Curves

January 11, 2021 8:49 AM

Hyper trig:

- S $e^t - e^-$
- $\sinh t = \frac{1}{2}$ $e^t + e^-$
- \mathbf{C} • $\cosh t = \frac{1}{2}$
- $\cosh^2 t \sinh^2 t$
- $\sinh' t = \cosh t \cdot \cosh' t = \sinh t$

General concepts:

- Def: a parametrized curve is a differentiable map $\alpha: I \to \mathbb{R}^n$ of an open interval $(a, b) \subset \mathbb{R}$.
- The image set $\alpha(I) \subset \mathbb{R}^n$ is called the trace of α
- α is <mark>regular</mark> if $\alpha'(t) \neq 0$ for all $t \in I$.
	- \circ If α is regular, then there is a tangent line to the curve at every point
	- \circ Any point t where $\alpha'(t) = 0$ is called a singular point

Arc length

- The <mark>arclength</mark> function of α from the point t_0 is $s(t) = \int_{t_0}^{t} |\alpha'(u)| du$ (the length of the part of the curve from $\alpha(t_0)$ to $\alpha(t)$)
- The arclength is invariant under reparameterization
- $s(t)$ is differentiable and $\frac{a}{d}$
	- \circ We say that $\alpha(t)$ is parametrized by arclength if t is the arclength from some point

 \boldsymbol{d}

- \circ Every regular curve can be parametrized by arclength, and $\alpha(s)$ has the property $|\alpha'(s)| = 1$ (unit speed parametrization)
- If $\alpha(t)$ is regular, then $\frac{s(t)}{s}$ has an inverse function $t(s)$ and $\frac{dt(s)}{ds} = \frac{1}{\frac{ds(s)}{s}}$ \boldsymbol{d} ○ If $\alpha(t)$ is regular, then $s(t)$ has an inverse function $t(s)$ and $\frac{\alpha(t,s)}{ds} = \frac{1}{a}$

Curvature:

- Def: let $\alpha: I \to \mathbb{R}^3$ parametrized by arclength $|\alpha'(s)| = 1$, $\kappa(s) = |\alpha''(s)|$ is the curvature of α at s. It measures how rapidly the curve pulls away from its tangent line at s
- For straight line, curvature is 0 (does not bend)
- For circles, curvature is the same at each point (constant bending)
- Note: when using arclength parametrization, $\alpha''(s)$ is orthogonal to $\alpha'(s)$
- Measures deviation of curve from being a line

Unit tangent vector: Unit normal vector: $N(s) = \frac{\alpha'}{|\alpha'|}$ $\frac{\alpha''(s)}{|\alpha''(s)|} = \frac{\alpha'}{\kappa}$ $\frac{a}{\kappa}$

Osculating plane at s: plane determined by T and N

- Assume $\alpha'' \neq 0$ (Frenet curve), then $B(s) = T(s) \times N(s)$ is normal to the osculating plane (binormal vector)
- $|B'(s)|$ is the rate of change of the angle o normal of neighboring osculating planes with the osculating plane at s

Torsion:

- $B'(s) = \frac{d}{ds}$ • $B'(s) = \frac{a}{dt}(T(s) \times N(s)) = T' \times N + T \times N' = T \times N'$ (since T' is parallel to N) \circ $B' \perp T$ and $B' \perp B$, $B' \parallel$
	- \circ So define torsion $\tau(s)$ such that B' (
- Measures deviation of curve from lying in a plane

Summary (Frenet equations): if $\alpha(s)$ parametrized by arclength with α'

- $T' = \kappa N$
- B'
- $N' = B' \times T + B \times T'$ $N = B \times T$
- (T, N) -plane: **osculating plane** (plane that best fits the curve)
- (N, B) -plane: normal plane (unique plane normal to $\alpha(s)$, $\alpha'(s)$ at s)
- (T, B)-plane: <mark>rectifying plane</mark> (plane orthogonal to curvature vector)
	- \circ The projection onto this plane straightens or rectifies $\alpha(s)$ in the sense that up to second order, the projected curve is a line
- If α is a Frenet curve, then $\tau = 0$ $\alpha \Leftrightarrow$ is a plane curve

Curves in \mathbb{R}^2 : the curvature can be given a sign

- If $T = \alpha'$ is the unit tangent vector, then N_s =vector obtained by rotating T counter clockwise by $\frac{\pi}{2}$ (<mark>signed normal</mark>)
- Then $\alpha'' = T' = \kappa_s N_s$ gives the signed curvature
- Note: sign of curvature changes if we change the orientation of the curve
- Then Frenet equations in \mathbb{R}^2 become:
	- $T' = \kappa_s N_s$ $N_{\rm s} = -\kappa_{\rm s}T$

Curves in \mathbb{R}^n :

- Let $\alpha: I \to \mathbb{R}^n$ regular, *n*-times continuously differentiable curve parametrized by arclength, α is a Frenet curve if for all s, $\alpha'(s)$, $\alpha''(s)$, ..., $\alpha^{(n-1)}(s)$ are linearly independent, then there exists a unique Frenet-n-frame if
	- o $e_1, ..., e_n$ orthonormal vectors positively oriented
	- \circ For $k = 1, ..., n 1, \alpha^{(k)} \in span\{e_1(s), ..., e_k\}$

○ The inner product
$$
\langle \alpha^{(k)}(s), e_k \rangle
$$
 > 0 for all $k = 1, ..., n - 1$

We can obtain the n-frame via Gram-Schmidt process •

$$
\circ \quad e_1 = \alpha', e_2 = \frac{\alpha''}{|\alpha''|}, \dots, e_{n-1} = \frac{\alpha^{(n-1)} - \sum_{i=1}^{n-2} < \alpha^{(n-1)}, e_i > e_i}{|\alpha^{(n-1)} - \sum_{i=1}^{n-2} < \alpha^{(n-1)}, e_i > e_i|}
$$

- \circ e_n determined by (i)
- Frenet equations:

Let α be a Frenet in \mathbb{R}^n with Frenet-n frame. Then there exists differentiable function $R_i: I \to \mathbb{R}$, $i = 1, ..., n-1$ (ith Frenet curvature) along the curve with $k_1, ..., k_{n-2} > 0$, such

that
$$
\begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix}' = \begin{pmatrix} 0 & k_1 & \dots & 0 \\ -k_1 & \dots & k_{n-1} \\ 0 & -k_{n-1} & 0 \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix}
$$

\n \circ E.g. in \mathbb{R}^3 , we have $\begin{pmatrix} T \\ N \\ B \end{pmatrix}' = \begin{pmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0 \end{pmatrix} \begin{pmatrix} T \\ N \\ B \end{pmatrix}$

 \circ As torsion in \mathbb{R}^3 , we can give k_{n-1} a sign

Calculate curvature and torsion by $\alpha(t)$

•
$$
\kappa(t) = \frac{|\alpha' \times \alpha''|}{|\alpha'|^3}
$$

\n• $\tau(t) = \frac{\det(\alpha', \alpha'', \alpha''')}{|\alpha' \times \alpha''|^2}$

• Binormal vector $B(t)$ is parallel to r'

Local canonical form

• Using Taylor series and the following expressions, we can get $\alpha(s) = \alpha(0) + \left(s - \frac{k^2}{s}\right)$ $\left(\frac{k^2}{6} s^3\right) T + \left(\frac{k s^2}{2}\right)$ $\frac{k s^2}{2} + \frac{k' s^3}{6}$ $\frac{k's^3}{6}N+\frac{k\tau s^3}{6}$ $\frac{1}{6}$ \circ $\alpha'(0) = T$ \circ $\alpha''(0) = kN$

- $\alpha'''(0) = -k^2T$ \circ $\lim_{n \to \infty}$ \boldsymbol{R} S 3
- Rotate and translate the curve such that $\alpha(0) = 0, T = (1,0,0), N = (0,1,0), B = (0,0,1),$ we have •

$$
\begin{aligned}\n\circ \quad &x(s) = s - \frac{k^2}{6} s^3 + R_x \\
\circ \quad &y(s) = \frac{k}{2} s^2 + \frac{k'}{6} s^3 + R_y \\
\circ \quad &z(s) = \frac{k\tau}{6} s^3 + R_z\n\end{aligned}
$$

- \circ In TN-plane(osculating): a quadratic $(x(s), y(s))$
- \circ In NB-plane(normal): not regular $(y(s), z(s))$
- \circ In TB-plane(rectifying): up to second order, the projected curve is a line $(x(s), z(s))$

osculating plane

rectifying plane

normal plane

- Interpretation of <mark>sign of torsion</mark>
	- \circ Component of α in the B direction is $\frac{k\tau}{6} s^3$
	- \circ If $\tau > 0$, as s increases, the curve is crossing the osculating plane toward the positive side
	- \circ If τ < 0, the curve is crossing the osculating plane in the negative B direction
	- \circ The curve twists out of the osculating plane, τ measures the twisting or torsion

Osculating circle

- The osculating circle at s is the osculating plane at s , with center on the line in the direction of $N(s)$ and <mark>radius $\frac{1}{k(s)}$ </mark> that lies on the concave side of
- It is the circle of closest fit to α at s
- The osculating circle is the unique circle $\beta(s)$ parametrized by arclength with $\beta(s)$ = $\alpha(s)$, $\beta'(s) = \alpha'(s)$, and $\beta''(s) = \alpha''(s)$ •

Characterize certain curves by properties of their curvature and torsion

- $k = 0$ straight line
- $k \neq 0$ and $\tau = 0$ plane curve
- $\tau = 0, k = const > 0$ circle
- $\tau = const \neq 0, k = const$ helix

Fundamental theorem of curves:

- If $k \neq 0$, the functions k and τ completely describe the curve geometrically
- Definition: $F: \mathbb{R}^n \to \mathbb{R}^n$ is an *isometry* (or rigid motion) if $|F(v) F(w)| = |v w|$ for all $v, w \in \mathbb{R}^n$
	- F is an isometry \Leftrightarrow $F(v) = Av + b$ where $A \in O(n)$ (orthogonal $n \times n$ matrix) and $b \in \mathbb{R}^n$
		- An $n \times n$ matrix is orthogonal if $A^T A = I$, or the columns of A are orthonormal vectors
		- **•** Orthogonal matrices preserve the dot product i.e. $Av \cdot Aw = v \cdot w$
		- The curvature and torsion of a Frenet curve are invariant under orientation preserving isometries
- Let $k(s) > 0$ and $\tau(s)$, $s \in (a, b)$ be differentiable function. Let $s_0 \in (a, b)$, $q_0 \in \mathbb{R}^3$ and let T_0 , N_0 , B_0 be orthonormal vectors. Then there exists a unique regular curve α : $(a, b) \rightarrow$
- \circ $\alpha(s_0) = q_0$
- \circ T_0 , N_0 , B_0 is the Frenet frame of α at s_0
- \circ $k(s)$ is the curvature and $\tau(s)$ is the torsion of α
- Uniqueness: assume α, β: $I \to \mathbb{R}^3$ satisfying $k_\alpha(s) = k_\beta(s)$ and $\tau_\alpha(s) = \tau_\beta(s)$ then β is the image of α under a rigid motion of \mathbb{R}^3
	- Exists an orthogonal matrix A with $\det A > 0$ and $b \in \mathbb{R}^3$ such that $A\alpha(s) + b$
- \circ In general, given k and τ , it is difficult to explicitly solve the Frenet equations. For plane curves, can explicitly determine the curve in terms of its curvature
	- **•** Let α : $(a, b) \rightarrow \mathbb{R}^2$ be plane curve parametrized by arclength $\alpha'(s) = (\cos \theta(s), \sin \theta(s))$, where $\theta(s)$ is the angle $\alpha'(s)$ makes with the positive $x - axis$ measured counter clockwise Then $\alpha''(s) = \frac{d}{d}$ $\frac{uv}{ds}$ ($-\sin\theta(s)$, $\cos\theta(s)$) where $\frac{(-\sin\theta(s))\cos\theta(s)}{s}$ is the normal vector $k_s(s) = \frac{d}{s}$ $\frac{dv}{ds}$ is the rate of change of the angle the tangent makes with the

horizontal,
$$
\theta(s) = \theta(s_0) + \int_{s_0}^{s} k_s(u) du
$$

Fundamental theorem for plane curve

Given $k: (a, b) \to \mathbb{R}$ differentiable, $s_0 \in (a, b)$, $q_0 \in \mathbb{R}^2$, $T_0 = (\cos \theta_0, \sin \theta_0)$, there exists a unique α : $(a, b) \rightarrow \mathbb{R}^2$ parametrized by arclength such that

- $\alpha(s_0) = q_0$
- $\alpha'(s_0) = T_0$
- $k(s)$ is the signed curvature

•
$$
\alpha(s) = q_0 + \left(\int_{s_0}^s \cos \theta(u) du, \int_{s_0}^s \sin \theta(u) du\right)
$$
 where $\theta(u)$ defined as above

Global properties of curves

- Def: $\alpha: [a, b] \to \mathbb{R}^2$ is a closed curve if $\alpha(a) = \alpha(b)$, $\alpha'(a) = \alpha'(b)$,... (α and all its derivatives agree at a and b)
	- \circ Def: α is simple if it has no further self-intersections

 $(t_1, t_2 \in [a, b), t_1 \neq t_2 \Rightarrow \alpha(t_1) \neq \alpha(t_2))$

- Let $\alpha: [0, l] \to \mathbb{R}^2$ be a closed curve parametrized by arc length. Define $\theta: [0, l] \to \mathbb{R}$ by $\theta(s) = \int_0^t k_s(s)ds$, θ is differentiable and $\theta'(s) = k_s(s)$. $\int_0^t k_s(s)ds = 2\pi I, I \in \mathbb{Z}$ since the curve is closed. The integer *I* is the <mark>rotation index (number)</mark>
	- I $\mathbf{1}$ $\frac{1}{2\pi}$ ₀ k_s ⁽ \mathbf{l} $\bf{0}$ \circ
	- It measures total rotation of tangent vector as you go around the curve

Theorem of turning tangents: the rotation index of a simple closed curve is ± 1 \circ

where the sign depends on the orientation

- Isoperimetric inequality
	- \circ Let C be a simple closed plane curve of length l and let A be the area bounded by C. Then $A \leq \frac{1}{4}$ $\frac{1}{4\pi}l^2$
	- \circ Equality if and only if C is a circle

Surfaces: Local theory

January 12, 2021 1:56 PM

Def: a *parametrized surface element* is a differentiable map $X: U \to \mathbb{R}^3, U \subset \mathbb{R}^2$ an open set with $X(u, v) = (x_1(u, v), x_2(u, v), x_3(v))$

- X is regular if $\frac{\partial X}{\partial u}$ and $\frac{\partial X}{\partial v}$ are linearly independent (i.e. $\frac{\partial}{\partial v}$ • X is regular if $\frac{\partial x}{\partial u}$ and $\frac{\partial x}{\partial v}$ are linearly independent (i.e. $\frac{\partial x}{\partial u} \times \frac{\partial x}{\partial v} \neq 0$) for all
- Paraboloid: $X(u, v) = (u, v, u^2 + v^2)$
- Helicoid: $X(u,v) = (v \cos u$, $v \sin u$, $au)$ where $a \neq 0$ constant, $u \in (0,2\pi)$, \circ Through each point of a helix, draw a line parallel to xy -plane and through z -axis
	- Minimal, ruled surface
- Sphere: $X(\phi, \theta) = (\sin \phi \cos \theta$, $\sin \phi \sin \theta$, $\cos \phi$), $\phi \in (0, \pi)$, $\theta \in (0, 2\pi)$. ∂ ∂ $\frac{\partial X}{\partial v} = \sin \phi X, \ \frac{\partial}{\partial v}$ ∂ ∂ $\int \frac{\partial h}{\partial u} \times \frac{\partial h}{\partial v} = \sin \phi X$, $\left| \frac{\partial h}{\partial u} \times \frac{\partial h}{\partial v} \right| = |\sin \phi|$ is regular when
- Surface of revolution: let $\alpha: I \to \mathbb{R}^3$ $\alpha(u) = (0, f(u), g(u))$ be a curve, $f > 0$, rotate α about z –axis, $X(u, v) = (f(u) \cos v, f(u) \sin v, g(u))$, $u \in I, v \in (0, 2\pi)$
- Note: all the regular surfaces miss some point

Def: a subset $S \subset \mathbb{R}^3$ is a <mark>regular surface</mark> if for each $p \in S$, there is an open set $V \subset \mathbb{R}^3$ containing p , an open set $U \subset \mathbb{R}^2$ and a differentiable map $X: U \to \mathbb{R}^3$ such that

- $X(U) = V \cap S$
- X is regular
- *X* is one-to-one and X^{-1} is continuous (i.e. the map *X* is a **homeomorphism**)
	- \circ $(X^{(2)})^{-1} \circ X^{(1)}$ is a diffeomorphism (differentiable with differentiable inverse)

Examples of regular surfaces

• Sphere $S^2 = \{(x, y, z): x^2 + y^2 + z^2\}$ ○ Let $U = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$ $f(x, y) = (x, y, \sqrt{1 - x^2 - y^2})$ is a regular parametrization of upper hemisphere

Tangent plane T_pS to S at $p = f(u_0, v_0)$ is the subspace of \mathbb{R}^3 spanned by $\frac{\partial f}{\partial u}(u_0, v_0)$ and $\frac{\partial}{\partial v}$ A unit normal to S at p is a unit vector normal to the tangent plan T_pS . Given a parametrization $f: U \subset$ д ∂

 $\mathbb{R}^2 \to S \subset \mathbb{R}^3$, we obtain a unit normal vector at each $q \in f(U)$ by ∂ ∂ $\frac{\partial}{\partial n}$ д ∂ д ے
تا

First fundamental form

• The inner (dot) product of \mathbb{R}^3 induces an inner product on $T_pS\subset\mathbb{R}^3$ by restriction, called the first

fundamental form I_n

 $I_p: T_pS \times T_pS \to \mathbb{R}$ $I_p(v, w) = v \cdot w$, where v, w are two tangent vectors

- properties:
	- \circ Symmetric $(I_n(v, w) = I_n(w, v))$
	- \circ Bilinear $(I_p(av_1 + bv_2, w) = aI_p(v_1, w) + bI_p(v_2, w))$
	- Positive definite $(I_p(v, v) \ge 0, I_p(v, v) = 0$ if and only if $v = 0$)
- Suppose $\{v_1, v_2\}$ is a basis of T_pM , the matrix representation of I_p with respect to the basis is $\overline{ }$ \overline{I}

$$
I_p(v_2, v_1) \quad I_p(v_2, v_2)
$$

$$
\circ \ \ \text{If } u = a_1 v_1 + a_2 v_2, w = b_1 v_1 + b_2 v_2,
$$

then
$$
I(u, w) = (a_1 a_2) \begin{pmatrix} I_p(v_1, v_1) & I_p(v_1, v_2) \\ I_p(v_2, v_1) & I_p(v_2, v_2) \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}
$$

Given a parametrization $f:U\subset\mathbb{R}^2\to\mathbb{R}^3$, the matrix representation of I with respect to basis

$$
\left\{\frac{\partial f}{\partial u}, \frac{\partial f}{\partial v}\right\} \text{ of } T_p S \text{ is denoted } \left(\frac{E}{F} - \frac{F}{G}\right) = \left(\begin{matrix} I_p \left(\frac{\partial f}{\partial u}, \frac{\partial f}{\partial u}\right) & I_p \left(\frac{\partial f}{\partial u}, \frac{\partial f}{\partial v}\right) \\ I_p \left(\frac{\partial f}{\partial v}, \frac{\partial f}{\partial u}\right) & I_p \left(\frac{\partial f}{\partial v}, \frac{\partial f}{\partial v}\right) \end{matrix}\right) = \left(\begin{matrix} f_u f_u & f_u f_v \\ f_v f_u & f_v f_v \end{matrix}\right)
$$

- Def: two surfaces S_1 and S_2 are locally isometric if for each $p \in S_1$, there are parametrizations $f_1:U\to S_1, f_2:U\to S_2$ ($p\in f_1(U)$) such that $f_2\circ f_1^{-1}\colon f_1(U)\to f_2(U)$ preserves the first fundamental forms
	- Plane and cylinder are locally isometric
- Importance<mark>: By knowing *I*, we can calculate geometric quantities (length, angle, area) without</mark> further reference to the ambient \mathbb{R}^3
	- Arclength of a parametrized curve in a surface: α : $(a, b) \rightarrow S$ be a curve in S, the arclength of \circ

$$
\alpha: s(t) = \int_0^t |\alpha'(t)| dt = \int_0^t \sqrt{I(\alpha', \alpha')} dt = \int_0^t \sqrt{E\left(\frac{du}{dt}\right)^2 + 2F\frac{du}{dt}\frac{dv}{dt} + G\left(\frac{dv}{dt}\right)^2} dt
$$

Element of arclength is $ds^2 = E du^2$ $\overline{\mathbf{c}}$

$$
\circ \quad \text{Angle: } \frac{\cos \theta}{\text{cos } \theta} = \frac{f_u \cdot f_v}{|f_u||f_v|} = \frac{F}{\sqrt{E}}
$$

A parametrization $f: U \to S$ is a **conformal** (orthogonal) parametrization if and $E = G$, $(\theta = \frac{\pi}{2})$ $\frac{\pi}{2}$) for all $(u, v) \in U$. i.e. the coordinate curves are orthogonal

$$
\circ \quad \text{Area: } \iint_U \Box f_u \times f_v | dudv = \iint_U \sqrt{EG - F^2} dudv
$$

Note: $\frac{\partial}{\partial t}$ ∂ ∂ ∂ $^2 + \left| \frac{\partial}{\partial \theta} \right|$ ∂ ∂ ∂ $\frac{2}{\pi} = \left| \frac{\partial}{\partial \theta} \right|$ ∂ $\frac{2}{3}$ ∂ • Note: $\left|\frac{\partial f}{\partial x}\times\frac{\partial f}{\partial y}\right|^2+\left|\frac{\partial f}{\partial y}\cdot\frac{\partial f}{\partial y}\right|^2=\left|\frac{\partial f}{\partial y}\right|^2\left|\frac{\partial f}{\partial x}\right|^2$ does not depend on the parametrization

Def: A surface $S \subset \mathbb{R}^3$ is <mark>orientable</mark> if there exists a differentiable field of unit normal vectors

- Differentiable means $N \circ f: U \subset \mathbb{R}^2 \to \mathbb{R}^3$ differentiable
- The choice of such a field is called an **orientation of**
- There are always two choices: **outward/inward** based on the direction of normal vectors
- Cube is not regular, thus is not orientable (piecewise orientable on each surface)
- Any parametrized surface element $f:U\subset\mathbb{R}^2\to\mathbb{R}^3$ is <mark>oriented by $n=\frac{f}{\ln n}$ </mark> • Any parametrized surface element $f:U\subset\mathbb{R}^2\to\mathbb{R}^3$ is <mark>oriented by $n=\frac{1}{|J|}$ </mark>
- Unit sphere $S^2 = \{p \in \mathbb{R}^3 : |p| = 1\}$ is orientable
	- \circ $N(p) = p$ is the outward unit normal
- The smooth surface Mobius strip is not orientable

Def: Let $S \subset \mathbb{R}^3$ be a surface with orientation N. The map $N: S \to S^2 \subset \mathbb{R}^3$ $(p \to N(p))$ is called the **Gauss** $\overline{\mathsf{map}}\,(S^2$ is the unit sphere/set of all unit vectors in $\mathbb{R}^3)$

The <mark>shape operator</mark> at p is the map $S_p\colon T_pS\to \mathbb{R}^3$ S_p (

- \bullet V is the tangent vector to the surface
- Measures the rate of change of N in the direction V at p
- $S_p(V) = -(N \circ \alpha)'(p)$, where α is any curve in S with $\alpha(0) = p$,
	- \circ V can actually be any tangent vector, not necessarily unit
	- \circ Since N is unit vector, $N(\alpha(t)) \cdot N(\alpha(t)) = 1$ So $(N \circ \alpha)'(0) \cdot (N \circ \alpha)(0) = 0$,

i.e. $D_V N(p) \cdot N(p) = 0$, $D_V N(p) \in T_n S$ $\circ\;\;$ Prop: $S_p\!: T_pS \to T_pS$ is a self-ajoint (symmetric) linear map • $S_n(V) \cdot W = V \cdot S_n(W)$

Def: the <mark>second fundamental form</mark> of S at p is II: $T_pS \times T_pS \to \mathbb{R}$, $II(v,w) = I(S_p(V),W) = S_p(V)$

- $II(V, V)$ gives the curvature
- Note: II is <mark>symmetric bilinear</mark> form
	- Shape operator is linear and dot product is bilinear
	- $I((V, W) = II(W, V)$ (S_n is self adjoint)
- Matrix representation with respect to the basis $\{f_u, f_v\}$ of $T_p S: II = \begin{pmatrix} l \\ v \end{pmatrix}$ • Matrix representation with respect to the basis $\{f_u, f_v\}$ of $T_pS: II = \begin{pmatrix} 1 & m \\ m & n \end{pmatrix}$
	- $l = II(f_u, f_u) = -N_u \cdot f_u = N \cdot f_{uu}, m = II(f_u, f_v) = N \cdot f_{uv}, n = II(f_v, f_v) = N \cdot f_{vv}$
- Planes have zero second fundamental form, reverse is true
- Sphere oriented inward : $II = I$, $II(v, v) = |v| = 1$

Curves on surfaces and curvature

Let $\alpha: I \to M$ be a regular curve on the surface M parametrized by arclength with α'

- $k_n = II(\alpha', \alpha') = \alpha'' \cdot N = \pm k$ is the normal curvature (curvature in a direction $v \in T_pM$) of
	- Curvature of the curve that comes from the curvature of the surface
- \bullet Meusnier theorem: all curves on a given surface having at a given point p the same tangent line, have same normal curvature at p
	- \circ k_n is determined by the surface and does not depend on the curve
	- \circ $k_n = H(\alpha', \alpha') = \alpha'' \cdot N = k \cdot N = k \cos \theta$ (θ is the angle between the curve normal and surface normal)
- Consider a curve which a normal section of the surface intersects at p (a slice of M with a plane through p parallel to the normal N to M at p)
	- The curve of intersection is the normal section

- \circ Then such a curve is a plane curve through p with $n(p) = \pm N(p)$, $|H(v,v)|$
- \circ For a plane, all normal sections are straight lines, thus, normal curvatures are 0 ($II = 0$)
- \circ For spheres with inward normal, normal sections are great circles through p (plane curves of radius 1), $k_n = H(w, w) = I(w, w) = 1$
- \circ For cylinder, normal sections vary from a circle ($k_n = 1$) to a straight line ($k_n = 0$)
- The minimum normal curvature at p , $k_1(p)$ and maximum $k_2(p)$ are called the **principal curvatures** of M at p , the corresponding directions e_1 , e_2 are called the **principal directions**
	- \circ e_1 , e_2 are critical points of the function $w \to H(w, w)$ over all $w \in T_pM$ with $|w|=1$
- Let $w \in T_pM$ with $|w|=1$. Then w is a principal direction if and only if w is an eigen vector of the shape operator $S_p: T_pM \to T_pM$. The associated eigen values are the principal curvatures

Some side notes of linear algebra

- $V: n$ -dimensional vector space with inner product $\langle \cdot, \cdot \rangle$
- $A: V \to V$ linear transformation, self-adjoint, $\langle Av, w \rangle = \langle v, Aw \rangle \forall v, w \in V$
- $B: V \times V \to \mathbb{R}$ associated symmetric bilinear form $B(v, w) = \langle Av, w \rangle$
- Spectral theorem: there exists orthonormal basis $e_1, e_2, ..., e_n$ of V such that $Ae_1 = \lambda_i e_i$, and $e_1, ..., e_n$ are critical points of $v \to B(v, v)$ overall unit vectors $v, \lambda_i = B(e_i, e_i)$ is the eigen value

Principal curvatures and directions

- Principal curvatures: k_1, k_2 are min and max curvatures, i.e. $v \rightarrow H(v, v)$, $|v| = 1$
- Principal directions: e_1, e_2 are corresponding directions
	- \circ Critical points of $v \to II_p(v, v)$ over all unit vectors $v \in T_pM$
	- \circ The principal directions are eigen vectors of $S_p: T_pM \to T_pM$
- Remark: either $k_1 = k_2$ and every direction is a principal direction or there exist exactly two (up to sign) principal directions orthogonal to each other
	- $k(p) = 0$ gives $k_n(p) = 0$
	- $0 \quad k = |\alpha''| \ge \alpha'' \cdot n = k_n$ (normal curvature)
	- $\alpha'' = (\alpha'')^T + (\alpha'')^T$
		- \bullet $(\alpha'')^T$ is the geodesic curvature
		- \bullet $(\alpha'')^{\perp}$ is the normal curvature
- Remark: given $w \in T_pM$, $|w| = 1$, $w = \cos \theta e_1 + \sin \theta e_2$, we have $II_p(w, w) = k_1 \cos^2 \theta + k_2 \sin^2 \theta$ (Euler's formula)

Gauss and mean curvature

- Gauss curvature: $K(p) = k_1(p)k_2(p) = \det S_p = \binom{k}{p}$ • Gauss curvature: $K(p) = k_1(p)k_2(p) = \det S_p = \begin{pmatrix} 0 & k_2 \ 0 & k_2 \end{pmatrix}$
- Mean curvature: $H(p) = \frac{1}{2}$ • Mean curvature: $H(p) = \frac{1}{2}$
- They are independent of the basis
- the signs of k_1, k_2 changes if we change the orientation of M \circ K does not change, H changes sign •
- A point p on a surface is called
	- \circ Elliptic if $K(p) > 0$ (k_1, k_2 have the same sign)

 \circ Hyperbolic if $K(p) < 0$ (k_1, k_2 have the opposite sign)

 \circ Parabolic if $K(p) = 0$ ($k_1 k_2 = 0$, one is zero, the other is non-zero)

- \circ Planar if $k_1 = k_2 = 0$
- \circ Umbilic if $k_1 = k_2 \neq 0$
- Expressions: given matrix of $S_p: T_pM \to T_pM$ relative to basis $\{f_u, f_v\}$,

\n- ○
$$
S_p = I^{-1}II = \left(\frac{E}{F} - \frac{F}{G}\right)^{-1} \left(\frac{l}{m} - \frac{m}{n}\right)
$$
\n- ○ Then $K(p) = \det(S_p)$ and $H(p) = \frac{1}{2} tr S_p = \frac{1}{2} (a + d)$
\n- ■ $K(p) = \frac{\det II}{\det I} = \frac{\ln - m^2}{EG - F^2}$
\n- ■ Tr means the trace
\n

- The principal curvatures can be found by
	- This gives that k^2
- If S is diagonal, f_t , f_θ are principal directions, the diagonal are the principal curvatures Í

\n- ∩ Note, if
$$
S_p = \begin{pmatrix} a & c \\ b & d \end{pmatrix}
$$
:\n
	\n- ■ $n_u = -(a f_u + b f_v)$.
	\n- ■ $n_v = -(c f_u + d f_v)$.
	\n\n
\n

A regular curve α : $I \to M$ is called a line of curvature if $\frac{\alpha'}{|\alpha'|}$ $\frac{a'(t)}{|a'(t)|}$ is a principal direction for all $t \in I$ i.e.

 $S(\alpha') = k\alpha'$, α' is an eigen vector of the shape operator

- For a surface of revolution, f is line of curvature parametrization (t-curves, θ -curves are lines of curvature)
- $n' = \lambda \alpha'$ for the line of curvature, where *n* is the surface normal.

Surface of revolution of constant Gauss curvature

- Assume t is the arclength parameter of the curve $\alpha(t) = (r(t), 0, h(t))$
- Constant Gauss curvature gives that $r'' + k_0 r = 0$
- When $k_0 = 0$, $r(t) = at + b$, $h(t) = \pm \sqrt{1 a^2}t$
	- $\alpha = 0$, $\alpha(t)$ is a straight line, the surface is a cylinder
	- $\alpha = 1$, $\alpha(t)$ is a straight line, the surface is a plane
	- \circ $a \in (0,1)$, surface is a cone
- $k_0 > 0$, sphere, elliptic integrals, oblate sphere

Def: $V \in T_p S$ is an asymptotic direction if the normal curvature in the direction V is zero. $II_p(V, V) = 0$. A regular curve α in M is an asymptotic curve if $\alpha'(t)$ is an asymptotic direction for all t

• At an elliptic point p , $K_p > 0$, k_1 and k_2 have the same sign and are nonzero, there is no asymptotic direction

A ruled surface is a surface that can be parametrized as $f(s,t) = \alpha(t) + sX(t)$ where $X(t)$ is a vector field along $\alpha(t)$

- The line $t = const$ are called generators
- A curve $s = const$ is called a directrix
- Examples: plane, cylinder, helicoid, cone, hyperboloid of one sheet
- Any ruled surface has Gauss curvature $K \leq 0$
- A ruled surface is **developable** if the Gauss map n is constant along generators
	- Examples: plane, cone, cylinder
	- A ruled surface is developable $\Leftrightarrow \frac{d}{d}$ \circ A ruled surface is developable $\Leftrightarrow \frac{a}{d}$
	- \circ $S(V) = -n'.$

A surface with mean curvature $H = 0$ is called a minimal surface

- Helicoid, catenoid, plane
- Note $H = 0 \Leftrightarrow k_1 = -k_2 \Leftrightarrow K = -k^2 \leq 0$ (every point is hyperbolic)
- It minimizes area locally
- Minimal surfaces are critical points of the area function
- Let $f:U\subset\mathbb{R}^2\to\mathbb{R}^3$ be a surface with boundary curve \mathcal{C}, f_i \circ Here $th(u, v)$ is a differentiable function that vanishes on the boundary

Intrinsic geometry of surfaces

- A property of a surface is **intrinsic** if it depends only on the first fundamental form
- Def: let M_1, M_2 be surfaces. An isometry from M_1 to M_2 is a one-to-one, onto, differentiable map $\psi: M_1 \to M_2$ such that for any curve $\alpha: [a, b] \to M_1$, the length of α equals the length of $\psi \circ \alpha$
	- Remark: $\psi: M_1 \to M_2$ is differentiable if for each $p \in M_1$, there are parametrizations $f_1:U_1\to M_1$ about p and $f_2:U_2\to M_2$ about $\psi(p)$ such that f_2^{-1} \circ $\psi \circ f_1: U_1 \to U_2$ is differentiable as a function of 2 variables

- M_1 and M_2 are isometric if there is an isometry
	- $\alpha'(t)$ and $(\psi \circ \alpha)'(t)$ have the same length, arc length are the same
	- \circ We define distance between points $p, q \in M$ by $inf{L(\alpha)}$: α is a curve in M betwen p and q}.
- M_1 and M_2 are locally isometric if for each point $p \in M$, there are open sets V_1 about p and about $\psi(p)$ and an isometry $\psi: V_1 \rightarrow V_2$
	- \circ Suppose $f_1: U \to M_1$, $f_2: U \to M_2$ are parametrizations such that $E_1 = E_2, F_1 = F_2, G_1 = G_2$, then $\psi = f_2 \circ f_1^{-1}$ is a local isometry

- Helicoid and catenoid are locally isometric
- Note: isometry cannot be extended to global isometry (Cylinder is not homeomorphic to plane)
- A one-to-one, onto, differentiable map $\psi: M_1 \to M_2$ is **conformal** if for any $p \in M_1$ and any curves and β with $\alpha(0) = \beta(0) = p$, we have $(\psi \circ \alpha)'(0) \cdot (\overline{\psi \circ \beta)}'(0) = \lambda^2 \alpha'(0) \cdot \beta'(0)$ where λ is differentiable and $\lambda \neq 0$
	- Conformal maps preserve angles, but length might be stretched
	- Suppose $f_1: U \to M_1$, $f_2: U \to M_2$ are parametrizations such that $E_1 = \lambda^2 E_2$, $F_1 = \lambda^2 F_2$, and $G_1 = \lambda^2 G_2$, $\lambda \neq 0$ is a differentiable function. Then $\psi = f_2 \circ f_1^{-1}$ is a local conformal map
- Given a regular surface M and $p \in M$, there is a local parametrization of M near p such that
	- $G = \lambda^2$ and $F = 0$, λ nowhere zero and everywhere differentiable
		- Any surface is locally conformal to the plane
		- Any two regular surfaces are locally conformal

Codazzi and Gauss equations:

- Known the first and second fundamental form, we want to find the parametrization
- Start with writing derivatives of $\{f_u, f_v, n\}$ in terms of $\{f_u, f_v, n\}$
- \circ Simple for n , can just use the shape operator
- \circ $f_{uu} = \Gamma_{uu}^u f_u + \Gamma_{uu}^v f_v + l\mathbf{n}.$
- \circ $f_{uv} = \Gamma^u_{uv} f_u + \Gamma^v_{uv} f_v + m n.$
- \circ $f_{vu} = \Gamma_{vu}^u f_u + \Gamma_{vu}^v f_v + m\mathbf{n}$. $(f_{uv} = f_{vu})$
- \circ $f_{vv} = \Gamma_{vv}^u f_u + \Gamma_{vv}^v f_v + n\mathbf{n}$.
- Γ_{**}^* are called the Christoffel symbols
- In matrix forms:

$$
\begin{pmatrix} f_u \\ f_v \\ n \end{pmatrix}_u = \begin{pmatrix} \Gamma_{uu}^u & \Gamma_{uu}^v & l \\ \Gamma_{vu}^u & \Gamma_{vu}^v & m \\ -a & -b & 0 \end{pmatrix} \begin{pmatrix} f_u \\ f_v \\ n \end{pmatrix}.
$$

$$
\begin{pmatrix} f_u \\ f_v \\ n \end{pmatrix}_v = \begin{pmatrix} \Gamma_{uv}^u & \Gamma_{uv}^v & m \\ \Gamma_{vv}^u & \Gamma_{vv}^v & n \\ -c & -d & 0 \end{pmatrix} \begin{pmatrix} f_u \\ f_v \\ n \end{pmatrix}.
$$

• Do dot product with f_u , f_v , then we can find expressions for the Christoffel symbols

$$
\begin{aligned}\n&\circ \quad & \begin{pmatrix} \Gamma_{uu}^u \\ \Gamma_{uu}^v \end{pmatrix} = \begin{pmatrix} E & F \\ F & G \end{pmatrix}^{-1} \begin{pmatrix} \frac{1}{2} E_u \\ F_u - \frac{1}{2} E_v \end{pmatrix} \\
&\circ \quad & \begin{pmatrix} \Gamma_{uv}^u \\ \Gamma_{uv}^v \end{pmatrix} = \begin{pmatrix} E & F \\ F & G \end{pmatrix}^{-1} \begin{pmatrix} \frac{1}{2} E_v \\ \frac{1}{2} G_u \end{pmatrix} \\
&\circ \quad & \begin{pmatrix} \Gamma_{vv}^u \\ \Gamma_{vv}^v \end{pmatrix} = \begin{pmatrix} E & F \\ F & G \end{pmatrix}^{-1} \begin{pmatrix} F_v - \frac{1}{2} G_u \\ \frac{1}{2} G_v \end{pmatrix}.\n\end{aligned}
$$

- So, given E, F, G, l, m, n, we can solve for f_u, f_v, n and then f. But these are PDEs, and have solutions only if certain compatibility conditions are satisfied
	- o Integrability conditions: $f_{uuv} = f_{uvu}$, $f_{vvu} = f_{vuv}$, $n_{uv} = n_{vu}$.
- Codazzi-Mainardi Equations
	- \circ $l_v m_u = l \Gamma^u_{uv} + m(\Gamma^v_{uv} \Gamma^u_{uu}) n \Gamma^v_{uu}.$
	- $m_v n_u = l\Gamma_{vv}^u + m(\Gamma_{vv}^v \Gamma_{uv}^u) n\Gamma_{uv}^v$

Theorema Egregium of Gauss

- The Gauss curvature of a surface is determined by the first fundamental form. That is, K can be computed from just E, F , and G and their first and second partial derivatives.
	- Gauss curvature is intrinsic
- Formula:
	- σ $EK = (\Gamma_{uu}^v)_v (\Gamma_{uv}^v)_u + \Gamma_{uu}^u \Gamma_{uv}^v + \Gamma_{uu}^v \Gamma_{vv}^v \Gamma_{uu}^v \Gamma_{uv}^u (\Gamma_{uv}^v)^2$. The other ones FK, GK are equivalent

$$
\circ \quad \text{If } F = 0 \text{, then } K = -\frac{1}{2\sqrt{EG}} \left(\left(\frac{E_v}{\sqrt{EG}} \right)_v + \left(\frac{G_u}{\sqrt{EG}} \right)_u \right)
$$

Fundamental theorem of surfaces

- Suppose E, F, G, l, m, n are differentiable functions on an open set $U \subset \mathbb{R}^2$ with $EG-F^2>0$ and satisfy the Gauss and Codazzi equations
- Then $\forall q \in U$, there is an open set $U' \subset U$, $q \in U'$ and parametrized surface $f: U' \to \mathbb{R}^3$ that has E, F, G, l, m, n as its first and second fundamental forms
- Moreover, f is unique up to isometries in \mathbb{R}^3
- Uniqueness: let $f: U \subset \mathbb{R}^2 \to \mathbb{R}^3$ parametrized surface
	- $\circ \psi: \mathbb{R}^3 \to \mathbb{R}^3$ isometry $\Rightarrow f$ and $\psi \circ f$ have the same first and second fundamental form
	- \overline{f} have same first and second fundamental form ⇒ $\overline{f} = \psi \circ f$, ψ isometry of
	- Note the second fundamental form can have different signs

Vector fields

- A function $X: M \to \mathbb{R}^3$ is <mark>tangent vector field</mark> if
	- \circ $X(p) \in T_nM$ for all $p \in M$
- \circ X is differentiable (for any parametrization $f: U \to \mathbb{R}^3$, $X \circ f$ is differentiable)
- Given a vector field X, we can differentiate X \circ If $v \in T_pM$, $(D_v X)(p) = (X \circ \alpha)'(0)$ where α is a curve in M with $\alpha(0) = p$, $\alpha'(0) = v$.

Covariant derivative

- $\nabla_{v} X = (D_{v} X)^{T}$ is the orthogonal projection of $D_{v} X$ onto
- If $f: U \to M$ is a parametrized surface

$$
\circ \ \nabla_{f_u} f_u = (f_{uu})_T^T = \Gamma_{uu}^u f_u + \Gamma_{uu}^v f_v.
$$

$$
\circ \ \nabla_{f_v} f_u = (f_{uv})^T = \Gamma^u_{uv} f_u + \Gamma^v_{uv} f_v.
$$

$$
\circ \ \nabla_{f_{\nu}} f_{\nu} = (f_{\nu\nu})^T = \Gamma_{\nu\nu}^u f_u + \Gamma_{\nu\nu}^v f_{\nu}.
$$

- Covariant differentiation is intrinsic
- $D_n X = 0$ if X is a constant vector field

Parallel vector field

- Given a curve α in M , we say a vector field is parallel along α if
	- $\sigma(X \circ \alpha)'(t)$ is a multiple of the normal vector $n(\alpha(t))$
	- \circ Note that if $\alpha(t) = (u(t), v(t))$, then $X(\alpha(t)) = f(u(t), v(t))$
- Let $\alpha: I \to M$ be a curve. Given $t_0 \in I$ and $X_0 \in T_{\alpha(t_0)}M$, there exists a unique parallel vector field along α with $X(t_0) = X_0$
	- \circ $X(\alpha(t))$ is called the parallel translation of X_0 along α
	- \circ If $X(\alpha(t)) = a(t)f_u + b(t)f_v$, we can solve a, b by the system of ODEs
		- $a' + (u'\Gamma_{uu}^u + v'\Gamma_{uv}^u)a + (u'\Gamma_{uv}^u + v'\Gamma_{vv}^u)b = 0.$
		- $b' + (u'\Gamma_{uu}^v + v'\Gamma_{uv}^v)a + (u'\Gamma_{uv}^v + v'\Gamma_{vv}^v)b = 0.$
- Remark: If X and Y are parallel vector fields along α , then $X(\alpha(t)) \cdot Y(\alpha(t))$ is a constant
	- A parallel vector field must have constant length and the angle between parallel vector fields remain constant
- If M and \overline{M} are tangent along a curve α , and X is a vector field along α , then the covariant derivative of X is the same for both surfaces
	- \circ X is parallel along α in $M \Leftrightarrow X$ is parallel along α in \overline{M}
- Parallel vector field does not usually exist globally

Geodesics (analog of straight line in a surface)

- The unit tangents are parallel (never changes direction)
- A parametrized curve α in a surface M is a geodesic if $\nabla_{\alpha} \alpha' = (D_{\alpha'} \alpha')^T = (\alpha'')^T$
	- \circ α' is parallel along α
	- \circ α'' is orthogonal to M
- Remark: α is a geodesic, then α is parametrized proportional to arclength
- An unparametrized curve C is said to be a geodesic if its arclength parametrization is a geodesic
	- Great circles on sphere are geodesic
	- Plane lines are geodesic
- Let $\alpha: I \to M$ be a curve parametrized by arclength,
	- we know that we can decompose $\alpha'' = (\alpha'')^T + (\alpha'')^{\perp} = (\alpha'' \cdot (n \times T))n \times T + (\alpha'' \cdot$
	- \bullet $(\alpha'')^T$ is the **geodesic curvature**
		- call ${T, n \times T, n}$ the Darboux frame
		- \bullet $(\alpha'')^T$ is always in the $n \times T$ direction
		- **•** Define the geodesic curvature $k_q = \alpha''$
	- α'')^{\perp} = $n \cdot \alpha''$ = $II(\alpha', \alpha')n$ is the normal curvature
	- **Note that** $k^2 = k_q^2 + k_n^2$ **, since the two basis are orthogonal**
- Existence of geodesics: given a point $p \in M$ and $V \in T_pM$, there exists $\epsilon > 0$ and a unique geodesic α : $(-\epsilon, \epsilon) \rightarrow M$ with $\alpha(0) = p$, $\alpha'(0) = V$
- i.e. there is a unique geodesic through any given point of a surface in any given direction • System of ODEs to solve for geodesic:
	- Let $a(t) = f(u(t), v(t)), a' = u' f_u + v' f_u$
- $u'' + \Gamma_{uu}^u(u')^2 + 2\Gamma_{uv}^u u'v' + \Gamma_{vv}^u(v')^2 = 0.$
- $v'' + \Gamma^{\nu}_{uu}(u')^2 + 2\Gamma^{\nu}_{uv}u'v' + \Gamma^{\nu}_{vv}(v')^2 = 0.$
- Isometry maps geodesic to geodesic
- A short enough piece of geodesic is the curve of length between its endpoints
- For a surface of revolution, <mark>meridians are always geodesics</mark>
	- **•** Parallels are geodesic if and only if $r'(t_0) = 0$.
	- $a(s)$ is a geodesic if and only if $r(t(s)) \cos \phi(s) = const.$ (<mark>Clairaut's relation</mark>)where $\phi(s)$ is the angle between $\alpha'(s)$ and the parallel
		- Geodesics that is not meridians intersects itself infinitely many times

Further topics

January 12, 2021 1:56 PM

Gauss Bonnet Theorem (simple case)

• A simple closed regular curve bounds a simply-connected region R , then we have:

$$
\iint\limits_R KdA + \int_{\partial R}^{\square} k_g ds = 2\pi
$$

- \circ k_a is the geodesic curvature
- \circ K is the Gauss curvature
- \circ $dA = \sqrt{EG F^2} dudv$ is the area element

Local Gauss Bonnet Theorem

- Suppose R is a simply-connected region with piecewise regular boundary lying in an orthogonal parametrization (F=0)
- If $C = \partial R$ has exterior angles θ_j , $j = 1, ..., n$, then $\iint_R^{\infty} K dA + \int_{\partial}^{\infty}$ • If $C = \partial R$ has exterior angles θ_j , $j = 1, ..., n$, then $\iint_R^{\ldots} K dA + \int_{\partial R}^{\ldots} k_g ds + \sum_{i=1}^n k_i$

- \circ θ_i is the oriented angle between $\alpha'(t_i^-)$ and $\alpha'(t_i^+)$
- Geodesic $n-gon$: assume $\alpha|_{(s_i,s_{i+1})}$ is geodesic, then $\iint_R^{\mathbb{L}^d} K dA = 2\pi \sum_{i=1}^n K_i$
	- \circ $n-gon$ is a polygon of n sides
	- Geodesic $n g$ on is an $n g$ on with all sides being geodesics
	- Exterior angle = θ_i , then interior angle $\beta_i = \pi \theta_i$
	- \circ So for a geodesic triangle, \iint_R $K dA =$
		- $K > 0$ means sum of interior angles is greater than π
		- $K = 0$, sum of interior angles is equal to π
		- K < 0, sum of interior angles is less than π
	- If $K \leq 0$ everywhere, then geodesic 2-gons do not exist

Triangulation

- The link between local and global result is provided by triangulations
- Let M be a regular surface, a closed bounded subset $R \subset M$ is regular, if ∂R is the union of simple closed piecewise regular curves that don't intersect
- $T \subset M$ is a triangle if T is homeomorphic to a disk and ∂T has 3 vertices
- A triangulation of a regular region $R \subset M$ is a finite collection of triangles $\{T_1, T_2, ..., T_n\}$ such that
	- $O \cup_{i=1}^{n} T_i = R.$
	- If $T_i \cap T_j \neq \emptyset$, then $T_i \cap T_j$ is either a common edge or a common vertex
	- \circ Every regular region R in a regular surface M admits a triangulation

The Euler characteristic of a triangulation R is $\chi = F - E + V$

- \bullet F is the number of faces
- \bullet *E* is the number of edges
- \bullet *V* is the number of vertices
- The Euler characteristic does not depend on the triangulation (topological invariant)
- \bullet E.g.
	- \circ Disk $\chi = 1$
	- \circ sphere $\chi = 2$
	- \circ Torus $\gamma = 0$
	- \circ Two torus $\gamma = -2$
	- \circ N-torus $\gamma = -2(n-1)$
- Properties
	- \circ Every regular region R of a surface M admits a triangulation
	- The Euler characteristic doesn't depend on the triangulation
- The Euler characteristic allows a **topological classification** of surfaces in \mathbb{R}^3
- $M \subset \mathbb{R}^3$ compact, connected surface without boundary, then $1)$
- $\chi(M_1) = \chi(M_2)$ if and only if M_1 is homeomorphic to M_2 (there is a bijection from M_1 to M_2)
	- \circ Every compact connected $M \subset \mathbb{R}^3$ without boundary is homeomorphic to a sphere with a certain number g of handles attached $\chi(M)=-2(g-1)$, $g=\frac{2}{3}$ $\frac{2-\chi(m)}{2}$ is called <mark>genus</mark>

Global Gauss-Bonnet theorem

- Let $R \subset M$ be a regular region of an oriented surface, ∂R consists of closed piecewise regular simple curve (given the positive orientation), $\{\theta_1,...,\theta_l\}$ the set of exterior angles of the boundary curve, then $\iint_R^{\ldots} K dA + \int_{\partial}^{\ldots}$ $\frac{n}{i}$
- If M is compact orientable surface without boundary, then $\iint_R^{\ldots} K dA =$
- Consequences:
	- \circ $\chi(M)$ is independent of the choice of triangulation
	- \circ Since $\chi(M)$ is an integer, $\frac{1}{2\pi}\iint_R^{\pi} K dA$ is an integer
	- Gauss-Bonnet theorem asserts the equality of two very differently defined properties
		- Integral of the Gauss curvature (determined by local geometry)
		- Global topological invariant
- A compact surface without boundary of positive curvature is homeomorphic to the sphere
- Define orthonormal vectors, $e_1 = \frac{f_2}{f_1}$ $\frac{f_u}{\sqrt{E}}$, $e_2 = \frac{f_u}{\sqrt{2}}$ • Define orthonormal vectors, $e_1 = \frac{\hbar u}{\sqrt{E}}, e_2 = \frac{\hbar v}{\sqrt{G}}$, then $\phi_{12} = (\nabla_{\alpha}$
	- $\phi_{12} = \frac{1}{2}$ $\phi_1 \circ \phi_2 = \frac{1}{2\sqrt{EG}} \left(-E_\nu u' + G_u v' \right) + \theta'.$ It measures the rate at which e_1 is turning
	- \circ $k_g = \phi_{12} + \theta'$ where θ measures the turning of unit tangent α' relative to e_1 .