Curves

January 11, 2021 8:49 AM

Hyper trig:

- $\sinh t = \frac{e^t e^{-t}}{\frac{e^t + e^{-t}}{2}}$ $\cosh t = \frac{e^t + e^{-t}}{2}$
- $\cosh^2 t \sinh^2 t = 1$
- $\sinh' t = \cosh t \, \cosh' t = \sinh t$

General concepts:

- Def: a parametrized curve is a differentiable map $\alpha: I \to \mathbb{R}^n$ of an open interval I = $(a,b) \subset \mathbb{R}.$
- The image set $\alpha(I) \subset \mathbb{R}^n$ is called the trace of α
- α is regular if $\alpha'(t) \neq 0$ for all $t \in I$.
 - If α is regular, then there is a tangent line to the curve at every point
 - Any point t where $\alpha'(t) = 0$ is called a singular point

Arc length

- The arclength function of α from the point t_0 is $s(t) = \int_{t_0}^t |\alpha'(u)| du$ (the length of the part of the curve from $\alpha(t_0)$ to $\alpha(t)$)
- The arclength is invariant under reparameterization
- s(t) is differentiable and $\frac{ds}{dt} = |\alpha'(t)|$
 - We say that $\alpha(t)$ is parametrized by arclength if t is the arclength from some point
 - Every regular curve can be parametrized by arclength, and $\alpha(s)$ has the property $|\alpha'(s)| = 1$ (unit speed parametrization)
 - If $\alpha(t)$ is regular, then $\frac{s(t)}{s(t)}$ has an inverse function t(s) and $\frac{dt(s)}{ds} = \frac{1}{\frac{ds(t)}{s(t)}}$

Curvature:

- Def: let $\alpha: I \to \mathbb{R}^3$ parametrized by arclength $|\alpha'(s)| = 1$, $\kappa(s) = |\alpha''(s)|$ is the curvature of α at s. It measures how rapidly the curve pulls away from its tangent line at s
- For straight line, curvature is 0 (does not bend)
- For circles, curvature is the same at each point (constant bending)
- Note: when using arclength parametrization, $\alpha''(s)$ is orthogonal to $\alpha'(s)$
- Measures deviation of curve from being a line

Unit tangent vector: $T(s) = \alpha'(s)$ Unit normal vector: $N(s) = \frac{\alpha''(s)}{|\alpha''(s)|} = \frac{\alpha''(s)}{\kappa(s)}$

Osculating plane at s: plane determined by T and N

- Assume $\alpha'' \neq 0$ (Frenet curve), then $B(s) = T(s) \times N(s)$ is normal to the osculating plane (binormal vector)
- |B'(s)| is the rate of change of the angle o normal of neighboring osculating planes with the osculating plane at s

Torsion:

- $B'(s) = \frac{d}{dt} (T(s) \times N(s)) = T' \times N + T \times N' = T \times N'$ (since T' is parallel to N) $\circ B' \perp T$ and $B' \perp B, B' \parallel N$
 - So define torsion $\tau(s)$ such that $B'(s) = -\tau(s)N(s)$
- Measures deviation of curve from lying in a plane

Summary (Frenet equations): if $\alpha(s)$ parametrized by arclength with $\alpha''(s) \neq 0$

- $T' = \kappa N$
- $B' = -\tau N$
- $N' = B' \times T + B \times T' = \tau N \times T + B \times \kappa N = \tau B \kappa T$ $\circ N = B \times T$
- (*T*, *N*)-plane: osculating plane (plane that best fits the curve)
- (*N*, *B*)-plane: normal plane (unique plane normal to $\alpha(s), \alpha'(s)$ at *s*)
- (*T*, *B*)-plane: rectifying plane (plane orthogonal to curvature vector)
 - The projection onto this plane straightens or rectifies $\alpha(s)$ in the sense that up to second order, the projected curve is a line
- If α is a Frenet curve, then $\tau = 0 \alpha \Leftrightarrow$ is a plane curve

Curves in \mathbb{R}^2 : the curvature can be given a sign

- If $T = \alpha'$ is the unit tangent vector, then N_s =vector obtained by rotating T counter clockwise by $\frac{\pi}{2}$ (signed normal)
- Then $\alpha'' = T' = \kappa_s N_s$ gives the signed curvature κ_s
- Note: sign of curvature changes if we change the orientation of the curve
- Then Frenet equations in \mathbb{R}^2 become:
 - $\circ T' = \kappa_s N_s$ $\circ N_s' = -\kappa_s T$

Curves in \mathbb{R}^n :

- Let $\alpha: I \to \mathbb{R}^n$ regular, *n*-times continuously differentiable curve parametrized by arclength, α is a Frenet curve if for all s, $\alpha'(s), \alpha''(s), ..., \alpha^{(n-1)}(s)$ are linearly independent, then there exists a unique Frenet-n-frame if
 - $\circ e_1, \dots, e_n$ orthonormal vectors positively oriented
 - For $k = 1, ..., n 1, \alpha^{(k)} \in span\{e_1(s), ..., e_k(s)\}$

• The inner product <
$$\alpha^{(k)}(s)$$
, $e_k >> 0$ for all $k = 1, ..., n-1$

• We can obtain the n-frame via Gram-Schmidt process

$$\circ e_{1} = \alpha', e_{2} = \frac{\alpha''}{|\alpha''|}, \dots, e_{n-1} = \frac{\alpha^{(n-1)} - \sum_{i=1}^{n-2} < \alpha^{(n-1)}, e_{i} > e_{i}}{\left|\alpha^{(n-1)} - \sum_{i=1}^{n-2} < \alpha^{(n-1)}, e_{i} > e_{i}\right|}$$

- $\circ e_n$ determined by (i)
- Frenet equations:

Let α be a Frenet in \mathbb{R}^n with Frenet-n frame. Then there exists differentiable function $R_i: I \to \mathbb{R}, i = 1, ..., n - 1$ (ith Frenet curvature) along the curve with $k_1, ..., k_{n-2} > 0$, such

that
$$\begin{pmatrix} e_1 \\ e_2 \\ \cdots \\ e_n \end{pmatrix}' = \begin{pmatrix} 0 & k_1 & \cdots & 0 \\ -k_1 & \cdots & k_{n-1} \\ 0 & -k_{n-1} & 0 \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \\ \cdots \\ e_n \end{pmatrix}$$

 \circ E.g. in \mathbb{R}^3 , we have $\begin{pmatrix} T \\ N \\ B \end{pmatrix}' = \begin{pmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0 \end{pmatrix} \begin{pmatrix} T \\ N \\ B \end{pmatrix}$

• As torsion in \mathbb{R}^3 , we can give k_{n-1} a sign

Calculate curvature and torsion by $\alpha(t)$

•
$$\kappa(t) = \frac{|\alpha' \times \alpha''|}{|\alpha'|^3}$$

• $\tau(t) = \frac{\det(\alpha', \alpha'', \alpha''')}{|\alpha' \times \alpha''|^2}$

• Binormal vector B(t) is parallel to $r'(t) \times r''(t)$

Local canonical form

• Using Taylor series and the following expressions, we can get $\alpha(s) = \alpha(0) + \left(s - \frac{k^2}{6}s^3\right)T + \left(\frac{ks^2}{2} + \frac{k's^3}{6}\right)N + \frac{k\tau s^3}{6}B + R$ $\circ \alpha'(0) = T$ $\circ \alpha''(0) = kN$

- $\alpha^{\prime\prime\prime}(0) = -k^2T + k'N + k\tau B$
- Rotate and translate the curve such that $\alpha(0) = 0, T = (1,0,0), N = (0,1,0), B = (0,0,1),$ we have

•
$$x(s) = s - \frac{k^2}{6}s^3 + R_x$$

• $y(s) = \frac{k}{2}s^2 + \frac{k'}{6}s^3 + R_y$
• $z(s) = \frac{k\tau}{6}s^3 + R_z$

- In TN-plane(osculating): a quadratic (x(s), y(s))
- In NB-plane(normal): not regular (y(s), z(s))
- In TB-plane(rectifying): up to second order, the projected curve is a line (x(s), z(s))

osculating plane

rectifying plane

normal plane

- Interpretation of sign of torsion
 - Component of α in the *B* direction is $\frac{\kappa \tau}{\epsilon} s^3$
 - If $\tau > 0$, as s increases, the curve is crossing the osculating plane toward the positive side
 - If $\tau < 0$, the curve is crossing the osculating plane in the negative B direction
 - \circ The curve twists out of the osculating plane, τ measures the twisting or torsion

Osculating circle

- The osculating circle at s is the osculating plane at s, with center on the line in the direction of N(s) and radius $\frac{1}{k(s)}$ that lies on the concave side of α
- It is the circle of closest fit to α at s
- The osculating circle is the unique circle $\beta(s)$ parametrized by arclength with $\beta(s) =$ $\alpha(s), \beta'(s) = \alpha'(s), \text{ and } \beta''(s) = \alpha''(s)$

Characterize certain curves by properties of their curvature and torsion

- k = 0 straight line
- $k \neq 0$ and $\tau = 0$ plane curve
- $\tau = 0, k = const > 0$ circle
- $\tau = const \neq 0, k = const$ helix

Fundamental theorem of curves:

- If $k \neq 0$, the functions k and τ completely describe the curve geometrically
- Definition: $F: \mathbb{R}^n \to \mathbb{R}^n$ is an isometry (or rigid motion) if |F(v) F(w)| = |v w| for all $v, w \in \mathbb{R}^n$
 - F is an isometry $\Leftrightarrow F(v) = Av + b$ where $A \in O(n)$ (orthogonal $n \times n$ matrix) and $b \in \mathbb{R}^n$
 - An $n \times n$ matrix is orthogonal if $A^T A = I$, or the columns of A are orthonormal vectors
 - Orthogonal matrices preserve the dot product i.e. $Av \cdot Aw = v \cdot w$
 - The curvature and torsion of a Frenet curve are invariant under orientation preserving isometries
- Let k(s) > 0 and $\tau(s)$, $s \in (a, b)$ be differentiable function. Let $s_0 \in (a, b)$, $q_0 \in \mathbb{R}^3$ and let T_0, N_0, B_0 be orthonormal vectors. Then there exists a unique regular curve $\alpha: (a, b) \rightarrow \beta$

- $\circ \alpha(s_0) = q_0$
- \circ T_0, N_0, B_0 is the Frenet frame of α at s_0
- k(s) is the curvature and $\tau(s)$ is the torsion of α
- Uniqueness: assume $\alpha, \beta: I \to \mathbb{R}^3$ satisfying $k_{\alpha}(s) = k_{\beta}(s)$ and $\tau_{\alpha}(s) = \tau_{\beta}(s)$ then β is the image of α under a rigid motion of \mathbb{R}^3
 - Exists an orthogonal matrix A with det A > 0 and $b \in \mathbb{R}^3$ such that $\beta(s) =$ $A\alpha(s) + b$
- \circ In general, given k and τ , it is difficult to explicitly solve the Frenet equations. For plane curves, can explicitly determine the curve in terms of its curvature
 - Let $\alpha: (a, b) \to \mathbb{R}^2$ be plane curve parametrized by arclength $\alpha'(s) = (\cos \theta(s), \sin \theta(s))$, where $\theta(s)$ is the angle $\alpha'(s)$ makes with the positive x - axis measured counter clockwise Then $\alpha''(s) = \frac{d\theta}{ds}(-\sin\theta(s), \cos\theta(s))$ where $(-\sin\theta(s), \cos\theta(s))$ is the normal vecto

 $k_s(s) = \frac{d\theta}{ds}$ is the rate of change of the angle the tangent makes with the horizontal, $\frac{\theta(s) = \theta(s_0) + \int_{s_0}^{s} k_s(u) du}{s_0}$

Fundamental theorem for plane curve

Given $k: (a, b) \to \mathbb{R}$ differentiable, $s_0 \in (a, b), q_0 \in \mathbb{R}^2, T_0 = (\cos \theta_0, \sin \theta_0)$, there exists a unique $\alpha: (a, b) \rightarrow \mathbb{R}^2$ parametrized by arclength such that

- $\alpha(s_0) = q_0$
- $\alpha'(s_0) = T_0$
- k(s) is the signed curvature

•
$$\alpha(s) = q_0 + \left(\int_{s_0}^s \cos\theta(u) \, du, \int_{s_0}^s \sin\theta(u) \, du\right)$$
 where $\theta(u)$ defined as above

Global properties of curves

- Def: α : $[a, b] \to \mathbb{R}^2$ is a closed curve if $\alpha(a) = \alpha(b), \alpha'(a) = \alpha'(b), \dots$ (α and all its derivatives agree at a and b)
 - Def: α is simple if it has no further self-intersections $(t_1, t_2 \in [a, b), t_1 \neq t_2 \Rightarrow \alpha(t_1) \neq \alpha(t_2))$

• Let $\alpha: [0, l] \to \mathbb{R}^2$ be a closed curve parametrized by arc length. Define $\theta: [0, l] \to \mathbb{R}$ by $\theta(s) = \int_0^l k_s(s) ds$, θ is differentiable and $\theta'(s) = k_s(s)$. $\int_0^l k_s(s) ds = 2\pi I$, $I \in \mathbb{Z}$ since the curve is closed. The integer I is the rotation index (number)

- $\circ I = \frac{1}{2\pi} \int_{0}^{t} k_{s}(s) ds$
- It measures total rotation of tangent vector as you go around the curve

Theorem of turning tangents: the rotation index of a simple closed curve is ± 1

where the sign depends on the orientation

- Isoperimetric inequality
 - Let C be a simple closed plane curve of length l and let A be the area bounded by C. Then A ≤ 1/(4π) l²
 Equality if and only if C is a circle

Surfaces: Local theory

January 12, 2021 1:56 PM

Def: a parametrized surface element is a differentiable map $X: U \to \mathbb{R}^3, U \subset \mathbb{R}^2$ an open set with $X(u, v) = (x_1(u, v), x_2(u, v), x_3(u, v))$

- X is regular if $\frac{\partial X}{\partial u}$ and $\frac{\partial X}{\partial v}$ are linearly independent (i.e. $\frac{\partial X}{\partial u} \times \frac{\partial X}{\partial v} \neq 0$) for all $(u, v) \in U$
- Paraboloid: $X(u, v) = (u, v, u^2 + v^2)$
- Helicoid: $X(u, v) = (v \cos u, v \sin u, au)$ where $a \neq 0$ constant, $u \in (0, 2\pi)$, $v \in \mathbb{R}$ • Through each point of a helix, draw a line parallel to xy –plane and through z –axis
 - Minimal, ruled surface
- Sphere: $X(\phi, \theta) = (\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi), \phi \in (0, \pi), \theta \in (0, 2\pi).$ • Surface of revolution: let $\alpha: I \to \mathbb{R}^3 \alpha(u) = (0, f(u), g(u))$ be a curve, f > 0, rotate α about
- $z axis, X(u, v) = (f(u) \cos v, f(u) \sin v, g(u)), u \in I, v \in (0, 2\pi)$
- Note: all the regular surfaces miss some point

Def: a subset $S \subset \mathbb{R}^3$ is a regular surface if for each $p \in S$, there is an open set $V \subset \mathbb{R}^3$ containing p, an open set $U \subset \mathbb{R}^2$ and a differentiable map $X: U \to \mathbb{R}^3$ such that

- $X(U) = V \cap S$
- X is regular
- X is one-to-one and X^{-1} is continuous (i.e. the map X is a homeomorphism)
 - $(X^{(2)})^{-1} \circ X^{(1)}$ is a diffeomorphism (differentiable with differentiable inverse)

Examples of regular surfaces

- Sphere $S^2 = \{(x, y, z): x^2 + y^2 + z^2 = 1\}$
 - Let $U = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\} f(x, y) = (x, y, \sqrt{1 x^2 y^2})$ is a regular parametrization of upper hemisphere

Tangent plane T_pS to S at $p = f(u_0, v_0)$ is the subspace of \mathbb{R}^3 spanned by $rac{\partial f}{\partial u}(u_0, v_0)$ and $rac{\partial f}{\partial v}(u_0, v_0)$ A unit normal to S at p is a unit vector normal to the tangent plan T_pS . Given a parametrization $f: U \subset I$

 $\mathbb{R}^2 \to S \subset \mathbb{R}^3$, we obtain a unit normal vector at each $q \in f(U)$ by $n = \frac{\frac{\partial f}{\partial u} \times \frac{\partial f}{\partial v}}{\left|\frac{\partial f}{\partial x} \times \frac{\partial f}{\partial t}\right|}$

First fundamental form

• The inner (dot) product of \mathbb{R}^3 induces an inner product on $T_n S \subset \mathbb{R}^3$ by restriction, called the first

fundamental form I_p

• $I_p: T_pS \times T_pS \to \mathbb{R}$ $I_p(v, w) = v \cdot w$, where v, w are two tangent vectors

- properties:
 - Symmetric $(I_p(v, w) = I_p(w, v))$
 - Bilinear $(I_p(av_1 + bv_2, w) = aI_p(v_1, w) + bI_p(v_2, w))$
 - Positive definite $(I_p(v, v) \ge 0, I_p(v, v) = 0$ if and only if v = 0)
- Suppose $\{v_1, v_2\}$ is a basis of $T_p M$, the matrix representation of I_p with respect to the basis is $\begin{pmatrix} I_p(v_1,v_1) & I_p(v_1,v_2) \end{pmatrix}$

$$I_p(v_2, v_1) \quad I_p(v_2, v_2) \int$$

$$f u = a_1 v_1 + a_2 v_2, w = b_1 v_1 + b_2 v_2,$$

then
$$I(u, w) = (a_1 a_2) \begin{pmatrix} I_p(v_1, v_1) & I_p(v_1, v_2) \\ I_p(v_2, v_1) & I_p(v_2, v_2) \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$

• Given a parametrization $f: U \subset \mathbb{R}^2 \to \mathbb{R}^3$, the matrix representation of I with respect to basis

$$\left\{ \frac{\partial f}{\partial u}, \frac{\partial f}{\partial v} \right\} \text{ of } T_p S \text{ is denoted } \begin{pmatrix} E & F \\ F & G \end{pmatrix} = \begin{pmatrix} I_p \left(\frac{\partial f}{\partial u}, \frac{\partial f}{\partial u} \right) & I_p \left(\frac{\partial f}{\partial u}, \frac{\partial f}{\partial v} \right) \\ I_p \left(\frac{\partial f}{\partial v}, \frac{\partial f}{\partial u} \right) & I_p \left(\frac{\partial f}{\partial v}, \frac{\partial f}{\partial v} \right) \end{pmatrix} = \begin{pmatrix} f_u f_u & f_u f_v \\ f_v f_u & f_v f_v \end{pmatrix}$$

- Def: two surfaces S_1 and S_2 are locally isometric if for each $p \in S_1$, there are parametrizations $f_1: U \to S_1, f_2: U \to S_2$ $(p \in f_1(U))$ such that $f_2 \circ f_1^{-1}: f_1(U) \to f_2(U)$ preserves the first fundamental forms
 - Plane and cylinder are locally isometric
- Importance: By knowing I, we can calculate geometric quantities (length, angle, area) without further reference to the ambient \mathbb{R}^3
 - Arclength of a parametrized curve in a surface: $\alpha: (a, b) \to S$ be a curve in S, the arclength of

$$\alpha: s(t) = \int_0^t |\alpha'(t)| dt = \int_0^t \sqrt{I(\alpha', \alpha')} dt = \frac{\int_0^t \sqrt{E\left(\frac{du}{dt}\right)^2 + 2F\frac{du}{dt}\frac{dv}{dt} + G\left(\frac{dv}{dt}\right)^2}}{\int_0^t dt} dt$$

• Element of arclength is $ds^2 = Edu^2 + 2Fdudv + Gdv$ gle: $\cos\theta = \frac{f_u f_v}{|f_v||f_v|} = \frac{F}{\sqrt{EG}}$

• Angle:
$$\cos \theta = \frac{\int u \int v}{|f_u| |f_v|} = \frac{1}{\sqrt{E}}$$

• A parametrization $f: U \to S$ is a conformal (orthogonal) parametrization if F(u, v) = 0and E = G, $(\theta = \frac{\pi}{2})$ for all $(u, v) \in U$. i.e. the coordinate curves are orthogonal

• Area:
$$\iint_U |f_u \times f_v| du dv = \iint_U \sqrt{EG - F^2} du dv$$

• Note: $\left|\frac{\partial f}{\partial u} \times \frac{\partial f}{\partial v}\right|^2 + \left|\frac{\partial f}{\partial u} \cdot \frac{\partial f}{\partial v}\right|^2 = \left|\frac{\partial f}{\partial u}\right|^2 \left|\frac{\partial f}{\partial v}\right|^2$ does not depend on the parametrization

Def: A surface $S \subset \mathbb{R}^3$ is orientable if there exists a differentiable field of unit normal vectors $N: S \to \mathbb{R}^3$

- Differentiable means $N \circ f: U \subset \mathbb{R}^2 \to \mathbb{R}^3$ differentiable
- The choice of such a field is called an orientation of S
 - There are always two choices: outward/inward based on the direction of normal vectors
- Cube is not regular, thus is not orientable (piecewise orientable on each surface)
- Any parametrized surface element $f: U \subset \mathbb{R}^2 \to \mathbb{R}^3$ is oriented by $n = \frac{f_u \times f_v}{|f| \times |f|}$
- Unit sphere $S^2 = \{p \in \mathbb{R}^3 : |p| = 1\}$ is orientable
 - N(p) = p is the outward unit normal
- The smooth surface Mobius strip is not orientable

Def: Let $S \subset \mathbb{R}^3$ be a surface with orientation N. The map $N: S \to S^2 \subset \mathbb{R}^3$ $(p \to N(p))$ is called the Gauss map (S^2 is the unit sphere/set of all unit vectors in \mathbb{R}^3)

The shape operator at p is the map $S_p: T_pS \to \mathbb{R}^3$ $S_p(V) = -(D_VN)(p)$

- V is the tangent vector to the surface
- Measures the rate of change of N in the direction V at p
- $S_n(V) = -(N \circ \alpha)'(p)$, where α is any curve in S with $\alpha(0) = p$, $\alpha'(0) = V$
 - V can actually be any tangent vector, not necessarily unit
 - Since N is unit vector, $N(\alpha(t)) \cdot N(\alpha(t)) = 1$ So $(N \circ \alpha)'(0) \cdot (N \circ \alpha)(0) = 0$,

i.e. $D_V N(p) \cdot N(p) = 0$, $D_V N(p) \in T_p S$ \circ Prop: $S_p: T_p S \to T_p S$ is a self-ajoint (symmetric) linear map $\bullet S_p(V) \cdot W = V \cdot S_p(W)$

Def: the second fundamental form of S at p is II: $T_p S \times T_p S \to \mathbb{R}$, $II(v, w) = I(S_p(V), W) = S_p(V) \cdot W$

- *II*(*V*, *V*) gives the curvature
- Note: II is symmetric bilinear form
 - $\circ~$ Shape operator is linear and dot product is bilinear
 - II(V, W) = II(W, V) (S_p is self adjoint)
- Matrix representation with respect to the basis $\{f_u, f_v\}$ of T_pS : $II = \begin{pmatrix} l & m \\ m & n \end{pmatrix}$
 - $\circ \quad l = II(f_u, f_u) = -N_u \cdot f_u = N \cdot f_{uu}, m = II(f_u, f_v) = N \cdot f_{uv}, m = II(f_v, f_v) = N \cdot f_{vv}$
- Planes have zero second fundamental form, reverse is true
- Sphere oriented inward : II = I, II(v, v) = |v| = 1

Curves on surfaces and curvature

Let $\alpha: I \to M$ be a regular curve on the surface M parametrized by arclength with $\alpha'' \neq 0$

- k_n = II(α', α') = α'' · N = ±k is the normal curvature (curvature in a direction v ∈ T_pM) of α
 Curvature of the curve that comes from the curvature of the surface
- Meusnier theorem: all curves on a given surface having at a given point p the same tangent line, have same normal curvature at p
 - $\circ k_n$ is determined by the surface and does not depend on the curve
 - $k_n = II(\alpha', \alpha') = \alpha'' \cdot N = k \cdot N = k \cos \theta$ (θ is the angle between the curve normal and surface normal)
- Consider a curve which a normal section of the surface intersects at p (a slice of M with a plane π through p parallel to the normal N to M at p)
 - \circ $\;$ The curve of intersection is the normal section

- Then such a curve is a plane curve through p with $n(p) = \pm N(p)$, $\frac{k(p) = |k_n(p)|}{|II(v,v)|}$
- For a plane, all normal sections are straight lines, thus, normal curvatures are 0 (II = 0)
- For spheres with inward normal, normal sections are great circles through p(plane curves of radius 1), $k_n = II(w, w) = I(w, w) = 1$
- For cylinder, normal sections vary from a circle $(k_n = 1)$ to a straight line $(k_n = 0)$
- The minimum normal curvature at p, $k_1(p)$ and maximum $k_2(p)$ are called the principal curvatures of M at p, the corresponding directions e_1 , e_2 are called the principal directions
 - e_1, e_2 are critical points of the function $w \to II(w, w)$ over all $w \in T_p M$ with |w| = 1
- Let $w \in T_pM$ with |w| = 1. Then w is a principal direction if and only if w is an eigen vector of the shape operator $S_p: T_pM \to T_pM$. The associated eigen values are the principal curvatures

Some side notes of linear algebra

- *V*: n-dimensional vector space with inner product <·,·>
- $A: V \rightarrow V$ linear transformation, self-adjoint, $\langle Av, w \rangle = \langle v, Aw \rangle \forall v, w \in V$
- $B: V \times V \to \mathbb{R}$ associated symmetric bilinear form $B(v, w) = \langle Av, w \rangle$
- Spectral theorem: there exists orthonormal basis $e_1, e_2, ..., e_n$ of V such that $Ae_1 = \lambda_i e_i$, and $e_1, ..., e_n$ are critical points of $v \to B(v, v)$ overall unit vectors $v, \lambda_i = B(e_i, e_i)$ is the eigen value

Principal curvatures and directions

- Principal curvatures: k_1, k_2 are min and max curvatures, i.e. $v \rightarrow II(v, v), |v| = 1$
- Principal directions: e_1 , e_2 are corresponding directions
 - Critical points of $v \to II_p(v, v)$ over all unit vectors $v \in T_pM$
 - The principal directions are eigen vectors of $S_p: T_pM \rightarrow T_pM$
- Remark: either $k_1 = k_2$ and every direction is a principal direction or there exist exactly two (up to sign) principal directions orthogonal to each other
 - k(p) = 0 gives $k_n(p) = 0$
 - $k = |\alpha''| \ge \alpha'' \cdot n = k_n$ (normal curvature)
 - $\circ \ \alpha^{\prime\prime} = (\alpha^{\prime\prime})^T + (\alpha^{\prime\prime})^{\perp}$
 - $(\alpha'')^T$ is the geodesic curvature
 - $(\alpha'')^{\perp}$ is the normal curvature
- Remark: given $w \in T_p M$, |w| = 1, $w = \cos \theta e_1 + \sin \theta e_2$, we have $II_p(w, w) = k_1 \cos^2 \theta + k_2 \sin^2 \theta$ (Euler's formula)

Gauss and mean curvature

- Gauss curvature: $K(p) = k_1(p)k_2(p) = \det S_p = \begin{pmatrix} k_1 & 0 \\ 0 & k_2 \end{pmatrix}$
- Mean curvature: $H(p) = \frac{1}{2}(k_1(p) + k_2(p))$
- They are independent of the basis
- the signs of k₁, k₂ changes if we change the orientation of M
 K does not change, H changes sign
- A point *p* on a surface is called
 - Elliptic if K(p) > 0 (k_1, k_2 have the same sign)

• Hyperbolic if K(p) < 0 (k_1, k_2 have the opposite sign)

• Parabolic if K(p) = 0 ($k_1k_2 = 0$, one is zero, the other is non-zero)

- Planar if $k_1 = k_2 = 0$
- Umbilic if $k_1 = k_2 \neq 0$
- Expressions: given matrix of $S_p: T_pM \to T_pM$ relative to basis $\{f_u, f_v\}$,

•
$$S_p = I^{-1}II = \begin{pmatrix} E & F \\ F & G \end{pmatrix}^{-1} \begin{pmatrix} l & m \\ m & n \end{pmatrix}$$

• Then $K(p) = det(S_p)$ and $H(p) = \frac{1}{2}trS_p = \frac{1}{2}(a+d)$
• $K(p) = \frac{\det II}{\det I} = \frac{ln - m^2}{EG - F^2}$
• Tr means the trace

• The principal curvatures can be found by det(S - kI) = 0

This gives that
$$k^2 - 2Hk + K = 0$$

• If <u>S is diagonal</u>, f_t , f_{θ} are principal directions, the diagonal are the principal curvatures

• Note, if
$$S_p = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$
:
• $n_u = -(af_u + bf_v)$.
• $n_v = -(cf_u + df_v)$,

A regular curve $\alpha: I \to M$ is called a line of curvature if $\frac{\alpha'(t)}{|\alpha'(t)|}$ is a principal direction for all $t \in I$ i.e.

 $S(\alpha') = k\alpha', \alpha'$ is an eigen vector of the shape operator

- For a surface of revolution, *f* is line of curvature parametrization (t-curves, θ-curves are lines of curvature)
- $n' = \lambda \alpha'$ for the line of curvature, where *n* is the surface normal.

Surface of revolution of constant Gauss curvature

- Assume t is the arclength parameter of the curve $\alpha(t) = (r(t), 0, h(t))$
- Constant Gauss curvature gives that $r'' + k_0 r = 0$
- When $k_0 = 0$, r(t) = at + b, $h(t) = \pm \sqrt{1 a^2}t + c$
 - $\circ a = 0, \alpha(t)$ is a straight line, the surface is a cylinder
 - $\circ a = 1, \alpha(t)$ is a straight line, the surface is a plane
 - $a \in (0,1)$, surface is a cone
- $k_0 > 0$, sphere, elliptic integrals, oblate sphere

Def: $V \in T_pS$ is an asymptotic direction if the normal curvature in the direction V is zero. $II_p(V, V) = 0$. A regular curve α in M is an asymptotic curve if $\alpha'(t)$ is an asymptotic direction for all t

At an elliptic point p, K_p > 0, k₁ and k₂ have the same sign and are nonzero, there is no asymptotic direction

A ruled surface is a surface that can be parametrized as $f(s,t) = \alpha(t) + sX(t)$ where X(t) is a vector field along $\alpha(t)$

- The line *t* = *const* are called generators
- A curve *s* = *const* is called a directrix
- Examples: plane, cylinder, helicoid, cone, hyperboloid of one sheet
- Any ruled surface has Gauss curvature $K \leq 0$
- A ruled surface is developable if the Gauss map *n* is constant along generators
 - Examples: plane, cone, cylinder
 - A ruled surface is developable $\Leftrightarrow \frac{dn}{ds} = 0 \Leftrightarrow K = 0$
 - $\circ S(V) = -n'.$

A surface with mean curvature H = 0 is called a minimal surface

- Helicoid, catenoid, plane
- Note $H = 0 \Leftrightarrow k_1 = -k_2 \Leftrightarrow K = -k^2 \le 0$ (every point is hyperbolic)
- It minimizes area locally
- Minimal surfaces are critical points of the area function
- Let f: U ⊂ ℝ² → ℝ³ be a surface with boundary curve C, f_t(u, v) = f(u, v) + th(u, v)n(u, v)
 Here th(u, v) is a differentiable function that vanishes on the boundary

Intrinsic geometry of surfaces

- A property of a surface is intrinsic if it depends only on the first fundamental form
- Def: let M_1, M_2 be surfaces. An isometry from M_1 to M_2 is a one-to-one, onto, differentiable map $\psi: M_1 \to M_2$ such that for any curve $\alpha: [a, b] \to M_1$, the length of α equals the length of $\psi \circ \alpha$
 - Remark: $\psi: M_1 \to M_2$ is differentiable if for each $p \in M_1$, there are parametrizations $f_1: U_1 \to M_1$ about p and $f_2: U_2 \to M_2$ about $\psi(p)$ such that $f_2^{-1} \circ \psi \circ f_1: U_1 \to U_2$ is differentiable as a function of 2 variables

- M_1 and M_2 are isometric if there is an isometry $\psi: M_1 \rightarrow M_2$
 - $\circ \ lpha'(t)$ and $(\psi \circ lpha)'(t)$ have the same length, arc length are the same
 - We define distance between points $p, q \in M$ by $d_M(p,q) = inf\{L(\alpha): \alpha \text{ is a curve in } M \text{ betwen } p \text{ and } q\}.$
- M_1 and M_2 are locally isometric if for each point $p \in M$, there are open sets V_1 about p and V_2 about $\psi(p)$ and an isometry $\psi: V_1 \to V_2$
 - Suppose $f_1: U \to M_1$, $f_2: U \to M_2$ are parametrizations such that $E_1 = E_2$, $F_1 = F_2$, $G_1 = G_2$, then $\psi = f_2 \circ f_1^{-1}$ is a local isometry

- Helicoid and catenoid are locally isometric
- Note: isometry cannot be extended to global isometry (Cylinder is not homeomorphic to plane)
- A one-to-one, onto, differentiable map $\psi: M_1 \to M_2$ is conformal if for any $p \in M_1$ and any curves α and β with $\alpha(0) = \beta(0) = p$, we have $(\psi \circ \alpha)'(0) \cdot (\psi \circ \beta)'(0) = \lambda^2 \alpha'(0) \cdot \beta'(0)$ where λ is differentiable and $\lambda \neq 0$
 - Conformal maps preserve angles, but length might be stretched
 - Suppose $f_1: U \to M_1$, $f_2: U \to M_2$ are parametrizations such that $E_1 = \lambda^2 E_2$, $F_1 = \lambda^2 F_2$, and $G_1 = \lambda^2 G_2$, $\lambda \neq 0$ is a differentiable function. Then $\psi = f_2 \circ f_1^{-1}$ is a local conformal map
- Given a regular surface M and $p \in M$, there is a local parametrization of M near p such that E =
 - $G = \lambda^2$ and F = 0, λ nowhere zero and everywhere differentiable
 - Any surface is locally conformal to the plane
 - Any two regular surfaces are locally conformal

Codazzi and Gauss equations:

- Known the first and second fundamental form, we want to find the parametrization
- Start with writing derivatives of $\{f_u, f_v, n\}$ in terms of $\{f_u, f_v, n\}$

- Simple for *n*, can just use the shape operator
- $\circ \quad f_{uu} = \Gamma^u_{uu} f_u + \Gamma^v_{uu} f_v + l \boldsymbol{n}.$
- $\circ \quad f_{uv} = \Gamma^u_{uv} f_u + \Gamma^v_{uv} f_v + m \boldsymbol{n}.$
- $\circ \quad f_{vu} = \Gamma^u_{vu} f_u + \Gamma^v_{vu} f_v + m \boldsymbol{n}. (f_{uv} = f_{vu})$
- $\circ \quad f_{vv} = \Gamma^u_{vv} f_u + \Gamma^v_{vv} f_v + n \boldsymbol{n}.$
- Γ_{**}^* are called the Christoffel symbols
- In matrix forms:

•
$$\begin{pmatrix} f_u \\ f_v \\ n \end{pmatrix}_u = \begin{pmatrix} \Gamma_{uu}^u & \Gamma_{uv}^v & l \\ \Gamma_{vu}^u & \Gamma_{vu}^v & m \\ -a & -b & 0 \end{pmatrix} \begin{pmatrix} f_u \\ f_v \\ n \end{pmatrix}.$$
•
$$\begin{pmatrix} f_u \\ f_v \\ n \end{pmatrix}_v = \begin{pmatrix} \Gamma_{uv}^u & \Gamma_{uv}^v & m \\ \Gamma_{vv}^u & \Gamma_{vv}^v & n \\ -c & -d & 0 \end{pmatrix} \begin{pmatrix} f_u \\ f_v \\ n \end{pmatrix}.$$

• Do dot product with f_u , f_v , then we can find expressions for the Christoffel symbols

$$\circ \quad \begin{pmatrix} \Gamma_{uu}^{u} \\ \Gamma_{uu}^{v} \end{pmatrix} = \begin{pmatrix} E & F \\ F & G \end{pmatrix}^{-1} \begin{pmatrix} \frac{1}{2}E_{u} \\ F_{u} - \frac{1}{2}E_{v} \end{pmatrix}.$$

$$\circ \quad \begin{pmatrix} \Gamma_{uv}^{u} \\ \Gamma_{uv}^{v} \end{pmatrix} = \begin{pmatrix} E & F \\ F & G \end{pmatrix}^{-1} \begin{pmatrix} \frac{1}{2}E_{v} \\ \frac{1}{2}G_{u} \end{pmatrix}.$$

$$\circ \quad \begin{pmatrix} \Gamma_{vv}^{u} \\ \Gamma_{vv}^{v} \end{pmatrix} = \begin{pmatrix} E & F \\ F & G \end{pmatrix}^{-1} \begin{pmatrix} F_{v} - \frac{1}{2}G_{u} \\ \frac{1}{2}G_{v} \end{pmatrix}.$$

- So, given E, F, G, l, m, n, we can solve for f_u, f_v, n and then f. But these are PDEs, and have solutions
 only if certain compatibility conditions are satisfied
 - Integrability conditions: $f_{uuv} = f_{uvu}, f_{vvu} = f_{vuv}, n_{uv} = n_{vu}$.
- Codazzi-Mainardi Equations
 - $\circ \quad l_{\nu} m_u = l\Gamma_{u\nu}^u + m(\Gamma_{u\nu}^\nu \Gamma_{uu}^u) n\Gamma_{uu}^\nu.$
 - $\circ \quad m_v n_u = l\Gamma_{vv}^u + m(\Gamma_{vv}^v \Gamma_{uv}^u) n\Gamma_{uv}^v.$

Theorema Egregium of Gauss

- The Gauss curvature of a surface is determined by the first fundamental form. That is, *K* can be computed from just *E*, *F*, and *G* and their first and second partial derivatives.
 - Gauss curvature is intrinsic
- Formula:
 - $EK = (\Gamma_{uu}^{v})_{v} (\Gamma_{uv}^{v})_{u} + \Gamma_{uu}^{u}\Gamma_{uv}^{v} + \Gamma_{uu}^{v}\Gamma_{vv}^{v} \Gamma_{uu}^{v}\Gamma_{uv}^{u} (\Gamma_{uv}^{v})^{2}$. The other ones *FK*, *GK* are equivalent

• If
$$F = 0$$
, then $K = -\frac{1}{2\sqrt{EG}} \left(\left(\frac{E_v}{\sqrt{EG}} \right)_v + \left(\frac{G_u}{\sqrt{EG}} \right)_u \right)$

Fundamental theorem of surfaces

- Suppose E, F, G, l, m, n are differentiable functions on an open set U ⊂ ℝ² with E > 0, G > 0, EG - F² > 0 and satisfy the Gauss and Codazzi equations
- Then $\forall q \in U$, there is an open set $U' \subset U$, $q \in U'$ and parametrized surface $f: U' \to \mathbb{R}^3$ that has E, F, G, l, m, n as its first and second fundamental forms
- Moreover, f is unique up to isometries in \mathbb{R}^3
- Uniqueness: let $f: U \subset \mathbb{R}^2 \to \mathbb{R}^3$ parametrized surface
 - $\psi: \mathbb{R}^3 \to \mathbb{R}^3$ isometry $\Rightarrow f$ and $\psi \circ f$ have the same first and second fundamental form
 - f, \overline{f} have same first and second fundamental form $\Rightarrow \overline{f} = \psi \circ f, \psi$ isometry of \mathbb{R}^3
 - Note the second fundamental form can have different signs

Vector fields

- A function $X: M \to \mathbb{R}^3$ is tangent vector field if
 - $\circ X(p) \in T_p M$ for all $p \in M$

- X is differentiable (for any parametrization $f: U \to \mathbb{R}^3$, $X \circ f$ is differentiable)
- Given a vector field X, we can differentiate X
 o If v ∈ T_pM, (D_vX)(p) = (X ∘ α)'(0) where α is a curve in M with α(0) = p, α'(0) = v.

Covariant derivative

- $\nabla_v X = (D_v X)^T$ is the orthogonal projection of $D_v X$ onto $T_p M$
- If $f: U \to M$ is a parametrized surface

$$\circ \quad \nabla_{f_u} f_u = \left(f_{uu}\right)^T = \Gamma^u_{uu} f_u + \Gamma^v_{uu} f_v.$$

$$\circ \quad \nabla_{f_v} f_u = (f_{uv})^I = \Gamma^u_{uv} f_u + \Gamma^v_{uv} f_v.$$

$$\circ \quad \nabla_{f_{v}} f_{v} = \left(f_{vv}\right)^{T} = \Gamma^{u}_{vv} f_{u} + \Gamma^{v}_{vv} f_{v}.$$

- Covariant differentiation is intrinsic
- $D_{v}X = 0$ if X is a constant vector field

Parallel vector field

- Given a curve α in M, we say a vector field is parallel along α if $\nabla_{\alpha}X = 0$
 - $(X \circ \alpha)'(t)$ is a multiple of the normal vector $n(\alpha(t))$
 - Note that if $\alpha(t) = (u(t), v(t))$, then $X(\alpha(t)) = f(u(t), v(t))$
- Let $\alpha: I \to M$ be a curve. Given $t_0 \in I$ and $X_0 \in T_{\alpha(t_0)}M$, there exists a unique parallel vector field X along α with $X(t_0) = X_0$
 - $X(\alpha(t))$ is called the parallel translation of X_0 along α
 - If $X(\alpha(t)) = a(t)f_u + b(t)f_v$, we can solve a, b by the system of ODEs
 - $a' + (u'\Gamma_{uu}^u + v'\Gamma_{uv}^u)a + (u'\Gamma_{uv}^u + v'\Gamma_{vv}^u)b = 0.$
 - $b' + (u'\Gamma_{uu}^{v} + v'\Gamma_{uv}^{v})a + (u'\Gamma_{uv}^{v} + v'\Gamma_{vv}^{v})b = 0.$
- Remark: If X and Y are parallel vector fields along α , then $\frac{X(\alpha(t)) \cdot Y(\alpha(t))}{X(\alpha(t))}$ is a constant
 - A parallel vector field must have constant length and the angle between parallel vector fields remain constant
- If M and M
 are tangent along a curve α, and X is a vector field along α, then the covariant
 derivative of X is the same for both surfaces
 - X is parallel along α in $M \Leftrightarrow X$ is parallel along α in \overline{M}
- Parallel vector field does not usually exist globally

Geodesics (analog of straight line in a surface)

- The unit tangents are parallel (never changes direction)
- A parametrized curve α in a surface M is a geodesic if $\nabla_{\alpha'} \alpha' = (D_{\alpha'} \alpha')^T = (\alpha'')^T = 0$
 - $\circ \alpha'$ is parallel along α
 - $\circ \alpha''$ is orthogonal to *M*
- Remark: α is a geodesic, then α is parametrized proportional to arclength
- An unparametrized curve *C* is said to be a geodesic if its arclength parametrization is a geodesic
 - Great circles on sphere are geodesic
 - Plane lines are geodesic
- Let $\alpha: I \to M$ be a curve parametrized by arclength,
 - we know that we can decompose $\alpha'' = (\alpha'')^T + (\alpha'')^{\perp} = (\alpha'' \cdot (n \times T))n \times T + (\alpha'' \cdot n)n$
 - $(\alpha'')^T$ is the geodesic curvature
 - call $\{T, n \times T, n\}$ the Darboux frame
 - $(\alpha'')^T$ is always in the $n \times T$ direction
 - Define the geodesic curvature $k_g = \alpha'' \cdot (n \times T)$
 - $(\alpha'')^{\perp} = n \cdot \alpha'' = II(\alpha', \alpha')n$ is the normal curvature
 - Note that $\frac{k^2}{k^2} = k_a^2 + k_n^2$, since the two basis are orthogonal
- Existence of geodesics: given a point $p \in M$ and $V \in T_pM$, there exists $\epsilon > 0$ and a unique geodesic $\alpha: (-\epsilon, \epsilon) \to M$ with $\alpha(0) = p, \alpha'(0) = V$
 - i.e. there is a unique geodesic through any given point of a surface in any given direction
- System of ODEs to solve for geodesic:
 - Let $\alpha(t) = f(u(t), v(t)), \alpha' = u'f_u + v'f_v$

- $u'' + \Gamma_{uu}^{u}(u')^{2} + 2\Gamma_{uv}^{u}u'v' + \Gamma_{vv}^{u}(v')^{2} = 0.$ $v'' + \Gamma_{uu}^{v}(u')^{2} + 2\Gamma_{uv}^{v}u'v' + \Gamma_{vv}^{v}(v')^{2} = 0.$
- Isometry maps geodesic to geodesic
- A short enough piece of geodesic is the curve of length between its endpoints
- For a surface of revolution, meridians are always geodesics
 - Parallels are geodesic if and only if $r'(t_0) = 0$.
 - $\alpha(s)$ is a geodesic if and only if $r(t(s))\cos\phi(s) = const$. (Clairaut's relation)where $\phi(s)$ is the angle between $\alpha'(s)$ and the parallel
 - Geodesics that is not meridians intersects itself infinitely many times

Further topics

January 12, 2021 1:56 PM

Gauss Bonnet Theorem (simple case)

• A simple closed regular curve bounds a simply-connected region *R*, then we have:

$$\iint\limits_{R} KdA + \int_{\partial R} K_{g} ds = 2\pi$$

- $\circ k_g$ is the geodesic curvature
- \circ *K* is the Gauss curvature
- $dA = \sqrt{EG F^2} du dv$ is the area element

Local Gauss Bonnet Theorem

- Suppose *R* is a simply-connected region with piecewise regular boundary lying in an orthogonal parametrization (F=0)
- If $C = \partial R$ has exterior angles $\theta_j, j = 1, ..., n$, then $\iint_R^{\square} K dA + \int_{\partial R}^{\square} k_g ds + \sum_{i=1}^n \theta_i = 2\pi$

- $\circ \ \ heta_i$ is the oriented angle between $lpha'(t_i^-)$ and $lpha'(t_i^+)$
- Geodesic n gon: assume $\alpha|_{(s_i, s_{i+1})}$ is geodesic, then $\iint_R K dA = 2\pi \sum_{i=1}^n \theta_i$
 - n gon is a polygon of n sides
 - Geodesic n gon is an n gon with all sides being geodesics
 - $\circ~~$ Exterior angle = θ_i , then interior angle $\beta_i = \pi \theta_i$
 - So for a geodesic triangle, $\iint_{R}^{III} K dA = \beta_1 + \beta_2 + \beta_3 \pi$
 - K > 0 means sum of interior angles is greater than π
 - K = 0, sum of interior angles is equal to π
 - K < 0, sum of interior angles is less than π
 - If $K \leq 0$ everywhere, then geodesic 2-gons do not exist

Triangulation

- The link between local and global result is provided by triangulations
- Let *M* be a regular surface, a closed bounded subset $R \subset M$ is regular, if ∂R is the union of simple closed piecewise regular curves that don't intersect
- $T \subset M$ is a triangle if T is homeomorphic to a disk and ∂T has 3 vertices
- A triangulation of a regular region $R \subset M$ is a finite collection of triangles $\{T_1, T_2, ..., T_n\}$ such that
 - $\circ \quad \cup_{i=1}^n T_i = R.$
 - If $T_i \cap T_j \neq \emptyset$, then $T_i \cap T_j$ is either a common edge or a common vertex
 - \circ Every regular region *R* in a regular surface *M* admits a triangulation

The Euler characteristic of a triangulation R is $\chi = F - E + V$

- *F* is the number of faces
- *E* is the number of edges
- *V* is the number of vertices

- The Euler characteristic does not depend on the triangulation (topological invariant)
- E.g.
 - Disk $\chi = 1$
 - \circ sphere $\chi = 2$
 - Torus $\chi = 0$
 - Two torus $\chi = -2$
 - N-torus $\chi = -2(n-1)$
- Properties
 - \circ Every regular region R of a surface M admits a triangulation
 - \circ $\;$ The Euler characteristic doesn't depend on the triangulation
- The Euler characteristic allows a topological classification of surfaces in \mathbb{R}^3
- $M \subset \mathbb{R}^3$ compact, connected surface without boundary, then $\chi(M) \in \{2, 0, -2, ..., -2(n 1)\}$
- $\chi(M_1) = \chi(M_2)$ if and only if M_1 is homeomorphic to M_2 (there is a bijection from M_1 to M_2)
 - Every compact connected $M \subset \mathbb{R}^3$ without boundary is homeomorphic to a sphere with a certain number g of handles attached $\chi(M) = -2(g-1)$, $g = \frac{2-\chi(M)}{2}$ is called genus

Global Gauss-Bonnet theorem

- Let $R \subset M$ be a regular region of an oriented surface, ∂R consists of closed piecewise regular simple curve (given the positive orientation), $\{\theta_1, ..., \theta_l\}$ the set of exterior angles of the boundary curve, then $\iint_R^{\square} K dA + \int_{\partial R}^{\square} k_g ds + \sum_{i=1}^n \theta_i = 2\pi \chi(R)$
- If *M* is compact orientable surface without boundary, then $\iint_R^{\square} K dA = 2\pi \chi(R)$
- Consequences:
 - $\circ \chi(M)$ is independent of the choice of triangulation
 - Since $\chi(M)$ is an integer, $\frac{1}{2\pi} \iint_R^{\square} K dA$ is an integer
 - Gauss-Bonnet theorem asserts the equality of two very differently defined properties
 - Integral of the Gauss curvature (determined by local geometry)
 - Global topological invariant
- A compact surface without boundary of positive curvature is homeomorphic to the sphere
- Define orthonormal vectors, $e_1 = \frac{f_u}{\sqrt{E}}$, $e_2 = \frac{f_v}{\sqrt{G}}$, then $\phi_{12} = (\nabla_{\alpha'} e_1) \cdot e_2$
 - $\phi_{12} = \frac{1}{2\sqrt{EC}} (-E_v u' + G_u v') + \theta'$. It measures the rate at which e_1 is turning
 - $k_g = \phi_{12} + \theta'$ where θ measures the turning of unit tangent α' relative to e_1 .