Introduction

January 7, 2022 9:44 PM

Dynamic system: physical (biological or financial) systems whose state $u(t)$ changes in time in a deteriministic way

- Differential equation initial value problem
	- \circ Equation (defines the system): $\frac{du}{dt} = u' = f(u)$.
	- \circ Initial condition: $u(0) = u_0$.
	- \circ If $f(u)$ has no t dependence, it is called <mark>autonomous</mark>
		- Solutions are called **trajectories**.
- Systems with a parameter $a, \frac{d}{dt}$ • Systems with a parameter $a, \frac{du}{dt} = f(u; a)$.
	- \circ How trajectories change with a ?
	- \circ How the long term behavior ($\lim_{t\to\infty} u(t)$) changes with a ?
		- **E** Changes in limiting behavior with a are called **bifurcations**.

Discrete dynamical system

January 11, 2022 2:22 PM

Discrete time

• Time is integer $n = 0,1,2, \dots$

Dynamic system

- State at time *n* is X^n .
- Discrete dynamical system: $X^{n+1} = f(X^n; r)$, X^0 is given initial condition.
	- Also called iterative map
	- \circ Confined to a closed bounded interval $[a, b]$. This requires $f(x; r) \in [a, b]$ for all $x \in [a, b]$

Fixed point

- If $f(X_*) = X_*$, then X_* is a <mark>fixed point</mark> or <mark>equilibrium</mark> of the map
- If X^0 is close to X_* , it stays close to X_* , then X_* is a **stable fixed point**
- If X^0 is close to X_* , and $\lim_{n\to\infty} X^n = X_*$, then X_* is an asymptotically stable fixed point (attractor)
- If $\lim_{n\to\infty} X^n = X_*$ for any X^0 , then X_* is a global attractor
- We can use numerical root finding to determine X_* more accurately. \circ It is a root of $g(x) = f(x) - x$ with fixed r.
- Can also use Cobweb diagram to determine X_{*} .

Basin of attraction

- Suppose we have a fixed point X_* such that $X_* = f(X_*)$.
- Consider X^0 near X_* such that $X^0 X_*$ is small
- Let z^n be the signed distance of X^n to X_* , $z^n = X^n$
- If $z^n \to 0$ as $n \to \infty$ then $X^n \to X_*$ and X_* is an asymptotically stable fixed point
- The set of X^0 that has this property is called the basin of attraction of

Tangent line approximation

- $f(X^n) = f(X^* + z^n) \approx f(X^*) + f'(X^*)z^n$. \circ Then, $z^{n+1} = f'(X_*)z^n$. •
- If $|f'(X_*)| < 1$, $z^n \to 0$ as $n \to \infty$, X_* is an asymptotically stable fixed point
- If $|f'(X_*)| > 1$, X_* is an unstable fixed point(repeller)
- If $|f'(X_*)|=1$, X_* 's stability cannot be told
- If $|f'(X_*)| \neq 1$, X_* is a hyperbolic fixed point
- If $|f'(X_*)| = 0$, $z^n \to 0$ very quickly, X_* is <mark>super stable</mark>

Consider the limiting behavior for all $r \in [-1,1]$ for $X^{n+1} = f(X^n; r) = r \cos X^n$.

- For each r, there is a single stable fixed point (global attractor) $X_*(r)$.
- No bifurcations
- A bifurcation map shows the behavior of the system as $n \to \infty$ for all r and all X^0 .

Newton's method

- Iterative method for root finding
- Find x such that $g(x) = f(x) x = 0$.
- Requirement: $g'(x_*) \neq 0$ and initial guess x^0 is close enough to the root
- x^1 is computed as the root of the tangent line at $(x^0, g(x^0))$.

○
$$
y = g(x^0) + g'(x^0)(x - x^0) = 0.
$$

○ So $x^1 = x^0 - \frac{g(x^0)}{g'(x^0)}.$

Repeat $x^{n+1} = f(x^n)$ with $\frac{f(x)}{f(x)} = x - \frac{g(x)}{g(x)}$ • Repeat $x^{n+1} = f(x^n)$ with $f(x) = x - \frac{g(x)}{g'(x)}$.

 \circ x_* is a (super) stable fixed point of the iterative map.

MATH345 Page 2

Logistic map

- $f(x; r) = rx(1-x)$.
	- \circ Map on [0,1] as long as $r \in [0,4]$.
- Fixed points

 \circ

- $\circ \quad x = 0$: stable if $r < 1$, unstable if $r > 1$.
- $x = 1 \frac{1}{x}$ \circ $x = 1 - \frac{1}{r}$ only in the interval if $r > 1$: stable if $1 < r < 3$.
- The global attractor changes at $r=1$, there is a **bifurcation**

- Periodic orbit for $r > 3$ (period 2) •
	- \circ $f(p) = q$ and $f(q) = p$.
	- \circ p and q are fixed points of the doubly iterative map

•
$$
f(f(q)) = q, f(f(p)) = p.
$$

\n• $p, q = \frac{r+1\pm\sqrt{(r+1)(r-3)}}{r+1\pm\sqrt{(r+1)(r-3)}}.$

■ *p*,
$$
q = \frac{r+1\pm\sqrt{(r+1)(r-3)}}{2r}
$$
.
Stability of double map $f(f(x))$:

- Stable if $\left| \frac{d}{dt} \right|$ $\frac{d}{dx}f(f(x)) = |f'(f(x))f'(x)| < 1.$ \Box $|f'(q)f'(p)| < 1.$ ▪
- Unstable if $\frac{d}{dt}$ Unstable if $\left| \frac{a}{dx} f(f(x)) \right| = |f'(f(x))f'(x)| > 1$.
- It is stable for $r < 3.4495$.

Attractor

•

- Def: an attractor A of a discrete dynamic system is a closed and bounded set with the following properties
	- \circ A is invariant. If $x^0 \in A$, then $f(x^n) \in A$.
	- \circ A attracts an open set U containing A. For all $x^0 \in U$, $dist(x^n, A) \to 0$ as $n \to \infty$.
	- \circ A is minimal (no closed proper subsets of A satisfy the first 2 properties).
- Any hyperbolic stable period m orbit is an attractor
	- For period 2, $f(p) = q$, $f(q) = p$, $A = \{p, q\}$.
- For the logistic map, we can also have a chaotic or strange attractor
	- Uncountably infinite number of points
	- Fractal dimension
	- Sensitive dependence on initial conditions
- **On average, trajectories separate exponentially** $(|x^n \widehat{x^n}| \approx e^{\lambda n}|x^0 \widehat{x^0}|$ with (0)
- For stable orbits, $\lambda < 0$.

Counting

- A countably infinite set has an infinite number of entries that can be put in an ordered list ○ e.g. integers, rational numbers.
- Uncountably infinite set: cannot be put in an ordered set
	- e.g. real number

Dimension

- Interval (a, b) with $b > a$ is one dimensional
- $\{a\}$ and finite collection of points are zero dimensional.
- Box dimension
	- $\circ A \subset [0,1]$. For every ϵ , cover A with the minimum number $N(\epsilon)$ of intervals of length ϵ .
	- \circ If A is a finite number M of points, $N(\epsilon) \leq M$.
	- If A is a subinterval of length L, $N(\epsilon) = \frac{L}{\epsilon}$ ○ If A is a subinterval of length L, $N(\epsilon) = \frac{L}{\epsilon}$ (round up).
	- If $N(\epsilon) \sim \frac{c}{\epsilon}$ \circ If $N(\epsilon) \sim \frac{c}{\epsilon^{d}}$, say A has dimension d.

• With
$$
N \to \infty
$$
, $\epsilon \to 0$, $d = \lim_{\epsilon \to 0} -\frac{\ln N(\epsilon)}{\ln \epsilon}$.

Uncountably infinite set with fractal dimension (Cantor set)

- Length (measure) zero
- Uncountable
- Dimension with $\epsilon = \left(\frac{1}{2}\right)$ $\frac{1}{3}$ $\int_0^n : d = \frac{1}{1}$ • Dimension with $\epsilon = \left(\frac{1}{3}\right) : d = \frac{\ln 2}{\ln 3}$ is a fractal dimension.
- Like chaotic attractors, the cantor set is <mark>self similar</mark>
	- $S_{\infty} \cap \left[0, \frac{1}{2}\right]$ \circ $S_{\infty} \cap [0, \frac{1}{3}]$ is the same as S_{∞} scaled down by $\frac{1}{3}$.

1D Taylor polynomial approximation for a smooth function $f(x)$.

- Tangent line: $T_1(x) = f(a) + f'(a)(x a)$ valid for x near a.
- Add an error term: $f(x) = T_1(x) + \frac{1}{2}$ • Add an error term: $f(x) = T_1(x) + \frac{1}{2}f''(\theta)(x - a)$ for some $\theta \in (a, x)$.
- Quadratic approximation: $T_2(x) = T_1(x) + \frac{1}{2}$ • Quadratic approximation: $T_2(x) = T_1(x) + \frac{1}{2}f''(a)(x-a)^2$.

$$
\circ \ \ f(x) = T_2(x) + \frac{1}{6} f'''(\theta)(x - a)^3.
$$

2D approximation for $f(x, y)$

- First order (tangent plane): $T_1(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$. \circ Error size $(x-a)^2 + (y-b)^2$.
- Quadratic: $T_2(x,y) = T_1(x,y) + \frac{1}{2}$ $\frac{1}{2}f_{xx}(x-a)^2 + f_{xy}(x-a)(y-b) + \frac{1}{2}$ • Quadratic: $T_2(x,y) = T_1(x,y) + \frac{1}{2}f_{xx}(x-a)^2 + f_{xy}(x-a)(y-b) + \frac{1}{2}f_{yy}(y-b)^2$. \circ Error size $(x-a)^3 + (y-b)^3$.

•
$$
T_3(x, y) = T_2(x, y) + \frac{1}{6} f_{xxx}(x - a)^3 + \frac{1}{2} f_{xxy}(x - a)^2(y - b) + \frac{1}{2} f_{xyy}(x - a)(y - b)^2 + \frac{1}{6} f_{yyy}(y - b)^3
$$

• Error size $(x - a)^4 + (y - b)^4$.

For any **hyperbolic fixed point** x_x at r_x

- Fixed: $f(x_*, r_*) = x_*$.
- Hyperbolic: $|f_x(x_*, r_*)| = 1$.
- Use tangent approximation: $f(x,r) = f(x_*, r_*) + f_x(x-x_*) + f_r(r-r_*).$

•
$$
x \approx x_* + \frac{f_r}{1 - f_x} (r - r_*)
$$
.

There is a fixed point for r near r_* , varying approximately linear with $r, \frac{d}{d}$ $\frac{dx}{dr} = \frac{f}{1}$ \circ There is a fixed point for r near r_* , varying approximately linear with r , $\frac{dx}{dr} = \frac{Fr}{1 - f_x}$.

• Stability

$$
\circ \frac{d}{dr}\left(f_x(x(r),r)\right) = f_{xx}\frac{f_r}{1-f_x} + f_{xr}.
$$

- So $\frac{d}{dx}$ \int_0^{∞} So $\left| \frac{d}{dr} (f_x(x(r), r)) \right| \neq 1$ for some neighborhood of r near r_* .
- If x_*, r_* is a hyperbolic fixed point, there is a neighborhood of r_* , where there is a unique hyperbolic fixed point $x(r)$ with the same stability as x_* ,
- Bifurcation of fixed points can only happen when $f_x = \pm 1$.

○ For bifurcations of fixed points, we require
$$
\begin{cases} f(x,r) - x = 0 \\ f_x(x,r) \pm 1 = 0 \end{cases}
$$

Newton's method for root finding $\{\}$ f \overline{g})

- Initial guess (x^0, y^0) .
- Use tangent approximations to f and g based on (x^0, y^0) . $f(x, y) = f(x^0, y^0) + f_x(x - x_0) + f_y(y - y^0).$

$$
g(x, y) = g(x0, y0) + gx(x0 + gy(y0) + gy(y0)
$$

0 g(x, y) = g(x⁰, y⁰) + g_x(x - x₀) + g_y(y - y⁰).

Take the next approximation to be the root of the linear system •

$$
\circ f(x^0, y^0) + f_x(x^1 - x^0) + f_y(y^1 - y^0) = 0.
$$

\circ g(x^0, y^0) + g_x(x^1 - x^0) + g_y(y^1 - y^0) = 0.

This is a linear system $J\begin{pmatrix} x^1 - x^0 \\ y^1 - x^0 \end{pmatrix}$ • This is a linear system $J\begin{pmatrix} x - x \\ y^1 - y^0 \end{pmatrix} = -R^0$

$$
J = \begin{pmatrix} f_x & f_y \\ g_x & g_y \end{pmatrix}
$$
 is a 2 × 2 Jacobian matrix evaluated at (x^0, y^0) .
\n
$$
R^0 = \begin{pmatrix} f(x^0, y^0) \\ g(x^0, y^0) \end{pmatrix}
$$
 is the residue.

• Assume *J* is invertible, it will be invertible for
$$
x^0
$$
, y^0 near x_* , y_* .

- Solve $Jz = -R^0$ Then $\begin{pmatrix} x^1 \\ y^1 \end{pmatrix}$ y^1 x^0 • Then $\begin{pmatrix} x \\ y^1 \end{pmatrix} = \begin{pmatrix} x \\ y^0 \end{pmatrix}$
- Repeat
- This is a vector discrete dynamic system with a super stable fixed point at the root

Types of bifurcation

• Appearance of equilibrium points (saddle-node bifurcations)

$$
\circ \quad f(x_*, r_*) = x_*.
$$

$$
\circ \quad f_{x}(x_{*}, r_{*})=1.
$$

$$
\circ \quad f_r(x_*, r_*) = a > 0.
$$

$$
\circ \ \ f_{xx}(x_*, r_*) = -b < 0.
$$

- Pitchfork bifurcation
	- \circ Isolated critical point $x_c(r)$ that changes stability

•
$$
f_x(x_c(r), r) \begin{cases} < 1, r < r_* \\ = 1, r = r_* \\ > 1, r > r_* \end{cases}
$$

○ For this to occur

$$
\bullet \quad f_r(x_*, r_*)=0.
$$

- $f_{xx}(x_*, r_*) = 0.$
- $f_{xr}(x_*,r_*)=a>0.$
- $f_{xxx}(x_*,r_*)=-b<0.$
- For $r > r_*$, there are two stable fixed points of g , $x_{\pm}(r) = x_* \pm \int_{0}^{6}$ $\frac{50}{b}$ Ų **Example 1** For $r > r_*$, there are two stable fixed points of g , $x_{\pm}(r) = x_* \pm \int_{r_0}^{r_0} (r - r_*)$.
	- x_+ cannot be fixed points of f
	- **To be a fixed point of g, they must be a periodic orbit of f.**
- Flip bifurcation
	- **O** Lone critical point $x_c(r)$ with $\frac{\partial f}{\partial x}(r, x_c)$
- \circ Change stability with $\frac{\partial f}{\partial x}(r, x_c(r)) = -1.$
- \circ At the double map, $\frac{\partial g}{\partial x} = 1$.
- It is supercritical if signs: $g_{xr} > 0$ and $g_{xxx} < 0$.

Model a system as a discrete dynamic system

- x^n : number of members of a UBC club in year n ($n = 0$ at year 1990)
- Parameters
	- \circ a: number of potential new members to the club every year
	- \circ The number of people signing up to year $n+1$ depends on how happy people were in year \boldsymbol{n}
		- $H(0) = 0$.
		- $H(b) = 0 (b > 0).$
		- Simplest function: $H(x) = \frac{4}{b^2}$ **Simplest function:** $H(x) = \frac{4}{b^2}x(b-x)$.
	- \circ The fraction F ($0 \leq F \leq 1$) of people signing up depends on how happy the club was the year before
		- $F(H) = e^{r(H-1)}$.
- $x^{n+1} = f(x^n; a, b, r)$.
	- With parameters above, $f = (a + x)e^{r(\frac{4}{b^2})}$ **O** With parameters above, $f = (a + x)e^{r(\frac{x}{b^2}x(b-x)-1)}$.
- We can scale (nondimensionalize) to reduce the number of parameters to 2
	- Scale x by $b: x = yb$, then $\frac{4}{b^2}x^n(b x^n) = 4y^n(1 y^n)$.
	- Then $y^{n+1} = \left(\frac{a}{b}\right)$ $\left(\frac{a}{b}+y^n\right)e^{r\left(4y^n(1-y^n)-1\right)}$ and we can replace $\alpha=\frac{a}{b}$ \circ Then $y^{n+1} = \left(\frac{a}{b} + y^n\right) e^{r(4y^n(1-y^n)-1)}$ and we can replace $\alpha = \frac{a}{b}$.

Scalar dynamics

January 11, 2022 2:22 PM

Continuous time dynamic system (scalar quantities) $u(t)$:

- $\dot{u} = u' = \frac{d}{dt}$ • $\dot{u} = u' = \frac{du}{dt} = f(u; a)$. \circ $f(u; a)$ has no time dependence (autonomous).
- Initial condition: $u(0) = u_0$.
- $u(t)$: solutions(orbits, trajectories).

For $u' = f(u)$, $u(t_0) = u_0$.

• Theorem: if f has a continuous derivative in an open interval containing u_0 , then it has a unique solution for t in an open interval containing t_0 .

Direction field

• Only depends on u , not on t .

- \circ u_* is unstable.
- There are only 3 orbits to consider. Although they look different, they are the same function, shifted in time
- <mark>Phase plot</mark>

- If $f(u) > 0$, then $\frac{du}{dt} > 0$, so $u(t)$ is increasing
- If $f(u) < 0$, then $\frac{du}{dt} < 0$, so $u(t)$ is decreasing
- If $f(u_*) = 0$, for a certain value of u_* , then $u(t) = u_*$ for all t, u_* is an equilibrium solution (fixed point).
- Due to uniqueness, trajectories cannot cross
- Direction fields lead to the simplest numerical method (forward Euler's method) to approximate differential equations

Stability of fixed points

- If u_* is an equilibrium, $f(u_*) > 0$ for $u > u_*$ and $f(u_*) < 0$ for $u < u_*,$ i.e. $f'(u_*) > 0$ u_* is unstable.
- Similarly, if $f'(u_*) < 0$, then u_* is **stable**.
- If $f'(u_*) = 0$, can't tell (possible **bifurcation**).

Simple analytic solution to $\dot{u} = \lambda u$.

• $u(t) = u_0 e^{\lambda t}$.

Logistic equation

- $\dot{u} = u(1 u)$.
- Fixed points: $f(u) = u(1 u) = 0$, $u = 0$ or $u = 1$.
- $u = 1$ is stable and locally attractive (attracts all positive u).
- $f'(1) = -1.$
- $u = 0$ is unstable. $f'(0) = 1.$
- $u < 0$ are attracted to $-\infty$.
- Analytic solution: $u(t) = \frac{u_0 e^t}{(1-u_0)^2}$ • Analytic solution: $u(t) = \frac{u_0 c}{(1 - u_0) + u_0 e^t}$.
- Phase plot

Limiting behaviors

- If u_* is a fixed point, then $u(t) = u_*$.
- Otherwise, $\lim_{t\to+\infty}u(t)$ is one of ∞ , $-\infty$, a fixed point of f.

In 1D continuous time, there are no periodic solutions.

Fixed point approximation

- $f'(u_*) \neq 0$, $f(u_*) = 0$, then $\frac{du}{dt} = f(u) \approx f'(u_*)(u u_*)$.
- Let $v = u u_*$ be the signed distance to the fixed point.
- \boldsymbol{d} $\frac{du}{dt} = \frac{d}{dt}$ • $\frac{du}{dt} = \frac{dv}{dt} = f'(u_*)v$, so $v = v_0 e^{f'(u_*)t}$ grows or decays exponentially.
- The time scale of exponential growth/decay is $\frac{1}{|f'(u_*)|}$.
- If $|f'(u_*)|$ is large, trajectories move quickly away/towards the equilibrium

Bifurcation

- Theorem: if u_* is a hyperbolic fixed point for a certain parameter value a_* , then in a neighborhood of a_* , there is a single hyperbolic fixed point $u(a) \leftarrow u(a_*) = u_*$ and u depending continuously on with the same stability.
- Bifurcations in fixed points can only happen when $\frac{\partial J}{\partial u} = 0$.
- Possible bifurcation points (u, a) satisfy
	- \circ Fixed point: $f(u, a) = 0$.
	- \circ Not hyperbolic: $f_u(u, a) = 0$.
- Types
	- Saddle node (one stable & one unstable)
		- Equilibrium appear where there were none before

$$
\Box f_a(u_*,a_*)<0.
$$

$$
\Box f_{uu}(u_*,a_*)>0.
$$

- As long as $f_a(u_*, a_*) \neq 0$ and $f_{uu}(u_*, a_*) \neq 0$, we get a saddle node bifurcation
- Taylor approximation: $f(u,a) = f_a\big(a-a_*\big) + \frac{1}{2}$ $\frac{1}{2} f_{uu}(u - u_*)^2$. ▪

$$
\Box \quad \text{If } \frac{f_{uu}}{2f_a} > 0 \text{, no fixed point for } \alpha > 0 \text{, } u = u_* \pm \sqrt{-\frac{2f_a}{f_{uu}}(a - a_*)} \text{ for } \alpha < 0.
$$

- \Box Stability of u depends on the sign of f_{uu} .
- Normal form

$$
\Box \quad \text{From Taylor approximation, letting } v = x \frac{1}{\sqrt{|f_{uu}|/2}}, \alpha = p \frac{-sign(f_{uu})}{f_a}.
$$

 \Box $f(x,p) = sign(f_{uu})(x^2-p).$

○ Trans critical bifurcation

- Two critical points meet and exchange stability
- $f_a = 0$, $f_{uu} = B \neq 0$, $f_{aa} = C$, $f_{ua} = D$.
- let $v = u u_*$, $\alpha = a a_*$.
- $f(v, \alpha) = \frac{1}{2}$ $\frac{1}{2}Bv^2 + \frac{1}{2}$ • $f(v, \alpha) = \frac{1}{2} B v^2 + \frac{1}{2} C \alpha^2 + D \alpha v.$ $\overline{1}$

• Let
$$
v = x \frac{1}{\sqrt{|B|/2}}
$$
, $\alpha = p \frac{\sqrt{|B|}}{D} sign(B)$.

$$
\int f(x,p) = sign(B)\left(x^2 + px + \gamma p^2\right), \text{ where } \gamma = \frac{BC}{4D^2}.
$$

$$
\Box x = \frac{1}{2} \left(-p \pm \sqrt{p^2(1-4\gamma)} \right).
$$

- \Box If $4\gamma > 1$, no real roots unless $p = 0.$
- \Box If $4\gamma < 1$, trans critical bifurcation.

• Two lines with slopes
$$
m_1 = -\frac{1}{2} - \frac{1}{2}\sqrt{1-4\gamma}
$$
, $m_1 = -\frac{1}{2} + \frac{1}{2}\sqrt{1-4\gamma}$.

• This implies
$$
f_{uu} \cdot f_{aa} < f_{ua}^2
$$
.

○ Pitchfork bifurcation

▪

- $f_a = 0, f_{au} = B \neq 0, f_{uu} = 0, f_{uuu} = A \neq 0.$
- $f(v, \alpha) = Bv\alpha + \frac{1}{c}$ • $f(v, \alpha) = Bv\alpha + \frac{1}{6}Av^3$.
- Normal form: $f(x, p) = x^3 + px = x(x^2 + p)$.
- $A > 0$. (sub critical)
	- \Box $x=0$ is a fixed point, stable for $p< 0$, unstable for $p> 0$.

□ When
$$
p < 0
$$
, $x = \pm \sqrt{-p}$ are unstable fixed points.

 \Box $x = 0$, stable for $p > 0$, unstable for $p < 0$.

$$
x = \pm \sqrt{-p}
$$
, stable

Logistic equation

- $\dot{u} = au \frac{a}{b}$ • $\dot{u} = au - \frac{u}{k}u^2$.
- Since $\dot{u} = au \left(1 \frac{u}{\nu}\right)$ • Since $\dot{u} = au\left(1-\frac{u}{k}\right)$, k is the carrying capacity.
- Scaling by $t=\frac{1}{a}$ $\frac{1}{a}$ s, $u = kv, \frac{d}{d}$ • Scaling by $t = \frac{1}{a} s$, $u = kv$, $\frac{du}{ds} = v - v^2$.

Temperature in a chemical reaction

- Temperature dependent reaction rate: $Ae^{-\frac{E}{R}}$ • Temperature dependent reaction rate: $Ae^{-\overline{RT}}$.
	- \circ A: rate constant (1/s).
	- \circ E_a : activation energy (*J*/*mol*)
	- \circ R: idea gas constant $R = 8.314 \frac{J}{mol \cdot K}$.
	- \circ T: temperature in K.
- With M kg of reactant, net reaction rate $MAe^{-\frac{E}{R}}$ • With M kg of reactant, net reaction rate $MAe^{-\overline{RT}}$.
- Net heat generation: $HMAe^{-\frac{E}{R}}$ • Net heat generation: $HMAe^{-\overline{RT}}$.
- c : thermal capacity of reactor & reactants(J/K).
- If insulated, $c \frac{d}{dt}$ $\frac{dT}{dt} = HMAe^{-\frac{E}{R}}$ R \circ $T \to \infty$ as $t \to \infty$. •
- With coolant: $D(T T_c)$, $c \frac{d}{dt}$ $\frac{dT}{dt} = HMAe^{-\frac{E}{R}}$ • With coolant: $D(T - T_c)$, $c \frac{dH}{dt} = H M A e^{-\overline{RT}} - D(T - T_c)$.

• Scaling by
$$
T = \frac{E_a}{R} u
$$
, $t = sJ$, $J = \frac{CE_a}{RHMA}$, $a = \frac{JD}{C} = \frac{DE_a}{RHMA}$, $\frac{du}{ds} = e^{-\frac{1}{u}} - a(u - u_c)$.

● Hysteresis</mark>: different paths forward and backward on bifurcation diagram.

Numerical approximations of differential equations

- Given $\dot{u} = f(u)$, $u(0) = u_0$.
- Discretize in time computed values.
	- $u^n = u(nk)$.
	- \circ $u^0 = u(0)$ exact.

$$
\circ \ \ k = \Delta t = \frac{T}{N} \text{ (time steps)}.
$$

- Need to see convergence $\lim_{k\to 0,N\to\infty} \max_{0\leq j\leq N} |u^j-u(jk)|=0.$
- Schemes •
	- \circ Approximation of the map $u^n \to u^{n+1}$.

$$
\circ \ u^{n+1} = u^n + k \frac{du}{dt}(nk) + \frac{k^2}{2} \frac{d^2u}{dt^2}(\theta).
$$

 \circ Numerical approximation: $u^{n+1} = u^n + kf(u^n)$

■ Euler's method/forward Euler/explicit Euler

• Theorem (convergence): $\max_{0\leq j\leq N}\bigl|u^j-u\bigl(jk\bigr)\bigr|< const\cdot k.$

Vector dynamics

January 11, 2022 2:22 PM

Vector solution

- $X(t) = (x(t), y(t)).$
- Autonomous component: $X = f(X)$. $\circ \dot{x} = f(x, y).$ $\circ \dot{y} = g(x, y).$

Direction field:

• At every x, y , draw a scaled vector

Linear systems

- $\dot{X} = AX$, A is a 2 \times 2 matrix with real distinct non-zero eigenvalues λ_1, λ_2 .
	- \circ Non zero eigenvalues ensure $X = 0$ is the only fixed point.
	- $\lambda_1 \neq \lambda_2$ ensures the eigenvectors $\{v_1, v_2\}$ form a basis.
- General solution: $X = ae^{\lambda_1 t} v_1 + be^{\lambda_2 t} v_2$.
	- \circ a and b can be chosen to match any initial conditions $X(0) = X_0$.
	- $X(0) = av_1 + bv_2 = (v_1|v_2) \binom{a}{b}$ α $X(0) = av_1 + bv_2 = (v_1|v_2) {n \choose b}$ a linear system, solvable since v_1 and v_2 are linearly independent.

Fixed points (x_*, y_*) :

- $f(x_*, y_*) = g(x_*, y_*) = 0.$
- With λ_1, λ_2 eigenvalues of A.
	- If λ_1 < 0 and λ_2 < 0, $X = 0$ is stable (stable node)
	- If $\lambda_1 > 0$ and $\lambda_2 > 0$, $X = 0$ is unstable (unstable node)
	- o If $\lambda_1 < 0$ and $\lambda_2 < 0$, $X = 0$ is unstable (saddle point)
	- \circ If $\lambda_1 \lambda_2 = 0$, potential bifurcation.

Linear second order systems

- Introduce $y = \dot{x}$, can convert into χ $\binom{1}{y}$ $\overline{ }$ $=$ χ • Introduce $y = \dot{x}$, can convert into $\begin{pmatrix} y \\ y \end{pmatrix} = A \begin{pmatrix} y \\ y \end{pmatrix}$.
- e.g. •

$$
\therefore \quad \ddot{x} + 4\dot{x} + 3x = 0, \text{ with } y = \dot{x}, \begin{pmatrix} x \\ y \end{pmatrix}' = \begin{pmatrix} 0 & 1 \\ -3 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.
$$

$$
\therefore \quad \ddot{x}' = y
$$

$$
\therefore \quad \ddot{x} + \sin \ddot{x} + \dot{x}^2 + 3x^2 = 0, \text{ with } y = \dot{x}, z = \ddot{x}, \begin{pmatrix} x' = y \\ y' = z \\ z' = -\sin z - y^2 - 3x^2 \end{pmatrix}.
$$

- System of second order equations
	- \circ $\ddot{x} + y\dot{x} + y^2 = 0$, $\ddot{y} + x(\dot{x})^2 + \sin y = 0$.
		- \circ Let $u = \dot{x}$, $v = \dot{y}$, $\dot{u} = \ddot{x}$, $\dot{v} = \ddot{y}$.
		- A system of four equations

$$
\bullet \quad \dot{x}=u.
$$

$$
\bullet \quad \dot{y} = v.
$$

 $\dot{u} = -yu - y^2$.

$$
\bullet \quad \dot{v} = -xu^2 - \sin y.
$$

Nonlinear systems

- Fixed points
	- Find linear approximation around the fixed point
		- $f(x,y) = f(x_*, y_*) + f_x(x-x_*) + f_y(y-y_*)$. • $g(x, y) = g(x_*, y_*) + g_x(x - x_*) + g_y(y - y_*)$.
	- o Let $u = x x_*, v = y y_*$.

\n- \n
$$
\begin{pmatrix} u \\ v \end{pmatrix}' = \begin{pmatrix} f_x & f_y \\ g_x & g_y \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}.
$$
\n
\n- \n
$$
J = \begin{pmatrix} f_x & f_y \\ g_x & g_y \end{pmatrix}
$$
 is the Jacobian matrix evaluated at x_*, y_* .\n
\n

- \circ If the eigenvalues of J are real and nonzero, we can determine the stability of (x_*,y_*) as before.
	- If λ_1 < 0 and λ_2 < 0, $X = 0$ is stable (stable node)
	- **F** If $\lambda_1 > 0$ and $\lambda_2 > 0$, $X = 0$ is unstable (unstable node)
	- **F** If $\lambda_1 < 0$ and $\lambda_2 > 0$, $X = 0$ is unstable (**saddle point**)

Gradient flows

- Given potential $V(x, y)$ and $f(x, y) = -V_x$, $g(x, y) = -V_y$, $\dot{x} = -\nabla V$ is the gradient flow.
- Note: $\frac{dv}{dt} = -V_x^2 V_y^2 = -|\nabla V|^2$.
	- \circ V is always decreasing on trajectories, except at fixed points.
	- So, gradient flows cannot have periodic orbits.
- Fixed points.
	- \circ $\nabla V = 0$ (critical points for V).
	- Consider the Jacobian matrix: $\overline{}$ **O** Consider the Jacobian matrix: $J = \begin{pmatrix} x_x & -xy \\ -V_{xy} & -V_{yy} \end{pmatrix}$.
		- It is symmetric, and thus always have real eigenvalues with orthogonal eigenvectors
	- \circ $\lambda_1 \lambda_2 = \det J = V_{xx} V_{yy} V_{xy}^2 = D$.
	- If $D > 0$, then either $\lambda_1 \& \lambda_2 > 0$ or $\lambda_1 \& \lambda_2 < 0$, node (can only occur when V_{xx} and have the same sign)
		- If V_{xx} < 0, then λ_1 > 0, λ_2 > 0, unstable, local max.
		- If $V_{xx} > 0$, then $\lambda_1 < 0$, $\lambda_2 < 0$, stable, local min.
	- o If $D < 0$, then $\lambda_1 \lambda_2 < 0$, saddle point.
	- \circ If $D = 0$, cannot tell
- Contours for V .
	- Contours are approximately ellipses near local min/max
	- Contours are approximately hyperbolas near a saddle point
	- \circ ∇ is perpendicular to contour lines.

Steepest descent method for finding local minima of $V(x)$.

- Local minima have $\nabla V = 0$, could do root finding using $J = H(n \times n$ matrix) and solving a linear system iteratively.
	- \circ If n is too large, too computationally expensive.
- Idea: follow V downhill with a gradient flow $\dot{X} = \nabla$.
- Use forward Euler time stepping, $X^{n+1} = X^n k \nabla V(X^n)$.
	- \circ k is the time step adjusted to get the fastest convergence to the minima possible.

Complex eigenvalues

- $e^{(a+bi)t} = (\cos bt + i \sin bt)e^{at}$.
- Growth or decay determined by $a = Re(\lambda)$.
	- \circ $Re(\lambda) < 0$ decay.
		- $\bm{x} = 0$ is a stable equilibrium (spiral sink).
		- This can be directly known from eigenvalues (eigenvectors are not needed)
- \circ $Re(\lambda) > 0$ growth.
- \circ If $Re(\lambda) = 0$, oscillations only, neither growth nor decay.

 \bullet $x = 0$ is stable but not asymptotically stable.

- Oscillatory (angular frequency) determined by $b = Im(\lambda)$.
	- \circ Frequency: $\frac{Im(x)}{2\pi}$.

 \circ Period: $\frac{2n}{Im(\lambda)}$.

General solutions

- Complex form $x = c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2$.
	- \circ c_1 and c_2 are conjugates.
	- To decide whether the spiral is clockwise or counter-clockwise, consider the system on axis.
- Real form $x = d_1 Re(e^{\lambda_1 t} v_1) + d_2 Im(e^{\lambda_1 t} v_1)$.

Fixed points

- Attracting if all points start close enough to x_* tend to x_* as $t \to \infty$.
- An attracting fixed point has a <mark>basin of attraction</mark>
	- \circ All points which we start at and tend to x_* as $t \to \infty$.
- If all points are in the basin of attraction, we say x_* is a global attractor.
- x_* is <mark>Liapunov stable</mark> if all trajectories that start close enough to x_* remain close enough to it for all time
- Liapunov stable but not attracting (like center) is called neutrally stable
- Liapunov stable and attracting (spiral) is called **asymptotically stable**
- For non-linear 2D problems, we can have attracting fixed points that are not Liapunov stable

Some techniques to understand nonlinear systems

- Heteroclinic trajectory: trajectories connecting saddle nodes.
- Could plot some solutions (numerical approximations) starting at different initial conditions
- Trajectories passing through (x, y) have tangent vector $t = (f(x, y), g(x, y))$. Could plot these on a grid (vector field). Could also plot the unit vectors
- Could plot **nullclines**: curves C_1 : $f(x, y) = 0$, C_2 : $g(x, y) = 0$.
	- \circ Intersections of C_1 and C_2 are fixed points.
	- \circ Trajectories crossing C_1 must be vertical, going up if $g > 0$, down if $g < 0$.

Things we want to find

- Fixed points & periodic orbits & stability
- Basins of attractions of attracting features
- Bifurcations (changes in the structure of phase plane portrait with parameter variation)

Rabbit and sheep model

- x is the scaled rabbit population, y is the scaled sheep population
- $\dot{x} = f(x, y) = x(3 x 2y).$
- $\dot{y} = g(x, y) = y(2 x y)$.
- Two things to do with the fixed points
	- Eigen analysis of Jacobian matrix at fixed points
	- \circ Plot nullclines $f(x, y) = 0$, $g(x, y) = 0$.
- 4 fixed points

$$
\begin{array}{ll}\n\circ & (0,0), J = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}, \lambda_1 = 3, \nu_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \lambda_2 = 2, \nu_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \text{ nodal source.} \\
\bullet & (1,1), \end{array}
$$

\n- \n
$$
(0,2), \, J = \begin{pmatrix} -1 & 0 \\ -2 & -2 \end{pmatrix}, \, \lambda_1 = -1, \, v_1 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}, \, \lambda_2 = -2, \, v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \text{ nodal sink.}
$$
\n
\n- \n
$$
(3,0), \, J = \begin{pmatrix} -3 & -6 \\ 0 & -1 \end{pmatrix}, \, \lambda_1 = -3, \, v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \, \lambda_2 = -1, \, v_2 = \begin{pmatrix} 3 \\ -1 \end{pmatrix}, \text{nodal sink.}
$$
\n
\n

○
$$
(1,1), J = \begin{pmatrix} -1 & -2 \\ -1 & -1 \end{pmatrix}, \lambda_1 = -1 + \sqrt{2}, \nu_1 = \begin{pmatrix} -\sqrt{2} \\ 1 \end{pmatrix}, \lambda_2 = -1 - \sqrt{2}, \nu_2 = \begin{pmatrix} \sqrt{2} \\ 1 \end{pmatrix}
$$
, saddle.

• Nullclines:.

$$
\begin{array}{ll} \circ & x = 0, y = -\frac{x}{2} + \frac{3}{2}. \\ \circ & y = 0, y = -x + 2. \end{array}
$$

Conservative systems

• $\ddot{x} = f(x)$ (force only depends on position, undamped spring).

• Let
$$
u = \dot{x}
$$
,
$$
\begin{cases} v(x) = -\int_0^x f(s) ds. \\ \dot{x} = u \\ \dot{u} = f(x) = -V'(x). \end{cases}
$$

- Consider $E(t) = \frac{1}{2}$ • Consider $E(t) = \frac{1}{2}(u(t))^2 + V(x(t)).$ \boldsymbol{d} \circ $\frac{dE}{dt} = 0$, *E* is conserved in time (constant along trajectories).
- $E(x, u) = \frac{1}{2}$ • $E(x, u) = \frac{1}{2}u^2 + V(x)$.
	- \circ Fixed points: $u = 0$, $V'(x_*) = 0$.
	- \circ Assume $V''(x_*) \neq 0$ (local min or max).
	- $J=\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ $O \quad J = \begin{pmatrix} 0 & 1 \\ -V'' & 0 \end{pmatrix}, \lambda^2 + V'' = 0.$
	- At min of V, $V'' > 0$, $\lambda = \pm i \sqrt{-V''}$ (linear center).
		- $E \approx E(0, x_*) + \frac{1}{2}$ $rac{1}{2}u^2 + \frac{1}{2}$ ■ $E \approx E(0, x_*) + \frac{1}{2}u^2 + \frac{1}{2}V''(x_*)(x - x_*)^2$, x_* is stable but not asymptotically stable.
		- Contours are ellipses
	- At max of V, V'' < 0, $\lambda = \pm \sqrt{-V''}$, E has a saddle point.

•
$$
E \approx V(x_*) + \frac{1}{2}u^2 + \frac{1}{2}V''(x_*)(x - x_*)^2
$$
.

■ Contours are hyperbolas

1D Index theory

- $\dot{x} = f(x, a)$ smooth. Consider an interval $[0, b]$ with $f(0) \neq 0$ and $f(b) \neq 0$.
- Define the index of f on [0, b] as $Ind(f, 0, b) = \frac{f}{f}$ $\frac{f(0)f(b)}{|f(0)||f(b)|} = \begin{cases} 1 \\ - \end{cases}$
- Define the index of f on [0, b] as $Ind(f, 0, b) = \frac{f(0)f(0)}{|f(0)||f(b)|} = \begin{cases} -1, f(0)f(b) < 0 \\ -1, f(0)f(b) < 0 \end{cases}$
- \bullet It is continuous and constant in a neighborhood of b that contains no fixed points.
- If $c \in (0, b)$ and $f(c) \neq 0$, then $Ind(f, 0, b) = Ind(f, 0, c) \cdot Ind(f, c, b)$.
- If $[0,b]$ contains only hyperbolic fixed points and there are p of them, then $(-1)^{p}$.
- Note: the index is continuous in the parameter space as long as fixed points do not cross 0 or \boldsymbol{b} .
- After a bifurcation the number of hyperbolic fixed points must be even if they were even before, and odd if they were odd before

2D index theory

- $\dot{x} = f(x, a)$ smooth. Consider a closed curve C in the phase plane. It doesn't have to be a trajectory, but $f(x) \neq C$ for all $x \in C$.
- Let $\phi(x) \in [0,2\pi)$ be the angle that corresponds to f on
	- $\varphi = \text{atan2}\left(g(x,y),f(x,y)\right).$
	- $\phi = \text{Arg}(f + ig).$
- Index of C is defined as $I(f, C) = \frac{1}{2}$ • Index of C is defined as $I(f, C) = \frac{1}{2\pi} [\phi]_{C}$, where $[\phi]_{C}$ is the change in ϕ as x go around counter-clockwise.
	- \circ $I(f, C)$ is an integer
- \circ It is the net number of counter-clockwise revolutions made by the vector field as x go around C counter-clockwise.
- \circ If C is continuously deformed to C' without crossing any fixed points, because it is continuous and is an integer
- Properties
	- \circ If C does not contain any fixed points, $I(f, C) = 0$.
	- \circ If C is a periodic orbit, $I(f, C) = 1$.
		- **Every periodic orbit must contain at least 1 fixed point.**
	- If $t \to -t$ (backwards in time), $f \to -f$, $\phi \to \phi + \pi$, index does not change $I(-f, C)$.
	- \circ We can define the index of an isolated fixed point I_p , nodal source/sink, spiral source/sink all have index 1, saddle has index -1 .
		- **•** If the fixed points are hyperbolic, $I_n = \pm 1$.
- If C surrounds n isolated fixed points $p_1, ..., p_n$, then $I(f, C) = \sum_{i=1}^n I_{p_i}$.
- \bullet Index of C does not change with dynamic system parameters as long as no fixed point cross the curve
	- \circ When $a > 0$, no fixed point, $I(C) = 0$, then $I(C) = 0$ for $a < 0$.
- Bifurcations with index theory
	- \circ Subcritical pitchfork (total index -1)
		- \bullet $\vert a < 0$ one saddle $\vert a > 0$, 2 saddles + 1 node
	- \circ Supercritical pitchfork (total index 1)
		- $\vert a < 0$ one node $\vert a > 0$, 2 nodes + 1 saddle
	- Trans-critical (total index 0)
		- \blacksquare Saddle + node | Node + saddle
	- Hopf bifurcation (total index 1)
		- \blacksquare Spiral sink Spiral source

Limiting behaviors

Poincare-Bendixson theorem

- \bullet If the following 3 assumptions are satisfied, then R contains a closed orbit(periodic orbit).
	- \circ R is a closed bounded subset of the plane
	- \circ R contains no fixed points (can be an annulus)
	- \circ there is a trajectory T that is confined in R.
- Let ξ_n be the distance of x_n to L, the map $\xi \to$ next crossing of L is called the Poincare map, which can be used to determine the stability of the periodic orbit.
- The P-B provided periodic orbit must be at least one-sided stable
- We can use P-B theorem to *prove the existence of periodic orbits* using a trapping region (closed and bounded annulus, in which at the boundaries, all trajectories point inwards)
	- \circ If the trapping region contains no fixed point, then it contains a periodic orbit

Converting from cartesian coordinates to polar coordinates

 $\dot{r} = \frac{x}{x}$ • $\dot{r} = \frac{xx + yy}{r}$.

•
$$
\dot{\theta} = \frac{x\dot{y} - y\dot{x}}{r^2}.
$$

Van der Pol oscillator

- $\ddot{x} + \mu(x^2 1)\dot{x} + x = 0, \mu > 0.$
- Write in terms of first order systems •

• Let
$$
F(x) = \frac{x^3}{3} - x
$$
, $F'(x) = x^2 - 1$, $w = \dot{x} + \mu F(x)$

- , .
- Only fixed point,

$$
\circ \ \ J = \begin{pmatrix} \mu & 1 \\ -1 & 0 \end{pmatrix}, \lambda = \frac{\mu}{2} \pm \sqrt{\frac{\mu^2}{4} - 1}.
$$

- \circ Spiral source for $0 < \mu < 2$.
- \circ Nodal source for $\mu > 2$.

• Consider
$$
\frac{d}{dt}(x^2 + w^2) = -2\mu \left(\frac{x^4}{3} - x^2\right)
$$
.

○ Circles won't work for a trapping region.

• To show $B < A$.

$$
\begin{array}{ll}\n\circ & \text{Consider } I = -2\mu \int_0^{t_3} \frac{x^4}{3} - x^2 dt. \\
\circ & I_1 = -2\mu \int_0^{t_1} \frac{x^4}{3} - x^2 dt \sim \frac{1}{4} \\
\circ & I_2 = -2\mu \int_{t_1}^{t_2} \frac{x^4}{3} - x^2 dt \to -\infty.\n\end{array}
$$

$$
I_2 = 2\mu J_{t_1}^{\dagger}{}_{3}^{\dagger} \times \mathcal{U} \times \mathcal{V}
$$

$$
I_3 = -2\mu J_{t_2}^{\dagger}{}_{3}^{\dagger} - x^2 dt \sim \frac{1}{A}.
$$

• In polar coordinates

$$
\circ \quad \dot{r} = -\frac{\mu x F(x)}{r}.
$$

$$
\phi = -1 + \frac{r}{r^2}.
$$

- When $\mu = 0$.
	- $\binom{\dot{x}}{\dot{x}}$ $\begin{pmatrix} \dot{x} \\ \dot{w} \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$ $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ $\begin{pmatrix} x \\ w \end{pmatrix}$ $\begin{pmatrix} \lambda \\ w \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} \lambda \\ w \end{pmatrix}$, $\lambda = \pm i$, origin is a linear center.
	- $\hat{r} = 0, \dot{\theta} = -1.$
	- \circ Circles period 2π , clockwise.
- For small $\mu > 0$, we get a periodic orbit at radius

$$
\circ \ \ r \approx r_* + \mu r_1(t).
$$

- $\varphi \approx -t + \mu \theta_1(t)$.
- Boundary value problem:

$$
\bullet \quad \dot{r} = -\frac{\mu x F(x)}{r}, \, \dot{\theta} = -1 + \frac{\mu w F(x)}{r^2}.
$$

•
$$
\theta(0) = 0, \theta(T) = 2\pi, r(0) = r(T).
$$

 \circ Use approximation, $\dot{r} = \mu \dot{r_1} = -\mu \cos t F(r_* \cos t)$.

$$
0 = r_1(2\pi) - r_1(0) = \int_0^{2\pi} \left(\frac{r_*^3}{3}\cos^4 t - r_*\cos^2 t\right) dt = \pi r_* \left(\frac{r_*}{2} - 1\right).
$$

So $r_* = 2$.

$$
f_{\rm{max}}=f_{\rm{max}}=f_{\rm{max}}
$$

2D bifurcation example

• $\dot{x} = -ax + y$.

- $\dot{y} = \frac{x^2}{1+x^2}$ • $\dot{y} = \frac{x}{1 + x^2} - y.$
- Plot the nullclines where $\dot{x} = 0$ or $\dot{y} = 0$.

$$
y = ax, y' = a.
$$

\n
$$
y = \frac{x^{2}}{1+x^{2}}, y' = \frac{2x}{(1+x^{2})^{2}}
$$

\n
$$
y = ax
$$
 ax ax bx bx ax ax ax ax ax ax ax ax ax ax

- Saddle node bifurcation at a_* .
	- \circ One eigendirection at a_*, x_*, y_* has eigenvalue 0.
	- The other eigendirection will have nonzero eigenvalue
- Find a_*, x_*, y_* . (intersection of nullclines)

$$
\circ \quad x_* = 1, \, a_* = \frac{1}{2}, \, y_* = \frac{1}{2}.
$$

• Evaluate the Jacobian at the bifurcation point.

$$
\circ \quad J_* = \begin{pmatrix} -\frac{1}{2} & 1\\ \frac{1}{2} & -1 \end{pmatrix}.
$$
\n
$$
\circ \quad \lambda_1 = 0, \quad v_1 = \begin{pmatrix} 1\\ \frac{1}{2} \end{pmatrix}.
$$
\n
$$
\circ \quad \lambda_2 = -\frac{3}{2}, \quad v_2 = \begin{pmatrix} 1\\ -1 \end{pmatrix}.
$$

• 2 is nodal sink, 1 is saddle

Summary of 2D bifurcation

- If a hyperbolic fixed point with real eigenvalues changes type or appears at a_* , then J_* has eigenvalue $\lambda_1 = 0$ with eigenvector v_1 , and nonzero λ_2 with eigenvector v_2 .
- Near $a_*($ (both sides), solutions either grow or decay in v_2 direction.
- There is a 1D bifurcation (saddle node, transcritical, pitchfork) in v_1 direction.

Hopf bifurcation

- Spiral source \leftrightarrow spiral sink.
- Only possible with complex eigenvalues $\lambda = \alpha + \beta i$.
	- \circ $\alpha(a_*) = 0$ (changes between positive and negative).
	- \circ $\beta(a_*) \neq 0$.

Example in polar coordinates

- Assume $\dot{\theta} = 1$ in all cases.
- Supercritical hopf bifurcation
	- \circ $\dot{r} = \mu r r^3$.
	- If μ < 0, \dot{r} < 0 for all r , $r = 0$ is spiral sink (global attractor).
	- o If $\mu > 0$, $\dot{r} > 0$ for $0 < r < \sqrt{\mu}$, $r = 0$ is unstable spiral source, $r = \sqrt{\mu}$ is a stable periodic orbit.

○

- Subcritical Hopf bifurcation
	- \circ $\dot{r} = \mu r + r^3$.
	- If $\mu > 0$, $\dot{r} > 0$ for all $r > 0$, $r = 0$ is a spiral source.
	- If $\mu < 0$, $\dot{r} < 0$ for $0 < r < \sqrt{-\mu}$, $r = 0$ is spiral sink, $r = \sqrt{-\mu}$ is unstable periodic orbit.

Subcritical but with hysterisis. •

 \circ Near $r = 0$, $\mu = 0$, still a subcritical Hopf bifurcation.