Curves

January 11, 2021 8:49 AM

Hyper trig:
_ et —et
e sinht = —
et +et
e cosht = —

cosh?t —sinh?t =1
sinh’t = cosht,cosh’t = sinht

General concepts:
e Def: a parametrized curve is a differentiable map a: I - R"™ of an open interval I =
(a,b) c R.
e Theimageset a(I) € R" is called the trace of «
e aisregularifa’(t) # 0forallt €1.
o If ais regular, then there is a tangent line to the curve at every point
o Any point t where a'(t) = 0 is called a singular point

Arc length
e The arclength function of a from the point t; is s(t) = ftt |’ (w)|du (the length of the
0

part of the curve from a(to) to a(t))
e The arclength is invariant under reparameterization
e s(t) is differentiable and % = |a'(t)]
o We say that a(t) is parametrized by arclength if t is the arclength from some point
o Every regular curve can be parametrized by arclength, and a(s) has the property
|a’(s)| = 1(unit speed parametrization)
dt(s) _ 1
Tas | @O
dt

o If a(t) is regular, then s(t) has an inverse function t(s) and

Curvature:
o Def:let a:1 - R3 parametrized by arclength |a'(s)| = 1, k(s) = |a"/(s)| is the curvature
of a at s. It measures how rapidly the curve pulls away from its tangent line at s
e For straight line, curvature is 0 (does not bend)
e For circles, curvature is the same at each point (constant bending)
» Note: when using arclength parametrization, a’'(s) is orthogonal to &’ (s)
e Measures deviation of curve from being a line

Unit tangent vector: T(s) = a'(s)
. . _dl(s) _d'(s)
Unit normal vector: N(s) = ] T e
Osculating plane at s: plane determined by T and N
* Assume a'’ # O(Frenet curve), then B(s) = T(s) X N(s) is normal to the osculating
plane (binormal vector)
e |B’(s)] is the rate of change of the angle o normal of neighboring osculating planes with
the osculating plane at s

Torsion:
e B'(s) = %(T(s) XN(s))=T' XN+TxN =T xN (since T'is parallel to N)
o BB1TandB' LB,B'|IN
o So define torsion 7(s) such that B'(s) = —t(s)N(s)
e Measures deviation of curve from lying in a plane

Summary (Frenet equations): if a(s) parametrized by arclength with a’'(s) # 0
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e T"=KN

e B'=—IN
e NN=B'"XT4+BXT' =1tNXT+BXxkN =1B —«T
o N=BXT

e (T, N)-plane: osculating plane (plane that best fits the curve)
* (N, B)-plane: normal plane (unique plane normal to a(s),a'(s) at s)
e (T, B)-plane: rectifying plane (plane orthogonal to curvature vector)
o The projection onto this plane straightens or rectifies a(s) in the sense that up to
second order, the projected curve is a line
If a is a Frenet curve, thent = 0 a & is a plane curve

Curves in R?: the curvature can be given a sign
e If T = a'is the unit tangent vector, then Ng=vector obtained by rotating T counter
clockwise by g (signed normal)

e Thena' =T' = ksN; gives the signed curvature kg
¢ Note: sign of curvature changes if we change the orientation of the curve
e Then Frenet equations in R? become:

o T'= kgN;

o N, =—k,T

Curves in R™:

e Leta:I —» R"™ regular, n-times continuously differentiable curve parametrized by
arclength, a is a Frenet curve if for all s, a'(s), a”(s), ..., a™~D(s) are linearly
independent, then there exists a unique Frenet-n-frame if

O ey, .., e, orthonormal vectors positively oriented
o Fork=1,...,n—1,a® € span{el(s), ...,ek(s)}
o Theinner product < a®®(s),e, >> 0forallk =1,..,n—1
e We can obtain the n-frame via Gram-Schmidt process
, a a1 — Y2 < gD o > g,
© e =a,e,= TCFI, e lpo1 = |a(n_1) _ Z?=_12 < a'(n_l),el- > ei|
o e, determined by (i)
e Frenet equations:
Let a be a Frenet in R™ with Frenet-n frame. Then there exists differentiable function
Ri:I - R,i=1,..,n—1 (ith Frenet curvature) along the curve with k;, ... k,,_, > 0, such

o 0k .0\[2
that| 2| = —-ky .. kyo | 2
. U A

T 0 k O T

o Eg.inR3,wehave[N| =[-«x 0 ][N

B 0 -t 0/\B

o As torsion in R3, we can give k,_1 asign

Calculate curvature and torsion by a(t)

la' x a"
° K(t) = _lT“’F_
(t) det(a',a”,a”')
e T =
la’ X a'’|?

e Binormal vector B(t) is parallel to r'(t) x r''(t)

Local canonical form
e Using Taylor series and the following expressions,

2 2 1.3 3
we can get a(s) = a(0) + (s — %53)T + (E;— +E6S—)N +ET6iB +R
o a'(0)=T
o «'(0) = kN
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o a'"(0) = —k?T +k'N + kB

(@] 111’1’1—§ = 0
s-0S

* Rotate and translate the curve such that «(0) = 0,T = (1,0,0), N = (0,1,0),B = (0,0,1),

we have
2

o x(s) =s—€‘s3 + R,

k 2 k 3
o y(s):Es +—6—S + R,

kt
o z(s) = —6—53 +R,

In TN-plane(osculating): a quadratic (x(s), y(s))
o In NB-plane(normal): not regular (y(s), z(s))
o In TB-plane(rectifying): up to second order, the projected curve is a line (x(s), z(s))

\M B ” B

osculating plane rectifying plane normal plane
e |Interpretation of sign of torsion

. ..k
o Component of a in the B direction is 553

o If T > 0, as s increases, the curve is crossing the osculating plane toward the
positive side

o If T < 0, the curve is crossing the osculating plane in the negative B direction

o The curve twists out of the osculating plane, T measures the twisting or torsion

Osculating circle
¢ The osculating circle at s is the osculating plane at s, with center on the line in the

direction of N(s) and radius % that lies on the concave side of o

e Itisthecircle of closestfitto @ at s
e The osculating circle is the unique circle S(s) parametrized by arclength with (s) =

a(s), B'(s) = a'(s), and B"(s) = a”(s)

Characterize certain curves by properties of their curvature and torsion
e k = 0 straight line
e k # 0andt = 0plane curve
e 7=0,k = const > 0circle
e 7 = const # 0,k = const helix

Fundamental theorem of curves:
e If k # 0, the functions k and T completely describe the curve geometrically

e Definition: F: R™ — R" is an isometry (or rigid motion) if |F (v) — F(w)| = |v — w]| for all
v,w € R"
o Fisanisometry & F(v) = Av + b where A € 0(n) (orthogonal n X n matrix) and
b e R"

* Ann X n matrix is orthogonal if ATA = I, or the columns of 4 are
orthonormal vectors
= Orthogonal matrices preserve the dot producti.e. Av - Aw =v-w
= The curvature and torsion of a Frenet curve are invariant under orientation
preserving isometries
e Letk(s) > 0and1(s),s € (a,b) be differentiable function. Let s, € (a, b), g, € R3 and
let Ty, Ny, By be orthonormal vectors. Then there exists a unique regular curve a: (a, b) -
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a(so) = qo
Ty, No, By is the Frenet frame of a at s,
k(s) is the curvature and t(s) is the torsion of a
Uniqueness: assume a, B: 1 - R3 satisfying k,(s) = kg(s) and 7,(s) = t5(s) then
[ is the image of a under a rigid motion of R3
* Exists an orthogonal matrix A with detA > 0 and b € R3 such that f(s) =
Aa(s) +b
o Ingeneral, given k and 7, it is difficult to explicitly solve the Frenet equations. For
plane curves, can explicitly determine the curve in terms of its curvature
» Leta:(a,b) » R? be plane curve parametrized by arclength
a'(s) = (cos 6(s),sinB(s)), where O(s) is the angle a’(s) makes with the
positive x — axis measured counter clockwise
Then a''(s) = %g (—sinB(s), cosB(s)) where (—sin8(s), cos O(s)) is the
normal vector

O O O O

ko(s) = % is the rate of change of the angle the tangent makes with the
horizontal, 8(s) = 6(sy) + fsi ks(u)du

Fundamental theorem for plane curve
Given k: (a, b) - R differentiable, s, € (a, b), qy € R?, Ty = (cos 8,,sin f,), there exists a
unique a: (a, b) — R? parametrized by arclength such that

e a(so) = qo
e a'(s)) =To
e k(s) is the signed curvature

e a(s)=qp+ (f:; cos6 (u)du, f:o sin 8 (u) du) where 68 (u) defined as above

Global properties of curves

e Def:a: [a,b] » R?isaclosed curve if a(a) = a(b), a'(a) = a'(b),... (@ and all its

derivatives agree at a and b)
o Def: a is simple if it has no further self-intersections
(ty, t; € [a,b), t; # t; = a(ty) # a(ty))

e Leta:[0,!] » R? be a closed curve parametrized by arc length. Define 6:[0,1] = R by
0(s) = fol ks(s)ds, @ is differentiable and 8'(s) = k.(s). fol ks(s)ds = 2ml,I € Z since
the curve is closed. The integer I is the rotation index (number)

1 l
o I=Ef0ks(s)ds

o It measures total rotation of tangent vector as you go around the curve

o Theorem of turning tangents: the rotation index of a simple closed curve is +1
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where the sign depends on the orientation
* |soperimetric inequality
o Let C be a simple closed plane curve of length [ and let A be the area bounded by C.
Then 4 < — 2
am
o Equality if and only if C is a circle
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Surfaces: Local theory

January 12, 2021 1:56 PM

Def: a parametrized surface element is a differentiable map X: U — R3,U < R? an open set with
X(u,v) = (x1 (u,v), x, (u, v), x3(u, v))
e Xisregular ifZ—i and Z—i are linearly independent (i.e. %;—( X %)]—j # 0) forall (u,v) e U
e Paraboloid: X (u,v) = (u,v,u? + v?)
e Helicoid: X(u,v) = (vcosu,vsinu,au) where a # 0 constant, u € (0,2m), v € R
o Through each point of a helix, draw a line parallel to xy —plane and through z —axis

o Minimal, ruled surface

» Sphere: X(¢,0) = (sin¢ cos@,sin¢g sinf,cos ¢p), ¢ € (0,m),0 € (0,2m).
%i—( X %ﬂ = | sin¢ | is regular when ¢ # km

e Surface of revolution: let a: I - R® a(u) = (0, f(u), g(w)) be a curve, f > 0, rotate a about
z —axis, X(u,v) = (f(u) cosv, f(u) sinv,g(u)),u el,ve(0,2mn)
e Note: all the regular surfaces miss some point

Def: a subset S © R is a regular surface if for each p € S, there is an open set V c R3 containing p, an
open set U c R? and a differentiable map X: U — R3 such that

e X()=VnNS

e Xisregular

e X is one-to-one and X~ is continuous (i.e. the map X is a homeomorphism)

o (X(Z))_1 o X is a diffeomorphism (differentiable with differentiable inverse)

Examples of regular surfaces
e Sphere §? = {(x,y, Z):x2 +y2+2z%2= 1}

o LetU={(xy) eR%:x?+y2 <1} f(x,y) = (x,y,wll —_xT—_)ﬁ) is a regular
parametrization of upper hemisphere

Tangent plane T;,S to S at p = f(ug, Vo) is the subspace of R3 spanned by gﬁ (ug,vy) and Z—’; (ug, vo)

A unit normal to S at p is a unit vector normal to the tangent plan T,,S. Given a parametrization f: U C
ar _af

R? - S c R3, we obtain a unit normal vector at each g € f(U) byn = Fg_’;—%
u"ov

First fundamental form
e The inner (dot) product of R? induces an inner product on T,S c R3 by restriction, called the first
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fundamental form [,
o L,:T,SXT,S > R Ip(v, w) = v - w, where v, w are two tangent vectors
e properties:
o Symmetric (I, (v, w) = I,(w, v))
o Bilinear (I,(av, + bv,,w) = al,(v1,w) + bl,(v,,w))
o Positive definite (I,(v,v) = 0,I,(v,v) = 0ifand only if v = 0)
* Suppose {v,, v,} is a basis of T, M, the matrix representation of I,, with respect to the basis is
<Ip(171:171) Ip(vlJ 172))
Ip(VZI V1) Ip(UZIVZ) '
o fu=av, +ayv,,w = biv; + byv,,

then I(u,w) = (a; a,) <1p(v1,v1) Ip(vl,vz)) <b1>

Ip(vz,vl) Ip(vz, 172) b2
e Given a parametrization f: U ¢ R? - R3, the matrix representation of I with respect to basis

af @ of @
E F) _|[* Gesn) 1 Gorsr) _ <fufu fufv)
of @ of @
PO \nGa) b)) e B
e Def: two surfaces S; and S, are locally isometric if for each p € S;, there are parametrizations
fi:U > S, f:U > S, (p € fi(U)) such that £, o f;1: £, (U) - f,(U) preserves the first
fundamental forms
o Plane and cylinder are locally isometric
e Importance: By knowing I, we can calculate geometric quantities (length, angle, area) without
further reference to the ambient R3
o Arclength of a parametrized curve in a surface: a: (a,b) — S be a curve in S, the arclength of

t t s t du\? dud A%
a:s(t) = fila’(Oldt = [, /1@’ a")dt = [, JE () +2rZ+6(5) at
* Element of arclength is ds? = Edu? + 2Fdudv + Gdv?
fulv _L

Ifullfol — VEG
= A parametrization f: U = S is a conformal (orthogonal) parametrization if F(u,v) = 0

andE =G, (8 = g) for all (u,v) € U. i.e. the coordinate curves are orthogonal

of of .
{51:,5} of TpS is denoted (

o Angle:cosf =

o Area: [, |fy X fyldudv = [f; VEG — F2dudv
. NN R A e A b
Note: [o2 x 571" + |50 52| = |31

a 2 . .
|a_1):| does not depend on the parametrization

Def: A surface S © R3 is orientable if there exists a differentiable field of unit normal vectors N: S — R3
« Differentiable means N o f: U ¢ R? —» R3 differentiable
¢ The choice of such a field is called an orientation of S
o There are always two choices: outward/inward based on the direction of normal vectors

e Cube is not regular, thus is not orientable (piecewise orientable on each surface)
ﬂva
|fuva|

 Any parametrized surface element f: U ¢ R? - R3 is oriented by n =

 Unit sphere S? = {p € R3: |p| = 1} is orientable
o N(p) = pis the outward unit normal
e The smooth surface Mobius strip is not orientable

Def: Let S © R? be a surface with orientation N. The map N:S - S? c R3 (p - N(p))is called the Gauss
map (S? is the unit sphere/set of all unit vectors in R?)

The shape operator at p is the map S,,: T,,S — R3 Sp,(V) = =(DyN)(p)
e V isthe tangent vector to the surface
* Measures the rate of change of N in the direction V atp
o Sp,(V) = —=(Noa)(p), where ais any curve in S with a(0) = p, a'(0) =V
o V can actually be any tangent vector, not necessarily unit
o Since N is unit vector, N(a(t)) . N(a(t)) =1
So(Nea) (0):(Nea)(0)=0,
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i.e. DyN(p) - N(p) = 0, DyN(p) € T,,S
o Prop:S,:T,S — T,S is a self-ajoint (symmetric) linear map
= SV)-wW=V-5,(W)

Def: the second fundamental form of S at p is II: T,S X T,S > R, II(v,w) = I(S,(V),W) = S,(V) - W
e [I(V,V) gives the curvature

Note: Il is symmetric bilinear form
o Shape operator is linear and dot product is bilinear
o IV, W) =1W,V) (S, is self adjoint)

* Matrix representation with respect to the basis {f,,, f,} of T,,S: Il = (rfl r::)

o l= ”(fu'fu) =—Ny-fu=N-fyum= ”(fwﬂ) =N-fyp,n= I(fvva) =N-fo
Planes have zero second fundamental form, reverse is true
Sphere oriented inward : Il = I, [I(v,v) = |v| =1

Curves on surfaces and curvature
Let a: I = M be a regular curve on the surface M parametrized by arclength with a’’ # 0
e k,=1I(a',a’") =a" - N = £k is the normal curvature (curvature in a direction v € T,M) of a
O Curvature of the curve that comes from the curvature of the surface
e Meusnier theorem: all curves on a given surface having at a given point p the same tangent line,
have same normal curvature at p
o k, isdetermined by the surface and does not depend on the curve
o ky=I(a,a')=a"-N=k-N = kcos@ (0 is the angle between the curve normal and
surface normal)
e Consider a curve which a normal section of the surface intersects at p (a slice of M with a plane
through p parallel to the normal N to M at p)
o The curve of intersection is the normal section

o Then such a curve is a plane curve through p with n(p) =+N(p), k(p) = |k,(p)| =
|I1(v,v)|
o Fora plane, all normal sections are straight lines, thus, normal curvatures are 0 (II = 0)
For spheres with inward normal, normal sections are great circles through p(plane curves of
radius 1), k, = lI(w,w) =I(w,w) =1
o For cylinder, normal sections vary from a circle (k,, = 1) to a straight line (k,, = 0)
e The minimum normal curvature at p, k; (p) and maximum k, (p) are called the principal curvatures
of M at p, the corresponding directions e;, e, are called the principal directions
O ey, e, are critical points of the function w — II(w,w) overallw € T, M with |[w| = 1
e Letw € T,M with |w| = 1. Then w is a principal direction if and only if w is an eigen vector of the
shape operator S,,: T,M — T, M. The associated eigen values are the principal curvatures

Some side notes of linear algebra
¢ V:n-dimensional vector space with inner product <:,->
e A:V - V linear transformation, self-adjoint,< Av,w >=< v, Aw >Vy,w €V
e B:V XV — R associated symmetric bilinear form B(v,w) =< Av,w >
» Spectral theorem: there exists orthonormal basis ey, e,, ..., e, of V such that Ae; = 4;e;, and
ey, ..., ey are critical points of v = B (v, v) overall unit vectors v, 4; = B(e;, ;) is the eigen value
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Principal curvatures and directions
e Principal curvatures: k4, k, are min and max curvatures, i.e. v = II(v,v),|v| =1
* Principal directions: e;, e, are corresponding directions
o Critical points of v — I1,,(v, v) over all unit vectors v € T,M
o The principal directions are eigen vectors of S,;: T,M — T,M
e Remark: either k; = k, and every direction is a principal direction or there exist exactly two (up to
sign) principal directions orthogonal to each other
o k(p) =0givesky(p) =0
o k=|a"|=a" n=k,(normal curvature)
o a" =@+ (a")*
= (a’)7 is the geodesic curvature
* (a’")*is the normal curvature
e Remark: givenw € T,M, |w| =1, w = cosf e; +sinf e,
we have II,(w,w) = kq cos? 6 + k; sin* 6 (Euler's formula)

Gauss and mean curvature

e Gauss curvature: K(p) = k;(p)kz(p) = detS, = (IBI I?)
2

1

Mean curvature: H(p) = E(kl(p) + kz(P))

They are independent of the basis

e the signs of k4, k, changes if we change the orientation of M
o K does not change, H changes sign

A point p on a surface is called
o Elliptic if K(p) > 0 (kq, k, have the same sign)

o Planarifky =k, =0
e Expressions: given matrix of S,,: T,M — T, M relative to basis {f,, f;,},

_ 1y (E F)_l(l m)
o S, =11 (FG o

1 1
o Then K(p) = det(Sy) and H(p) = SirSy =3 (a+d)
K(p) = detll In—m?
P)="detl ~ EG — F2
= Tr means the trace
o The principal curvatures can be found by det(S — kI) = 0
* Thisgivesthat k? —2Hk+ K =0
o If Sis diagonal, f;, fg are principal directions, the diagonal are the principal curvatures
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o Note, if S, = (Z ccl)

n, = —(afy + bfy).
n, = —(cfy +dfy),

Aregular curve a: I — M is called a line of curvature if ——isa principal direction forallt € I i.e.

| ’( )I
S(a') = ka', @' is an eigen vector of the shape operator
e For a surface of revolution, f is line of curvature parametrization (t-curves, 8-curves are lines of
curvature)
e n' = Aa’ for the line of curvature, where 1 is the surface normal.

Surface of revolution of constant Gauss curvature
e Assume t is the arclength parameter of the curve a(t) = ((t), 0, h(t))
» Constant Gauss curvature gives that "’ + kqr = 0
e Whenk,=0,r(t)=at+b,h(t) = +V1—a?t+c
o a =0, a(t) is a straight line, the surface is a cylinder
o a =1, a(t) is a straight line, the surface is a plane
o a € (0,1), surfaceis a cone
e ko, > 0, sphere, elliptic integrals, oblate sphere

Def: V € T,S is an asymptotic direction if the normal curvature in the direction V' is zero. I1,,(V,V) = 0.
A regular curve a in M is an asymptotic curve if a’(t) is an asymptotic direction for all t
* Atan elliptic point p, K, > 0, k; and k;, have the same sign and are nonzero, there is no asymptotic
direction

A ruled surface is a surface that can be parametrized as f (s, t) = a(t) + sX(t) where X(t) is a vector
field along a(t)

e Theline t = const are called generators

e Acurves = const is called a directrix

e Examples: plane, cylinder, helicoid, cone, hyperboloid of one sheet

¢ Any ruled surface has Gauss curvature K < 0

¢ Aruled surface is developable if the Gauss map n is constant along generators

o Examples: plane, cone, cylinder

o Aruled surface is developable & % =0eK=0
o S(V)=-

A surface with mean curvature H = 0 is called a minimal surface
¢ Helicoid, catenoid, plane
e NoteH =0 k; =—k, © K =—k? < 0 (every point is hyperbolic)
¢ |t minimizes area locally
¢ Minimal surfaces are critical points of the area function
e Let f:U c R? - R3 be a surface with boundary curve C,f;(u, v) = f(u,v) + th(u, v)n(u, v)
o Here th(u,v) is a differentiable function that vanishes on the boundary

Intrinsic geometry of surfaces
e A property of a surface is intrinsic if it depends only on the first fundamental form
o Def: let M1, M, be surfaces. An isometry from M; to M, is a one-to-one, onto, differentiable map
Y: M; — M, such that for any curve a: [a, b] = M, the length of a equals the length of Y o a
o Remark:y: M; = M, is differentiable if for each p € M,
there are parametrizations f;: U; — M; about p and f,: U, — M, about 1(p) such that f; 1
Y o fi:U; - U, is differentiable as a function of 2 variables
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e M, and M, are isometric if there is an isometry Y: M; = M,
o a'(t) and (¢ o a)'(t) have the same length, arc length are the same
o We define distance between points p,q € M by dy(p,q) =
inf{L(a): a is a curve in M betwen p and q}.
e M, and M, are locally isometric if for each point p € M, there are open sets V; about p and I/,
about Y(p) and anisometry Y: V; = 1,
o Suppose fi:U = My, f,: U = M, are parametrizations such that E; = E;,F; = F,, G; = G,
theny = f, o f; s a local isometry

v

A -

‘(L'Lt
Biv iy = =
«
W F |
|

o
Ex: Cone 18 locally isomelic +o plane

o Helicoid and catenoid are locally isometric

* Note: isometry cannot be extended to global isometry (Cylinder is not homeomorphic to plane)

* A one-to-one, onto, differentiable map y: M; — M, is conformal if for any p € M; and any curves a
and B with a(0) = B(0) = p, we have (¥ o a)’(O) (o ,8)’(0) = 22a'(0) - B'(0)where 1 s
differentiable and 1 # 0

o Conformal maps preserve angles, but length might be stretched
o Suppose f;:U = My, f,: U — M, are parametrizations such that E; = A%E,, F; = 12F,,and
G, = 2%2G,, A # 0 is a differentiable function. Then ¢ = f, o i1 is a local conformal map

e Given aregular surface M and p € M, there is a local parametrization of M near p such that E =

G = A% and F = 0, 2 nowhere zero and everywhere differentiable
o Any surface is locally conformal to the plane
o Any two regular surfaces are locally conformal

Codazzi and Gauss equations:

¢ Known the first and second fundamental form, we want to find the parametrization
e Start with writing derivatives of {f,, f,, n} in terms of {fu,fv, n}
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o Simple for n, can just use the shape operator
© fuu = Niufu + Tiufy + In.
O fur= Fllfvfu + ngfv +mn.
O fou= #ufu + Fgufv + mn. (fuy = fou)
O foy = #vfu + F‘l;)‘llfv +nn.
o T}, are called the Christoffel symbols
o In matrix forms:
fu F#u F'l:‘l’u l fu
"\ A =\ bu Tw m|| fo
nj/, —-a —-b 0 n
fu F#v F&)v m fu
" f‘U = F#U F;’U n f17
n —c —d 0 n

v
e Do dot product with f,,, f,,, then we can find expressions for the Christoffel symbols

1
<rgu>=<5 F)‘1 2 Eu
Y, F G Fu_%Ev

1
<F]jv>=(E F)‘l 2 b
Y, F G %Gu
1
<E}%>_(E F)‘l Fy =3 Gu
Iy, F G %Gv

e So, given E,F,G,l,m,n, we can solve for f,, f,,,n and then f. But these are PDEs, and have solutions
only if certain compatibility conditions are satisfied
o Integrability conditions: f,,,; = fuvw fovu = four T = M-
e Codazzi-Mainardi Equations
o l,—my =Y +m(TY, — TY,) — nlY,.
o m, —n, = IT% +m(TY, — T%) — nly,.

Theorema Egregium of Gauss

¢ The Gauss curvature of a surface is determined by the first fundamental form. That is, K can be
computed from just E, F, and G and their first and second partial derivatives.

O Gauss curvature is intrinsic
Formula:

o EK = (T%), — (T%), + T&T + 2T — [T — (T%)°. The other ones FK, GK are
equivalent
() (2
VEG/,, VEG/,,
Fundamental theorem of surfaces

e Suppose E, F,G,l,m,n are differentiable functions on an open set U ¢ R? with E > 0,G > 0,
EG — F? > 0 and satisfy the Gauss and Codazzi equations
Then Vq € U, thereis an openset U’ c U, q € U’ and parametrized surface f: U’ — R3 that has
E,F,G,l,m, n as its first and second fundamental forms
Moreover, f is unique up to isometries in R3
Uniqueness: let f: U C R? — R3 parametrized surface

o P:R3 - R3isometry = f and 1 o f have the same first and second fundamental form

o f,]_” have same first and second fundamental form = ]_f =1 o f, P isometry of R3

o Note the second fundamental form can have different signs

1
2VEG

o IfF =0,thenK = —

Vector fields
e Afunction X: M — R3 is tangent vector field if
o X(p) €eT,MforallpeM
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o X is differentiable (for any parametrization f: U = R3, X o f is differentiable)
e Given a vector field X, we can differentiate X
o Ifv € T,M, (D,X)(p) = (X °a)'(0) where a is a curve in M with a(0) = p, a'(0) = v.

Covariant derivative
e V,X= (D,,X)T is the orthogonal projection of D, X onto T,M
e If f:U — M is a parametrized surface

T

o Vfufu = (fuu) = Fllfufu + F&]ufv-
T

o Vf,,fu = (fuv) = #vfu + ngfv-

T
o Vf,,fv = (fvv) = #vfu + Fzyva-

e Covariant differentiation is intrinsic

e D,X = 0if X is a constant vector field

Parallel vector field
e Given acurve a in M, we say a vector field is parallel along ¢ if V,,X = 0
o (X oa)'(t)isamultiple of the normal vector n(a(t))
o Note thatif a(t) = (u(t),v(t)), then X(a(t)) = f(u(t), v(t))
* leta:l - M beacurve. Given ty € I and X, € Ty (¢,)M, there exists a unique parallel vector field X
along a with X(ty) = X,
o X(a(t)) is called the parallel translation of X, along «
o IfX(a(t)) =a(t)f, + b(t)f,, we can solve a, b by the system of ODEs
= a' + (uTY +v'TE)a+ (WTE +v'TE )b = 0.
= b+ (uTy +v'TY)a+ (T +v'TH)b = 0.
e Remark: If X and Y are parallel vector fields along «, then X(a(t)) . Y(a(t)) is a constant
o A parallel vector field must have constant length and the angle between parallel vector fields
remain constant
e If M and M are tangent along a curve a, and X is a vector field along @, then the covariant
derivative of X is the same for both surfaces
o Xis parallel along @ in M & X is parallel along @ in M
e Parallel vector field does not usually exist globally

Geodesics (analog of straight line in a surface)
e The unit tangents are parallel (never changes direction)

e A parametrized curve « in a surface M is a geodesic if V,,a’ = (Dara’)T =(@N’T=0
o a'isparallel along a
o a''is orthogonal to M
e Remark: a is a geodesic, then a is parametrized proportional to arclength
e An unparametrized curve C is said to be a geodesic if its arclength parametrization is a geodesic
O Great circles on sphere are geodesic
o Plane lines are geodesic
e Leta:I - M be a curve parametrized by arclength,
o we know that we can decompose a’’ = (a')T + (a')* = (a” - (n % T))n XT+ (a'-n)n
= (a’)T is the geodesic curvature
» call {T,n X T,n} the Darboux frame
» (a')T is always in the n X T direction
* Define the geodesic curvature k; = a” - (n X T)
» (@)t =n-a" =1(a’,a)nis the normal curvature
* Note that k? = k7 + k7, since the two basis are orthogonal
* Existence of geodesics: given a pointp € M and V € T, M, there exists € > 0 and a unique geodesic
a:(—€,€) > Mwitha(0) =p,a'(0) =V
= j.e.thereis a unique geodesic through any given point of a surface in any given direction
e System of ODEs to solve for geodesic:

» Leta(t) = f(u@®),v®), a =u'f, +v'f,
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» u” + TR, )%+ 2T%u'v + TE (v)? = 0.
» v+ T W)+ 20U v + T, ()2 = 0.
¢ |sometry maps geodesic to geodesic
e Ashort enough piece of geodesic is the curve of length between its endpoints
e For a surface of revolution, meridians are always geodesics
= Parallels are geodesic if and only if r’(to) = 0.
= a(s) is a geodesic if and only ifr(t(s)) cos ¢ (s) = const. (Clairaut's relation)where ¢ (s) is
the angle between a'(s) and the parallel
= Geodesics that is not meridians intersects itself infinitely many times
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Further topics

January 12, 2021 1:56 PM

Gauss Bonnet Theorem (simple case)
e Asimple closed regular curve bounds a simply-connected region R, then we have:

o kg is the geodesic curvature
o K isthe Gauss curvature

o dA =VEG — F2dudv is the area element

Local Gauss Bonnet Theorem
e Suppose R is a simply-connected region with piecewise regular boundary lying in an
orthogonal parametrization (F=0)

e If C = OR has exterior angles 6;,j = 1,..,n, then ffR KdA + faR kgds + X7, 6; = 2m

o 6, is the oriented angle between a'(¢;) and a’(t}")

* Geodesicn — gon: assume a|(s,s,, ) is geodesic, then [[-" KdA = 2m — 31, 6;
o0 n — gonisa polygon of n sides
o Geodesicn — gonis ann — gon with all sides being geodesics
o Exterior angle = 6;, then interior angle 8; = m — 6;

o Soforageodesictriangle, [[."KdA =By + f, + B3 —
= K > 0 means sum of interior angles is greater than
= K = 0, sum of interior angles is equal to
= K < 0,sum of interior angles is less than

o If K < 0 everywhere, then geodesic 2-gons do not exist

Triangulation
e The link between local and global result is provided by triangulations
e Let M be aregular surface, a closed bounded subset R € M is regular, if dR is the union of
simple closed piecewise regular curves that don't intersect
e T c Misatriangle if T is homeomorphic to a disk and dT has 3 vertices
e A triangulation of a regular region R C M is a finite collection of triangles {T;, T, ..., T} such
that
O U?Zl Ti = R.
o IfT;NnT; # @, then T; N T; is either a common edge or a common vertex
o Everyregular region R in a regular surface M admits a triangulation

The Euler characteristic of a triangulationRisy = F —E +V
e Fisthe number of faces
e F isthe number of edges
e I/ isthe number of vertices
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The Euler characteristic does not depend on the triangulation (topological invariant)
E.g.
Disky =1
sphere y = 2
Torusy =0
Two torus y = —2
o N-torusy =—-2(n—1)
Properties
o Everyregular region R of a surface M admits a triangulation
o The Euler characteristic doesn't depend on the triangulation
The Euler characteristic allows a topological classification of surfaces in R3
M c R3 compact, connected surface without boundary, then y(M) € {2,0,-2, ..., —2(n —
1)}
x(M;) = x(M,) if and only if M; is homeomorphicto M, (there is a bijection from M, to M,)

o Every compact connected M c R3 without boundary is homeomorphic to a sphere with

a certain number g of handles attached y(M) = =2(g — 1), g = 3_—);(1”—) is called genus

O O O O

Global Gauss-Bonnet theorem

Let R € M be a regular region of an oriented surface, dR consists of closed piecewise regular
simple curve (given the positive orientation), {6, ..., 8;} the set of exterior angles of the

boundary curve, then ffR KdA + faR kgds + Y1, 6; = 2mx(R)

If M is compact orientable surface without boundary, then ffR KdA = 2mx(R)

Consequences:
o y(M) is independent of the choice of triangulation

o Since y(M) is an integer, 517; [[."KdA'is an integer

R
o Gauss-Bonnet theorem asserts the equality of two very differently defined properties

= Integral of the Gauss curvature (determined by local geometry)
= Global topological invariant
A compact surface without boundary of positive curvature is homeomorphic to the sphere

Define orthonormal vectors, e; = 5%, e, = 5%, then ¢1, = (Var el) e,
1 . . .
0 Pz = PV (—E,,u’ + Guv’) + 0'. It measures the rate at which e is turning

o kg = ¢1, + 0’ where 6 measures the turning of unit tangent o' relative to e;.

MATH424 Page 16



	Curves
	Surfaces: Local theory
	Further topics

