Introduction

January 7, 2022 9:44 PM

Dynamic system: physical (biological or financial) systems whose state u(t) changes in time in a deteriministic way

- Differential equation initial value problem
 - Equation (defines the system): $\frac{du}{dt} = u' = f(u)$.
 - Initial condition: $u(0) = u_0$.
 - If f(u) has no t dependence, it is called autonomous
 - Solutions are called trajectories.
- Systems with a parameter $a, \frac{du}{dt} = f(u; a)$.
 - How trajectories change with a?
 - How the long term behavior $(\lim_{t\to\infty} u(t))$ changes with *a*?
 - Changes in limiting behavior with *a* are called bifurcations.

Discrete dynamical system

January 11, 2022 2:22 PM

Discrete time

• Time is integer n = 0, 1, 2,

Dynamic system

- State at time n is X^n .
- Discrete dynamical system: $\frac{X^{n+1} = f(X^n; r)}{X^0}$, X^0 is given initial condition.
 - Also called iterative map
 - Confined to a closed bounded interval [a, b]. This requires $f(x; r) \in [a, b]$ for all $x \in [a, b]$

Fixed point

- If $f(X_*) = X_*$, then X_* is a fixed point or equilibrium of the map
- If X^0 is close to X_* , it stays close to X_* , then X_* is a stable fixed point
- If X^0 is close to X_* , and $\lim_{n\to\infty} X^n = X_*$, then X_* is an asymptotically stable fixed point (attractor)
- If $\lim_{n\to\infty} X^n = X_*$ for any X^0 , then X_* is a global attractor
- We can use numerical root finding to determine X∗ more accurately.
 It is a root of g(x) = f(x) x with fixed r.
- Can also use Cobweb diagram to determine X*.

Basin of attraction

- Suppose we have a fixed point X_* such that $X_* = f(X_*)$.
- Consider X^0 near X_* such that $X^0 X_*$ is small
- Let z^n be the signed distance of X^n to X_* , $z^n = X^n X_*$
- If $z^n \to 0$ as $n \to \infty$ then $X^n \to X_*$ and X_* is an asymptotically stable fixed point
- The set of X^0 that has this property is called the basin of attraction of X_*

Tangent line approximation

- $f(X^n) = f(X_* + z^n) \approx f(X_*) + f'(X_*)z^n$. • Then, $z^{n+1} = f'(X_*)z^n$.
- If $|f'(X_*)| < 1$, $z^n \to 0$ as $n \to \infty$, X_* is an asymptotically stable fixed point
- If $|f'(X_*)| > 1$, X_* is an unstable fixed point (repeller)
- If $|f'(X_*)| = 1$, X_* 's stability cannot be told
- If $|f'(X_*)| \neq 1$, X_* is a hyperbolic fixed point
- If $|f'(X_*)| = 0$, $z^n \to 0$ very quickly, X_* is super stable

Consider the limiting behavior for all $r \in [-1,1]$ for $X^{n+1} = f(X^n; r) = r \cos X^n$.

- For each r, there is a single stable fixed point (global attractor) $X_*(r)$.
- No bifurcations
- A bifurcation map shows the behavior of the system as $n \to \infty$ for all r and all X^0 .

Newton's method

- Iterative method for root finding
- Find x such that g(x) = f(x) x = 0.
- Requirement: $g'(x_*) \neq 0$ and initial guess x^0 is close enough to the root
- x^1 is computed as the root of the tangent line at $(x^0, g(x^0))$.

•
$$y = g(x^0) + g'(x^0)(x - x^0) = 0.$$

• So $x^1 = x^0 - \frac{g(x^0)}{g'(x^0)}.$

• Repeat $x^{n+1} = f(x^n)$ with $f(x) = x - \frac{g(x)}{g'(x)}$.

• x_* is a (super) stable fixed point of the iterative map.

MATH345 Page 2

Logistic map

- f(x;r) = rx(1-x).
 - Map on [0,1] as long as $r \in [0,4]$.
- Fixed points
 - x = 0: stable if r < 1, unstable if r > 1.
 - $x = 1 \frac{1}{r}$ only in the interval if r > 1: stable if 1 < r < 3.
- The global attractor changes at r = 1, there is a bifurcation

- Periodic orbit for r > 3 (period 2)
 - f(p) = q and f(q) = p.
 - p and q are fixed points of the doubly iterative map f(f(x)) = x

•
$$f(f(q)) = q, f(f(p)) = p$$

 $r+1\pm\sqrt{(r+1)(r-3)}$

•
$$p,q = \frac{r+1\pm\sqrt{(r+1)(r-3)}}{2r}$$
.

- Stability of double map f(f(x)):
 - Stable if $\left|\frac{d}{dx}f(f(x))\right| = |f'(f(x))f'(x)| < 1$.
 Unstable if $\left|\frac{d}{dx}f(f(x))\right| < 1$.
 Unstable if $\left|\frac{d}{dx}f(f(x))\right| = |f'(f(x))f'(x)| > 1$.
 It is stable for r < 3.4495.

Attractor

- Def: an attractor A of a discrete dynamic system is a closed and bounded set with the following properties
 - A is invariant. If $x^0 \in A$, then $f(x^n) \in A$.
 - A attracts an open set U containing A. For all $x^0 \in U$, $dist(x^n, A) \to 0$ as $n \to \infty$.
 - *A* is minimal (no closed proper subsets of *A* satisfy the first 2 properties).
- Any hyperbolic stable period m orbit is an attractor
 - For period 2, f(p) = q, f(q) = p, $A = \{p, q\}$.
- For the logistic map, we can also have a chaotic or strange attractor
 - Uncountably infinite number of points
 - Fractal dimension
 - Sensitive dependence on initial conditions

- On average, trajectories separate exponentially $(|x^n \widehat{x^n}| \approx e^{\lambda n} |x^0 \widehat{x^0}|$ with $\lambda > 0$)
- For stable orbits, $\lambda < 0$.

Counting

- A countably infinite set has an infinite number of entries that can be put in an ordered list

 e.g. integers, rational numbers.
- Uncountably infinite set: cannot be put in an ordered set
 - e.g. real number

Dimension

- Interval (a, b) with b > a is one dimensional
- {*a*} and finite collection of points are zero dimensional.
- Box dimension
 - $A \subset [0,1]$. For every ϵ , cover A with the minimum number $N(\epsilon)$ of intervals of length ϵ .
 - If A is a finite number M of points, $N(\epsilon) \leq M$.
 - If A is a subinterval of length L, $N(\epsilon) = \frac{L}{\epsilon}$ (round up).
 - If $N(\epsilon) \sim \frac{c}{c^d}$, say *A* has dimension *d*.

• With
$$N \to \infty$$
, $\epsilon \to 0$, $d = \lim_{\epsilon \to 0} -\frac{\ln N(\epsilon)}{\ln \epsilon}$.

Uncountably infinite set with fractal dimension (Cantor set)

- Length (measure) zero
- Uncountable
- Dimension with $\epsilon = \left(\frac{1}{3}\right)^n$: $d = \frac{\ln 2}{\ln 3}$ is a fractal dimension.
- Like chaotic attractors, the cantor set is self similar
 - $S_{\infty} \cap \left[0, \frac{1}{3}\right]$ is the same as S_{∞} scaled down by $\frac{1}{3}$.

1D Taylor polynomial approximation for a smooth function f(x).

- Tangent line: $T_1(x) = f(a) + f'(a)(x a)$ valid for x near a.
- Add an error term: $f(x) = T_1(x) + \frac{1}{2}f''(\theta)(x-a)$ for some $\theta \in (a, x)$.
- Quadratic approximation: $T_2(x) = T_1(x) + \frac{1}{2}f''(a)(x-a)^2$.

•
$$f(x) = T_2(x) + \frac{1}{6}f'''(\theta)(x-a)^3$$

2D approximation for f(x, y)

- First order (tangent plane): $T_1(x, y) = f(a, b) + f_x(a, b)(x a) + f_y(a, b)(y b)$. • Error size $(x - a)^2 + (y - b)^2$.
- Quadratic: $T_2(x, y) = T_1(x, y) + \frac{1}{2}f_{xx}(x-a)^2 + f_{xy}(x-a)(y-b) + \frac{1}{2}f_{yy}(y-b)^2$. • Error size $(x-a)^3 + (y-b)^3$.
- $T_3(x,y) = T_2(x,y) + \frac{1}{6}f_{xxx}(x-a)^3 + \frac{1}{2}f_{xxy}(x-a)^2(y-b) + \frac{1}{2}f_{xyy}(x-a)(y-b)^2 + \frac{1}{6}f_{yyy}(y-b)^3.$ • Error size $(x-a)^4 + (y-b)^4$.

For any hyperbolic fixed point x_* at r_*

- Fixed: $f(x_*, r_*) = x_*$.
- Hyperbolic: $|f_{\chi}(x_*, r_*)| = 1.$
- Use tangent approximation: $f(x,r) = f(x_*,r_*) + f_x(x-x_*) + f_r(r-r_*)$.

•
$$x \approx x_* + \frac{f_r}{1-f_x}(r-r_*).$$

• There is a fixed point for r near r_* , varying approximately linear with r, $\frac{dx}{dr} = \frac{f_r}{1-f_r}$.

• Stability

$$\circ \frac{d}{dr} \left(f_x(x(r), r) \right) = f_{xx} \frac{f_r}{1 - f_x} + f_{xr}.$$

- So $\left|\frac{u}{dr}(f_x(x(r), r))\right| \neq 1$ for some neighborhood of r near r_* .
- If x_*, r_* is a hyperbolic fixed point, there is a neighborhood of r_* , where there is a unique hyperbolic fixed point x(r) with the same stability as x_*, r_*
- **Bifurcation** of fixed points can only happen when $f_x = \pm 1$.

• For bifurcations of fixed points, we require
$$\begin{cases} f(x,r) - x = 0 \\ f_x(x,r) \pm 1 = 0 \end{cases}$$

Newton's method for root finding $\begin{cases} f(x, y) = 0 \\ g(x, y) = 0 \end{cases}$

- Initial guess (x^0, y^0) .
- Use tangent approximations to f and g based on (x^0, y^0) . $f(x, y) = f(x^0, y^0) + f_x(x x_0) + f_y(y y^0)$.

•
$$g(x,y) = g(x^0,y^0) + g_x(x-x_0) + g_y(y-y^0).$$

• Take the next approximation to be the root of the linear system
$$f(x) = f(x) + f(x)$$

$$\circ f(x^{0}, y^{0}) + f_{x}(x^{1} - x^{0}) + f_{y}(y^{1} - y^{0}) = 0.$$

$$\circ g(x^{0}, y^{0}) + g_{x}(x^{1} - x^{0}) + g_{y}(y^{1} - y^{0}) = 0.$$
(11)

• This is a linear system
$$J\begin{pmatrix} x^1 - x^0 \\ y^1 - y^0 \end{pmatrix} = -R^0$$

•
$$J = \begin{pmatrix} f_x & f_y \\ g_x & g_y \end{pmatrix}$$
 is a 2 × 2 Jacobian matrix evaluated at (x^0, y^0)
• $R^0 = \begin{pmatrix} f(x^0, y^0) \\ g(x^0, y^0) \end{pmatrix}$ is the residue.

• Assume *J* is invertible, it will be invertible for
$$x^0$$
, y^0 near x_* , y_* .

• Solve
$$Jz = -R^0$$

• Then $\begin{pmatrix} x^1 \\ y^1 \end{pmatrix} = \begin{pmatrix} x^0 \\ y^0 \end{pmatrix} + z$

This is a vector discrete dynamic system with a super stable fixed point at the root

Types of bifurcation

Appearance of equilibrium points (saddle-node bifurcations)

$$f(x_*,r_*)=x_*.$$

$$\circ f_x(x_*,r_*)=1.$$

$$\circ f_r(x_*,r_*)=a>0.$$

$$\circ f_{xx}(x_*,r_*)=-b<0.$$

- Pitchfork bifurcation
 - Isolated critical point $x_c(r)$ that changes stability

•
$$f_x(x_c(r),r) \begin{cases} <1, r < r_* \\ =1, r = r_*. \\ >1, r > r_* \end{cases}$$

• For this to occur

•
$$f_r(x_*,r_*)=0.$$

- $f_{XX}(x_*, r_*) = 0.$ $f_{XT}(x_*, r_*) = a > 0.$ $f_{XXX}(x_*, r_*) = -b < 0.$
- For $r > r_*$, there are two stable fixed points of g, $x_{\pm}(r) = x_* \pm \sqrt{\frac{6a}{b}(r r_*)}$.
 - *x*₊ cannot be fixed points of *f*
 - To be a fixed point of g, they must be a periodic orbit of f.
- Flip bifurcation
 - Lone critical point $x_c(r)$ with $\frac{\partial f}{\partial x}(r, x_c(r)) < 0$

- Change stability with \$\frac{\partial f}{\partial x}\$ (r, \$x_c(r)\$) = -1\$.
 At the double map, \$\frac{\partial g}{\partial x}\$ = 1.
- It is supercritical if signs: $g_{xr} > 0$ and $g_{xxx} < 0$.

Model a system as a discrete dynamic system

- x^n : number of members of a UBC club in year n (n = 0 at year 1990)
- Parameters
 - *a*: number of potential new members to the club every year
 - The number of people signing up to year n + 1 depends on how happy people were in year n
 - H(0) = 0.
 - $H(b) = 0 \ (b > 0).$
 - Simplest function: $H(x) = \frac{4}{h^2}x(b-x)$.
 - The fraction F ($0 \le F \le 1$) of people signing up depends on how happy the club was the year before
 - $F(H) = e^{r(H-1)}$.
- $x^{n+1} = f(x^n; a, b, r).$
 - With parameters above, $f = (a + x)e^{r(\frac{4}{b^2}x(b-x)-1)}$.
- We can scale (nondimensionalize) to reduce the number of parameters to 2
 - Scale x by b: x = yb, then $\frac{4}{b^2}x^n(b x^n) = 4y^n(1 y^n)$.
 - Then $y^{n+1} = \left(\frac{a}{b} + y^n\right) e^{r(4y^n(1-y^n)-1)}$ and we can replace $\alpha = \frac{a}{b}$.

Scalar dynamics

January 11, 2022 2:22 PM

Continuous time dynamic system (scalar quantities) u(t):

- $\dot{u} = u' = \frac{du}{dt} = f(u; a).$ • f(u; a) has no time dependence (autonomous).
- Initial condition: $u(0) = u_0$.
- *u*(*t*): solutions(orbits, trajectories).

For u' = f(u), $u(t_0) = u_0$.

• Theorem: if f has a continuous derivative in an open interval containing u_0 , then it has a unique solution for t in an open interval containing t_0 .

Direction field

• Only depends on *u*, not on *t*.

- $\circ u_*$ is unstable.
- There are only 3 orbits to consider. Although they look different, they are the same function, shifted in time
- Phase plot

- If f(u) > 0, then $\frac{du}{dt} > 0$, so u(t) is increasing If f(u) < 0, then $\frac{du}{dt} < 0$, so u(t) is decreasing
- If $f(u_*) = 0$, for a certain value of u_* , then $u(t) = u_*$ for all t, u_* is an equilibrium solution (fixed) point).
- Due to uniqueness, trajectories cannot cross
- Direction fields lead to the simplest numerical method (forward Euler's method) to approximate differential equations

Stability of fixed points

- If u_* is an equilibrium, $f(u_*) > 0$ for $u > u_*$ and $f(u_*) < 0$ for $u < u_*$, i.e. $\frac{f'(u_*) > 0}{u_*}$ is unstable.
- Similarly, if $f'(u_*) < 0$, then u_* is stable.
- If $f'(u_*) = 0$, can't tell (possible bifurcation).

Simple analytic solution to $\dot{u} = \lambda u$.

• $u(t) = u_0 e^{\lambda t}$.

Logistic equation

- $\dot{u} = u(1-u)$.
- Fixed points: f(u) = u(1 u) = 0, u = 0 or u = 1.
- u = 1 is stable and locally attractive (attracts all positive u). $\circ f'(1) = -1.$
- u = 0 is unstable. $\circ f'(0) = 1.$
- u < 0 are attracted to $-\infty$.
- Analytic solution: $u(t) = \frac{u_0 e^t}{(1-u_0)+u_0 e^t}$.
- Phase plot

Limiting behaviors

- If u_* is a fixed point, then $u(t) = u_*$.
- Otherwise, $\lim_{t\to+\infty} u(t)$ is one of ∞ , $-\infty$, a fixed point of f.

In 1D continuous time, there are no periodic solutions.

Fixed point approximation

- $f'(u_*) \neq 0, f(u_*) = 0$, then $\frac{du}{dt} = f(u) \approx f'(u_*)(u u_*)$.
- Let $v = u u_*$ be the signed distance to the fixed point. $\frac{du}{dt} = \frac{dv}{dt} = f'(u_*)v$, so $v = v_0 e^{f'(u_*)t}$ grows or decays exponentially.
- The time scale of exponential growth/decay is $\frac{1}{|f'(u_*)|}$
- If $|f'(u_*)|$ is large, trajectories move quickly away/towards the equilibrium

Bifurcation

- Theorem: if u_* is a hyperbolic fixed point for a certain parameter value a_* , then in a neighborhood of a_* , there is a single hyperbolic fixed point $u(a) \leftarrow u(a_*) = u_*$ and u depending continuously on awith the same stability.
- Bifurcations in fixed points can only happen when $\frac{\partial f}{\partial u} = 0$.
- Possible bifurcation points (u, a) satisfy
 - Fixed point: f(u, a) = 0.
 - Not hyperbolic: $f_u(u, a) = 0$.
- Types
 - Saddle node (one stable & one unstable)
 - Equilibrium appear where there were none before

$$\Box f_a(u_*,a_*) < 0.$$

$$\Box f_{uu}(u_*,a_*) > 0.$$

- As long as $f_a(u_*, a_*) \neq 0$ and $f_{uu}(u_*, a_*) \neq 0$, we get a saddle node bifurcation
- Taylor approximation: $f(u, a) = f_a(a a_*) + \frac{1}{2}f_{uu}(u u_*)^2$.

$$\Box \quad \text{If } \frac{f_{uu}}{2f_a} > 0 \text{, no fixed point for } \alpha > 0, u = u_* \pm \sqrt{-\frac{2f_a}{f_{uu}}(a - a_*)} \text{ for } \alpha < 0.$$

- \Box Stability of *u* depends on the sign of f_{uu} .
- Normal form

$$\Box \quad \text{From Taylor approximation, letting } v = x \frac{1}{\sqrt{|f_{uu}|/2}}, \alpha = p \frac{-sign\left(f_{uu}\right)}{f_a}.$$

 $\Box f(x,p) = sign(f_{uu})(x^2 - p).$

• Trans critical bifurcation

- Two critical points meet and exchange stability
- f_a = 0, f_{uu} = B ≠ 0, f_{aa} = C, f_{ua} = D.
 Let v = u − u_{*}, α = a − a_{*}.
- $f(v, \alpha) = \frac{1}{2}Bv^2 + \frac{1}{2}C\alpha^2 + D\alpha v.$

• Let
$$v = x \frac{1}{\sqrt{|B|/2}}, \alpha = p \frac{\sqrt{\frac{1}{2}}}{D} sign(B).$$

 $f(x,p) = sign(B)(x^2 + px + \gamma p^2), \text{ where } \gamma = \frac{BC}{4D^2}.$

$$\exists x = \frac{1}{2} \left(-p \pm \sqrt{p^2 (1 - 4\gamma)} \right)$$

- \Box If $4\gamma > 1$, no real roots unless p = 0.
- \Box If $4\gamma < 1$, trans critical bifurcation.

• Two lines with slopes
$$m_1 = -\frac{1}{2} - \frac{1}{2}\sqrt{1-4\gamma}$$
, $m_1 = -\frac{1}{2} + \frac{1}{2}\sqrt{1-4\gamma}$.

• This implies $f_{uu} \cdot f_{aa} < f_{ua}^2$.

• Pitchfork bifurcation

- $f_a = 0, f_{au} = B \neq 0, f_{uu} = 0, f_{uuu} = A \neq 0.$
- $f(v,\alpha) = Bv\alpha + \frac{1}{6}Av^3.$
- Normal form: $f(x, p) = x^3 + px = x(x^2 + p)$.
- *A* > 0. (sub critical)
 - $\Box x = 0$ is a fixed point, stable for p < 0, unstable for p > 0.

□ When
$$p < 0$$
, $x = \pm \sqrt{-p}$ are unstable fixed points.

 \Box x = 0, stable for p > 0, unstable for p < 0.

$$\Box x = \pm \sqrt{-p}$$
, stable

Logistic equation

- $\dot{u} = au \frac{a}{k}u^2$.
- Since $\dot{u} = au\left(1 \frac{u}{k}\right)$, k is the carrying capacity.
- Scaling by $t = \frac{1}{a}s$, u = kv, $\frac{du}{ds} = v v^2$.

Temperature in a chemical reaction

- Temperature dependent reaction rate: $Ae^{-\frac{E_a}{RT}}$.
 - A: rate constant (1/s).
 - $\circ E_a$: activation energy (*J*/mol)
 - R: idea gas constant $R = 8.314 \frac{J}{mal \cdot K}$
 - T: temperature in K.
- With *M* kg of reactant, net reaction rate $MAe^{-\frac{E_a}{RT}}$.
- Net heat generation: $HMAe^{-\frac{E_a}{RT}}$.
- c: thermal capacity of reactor & reactants(J/K).
- If insulated, $c \frac{dT}{dt} = HMAe^{-\frac{E_a}{RT}}$ $\circ T \to \infty \text{ as } t \to \infty.$
- With coolant: $D(T T_c)$, $c \frac{dT}{dt} = HMAe^{-\frac{E_a}{RT}} D(T T_c)$.

• Scaling by
$$T = \frac{E_a}{R}u$$
, $t = sJ$, $J = \frac{CE_a}{RHMA}$, $a = \frac{JD}{C} = \frac{DE_a}{RHMA}$, $\frac{du}{ds} = e^{-\frac{1}{u}} - a(u - u_c)$.

• Hysteresis: different paths forward and backward on bifurcation diagram.

Numerical approximations of differential equations

- Given $\dot{u} = f(u), u(0) = u_0$.
- Discretize in time computed values.
 - $\circ \ u^n = u(nk).$
 - $\circ u^0 = u(0)$ exact.

$$h = \Delta t = \frac{T}{N}$$
 (time steps).

- Need to see convergence $\lim_{k\to 0, N\to\infty} \max_{0\le j\le N} |u^j u(jk)| = 0.$
- Schemes
 - Approximation of the map $u^n \rightarrow u^{n+1}$.

$$\circ \ u^{n+1} = u^n + k \frac{du}{dt}(nk) + \frac{k^2}{2} \frac{d^2 u}{dt^2}(\theta).$$

• Numerical approximation: $u^{n+1} = u^n + kf(u^n)$

Euler's method/forward Euler/explicit Euler
 Theorem (convergence): max_{0≤j≤N} |u^j - u(jk)| < const ⋅ k.

Vector dynamics

January 11, 2022 2:22 PM

Vector solution

- X(t) = (x(t), y(t)).
- Autonomous component: X
 = f(X).
 x
 = f(x, y).
 y
 = g(x, y).

Direction field:

• At every x, y, draw a scaled vector

Linear systems

- $\dot{X} = AX$, A is a 2 × 2 matrix with real distinct non-zero eigenvalues λ_1, λ_2 .
 - Non zero eigenvalues ensure X = 0 is the only fixed point.
 - \circ $λ_1 ≠ λ_2$ ensures the eigenvectors { v_1 , v_2 } form a basis.
- General solution: $X = ae^{\lambda_1 t}v_1 + be^{\lambda_2 t}v_2$.
 - *a* and *b* can be chosen to match any initial conditions $X(0) = X_0$.
 - $X(0) = av_1 + bv_2 = (v_1|v_2) {a \atop b}$ a linear system, solvable since v_1 and v_2 are linearly independent.

Fixed points (x_*, y_*) :

- $f(x_*, y_*) = g(x_*, y_*) = 0.$
- With λ_1, λ_2 eigenvalues of A.
 - If $\lambda_1 < 0$ and $\lambda_2 < 0$, X = 0 is stable (stable node)
 - If $\lambda_1 > 0$ and $\lambda_2 > 0$, X = 0 is unstable (unstable node)
 - If $\lambda_1 < 0$ and $\lambda_2 < 0$, X = 0 is unstable (saddle point)
 - If $\lambda_1 \lambda_2 = 0$, potential bifurcation.

Linear second order systems

- Introduce $y = \dot{x}$, can convert into $\begin{pmatrix} x \\ y \end{pmatrix}' = A \begin{pmatrix} x \\ y \end{pmatrix}$.
- e.g.

$$\begin{array}{l} \circ \quad \ddot{x} + 4\dot{x} + 3x = 0, \text{ with } y = \dot{x}, \begin{pmatrix} x \\ y \end{pmatrix}' = \begin{pmatrix} 0 & 1 \\ -3 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}. \\ \circ \quad \ddot{x} + \sin \ddot{x} + \dot{x}^2 + 3x^2 = 0, \text{ with } y = \dot{x}, z = \ddot{x}, \begin{pmatrix} x' = y \\ y' = z \\ z' = -\sin z - y^2 - 3x^2 \end{pmatrix}. \end{array}$$

- System of second order equations
 - $\ddot{x} + y\dot{x} + y^2 = 0$, $\ddot{y} + x(\dot{x})^2 + \sin y = 0$.
 - Let $u = \dot{x}$, $v = \dot{y}$, $\dot{u} = \ddot{x}$, $\dot{v} = \ddot{y}$.
 - A system of four equations

•
$$\dot{y} = v$$
.

• $\dot{u} = -yu - y^2$.

•
$$\dot{v} = -xu^2 - \sin y$$
.

Nonlinear systems

- Fixed points
 - Find linear approximation around the fixed point
 - $f(x, y) = f(x_*, y_*) + f_x(x x_*) + f_y(y y_*).$ • $g(x, y) = g(x, y_*) + g_x(x - x_*) + g_y(y - y_*).$
 - $g(x, y) = g(x_*, y_*) + g_x(x x_*) + g_y(y y_*).$ • Let $u = x - x_*, v = y - y_*.$

•
$$\begin{pmatrix} u \\ v \end{pmatrix}' = \begin{pmatrix} f_x & f_y \\ g_x & g_y \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}$$
.
• $J = \begin{pmatrix} f_x & f_y \\ g_x & g_y \end{pmatrix}$ is the Jacobian matrix evaluated at x_*, y_* .

- If the eigenvalues of J are real and nonzero, we can determine the stability of (x_*, y_*) as before.
 - If $\lambda_1 < 0$ and $\lambda_2 < 0$, X = 0 is stable (stable node)
 - If $\lambda_1 > 0$ and $\lambda_2 > 0$, X = 0 is unstable (unstable node)
 - If λ₁ < 0 and λ₂ > 0, X = 0 is unstable (saddle point)

Gradient flows

- Given potential V(x, y) and $f(x, y) = -V_x$, $g(x, y) = -V_y$, $\dot{X} = -\nabla V$ is the gradient flow.
- Note: $\frac{dV}{dt} = -V_x^2 V_y^2 = -|\nabla V|^2$.
 - \circ \vec{V} is always decreasing on trajectories, except at fixed points.
 - So, gradient flows cannot have periodic orbits.
- Fixed points.
 - $\nabla V = 0$ (critical points for *V*).
 - Consider the Jacobian matrix: $J = \begin{pmatrix} -V_{xx} & -V_{xy} \\ -V_{xy} & -V_{yy} \end{pmatrix}$.
 - It is symmetric, and thus always have real eigenvalues with orthogonal eigenvectors
 - $\circ \quad \lambda_1 \lambda_2 = \det J = V_{xx} V_{yy} V_{xy}^2 = D.$
 - If D > 0, then either $\lambda_1 \& \lambda_2 > 0$ or $\lambda_1 \& \lambda_2 < 0$, node (can only occur when V_{xx} and V_{yy} have the same sign)
 - If $V_{xx} < 0$, then $\lambda_1 > 0$, $\lambda_2 > 0$, unstable, local max.
 - If $V_{xx} > 0$, then $\lambda_1 < 0$, $\lambda_2 < 0$, stable, local min.
 - $\circ \quad \text{If } D < 0 \text{, then } \lambda_1 \lambda_2 < 0 \text{, saddle point.}$
 - If D = 0, cannot tell
- Contours for V.
 - \circ $\,$ Contours are approximately ellipses near local min/max $\,$
 - Contours are approximately hyperbolas near a saddle point
 - $\circ ~~ \nabla$ is perpendicular to contour lines.

Steepest descent method for finding local minima of V(x).

- Local minima have ∇V = 0, could do root finding using J = H(n × n matrix) and solving a linear system iteratively.
 - If *n* is too large, too computationally expensive.
- Idea: follow V downhill with a gradient flow $\dot{X} = \nabla$.
- Use forward Euler time stepping, $X^{n+1} = X^n k\nabla V(X^n)$.
 - $\circ k$ is the time step adjusted to get the fastest convergence to the minima possible.

Complex eigenvalues

- $e^{(a+bi)t} = (\cos bt + i \sin bt)e^{at}$.
- Growth or decay determined by $a = Re(\lambda)$.
 - \circ $Re(\lambda) < 0$ decay.
 - x = 0 is a stable equilibrium (spiral sink).
 - This can be directly known from eigenvalues (eigenvectors are not needed)

- $Re(\lambda) > 0$ growth.
- If $Re(\lambda) = 0$, oscillations only, neither growth nor decay.
- x = 0 is stable but not asymptotically stable.
- Oscillatory (angular frequency) determined by $b = Im(\lambda)$.
 - Frequency: $\frac{Im(\lambda)}{2\pi}$.
 - Period: $\frac{2\pi}{Im(\lambda)}$.

General solutions

- Complex form $x = c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2$.
 - \circ c_1 and c_2 are conjugates.
 - To decide whether the spiral is clockwise or counter-clockwise, consider the system on *x* axis.
- Real form $x = d_1 Re(e^{\lambda_1 t}v_1) + d_2 Im(e^{\lambda_1 t}v_1)$.

Fixed points

- Attracting if all points start close enough to x_* tend to x_* as $t \to \infty$.
- An attracting fixed point has a basin of attraction
 - All points which we start at and tend to x_* as $t \to \infty$.
- If all points are in the basin of attraction, we say x_* is a global attractor.
- x_* is Liapunov stable if all trajectories that start close enough to x_* remain close enough to it for all time
- Liapunov stable but not attracting (like center) is called neutrally stable
- Liapunov stable and attracting (spiral) is called asymptotically stable
- For non-linear 2D problems, we can have attracting fixed points that are not Liapunov stable

Some techniques to understand nonlinear systems

- Heteroclinic trajectory: trajectories connecting saddle nodes.
- Could plot some solutions (numerical approximations) starting at different initial conditions
- Trajectories passing through (x, y) have tangent vector t = (f(x, y), g(x, y)). Could plot these on a grid (vector field). Could also plot the unit vectors
- Could plot nullclines: curves $C_1: f(x, y) = 0, C_2: g(x, y) = 0$.
 - Intersections of C_1 and C_2 are fixed points.
 - \circ Trajectories crossing C_1 must be vertical, going up if g > 0, down if g < 0.

Things we want to find

- Fixed points & periodic orbits & stability
- Basins of attractions of attracting features
- Bifurcations (changes in the structure of phase plane portrait with parameter variation)

Rabbit and sheep model

- x is the scaled rabbit population, y is the scaled sheep population
- $\dot{x} = f(x, y) = x(3 x 2y).$
- $\dot{y} = g(x, y) = y(2 x y).$
- Two things to do with the fixed points
 - Eigen analysis of Jacobian matrix at fixed points
 - Plot nullclines f(x, y) = 0, g(x, y) = 0.
- 4 fixed points

•
$$(0,0), J = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}, \lambda_1 = 3, v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \lambda_2 = 2, v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \text{ nodal source.}$$

• (0,2),
$$J = \begin{pmatrix} -1 & 0 \\ -2 & -2 \end{pmatrix}$$
, $\lambda_1 = -1$, $v_1 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$, $\lambda_2 = -2$, $v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, nodal sink.
• (3,0), $J = \begin{pmatrix} -3 & -6 \\ 0 & -1 \end{pmatrix}$, $\lambda_1 = -3$, $v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\lambda_2 = -1$, $v_2 = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$, nodal sink.

•
$$(1,1), J = \begin{pmatrix} -1 & -2 \\ -1 & -1 \end{pmatrix}, \lambda_1 = -1 + \sqrt{2}, v_1 = \begin{pmatrix} -\sqrt{2} \\ 1 \end{pmatrix}, \lambda_2 = -1 - \sqrt{2}, v_2 = \begin{pmatrix} \sqrt{2} \\ 1 \end{pmatrix}$$
, saddle.

• Nullclines:.

•
$$x = 0, y = -\frac{x}{2} + \frac{3}{2}$$
.
• $y = 0, y = -x + 2$.

Conservative systems

.

• $\ddot{x} = f(x)$ (force only depends on position, undamped spring).

$$\circ V(x) = -\int_0^x f(s)ds.$$

Let $u = \dot{x}_i \begin{cases} \dot{x} = u \\ \dot{x}_i = f(x) = -U'(x) \end{cases}$

- Let $u = \dot{x}$, $\left\{ \dot{u} = f(x) = -V'(x) \right\}$ Consider $E(t) = \frac{1}{2} (u(t))^2 + V(x(t)).$ • $\frac{dE}{dt} = 0$, E is conserved in time (constant along trajectories).
- $E(x,u) = \frac{1}{2}u^2 + V(x).$
 - Fixed points: u = 0, $V'(x_*) = 0$.
 - Assume $V''(x_*) \neq 0$ (local min or max).
 - $\circ J = \begin{pmatrix} 0 & 1 \\ -V^{\prime\prime} & 0 \end{pmatrix}, \lambda^2 + V^{\prime\prime} = 0.$
 - At min of $V, V'' > 0, \lambda = \pm i \sqrt{-V''}$ (linear center).
 - $E \approx E(0, x_*) + \frac{1}{2}u^2 + \frac{1}{2}V''(x_*)(x x_*)^2$, x_* is stable but not asymptotically stable.
 - Contours are ellipses
 - At max of V, V'' < 0, $\lambda = \pm \sqrt{-V''}$, E has a saddle point.

•
$$E \approx V(x_*) + \frac{1}{2}u^2 + \frac{1}{2}V''(x_*)(x - x_*)^2$$
.

Contours are hyperbolas

1D Index theory

- $\dot{x} = f(x, a)$ smooth. Consider an interval [0, b] with $f(0) \neq 0$ and $f(b) \neq 0$.
- Define the index of f on [0, b] as $Ind(f, 0, b) = \frac{f(0)f(b)}{|f(0)||f(b)|} = \begin{cases} 1, f(0)f(b) > 0\\ -1, f(0)f(b) < 0 \end{cases}$
- It is continuous and constant in a neighborhood of b that contains no fixed points.
- If $c \in (0, b)$ and $f(c) \neq 0$, then $Ind(f, 0, b) = Ind(f, 0, c) \cdot Ind(f, c, b)$.
- If [0, b] contains only hyperbolic fixed points and there are p of them, then Ind(f, 0, b) = $(-1)^{p}$.
- Note: the index is continuous in the parameter space as long as fixed points do not cross 0 or
- After a bifurcation the number of hyperbolic fixed points must be even if they were even before, and odd if they were odd before

С	bifurcation	Before	After
	SN	0	2
	Transcritical	2	2
	Pitchfork	3	1

2D index theory

- $\dot{x} = f(x, a)$ smooth. Consider a closed curve C in the phase plane. It doesn't have to be a trajectory, but $f(x) \neq C$ for all $x \in C$.
- Let $\phi(x) \in [0,2\pi)$ be the angle that corresponds to f on C
 - $\circ \ \phi = \operatorname{atan2}\left(g(x,y), f(x,y)\right).$
 - $\circ \ \phi = \operatorname{Arg}(f + ig).$
- Index of *C* is defined as $I(f, C) = \frac{1}{2\pi} [\phi]_C$, where $[\phi]_C$ is the change in ϕ as *x* go around *C* counter-clockwise.
 - $\circ I(f, C)$ is an integer

- It is the net number of counter-clockwise revolutions made by the vector field as x go around C counter-clockwise.
- If C is continuously deformed to C' without crossing any fixed points, I(f, C) = I(f, C') because it is continuous and is an integer
- Properties
 - If C does not contain any fixed points, I(f, C) = 0.
 - If C is a periodic orbit, I(f, C) = 1.
 - Every periodic orbit must contain at least 1 fixed point.
 - If $t \to -t$ (backwards in time), $f \to -f$, $\phi \to \phi + \pi$, index does not change I(f, C) = I(-f, C).
 - $\circ~$ We can define the index of an isolated fixed point I_p , nodal source/sink, spiral source/sink all have index 1, saddle has index -1.
 - If the fixed points are hyperbolic, $I_p = \pm 1$.
- If C surrounds n isolated fixed points $p_1, ..., p_n$, then $I(f, C) = \sum_{i=1}^n I_{p_i}$.
- Index of *C* does not change with dynamic system parameters as long as no fixed point cross the curve
 - When a > 0, no fixed point, I(C) = 0, then I(C) = 0 for a < 0.
- Bifurcations with index theory
 - $\circ~$ Subcritical pitchfork (total index -1)
 - a < 0 one saddle a > 0, 2 saddles + 1 node
 - Supercritical pitchfork (total index 1)
 - a < 0 one node a > 0, 2 nodes + 1 saddle
 - Trans-critical (total index 0)
 - Saddle + node Node + saddle
 - Hopf bifurcation (total index 1)
 - Spiral sink Spiral source

Limiting behaviors

Discrete $x^{n+1} = f(x^n)$	Continuous 1D $\dot{x} = f(x)$	Continuous 2D, $\dot{x} = f(x)$
$ x^n \to \infty$	$x(t) \rightarrow \pm \infty$	$ x \to \infty$
$x^n ightarrow x_*$ (fixed point)	$x^n ightarrow x_*$ (fixed point)	$x^n ightarrow x_*$ (fixed point)
$x^n \rightarrow \text{periodic orbit}$ ({ x_1, x_2, \dots, x_n })	No periodic orbits	Has periodic orbit
Chaotic (strange) attractor	No chaos	No chaos

Poincare-Bendixson theorem

- If the following 3 assumptions are satisfied, then *R* contains a closed orbit(periodic orbit).
 - \circ *R* is a closed bounded subset of the plane
 - *R* contains no fixed points (can be an annulus)
 - there is a trajectory T that is confined in R.
- Let ξ_n be the distance of x_n to L, the map $\xi \rightarrow$ next crossing of L is called the Poincare map, which can be used to determine the stability of the periodic orbit.
- The P-B provided periodic orbit must be at least one-sided stable
- We can use P-B theorem to prove the existence of periodic orbits using a trapping region *R* (closed and bounded annulus, in which at the boundaries, all trajectories point inwards)
 - $\circ~$ If the trapping region contains no fixed point, then it contains a periodic orbit

Converting from cartesian coordinates to polar coordinates

•
$$\dot{r} = \frac{x\dot{x} + y\dot{y}}{r}$$
.

•
$$\dot{\theta} = \frac{x\dot{y} - y\dot{x}}{r^2}$$

Van der Pol oscillator

- $\ddot{x} + \mu (x^2 1)\dot{x} + x = 0, \mu > 0.$
- Write in terms of first order systems

• Let
$$F(x) = \frac{x^3}{3} - x$$
, $F'(x) = x^2 - 1$, $w = \dot{x} + \mu F(x)$

ẋ = *w* − μ*F*(*x*), *ẇ* = −*x*.
 Only fixed point. *x* = *w* = 0

$$\circ \quad J = \begin{pmatrix} \mu & 1 \\ -1 & 0 \end{pmatrix}, \quad \lambda = \frac{\mu}{2} \pm \sqrt{\frac{\mu^2}{4} - 1}$$

- Spiral source for $0 < \mu < 2$.
- Nodal source for $\mu > 2$.

• Consider
$$\frac{d}{dt}(x^2+w^2)=-2\mu\left(\frac{x^4}{3}-x^2\right).$$

$\circ~$ Circles won't work for a trapping region.

• To show B < A.

• Consider
$$I = -2\mu \int_0^{t_3} \frac{x^4}{3} - x^2 dt$$
.

$$I_1 = -2\mu \int_0^t \frac{1}{3} - x^2 dt \sim \frac{1}{A}.$$

$$I_2 = -2\mu \int_{t_1}^{t_2} \frac{x^4}{3} - x^2 dt \to -\infty$$

$$I_3 = -2\mu \int_{t_2}^{t_3} \frac{x^4}{3} - x^2 dt \sim \frac{1}{A}.$$

• In polar coordinates

$$\circ \quad \dot{r} = -\frac{\mu x F(x)}{x}.$$

$$\circ \quad \dot{\theta} = -1 + \frac{r}{\mu w F(x)} \frac{\mu w F(x)}{r^2}.$$

- When $\mu = 0$.
 - $\circ \quad \begin{pmatrix} \dot{x} \\ \dot{w} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ w \end{pmatrix}, \ \lambda = \pm i, \text{ origin is a linear center.}$
 - $\circ \quad \dot{r}=0, \, \dot{\theta}=-1.$
 - \circ Circles period 2π , clockwise.
- For small $\mu > 0$, we get a periodic orbit at radius 2

$$\circ \ r \approx r_* + \mu r_1(t).$$

- $\circ \ \theta \approx -t + \mu \theta_1(t).$
- Boundary value problem:

•
$$\dot{r} = -\frac{\mu x F(x)}{r}, \dot{\theta} = -1 + \frac{\mu w F(x)}{r^2}.$$

•
$$\theta(0) = 0, \theta(T) = 2\pi, r(0) = r(T).$$

• Use approximation, $\dot{r} = \mu \dot{r_1} = -\mu \cos t F(r_* \cos t)$.

•
$$0 = r_1(2\pi) - r_1(0) = \int_0^{2\pi} \left(\frac{r_*^3}{3}\cos^4 t - r_*\cos^2 t\right) dt = \pi r_*\left(\frac{r_*}{2} - 1\right).$$

• So $r_* = 2$.

2D bifurcation example

• $\dot{x} = -ax + y$.

- $\bullet \quad \dot{y} = \frac{x^2}{1+x^2} y.$
- Plot the nullclines where $\dot{x} = 0$ or $\dot{y} = 0$.

•
$$y = ax, y' = a.$$

• $y = \frac{x^2}{1+x^2}, y' = \frac{2x}{(1+x^2)^2}.$
• $y = \frac{y}{(1+x^2)^2}$

- Saddle node bifurcation at *a*_{*}.
 - One eigendirection at a_*, x_*, y_* has eigenvalue 0.
 - The other eigendirection will have nonzero eigenvalue
- Find *a*_{*}, *x*_{*}, *y*_{*}. (intersection of nullclines)

•
$$x_* = 1, a_* = \frac{1}{2}, y_* = \frac{1}{2}$$

• Evaluate the Jacobian at the bifurcation point.

$$\circ \ J_* = \begin{pmatrix} -\frac{1}{2} & 1\\ \frac{1}{2} & -1 \end{pmatrix}.$$

$$\circ \ \lambda_1 = 0, v_1 = \begin{pmatrix} 1\\ \frac{1}{2} \end{pmatrix}.$$

$$\circ \ \lambda_2 = -\frac{3}{2}, v_2 = \begin{pmatrix} 1\\ -1 \end{pmatrix}$$

• 2 is nodal sink, 1 is saddle

Summary of 2D bifurcation

- If a hyperbolic fixed point with real eigenvalues changes type or appears at a_{*}, then J_{*} has eigenvalue λ₁ = 0 with eigenvector v₁, and nonzero λ₂ with eigenvector v₂.
- Near a_* (both sides), solutions either grow or decay in v_2 direction.
- There is a 1D bifurcation (saddle node, transcritical, pitchfork) in v_1 direction.

Hopf bifurcation

- Spiral source \leftrightarrow spiral sink.
- Only possible with complex eigenvalues $\lambda = \alpha + \beta i$.
 - $\alpha(a_*) = 0$ (changes between positive and negative).
 - $\circ \ \beta(a_*) \neq 0.$

Example in polar coordinates

- Assume $\dot{\theta} = 1$ in all cases.
- Supercritical hopf bifurcation

$$\circ \dot{r} = \mu r - r^3$$

- If $\mu < 0, \dot{r} < 0$ for all r, r = 0 is spiral sink (global attractor).
- If $\mu > 0$, $\dot{r} > 0$ for $0 < r < \sqrt{\mu}$, r = 0 is unstable spiral source, $r = \sqrt{\mu}$ is a stable periodic orbit.

- Subcritical Hopf bifurcation
 - $\circ \ \dot{r} = \mu r + r^3.$
 - If $\mu > 0$, $\dot{r} > 0$ for all r > 0, r = 0 is a spiral source.
 - If $\mu < 0$, $\dot{r} < 0$ for $0 < r < \sqrt{-\mu}$, r = 0 is spiral sink, $r = \sqrt{-\mu}$ is unstable periodic orbit.

• Subcritical but with hysterisis. • $\dot{r} = \mu r + r^3 - r^5$.

• Near $r = 0, \mu = 0$, still a subcritical Hopf bifurcation.