Introduction

January 7, 2022 9:44 PM

Dynamic system: physical (biological or financial) systems whose state u(t) changes in timein a
deteriministic way
¢ Differential equation initial value problem
o Equation (defines the system): % =u' = f(w).
o Initial condition: u(0) = w,.
o If f(u) has no t dependence, it is called autonomous
= Solutions are called trajectories.
e Systems with a parameter a, % = f(u; a).
o How trajectories change with a?
o How the long term behavior (lim;_,. u(t)) changes with a?
= Changes in limiting behavior with a are called bifurcations.
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Discrete dynamical system

January 11, 2022 2:22 PM

Discrete time
e Timeisintegern =10,1,2,....

Dynamic system
e State attimenis X™.
e Discrete dynamical system: X™*t1 = f(X™; 1), X% is given initial condition.
o Also called iterative map
o Confined to a closed bounded interval [a, b]. This requires f(x;r) € [a, b] forall x € [a, b]

Fixed point
. Iff(X*) = Xx, then X« is a fixed point or equilibrium of the map
If X° is close to X+, it stays close to X«, then X is a stable fixed point
If X% is close to Xx, and lim,, X™ = X,, then X« is an asymptotically stable fixed point (attractor)
If lim,,_,. X™ = X, for any X°, then X is a global attractor
¢ We can use numerical root finding to determine X+ more accurately.
o Itisarootof g(x) = f(x) — x with fixed .
Can also use Cobweb diagram to determine Xx.

Basin of attraction
* Suppose we have a fixed point X, such that X, = f(X.).
Consider X° near X, such that X° — X, is small
Let z™ be the signed distance of X" to X,, z™ = X™ — X,
If z" - 0asn — oo then X™ - X, and X, is an asymptotically stable fixed point
The set of X° that has this property is called the basin of attraction of Xx

Tangent line approximation
o fX™M =f(X +2") = f(X.)+ f'(X.)z"
o Then, z"*1 = f’(X*)z”.
o |If |f’(X*)| <1,z" - 0asn - o, X, is an asymptotically stable fixed point

o |If |f’(X*) > 1, X, is an unstable fixed point(repeller)
o If|f'(X.)| = 1, X.'s stability cannot be told

o If|f'(X.)| # 1, X. is a hyperbolic fixed point

o If|f'(X.)| =0, z" - 0 very quickly, X, is super stable

Consider the limiting behavior for all 7 € [—1,1] for X"*1 = f(X™;1) = rcos X™.
e For eachr, there is a single stable fixed point (global attractor) X, (7).
e No bifurcations
e A bifurcation map shows the behavior of the system as n — oo for all r and all X°.

Newton's method
e |terative method for root finding
e Find x suchthat g(x) = f(x) —x = 0.
e Requirement: g’(x*) # 0 and initial guess x° is close enough to the root

e x!is computed as the root of the tangent line at (xo,g(xo)).
o y=g(x°)+g(x%)(x—x°) =0.

1_,0_ 9%
o Sox b 9 (x0)
o Repeatx™*1 = f(x™) with f(x) = x _ 9

g ()
o x, is a (super) stable fixed point of the iterative map.
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Logistic map
e f(x;r) =rx(1—x).
o Mapon[0,1] aslongasr € [0,4].
¢ Fixed points
o x = 0:stableifr < 1, unstableifr > 1.
o x=1 —%only in the interval if r > 1:stableif 1 <r < 3.

¢ The global attractor changes at r = 1, there is a bifurcation

e Periodic orbit for r > 3(period 2)
o f(p) =qandf(q)=p.
o p and q are fixed points of the doubly iterative map f(f(x)) =x
= f(f(@) =ar (@) =».
_ 1/ (r+1)(r-3)
"=
o Stability of double map f(f(x)):
= stable if |- £(f(0)| = |[F(F@)f'@)] < 1.
o [f'(a)f' ()l < 1.

» Unstable if |%f(f(x))| = (fFE))f' (x| > 1.
= |tis stable forr < 3.4495.

l ~

s 34495,
Attractor
¢ Def: an attractor A of a discrete dynamic system is a closed and bounded set with the following
properties

o Aisinvariant. If x° € 4, then f(x") € A.
o A attracts an open set U containing A. For all x° € U, dist(x™, A) - 0 asn — oo.
o A is minimal (no closed proper subsets of A satisfy the first 2 properties).
¢ Any hyperbolic stable period m orbit is an attractor
o For period 2,f(p) =gq, f(q) =p, A= {p,q}.
e For the logistic map, we can also have a chaotic or strange attractor
o Uncountably infinite number of points
o Fractal dimension
o Sensitive dependence on initial conditions
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= On average, trajectories separate exponentially (|xn - xA"| ~ e/n |x° - J/CB| with 4 >
0)
= For stable orbits, 4 < 0.

Counting
¢ A countably infinite set has an infinite number of entries that can be put in an ordered list
O e.g. integers, rational numbers.
¢ Uncountably infinite set: cannot be put in an ordered set
o e.g. real number

Dimension
¢ Interval (a, b) with b > a is one dimensional
» {a} and finite collection of points are zero dimensional.
e Box dimension
o A c [0,1]. For every €, cover A with the minimum number N (€) of intervals of length €.
o If Aisa finite number M of points, N(¢) < M.

o If Ais a subinterval of length L, N(¢) = g (round up).

o IfN(e)~ Eid, say A has dimension d.
In ()

= WithN > 0,6 >0,d = lime_,o——lne

Uncountably infinite set with fractal dimension (Cantor set)
e Length (measure) zero
e Uncountable

. . . 1\" In2 . . .
¢ Dimension with € = (5) :d = 3 isa fractal dimension.
¢ Like chaotic attractors, the cantor set is self similar

o Se N [0, é] is the same as S, scaled down by %

1D Taylor polynomial approximation for a smooth function f(x).
e Tangentline: T;(x) = f(a) + f'(a)(x — a) valid for x near a.
e Addanerrorterm: f(x) = T;(x) + %f”(e)(x — a) for some 6 € (a, x).
e Quadratic approximation: T, (x) = T; (x) + %f”(a)(x —a)?.

o f(x) =To(x) +zf"(O)x — ).

2D approximation for f(x, y)
e First order (tangent plane): T; (x, y) = f(a,b) + fy(a,b)(x — a) + f,(a, b)(y — b).
o Errorsize (x —a)? + (y — b)z.
e Quadratic: To(x,y) = Ty (x,¥) + %fxx(x —a)? + fry(x—a)(y —b) + %fyy(y - b)z.
o Errorsize (x —a)® + (y — b)3.
o T3(0Y) = Ta(0,9) + 3 fraxx (= @ +3 fry 06 = (¥ = b) + 3 fiyy (x — @) (y = b)” +
1 3
gfyyy(y —b)".
o Errorsize (x —a)* + (y — b)4.

For any hyperbolic fixed point x, at
¢ Fixed: f(x*,r*) = X,.
e Hyperbolic: |fx(x*,r*)| =1.
» Use tangent approximation: f(x,r) = f(x*,r*) + fx(x - x*) + fr(r — r*).
° X=X, +I%C(r—r*).

fr
1-fy

. . . . . . d
o There is a fixed point for r near r;, varying approximately linear with r, d—f =

e Stability
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d fr
o & (A&E)NM) = fuils + far
o So |% (fx(x(r), r))| # 1 for some neighborhood of r near r,.
e If x,, 7, is a hyperbolic fixed point, there is a neighborhood of 7,, where there is a unique
hyperbolic fixed point x(r) with the same stability as x,, 7.
e Bifurcation of fixed points can only happen when f,, = +1.
. . , . [ fxr)—x=0
o For bifurcations of fixed points, we require {fx(x: N+1=0
f(x, y) =0

g(x,y) = o

Newton's method for root finding ({

« Initial guess (x°,7°).
e Use tangent approximations to f and g based on (xo,yo).
o f(xy)=f(x%y°) + filx —x0) + f,(y = ¥°).
o g(xy)=g(x%y°) + gx(x — x0) + gy (y — ¥°)-
¢ Take the next approximation to be the root of the linear system
o f(x%y°)+ fulx* —=x°) + f,(y* —y°) = 0.
o g(x%y°) + g (x* —x°) + g,(y* —y°) =0.

1_.,0
e Thisis a linear system J (;1 _ ;0> = _RO
(i K. . . o 0
o J= 0 g ] 2 X 2 Jacobian matrix evaluated at (x°,y°).
x Yy
x0 30
o RY= (fg o y(%) is the residue.
g\x-y

o Assume J is invertible, it will be invertible for xO,yO near x,, V.
e SolveJz = —R°

=)
e Then = +z
(yl y°

e Repeat
e This is a vector discrete dynamic system with a super stable fixed point at the root

Types of bifurcation

e Appearance of equilibrium points (saddle-node bifurcations)
o f(x.1)=x..
o fx(x*,r*) =1.
o fr(x,m)=a>0.
o fux(x,m)=-b<0.

e Pitchfork bifurcation
o Isolated critical point x.(r) that changes stability

<lr<r

* fe(xc(M),r){=1Lr=n.
>1,r>r,

o For this to occur
. fr(x*,r*) =0.
* fx(x1) =0,
] fxr(x*,r*) =a>0.
. fxxx(x*,r*) =—-bh<0.

o Forr >, there are two stable fixed points of g, x,.(r) = x, £ /%a (r—m).

* x4 cannot be fixed points of f
= To be a fixed point of g, they must be a periodic orbit of f.
e Flip bifurcation

o Lone critical point x.(r) with %5 (r, X (r)) <0

MATH345 Page 5



- ., Of
o Change stability with = (r, xc(r)) =_1.
o Atthe double map, g—i =1.
o ltis supercritical if signs: g, > 0 and gy < 0.

Model a system as a discrete dynamic system
e x™: number of members of a UBC club in year n (n = 0 at year 1990)
e Parameters
o a: number of potential new members to the club every year
o The number of people signing up to year n + 1 depends on how happy people were in year
n
= H(0) =0.
= H(b)=0(b > 0).
= Simplest function: H(x) = %x(b —Xx).
o The fraction F (0 < F < 1) of people signing up depends on how happy the club was the
year before
» F(H)=e ™1,
o x"*1 = f(x";a,b,1).

4
o With parameters above, f = (a + x)er(57x(b_x)_1).

e We can scale (hondimensionalize) to reduce the number of parameters to 2
o Scale x by b: x = yb, then fgx”(b —x™) =4y"(1-y").

o Theny™! = (% + y") e"(4y"(1-¥")=1) and we can replace @ = %.
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Scalar dynamics

January 11, 2022 2:22 PM

Continuous time dynamic system (scalar quantities) u(t):
. ' du
e U=1u zazf(u;a).
o f(u; a) has no time dependence (autonomous).
e Initial condition: u(0) = u,.
e u(t): solutions(orbits, trajectories).

Foru' = f(u), u(ty) = up.
e Theorem:if f has a continuous derivative in an open interval containing u,, then it has a unique
solution for t in an open interval containing t;.

Direction field
* Only depends on u, noton t.

K | t
u, is unstable.
o There are only 3 orbits to consider. Although they look different, they are the same function,

shifted in time

o Phase plot
Hwd

Hw )< A
N
Lol vy Y Mg {‘Y‘L\L(‘\.\L}
n o —— 4 b
- ’ ~ }*”‘ 1&, =
A\
{ \
UnSkdte xed Lot

d - .
e If f(u) > 0, then ?1% > 0, so u(t) is increasing
d . .
e If f(u) <0, then E% < 0, sou(t) is decreasing
J Iff(u*) = 0, for a certain value of u,, then u(t) = u, forall t, u, is an equilibrium solution (fixed
point).
e Due to uniqueness, trajectories cannot cross

¢ Direction fields lead to the simplest numerical method (forward Euler's method) to approximate
differential equations

Stability of fixed points
e Ifu, isan equilibrium, f(u.) > 0 foru > u, and f(u.) < 0foru <u,, ie. f'(uw.)>0u,is
unstable.
e Similarly, iff’(u*) < 0, then u, is stable.
. Iff’(u*) = 0, can't tell (possible bifurcation).
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Simple analytic solution to 1 = Au.
o u(t) = uge’t.

Logistic equation
e u=u(l—u.
Fixed points: f(u) =u(l—u) =0, u=0oru = 1.
e u = 1isstable and locally attractive (attracts all positive u).

o f'(1)=-1.
e u = 0isunstable.
o f'(0)=1.
e u < 0 are attracted to —oo.
: . _ e’
e Analytic solution: u(t) = (g gt
e Phase plot
| (;(LL)7(|~'\()1\
o TR o
/ \
£\ A\
/| S bk

Limiting behaviors
e If u, is a fixed point, then u(t) = u,.
e Otherwise, limy_ 4. u(t) is one of oo, —oo, a fixed point of f.

In 1D continuous time, there are no periodic solutions.

Fixed point approximation

f’(u*) * O,f(u*) =0, then% =fluw) = f’(u*)(u — u*).

Let v = u — u, be the signed distance to the fixed point.

% = %’;’ = f'(u.)v, so v = voe! @It grows or decays exponentially.
The time scale of exponential growth/decay is |f—,(17)—|
If |f’(u*)| is large, trajectories move quickly away/towards the equilibrium

Bifurcation

Theorem: if u, is a hyperbolic fixed point for a certain parameter value a,, then in a neighborhood of
a,, there is a single hyperbolic fixed point u(a) « u(a*) = u, and u depending continuously on a

with the same stability.

Bifurcations in fixed points can only happen when gg = 0.

Possible bifurcation points (u, a) satisfy
o Fixed point: f(u,a) = 0.
o Not hyperbolic: f,,(u,a) = 0.
Types
o Saddle node (one stable & one unstable)
= Equilibrium appear where there were none before
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O fa(u*,a*) <0.
O fuu(u*,a*) > 0.
= Aslongas fa(u*, a*) # 0 and fuu(u*, a*) # 0, we get a saddle node bifurcation

= Taylor approximation: f (u,a) = f,(a —a.) + %fuu(u - u*)z.

2fa

If fuu

>O no fixed pointfora > 0, u = u, + (a—a*)fora<0

O Stablllty of u depends on the sign of f,,,,.
= Normal form

O From Taylor approximation, letting v = x—_:_— a= M.
fa
f | fuul/2
o f(xp) = sign(fuu)(** = p).
o Trans critical bifurcation
= Two critical points meet and exchange stability

" fa=0fuu=B#0, faa =C, fua =D.
" letv=u—u,,a=a-—a,.
. f(v,a)z%Bv2+%Ca2+Dav.
B
. Letv—x\/_Bl/2 —p——szgn(B)
f(x,p) = 51gn(B)(x + px + yp?), wherey = —C—

o If 4y > 1, no reaI roots unless p = 0.
o If 4y < 1, trans critical bifurcation.
¢ Two lines with slopes m; = —%— %\/1—— 4y, my = —% +% 1—4y.
¢ Thisimplies £, - faa < fi2.
o Pitchfork bifurcation
" fa=0,facu=B#0,fuu =0, fruu = A # 0.
* f(v,a) = Bva + %Av3.
= Normal form: f(x,p) = x3 + px = x(x% + p).
= A > 0. (sub critical)
o x = 0 is a fixed point, stable for p < 0, unstable forp > 0.
o Whenp <0, x = +,/=p are unstable fixed points.

= A < 0.(super critical)
o x = 0, stable for p > 0, unstable forp < 0.
o x = +./—p, stable
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Logistic equation
.o _g 2
* u=au-—,u.
e Sinceu = au (1 — —) k is the carrying capacity.

o Scalingbyt=;s,u=kv,g=v—v .

Temperature in a chemical reaction

_Eaq
e Temperature dependent reaction rate: Ae RT.
o A:rate constant (1/s).
o E,: activation energy (J//mol)

o R:ideagasconstant R = 8. 314——1E

o T:temperatureinK.
_Ea
e With M kg of reactant, net reaction rate MAe RT.
_Ea
e Net heat generation: HMAe RT.
e c:thermal capacity of reactor & reactants(//K).

e |[finsulated, c —HMAe RT'

o T—>ooast—>oo

e With coolant: D(T —T,), c———HMAe RT—D(T—T)

CEq JD _ DEg
-Scallan———ut—s =——a===- ———e u—au u
80y J,] RHMA’ C  RHMA’ ds ( C)
* Hysteresis: dlfferent paths forward and backward on bifurcation diagram.
(i ! el uo,a )
=
l s
1 v
gf 6"~
g
O ‘
X L ‘/.'-(."yi;:c
Ue 4 e <22y ewd e
z '
(. ¢
(192 273781\
o v Slow fwyg c»{ pourDy neker
V\A,\\(xﬁb\,k

Numerical approximations of differential equations

e Givenu = f(u), u(0) = u,.
e Discretize in time computed values.

o u™ = u(nk).

o u® = u(0) exact.

T ..

o k=At= v (time steps).
* Need to see convergence limy_,o N0 max05j5N|uj - u(jk)| =0.
e Schemes

o Approximation of the map u™ — u™*1,
n+l _ ,m du k? d?u
o u =u +kdt(nk)+2 e (6).

o Numerical approximation: u™*1 = u™ + kf (u™)
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= Euler's method/forward Euler/explicit Euler
e Theorem (convergence): maxOSjSN|uj - u(jk)| < const - k.
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Vector dynamics

January 11, 2022 2:22 PM

Vector solution
« X =(x®ym).
e Autonomous component: X = f(X).
o Xx= f(x,y).
o y=g(xy).

Direction field:

e Ateveryx,y, draw a scaled vector

Linear systems
e X = AX, Aisa 2 X 2 matrix with real distinct non-zero eigenvalues 14, 1,.
o Non zero eigenvalues ensure X = 0 is the only fixed point.
o Ay # A, ensures the eigenvectors {v;, v,} form a basis.
¢ General solution: X = ae*1tv, + be’2tp,.
o aand b can be chosen to match any initial conditions X(0) = Xj.
o X(0) =av; +bv, = (v1|v2) (Z) a linear system, solvable since v; and v, are linearly

independent.

Fixed points (x., y.):
o f(xoy) =g(xny.) =0.
e With 44, 4, eigenvalues of A.
o If1; <0and 4, <0, X = 0is stable (stable node)
o IfA; >0and A, > 0, X = 0is unstable (unstable node)
o IfA; <0andA, <0,X = 0is unstable (saddle point)
o If 144, = 0, potential bifurcation.

Linear second order systems

x\' X
* Introduce y = x, can convert into (y) =A ( )

y
° eg.
¥ + 4% + 3x = 0, with (x) (0 1)(x)
o — — = .
X+ax+3x=0,withy =x,{, -3 —4)\y
x'=y
o ¥+sink+x%%+3x2=0,withy =x,z=%, y' =z
z' = —sinz —y% — 3x?

e System of second order equations
o ¥+yx+y>=0,y+x(x)?>+siny =0.
o letu=x,v=y,u=X%v=y.
o A system of four equations
"X =uU.
" y=v.
" = —yu—y?2
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» v =—xu’®—siny.

Nonlinear systems
¢ Fixed points
o Find linear approximation around the fixed point
= f(y)=f(xon) + flx—x)+ £y - y.)

= g(xy) = g(x.2.) + gx(x —x.) + 9, (y — 2.)-
o letu=x—x, V=9 — Y,

(=0 20
v 9x 9y | \v/
VAR . .
m = is the Jacobian matrix evaluated at x,, y,.
9x Yy
o If the eigenvalues of J are real and nonzero, we can determine the stability of (x*,y*) as
before.
» If1; <0andA, <0,X = 0is stable (stable node)

= [fA; > 0and A, > 0, X = 0is unstable (unstable node)
= [fA; <0and A, >0, X = 0is unstable (saddle point)

Gradient flows
e Given potential V(x, y) and f(x, y) = -V, g(x, y) = -V, X = —VV is the gradient flow.
e Note: % = —VZ -2 = —|VV|2,
o Vis always decreasing on trajectories, except at fixed points.
o So, gradient flows cannot have periodic orbits.
e Fixed points.
o VV = 0 (critical points for I/).

o

Ve VW
Consider the Jacobian matrix: | = < > xy).

Vo Wy
= |tis symmetric, and thus always have real eigenvalues with orthogonal
eigenvectors
MA; = det] =V Wy, — szy =D.
If D > 0, then either 4;&4, > 0 or 1, &4, < 0, node (can only occur when V,, and 1,
have the same sign)
If Ve <0, then4; > 0,1, > 0, unstable, local max.
If Vex > 0,then 4; <0, 1, < 0, stable, local min.
o If D <0,then 1,4, < 0, saddle point.
o If D =0, cannot tell
e Contours for V.
o Contours are approximately ellipses near local min/max
o Contours are approximately hyperbolas near a saddle point
o Vs perpendicular to contour lines.

o O

Steepest descent method for finding local minima of V (x).
e Local minima have VIV = 0, could do root finding using ] = H(n X n matrix) and solving a
linear system iteratively.
o Ifnistoo large, too computationally expensive.
e Idea: follow V downhill with a gradient flow X = V.
o Use forward Euler time stepping, X™*1 = X™ — kVV (X™).
o kisthe time step adjusted to get the fastest convergence to the minima possible.

Complex eigenvalues
o @bt — (cos bt + i sinbt)e.
e Growth or decay determined by a = Re(A).
o Re(1) < 0decay.
= x = 0 is a stable equilibrium (spiral sink).
= This can be directly known from eigenvalues (eigenvectors are not needed)
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o Re(4) > 0 growth.
o If Re(1) = 0, oscillations only, neither growth nor decay.
= x = (0 is stable but not asymptotically stable.

e Oscillatory (angular frequency) determined by b = Im(X1).

o Frequency: Iﬂzg—)

. 21
o Period: I_m_(/l_)
General solutions
e Complex form x = c;e™tv; + cye
o ¢y and ¢, are conjugates.
o To decide whether the spiral is clockwise or counter-clockwise, consider the system on x
axis.
* Realformx = d,Re(eM'v;) + dyIm(ettvy).

i Az

ty,.

Fixed points
e Attracting if all points start close enough to x, tend to x, as t — oo.
e An attracting fixed point has a basin of attraction
o All points which we start at and tend to x,, as t — oo.
¢ If all points are in the basin of attraction, we say x, is a global attractor.
e X, is Liapunov stable if all trajectories that start close enough to x, remain close enough to it
for all time
e Liapunov stable but not attracting (like center) is called neutrally stable
e Liapunov stable and attracting (spiral) is called asymptotically stable
e For non-linear 2D problems, we can have attracting fixed points that are not Liapunov stable

Some techniques to understand nonlinear systems
e Heteroclinic trajectory: trajectories connecting saddle nodes.
¢ Could plot some solutions (numerical approximations) starting at different initial conditions

« Trajectories passing through (x,y) have tangent vector t = (f(x, y),9(x, y)) Could plot
these on a grid (vector field). Could also plot the unit vectors
e Could plot nullclines: curves Cl:f(x, y) =0, Cz:g(x, y) = 0.
o Intersections of C; and C, are fixed points.
o Trajectories crossing C; must be vertical, going up if g > 0, down if g < 0.

Things we want to find
¢ Fixed points & periodic orbits & stability
e Basins of attractions of attracting features
e Bifurcations (changes in the structure of phase plane portrait with parameter variation)

Rabbit and sheep model
* x is the scaled rabbit population, y is the scaled sheep population
X = f(x,y) = x(3 —x— Zy).
y=9(xy)=y(2-x-y)
Two things to do with the fixed points
o Eigen analysis of Jacobian matrix at fixed points

o Plot nullclines f(x, y) =0, g(x, y) =0.
4 fixed points

o (0,0),] = ((?; (2)), A=3,v, = (é), Ay =2,v, = ((1)), nodal source.
o (02), ] = (:% _02), M=-1v = (_12>, Ay ==2,v, = (2), nodal sink.
o (3,0),] = (_03 :i), A =-3,v, = (é), Ay=-1,v, = (_31>, nodal sink.

o (1,1),] = (j :i) M=-1+V2,v, = <—1/§> Ay =—1—-+2,v, = <\/1§> saddle.
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e Nullclines:.
o x:0,y:—§+§.
o y=0,y=—-x+2.

Conservative systems
e X = f(x) (force only depends on position, undamped spring).
o V(x)= —foxf(s)ds.
X=u
u=f(x)=-V')
e Consider E(t) = % (u(t))2 +V(x(®).

dE . I . .
°© = 0, E is conserved in time (constant along trajectories).

e E(x,u) = %uz + V(x).
o Fixed points: u = 0, V’(x*) = 0.
o Assume V”(x*) # 0 (local min or max).

0 1) 2 "
= , A V" =0.
o ] <_V” 0 + o
o AtminofV,V" > 0,1 = +iv=V" (linear center).
= Fx E(O, x*) + %uz + %V”(x*)(x — x*)z, X, is stable but not asymptotically
stable.
= Contours are ellipses

o AtmaxofV,V" < 0,1 = +V—V" E has a saddle point.
1 1 2
" Ex V(x*) +Eu2 + EV”(x*)(x -x.)".
= Contours are hyperbolas

o Letu=3‘c,{

1D Index theory
e x = f(x,a) smooth. Consider an interval [0, b] with f(0) # 0 and f(b) # 0.
* Define the index of f on [0, b] as Ind(f, 0,b) = E’f(_((g)l_lf]f?_b)ﬂ _ {fi’ff(?gff(?z)><00
e Itis continuous and constant in a neighborhood of b that contains no fixed points.
e Ifc€(0,b)and f(c) # 0, then Ind(f, O,b) = Ind(f, 0, c) . Ind(f, c,b).
e If [0, b] contains only hyperbolic fixed points and there are p of them, then Ind(f, 0, b) =

(=1)P.

e Note: the index is continuous in the parameter space as long as fixed points do not cross 0 or

b.
e After a bifurcation the number of hyperbolic fixed points must be even if they were even
before, and odd if they were odd before

bifurcation |Before |After
SN 0 2

(@]
Transcritical | 2 2
Pitchfork 3 1

2D index theory
* X = f(x,a) smooth. Consider a closed curve C in the phase plane. It doesn't have to be a
trajectory, but f(x) # C forallx € C.
e Let ¢(x) € [0,21) be the angle that corresponds to f on C
o ¢ = atan2 (g(x, y),f(x, y))
o ¢= Arg(f + ig).
e Index of C is defined as I(f, C) = % [¢]C, where [d)]C is the change in ¢ as x go around C
counter-clockwise.
o I(f,C)isaninteger
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o Itis the net number of counter-clockwise revolutions made by the vector field as x go
around C counter-clockwise.
o If C is continuously deformed to C' without crossing any fixed points, I(f, C) = I(f, C’)
because it is continuous and is an integer
e Properties
o If C does not contain any fixed points, I(f, C) = 0.
o If Cis a periodic orbit, I(f,C) = 1.
= Every periodic orbit must contain at least 1 fixed point.
o Ift > —t (backwards in time), f - —f, ¢ > ¢ + m, index does not change I(f,C) =
1(-f,C).
o We can define the index of an isolated fixed point I, nodal source/sink, spiral
source/sink all have index 1, saddle has index —1.
* If the fixed points are hyperbolic, I, = £1.
e If C surrounds n isolated fixed points py, ..., pn, then I(f, C) = 2?=1 Ipz'
¢ Index of C does not change with dynamic system parameters as long as no fixed point cross
the curve
o When a > 0, no fixed point, I(C) = 0, then I(C) = 0 fora < 0.
e Bifurcations with index theory
o Subcritical pitchfork (total index —1)

= a <0onesaddle|a > 0, 2 saddles + 1 node

o Supercritical pitchfork (total index 1)

s | a < 0onenode|a > 0,2nodes + 1 saddle

o Trans-critical (total index 0)

= | Saddle + node | Node + saddle

o Hopf bifurcation (total index 1)

= | Spiral sink | Spiral source

Limiting behaviors

Discrete x™*1 = f(x™)

Continuous 1D x = f(x)

Continuous 2D, x = f(x)

|x™| = oo

x(t) - to

|x| - oo

x™ - x, (fixed point)

x™ - x, (fixed point)

x™ - x, (fixed point)

x™ —periodic orbit

No periodic orbits

Has periodic orbit

(fx1, X2, 000s X })

No chaos

Chaotic (strange) attractor | No chaos

Poincare-Bendixson theorem
e If the following 3 assumptions are satisfied, then R contains a closed orbit(periodic orbit).
o R isaclosed bounded subset of the plane
o R contains no fixed points (can be an annulus)
o thereis a trajectory T that is confined in R.
e Let &, be the distance of x,, to L, the map & — next crossing of L is called the Poincare map,
which can be used to determine the stability of the periodic orbit.
e The P-B provided periodic orbit must be at least one-sided stable
e We can use P-B theorem to prove the existence of periodic orbits using a trapping region R
(closed and bounded annulus, in which at the boundaries, all trajectories point inwards)
o If the trapping region contains no fixed point, then it contains a periodic orbit

Converting from cartesian coordinates to polar coordinates

. joo KRRV
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Van der Pol oscillator
e F+p(x?—1)x+x=0,u>0.
e Write in terms of first order systems
3

o Let F(x) =£3——x,F’(x) =x2—-1,w=x+uF(x)

o x=w-—uF(x),w=—x.
e Only fixed point, x =w =0

1 3 \f_
A= + ——1.

° /= ( 1 0) 4

o Spiral source for 0 < u<?2.

o Nodal source for u > 2.

. d x*

* Consider — (x2 +w?) = —2u <? - x2>.

o Circles won't work for a trapping region.

/!\

' ['c A) {L f\,ki:?l.
ANy o — J‘
iy N,
”?‘f_‘_:l‘w‘*f‘T ¢ ré) &
ecge
AR
/~ |
/¥ )y |
f,_’ 33 S \' "4
W
° A & 3
/ A -
/ \ |
\: |
(4-4)
£ T
SyMubn ¢ S
o hM‘S silg . 1 (O-AJ

* Toshow B < A.
o Consider I = —2pu [,

@) Il = —nytlx——xzdt*'z.

t3x

— x2dt.

o I, = —Zﬂftzx_—xzdt — —00,
o Iy= —2,uft3x xzdt~i.
e |n polar coordlnates
o = #xF(x)
0 f= 141
e Whenu =0.
x\ _ (0 1\rx T
o (w) = (_1 0) (w)’ A = =i, origin is a linear center.
o 7r=0,0=—

o Circles period 2, clockwise.
e For small u > 0, we get a periodic orbit at radius 2
o r=r1+ ur/(t).
o 8= —t+ ud(t).
o Boundary value problem:

@ Gy e
» 9(0)=0,6(T) =2m, r(O) =r(T).

o Use approximation, 7 = ur; = —ucost F(r* cos t).
» 0=7,(2n) —1ry(0) = fozn (? cos*t — 1, cos? t) dt = nr, (— - 1)
= Sor, = 2.

2D bifurcation example
* X =—ax+y.
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o yo= X _
y= 1+x2 Y.
e Plot the nullclines where x = 0 ory = 0.
o y=ax,y =a.
oy X 2w
Y=tV = (1+x2)2.
g | /Y=ax O
}
o | B
|" ‘& 7/
.//// / Q)

— _g_' — “X
1

¢ Saddle node bifurcation at a,.

o One eigendirection at a,, x,, y, has eigenvalue 0.

o The other eigendirection will have nonzero eigenvalue
e Find a,, x,, y.. (intersection of nullclines)
1
E.
e Evaluate the Jacobian at the bifurcation point.

_1 oy
2

2x

=

1
o x*zl;a*:?y*:

o J, =
ER—
2

1
0/11:0,171: 1 .
2

3 1
O AZ - —E, 172 - (_1)
e 2isnodalsink, 1is saddle

Summary of 2D bifurcation
e |f a hyperbolic fixed point with real eigenvalues changes type or appears at a,, then J, has
eigenvalue 4; = 0 with eigenvector v4, and nonzero 4, with eigenvector v,.
* Near a,(both sides), solutions either grow or decay in v, direction.
e Thereis a 1D bifurcation (saddle node, transcritical, pitchfork) in v, direction.

Hopf bifurcation
e Spiral source < spiral sink.
e Only possible with complex eigenvalues 1 = a + Si.
o a(a.) = 0 (changes between positive and negative).

o ,B(a*) * 0.

Example in polar coordinates
e Assume 6 = 1in all cases.
e Supercritical hopf bifurcation
o F=ur—r3.
o Ifu<0,7<O0forallr, r = 0is spiral sink (global attractor).
o Ifu>0,7>0for0<r<./u r=0Iisunstable spiral source, r = /i is a stable
periodic orbit.
i g Crd e 2% velie
ay {%I‘} Site C(\Ju) .

e — = T — ==

r\——” M

e Subcritical Hopf bifurcation
o 7 =ur+r3.
o fu>0,7>0forallr >0,r = 0is aspiral source.
o Ifu<0,7<0for0<r<./—u,r=_0isspiral sink, r = \/—p is unstable periodic orbit.
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s A§ el oduc
~ & o r;(\ Im} Pp/‘/\

e Subcritical but with hysterisis.

o F=ur+r3—rd°,
L . 1+,/1+4p
o Periodic orbits when 1% = Lz_'
[ i—-U, N

o N‘ear\r =0,u=0,stilla sub&ritical Hopf bifurcation.

MATH345 Page 19



	Introduction
	Discrete dynamical system
	Scalar dynamics
	Vector dynamics

