Introduction to Probability

January 11, 2021 8:49 AM

Permutations and combinations

- The number of ways to choose k objects from n is $n(n-1)$... $\frac{n}{2}$ $\frac{n-k+1}{k!} = \frac{n}{k!(n)}$ $\frac{n!}{k!(n-k)!} = \binom{n}{k}$ • The number of ways to choose k objects from n is $n(n-1) ... \frac{n(n-1)}{k!} = \frac{n!}{k!(n-k)!} = {n \choose k}.$ This is called **binomial coefficient**.
- Multinomial coefficient: the number of ways to place n objects in m buckets with n_i objects in \overline{n} \overline{n} \boldsymbol{n} \boldsymbol{n}

bucket *i* is
$$
\binom{n_1}{n_1} \binom{n_2}{n_2} \cdots \binom{n_n}{n_m}
$$

\n• $\binom{n}{k} = \binom{n-k}{i} \binom{k}{i} = \binom{n-k}{i} \binom{k}{k-i}$
\n• $\sum_k \binom{n}{k}^2 = \binom{2n}{n}$.

Probability

- Sample space S: set of all possible outcomes of an experiment ○ Could be finite/infinite, discrete/continuous
- Event $E:$ a subset of the sample space $(E \subset S)$
- A probability is a function that assigns to each $E \subset S$ a number $P(E)$ such that
	- $0 \leq P(E) \leq 1$
	- $P(S) = 1$
	- $P(E_1 \cup E_2 \cup \dots) = P(E_1) + P(E_2) + \dots$, if $E_i \cap E_j = \emptyset$ for all i, j (finite or infinite union or sum)
- Probability space (S, E, P) where S is the sample space, E is the set of possible events and P is a probability function
	- \circ Often (not always) S is finite and all outcomes are equally likely, then $P(E) = \frac{\textit{\#}}{\textit{\#}}$ $\frac{\pi}{\#}$
- Properties:
	- $P(E) + P(E^C) = P(S) = 1,$
		- \blacksquare $P(E^C)$
	- $P(E_1 \cup E_2) = P(E_1) + P(E_2) P(E_1 \cap E_2)$
	- $P(E_1 \cup E_2 \cup \cdots \cup E_n) = \sum_{i=1}^n$ $-\cdots+(-1)^{n-1}P(E_1\cap E_2\cap\cdots\cap E_n)$ (Generalization to n events)

Conditional probability

- Suppose $P(F) > 0$, define $P(E|F) = \frac{P}{E}$ • Suppose $P(F) > 0$, define $P(E|F) = \frac{P(E|F)}{P(F)}$ (conditional probability of E given that F occurs)
- Frequency interpretation: perform experiment repeatedly. Ignore all cases where F does not occur. Report fraction where E does occur
- $P(.|F)$ is a probability function where is any event
- Note: by definition $P(E \cap F) = P(E|F)P(F)$

Independent events

- Definition: E and F are independent events if $P(E \cap F) = P(E)P(F) \Leftrightarrow P(E|F) = P(E)$
- More generally, $E_1, E_2, ..., E_n$ are independent if $P(E_{i_1}, E_{i_2}, ..., E_{i_r}) = P(E_{i_1})P(E_{i_2}) ... P(E_{i_r})$ for any subset $\{i_1, i_2, ..., i_r\}$
- Note: independence $(P(E \cap F) = P(E)P(F))$ is different from disjointedness $(P(E \cap F) = 0)$

Theorem: Let $F_1, ..., F_n$ be a partition of S, i.e. and $F_i \cap F_j = \emptyset$ for all $i, j \in \{1, ..., n\}$. Let E be any event. Then:

- $P(E) = \sum_{i=1}^{n} P(E \cap F_i) = \sum_{i=1}^{n} P(E|F_i)P(F_i)$ (law of total probability)
- $P(F_i|E) = \frac{P(E|F_j)}{\sum_{i=1}^{n} P(E|E_i)}$ • $P(F_j|E) = \frac{P(T_j|F_j)P(F_j)}{\sum_{i=1}^n P(E|F_i)P(F_i)}$ (Bayes theorem)

Monty hall problem:

door 1, 2, 3, one contains a car, other two contain goats.

If we pick door #1, the probability we picked a car is $\frac{1}{3}$

Monty reveals door 2 or door 3, showing a goat

Assume: Monty always reveals a goat and if you pick the car at first, he reveals a goat at random Analysis 1:

 \overline{P} $\overline{\mathbf{c}}$ $\frac{1}{3}$

Analysis 2: We pick 1 and Monty opens 3

$$
P(\text{win by switching}) = P(b|3) = \frac{P(3|b)P(b)}{P(3)} = \frac{P(3|b)P(b)}{P(3|a)P(a) + P(3|b)P(b) + P(3|c)P(c)}
$$

$$
= \frac{1 \cdot \frac{1}{3}}{0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3} + \frac{1}{2} \cdot \frac{1}{3}} = \frac{2}{3}
$$

If 100 doors and 99 goats, $P(\text{win by switching}) = \frac{9}{16}$ $\frac{75}{100}$ (except you choose first one correctly)

Discrete random variables

January 18, 2021 3:17 PM

Definition: a random variable (r, v) is a function $X: S \to \mathbb{R}$ Notations

- A random variable will be capital letters $X, Y, Z, ...$
- Real numbers will be x, y, z
- ${X = x}$ would be an example of an event

A random variable is **discrete** if it only takes values in a countable set $\{x_1, x_2, x_3, ...\} \subset \mathbb{R}$

- A discrete random variable is defined in terms of a **probability mass function** (p. m. f.)
	- $p(a) = P(X = a)$
	- \circ $\Sigma_i p(x_i) = 1$
- Examples
	- Bernoulli r.v. $(X \sim Ber(p))$: fix $p \in [0,1]$, then $p(1) = P(X = 1) = p, p(0) = P(X = 0) = 1 - p$

Common usage: given an event E, let $I_E = \begin{cases} 1 & 1 \end{cases}$ \bullet Common usage: given an event E , let $I_E=\Big\{0\}$ Then I_F is a Bernoulli r.v. with $p = P(E)$

Definition: Cumulative distribution function $(c. d. f.)$ of a random variable X is $F_X(a) = P(X \le a)$

• For Bernoulli random variable

Geometric random variable

- Definition: perform a sequence of trails, each successful with probability p (Bernoulli trials). Think of 1 as success, 0 as fail. Let $X = trial$ number of the first success We say $X \sim Geom(p)$ (X is distributed as a geometric random variable) with
- $p(i) = P(X = i) = P(i 1 \text{ fails}, \text{then success}) = (1 p)^{i 1} p$
- Properties: $\sum_{i=1}^{\infty}$
- No memory property: $P(X > m + n | X > m) = P(X > n)$

Binomial random variable

• Definition: perform n independent Bernoulli trials. Success with probability p and fail with \boldsymbol{p}

Let $X = \#successes = \sum_{i=1}^{n} I_{si}$, we say $\overline{X \sim Bin(n,p)}$ with

- $p(i) = P(X = i) = {n \choose i}$ • $p(i) = P(X = i) = {n \choose i} p^{i} (1-p)^{n-i}$, *n* is number of sequences with *i* successes and fails
- $I_{si} = 1$ if trial i is a success, I_{si} means indicator of success at i

Poisson random variables with parameter $\lambda > 0$

• Arises as an approximation to binomial random variable. Suppose $X \sim Bin(n, p)$ with n large, small but $\lambda = np$ is fixed, $X \sim Poisson(\lambda)$

•
$$
p(i) = \frac{P(X = i)}{P(X = i)} = \frac{\lambda^{i}}{i!}e^{-\lambda}
$$
, for $i = 0, 1, 2, ...$ s

Comparing with binomial $(P(X = i) = \binom{n}{i})$ $\binom{n}{i} p^i (1-p)^{n-i} = \frac{\lambda^i}{i!}$ $\frac{\lambda^l}{i!}\cdot\frac{n}{i!}$ $\frac{n(n-1)...(n-i+1)}{n^i}\frac{\left(1-\frac{\lambda}{n}\right)}{\lambda^{i}}$ $\left(\frac{\lambda}{n}\right)^n$ $\left(1-\frac{\lambda}{n}\right)$ $\frac{n}{n}$ • Comparing with binomial $(P(X = i) = {n \choose i} p^{i} (1-p)^{n-i} = \frac{n}{i!} \cdot \frac{n(n-1)...(n-i+1)}{n!} \frac{n!}{(n-i)!}$ • Interpretations of λ : If $X \sim Bin(n, p)$, then np represents the average number of successes in n trials

Expectation of a discrete random variable

- Def: for a discrete random variable X taking values $\{x_1, x_2, x_3, ...\}$, $\Sigma_i x_i P(X = x_i)$
- Examples
	- \circ $X \sim Ber(p), E(X) = p$
	- \circ $X \sim Bin(n, p)$, $E(X) = np$
	- \circ $X \sim Geom(p)$, $E(X) = 1/p$
	- \circ $X \sim Poisson(\lambda)$, $E(X) = \lambda$, $E(X^2) = \lambda + \lambda^2$
- Suppose X is a discrete random variable with values $\{0,1,2,3,...\}$, then $\overline{E(X)} = \sum_{0}^{\infty} P$
- $E(g(x)) = \sum_i g(x_i) P_X(x_i)$ where P_X is probability mass function of X

Joint distribution: X, Y have joint probability mass function $p(x, y) = P({X = x} \cap {Y = y})$

- Marginal probability mass function of X is $P_X(x) = P(X = x) = \sum_{y} p(x, y)$
- For Y is $P_Y(y) = \sum_{x} p(x, y)$
- $\Sigma_{x,y}p(x,y) = \Sigma_x P_X(x) = \Sigma_y P_Y(y) = 1$

Sum of independent random variables

- If X, Y are independent Poisson random variables with parameters λ_1 and λ_2 , $X \sim Poisson(\lambda_1)$, $Y \sim Poisson(\lambda_2)$, then $X + Y \sim Poisson(\lambda_1 + \lambda_2)$
- If $X \sim Bin(n, p)$ and $Y \sim Bin(m, p)$ are independent, then $X + Y \sim Bin(m + n, p)$

Conditional expectation

Let X, Y be two discrete random variables

- The conditional probability mass function of X given $Y = y$ is $P_{X|Y} = P(X = x | Y = y) = \frac{P}{I}$ • The conditional probability mass function of X given $Y = y$ is $P_{X|Y} = P(X = x|Y = y) = \frac{P}{P}$
- The conditional expectation of X given $Y = y$ is
	- \circ $E[X|Y = y]$ depends on Y (is a function of y)
	- \circ It is the average value of X in the sample space $\{Y = y\}$
	- \circ Theorem: $E(X) = \sum_{v} P_{v}(y) E[X|Y = y] = E(E(X|Y))$
	- \circ Memoryless property gives that $E[X|X > x] = x + E[X]$

Continuous random variables

January 25, 2021 11:21 AM

Def: X is a continuous random variable if there exists a function $f(x)$, $x \in \mathbb{R}$ with $f(x) \geq 0$ $\forall x$ and $P(X \in B) = \int_B f(x) dx$,

- Interpretation of f :
	- For $B = \left[a \frac{\epsilon}{2}\right]$ $\frac{\epsilon}{2}$, $a + \frac{\epsilon}{2}$ $\left(\frac{\epsilon}{2}\right)$ with ϵ small, $P(X \in B) = \int_{a-\frac{\epsilon}{2}}^{a+\frac{\epsilon}{2}}$ $\frac{6}{2}$ ○ For $B = \left[a - \frac{e}{2}, a + \frac{e}{2}\right]$ with ϵ small, $P(X \in B) = \int_{a - \frac{e}{2}}^{\infty} f(x) dx \approx$
	- \circ $f(a)$ indicates how likely it is for X to be near a, but $\overline{f(a)}$ is not the probability of any event
	- \circ It is possible $f(a) > 1$
	- \circ f is called the **probability density function** of X Note: for all probability density function f , $\int_{-\infty}^{\infty} f(x) dx =$
- Examples
	- \circ Uniform random variable on $[c, d]$ $X \sim Unif(c, d)$ $\mathbf{1}$

$$
f(x) = \frac{1}{d-c}
$$
 for $x \in [c, d]$, 0 other wise

○ Exponential random variable with

$$
f(x) = \begin{cases} \lambda e^{-\lambda x}, x \ge 0\\ 0, x \le 0 \end{cases}
$$

■ Half life of exponential random variable $X \sim Exp(\lambda)$ with probability density function $f(x) = \lambda e^{-\lambda x}$, τ is the time such that

$$
P(X > \tau) = \frac{1}{2}
$$
, i.e. $\tau = \frac{\log 2}{\lambda}$

No memory property gives: $P(X > 2\tau | X > \tau) = P(X > \tau) = \frac{1}{2}$ □ No memory property gives: $P(X > 2τ|X > τ) = P(X > τ) = \frac{1}{2}$

$$
\Box P(X > s + t) = P(X > s)P(X > t)
$$

- \circ Normal (Gaussian) random variable $X \sim N(\mu, \sigma^2)$
	- \blacksquare μ is the mean value, σ^2 is the variance

$$
f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{\sigma^2}}
$$

$$
\Box \int_{-\infty}^{\infty} f(x) dx = 1
$$

$$
\frac{1}{\mu-\sigma} \sum_{\mu+\sigma}^{\frac{1}{\alpha+\sigma}}
$$

 $\sqrt{ }$

- Standard normal $(X \sim N(0,1))$ has $\mu = 0$ and $\sigma = 1$
- Scaling property: if $X \sim N(\mu, \sigma^2)$ and $Y = \frac{X}{\sigma^2}$ **Scaling property:** if $X \sim N(\mu, \sigma^2)$ and $Y = \frac{\Delta - \mu}{\sigma}$, then
- $E(X) = \mu$, $E(X^2) = \mu^2 + \sigma^2$
- If $X \sim N(\mu, \sigma^2)$, and $Y = aX + b$, then $Y \sim (a\mu_X + b, a^2\sigma^2)$

<mark>Cumulative distribution function</mark>: $F(a) = P(X \le a) = P(X \in (-\infty, a]) = \int_{-a}^{b}$

- $F'(a) = f(a)$
- Example
	- \circ Exponential random variable, for $a \geq 0$, $P(X \geq a) = e^{-a}$
		- $F(a) = P(X \le a) = 1 e^{-}$
			- It has the memoryless property $(P(X > s + t | x > s) = P(X > t))$

Gaussian random variable $\Phi(x) = P(X \leq x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}}$ $\frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}}$ ○ Gaussian random variable $\Phi(x) = P(X \leq x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$

• Given $f_X(x)$, known $Y = X^2$, we can get the CDF of Y by $P(Y \le y) = P(X^2 \le y) = P(|X| \le \sqrt{y})$

Cauchy distribution $(X \sim Cauchy)$:

- Density of $X = \tan \theta$ where $\theta \sim Unif\left(-\frac{\pi}{2}\right)$ $\frac{\pi}{2}, \frac{\pi}{2}$ • Density of $X = \tan \theta$ where $\theta \sim Unif\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
- Probability density function is $f(x) = \frac{1}{\pi}$ $\frac{1}{\pi} \frac{1}{1+i}$ • Probability density function is $f(x) = \frac{1}{\pi} \frac{1}{1+x^2}$

Expectation

- Def: expectation for a continuous random variable X with probability density function f is $E(X) = \int_{-}^{x}$
- It may not be the median which halves the mass
- Examples

$$
\circ \quad X \sim Unif(a, b), E(X) = \frac{a+b}{2}
$$

$$
\circ \ \ X \sim Exp(\lambda), \ E(X) = \frac{1}{\lambda}
$$

○ On average, event occurs at time $\frac{1}{\lambda}$, so rate of occurrence is λ per unit time

$$
\circ \ E(X^2|X>1) = E((X+1)^2).
$$

$$
\circ X \sim N(\mu, \sigma^2), E(X) = \mu
$$

- \circ X~Cauchy, $E(X)$ is undefined, it has a median but not a mean
- Suppose X is a continuous random variable with probability density function $f(f(x) = 0 \forall x \le 0)$. Then $E(X) = \int_0^{\cdot}$
- Law of the unconscious statistician: for a continuous random variable X and function $g: \mathbb{R} \to \mathbb{R}$, then $E(g(x))=\int_{-\infty}^{\infty}f(x)g(x)dx$ is the probability density function of —
- Linearity: $E(aX + b) = \int_{-\infty}^{\infty} (ax + b)f(x)dx =$

Moments

• *n*th moments of *X* is
$$
E(X^n) = \begin{cases} \int_{-\infty}^{\infty} x^n f(x) dx, \text{ if continuous} \\ \sum_i x_i^n p(x_i), \text{ if discrete} \end{cases}
$$

- Often write <mark>mean</mark>
- Variance $\sigma^2 = Var(X) = E\left(\left(X E(X)\right)^2\right) = E\left(X^2\right) \left(E(X)\right)^2$
	- \circ $X \sim Bin(n, p)$, $Var(X) = np(1-p)$
	- \circ $X \sim Poisson(\lambda)$, $Var(X) = \lambda$

$$
\circ \ \ X \sim Exp(\lambda), \ Var(X) = \frac{1}{\lambda^2}
$$

- \circ $X \sim N(\mu, \sigma^2)$, $Var(X) = \sigma^2$
- $X \sim Unif(a, b)$, $Var(X) = \frac{(b-a)^2}{12}$ \circ X~Unif(a, b), Var(X) = $\frac{0}{1}$
- \circ $Var(cX) = c^2Var(X)$,
- \circ If X and Y are independent, then Generally, $Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$
- Standard deviation $\sigma = \sqrt{V}$ ○ Measures the width of the distribution

If X, Y are jointly continuous with probability density function $f(x, y)$

- \bullet P $\mathcal C$
- Normalization: $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}$ ∞ • Normalization: $\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x,y)dxdy=$
- Often $C = A \times B$ is regular, then
- Marginal probability density function of X is $P(X \in A) = P(X \in A, Y \in \mathbb{R}) = \int_{-c}^{\infty}$ $\int_{-\infty}^{\infty} \int_{A} f(x, y) dx dy, f_X(x) = \int_{-}^{\infty}$ • Marginal probability density function of Y is
- $P(Y \in B) = P(X \in \mathbb{R}, Y \in B) = \int_B \int_{-\infty}^{\infty} f(x, y) dx dy, f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx dy$

2D law of unconscious statistician $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}$ ∞ $\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x,y)g(x,y)dxdy$, \sum

• $E(X + Y) = E(X) + E(Y)$

Independent random variables

- Def: X and Y are independent if $P(\{X \le a\} \cap \{Y \le b\}) = P(\{X \le a\})P(\{Y \le b\})$ for
	- i.e. ${X \le a}$ and ${Y \le b}$ are independent
	- Cumulative distribution function: $F_{XY}(a, b) = F_X(a)F_Y(b)$ $\forall a, b$
	- Probability mass function $p(x, y) = p_X(x)p_Y(y)$ for discrete, $f(x, y) = f_X(x)f_Y(y)$ for continuous
- If X, Y are independent random variables, then $E(XY) = E(X)E(Y)$
- If X, Y are independent, $Z = \max(X, Y)$, then $F_z(a) = P(\max(X, Y) \le a) = F_x(a)F_y(a)$
- Known $f_X(x)$ and $f_{Y|X}(y|x)$, then $f_{XY}(x,y) = f_{Y|X}(y|x)f_X(x)$

Problem 5

Suppose that the number of customers visiting a fast food restaurant in a given day is $N \sim Poisson(\lambda)$. Assume that each customer purchases a drink with probability p, independently from other customers, and independently from the value of N . Let X be the number of customers who purchase drinks. Let Y be the number of customers that do not purchase drinks; so $X + Y = N$.

- a. Find the marginal PMFs of X and Y .
- b. Find the joint PMF of X and Y .
- c. Are X and Y independent?
- d. Find $E[X^2Y^2]$.

Solution

a. First note that $R_X = R_Y = \{0, 1, 2, \dots\}$. Also, given $N = n$, X is a sum of n independent $Bernoulli(p)$ random variables. Thus, given $N = n$, X has a binomial distribution with parameters n and p , so

$$
X|N = n \sim Binomial(n, p),
$$

$$
Y|N = n \sim Binomial(n, q = 1 - p)
$$

We have

$$
P_X(k) = \sum_{n=0}^{\infty} P(X = k | N = n) P_N(n)
$$
 (law of total probability)
\n
$$
= \sum_{n=k}^{\infty} {n \choose k} p^k q^{n-k} exp(-\lambda) \frac{\lambda^n}{n!}
$$
\n
$$
= \sum_{n=k}^{\infty} \frac{p^k q^{n-k} exp(-\lambda) \lambda^n}{k! (n-k)!}
$$
\n
$$
= \frac{exp(-\lambda)(\lambda p)^k}{k!} \sum_{n=k}^{\infty} \frac{(\lambda q)^{n-k}}{(n-k)!}
$$
\n
$$
= \frac{exp(-\lambda)(\lambda p)^k}{k!} exp(\lambda q)
$$
 (Taylor series for e^x)

Covariance

• Def: the covariance of X, Y is

$E(y)$

- \circ Note: $Cov(X, X) = Var(X)$
- Formula: \circ And $Cov(aX, bY) = abCov(X, Y)$
- If X and Y are independent, then $Cov(X, Y) = 0$. The opposite is not true
- Interpretation: •
	- \circ If $Cov(X, Y) > 0$, X, Y tend to be large together or small together
	- \circ If $Cov(X, Y) < 0$, X tends to be large when Y is small
- Correlation coefficient: $\rho(X,Y) = \frac{C}{\sqrt{N\omega}}$ • Correlation coefficient: $\rho(X,Y)=\frac{1}{\sqrt{2}}$
	- **Cauchy Schwartz inequality:** $|E(XY)|^2 \leq E(X^2)E(Y^2)$
	- \circ The Cauchy Schwartz inequality gives that $|\rho(X, Y)| \leq 1$

Sum of independent variables

• If X, Y are continuous and independent, then $F_{X+Y}(a) = P(X+Y \le a) = \iint_X$ Then, $F_{X+Y}($ —

Differentiating both sides with respect to a gives: $f_{X+Y}(a) = \int_{-a}^{b}$

- Density of the sum is the **convolution of the densities**
- If $X_i \sim Exp(\lambda)$, then $f_{X_1+X_2}(x) = \lambda^2 x e^{-\lambda}$
	- More generally, $f_{X_1+\cdots+X_n}$ $\lambda^n x^{n-1}e^ \frac{\pi}{\sqrt{2}}$ $\boldsymbol{0}$ \circ
	- This is called the $\overline{Gamma(n,\lambda)}$ random variable, with $E(X) = \frac{n}{\lambda}$ $\frac{n}{\lambda}$, $Var(X) = \frac{n}{\lambda^2}$ \circ This is called the $\frac{Gamma(n,\lambda)}{n}$ random variable, with $E(X) = \frac{n}{\lambda}$, $Var(X) = \frac{n}{\lambda^2}$

Continuous time stochastic process

- <mark>Poisson process</mark>
	- For $t \geq 0$, let N_t be the number of jobs completed by time t, N_t is called the Poisson process

- $P(N_t \ge n) = P(X_1 + ... + X_n \le t) = -\frac{(\lambda t)^n}{n}$ $P(N_t \ge n) = P(X_1 + ... + X_n \le t) = -\frac{(\lambda t)^{n-1}}{(n-1)!}e^{-\lambda t} + P(N_t \ge n-1),$ \circ
	- So $P(N_t=m) = \frac{0}{s}$ $\frac{(\lambda t)^m}{m!}e^{-\lambda t}$, $N_t \sim Poisson(\lambda t)$, $f_{S_n}(s) = \lambda e^{-\lambda s} \frac{(\lambda s)^n}{(n-1)}$ $\frac{6}{10}$
		- $E(S_n) = \frac{n}{1}$ $\frac{n}{\lambda}$ is the expected time of n-th event $S_n{\sim}Gamma$ (n, λ), $Var\big(S_n\big)=\frac{n}{\lambda^2}$ \circ $E(S_n) = \frac{n}{\lambda}$ is the expected time of n-th event $S_n \sim Gamma(n, \lambda)$, $Var(S_n) = \frac{n}{\lambda^2}$
		- $E(N_t) = Var(N_t) = \lambda t$ is the number of events completed by time to
		- $S_n > t$ is equivalent to $N_t < n$
- Given two Poisson process with parameter
	- \circ The probability of <mark>observing event 1 first is $\frac{1}{\lambda}$ </mark>
- \circ No arrival in t means $P(S_1 > t) = e^{-\lambda t}$, $S_1 \sim Exp(\lambda)$.

Conditional expectation

- If X , Y are jointly continuous random variables, then the conditional probability density function of given $Y = y$ is $\frac{f_{X|Y}}{f} = \frac{f}{f}$ $\frac{1}{f}$
- The conditional expectation of X given $Y = y$ is $E[X|Y = y] = \int_{-1}^{1}$
- Properties:
	- Linearity: \circ Monotonicity: if $X_1 \leq X_2$, then
- $P(X|X > 1) = \frac{f}{R}$ • $P(X|X>1) = \frac{P(X)}{P(X>1)}$. Memoryless property gives that
- If X, Y independent, $f_{X|Y} = f_X$

If
$$
Y = g(X)
$$
, then, $F_Y(y) = F_X(g^{-1}(y))$, $f_Y(y) = \frac{f_X(x)}{g'(x)}$.

Example 5.25

Let X and Y be two independent $Uniform(0,1)$ random variables. Find $P(X^3 + Y > 1)$.

Solution

Using the law of total probability (Equation 5.16), we can write

$$
P(X3 + Y > 1) = \int_{-\infty}^{\infty} P(X3 + Y > 1 | X = x) f_X(x) dx
$$

=
$$
\int_{0}^{1} P(x3 + Y > 1 | X = x) dx
$$

=
$$
\int_{0}^{1} P(Y > 1 - x3) dx
$$
 (since X and Y are independent)
=
$$
\int_{0}^{1} x3 dx
$$

=
$$
\frac{1}{4}.
$$

Characteristic functions

February 5, 2021 1:45 PM

Moment generating functions

Def: the moment generating function of a random variable X is $M(t) = E(e^{tx}) = \int_{t}^{\infty} \frac{\Sigma e^{t}}{e^{tx}}$ $\int_{-\infty}^{\infty} e^t$ • Def: the moment generating function of a random variable X is $M(t) = E(e^{tx}) = \int_{-\infty}^{\infty} e^{tx} f(x) dx$,

$$
\circ \quad \text{Note that } E(e^{ax}) = \int e^{ax} \lambda e^{-\lambda x} dx \text{ if } X \sim Exp(\lambda)
$$

- Special cases
	- \circ X discrete with values in $(0,1,2...)$, then $M(t)=\sum_0^{\infty} (e^t)^n p(n)$ (let $z=e^t$, we have z transform)
	- X continuous with $f(x) = 0$ for $x < 0$, then $M(t) = \int_0^\infty e^t$ \circ X continuous with $f(x) = 0$ for $x < 0$, then $M(t) = \int_0^\infty e^{tx} f(x) dx$ (let $t = -s$, we have Laplace transform)
- Note: $\frac{d^n}{dt^n}$ $rac{a}{dt}$ t • Note: $\frac{d^{n}}{dt^{n}}$ $M(t) = E(X^{n})$ is the nth moment of
	- Can also Taylor expand e^t , and find the coefficient of $\frac{t^k}{\nu}$ ○ Can also Taylor expand e^t , and find the coefficient of $\frac{c}{k}$
- If X, Y are independent, then
	- The Laplace transform of convolution=product of Laplace transform
- $\int_0^{\infty} e^{-sx} f_{X+Y}(x) dx = \int_0^{\infty} e^{-x}$ $\int_0^\infty e^{-sx} f_X(x) dx \int_0^\infty e^{-x}$ $\int_{0}^{\infty} e^{-sy} f_{Y}(y) dy$ • $M(t)$ may not always exist
	- $X \sim Exp(\lambda)$ has $M(t) = \int_0^\infty e^{tx} e^{-t}$ $\int_0^\infty e^{tx} e^{-\lambda x} dx = \frac{\lambda}{\lambda - \lambda}$ \circ $X \sim Exp(\lambda)$ has $M(t) = \int_0^\infty e^{tx} e^{-\lambda x} dx = \frac{\lambda}{\lambda - s}$, is infinite for $X \sim N(\mu, \sigma)$, $M_X(s) = e^{s\mu + \frac{\sigma^2 s^2}{2}}$ \circ $X \sim N(\mu, \sigma)$, $M_X(s) = e^{s\mu + \frac{\sigma}{2}}$ \circ $X \sim Poisson(\lambda)$, $M_X(s) = e^{\lambda(e^s)}$

Characteristic functions

• Def:
$$
\phi(t) = M(it) = E(e^{itx}) = \begin{cases} \sum e^{itx} p(x), X \text{ discrete} \\ \int_{-\infty}^{\infty} e^{itx} f(x) dx, X \text{ continuous} \end{cases}
$$
 is the characteristic function

- If vector values, we have tx to be $t \cdot x$
- Properties
	- $\phi(t)$ always exists, $|\phi(t)| \leq 1$
	- \circ Always $\phi(0) = 1$
	- o If X, Y independent, $\phi_{X+Y}(t) = \phi_X(t)$
		- Fourier transform of convolution=product of Fourier transform
	- o If $Y = aX + b$, then $\phi_Y(t) = \phi_{aX+b}(t) = e^{itb}\phi$
- Example

$$
\int_{0}^{\infty} \text{If } X \sim \text{Exp}(\lambda), \phi_X(t) = \int_{0}^{\infty} e^{itx} \lambda e^{-\lambda x} dx = \frac{\lambda}{\lambda - it}
$$
\n
$$
\text{If } X_i \sim \text{Exp}(\lambda), S_n = \Sigma X_i \text{, then } \phi_{S_n}(t) = \left(\frac{\lambda}{\lambda - it}\right)^n, \phi_{S_n}(t) = \phi_{S_n}\left(\frac{t}{n}\right) = \left(\frac{\lambda}{\lambda - \frac{it}{n}}\right)^n \to e^{\frac{it}{\lambda}}
$$

 $X \sim N(0,1), \phi_X(t) = e^{-\frac{t^2}{2}}$ \circ $X \sim N(0,1)$, $\phi_X(t) = e^{-\frac{t}{2}}$

$$
\circ \ \ Y \sim N(\mu, \sigma^2), \ \phi_Y(t) = e^{it\mu} e^{-\frac{\sigma^2 t^2}{2}}
$$

- \circ Constant random variable $X = c \in \mathbb{R}$, $\phi_X(t) = e^{it}$
- Note: $\phi(t)$ contains all info about distribution of X, $\frac{d^n}{dt^n}$ $rac{u}{dt}$ \boldsymbol{t} • Note: $\phi(t)$ contains all info about distribution of X, $\frac{d^m}{dt^n}$ $\phi(t) = i^n E(X^n)$.

$$
\circ \quad \text{So } E(X^n) = \frac{1}{i^n} \phi^{(n)}(0)
$$

• Inversion theorem: If X is a continuous random variable with probability density function f, then $f(x) = \frac{1}{2x}$ $\frac{1}{2\pi}\int_{-\infty}^{\infty}e^{-}$ $\int_{-\infty}^{\infty}e^{-itx}\phi(t)dt$ at every x for which f' exists

For $X \sim Exp(\lambda)$, f' is discontinuous at 0, so inverse FT at 0 is $\frac{f(0^+) + f(0^-)}{2}$ ○ For $X \sim Exp(\lambda)$, f' is discontinuous at 0, so inverse FT at 0 is $\frac{f(0) + \pi}{2}$

Convergence of random variables

- Convergence in distribution: let Y_1, Y_2 be random variables with CDFs $F_{Y_1}, F_{Y_2}, ...$ We say $Y_n \to Y$ for some random variable Y with CDF F_Y if $\lim_{n\to\infty} F_{Y_n}(x) = F_Y(x)$ for each x where $F_Y(x)$ is continuous
- Continuous theorem: let $X_1, X_2, ...$ be random variables with CDFs $F_1, F_2, ...$ and characteristic functions
- \circ If F_n → F, then $\phi_n(t)$ → $\phi(t)$
- If $\phi_n(t) \to \phi(t)$ exists $\forall t \in \mathbb{R}$ with ϕ continuous at 0, then ϕ is the characteristic function of some random variable X and $F_n \to F$, i.e. $X_n \to X$
- \circ Uniform random variable does not converge ($\phi(t)$ is discontinuous at 0)
- Exponential random variable converges to $Y=\frac{1}{3}$ \circ Exponential random variable converges to $Y = \frac{1}{\lambda'}$

and $F_{Y_n}(b) - F_{Y_n}(b)$

- Weak law of large numbers: let $X_1, X_2, ...$ be independent and identically distributed. Assume $\mu = E(X) < \infty$ (not Cauchy). Let $S_n = X_1 + \cdots + X_n$, then $\frac{S_n}{n}$
- Strong law of large number: $P\left(\lim_{n\to\infty}\frac{S}{n}\right)$ • Strong law of large number: $P(\lim_{n\to\infty}\frac{\partial P}{n})$
- Central limiting theorem (convergence to a random variable that is not constant) •
	- \circ Let X_i be independent and identically distributed with $E(X_i) < \infty$ and $Var(X_i) = \sigma^2 < \infty$. Let \cdots + X_n . Then, $\frac{3n}{\sigma}$

ii i.e.
$$
\lim_{n \to \infty} P\left(a < \frac{s_n - n\mu}{\sigma\sqrt{n}} \le b\right) = \frac{1}{\sqrt{2\pi}} \int_a^b e^{-\frac{x^2}{2}} dx
$$

- Note: distribution of X_i is arbitrary, as long as $\mu, \sigma < \infty$
- This implies that $S_n \approx n\mu + \sigma \sqrt{n} Z$

$$
\blacksquare \quad \text{i.e.} \, \frac{1}{n} S_n \approx \mu + \frac{\sigma}{\sqrt{n}} Z
$$

 \circ Interpretation: the typical fluctuation of $S_n - n\mu$ is roughly $\sigma\sqrt{n}$

○ It can be viewed as
$$
\frac{X-n\mu}{\sqrt{n \text{ Var}(X)}}
$$

- **For binomial distribution,** $\sqrt{\frac{1}{n}}$
- For discrete cases $P(X > n) = P(X \ge n + 0.5) = P\left(Z \ge \frac{n}{2}\right)$ ■ For discrete cases $P(X > n) = P(X \ge n + 0.5) = P\left(Z \ge \frac{n}{\sqrt{2}}\right)$ $P(a \le x \le b) = P(a - 0.5 \le x \le b + 0.5)$.

Markov's inequality: $P(X \ge a) \le \frac{E}{a}$ $rac{L}{a}$ Chebyshev's inequality: $P(|X - \mu| \ge k) \le \frac{\sigma^2}{\nu^2}$ $\frac{6}{k}$

Statistical estimation, hypothesis testing

February 26, 2021 2:57 PM

Statistical estimation

- Given samples from some distribution P_{λ} depending on an unknown parameter λ , recover from samples $X_1, \ldots X_n$
- Def: an estimator is a function of data
	- \circ Sample mean: $\overline{X} = \frac{1}{n} \Sigma_{i=1}^n X$ \boldsymbol{n}
	- Sample variance: $s^2 = \frac{1}{n}$ $\frac{1}{n-1}\sum_{i=1}^n\left(X_i-\overline{X}\right)^2$ • $n-1$ makes s^2 unbiased estimation for $\sigma^2 E(s^2) = \sigma^2$ \circ
	- $\overline{\times}$ is an <mark>unbiased estimate</mark> of μ , $E(\overline{X})$
	- \overline{X} has <mark>lower variance</mark>, $Var(X) = \frac{1}{n^2}$ $\frac{1}{n^2}Var(\Sigma_{i=1}^n X_i) = \frac{\sigma^2}{n}$ \circ X has <mark>lower variance</mark>, $Var(X) = \frac{1}{n^2}Var(\Sigma_{i=1}^n X_i) = \frac{1}{n^2}Var(X_i)$
	- \circ Distribution of \overline{X} is more narrowly centered around μ as n increases
		- Consistent with law of large numbers and central limiting theorem

Hypothesis testing

- Consider a hypothesis H generating data, we want to know if the data is consistent with the hypothesis
- We check $P(observation \, or \, less \mid H)$ $(P(observation|H) = 0$ in most cases)

- reject the hypothesis when it is outside the 95% CI
	- Note: the interval shrinks when $n \to \infty$

Confidence interval

- Assume $X_i \sim N(\mu, \sigma^2)$, independent and identically distributed, σ^2 known and μ not known
- Law of large number says •

$$
\frac{\overline{X}}{\overline{X}} \approx \mu,
$$

\n
$$
\frac{\overline{X}}{\overline{X}} - \mu = \frac{1}{n} \Sigma (X_i - \mu) \text{ has variance } \frac{\sigma^2}{n}
$$

\n
$$
\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \to N(0,1)
$$

\n
$$
\rho (|Z| < 1.96) \approx 0.95.
$$

• This means that $\overline{X} \in \left[\mu - 1.96 \frac{\sigma}{\sqrt{n}}, \mu + 1.96 \frac{\sigma}{\sqrt{n}} \right]$ with probability 95%

MATH318 Page 12

- \circ i.e. $\mu \in \left[\overline{X} 1.96 \frac{\sigma}{\sqrt{n}}, \overline{X} + 1.96 \frac{\sigma}{\sqrt{n}} \right]$ with probability 95%
- \circ This is the 95% confidence interval for u
- We usually reject if $P\left(\left|\overline{X} \mu\right| > a\right) = 2P\left(\frac{\left|\overline{X} \mu\right|}{a}\right)$ $\frac{\left|\frac{X-\mu}{\sigma}\right|}{\sigma} > \frac{a}{\sigma}$ $\left(\frac{a}{\sigma}\right) = 2P\left(Z > \frac{a}{\sigma}\right)$ • We usually reject if $P(|X - \mu| > a) = 2P(\frac{1-\mu}{\sigma}) > \frac{a}{\sigma}) = 2P(Z > \frac{a}{\sigma})$
	- \overline{X} is the sample mean, μ is the hypothesis mean, we want to find a first, by distribution of \overline{X} , reject the hypothesis when it is outside the 95% CI ■ Note: the interval shrinks when $n \to \infty$
	- Given a , we can reject if $\left| \overline{X} \mu \right| > a$, and we would be 95% right ■ 95% sure that the hypothesis is wrong \circ
	- 0.05 is the p value
	- o If $|\overline{X} \mu| \le a$, we conclude nothing (this happens 95% of the time under the hypothesis)
	- Can also think about in an estimation perspective ($Z = \frac{\overline{x}}{2}$ ○ Can also think about in an estimation perspective ($Z = \frac{A-\mu}{\sigma/\sqrt{n}} \sim N(0,1)$) $\overline{\mathbf{v}}$

$$
\left|\overline{X} - \mu\right| \le \frac{1.96\sigma}{\sqrt{n}} \text{ holds with probability 95\%}
$$

Def: a **statistic** is a number you compute to determine a hypothesis test

Now suppose μ , σ^2 both unknown, let $X_1, ... X_n \sim N(\mu, \sigma^2)$ with sample mean \overline{X} and sample variance s². Then $T = \frac{\overline{X}}{s}$ $\frac{\pi}{s/\sqrt{n}}$ has a <mark>student-t distribution</mark> with $n-1$ degree of freedom

This means that $T = \frac{\overline{x}}{s}$ • This means that $T = \frac{A}{s/\sqrt{n}} \sim t(n-1)$, we want to find $a \in \mathbb{R}$ such that $P(|T| > a) = 0.05$, and reject if $|T| > a$

3.787 4.140

To find the 95% CI, 0.95 = $P\left(\frac{|\overline{x}|}{\overline{x}}\right)$ $\frac{|X-\mu|}{s/\sqrt{n}} \le a$), so the interval is $\frac{}{\mu \in \left[\overline{X} - \frac{a}{\sqrt{n}} \right]}$ $rac{as}{\sqrt{n}}, \overline{X} + \frac{a}{\sqrt{n}}$ • To find the 95% CI, $0.95 = P\left(\frac{1}{s/\sqrt{n}} \le a\right)$, so the interval is $\mu \in \left[X-\frac{as}{\sqrt{n}}, X+\frac{as}{\sqrt{n}}\right]$ 80% 85% 90% 95% 97.5% 99% 99.5% 99.75% 99.9% 99.95% One-sided 75% 60% 70% 80% 90% 95% 98% 99% Two-sided 50% 99.5% 99.8% 99.9% 1.000 1.376 1.963 3.078 6.314 12.71 31.82 63.66 127.3 318.3 636.6 $\mathbf{1}$ $\overline{2}$ 0.816 1.080 1.386 1.886 2.920 4.303 6.965 9.925 14.09 22.33 31.60 10.21 12.92 λ - λ ³ $\vert 0.741 \vert 0.941 \vert 1.190 \vert 1.533 \vert 2.132 \vert 2.776 \vert 3.747 \vert 4.604 \vert 5.598$ 7.173 8.610 $\overline{5}$ \vert 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.959 • 7 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.499 4.029 4.785 5.408 $\vert 0.706 \vert$ 0.889 | 1.108 | 1.397 | 1.860 | 2.306 | 2.896 | 3.355 | 3.833 | 4.501 | 5.041 8 9 \vert 0.703 0.883 1.100 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781 10 0.700 0.879 1.093 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.587 $11 \vert 0.697 \vert 0.876 \vert 1.088 \vert 1.363 \vert 1.796 \vert 2.201 \vert 2.718 \vert 3.106 \vert 3.497$ 4.025 4.437 12 $\vert 0.695 \vert 0.873 \vert 1.083 \vert 1.356 \vert 1.782 \vert 2.179 \vert 2.681 \vert 3.055 \vert 3.428$ 3.930 4.318 $\vert 0.694 \vert 0.870 \vert 1.079 \vert 1.350 \vert 1.771 \vert 2.160 \vert 2.650 \vert 3.012 \vert 3.372$ 3.852 4.221 13

 0.692 0.868 1.076 1.345 1.761 2.145 2.624 2.977 3.326

 14

Random Walks & Markov chains

January 18, 2021 3:17 PM

Example: Gambler's Ruin

- Gambler has k dollars and bank has b dollars. Play fair game betting \$1, until one goes broke
- Let $=$ $\mathbf{1}$ $\overline{2}$ $\mathbf{1}$ $\overline{2}$ $=$ $\mathbf{1}$ $\overline{2}$
- This gives $P(win) = \frac{k}{N}$ and $P(lose) = 1 \frac{k}{N}$
- N and (1222) N If unfair with probability p for win, we will have \circ This gives $q(k) = \frac{\alpha^{k}-1}{\alpha^{N}-1}$, where $\alpha = \frac{1}{k}$ •

This gives
$$
q(k) = \frac{1}{\alpha^N - 1}
$$
, where $\alpha = \frac{1}{p}$

 \circ It satisfies the $\frac{1}{2}$ probability case

Simple random walks on \mathbb{Z}^d (points in d-dimensional space with integer components)

- Let e_j be unit vectors in \mathbb{Z}^d , walk take steps X_i with probability mass vector $P(X_i = -e_i) = \frac{1}{2i}$
- $\overline{\mathbf{c}}$ • Determine $u = P(walk will return to origin) = P(\exists n such that S_n = 0)$, let M be the number of visits to 0 (counting $S_0 = 0$)
	- \circ P(return twice|return once) = P(return once)
	- $P(M = k) = u^{k-1}(1-u), E(M) = \frac{1}{1}$ $P(M = k) = u^{k-1}(1-u), E(M) = \frac{1}{1}$
	- \circ M is recurrent if $u = 1$, $E(M) = \infty$ (always come back), transient if $u < 1$, $E(M) < \infty$
	- To find u , we need to find $E(M)$, since $u = 1 \frac{1}{E(M)}$ \circ To find u , we need to find $E(M)$, since $u = 1 - \frac{1}{E}$
		- $E(M) = \Sigma \binom{2}{3}$ ■ $E(M) = \sum {2n \choose n} p^n (1-p)^n$. It converges if $4p(1-p) < 1$, using Stirling formula, this gives $p \neq 1/2$

Characteristic functions for vector functions

- For $X \in \mathbb{R}^d$, $t \in \mathbb{R}^d$, $\phi(t) = E(e^{i \le t, X>})$
- Character function of $S_n = \phi_n(k) = E(e^{i \langle k, S_n \rangle}) = E(e^{i \langle k, S_n \rangle})$ $= \phi_1(k) ... \phi_n(k)$
- Given $P(X_i = e_j) = \frac{1}{2}$ $\frac{1}{2d}$, we have $\phi_1(k) = \frac{1}{d}$ $\frac{1}{d} \Sigma_{j=1}^d \cos k_j$, and $\phi_n(k) = \left(\frac{1}{d}\right)$ • Given $P(X_i = e_j) = \frac{1}{2d}$, we have $\phi_1(k) = \frac{1}{d} \sum_{j=1}^d \cos k_j$, and $\phi_n(k) = \left(\frac{1}{d} \sum_{j=1}^d \cos k_j\right)^n$
	- Then $P(S_n = b) = \left(\frac{1}{2a}\right)$ $\left(\frac{1}{2\pi}\right)^d \int \phi_n(t) e^{it \cdot b} dt_1 ... dt_d$, $E(M) = \left(\frac{1}{2\pi}\right)^d$ $\left(\frac{1}{2\pi}\right)^d \int \frac{d}{1}$ \circ Then $P(S_n = b) = \left(\frac{1}{2\pi}\right) \int \phi_n(t) e^{it \cdot b} dt_1 ... dt_d$, $E(M) = \left(\frac{1}{2\pi}\right) \int \frac{du}{1} dt$ o If $d = 1$, $\phi(t) = \cos t$, $E(M) = \infty$, reccurent
	- In general, $\int \frac{d}{4}$ o In general, $\int \frac{dt_1...dt_d}{1-\phi_1(t)} = \begin{cases} \infty \\ < \infty \end{cases}$

Theorem: **random walk** in \mathbb{Z}^d is recurrent for $d = 1,2$, transient for

- A drunk person will eventually walk home
- A drunk bird will not. In \mathbb{Z}^3 , $P(\text{return to } 0) = 1 \frac{1}{\varepsilon n}$ • A drunk bird will not. In \mathbb{Z}^3 , $P(\textit{return to 0}) = 1 - \frac{1}{E}$

Stochastic process:

- A stochastic process is a sequence of random variables $X_0, X_1, ..., X_n$
- Transition probabilities (one step): $P_{ij} = P(X_{n+1} = j | X_n = i)$ (can depend on n)

Markov chains

- A Markov chain is a sequence of random variables $X_0, X_1, ...$ such that
	- $P_{ij} = P(X_{n+1} = j | X_n = i) = P(X_{n+1} = j | X_n = i, X_{n-1} = i 1, ..., X_0 = i_0)$
	- \circ Markov property: condition on $X_n = i$ is the same as condition on $X_1, ..., X_n$
- \circ Assumption: P_{ij} does not depend on n
- State space={possible values for X }
- The <mark>transition matrix of a Markov chain</mark> is $P = \left(P_{ij} \right)_{i,j} =$ \overline{P} \overline{P} $\ddot{\cdot}$ \ddotsc • The transition matrix of a Markov chain is $P = (P_{ij})_{i,j} = [n]^{1/10}$ $(11)^{1/12}$...
	- The rows always sum to 1 (stochastic matrix)
- N-step transition probability
	- $P_{ij}^n = P(X_n = j | X_0 = i) = P(X_{t+n} = j | X_t = i)$ for any $\text{\textbf{P}}=\left(P_{ij}\right)_{ij}$ and $P^n=\left(P_{ij}^n\right)_{ij}$ are both matrices
	- \circ Chapman-Kolmogorov's theorem: P^n is the nth power of
- Classification of states
	- A state *i* is called <mark>absorbing</mark> or a <mark>sink</mark> if
		- 0 or N is absorbing in Gambler's ruin
	- \circ j is <mark>accessible</mark> from i if $P_{ij}^n > 0$ for some
	- \circ State *i*, *j* are communicating if each is accessible from the other ($i \leftrightarrow j$)
		- Communication is an <mark>equivalent relation</mark>
			- $i \leftrightarrow j \leftrightarrow k$, then $i \leftrightarrow k$
			- \Box $i \leftrightarrow i$ for all states

- \blacksquare A Markov chain is <mark>irreducible</mark> if for all states $i, j,$
- \Box Equivalently, a Markov chain is irreducible if for all i, j, $\exists n$ such that $P_{ii}^n \neq 0$. \circ A state *i* is **recurrent** if condition on $X_0 = i$, the chain returns to *i* with probability 1.
	- Otherwise, the state is transient.
		- *i* is recurrent if $f_i = 1$, $\Sigma_n P_{ii}^n = \infty$.
		- *i* is transient if $f_i < 1$, $\Sigma_n P_{ii}^n < \infty$. f_i is the probability of return
			- \Box Note, if we let N_i be the total number of visits to state i, $N_i = \Sigma 1_{X_n=i}$, $E[N_i|X_0 = i] = \sum_{n} P_{ii}^{n}$
			- \Box If $X_n = i$, by Markov property, $P(\exists n'$ From *i*, we have probability of f_i to return, and $1-f_i$ not return
			- $N{\sim}Geom(1-f_i)$, $M=\frac{1}{\sqrt{1-\frac{1}{2}}}$ \Box $N \sim Geom(1-f_i)$, $M=\frac{1}{1}$
		- **E** Let $i \leftrightarrow j$, then i is recurrent if and only if j is recurrent (recurrent is a class property)
		- If a state in an irreducible Markov chain is recurrent, the Markov chain is recurrent. ▪
- Periodicity
	- A state *i* has *period d* if $d = GCD\{n: P_{ii}^n \neq 0\}$, *i* is **aperiodic** if
	- Period of a state is also a class property
- Behavior as
	- \circ Let $V^{(n)}$ be the distribution for
	- \circ Then $V_i^{(n)} = P(X_n = j) = \Sigma P(X_n = j | X_0 = i) P(X_0 = i) = \Sigma V_i^{(0)} P_{ij}^n$
		- \bullet P^n is the nth matrix power
- $\circ \quad$ Then $\left(V^{(n)}_0,V^{(n)}_1\right)=\left(V^{(n)}_0,V^{(n)}_1\right)P^n$
- \circ Note: for any Markov chain, $\lambda = 1$ is always an eigen value for P, since row of P add to 1
- \circ For every Markov chains, all eigen values have $|\lambda| \leq 1$

2-state Markov chain

- Suppose $P=\begin{pmatrix} 1 \end{pmatrix}$ • Suppose $P = \begin{pmatrix} 1 & P & P \\ q & 1-q \end{pmatrix}$ Then $\lambda_1 = 1$, $\pi = \left(\frac{q}{n+1}\right)$ $\frac{q}{p+q}, \frac{p}{p+q}$ • Then $\lambda_1 = 1$, $\pi = \left(\frac{q}{p+q}, \frac{p}{p+q}\right)$, $\lambda_2 = 1 - p - q$,
- $V^{(0)} = \pi + bf$, $V^{(n)} = (\pi + bf)P^n = \pi + b\lambda_2^n f$
- If $|\lambda_2|$ < 1, then $V^{(n)}$ converges to
	- $\circ \ \ \pi$ is the limiting distribution of V^n
	- \circ π_i is the asymptotic proportion of time in state i
- \bullet If
	- $p = q = 0$, reducible
	- $p = q = 1$, periodic with period 2

Let T_i be the return time to state i, $T_i = \inf\{n \geq 1: X_n = i\}$

- A recurrent state i is
	- Positive recurrent if $E(T_i|X_0=i) < \infty$
	- \circ Null recurrent if $E(T_i|X_0=i)=\infty$
- Random walk in \mathbb{Z}, \mathbb{Z}^2 are null recurrent
- For any finite space Markov Chain, any recurrent state is positive recurrent
- Given π_i the stationary distribution, the <mark>mean return time is $\frac{1}{\pi_i}$ </mark>

An aperiodic, positive recurrent state is called ergodic

- If every state is ergodic, then the Markov chain is ergodic
- In any irreducible ergodic Markov chain, we have $\pi_j = \lim_{n \to \infty} P_{ij}^n$ for any
	- Moreover, π is the unique solution to π \circ Moreover, π is the unique solution to $\Big\{\Sigma$
- Let $N_j(n)$ =#visist to j up to time n. If the Markov Chain is irreducible and ergodic, then $N_{\it i}$ ($\frac{n}{n}$
- If a Markov Chain is irreducible and ergodic, then $\frac{\pi_i}{\pi_j} = \frac{1}{m_i}$ • If a Markov Chain is irreducible and ergodic, then $\frac{\pi_j}{\pi_j} = \frac{1}{m_j}$, where $m_j = E(T_j)$
	- \circ Note: positive recurrent means $m_i < \infty$

 π is called the **stationary measure** or stationary distribution for the Markov chain

• $V^{(n)} \to \pi$ exponentially fast

If $P(X_n = j) \rightarrow V_j$, then Taking $n \to \infty$, $V_i = \Sigma V_i P_{i,i}$, so $V = VP$

If $V^{(0)} = \pi$, i.e. at time 0, $P(X_0 = i) = \pi_i$, then at any n , $V^{(n)} = V^{(0)}P^n$ In this case, every X_n has the same distribution, π is also called the equilibrium distribution

On \mathbb{Z}^d , there is no limit, since random walk is null-recurrent

If the Markov Chain is reducible, then limit and stationary distribution depends on the communicating class

If the Markov chain is periodic, then $\pi = \pi P$ still has a unique solution, but P_{ij}^n does not converge

If P is **doubly stochastic** (rows and columns sum to 1), then $\pi = \left(\frac{1}{\pi}\right)$ $\frac{1}{n}, \frac{1}{n}$ $\frac{1}{n}, \ldots, \frac{1}{n}$ $\frac{1}{n}$

MATH318 Page 16

Time reversal

- Given Markov chain $(X_0, ..., X_N)$, consider the backward chain $Y_0, ..., Y_N$, given by $Y_i = X_{N-i}$, is a Markov Chain
- Given X with stationary distribution and
	- with transition probability $Q_{ij} = P_{ji} \times \frac{\pi}{\pi}$ \circ with transition probability $Q_{ij} = P_{ji} \times \frac{\pi}{\pi}$
	- \circ Y is the reverse or dual Markov Chain of X
- A Markov Chain is **reversible** if $Q_{ij} = P_{ij}$ for all *i*, *j*, or equivalently,
	- Note: stationary, then mass out = mass in at each vertex
	- \circ Reversible, then i sends to j the same as j sends to i
- If X is an irreducible ergodic Markov Chain and for some vector μ has $\mu_i P_{ij} = \mu_j P_{ji}$ (detailed balance equation) for all i, j, and $\Sigma \mu_i = 1$, then $\mu = \pi$ and X is reversible
	- \circ If a Markov Chain is reversible, we can find π using detailed balance
	- \circ If solved, then we can deduce π and reversibility
	- If not solvable, then the Markov Chain is not reversible
- Doubly stochastic Markov Chain is reversible only if $p=\frac{1}{2}$ • Doubly stochastic Markov Chain is reversible only if $p=\frac{1}{2}$

A graph is a pair (V,E) where V is the set of vertices/nodes, E is the set of edges (pair of vertices)

• Simple graph: graph with no loops or double edges

Random walk on a graph G:

- State space: V
- \overline{P} $\mathbf{1}$ $\frac{1}{d}$ $\boldsymbol{0}$ • $P_{ij} = \{ \deg(i) \cdot \xi^{ij}, j = 2 \}$, where $deg(i)$ is the number of edges containing i.
- In any finite graph, the stationary measure π is $\pi_i = \frac{d}{dt}$ • In any finite graph, the stationary measure π is $\pi_i = \frac{\deg(t)}{2|E|}$, moreover, this Markov chain is reversible
	- $\sum_i \text{deg}(i) = 2|E|$, since every edge is counted twice

Birth and death chains

- Assume arrivals at rate λ , departure at rate
	- \circ Times of arrivals are Poisson process with rate λ

$$
\circ \ \ P_{n,n+1} = \frac{\lambda}{\lambda+1}, \ P_{n,n-1} = \frac{1}{\lambda+1}
$$

- If $\lambda < 1$, π is a geometric distribution, size of queue is $Geom(\lambda) 1$
- If $\lambda \geq 1$, no stationary distribution
- Every birth and death chain is reversible, but not always have a stationary distribution
	- $\circ \lambda < 1$, positive recurrent
	- \circ $\lambda = 1$, null recurrent
	- $0 \quad \lambda > 1$, transient

Gambler's ruin with m transient states, K absorbing states

- $P = \begin{pmatrix} A \\ 0 \end{pmatrix}$ • $P = \begin{pmatrix} 1 & B \ 0 & I_k \end{pmatrix}$, then A is $m \times m$, B is $m \times k$, $I_k = k \times k$ identity matrix
- Let $P_i(A) = P(A|X_0 = i)$, $q_i = P_i$ (end at absorbing state a) $q_a = 1$, $q_b = 0$ for $b \neq a$ absorbing.
	- ()by Markov property after 1 step

$$
\circ \text{ This gives } q = (P_{ia})_i + Aq = (col\ a\ of\ B) + Aq = (I_m - A)^{-1} (col\ a\ of\ B).
$$

Let $N_i = \text{\#} \nu$ isits to j, then $S_{ij} = E_i N_i = E(N_i)$ •

$$
S = (I - A)^{-1}, \text{ since } N_j = \sum_k jumps(k \rightarrow j) + 1_{X_0 = j}, S_{ij} = \sum_k S_{ik} P_{kj} + \delta_{ij}
$$

• Let
$$
f_{ij} = P_i(hit\ j\ at\ least\ once) = P(N_j \neq 0 | X_0 = i)
$$

$$
\circ \quad \text{Then } S_{ij} = E_i N_j = E_i \Big(N_j \Big| N_j = 0 \Big) P_i \Big(N_j = 0 \Big) + E_i \Big(N_j \Big| N_j > 0 \Big) P_i \Big(N_j > 0 \Big) = S_{ij} f_{ij}
$$
\n
$$
\circ \quad \text{So } f_{ij} = \frac{S_{ij}}{S_{ij}} \text{ but } f_{ii} = \frac{S_{ii} - 1}{S_{ii}}
$$

Branching process

- Family tree
	- \circ Let Z_n =size of generation n . Assume individual has a random number of children independent of all others, $P(k \text{ children}) = p(k)$ given.
	- Two options
		- $Z_n > 0$ for all *n*.
		- $Z_n = 0$ for some n_0 , then $Z_n = 0$ for all $n \ge n_0$, 0 is an absorbing state
- Nuclear explosion
	- Each generation of neutrons has a random size
	- \circ Each neutron has 0 or 3 children with probability $p(0), p(3)$
	- \circ If Z_n grows very quickly, we have explosion
		- This is possible if $p(3) > \frac{1}{3}$ $\frac{1}{3}$, critical mass is the size needed such that $p(3) > \frac{1}{3}$ ■ This is possible if $p(3) > \frac{1}{3}$, critical mass is the size needed such that $p(3) > \frac{1}{3}$
	- \circ If Z_n stays non-zero but small, we have reaction
- Let $\mu = E(Y)$, where $Y =$ number of children of an individual, assume $p(1) \neq 1$, then $P(survival) > 0 \Leftrightarrow \mu > 1, P(survival) = 0 \Leftrightarrow \mu \le 1$, where survival means $Z_n > 0$ for all *n*, extinction means $Z_n = 0$ for $n \geq n_0$.
	- o If $Z_n = k$, then $Z_n = \sum_i Y_i$, $E(Z_{n+1} | Z_n = k) = \sum E(Y_i) = μk$
	- o If $Z_0 = 1$, then $E(Z_1) = \mu$, $E(Z_n) = \mu^n$, so
- Let $f(t)$ be the probability generating function for Y , $f(t) = E(t^Y) = \sum_{n=0}^{\infty} p(n) t^n$.
	- $f(1) = 1, f(0) = p(0).$
	- $f' \ge 0$ (increasing), $f'(t) = \sum_{n=0}^{\infty} nt^{n-1} p(n)$, $f'(1) = \mu$.
	- \circ $f'' \geq 0$ (convex)
	- \circ If $\alpha = P(extinction)$, then α is the smallest solution of $\alpha = f(\alpha)$ in
		- If $\mu \leq 1$, $\alpha = 1$.
		- If $\mu > 1$, $\alpha < 1$.
- Below each individual, we see a copy of the whole branching process

Metropolis Markov chain:

- Given some state space S and target distribution π , construct a connected graph on S
- Steps of the Markov Chain
	- \circ Assume $X_n = x$, pick an edge e uniformly in the graph
	- \circ If *e* far from *x*, do nothing, $X_n = x$.
	- If $e = (x, y)$, then jump to y with probability $P = min\left(\frac{\pi}{\pi}\right)$ ○ If $e = (x, y)$, then jump to y with probability $P = min\left(\frac{hy}{\pi x}, 1\right)$, stay at x with probability

 $1-P$.

- Reversible with respect to π .
- In hard square model $S = \{0,1\}^V$, V is the number of vertices, 0 is free, 1 is occupied
	- \circ If $\sigma \in S$ has $\sigma_u = \sigma_v = 1$ for neighboring u, v , then $\pi_{\sigma} = 0$
	- \circ If no adjacent ones, $\pi_{\sigma} = Z^{-1} \lambda^N$
		- $N(\sigma) = \sum_u \sigma_u$.
		- $Z = \sum_{\sigma} \lambda^{N(\sigma)}$ is the normalizing factor

 \circ Regardless of Z, we always have $\frac{\pi_{\sigma}}{\pi'_{\sigma}} = \lambda^{N(\sigma)-N(\sigma')}$

- **•** Graphically, σ connected to σ' if they differ at a single vertex u
- To pick the edge, pick uniformly a vertex $u, \sigma' = \sigma$ with u flipped
- If σ' has 1 less particle, $\frac{\pi_{\sigma'}}{\pi}$ $\frac{\pi_{\sigma'}}{\pi_{\sigma}} = \frac{1}{\lambda}$ **If** σ' has 1 less particle, $\frac{n_{\sigma'}}{\pi_{\sigma}} = \frac{1}{\lambda}$
- If σ has 1 more particle, $\frac{\pi_{\sigma'}}{\pi}$ **If** σ has 1 more particle, $\frac{n_{\sigma'}}{n_{\sigma}} = \lambda$.
- If $\lambda < 1$:
	- \Box If u full, remove particle
	- \Box If u empty, add particle with probability λ
- If $\lambda \geq 1$:
	- \Box If u full, remove with probability $\frac{1}{\lambda}$
	- \Box If u empty, add with probability 1
- \circ Can get from σ to the empty config and from there to any state

 \circ There is some λ_c such that if $\lambda < \lambda_c$, a large box is unordered, $Cov(\sigma_u, \sigma_v) \sim 0$ for far. If $\lambda > \lambda_c$, then get order $|\mathit{Cov}(\sigma_u, \sigma_v)| \geq \mathit{C}$, for some constant.

Ising model

- Each atom has a magnetic field. If most atoms are aligned, get a magnet
- Simply to 2 directions $\{1, -1\}$
- If all independent N atoms, get total magnetism=0
- let σ_x =spin of atom $x, M = \Sigma_x \sigma_x \approx N(0, N), |M| \approx \sqrt{N}$
- If a state $\sigma = (\sigma_x)$ has energy $H(\sigma)$ (Hamiltonian), then Boltzmann distribution is $P_\beta = \frac{e^{-\beta}}{2\pi}$ • If a state $\sigma=(\sigma_x)$ has energy $H(\sigma)$ (Hamiltonian), then Boltzmann distribution is $P_\beta=\frac{c}{Z}$
	- $\beta = \frac{1}{r}$ \circ $\beta = \frac{1}{T}$ is the inverse temperature, Z_{β} is the normalizing (partition) function
	- o If $\beta < 1$, high temperature, all σ equally likely
	- \circ If $\beta > 1$, low temperature, low energy states more likely
	- \circ Hamiltonian: $H(\sigma) = -\sum_{x \sim y} \sigma_x \sigma_y$.
- A ferromagnet can stay magnetic up to some temperature T_c . Above it, no longer a magnetic
- On d-dimensional grid ($d > 1$), there is a critical β_c such that
	- \circ if $\beta > \beta_C$, then $M = \sum \sigma_x$ has
		- *c* is a function of β , *N* is the total size
	- o If $\beta < \beta_C$, $|M| = \sqrt{\Lambda}$
	- In 2D, $\beta_C = \frac{\log(1+\sqrt{2})}{2}$ o In 2D, $\beta_C = \frac{\log(1 + \sqrt{2})}{2}$.
- Dynamics (Glauber)
	- \circ Pick uniformly an x, pick new value for σ_x . Let σ^+ , σ^- be σ_x changed to 1 or -1 , make $\sigma_x = 1$ with $P = \frac{e^{-\epsilon}}{e^{-\beta H(\sigma)}}$ $\frac{e^{i\theta}}{e^{-\beta H(\sigma^+)}+e^{-\beta H(\sigma^-)}}$. (i.e. pick σ_x by its distribution conditioned on all other spins). Otherwise, keep $\sigma_x = -1$.
	- If $\beta > \beta_C$, then mixed after $O(N \log N)$ steps
	- \circ If $\beta < \beta_C$, then mixed after $O(e^{CN})$ steps
	- \circ If $\beta < \beta_c$ with boundary all 1, then mixed after $O(N^c)$ steps