) = \frac{1}{3}(4)
$$

$$
u(\alpha,\beta) = \frac{1}{3}(4)
$$

$$
u(\alpha,\beta) = \frac{1}{3}(4)
$$

$$
u(\alpha,\beta) = \frac{1}{3}(4)
$$

• $\Delta u = u_{xx} + u_{yy} = 0, u(x, 0) = f_1(x), u(x, b) = f_2(x), u(0, y) = g_1(y), u(a, y) = g_2(y).$

• Split the problem into 4 small problems

$$
\int_{0}^{\frac{1}{2}} \frac{1}{4} \frac{1}{
$$

$$
\Box X_n(x) = \frac{A_n}{\sinh(\frac{n\pi a}{b})} \sinh(\frac{n\pi}{a}(a-x)).
$$

\n• $u^D(x,y) = \sum_{1}^{\infty} \frac{A_n}{\sinh(\frac{n\pi a}{b})} \sinh(\frac{n\pi}{a}(a-x)) \sin(\frac{n\pi}{b}y).$
\n• With IC, $g_1(y) = u(0, y) = \sum_{1}^{\infty} \frac{A_n}{\sinh(\frac{n\pi a}{b})} \sinh(\frac{n\pi}{a}a) \sin(\frac{n\pi}{b}y).$
\n $\Box b_n^{g_1} = \frac{2}{b} \int_0^b g_1(y) \sin(\frac{n\pi y}{a}) dy = \frac{A_n}{\sinh(\frac{n\pi a}{b})} \sinh(\frac{n\pi}{a}a).$
\n $\Box \frac{A_n}{\sinh(\frac{n\pi a}{b})} = \frac{b_n^{g_1}}{\sinh(\frac{n\pi a}{b})}.$

Neumann problem

- $\Delta u = 0$, $u_y(x, t) = u_x(0, y) = u_x(a, y) = 0$, $u_y(x, 0) = f(x)$.
- Need no net heat loss or gain $\int_0^{\infty} f(x) dx = 0$.

\n- Let
$$
u(x, y) = XY, X''Y + XY'' = 0
$$
.
\n- Then $\lambda_n \in \{0\} \cup \left\{-\left(\frac{n\pi}{a}\right)^2\right\}, X_n \in \{1\} \cup \left\{\cos\left(\frac{n\pi x}{a}\right)\right\}$.
\n- When $\lambda = 0, Y = B$.
\n- When $\lambda = -\left(\frac{n\pi}{a}\right)^2, Y_n = A_n \frac{\cosh\left(\frac{n\pi}{a}(y-b)\right)}{\cosh\left(\frac{n\pi}{a}b\right)} = D_n \cosh\left(\frac{n\pi}{a}(y-b)\right)$.
\n- So $u(x, y) = D_0 + \sum_{1}^{\infty} D_n \cosh\left(\frac{n\pi}{a}(y-b)\right) \cos\left(\frac{n\pi x}{a}\right)$.
\n- $f(x) = u_y(x, 0) = \sum_{1}^{\infty} D_n \left(\frac{n\pi}{a}\right) \sinh\left(\frac{n\pi}{a}(0-b)\right) \cos\left(\frac{n\pi}{a}x\right) = \frac{a_0^f}{2} + \sum_{1}^{\infty} a_n^f \cos\left(\frac{n\pi}{a}x\right)$.
\n

 \circ So we must have $a_0 = 0$. (solvability condition)

$$
\circ \quad D_n = -\frac{a_n^f}{\left(\frac{n\pi}{a}\right)\sinh\left(\frac{n\pi}{a}b\right)} \text{ where } a_n^f = \frac{2}{a} \int_0^a f(x) \cos\left(\frac{n\pi x}{a}\right) dx.
$$

- To find $D_0 = \frac{a}{a}$ average value of u at $t = 0$ over $[0, a] \times [0, b]$. •
	- $\int_0^b \int_0^u u_t dx dy = \int_0^b \int_0^u u_{xx} dx dy + \int_0^b \int_0^u u_{yy} dx dy = -\int_0^u f(x) dx = 0.$
	- \supset Then $\frac{\partial}{\partial t} \int_0^u \int_0^u u(x, y, t) dx dy = 0$, since the integral is constant 0.
	- \circ Then the steady state integral $\int_0^{\nu} \int_0^{\mu} u(x, y, \infty) dx dy = \int_0^{\nu} \int_0^{\mu} u(x, y, 0) dx dy = 0.$ Also $\int_0^b \int_0^u u(x, y, \infty) dx dy = D_0 a b$, since $u(x, y, \infty) = u(x, y)$.

Laplace's equation on a semi infinite strip

- $\Delta u = 0, 0 < x < L, y > 0, u(0, y) = 0, u_x(L, y) = 0, u(x, 0) = f(x), u(x, y) \rightarrow 0$ as $y \rightarrow \infty$.
- Let $u = XY$, then $\frac{X'}{Y}$ $\frac{X''}{X} = -\frac{Y'}{Y}$ • Let $u = XY$, then $\frac{X^{2}}{X} = -\frac{Y^{3}}{Y} = \lambda = -\mu^{2}$.
- $X'' + \mu^2 X = 0, X(0) = X'(L) = 0.$ $\mu_n =$ ^{$\frac{0}{n}$} $\varphi_n = \frac{(2n-1)n}{2L}$, $X_n = \sin(\mu_n x)$. • • $Y'' - \mu^2 Y = 0.$
	- \circ $Y = Ae^{-\mu y} + Be^{\mu y}$.
	- \circ Since $Y(y \to \infty) = 0$, we have $B = 0$.

•
$$
u(x,y) = \sum_{1}^{\infty} A_n e^{-\mu_n y} \sin(\mu_n x).
$$

 $f(x) = u(x, 0) = \sum_{1}^{\infty}$ $\int_n^f \sin\left(\frac{f}{f}\right)$ • $f(x) = u(x, 0) = \sum_{1}^{\infty} A_n \sin \mu_n x = \sum_{1}^{\infty} b_n^f \sin \left(\frac{(2n-1)\pi x}{2L} \right).$ So $A_n = b_n^f = \frac{2}{b}$ $\frac{2}{L}\int_0^L f(x) \sin \left(\frac{0}{x}\right)$ ○ So $A_n = b'_n = \frac{2}{L} \int_0^L f(x) \sin(\frac{(2n-1)\pi x}{2L}) dx$.

Laplace's equation on circular domains

- $\Delta u = u_{rr} + \frac{1}{r} u_r + \frac{1}{r^2} u_{\theta\theta} = 0.$ $r \frac{a r + r^2}{r^2}$
- Separation of variables $u(r, \theta) = R(r) \Theta(\theta)$, then $R''\Theta + \frac{1}{r}$ $rac{1}{r}R'\Theta+\frac{1}{r^2}$ $\frac{1}{r^2}R\Theta'' = 0.$ •
	- Multiply both sides by $\frac{r^2}{\rho c}$ $rac{r^2}{R\Theta'}\frac{r^2R''+rR'}{R}$ $\frac{r^2R''+rR'}{R}=-\frac{\Theta'}{\Theta}$ $\frac{\Theta''}{\Theta} = \lambda = \begin{cases} \mu^2, \\ -\mu^2. \end{cases}$ • Multiply both sides by $\frac{R}{R\Theta}$, $\frac{R+TR}{R} = -\frac{\Theta}{\Theta} = \lambda = \begin{cases} \mu^{2}, & \text{is integers } B \in \mathbb{R} \\ -\mu^{2}, & \text{if } h \text{omogeneous } BC \text{ in } R \end{cases}$
- For Θ . o If $\mu = 0$, $\Theta'' = 0$, $\Theta = A\theta + B$.

o If $\mu > 0$, $\Theta = A \cos \mu \theta + B \sin \mu \theta$.

- For R .
	- o If $\mu = 0$, $r^2 R'' + rR' = 0$, $R(r) = C + D \ln r$.
	- o If $\mu > 0$, $r^2 R'' + rR \mu^2 R = 0$, Cauchy-Euler equation, $R(r) = Cr^{\mu} + Dr^{-\mu}$.
- Dirichlet: $\Theta(0) = \Theta(\alpha) = 0$ $(u(r, 0) = u(r, \theta) = 0)$, $\Theta'' + \mu^2 \Theta = 0$.
	- $\mu_n = \frac{n}{2}$ $\frac{n\pi}{\alpha}$, $\Theta_n(\theta) = \sin\left(\frac{n\pi}{\theta}\right)$ \circ $\mu_n = \frac{n}{\alpha}, \Theta_n(\theta) = \sin\left(\frac{n}{\alpha}\right).$
- Neumann: $\Theta'(0) = \Theta'(\alpha)$ $(u_{\theta}(r, 0) = u_{\theta}(r, \theta) = 0)$. $\mu_n \in \{0\} \cup \left\{\frac{n}{2}\right\}$ $\left(\frac{n\pi}{\alpha}\right)$, $\Theta_n \in \{1\} \cup \left\{\cos\left(\frac{n\pi}{n}\right)\right\}$ \circ $\mu_n \in \{0\} \cup \{\frac{m}{\alpha}\}, \Theta_n \in \{1\} \cup \{\cos\left(\frac{m\omega}{\alpha}\right)\}.$
- Periodic: $\Theta(\pi) = \Theta(-\pi)$, $\Theta'(\pi) = \Theta'(-\pi)$, $(u(r, \pi) = u(r, -\pi)$, $u_{\Theta}(r, \pi) = u_{\Theta}(r, -\pi)$). \circ $\mu_n \in \{1\} \cup \{n\}, \Theta_n \in \{1\} \cup \{\cos n\theta, \sin n\theta\}.$
- Mixed: $\Theta(0) = \Theta'(\alpha) = 0$, $u(r, 0) = u_{\theta}(r, \alpha) = 0$. $\mu_n =$ ^{$\frac{0}{n}$} $\frac{(2n-1)\pi}{2\alpha}$, $\Theta_n = \sin\left(\frac{0}{n}\right)$ \circ $\mu_n = \frac{(2n-1)n}{2\alpha}, \Theta_n = \sin\left(\frac{(2n-1)n}{2\alpha}\theta\right).$
- **Mixed**: $\Theta'(0) = \Theta(\alpha) = 0$, $u_{\theta}(r, 0) = u(r, \alpha) = 0$. $\mu_n =$ ^{$\frac{0}{n}$} $\frac{(2n-1)\pi}{2\alpha}$, $\Theta_n = \cos\left(\frac{0}{n}\right)$ $\varphi_n = \frac{(2n-1)n}{2\alpha}, \Theta_n = \cos\left(\frac{(2n-1)n}{2\alpha}\theta\right).$
- General solution: $u(r, \theta) = A_0 + \alpha_0 \ln r + \sum_{1}^{\infty} (A_n r^{\mu_n} + \alpha_n r^{-\mu_n}) \cos \mu_n \theta + \sum_{1}^{\infty} (B_n r^{\mu_n} + \beta_n r^{-\mu_n}) \sin \mu_n \theta$

Dirichlet problem e.g.

Model problem for a crack: $u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}$ r^{n} r • Model problem for a crack: $u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0$, $u(r, 0) = 0$, $u_{\theta}(r, \pi) = 0$, $u(a, \theta) = f(\theta)$.

- Mixed boundary, so $\mu_n = \frac{1}{n}$ $\frac{(2n-1)\pi}{2\pi} = \frac{2}{n}$ $\frac{2n-1}{2}$, $\Theta_n(\theta) = \sin\left(\frac{2}{\theta}\right)$ \circ Mixed boundary, so $\mu_n = \frac{(2n-1)n}{2\pi} = \frac{2n-1}{2}$, $\Theta_n(\theta) = \sin\left(\frac{2n-1}{2}\theta\right)$. \circ We also need $u(r, \theta) < \infty$ as $r \to 0$, so $\beta_n = 0$.
-
- \circ $u(r, \theta) = \sum_{1}^{\infty} B_n r^{\mu_n} \sin(\mu_n \theta).$
- Plug in the initial condition, $f(\theta) = u(a, \theta) = \sum_{1}^{\infty} B_n a^{\mu}$ ○ Plug in the initial condition, $f(\theta) = u(a, \theta) = \sum_{1}^{\infty} B_n a^{\mu_n} \sin(\mu_n \theta) = \sum_{1}^{\infty} b_n^f \sin(\mu_n \theta)$. Then $B_na^{\mu_n}=b_n^f=\frac{2}{\pi}$ **Figure 1** Then $B_n a^{\mu_n} = b'_n = \frac{2}{\pi} \int_0^{\pi} f(\theta) \sin(\mu_n \theta) d\theta$.
- $u(r, \theta) = \sum_{1}^{\infty} b_n^f \left(\frac{r}{a}\right)$ $u(r,\theta) = \sum_{n=1}^{\infty} b_n^f \left(\frac{r}{a}\right)^{\mu_n} \sin(\mu_n \theta).$
- Note: $u_r \sim \frac{b_1^f}{2a_1^f}$ $\frac{b_1^f}{2a^{1/2}}r^{-\frac{1}{2}}$ ○ Note: $u_r \sim \frac{b_1^f}{2a^{1/2}} r^{-\frac{1}{2}} \sin \frac{\theta}{2}$, the $\frac{b_1^f}{2a^{1/2}}$ is the stress intensity factor.

Dirichlet problem for a circle: $u_{rr} + \frac{1}{r}$ $\frac{1}{r}u_r + \frac{1}{r^2}$ • Dirichlet problem for a circle: $u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0$, $u(a, \theta) = f(\theta)$, periodic boundary condition.

- \circ $\mu_n \in \{0\} \cup \{n\}, \Theta_n \in \{1\} \cup \{\cos n\theta, \sin n\theta\}.$
- \circ However, we require $u(r, \theta) < \infty$ as $r \to 0$, so $\alpha_0 = \alpha_n = \beta_n = 0$.
- \circ So $u(r, \theta) = A_0 + \sum_{1}^{\infty} A_n r^n \cos n\theta + B_n r^n \sin n\theta.$
- $f(\theta) = u(a, \theta) = A_0 + \sum_1^{\infty} A_n a^n \cos n\theta + B_n a^n s$ a_0^f \circ $f(\theta) = u(a, \theta) = A_0 + \sum_{1}^{\infty} A_n a^n \cos n\theta + B_n a^n \sin n\theta = \frac{a_0'}{2} + \sum_{1}^{\infty} a_n^f \cos n\theta + b_n^f \sin n\theta.$
	- $A_0 = \frac{a_0^f}{a}$ $\frac{a_0'}{2}$, where $a_0^f = \frac{1}{\pi}$ ■ $A_0 = \frac{a_0}{2}$, where $a_0' = \frac{1}{\pi} \int_{\pi}^{\pi} f(\theta) d\theta$.
	- $A_na^n = a_n^f = \frac{1}{\pi} \int_{\pi}^{-\pi} f(\theta) \cos n\theta \, d\theta$. π
	- $B_n a^n = b_n^f = \frac{1}{\pi}$ • $B_n a^n = b'_n = \frac{1}{\pi} \int_{\pi}^{-n} f(\theta) \sin n\theta \, d\theta$.

 \circ Finally, $u(r, \theta) = \frac{a_0^f}{2} + \sum_1^{\infty} a_n^f \left(\frac{r}{a}\right)^n \cos n\theta + b_n^f \left(\frac{r}{a}\right)^n \sin n\theta.$ $\frac{1}{2}$ $\frac{1}{2}$

It can be written as $\frac{1}{2\pi} \int_{-\pi}^{\pi} f(\phi) \frac{a^2-r^2}{a^2-2ar\cos(\theta)}$ ■ It can be written as $\frac{1}{2\pi}\int_{-\pi}^{\pi} f(\phi) \frac{a}{a^2-2ar\cos(\theta-\phi)+r^2}d\phi$ (Poisson formula).

Neumann problem on a circle

- $\Delta u = u_{rr} + \frac{1}{r}$ $\frac{1}{r}u_r + \frac{1}{r^2}$ • $\Delta u = u_{rr} + \frac{1}{r} u_r + \frac{1}{r^2} u_{\theta\theta} = 0, u_r(a, \theta) = f(\theta).$
- Need $u < \infty$ as $r \to 0$. So we must have $u(r, \theta) = A_0 + \sum_1^{\infty} A_n r^{\mu_n} \cos \mu_n \theta + B_n r^{\mu_n} \sin \mu_n \theta$.
- Solvability condition: $\int_{-\pi}^{\pi} f(\theta) d\theta = 0$.
- Periodic boundary condition gives $\mu_n \in \{0\} \cup \{n\}$, $\Theta_n \in \{1\} \cup \{\cos n\theta$, $\sin n\theta\}$. Then $u(r, \theta) = A_0 + \sum_{1}^{\infty} A_n r^n \cos n\theta + B_n r^n \sin n\theta$.
- $u_r(r,\theta) = \sum_{1}^{\infty} A_n nr^{n-1} \cos n\theta + B_n nr^{n-1} \sin n\theta = f(\theta).$ \circ $a_0^f = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) d\theta = 0.$ π $a_n^f = \frac{1}{x}$ \circ $a_n^f = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \cos n\theta \, d\theta = A_n n a^{n-1}.$

$$
\circ \quad b_n^f = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \sin n\theta \, d\theta = B_n n a^{n-1}.
$$
\n
$$
\bullet \quad \text{So } u(r, \theta) = A_0 + a \sum_{n=1}^{\infty} \frac{a_n^f}{n} \left(\frac{r}{a}\right)^n \cos n\theta + \frac{b_n^f}{n} \left(\frac{r}{a}\right)^n \sin n\theta.
$$

Application to electrical impedance tomography

- $f(\theta) = u_r(a, \theta) = I\left(\delta\left(\theta \frac{\pi}{2}\right)\right)$ $\frac{\pi}{2}$) – $\delta\left(\theta+\frac{\pi}{2}\right)$ • $f(\theta) = u_r(a, \theta) = I\left(\delta\left(\theta - \frac{\pi}{2}\right) - \delta\left(\theta + \frac{\pi}{2}\right)\right)$, where *I* is the current.
- Since $f(\theta) = f(-\theta)$, f is odd, $a_n = 0$.

•
$$
b_n^f = \frac{1}{\pi} \int_{-\pi}^{\pi} \left(\delta \left(\theta - \frac{\pi}{2} \right) - \delta \left(\theta + \frac{\pi}{2} \right) \right) \sin(n\theta) d\theta = \frac{1}{\pi} \left(\sin \left(\frac{n\pi}{2} \right) - \sin \left(-\frac{n\pi}{2} \right) \right) = \frac{2I}{\pi} \sin \left(\frac{n\pi}{2} \right).
$$

\n• $u(r, \theta) = A_0 + \frac{2Ia}{\pi} \sum_{1}^{\infty} r^n \frac{\sin \left(\frac{n\pi}{2} \right)}{n} \sin n\theta = A_0 + \frac{aI}{2\pi} \ln \frac{a^2 + 2ar \sin \theta + r^2}{a^2 - 2ar \sin \theta + r^2}.$

Tunnel or hole

- $u(a, \theta) = f(\theta), r > a.$
- We need $|u| < \infty$ as $r \to \infty$, so $\alpha_0 = A_n = B_n = 0$.
- Periodic boundary condition, so $\mu_n \in \{0\} \cup \{n\}$, $\Theta_n \in \{1\} \cup \{\cos n\theta, \sin n\theta\}$.
- $u(r, \theta) = A_0 + \sum_{1}^{\infty} \alpha_n r^{-n} \cos n\theta + \beta_n r^{-n} \sin n\theta$.

\n- Then
$$
f(\theta) = u(a, \theta) = A_0 + \sum_{1}^{\infty} \alpha_n a^{-n} \cos n\theta + \beta_n a^{-n} \sin n\theta = \frac{a_0^f}{2} + \sum_{1}^{\infty} a_n^f \cos n\theta + b_n^f \sin n\theta
$$
.
\n- $\alpha_0^f = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) d\theta = 2A_0.$
\n- $\alpha_n^f = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \cos n\theta d\theta = \alpha_n a^{-n}.$
\n- $b_n^f = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \sin n\theta d\theta = \beta_n a^{-n}.$
\n- $u(r, \theta) = \frac{a_0^f}{2} + \sum_{1}^{\infty} a_n^f \left(\frac{r}{a}\right)^{-n} \cos n\theta + b_n^f \left(\frac{r}{a}\right)^{-n} \sin n\theta.$
\n

Annulus/washer

- $u(a, \theta) = f(\theta), u(b, \theta) = 0.$
- $u(r, \theta) = A_0 + \alpha_0 \ln r + \sum_{1}^{\infty} (A_n r^{\mu_n} + \alpha_n r^{-\mu_n}) \cos \mu_n \theta + \sum_{1}^{\infty} (B_n r^{\mu_n} + \beta_n r^{-\mu_n}) \sin \mu_n \theta$.
- Still have periodic boundary condition, $\mu_n \in \{0\} \cup \{n\}$, $\Theta_n \in \{1\} \cup \{\cos n\theta, \sin n\theta\}$.
- $0 = u(b, \theta) = A_0 + \alpha_0 \ln b + \sum_{1}^{\infty} (A_n b^n + \alpha_n b^{-n}) \cos n\theta + \sum_{1}^{\infty} (B_n b^n + \beta_n b^{-n}) \sin n\theta.$

$$
\circ \quad \alpha_0 = -\frac{A_0}{\ln b}.
$$

$$
\circ \ \alpha_n = -A_n b^{2n}.
$$

$$
\circ \ \beta_n = -B_n b^{2n}.
$$

•

$$
\begin{aligned}\n&\circ u(r,\theta) = A_0 \left(1 - \frac{\ln r}{\ln b} \right) + \sum_{1}^{\infty} A_n b^n \left(\left(\frac{r}{b} \right)^n - \left(\frac{r}{b} \right)^{-n} \right) \cos n\theta + \sum_{1}^{\infty} B_n b^n \left(\left(\frac{r}{b} \right)^n - \left(\frac{r}{b} \right)^{-n} \right) \sin n\theta. \\
&\quad f(\theta) = u(a,\theta) = A_0 \left(1 - \frac{\ln a}{\ln b} \right) + \sum_{1}^{\infty} A_n b^n \left(\left(\frac{a}{b} \right)^n - \left(\frac{a}{b} \right)^{-n} \right) \cos n\theta + \sum_{1}^{\infty} B_n b^n \left(\left(\frac{a}{b} \right)^n - \left(\frac{a}{b} \right)^{-n} \right) \sin n\theta.\n\end{aligned}
$$

$$
\begin{aligned}\n&\circ \quad a_0^f = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) d\theta = 2A_0 \left(1 - \frac{\ln a}{\ln b} \right). \\
&\circ \quad a_n^f = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \cos n\theta \, d\theta = A_n b^n \left(\left(\frac{a}{b} \right)^n - \left(\frac{a}{b} \right)^{-n} \right). \\
&\circ \quad b_n^f = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \sin n\theta \, d\theta = B_n b^n \left(\left(\frac{a}{b} \right)^n - \left(\frac{a}{b} \right)^{-n} \right). \\
&\bullet \quad u(r, \theta) = \frac{a_0^f \left(1 - \frac{\ln r}{\ln b} \right)}{2 \left(1 - \frac{\ln a}{\ln b} \right)} + \sum_{i=1}^{\infty} a_n^f \left(\frac{\left(\frac{r}{b} \right)^n - \left(\frac{r}{b} \right)^{-n}}{\left(\frac{a}{b} \right)^n - \left(\frac{a}{b} \right)^{-n}} \cos n\theta + \sum_{i=1}^{\infty} b_n^f \left(\frac{\left(\frac{r}{b} \right)^n - \left(\frac{r}{b} \right)^{-n}}{\left(\frac{a}{b} \right)^n - \left(\frac{a}{b} \right)^{-n}} \sin n\theta.\n\end{aligned}
$$

MATH316 Page 22

BVP, Sturm-Liouville

May 10, 2021 10:13 AM

Sturm-Liouville problem

- $Ly = -(p(x)y')' + q(x)y = \lambda r(x)y, \alpha_1 y(0) + \alpha_2 y'(0) = 0, \beta_1 y(l) + \beta_2 y'(l) = 0.$ \circ $r(x)$ is the weight function.
- Regular SL problem: $p(x) > 0$, $r(x) > 0$, $l < \infty$.
- Singular SL problem: $p(x) \ge 0$, $r(x) \ge 0$, or $l = \infty$.

Sign conventions for eigenvalues SL problems

- Generally, we need $X'' + \mu^2 X = 0$.
- For SL, we have $-X'' = \lambda X$, then $\lambda = \mu^2$, we have $X'' + \lambda X = 0$. ○ And this gives the sine and cosine functions

Properties of SL problem

- Eigenvalues
	- \circ Eigenvalues λ_i are all real
	- \circ There are an infinite number of eigenvalues with $\lambda_1 < \lambda_2 < \cdots < \lambda_j < \infty$.
	- $\lambda_j > 0$ given that $\frac{\alpha_1}{\alpha_2} < 0$, $\frac{\beta}{\beta}$ $0 \quad \lambda_j > 0$ given that $\frac{a_1}{\alpha_2} < 0, \frac{\mu_1}{\beta_2} > 0, q(x) > 0.$
- Eigenfunctions
	- For each λ_i , there is an eigenfunction $\phi_i(x)$.
	- $\varphi_j(x)$ are real and can be normalized so that $\int_0^t r(x) \phi_j^2(x) dx = 1$.
	- \circ **Orthogonality** $\int_0^{\cdot} r(x) \phi_j(x) \phi_k(x) dx = 0$ for all $j \neq k$.

Lagrange's Identity: $\int_0^t vLudx - \int_0^t uLvdx = -pvu'\big|_0^v$ \int_{0}^{v} + puv'| \int_{0}^{l} $\frac{l}{0} = 0.$

Convert an arbitrary second order linear ODE to SL form

- $Ly = -P(x)y'' Q(x)y' + R(x)y = \lambda y.$
- Multiply both sides by F, $FLy = -FPy'' FQy' + FRy = \lambda Fy$.
- Consider $-(FPy')' = -FPy'' (F'P + FP')y'$, we need $FQ = F'P + FP'$.
	- This gives $\frac{dF}{dx} + \left(\frac{P'}{P}\right)$ $\frac{P'}{P} - \frac{Q}{P}$ \circ This gives $\frac{dr}{dx} + \left(\frac{F}{p} - \frac{Q}{p}\right)F = 0.$
		- $F = Ae^{-\int \left(\frac{P'}{P}\right)^2}$ $rac{P'}{P} - \frac{Q}{P}$ $\frac{\frac{S}{P}}{P}$ $\int dx$ = $Ae^{-\ln P}e^{\int \frac{Q}{P}}$ $\frac{Q}{P}dx = \frac{A}{P}$ $rac{A}{P}e^{\int \frac{Q}{P}}$ $\varphi \quad F = A e^{-J(\overline{P} - \overline{P})}$ ^{ax} = $A e^{-\ln P} e^{\int \frac{\mathbf{x}}{P} dx} = \frac{A}{R} e^{\int \frac{\mathbf{x}}{P} dx}$. (Abel's formula) This turns a general ODE to SL form.
- E.g. $Ly = x^2y'' + xy' + \lambda y = 0$, $y'(1) = 0$, $y(2) = 0$. $F(x) = \frac{1}{x^2} e^{\int \frac{x^2}{x^2}}$ $F(x) = \frac{1}{x^2} e^{\int \frac{x}{x^2} dx} = \frac{1}{x^2} e^{\ln x} = \frac{x}{x^2} = \frac{1}{x^2}.$

$$
\int_{x}^{x} (xy - x^{2})^{2} dx = \int_{x^{2}}^{x^{2}} (xy - x^{2})^{2} dx
$$

\n
$$
\int_{0}^{x^{2}} (xy - x^{2})^{2} dx = \int_{0}^{x^{2}} (xy - x^{2})^{2} dx
$$

\n
$$
\int_{0}^{x^{2}} (xy - x^{2})^{2} dx = \int_{0}^{x^{2}} (xy - x^{2})^{2} dx
$$

 \circ So $-(xy')^2 = \frac{\pi}{x}y$. Solve the Cauchy-Euler equation $y = x^r$, $y' = rx^{r-1}$, $y'' = r(r-1)x^{r-2}$.

- Then we need $r^2 + \lambda = 0$.
- $\lambda = \mu^2 > 0, r = \pm i\mu, y(x) = A \cos \mu \ln x + B \sin \mu \ln x.$
	- The IC gives $B=0$, $\mu_n=\frac{\zeta_n}{\zeta_n}$ □ The IC gives $B = 0$, $\mu_n = \frac{(2n-1)\pi}{2 \ln 2}$, $y(x) = \sum_{n=0}^{\infty} A \cos \mu_n \ln x$.
- $\lambda = 0, r = 0, y = A + B \ln x.$
	- \Box $A = 0, B = 0$, the solution is trivial.
- $\lambda = -\mu^2 < 0, r = \pm \mu, y(x) = A \cosh \mu \ln x + B \sinh \mu \ln x.$ \Box Still the trivial solution

Robin boundary conditions

- Heat loss from both boundaries
- $u_t = \alpha^2 u_{xx}, u_x(0, t) = h_1 u, u_x(l, t) = -h_2 u, h_1, h_2 \ge 0.$

• If
$$
h_2 = 0
$$
. $u_x(l, t) = 0$, flux BC.
\n• Let $u(x, t) = X(x)T(t), \frac{T'}{a^2T} = \frac{x''}{x} = \lambda = -\mu^2$.
\n• Let $u(x, t) = X(x)T(t), \frac{T'}{a^2T} = \frac{x''}{x} = \lambda = -\mu^2$.
\n• $T = Ce^{-\mu^2 \alpha^2 t}$.
\n• $X'' + \mu^2 X = 0, X'(0) = h_1 X(0), X'(l) = h_2 X(l)$.
\n• $X'(0) = B\mu = h_1 A, B = \frac{h_1 A}{\mu}$.
\n• $X = A\left(\cos \mu x + \frac{h_1}{\mu} \sin \mu x\right)$.
\n• $\left(\frac{h_1 h_2 - \mu^2}{\mu}\right) \sin \mu l + (h_1 + h_2) \cos \mu l = 0, \tan \mu l = \frac{(h_1 + h_2)\mu}{\mu^2 - h_1 h_2}$ (transcendental equation).
\n• $h_1, h_2 \neq 0$.
\n□ An infinite number of eigenvalues, as $n \rightarrow \infty, \mu_n l \rightarrow n\pi$, or $\frac{\mu_n \rightarrow \frac{n\pi}{l}}{n}$.
\n□ $\frac{X_n = A\left(\cos \mu_n x + \frac{h_1}{\mu_n} \sin \mu_n x\right)}{h_2 = 0, h_1 \neq 0}$.
\n• $h_1 \rightarrow \infty, h_2 \neq 0$.
\n• $\frac{\pi}{h_1} = \frac{\cos \mu_n (l - x)}{l}$.
\n• $\frac{X_n}{h_1 \rightarrow \infty, h_2 \neq 0}$.
\n• $\tan \mu l = \frac{(1 + \frac{h_2}{h_1})\mu}{\frac{\mu^2}{h_1 - h_2}} = -\frac{\mu}{h_2} \frac{\mu_n \rightarrow \frac{(2n-1)\pi}{2l}}{2l}$.
\n□ $\frac{X_n}{h_1 - \frac{\pi}{h_1} \lambda^2} = -\frac{\mu}{h_2} \frac{\mu_n \rightarrow \frac{(2n-1)\pi}{2l}}{2l}$.

Application of robin BC

- $u_t = \alpha^2 u_{xx}$, $u_x(l,t) = q_0$, $u_x(0,t) = h(u(0,t) u_0)$, u_0 is temperature in the room, $u(x,0) = f(x)$.
- Find $w(x)$ that matches the BC: $w(x) = Ax + B$, $q_0 = w_x = A$, $q_0 = h(w(0) u_0)$.

○
$$
A = q_0, B = \frac{q_0}{h} + u_0
$$

○ $\text{So } w(x) = q_0 \left(x + \frac{1}{h}\right) + u_0.$

- Let $u(x, t) = w(x) + v(x, t)$, then $v_t = \alpha^2 v_{xx}$, $v_x(0, t) = hv(0, t)$, $v_x(l, t) = 0$, $g(x)$.
	- \circ Need $\lambda = -\mu^2 < 0$.

$$
\circ \ \ T_n = Ce^{-\mu_n^2 \alpha^2 t}.
$$

 \circ $X_n = A \cos \mu_n x + B \sin \mu_n x$, $X'(0) = hX(0)$, $X'(l) = 0$.

\n- $$
B = \frac{hA}{\mu}, X = A \left(\cos \mu x + \frac{h}{\mu} \sin \mu x \right).
$$
\n- $$
X'(l) = 0 \text{ gives } \tan \mu_n l = \frac{h}{\mu_n}, X_n = \cos \mu_n (l - x), \mu_n \to \frac{n\pi}{l}.
$$
\n

 $\frac{v(x,t)}{v(x,t)} = \sum_{n=0}^{\infty} A_n e^{-\alpha^2 \mu_n^2 t} \cos \mu_n (l-x)$
 \approx Match IC $a(x) = v(x, 0) - \sum_{n=0}^{\infty} A_n \cos \mu_n$

$$
\circ \quad \text{Match IC, } g(x) = v(x, 0) = \sum_{n=0}^{\infty} A_n \cos \mu_n (1-x).
$$

$$
\int_0^l g(x) \cos \mu_m (l - x) dx = \sum_0^{\infty} A_n \int_0^l \cos \mu_m (l - x) \cos \mu_n (l - x) dx.
$$

\n
$$
\Box = A_m \int_0^l \cos^2 \mu_m (l - x) dx = \frac{A_m}{2} \left(l + \frac{2 \sin \mu_m l \cos \mu_m l}{2 \mu_m} \right).
$$

\nBy the transcendental solution $\tan \mu_n l = \frac{h}{\mu_n}$, we have $\frac{1}{\mu_n} = \frac{\sin \mu_n l}{h \cos \mu_n l}$.
\n
$$
\Box \text{ Then } = \frac{A_m}{2h} (lh + \sin^2 \mu_m l).
$$

$$
\int_{2h}^{2h} \frac{(h + \sin^2 \mu_m t)}{(h + \sin^2 \mu_n t)} \int_0^l g(x) \cos \mu_n (l - x) dx
$$

$$
f(x, t) = a_2 \left(x + \frac{1}{2} \right) + u_2 + \sum_{k=1}^{\infty} a_k e^{-\alpha^2 \mu_n^2 t} \cos \mu (l - x)
$$

•
$$
u(x,t) = q_0(x + \frac{1}{h}) + u_0 + \sum_{0}^{\infty} A_n e^{-\alpha^2 \mu_n^2 t} \cos \mu_n (l - x).
$$

SL example of a variable coefficient heat equation with inhomogeneous BC

- $u_t = x^2 u_{xx} + 4x u_x$, $u(1, t) = u(2, t) = 1$, $u(x, 0) = 1 5x^{-\frac{3}{2}}$ • $u_t = x^2 u_{xx} + 4x u_x$, $u(1, t) = u(2, t) = 1$, $u(x, 0) = 1 - 5x^{-\frac{3}{2}}$.
- Let $w(x) = 1$, then it satisfies the BC.

\n- Let
$$
u(x, t) = w(x) + v(x, t)
$$
, $v_t = x^2 v_{xx} + 4x v_x$, $v(1, t) = v(2, t) = 0$, $v(x, 0) = 5x^{-\frac{3}{2}}$.
\n- Let $v(x, t) = XT$, then $\frac{T'}{T} = \frac{x^2 X''}{X} + \frac{4x X'}{X} = -\lambda$.
\n

$$
T = Ce^{-\lambda t}.
$$

\n⇒ $-(x^2X'' + 4xX') = \lambda X, X(1) = X(2) = 0.$
\n• Apply SL, let $F = \frac{e^{\int \frac{4x}{x^2} dx}}{x^2} = \frac{e^{\lambda \ln x}}{x^2} = x^2.$
\n• We have $x^2 LX = -(x^4X'' + 4x^3X') = -(x^4y')' = \lambda x^2X$.
\n \Box Weight function $r(x) = x^2$.
\n• Back to original equation $x^2X'' + 4xX' + \lambda X = 0, X(1) = X(2) = 0$.
\n \Box Let $X = x^T, r(r - 1) + 4r + \lambda = 0, r = \frac{-3 \pm \sqrt{9 - 4\lambda}}{2}.$
\n \Box When $\lambda = \frac{9}{4}, r = 0, X = x^{-\frac{3}{2}}(A + B \ln x), A = B = 0$.
\n \Box When $\lambda = \frac{9}{4}, X = x^{-\frac{3}{2}}(A \cosh \frac{\sqrt{9 - 4\lambda}}{2} \ln x + B \sinh \frac{\sqrt{9 - 4\lambda}}{2} \ln x), A = B = 0$.
\n \Box When $\lambda > \frac{9}{4}, X = x^{-\frac{3}{2}}(A \cos \frac{\sqrt{4\lambda - 9}}{2} \ln x + B \sin \frac{\sqrt{4\lambda - 9}}{2} \ln x).$
\n• $X(1) = A = 0.$
\n• $X(2) = 2^{-\frac{3}{2}}B \sin \frac{\sqrt{4\lambda - 9}}{2} \ln 2 = 0$, then $\frac{\sqrt{4\lambda - 9}}{2} \ln 2 = n\pi$.
\n \Box So $X_n = x^{-\frac{3}{2}} \sin (\frac{n\pi \ln x}{n^2}).$
\n• $v(x, t) = \sum_{n=0}^{\infty} B_n e^{-\lambda_n t} x^{-\frac{3}{2}} \sin(\mu_n \ln x), \mu_n = \frac{n\pi}{\frac{1}{2}}.$
\n• Matching IC, $-5x^{-\frac{3}{2}} = v(x, 0) = \$

• So
$$
B_m = \frac{10}{\pi} \frac{(-1)^m - 1}{m}
$$
.
\n• $u(x, t) = 1 + \frac{10}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n - 1}{n} e^{-\left(\frac{9}{4} + \left(\frac{n\pi}{\ln 2}\right)^2\right)t} x^{-\frac{3}{2}} \sin\left(\frac{n\pi}{\ln 2} \ln x\right)$.

Nonhomogeneous Sturm-Liouville problems

•
$$
Ly = -(p(x)y')' + q(x)y = \mu r(x)y + f(x).
$$

\n
$$
\circ \alpha_1 y(0) + \alpha_2 y'(0) = 0.
$$

\n
$$
\circ \beta_1 y(1) + \beta_2 y'(1) = 0.
$$

- If $\mu = \lambda$ (eigenvalues of the homogenuous S-L problem), then the equation doesn't need to have a solution for every $f(x)$. Even if it happens to have a solution, the solution is not unique
- If $\mu \neq \lambda$, then the equation has a unique solution for every $f(x)$.
- Decompose $f(x)$ and $y(x)$ in terms of the eigenfunctions of the homogeneous problem and then solve for the coefficients of the series for $y(x)$.
- E.g. $y'' + 4y = x$, $y(0) = 0$, $y'(\frac{\pi}{2})$ • E.g. $y'' + 4y = x$, $y(0) = 0$, $y'(\frac{\pi}{2}) = 0$.
	- \circ $\mu = -4.$
	- Homogeneous S-L, $\lambda_n = (2n 1)^2$, $y_n = sin((2n 1)x)$.
	- o Let $f(x) = x = \sum_{1}^{\infty} b_n \sin((2n-1)x), y(x) = \sum_{1}^{\infty} d_n \sin((2n-1)x)$.
	- \circ Plug in the equation and solve for b_n , d_n .