Introduction to Probability

January 11, 2021 8:49 AM

Permutations and combinations

e The number of ways to choose k objects fromnisn(n — 1) ... n—:'+1 = k'(:ik)' = (Z)

This is called binomial coefficient.
e Multinomial coefficient: the number of ways to place n objects in m buckets with n; objects in

. (nyMm—n n—m; —Ny—+ =Ny n!
bucket 15 () (", ) - ( o ) =
Q=TT
k ) i , i i k—i
n n
* Zk (k) = (n )
Probability

e Sample space S: set of all possible outcomes of an experiment

o Could be finite/infinite, discrete/continuous
e Event E: a subset of the sample space (E c S)
e A probability is a function that assigns to each E € S a number P(E) such that

o 0<P(E)<1

o P(S)=1

o P(E1 UE, U ) = P(El) + P(EZ) + -, if E; N E; = @ for all i, j (finite or infinite union

or sum)

e Probability space (S, E, P) where S is the sample space, E is the set of possible events and P is

a probability function

o Often (not always) S is finite and all outcomes are equally likely,
#outcomes in E

thenP(F) = —————

#outcomesin S
e Properties:

o P(E)+P(E)=P(S) =1,
= P(E€)=1- P(E)
© P(EyVE;) =P(Ey) + P(E;) — P(Es NEy)
o P(EyUE, U UE,) =S P(E) - %;P(E: 0 E) + SicjrcP(E; 0 B 0 E)
— 4+ (=D 1P(E; N E, Nn--- N E,) (Generalization to n events)

Conditional probability

e Suppose P(F) > 0, define P(E|F) = P—fg—) (conditional probability of E given that F occurs)

e Frequency interpretation: perform experiment repeatedly. Ignore all cases where F does not
occur. Report fraction where E does occur

e P(.|F)is a probability function where . is any event
* Note: by definition P(E N F) = P(E|F)P(F)

Independent events
» Definition: E and F are independent events if P(E N F) = P(E)P(F) & P(E|F) = P(E)
e More generally, Ey, E, ..., Ey, are independent if P(E;, E;,, ..., E; ) = P(E;, )P(E;,) ... P(E;))
for any subset {i4, iy, ..., i;-}
* Note: independence (P(E N F) = P(E)P(F)) is different from disjointedness (P(E N F) = 0)

Theorem: Let Fy, ..., F, be a partition of S, i.e.and F; N F; = @ forall i,j € {1, ...,n}. Let E be any
event. Then:
e P(E)=Y",P(EnF;) =3, P(E|F;)P(F;) (law of total probability)
pP(E|F;)p(F;
« P(FIE) = _(_h)_(_f)_

Y, P(E|F;)P(Fy) (Bayes theorem)
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Monty hall problem:
door 1, 2, 3, one contains a car, other two contain goats.

If we pick door #1, the probability we picked a car is %

Monty reveals door 2 or door 3, showing a goat
Assume: Monty always reveals a goat and if you pick the car at first, he reveals a goat at random
Analysis 1:

Case D1 D2 D3 P Monty Result if switch
a g g C 1/3 Open 2 win
b g c g 1/3 Open 3 win
o C g g 1/3 Open 2 or 3| lose

2
P(win by switching) = 3

Analysis 2:
We pick 1 and Monty opens 3
P(3|b)P(b) P(3|b)P(b)

P(win b itching ) = P(b|3) = =

(win by switching) = P(b13) P(3) P(3la)P(a) + P3|b)P(b) + P(3|c)P(c)

1
1 1 11 3
0-3+1-3+3-3

If 100 doors and 99 goats, P(win by switching) = %6 (except you choose first one correctly)

MATH318 Page 2



Discrete random variables

January 18, 2021 3:17 PM

Definition: a random variable (r. v.) is a function X: S - R
Notations

e Arandom variable will be capital letters X,Y, Z, ...

e Real numbers will be x,y, z

e {X = x} would be an example of an event

A random variable is discrete if it only takes values in a countable set {xl,xz,x3, } cR
e Adiscrete random variable is defined in terms of a probability mass function (p.m. f.) p
o p(a)=P(X =a)
o Iip(x;) =1
e Examples
o Bernoullir.v. (X~Ber(p)): fixp € [0,1],
thenp(1) =PX=1)=p,p(0)=PX=0)=1-p
= Common usage: given an event E, let [y = . Lif E occurs
! 0,if E does not occur

Then I is a Bernoulli r.v. with p = P(E)

Definition: Cumulative distribution function (c. d. f.) of a random variable X is Fx(a) = P(X < a)
* For Bernoullirandom variable

1

—

-p

—_t
1

Geometric random variable

e Definition: perform a sequence of trails, each successful with probability p (Bernoulli trials).
Think of 1 as success, 0 as fail.
Let X = trial number of the first success
We say X~Geom(p) (X is distributed as a geometric random variable) with

e p(i) = P(X =i) = P(i — 1 fails, then success) = (1 — p)l_lp

* Properties: Y72, p(i) =1

e No memory property: P(X >m+n|X >m) = P(X >n)

Binomial random variable

» Definition: perform n independent Bernoulli trials. Success with probability p and fail with 1 —
p
Let X = #successes = Y. Is; , we say X~Bin(n, p) with

ny -

e p()=PX =10)= (i)pl(l — p)n l, n is number of sequences with i successes and n — i
fails

e [, = 1iftrialiisa success,l;; means indicator of success at i

Poisson random variables with parameter 1 > 0
e Arises as an approximation to binomial random variable. Suppose X~Bin(n, p) with n large, p
small but A = np is fixed, X~Poisson(})

o« p()=PX =) =%e? fori=012,.5

n=i _ Al n(n-1)..(n-i+1) (1‘%)11

7)

i! nt l
(%)
n

e Comparing with binomial (P(X = i) = (?) pi(l — p)
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e Interpretations of A:
If X~Bin(n,p), then np represents the average number of successes in n trials

Expectation of a discrete random variable
» Def: for a discrete random variable X taking values {x, x,, x5, ...}, E(X) = Zixl-p(xi) =
ZixiP(X = x;)
e Examples
X~Ber(p),E(X)=p
X~Bin(n,p),E(X) =np
X~Geom(p),E(X)=1/p
X~Poisson(A),E(X) = L, E(X?) =1 + A2
* Suppose X is a discrete random variable with values {0,1,2,3, ...}, then E(X) = 2;°P(X > n)
e E(g(x)) = Zig(xl-)PX(xi) where Py is probability mass function of X

o O O

o

Joint distribution: X, Y have joint probability mass function p(x, y) = P({X =x}N {Y = y})
 Marginal probability mass function of X is Py(x) = P(X = x) = Z,p(x,y)
e ForYisPy(y) =2Z,p(x,y)
° Zx,yp(x'y) = z:xPX(x) = z:yPY(Y) =1

Sum of independent random variables
e If X,Y are independent Poisson random variables with parameters 4; and 1,
X~Poisson(A1), Y~Poisson(A,), then X + Y~Poisson(A; + 1,)
e If X~Bin(n,p) and Y~Bin(m, p) are independent, then X + Y~Bin(m + n, p)

Conditional expectation
Let X,Y be two discrete random variables

* The conditional probability mass function of X givenY =y is Px)y = P(X = x|Y = y) = Z(x(’;/))
Y

* The conditional expectation of X givenY = y is E[X|Y = y] = L, xPxy (x|y)
o E[X|Y = y] dependson' (is a function of y)
o Itisthe average value of X in the sample space {Y = y}
o Theorem: E(X) = £,Py(y)E[X|Y = y] = E(E(XIV))
o Memoryless property gives that E[X|X > x] = x + E[X]
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Continuous random variables

January 25, 2021 11:21 AM

Def: X is a continuous random variable if there exists a function f(x), x € R with f(x) > 0 Vx and
P(X €B) = [,f(x)dx,VB c R
e Interpretation of f:

o ForB = [a - g,a +§) with € small, P(X € B) = f:_?f(x)dx =~ ef(a)
2

o f(a) indicates how likely it is for X to be near a, but f(a) is not the probability of any event
o Itis possible f(a) > 1
o fis called the probability density function of X

Note: for all probability density function f, fjooof(x)dx =1

e Examples

o Uniform random variable on [c,d] X~Unif (c,d)

flx) = Ei_c for x € [c,d], 0 other wise
o Exponential random variable with 4 > 0 X~Exp(4)

de ™, x >0
J@) = { 0,x<0
= Half life of exponential random variable
X~Exp(X) with probability density function f(x) = Ae™**, T is the time such that

P(X >1) =1 ie1="E2

o No memory property gives: P(X > 27|X > 1) =P(X > 1) = %
O PX>s+t)=PX>s)P(X>1)
o Normal (Gaussian) random variable X~N(u, 62)
= uisthe mean value, a? is the variance

1 (x=p)?

f(X)—T_—O-—e a2

o f_oof(x)dx =1

v

/AA*U- /’\ f,.r
= Standard normal (X~N(0,1))hasy=0ando =1
= Scaling property: if X~N(u,02) and Y = X—;E, thenY~N(0,1)

» E(X)=pu, E(X?) = u? + o2
If X~N(u,0%),and Y = aX + b, then Y~(auy + b,a%c?)

1 d
-

Cumulative distribution function: F(a) = P(X < a) = P(X € (—,a]) = f_aoof(x)dx
s Fl(@)=f(a)
e Example
o Exponential random variable, fora > 0,P(X = a) = e
F@=PX<a)=1-e
* |t has the memoryless property (P(X > s + t|x >s) = P(X > t))
2

-la

o Gaussian random variable ®(x) = P(X < x) = f wT_—.e z_dz
e Given fx(x), knownY = X2, we can get the CDFof Yby P(Y < y) = P(X? < y) = P(|X| < \/37)
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Cauchy distribution (X~Cauchy):

e Density of X = tan 8 where 8~Unif (—%,g)
* Probability density function is f(x) = 11

T1+x2

Expectation
e Def: expectation for a continuous random variable X with probability density function f is

EX) = [7 xf(x)dx
¢ |t may not be the median which halves the mass
e Examples
a+b

o X~Unif(a,b), E(X) = —
o X~Exp(A), E(X) =%
o On average, event occurs at time %, so rate of occurrence is A per unit time
o E(X*|x >1)=E((X + 1)?).
o X~N(u0%),EXX) = u
o X~Cauchy, E(X) is undefined, it has a median but not a mean
* Suppose X is a continuous random variable with probability density function f (f(x) = 0V x < 0).
Then E(X) = fom P(X > x)dx
* Law of the unconscious statistician: for a continuous random variable X and function g: R — R, then
E(g(x)) = ffooof(x)g(x)dx is the probability density function of X
e Linearity: E(aX + b) = fjooo(ax +b)f(x)dx =aEX)+ b

Moments
. foo x"f(x)dx,if continuous
e nthmomentsof Xis E(X™) ={"~%
2ix'p(x;), if discrete

e Often write mean u = E(x)
« Variance 92 = Var(X) = E ((X - E(X))Z) = E(x?) - (E(0)"

o X~Bin(n,p),Var(X) =np(1 —p)

o X~Poisson(1),Var(X) =1

o X~Exp(A), Var(X) =

o X~N(u,c?),Var(X) = o2

o X~Unif(a,b),Var(X) = (1121)3
o Var(cX) = c*Var(X),Var(c + X) = Var(X)
o If X andY are independent, then Var(X +Y) = Var(X) + Var(Y)

o Generally, Var(X +Y) = Var(X) + Var(Y) + 2Cov(X,Y)
¢ Standard deviation ¢ = \/WLT(X_)

o Measures the width of the distribution

If X, Y are jointly continuous with probability density function f(x, y)

« P(X,V)EC) =fff(x,y)dxdy
c
e Normalization: [~ [ f(x,y)dxdy =1
e Often C = A X Bisregular, then P(X € A,Y € B) = [ [, f(x,y)dxdy
e Marginal probability density function of X is

PX€A) =PXEAYER) = [T [, f(xy)dxdy, fx(x) = [ f(xy)dy
e Marginal probability density function of Y is

P(YEB)=PXERYEB)=[ [ f(xy)dxdy, fy(y) = [ f(x,y)dx

fjooo fjooo f(x,y)g(x, y)dxdy,if continuous

2D law of unconscious statistician E (g(x, y)) =
Zyyg (%, Y)p(X, }’), if discrete
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e EX+Y)=EX)+E®)

Independent random variables

e Def: X and Y are independentif PUX < a}n{Y <b}) =P{X < a})P{Y < b})fora,b €R
o i.e.{X <a}and{Y < b} are independent
o Cumulative distribution function: Fyy(a, b) = Fx(a)Fy(b)V a, b
o Probability mass function p(x, y) = px(x)py(y) for discrete, f(x,y) = fx(x)fy (y) for

continuous
e If X,Y are independent random variables, then E(XY) = E(X)E(Y)
* IfX,Y areindependent, Z = max(X, Y), then F,(a) = P(max(X,Y) < a) = F.(a)F,(a)

* Known fx(x) and leX(ylx)r then fyy (x,y) = fY|X(}’|x)fX(x)

Problem 5

Suppose that the number of customers visiting a fast food restaurant in a given day is
NmPoisson(/\). Assume that each customer purchases a drink with probability p,
independently from other customers, and independently from the value of IN. Let X be the
number of customers who purchase drinks. Let Y be the number of customers that do not
purchase drinks; so X +Y = N.

a. Find the marginal PMFs of X and Y.
b. Find the joint PMF of X and Y.

c. Are X and Y independent?

d. Find E[X2Y2].

Solution
a. First note that Ry = Ry = {0,1,2,...}. Also, given N = n, X is a sum of n independent

Bernoulli(p) random variables. Thus, given N = n, X has a binomial distribution with
parameters n and p, so

X|N=n ~ Binomial(n,p),
YIN=n ~ Binomial(n,q=1-p).

We have
Px(k) = 3 P(X = kIN = n)Py(n) (D@ Tl )

n=>0
oo /\If.

:Z( ) Fa" Fexp( /\)—l
n=*k n

_ i pg" Fexp(—A)A"
= M(n —k)!

B F‘Tp E oo /\q n k

- ng (n—k)!
p(—A)(Ap)k

- MCM)(AQ) (Taylor series for e”)

Covariance

e Def: the covariance of X,Y is Cov(X,Y) = E ((X — E(X))(Y — E(Y))) = ZP(x, y)(x — E(X)) (y -

E(»))
o Note: Cov(X,X) =Var(X)
o Formula: Cov(X,Y) = E(XY) — E(Y)E(X) = X xyP(x,y) — ECOE(Y)
o And Cov(aX,bY) = abCov(X,Y)

e If X and Y are independent, then Cov(X,Y) = 0. The opposite is not true

e |Interpretation:
o If Cov(X,Y) > 0, X, Y tend to be large together or small together
o If Cov(X,Y) < 0, Xtends to be large when Y is small
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Cov(X,Y)

JVar(X)var(Y)
o Cauchy Schwartz inequality: |E(XY)|? < E(X?)E(Y?)

o The Cauchy Schwartz inequality gives that |p(X, Y)| <1

 Correlation coefficient: p(X,Y) =

Sum of independent variables
e If X,Y are continuous and independent, then Fy,y(a) = P(X +Y < a) = ff;ySafx(x)fy(y)dxdy
Then, Fyy(@) = [~ Fx(a —y)fr(v)dy
Differentiating both sides with respect to a gives: fy.y(a) = f_oooo fX(a = y)fy(y)dy

* Density of the sum is the convolution of the densities
e IfX;~Exp(), then fx +x,(x) = N2xe

o More generally, fx i..4x, (x) = B v
0,x<0
o This is called the Gamma(n, 1) random variable, with E(X) = % Var(X) = ;—2

Continuous time stochastic process
e Poisson process
o Fort = 0, let N; be the number of jobs completed by time ¢, N; is called the Poisson process

3 s
M LT o——0
O
| —
o\ _ 4— t
%X LE ' X3
o P(Ny=n)=P(X;+.4+X, < t) = =B o=t 4 p(N, > n— 1), E(N,) = At
(n—-1)!

o SoP(N, =m) = (—/17:1—)!726_/“ , Ne~Poisson(At), fs, (s) = Ae™*s (—('1:—2%1

o E(Sn) = % is the expected time of n-th event S,,~Gamma (n, 1), Var(Sn) = ;—2

o E(N;) =Var(N,) = At is the number of events completed by time ¢

o S, >tisequivalenttoN; <n
o Given two Poisson process with parameter 14, 1,

o The probability of observing event 1 first is ]
A1+2,

o Noarrival in t means P(S; > t) = e, S, ~Exp(A).

Conditional expectation
e If X,Y are jointly continuous random variables, then the conditional probability density function of X

. . f&y)
givenY =yis fyy = 0

e The conditional expectation of X givenY = yis E[X|Y = y] = f_oooo fo|Y(x|y)dx

® Properties:
o Linearity: E[aX|Y =y]| = aE[X|Y = y| E[X1 + X,|Y = y] = E[X,|Y = y] + E[X2|Y = ¥]
o Monotonicity: if X; < X,, then E[X1|Y = y] < E[X,|Y =]

e PXIX>1)= FJ(%J;)T)' Memoryless property gives that E[X|X > x] = x + E[X]

e IfX,Y independent, fxy = fx

IfY = g(X), then, Fy(y) = Fx (g_l(y)), fr() = ’j_g)%%)
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Example 5.25
Let X and Y be two independent Uniform(0,1) random variables. Find P(X® +Y > 1).

Solution

Using the law of total probability (Equation 5.16), we can write
P(XP+Y > 1) = fxp{)ﬁ +Y > UX = ) fx(2) da
=f01p($3+1f> 11X = z) de
P(Y > 11—z dx (since X and Y are independent)

(since Y ~ Uni form(0,1))

I
e
-
8
-
&
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Characteristic functions

February 5, 2021 1:45 PM

Moment generating functions
' _ _ _ e Te*p(x), X discrete
¢ Def: the moment generating function of a random variable X is M(t) = E(e"*) = f_oooo et f(x)dx, X continuous
o Note that E(e%¥) = [ e®* e *dx if X~Exp(2)
¢ Special cases
o X discrete with valuesin (0,1,2 ...), then M(t) = Zgo(et)np(n) (let z = e, we have z transform)
o X continuous with f(x) = 0 forx < 0, then M(t) = fom e f(x)dx (let t = —s, we have Laplace transform)

M(t) = E(X™) is the nth moment of X
0

dn
e Note: —
dtn

- k
o Can also Taylor expand ef, and find the coefficient of %
e If X,Y are independent, then My, y(t) = My (t)My(t)
o The Laplace transform of convolution=product of Laplace transform
(fo e_sfo+Y(x)dx = fo e_sfo(x)dx fo e_sny(Y)dY)
e M(t) may not always exist
o X~Exp(1) has M(t) = fooo eXe Mgy = I%E’ is infinite fort > 4

0'252
o X~N(u,0), My(s) = e*** 2
o X~Poisson(1), My(s) = e*e°-1)

Characteristic functions
Telp(x), X discrete
JZ e®*f(x)dx, X continuous
o If vector values, we have txtobet - x
e Properties
o ¢(t) always exists,
o Always ¢(0) =1
o If X,Y independent, px.y(t) = Px(t)dy (L)
= Fourier transform of convolution=product of Fourier transform

o IfY = aX + b, then ¢y (t) = Paxp(t) = e Py (at)
e Example

o If X~Exp(d), px(t) = [, e'*Ae~*dx =

e Def:¢p(t) = M(it) = E(eit") = is the characteristic function

o) <1

A
A-it
A

» If X;~Exp(Q), S, = X, then s (1) = (A—_i—t)n,d)gnﬂ(t) = ¢s, (2)

t2

o X~N(0,1), px(t) = ez
a?t2

o Y"’N(/J, 0.2)’ ¢Y(t) = eit#e__z
o Constant random variable X = ¢ € R, ¢y (t) = e't¢

¢ Note: ¢(t) contains all info about distribution of X, :—tﬁ o) =i"EQX™).
t=0

Il
-~
PNy
i
3|&
~~
=
aQ
>|E

o S0 E(X™) == ¢™(0)
¢ Inversion theorem: If X is a continuous random variable with probability density function f,
then f(x) = % f_oooo e~ ¢(t)dt at every x for which f exists

+ —_
o For X~Exp(A), f'is discontinuous at 0, so inverse FT at 0 is L)+ );f(i)—)

Convergence of random variables
» Convergence in distribution: let Y;, ¥, be random variables with CDFs Fy,, Fy,, ... We say ¥, — Y for some random
variable Y with CDF Fy if lim,,_,o, Fy, (x) = Fy(x) for each x where Fy (x) is continuous
¢ Continuous theorem: let X1, X5, ... be random variables with CDFs F;, F5,... and characteristic functions ¢, ¢, ...
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If , = F, then ¢, (t) = ¢(t)
If ¢, (t) = @(t) exists Vt € R with ¢ continuous at 0, then ¢ is the characteristic function of some random
variable X and F, » F,ie. X;, > X

o Uniform random variable does not converge (¢ (t) is discontinuous at 0)

O Exponential random variable convergesto Y = %,
and Fy (b) — Fy, (a) = P(a <Y, < b) > Fy(b) — Fy(a) = P(a <Y < b)
¢ Weak law of large numbers: let X;, X5, ... be independent and identically distributed. Assume u = E(X) < o (not
Cauchy). Let S, = X7 + -+ X,,, then %” - u
¢ Strong law of large number: P (limn_,Oo S;" = u) =1
¢ Central limiting theorem (convergence to a random variable that is not constant)
o Let X; be independent and identically distributed with E(X;) < o and Var(X;) = 0% < . Let S,, = X; +

Sp—n
-+ X,. Then, Zﬁ” - N(0,1)
Sp—nu

N R
. |,e.11mn_,ooP<a< e < b) _Efa e 2dx
Note: distribution of X; is arbitrary, as long as y, 0 < o
o Thisimplies that S,, = nu + ov/nZ
.1 o
l.e. ESn = U +—nZ

N
o Interpretation: the typical fluctuation of S,, — nu is roughly ovn
. X—n@m_
O It can be viewed as Tavarcd
= For binomial distribution, ——£— — N(0,1)
np(1-p)
. n+0.5-nu
n = > = >
For discrete casesP(X >n) =P(X =>n+0.5) =P <Z > mﬂ(){))

o P@a<x<b)=P@—-05<x<b+0.5).

E(X)

Markov's inequality: P(X = a) < 0

Chebyshev's inequality: P(|X — u| = k) < %;
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Statistical estimation, hypothesis testing

February 26, 2021 2:57 PM

Statistical estimation
¢ Given samples from some distribution P; depending on an unknown parameter A, recover 4
from samples X3, ... X,
¢ Def: an estimator is a function of data
o Sample mean: X = %Z?lei
Sample variance: s* = n—iz PN (Xl- - )_()2
2

o

* n — 1 makes s? unbiased estimation for 62 E(s?) = o2
X is an unbiased estimate of u, E(X) = E(X;)
0.2

X has lower variance, Var(X) = % Var(Zh,X;) = -

O

o

Distribution of X is more narrowly centered around y as n increases
= Consistent with law of large numbers and central limiting theorem

X~ R

o

Hypothesis testing
e Consider a hypothesis H generating data, we want to know if the data is consistent with the
hypothesis
e We check P(observation or less | H) (P(observation|H) = 0 in most cases)

;M'/ 77

n
h W
¢ reject the hypothesis when it is outside the 95% Cl
= Note: the interval shrinks whenn — o

77

Confidence interval
o Assume X;~N(u, c?), independent and identically distributed, a2 known and u not known
e Law of large number says

o X=uyu,
= 1 . a?
o X—u= ;Z(Xi — ) has variance -
X—p N(0,1)
o — -
o/\n ’

o P(]Z] < 1.96) ~ 0.95.
(e

. T3 g . o
e ThismeansthatX € |u — 1.967%,/1 + 1.9675 with probability 95%
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o e u€ [)_(— 1.965%,

o Thisis the 95% confidence interval for u

< g . T
X +1.96 ﬁ] with probability 95%

|XU”| a) 2p (2> %) = 0.05
o X is the sample mean, u is the hypothesis mean, we want to find a first, by distribution
of X, reject the hypothesis when it is outside the 95% Cl
= Note: the interval shrinks when n — o

e We usually reject if P (|X u| > a) = 2P<

o Given a, we can reject if |Y = u| > a, and we would be 95% right

= 95% sure that the hypothesis is wrong
o 0.05is the p value

o If |Y - y| < a, we conclude nothing (this happens 95% of the time under the
hypothesis)

o Can also think about in an estimation perspective (Z = —— ~N(0 1))

X — u| < 1959 holds with probability 95%
Vn
Def: a statistic is a number you compute to determine a hypothesis test

Now suppose ,u, a2 both unknown, let X;, ... X,~N(u, 02) with sample mean X and sample variance

s2.ThenT = /\r- has a student-t distribution with n — 1 degree of freedom

e ThismeansthatT = 7f~t(n — 1), we want to find a € R such that P(|T| > a) = 0.05, and

rejectif [T| > a

e Tofindthe95% Cl, 0.95 = P <|ii| < a), so the interval is 4 € [X — a—S.,X a2
s/n Vn Vn
One-sided 75% 80%  85% | 90% 95% 97.5% 99% 99.5% 89.75%  99.9% 99.95%
Two-sided 50% 60% | 70%  80% 90% 98% | 99%  99.5% |99.8% 99.9%
1 1.000 1.376  1.963  3.078 6314 1271 | 31.82 6366 1273 3183 6366
2 0.816 1.080  1.386  1.886 2920 4303 |6.965 9925 14.09 2233 3160
h,l.‘! 0.765 0078 1.250 | 1.638 2353 mélﬁai‘l 5.841 7453 10.21 1292
4 0.741 0941 | 1190 | 1.533 2132 2776 | 3.747 | 4604 5598 7173 8610
5 0.727 0920 1156 | 1.476 2015 2571 |3.365 | 4.032 4773 5893  6.869
6 0.718 0906 1134 | 1440  1.943 2447 | 3.143 3707 4317 5208 5959
* 7 0711 0896 | 1.119 | 1.415 1.895 2365 | 29958 3499 4029 4.785 5408
8 0.706 0889|1108 |1.397 1.860 2306 | 2.896 3.355 3.833 4501 5041
9 0.703 0.883|1.100|1.383 1.833 2262 | 2.821 3250 3690 4297 4781
10 0.700 0879|1093 |1.372 1.812 2228 | 27684 3.169 3.581 4.144 4587
1 0.697 0876|1088 |1.363 1.796 2201 | 2718 3106 3497 4.025 4437
12 0.695 0873|1083 |1.356 1.782 2179 | 2681 3.055 3428 3.930 4318
13 0.694 0870|1079 |1.350 1.771 2160 | 2650 3.012 3372 3.852 4221
14 0.692 0868 | 1076 |1.345 1.761 2145 | 2624 2977 3326 3.787 4140
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Random Walks & Markov chains

January 18, 2021 3:17 PM

Example: Gambler's Ruin
e Gambler has k dollars and bank has b dollars. Play fair game betting $1, until one goes broke
o Letq(k) = P(reach N before 0 starting at k)

1
= EP(WiTllWiTl 1st game) + E‘P(Winllose 1st game)

= %(q(k +1D+qk—1)
e This gives P(win) = %and P(lose) =1— %
* [f unfair with probability p for win, we will have q(k) = pq(k + 1) + (1 — p)q(k — 1)
o This gives q(k) = g—;:—i, where a = l;—p

- 1 .
o It satisfies the 2 probability case

Simple random walks on Z? (points in d-dimensional space with integer components)
* Lete; be unit vectorsin Z.%, walk take steps X; with probability mass vector P(X; = ej) =

1
PX; = —ej) =
e Determine u = P(walk will return to origin) = P(3n such that S,, = 0), let M be the
number of visits to 0 (counting Sy = 0)

o P(return twice|return once) = P(return once)

P(M = k) = u*"Y(1 —u), E(M) = —

M isrecurrentifu = 1, E(M) = oo (always come back), transientifu < 1, E(M) < o
1

To find u, we need to find E(M), sinceu =1 — ——
E(M)

= E(M)=2X (27;1) p”(l - p)n. It converges if 4p(1 — p) < 1, using Stirling
formula, this givesp # 1/2

O

O

o

Characteristic functions for vector functions
e ForX € RY t € RY, p(t) = E(e!<t*>)
* Character function of S, = ¢, (k) = E(e'<kSn>) = E(ei<kXat+Xn>)
= ¢1(k) ... pp (k) = P(ky, k3, ..., k)

n
* GivenP(X; =¢j) = %, we have ¢, (k) = %Zﬁzl cos k;j, and ¢, (k) = GZ;{:I cos kj)
1

d , d
o ThenP(Sy=b)=(5-) [ du(®ePdt; ..dty, EM) =(5-) |
o Ifd=1, ¢(t) =cost, E(M) = oo, reccurent

dtq..dtg
1-¢1(1)

oo,n<?2
< oo, else

o Ingeneral, f1_¢_(6 = {
—P1

Theorem: random walk in Z¢ is recurrent for d = 1,2, transient for d > 2
e Adrunk person will eventually walk home

e Adrunk bird will not. In Z3, P(returnto 0) = 1 — %/1 = 0.34

Stochastic process:
* A stochastic process is a sequence of random variables X, X4,...,.X,,
* Transition probabilities (one step): P;j = P(Xp41 = j|X, = i) (can depend on n)

Markov chains
e A Markov chain is a sequence of random variables X, X3, ... such that
0 Py =PXps1 =jlXy = 1) = P(Xps1 = jlXn = i, Xp_1 =i — 1,..,Xo = ig)
o Markov property: condition on X, = i is the same as condition on X3, ..., X,
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o Assumption: P;; does not depend onn

State space={possible values for X}
Poo Po1  Poz
The transition matrix of a Markov chain is P = (Pij), = Pro Pur Pra
l’]

o The rows always sum to 1 (stochastic matrix)
N-step transition probability

o Pl =P(X, =j|Xg=1) = P(Xe1n = j|X; = i) foranyt

= P = (Pij)ij and P" = (Pi’]‘-)ij are both matrices

o Chapman-Kolmogorov's theorem: P" is the nth power of P
Classification of states
o Astate i is called absorbing or a sink if P;; = 1
= QorNisabsorbingin Gambler's ruin
o jisaccessible from i if P{} > (0 forsomen
o State i, j are communicating if each is accessible from the other (i < j)
= Communication is an equivalent relation
O iejektheni >k
O I <> iforall states

Vel

= A Markov chain is irreducible if for all states i, j, i <> j
o Equivalently, a Markov chain is irreducible if for all i, j, 3n such that Pi’} #* 0.
o Astate i is recurrent if condition on Xy, = i, the chain returns to i with probability 1.
Otherwise, the state is transient.
» {isrecurrentif f; = 1,X,P]} = oo.
» {istransientif f; < 1, X,P/} < oo. f; is the probability of return
O Note, if we let N; be the total number of visits to state i, N; = X1y —;, M =
E[Ni|Xo = i] = Z,Pj}
o If X,, = i, by Markov property, P(3In’' > n: X,, = i|X, = i) = f;
¢ From i, we have probability of f; to return, and 1 — f; not return
o N~Geom(1—f;),M = 1_—171
» Leti <> j,theniisrecurrentif and onlyif j is recurrent (recurrent is a class
property)
= |f a state in an irreducible Markov chain is recurrent, the Markov chain is
recurrent.
o Periodicity
» Astate i has period d if d = GCD{n: P/} # 0}, i is aperiodicifd = 1
= Period of a state is also a class property
Behaviorasn — oo
o Let V™ pe the distribution for X,

o ThenV™ = P(X, = j) = ZP(X, = j|Xo = DP (X, = 1) = 2V "P}
= P"js the nth matrix power
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o Then (Vo(n)J‘G(n)) - (Vo(n)J‘G(n)) pn

o Note: for any Markov chain, 4 = 1 is always an eigen value for P, since row of P add to

1
o For every Markov chains, all eigen values have |A| < 1

2-state Markov chain

1-p p
e Suppose P =
op (q 1_q)

i ThenAl =1l,n= (p—:l_g,;f_—q),)tz =1 -Db- CI,f = (L_l)
¢« VO =m+bf, V™ = (m + bf)P" = 1 + bALf
o If|A,] < 1,then V(™ convergesto m
o 7 is the limiting distribution of V"
o m; is the asymptotic proportion of time in state i
e If|A;]=1
o p=gq=0,reducible
o p =q =1, periodic with period 2

Let T; be the return time to state i, T; = inf{n = 1: X,, = i}
e Arecurrentstatei is
o Positive recurrent if E(T;| Xy = i) <
o Null recurrentif E(T;| Xy = i) = o0
e Random walk in Z, Z? are null recurrent
e For any finite space Markov Chain, any recurrent state is positive recurrent

* Given m; the stationary distribution, the mean return time is —.

TTi

An aperiodic, positive recurrent state is called ergodic

¢ |If every state is ergodic, then the Markov chain is ergodic

* Inany irreducible ergodic Markov chain, we have 7; = limy,_,, Pi’} foranyi

. . . nmP=m
o Moreover, 1 is the unique solution to {an _ 1,7Tj _ Zinipij

 Let N;(n) =#visist to j up to time n. If the Markov Chain is irreducible and ergodic, then

Nj(n) N

o j

* If a Markov Chain is irreducible and ergodic, then 7r; = mij, where m; = E(Tj|Xy = J)

o Note: positive recurrent means m; < oo

1t is called the stationary measure or stationary distribution for the Markov chain
e V™ = 1 exponentially fast

If P(Xp, =j) = Vj, then P(Xpy1 = j) = ZP(Xpy1 = jIXn = DP (X, = i) = ZP(X,, = i)P;;
Takingn — oo, V; = XV;P;j,soV = VP

IfV(©® =g, i.e. attime 0, P(X, = i) = 7;, thenatanyn, V0 = y©@pn = 5
In this case, every X,, has the same distribution, 7 is also called the equilibrium distribution

On Z2%, there is no limit, since random walk is null-recurrent P(Xn = x) -0

If the Markov Chain is reducible, then limit and stationary distribution depends on the
communicating class

If the Markov chain is periodic, then m = 7P still has a unique solution, but Pi’} does not converge

. . 11 1
If P is doubly stochastic (rows and columns sum to 1), then T = (;,;, ...,;)
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Time reversal
e Given Markov chain (X, ..., Xy), consider the backward chain Yy, ..., Yy, given by Y; = Xy _;, Vs,
is a Markov Chain
e Given X with stationary distribution and P(X, = i) = m;
o with transition probability Q;; = Pj; X Z—’l

o Y isthe reverse or dual Markov Chain of X
* A Markov Chain is reversible if Q;; = P;; for all i, j, or equivalently, m; P;; = m;P;;
o Note: stationary, then mass out = mass in at each vertex
o Reversible, then i sends to j the same as j sends to i
* If X is an irreducible ergodic Markov Chain and for some vector u has y; P;; = pP;; (detailed
balance equation)for all i, j, and Zy; = 1, then u = m and X is reversible
o If a Markov Chain is reversible, we can find  using detailed balance
o If solved, then we can deduce m and reversibility
o If not solvable, then the Markov Chain is not reversible

Doubly stochastic Markov Chain is reversible only if p = %

A graph is a pair (V,E) where V is the set of vertices/nodes, E is the set of edges (pair of vertices)
e Simple graph: graph with no loops or double edges

Random walk on a graph G:
e State space:V

1 ..
. P = Eg(—i)',(l,j)EE
ij
0, else

, where deg (i) is the number of edges containing i.

* In any finite graph, the stationary measure wis ; = _;%(lz_), moreover, this Markov chain is

reversible
o ZX;deg(i) = 2|E|, since every edge is counted twice

Birth and death chains
e Assume arrivals at rate A, departure at rate 1

o Times of arrivals are Poisson process with rate 1

2 1
© Pppi1 =57 Prn-1= 3

e If A <1, misageometricdistribution, size of queue is Geom(4) — 1

e |f A = 1, no stationary distribution

e Every birth and death chain is reversible, but not always have a stationary distribution
o A < 1, positive recurrent
o A =1, null recurrent
o A > 1, transient

Gambler's ruin with m transient states, K absorbing states

o p=<‘g f)thenAismxm,Bismxk,Ik:kxkidentitymatrix
k

e Let P;(A) = P(A|X, = i), q; = P;(end at absorbing state a)
o qq=1,q, = 0for b # a absorbing.
o q; =3P;jq; =Py + (Aq)i (q; = P(end at a|X, = j))by Markov property after 1 step
o This gives q = (Pia)l- +A4q = (colaof B) + Aq = (L, — A)_l(col aof B).
* Let N; = #visits to j, then S;; = E;N; = E(N;|Xo = 1)
o S§S= (I —A)_l, since ]V] = ijumps(k —>]) + 1X0=jl Sl] = ZkSikij + 61]
 Let f;; = P;(hitj at least once) = P(N] * 0|X0 = i)
o ThenS;; = E:N; = Ei(Nj|N; = 0)Pi(N; = 0) + Ei(N;|N; > 0)Pi(t; > 0) = 5351,

Sij Sii—1
o Sofij = E]—], butfl-i = _S”_
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Branching process

Family tree
o Let Z, =size of generation n. Assume individual has a random number of children
independent of all others, P(k children) = p(k) given.
o Two options
= Z, > 0foralln.
= 7, = 0for someng, then Z,, = 0 forall n = ny, 0 is an absorbing state
Nuclear explosion
o Each generation of neutrons has a random size
o Each neutron has 0 or 3 children with probability p(0), p(3)
o If Z, grows very quickly, we have explosion

= Thisis possible if p(3) > g, critical mass is the size needed such that p(3) > %

o If Z, stays non-zero but small, we have reaction
Let u = E(Y), where Y =number of children of an individual, assume p(1) # 1, then
P(survival) > 0 & u > 1, P(survival) = 0 © u < 1, where survival means Z,, > 0 for all
n, extinction means Z,, = 0 forn = n,.

o fZ, =k, thenZ, =LY, E(Zp411Zn = k) = ZE(Y;) = uk

o IfZy=1,thenE(Zy) = wE(Z,) = u", sou>1E(Z,) > o
Let f(t) be the probability generating function for Y, f(t) = E(t¥) = Yo, p(n)t™.
f(1) =1,f(0) = p(0).
f' = 0 (increasing), f'(t) = Tp_ont™ 'p(n), f'(1) = .
f" = 0 (convex)
If @ = P(extinction), then a is the smallest solution of @ = f(a) in [0,1]

s fu<l,a=1.

s fu>1,a<l1.
Below each individual, we see a copy of the whole branching process

O O O O

Metropolis Markov chain:

Given some state space S and target distribution m, construct a connected graphon S
Steps of the Markov Chain

o Assume X,, = x, pick an edge e uniformly in the graph

o If e far from x, do nothing, X,, = x.

o Ife = (x,y), then jump to y with probability P = min (Z—y 1), stay at x with probability
1-—P. ’
Reversible with respect to .
In hard square model S = {0,1}", V is the number of vertices, 0 is free, 1 is occupied
o Ifo € S has o, = g, =1 for neighboring u, v, thenm, =0
o If no adjacent ones, m, = Z~1AN()
» N(o) =Y,04
" 7=Ys AN is the normalizing factor
o Regardless of Z, we always have % = AN(@)-N(o")

g

» Graphically, o connected to ¢’ if they differ at a single vertex u

* To pick the edge, pick uniformly a vertex u, ¢’ = o with u flipped

. T 1
= |f o' has 1 less particle, Z- = =
Tg A

= |f o has 1 more particle, %¢ =
g
= fA<1:
o If u full, remove particle

o If u empty, add particle with probability A
= fA>1:

o If u full, remove with probability %

o If u empty, add with probability 1
o Can get from o to the empty config and from there to any state
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o Thereis some A, such that if 1 < A., a large box is unordered, Cov(ag,, 0,,)~0 for u, v
far.If 1 > A., then get order |C0v(cru, crv)| > C, for some constant.

Ising model

Each atom has a magnetic field. If most atoms are aligned, get a magnet
Simply to 2 directions {1, —1}
If all independent N atoms, get total magnetism=0
let g, =spin of atom x, M = %,.0,, = N(O,N), |M| = +/N
e BH

Zg

If a state o = (0y) has energy H (o) (Hamiltonian), then Boltzmann distribution is Pg =

o B= s the inverse temperature, Zg is the normalizing (partition) function

o If f <1, high temperature, all ¢ equally likely

o If > 1, low temperature, low energy states more likely

© Hamiltonian: H(0) = — Y., 050y,
A ferromagnet can stay magnetic up to some temperature T. Above it, no longer a magnetic
On d-dimensional grid (d > 1), there is a critical B such that

o if > P, then M =Y o, has |M| = cN

= cisa function of 8, N is the total size
o IfB < B, |M| =VN

o In2D, B¢ = “’—g%‘ii—.

Dynamics (Glauber)
o Pick uniformly an x, pick new value for g,. Let 6*,0~ be g, changed to 1 or —1, make

. e~BH(@™) . . e e -
o, =1withP = T T (i.e. pick o, by its distribution conditioned on all
other spins). Otherwise, keep o, = —1.

If B > B¢, then mixed after O(N log N) steps
If B < B¢, then mixed after 0(eN) steps
If B < B with boundary all 1, then mixed after O(N©) steps
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