
Energy of light
Quantized to each photon•
    ,  is the frequency•

Momentum of light

  
 

 
  

  

 
   

 

 
 .•

Electron
Magnetic field acting on electrons generate Lorentz Force on the electrons•
Classical Hall effect

Hall coefficient is proportional to magnetic field○

•

Quantum Hall effect
Hall coefficient is quantized○

•

All entities have both particle and wavelike properties
Waves are distributed displacements of some quantity in space and time

Interference, or the superposition of distinct distributed displacements, defines wavelike 
behavior

○

•

Particle: quantized•

The light emitted by lasers doesn't always need to be treated quantum mechanically to understand 
how it propagates away from the laser

Particle moving in 1 dimension in a time-independent potential  
Initial speed: 100 m/s•
Start at x=0, t=0•
Uniform electric field exerting a force on the electron of 1N in negative  direction•
Classically

          
 

  
     .○

deterministic○

•

Quantum mechanically
Need to solve for the wave function of the electron       using Schrodinger's equation 

  
  

  
     

  

  
   

   

         .

○

 also gives information on the future dynamics○

It is probabilistic○

Note:  in Newton's equation is different from the  in Schrodinger equation.
In Newton's equation,  depends on  .▪

In Schrodinger equation,  and  are independent.▪

○

         
 
  

 

 
gives the probability of finding particle between  and  at time  . ○

•

Complex numbers

           ,      
    

.
Real part:        .○

Imaginary part:        .○

Complex conjugate:              .○

Modulus/magnitude:                 
     

    
.○

Argument(phase):         
 

 
  .○

•

                          .•
                             .•

Introduction
January 7, 2022 9:44 PM
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Phasor representation of waves

Euler's formula:               .•

A wave                can be represented as                                .

Phasor (time-independent):       .○

•
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Schrodinger's equation   
  

  
     

  

  
   

   

         .

         
 
  

 

 
gives the probability of finding particle between  and  at time  .

Underlying uncertainty in   due to phase is missing if only work with   .•

For any wave function,     
 
  

 

  
  .

The particle must be somewhere. Adding up all the probabilities of finding it must equal 
1.

○

•

Measurement
Performing a measurement and finding the particle at location    with some uncertainty 
  .

•

Immediately after a measurement, the wave function collapses to  with   uncertainty.•

Average value/expectation

                
 
  

 

  
.•

This is the average value we might measure if we had multiple copies of the same 
wavefunction and measured it several times.

•

Or if we had an ensemble of identical wavefunctions and measured them all.•
A state is stationary if          .•

Standard deviation

Let         ,                   
 
  

 

  
          .•

Shows the delocalization/size of the wavefunction•

Momentum
    

  
     

  

 
        

  
     

 

 
.•

     
    

  
             

  
     

 

 
        

 

  
      

 

 
.•

Operator
    .•

      
 

  
  .•

Hamiltonian:     
  

  
   

  

           .•

Bra-ket notation

             
 

 
         .•

            .•

De Broglie equations

  
 

 
 .

    ,  is the wave factor.○

•

  
 

 
 .

    .○

•

Uncertainty principle
The more precise a wave's position is, the less precise is its wavelength (momentum)•

Fourier transform of wavefunction     and     .

       
   

   
 

 
.

•

Wave function
January 12, 2022 2:02 PM
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.○

             
   

 
     

 

 
.○

If a particle is fixed at     

            .○

Then         
    

 
   ,    

 
   .○

 is everywhere, cannot be determined.○

•

Probability densities
Suppose     is a function describing the probability per unit length of finding a classical 
particle at a position  

•

    is not probability,       is the probability of finding the particle in the interval      
   .

•

Observables and expectation values
If     is some observable quantity that depends only on the position  , then the expected 
average value of     if a number of identical measurements are performed is 

           
 

 
,  is the support of the probability density  .

•

Quantum expectation values

Quantum mechanically, the probability density is                
 

.•

Then                       
 
  

 

 
.•

Observables are associated with operators.
Position operator:     .○

Momentum operator:       
 

  
  .○

•

For any observable  ,             
 

 
.•

More about uncertainty principle

Standard deviation:              
           

.
A measure of the precision to which we know the value of an observable quantity○

•

Quantum mechanically, there is a limit to how precisely certain pairs of observables can be 
simultaneously known.

In general,       
 

  
          .○

For position and momentum      
 

 
 .○

•
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Full (time-dependent) Schrodinger equation

  
  

  
     

  

  
   

   

            .•

To solve it, use separation of variables
Let                ○

Then       ,         .○

       
  

  
            .○

  
 

 
  

  

  
     

  

  
    

 

 
  

   

           .○

•

Setting both sides to equal a constant
  

  
     

   

 
   .○

 
  

  
    

   

               .○

In math, the  value can be any value○

In physics,       .○

•

Space-independent:

        
 

 
   .•

Valid for any real  .•
Imaginary  will lead to un-normalizable wavefunction•

Time-independent:

  
  

  
    

  

                .

 is the energy○

•

Depending on the potential     , there are typically only solutions of the time-independent 
equation for restricted values of      .

  is an eigenvalue○

  is an eigen function○

                
      

  

  
    

  

                   
 

  
   .

When particle is in the nth stationary state.▪

○

       
 and     .

The energy of the particle when it is in a stationary state is precisely   .▪

○

•

For each   , we get a specific      .

                
  
 

    .○

Each solution is called a stationary state○

Each        is an orthonormal basis of       .○

•

Stationary state

        
      

  
 

              
  
 

      
 

  
    

             
 

  
.○

So     is time-independent○

•

Solution set        is infinite

Each with associated energy     .○

                
   .○

The initial state can always be matched with appropriate choice of constants     .○

Then                  
    

 
    

               
   .

This means that we only need       (no need for        ) to solve for the 
constant.

▪

○

•

    
 

.

The probability that a measurement of the energy would be   .

•

Time-independent Schrodinger
January 12, 2022 2:03 PM
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The probability that a measurement of the energy would be   .○

     
  

     .○

Expectation of energy          
 
  

 
   .○

Energy conservation in quantum mechanics○

Infinite well

   
       
           

.•

Boundary conditions: wavefunctions must be continuous at boundary
    must be continuous and differentiable for Schrodinger equation.○
  

  
   is continuous except the infinity○

•

Solutions

         
    

    

 
          

    
    

 
           

           
.○

We also need            .

This requires            
  

 
    ▪

   
  

 
  ,    

  

  
    

  

 
   

 
,        .▪

○

Normalization:        
 

 
 
 

 
    

   

 
    .

They are orthonormal: 
 

 
      

   

 
        

   

 
      

 

 
    .▪

○

•

Coefficient   .

            
 

 
 
 

 
    

   

 
     

  
     

          
   .○

If there is only a single non-zero   , it is a stationary state, the expectation value of the 
momentum operator is stationary

○

  can be found using Fourier series.

    
 

 
 
 

 
     

   

 
            

 

 
.▪

More generally,       
             

 

 
.

            
             

 

 
  

 

 
 
 

 
    

   

 
     

  
     

               
   for     .□

▪

○

•

Orthogonal and orthonormal functions
Orthogonal functions:               

 

 
  (   ).•

Orthonormal functions:               
 

 
    .

Normalized and orthogonal○

•

A set of functions is complete, if any function     can be approximated by               
 .

i.e. this set can provide a Fourier series○

•

Dynamics of an electron in an infinite square well
Take the initial wavefunction of particle in an infinite square well potential to be an equally 
weighted superposition of the lowest two stationary states

         
 

  
                    

 

 
 
 

 
     

  

 
        

   

 
     .○

•

        
 

 
 
 

 
                                 .

  
 

 
 ,    

   

        .○

•

    is valid in        .•

Half period: 
 

   
   .

            . ○

     is  ahead of      .○

•

Full period: 
  

   
.
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Full period: 
  

   
   .

              . ○

Overlap again.○

•

The particle is oscillating in the well (left right).•

With             
 

 
, the effective distance travelled is     

   

 
    
 

 
.•

Harmonic oscillator potential

Potential:      
   

 
   .•

Classically

 
   

          .○

General solution:           
 

 
  
  

 
       

 

 
  
  

 
 .○

With initial solution      ,             
 

 
  
  

 
 .○

•

Quantum mechanically

       
  

  
   

  

       
 

 
      ,     

 

 
  
  

 
.○

If we redefine      
   

  
   
   

 
.

  

               .▪

To solve this, let        
 

  

 
  .▪

And this gives          
  

   , with      
        

          
          .▪

Since the wavefunction needs to be 0 at   , we need some  such that     .▪

○

Two implications

For the power series to terminate          ,          
 

 
  .▪

The corresponding eigenfunctions then come in two, odd and even with respect to  , 
by choosing an  , then using the recurrence relations with the corresponding value of 
of   , starting with either     ,     for odd solutions, and     ,     for 
even solutions

▪

○

Particles have 0 probability at origin for odd  , impossible for classical oscillator.▪

Particles have non-zero probability outside the well.▪

When    , the eigen states look almost classical▪

○

Difference between harmonic oscillator and infinite well
Energy difference

Harmonic oscillator:       .□
Infinite square well:      (not evenly spaced).□

▪

Node numbers
Harmonic oscillator:  th energy level has  nodes.□
Infinite square well:  th energy level has    nodes.□

▪

Nodes
Harmonic oscillator: get smaller as we move to the center□
Infinite square well: periodic□

▪

○

•
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Infinite square well: periodic□
Solutions

       
  

  
    

 

 
 
  

  

  
      

.▪

       
  

  
    

 

 
 
 

   

 
    
    

 
   

  

  
      

.▪

             
 
      

 

   
           

 
  .▪

          
      

    ,                .▪

    
 

     
                      .▪

○

Free particle (      )
Similar to infinite well•

General form:                  .

  
    

    

 
    .○

No restriction, can take any positive energy.○

•

Note: if    or    ,      diverges and cannot be normalized.
To normalize, we must have        .○

Current  cannot directly normalized○

•

Take the time dependence, we get          
     

  

  
     

   
      

  

  
     

.
The real and imaginary parts differ by a phase○

Any function     represents a wave of unchanging shape, traveling in the direction   
at speed  .

○

Fixed point: a fixed value of argument such that            Or             .○

•

   
    

    

 
    , with  

                          
                         

.•

Phase velocity of a harmonic wave          .
              .○

For fixed points,   
  

  
     

  

  
    , so 

  

  
   

 

 
  .○

   
 

 
   

    

  
     

 

  
   
   

 
.○

It can take two values   
 

  
   
   

 
.○

•

Difference to infinite square well and harmonic oscillator
Eigenstates and eigenvalues

In infinite square well and harmonic oscillator, each   corresponds to one   .▪

In free particles, each  corresponds to 2 waves (one moving left, one moving right).▪

○

Energy values
In infinite square well and harmonic oscillator,   are discrete, can only be certain 
numbers. (energy is quantized)

▪

In free particle, energy    is a continuous spectrum.▪

○

•

Expectation values.

With a finite interval       , we have     
 

 
      

  

 
      .○

•

A free particle cannot exist in a stationary state
There is no such thing as a free particle with a definite energy○

•

The eigen functions won't change for any positive constant     .

Only    
        

        

 
        changes.○

•

Wave packet
Real case for the free particle•

       
 

   
             

     
   

  
      

  
 

  
.

It is a superposition of waves.○

•

Superposition of 1D plane waves can sum to form a quantum Gaussian wave packet that •
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Superposition of 1D plane waves can sum to form a quantum Gaussian wave packet that 
propagates to left/right while spreading

•

1st dynamic: Central group velocity (
  

  
   )   phase velocity (

 

 
  )

Group velocity: velocity of the wave packet○

Phase velocity: velocity of the individual waves○

•

2nd dynamic: Dispersion
Without dispersion, shape of the wave packet doesn't change○

With dispersion, the wave packet itself gets dispersed overtime○

•

Fourier transform

How to determine     to match the initial wave function        
 

   
                  

 

  
.•

Plancherel's theorem

     
 

   
                  

 

  
      

 

   
                  

 

  
.○

•

So      
 

   
                    

 

  
.•

Gaussian wave packet

Dispersion only:        
 

   
         

 

 
  

   

        
    

  
 

 
  
  

  

         
                  

 
 

 
  

 

        
              

 

.•

Adding center of mass velocity         
 

   
    

 
     

 

 
 

 
 

      
 

        
     .

      
 

 
  

 

 
 

               
 

.○

With Taylor expansion        
 

   
         

 

 
  

   

        
    

 
 

 
  
  

  

         
 

   
   
 

      

 

          
 

      
   

  

  
    

.

    
 

   
       

 

 
  

 
   

    
 

    

 

          
doesn't disperse.▪

○

Otherwise,        
 

   
         

 

 
  

 

 
 

           
 
       

   
   

  
                       

 

  
.

     
 

 
 
 

  

    
    

          
         

          

 
   

    
 

    

 

     
    

           

          

.▪

○

•

Group velocity:     
  

 
  
  

 
  

   

 
   
   

 
 

  

  
    

   

 
   .•

Wavelength:   
  

 
  .•

Phase velocity: 
 

 
   

  

 
  .•

When the original size (dispersion) is small, it collapses fast.•
When the original dispersion is large, it collapses slowly•
Classical analogy

Water drop○

Entropy○

•

Net wave packet = envelope + carrier

Envelope:  
       

    
 

   

  
         

 

.○

Carrier:  
      

    
  

  
     

.  ○

•

Finite potential well

   PHYS304 Page 9    



•

Negative energy is just a reference number•
Bound states (        )

The particle is trapped in the well○

In the well,                   (      ).

  
         

         

 
        .▪

○

Outside the well,                (    ,    ).

  
     

      

 
      .▪

○

Even solution

      
         

              
         

.▪

For continuity (    and 
  

  
   ), we need         .▪

Let     ,    
 

 
      

      .▪

Energy eigenstates are solutions to        
  

 
   

 
  

        
 

.

Wide, deep well: If   is large,    
  

 
  ( odd),       

      

             .□

Shallow, narrow well: if   is small (close to 0), only one bound state for    
 

 
 .□

▪

○

Odd solution
Replace       with      .▪

○

•

Scattering states (   )
Two eigen solutions○

Transmission/tunneling effect○

                 (    ),            (   ).

  
    

    

 
    .▪

○

In the well,                     (      ).

  
         

         

 
        .▪

○

With continuity requirements

                                 .▪

                    .▪

                         .▪

Then,   
       

   
              ,   

       

        
     

   
          

               .▪

○

Transmission coefficient

  
    

    
   .▪

      
  

 

         
            

  

 
           

          
 

 .▪

○

Perfect transmission

   when 
  

 
            

           
 

   .▪

      
      

             .▪

○

Reflection coefficient

  
    

    
   .▪

○

     .

•
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     .○

Step potential

•

left to right

Left:       
    

    

 
          

    
    

 
     .

 : incident▪

 : reflection▪

○

Right:       
         

        

 
         .

 : transmission▪

○

Reflectivity: 
    

    
   .○

Transmission: 
    

    
   .○

•

right to left

Left:       
    

    

 
     

Transmission▪

○

Right:                 

 : Incident▪

 : Reflection▪

○

•

For bound states, energies are discrete. For scatter states, energies can be continuous.
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Bra-ket notation:
Dot product of  and   :               .•

If          and          , then       
  

   .•

Bra (transpose + conjugate):                 .

Transpose:   .○

Conjugate:   .○

•

                      .

             is a unity operator.○

      and       are projection operators○

•

Matrix:          
 
   .

                   .○

Linear transformation to a set of basis vectors:                      
 
   .○

Matrix multiplication:                               
         

 
 .○

•

If     are orthonormal.

Orthonormality:            .○

Completeness:          
 
     .○

•

A complete inner product has properties
            .○

       , equality if and only if    .○

Linearity:

                               .▪

                
          

       .▪

○

•

Hilbert space

For    
  

  
 ,    

  

  
 ,         

      
   .•

Complex functions:                  .

           
 

       
 

  
.○

•

Series of functions

           .○

              
   .○

         .○

•

Operators

Operators are objects      ,            .

 is naturally written as         .○

                 
   .○

Since                  , if we choose    as orthonormal basis vectors

                .▪

   
     .▪

            
 

.▪

○

If         , then          .○

              .○

•

Rotation operator:

      
         
        

 .○

           .

•

Formalism
2022年2月11日 13:55
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                   .○

Operators for functions

              
 
   

 

 
        

 

 
.○

If   
 

  
  , then     

 

  
  . (not Hermitian)○

     
 

  
  ,     . (Hermitian)○

•

Hermitian operators

    .○

Operators with real expectation values for any arbitrary state must be Hermitian
        .▪

             .▪

○

Eigen states that have zero variance in their expectation values (determinate states) 
for Hermitian operators must be eigen states of those Hermitian operators

If the variance of an observable is identically 0 in a particle state for an operator 
 , the state under consideration is an eigenstate of  with eigen value    .

▪

           
 
          

 
              

 
.▪

○

•

Discrete & continuous eigen spectrum
When the eigen spectrum is discrete for Hermitian operators,

Reality: the eigenvalues must be real, 

           , so              ,               .▪

○

Orthonormality: the eigen states corresponding to different eigen values are 
orthogonal, 

              ,                    ,                     .▪

○

Completeness: a complete orthonormal basis that spans the relevant state space can 
be formed from the eigen states

○

e.g. infinity quantum well, harmonic oscillators○

•

When the eigen spectrum is continuous, 
Reality, orthonormality, completeness still hold.○

e.g. free particles○

Eigen states of the position operator
             with eigen state      , eigen value  can be any real 

numbers.

▪

             .▪

                             
 

 
            .▪

Following the notation,               ,                     .▪

○

Eigen states of the momentum operator

   
 

  
              , with eigen state      .▪

        
   

 
   .

Note: If we replace     , it is the free particle general solution. □

▪

 can be any real value.▪

                        
        

 
          

 

  
                .

Let     
 

    
        , then                       .□

▪

So       
 

    
         

   

 
   .▪

○

Dirac orthonormality

                      .▪

○

•

Transform of basis
               

 

 
converts from momentum space to position space.

                   
 

    
          

   

 
           

 

 
       .○

•

Position space wave function     , with basis    .•
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Position space wave function       , with basis    .

        
 

    
         

   

 
           

 

 
.○

•

Momentum space wave function       , with basis    .

      
 

    
         

   

 
   .○

•

Energy space wave function        , with basis     .

            .○

         
    .○

•

Eigen states
Immutable state that represents the essence of a quantum mechanical particle's temporal 
evolution, subject to some potential

•

The state can be fully described using any number of expansions in distinct bases that each 
span the more general Hilbert state space of the problem

•

Let       be an arbitrary quantum state.

Identity:            
 
         

 

 
, 

                      
             

        .▪

○

               .

Let              ,                       
 

 
         .▪

Projection of the immutable state of the particle at any time onto eigen states 
of the immutable position operator with eigen values   .

▪

          .▪

Can think of any       as projection of       onto each abstract eigen state of 
the   operator with real eigen values  , eigenvector    .

▪

                       .

It is the projection of    onto the basis     .□
                   

                          
 

 
.□

▪

○

               .○

                 .○

•

Eigen states and eigen functions
Ket is the state (   ,    )•
Bra is the basis we want to project to (   ).•
Position operator

Eigen state:    .○

Eigen function in the position space:                      .○

•

Momentum operator
Eigen state:    .○

Eigen function in the position space:             
 

    
         

   

 
   .○

Note:      
 

       
 

    
          

   

 
   .○

              .○

•

Abstract state at time  .
Eigen state:       .○

Eigen function:         .○

Eigen function is the projection of the abstract state at time  in Hilbert space onto the 
eigens tates of the position operator in abstract Hilbert space

○

•

Given the eigen value equation for the position operator           .

Project onto the position basis                   .

RHS:                        .○

LHS:                                       .○

•

So               .•

Expectation value
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Expectation value
                        .•

Convert into expectation values using wavefunctions.

                             

 
                 

 

 
      .○

          

 
                              .○

                                
 

 
 .○

Note             
       ,                

     ,                         
            .

○

So, we get                     
                    

     
 

 
       

   
 

 
.○

•

Expand       in momentum basis.

                
 

 
                     

 

 
.○

    
 

 
     

 

 
                   .○

Now, use              
 

and              
 

    
         

    

 
   .○

We get           
 

 
      

 

 

    
          

    

 
       

            
 

 
         .○

•

Important techniques
All QM equations can be represented in Dirac notation, wavefunctions + differential 
operators, matrices.

•

Insertion of unity operator            
 

 
, expanding in terms of the complete set of 

eigenstates of any observable      .

•

Decompose a state       into a specific basis associated with a dynamic variable  , 

determine the wavefunction in that basis                 .

•

            .•
Common expressions

                     
 

 
.

          .▪

○

                     
 

 
.

          .▪

○

                      
   .

             .▪

            .▪

○

•

Examples
Manipulations

If                      
 

 
, then                            

 

 
 

                 
 

 
,

○

If                      
 

 
, then                    

 

    
         

    

 
    

 
.○

If                       
   , then           

                   
           

  

  
    

 

 
  

     
             

  

 
     
     

 
   

     

  
      

 .

○

•

Relevance of wavefunctions in different bases
Write the expression for the expectation value of  for a particle in an arbitrary state 

      , working in an arbitrary basis defined by  with eigen states     and 

corresponding eigen values   .

○

                                                     
 

 
 .○

If    ,                    
 
  

 
 .○

•

Operator in different basis
In position space

    .○

     
 

  
.

•
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  .○

                   .○

               
 

  
        . (project both  and       onto    )○

In momentum space

     
 

  
  .○

    .○

              
 

  
        .○

                   .○

•

Generalized statistical interpretation

               
 

is the probability distribution function of finding the particle with some 

eigenvalue   of the observable operator   , when that particle is in the state       that is 
a solution of the Schrodinger equation.

In momentum space,                   
 
  

 

 
.○

•

                       ,     is an eigenstate of the observable operator   ,        

      with eigenvalue   .

•

Physical interpretation
If we carry out a measurement of any observable with the particle in some state at 
time  with sufficient resolution, we must measure one of the eigenvalues of the 
observable and the state will be collapsed immediately after the measurement to the 
corresponding eigen state

○

The probability of measuring any one eigenvalue is given by the squared magnitude of 
the wavefunction of       in the basis of the observable being measured.

○

•

Preparing a state with zero variance in some observable  .
Eigenstate or determinate state.○

Measure any state with observable  .○

•

Take another measurement immediately for another observable  .
If    shares an eigenstate, we get that eigenstate.○

Otherwise, depends on the probability measure.○

•

Generalized uncertainty relation

If two operators      satisfy      .

   must share a common set of eigenstates,                      .

i.e.    is also an eigenstate of  with eigenvalue   .▪

○

•

           is the commutator of  and  .

                 .○

                    
 

  
         

 

  
         .○

     
 

  
                 

 

  
              .○

So           ,  and  are incompatible (non-commuting).

They cannot share the same eigenstates▪

○

                     .○

•

Standard deviation with which we could measure the observables when the particle is in 
one of their shared eigenstates

•

  
   

   
 

  
              

 
.

     
 

 
 .○

•

Uncertainty principal between energy and momentum for a free particle
It is possible (not necessarily) for variances of both to be arbitrarily close to zero
(sharing eigen bases)

○

Momentum conserved,        , 
    

  
     .○

  
   

   ○

•

Uncertainty principal between energy and momentum for a harmonic oscillator

Momentum not conserved,      , 
    

  
  .

•
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Momentum not conserved,        , 
    

  
     .○

  
  

  
    

   

 
     

  

  
   

  

       
 

 
   .○

           .○

  
   

  
  

 
        .○

Product of variance is state dependent, and in general not equal to zero (not sharing 
common eigen states)

○

Since it is state dependent, it is time-dependent○

Constraint on the product of variance one would deduce by making several measurements 
of the exact same state       at some time     . Firstly in one observable, and then in 
another (or randomly measuring one of the two variables many time)

If two operators do not commute, and their commutator is state-independent, if we 
try to manufacture a state that has very small variance in one of the observables, then 
as we decrease the variance, the minimum possible variance of the other observable 
must increase.

○

It does not imply anything about the product of these variances at any other time○

It does not imply anything about what happens if we try to measure two quantities at 
the same time

○

•

Minimum uncertainty state

Gaussian wave packet:         
         

  
       

     

 
   .○

•

Energy and time uncertainty.

  : total energy operator.○

  : any time-independent operator with  
 

  
       .

Note: 
 

  
        

 

  
     .▪

○

 

  
      

 

 
          

  

  
   .○

     
 

 
  

 

  
      .○

      
 

 
 , or       

 

 
 .○

Direct connection between the generalized uncertainty relation and the energy-time 
uncertainty relation is through the proportionality of the product of the variances of 
the energy operator and any other Hermitian operator, with the rate of change of the 
expectation value of the Hermitian operator of interest

○

The variance in the energy of some state at any given time must be greater than or 
equal to the normalized rate of change of any Hermitian observable in that state

○

•
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Dynamical variables changes
Position   •
Momentum   •
More degree of freedom•

New observable
Angular momentum    .•

Total energy in 3D

Classical equation: 
   

  
         .•

Hamiltonian operator: 
   

  
         .•

Change to position basis: 
Need to choose the basis (Cartesian, cylindrical or spherical)○

Cartesian: 

      
 

  
  ,       

 

  
  ,       

 

  
  .▪

Define    
 

  
   

 

  
   

 

  
   ,        .▪

   

        
  

       
  

       
  

         (Laplacian).▪

Then  
  

  
                 .▪

○

•

Algorithm for finding time dependent wavefunction

                 .•

                
 

    

 
   .•

                  
 

    

 
    

 .•

Same as 1D.•

Probability density:         
 

.

    
 
  

 

 
  .○

•

Infinite potential well 

   
                

           
.•

Separate into three different equations

 
  

  
   

 

  
                   .○

 
  

  
   

 

  
                   .○

 
  

  
   

 

  
                   .○

                 .○

•

So          
         

 

 
  

 

 
 
    

   

 
         

   

 
         

   

 
     .•

           
  

  
    

 

 
  

 
   

    
    

  .•

Physical interpretation of   ,   ,   .

Number of nodes in each direction.○

•

Lowest energy state:         .•

There are 3 states that have an energy equal to twice the lowest possible energy
       ,        ,        .○

•

3D Quantum
2022年2月14日 14:28
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Degenerate states

Linked to symmetry properties of      .•

Level spacing (energy difference        ) will be different in 1D and 3D•
Any superposition of degenerate stationary solutions of the Schrodinger equation with the 
same eigen energy

•

Central potentials and spherical coordinates
Used for atoms•
For hydrogen atom

  
  

     
    .○

                        (            ).○

•

Let  be the radiu,  be the polar angle (from positive  ),  be the azimuthal angle (angle in   
plane).

       ,         .○

•

Spherical Laplacian:    
 

    
 

  
      

  
    

 

      
      

 

  
       

 

  
    

 

       
       

  

       .•

Spherical Schrodinger:   
 

  
              

  

  
                              .

 
  

  
    

 

    
 

  
       

  
     

 

      
      

 

  
       

  

  
     

 

       
       

   

              .○

Let             .
 

 
 

 

  
       

  
    

    

                     .▪

 

 
      

 

  
       

  

  
    

 

     
     

   

                (Angular equation).▪

○

Let           .
 

 
       

 

  
       

  

  
                   .▪

 

 
  

   

          .▪

○

Solution

         ,            .

            .□

▪

         
       ,    ,    .

  
           

   

 
   

 
 

  
   

   
     is the associated Legendre function.□

In   
       , there are      nodes between      .□

□

      
 

     
    

 

  
   

 
      

 
.□

 must be a non-negative integer□
Also,      , otherwise, the derivative doesn't work.□

▪

  
          

      

  
     

        

        
      

           
 

       
       .

       for    ,    for    .□

  
  

   
  

      
 

 
  

  

 
         .

▪

○

•
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         .□

□

 defines the s,p,d,f,g,h,i orbits.□
 defines the orientation.□
The total number of nodes, split between the  and  degrees of freedom is 
 , and the number of nodes in the  degree of freedom is    .

□

Note: the solutions'  and  dependence is constrianed to functions with shapes 
that depend only on two integers  and  , where for any    , there are     
allowed values of  ,      .

▪

Radial part (    )

Let           ,  
  

  
           

  

  
   

      

            .

  
  

  
   

      

       is the effective potential

□

For hydrogen atom       
  

     
    .□

Let   
     

      

 
      □

Bound states    □

Let     ,    
   

       
      , 

   

          
  

 
   

      

         .□

As    ,          .□

As    ,           .□

This gives a differential equation                 .□

So          
  

   ,      
           

             
            .

There must be an  , such that     ,       .

           .

Define      , then 

   and      .◊

For any  , the condition      defines the allowed values of 
  that terminate the polynomial for any  .

◊



□

   
    

  
     

   

     
     

         .□

     
 

       
  

    
     

 

 
 

     
  

    ,          .□

Bohr radius:   
      

                     .□

Node number      .□

▪

Full solution

                    
      .▪

       
 

 
            ,          

  
   ,       

          

             
            .

  
 

  
  .□

  can be assumed to be 0.□

▪

     
                    

 

 
             .

       .□
       .□
        .□

▪

The normalization has to be determined for each eigenstate by adjusting   .▪

○

     
 

  

       

      

           
 

  
 

  
  

  

 
      

      

  
  

    .
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      .

  
 is valid for any potential that has no    dependence.

 nodal planes.▪

○

  
       has      nodal planes in  .○

       is specific to the  
 

 
 hydrogen potential.

     nodal planes.▪

○

•

Nodes: number of nodes associated with the radial, polar and azimuthal contributes to the full 
3D eigenstates

•

Degeneracy
There are   degenerate states with different  ,  , for each value of  .○

For each  , there are     states of different  values, for each          .○

•

Angular momentum

    represents a particle with linear momentum•
Classical

Linear momentum    
  

  
  .○

Equivalent angular momentum      .○

In 2D,               .○

In terms of angular velocity,    
  

  
   .

 is the angluar inertia.▪

○

•

Hydrogen atom

    are the eigenfunctions directly related to angular momentum.○

It is associated with   .○

•

Angular momentum operators in position basis
          .•

          .•

          .•

          .•
         

    
    

 .•

Commutations relationship

            .○

            .○

            .○

         .○

         .○

         .○

•

Shared eigenstates
      ,   

     .○

Since         do not commute, they don't share the same set of eigen functions.○

•

Ladder operators
         .○

         .○

                                      .○

                          .○

•

Eigen spectrum of   and   .

                      .○

                                                .

Apply multiple times, we get            .▪

However,    
 

  , because          .▪

○

          
     .

•
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     .

This gives             .▪

○

For a given eigenvalue           there must be a maximum   eigenvalue of    

  and a minimum   eigenvalue of       , there must be an integer  such that 
    .

 must be an integer or a half integer.▪

The shared eigen states of   and   come in distinct sets labeled by any non-zero 
integer or half integer  . Each of the     in number shared eigenstates for any 
given  have the same eigenvalue         for the   operator, and eigenvalues 
  with         for the   operator.

▪

○

Eigenfunctions (in spherical coordinates)

            
 

  
           

 

  
   .▪

           
 

  
           

 

  
   .▪

          
 

  
        

 

  
   .▪

      
 

  
  .

    
      

 .□
  

    
 .□

▪

       
 

    
    

 

  
       

 

  
    

 

     
    

  

       .

    
            

 .□
  

    
 .□

▪

Spherical harmonics   
 are nothing other than the common eigenfunctions of the 

  and the   operators in the position basis, in spherical coordinates, but only 
including non-negative integer, not half-integer values of  .

▪

Restriction to integer  .
We forced the associated wavefunctions in the position basis to be single-
valued at all positions. (in particular all values of  , at a period of   )

□

But this doesn't mean the hydrogen atom half-integer values are invalid□

▪

○

Matrices of angular momentum
   ,       (three states).

Define        
 
 
 
 ,        

 
 
 
 ,         

 
 
 
 .○

•

                  .

Note that              .○

•

                          
                   

         .

                      
                          .○

•

   
 

 
         

 

  
      

   
   
   

 .•

   
 

  
          

 

  
   
 

    
   

    
    

 .•

     
   
   
    

 .•

Measuring angular momentum
If we measure the magnitude of the angular momentum, and then measure the  component 
of the angular momentum, another measurement of the magnitude would yield the same 
result.

Firstly, measure magnitude,    , don't know   .○

Secondly, measure  , fixed          , collapsed state to eigenstate of   .

•
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Secondly, measure  , fixed          , collapsed state to eigenstate of   .○

The third measurement will only be    .○

If we measure the magnitude of the angular momentum, and then measure the  component 
of the angular momentum, another measurement of the  component would yield some value 
that cannot be precisely predicted.

Consider        .○

  has three eigenstates: 
 

 
  

 

  
   

 

 , 
 

  
      

 
 
 
 , 

 

 
  

 

   
   

 

 with eigenvalues       .○

Expand      in eigenstates.○

Probability:          
 

 
 ,         

 

 
 .○

•

Electron spin
If we send a beam of hydrogen atoms in the     state through an apparatus with magnetic 
field, there are two spots on the screen corresponding to an upward and downward deflection 

one would expect for a particle having an additional angular momentum of  
 

 
 .

•

Point-like particle possesses intrinsic angular momentum quantized in units of 
 

 
 independent 

of position, linear or angular orbital momentum of the electron.

•

Using index  instead of  ,  is fixed.

Electron: 
 

 
 .○

Photon:  .○

•

Two possible eigenvalues of a cartesian component of angular momentum    
 

 
 .•

Spin operator  .
Only operates on the intrinsic spin of the electron○

Same commutation relations as the angular momentum○

            ,             ,             .○

                         .○

                      where          . ○

     share a common set of eigenstates.

  
 

 
 ,       

 

 
 ,  

 

 
  

 

 
  and  

 

 
   

 

 
  .▪

   
 

 
   

 

 
            

 

 
   

 

 
   

 

 
   

 

 
   

 

 
  .▪

   
 

 
   

 

 
      

 

 
   

 

 
    

 

 
   

 

 
   

 

 
  .▪

   
 

 
   

 

 
                  

                   
 
 

 
  

 

 
    .▪

○

Note: 

  cannot operate on  
 

 
  

 

 
  (there is no 

 

 
 states).▪

  cannot operate on  
 

 
   

 

 
  (there is no  

 

 
 states).▪

○

•

State vector

An arbitrary state in the spin Hilbert space can be written as             
 

 
  

 

 
   

     
 

 
   

 

 
  .

○

Use vector representation

 
 

 
  

 

 
    

 
 
 .▪

 
 

 
   

 

 
    

 
 
 .▪

        
    

    
 .▪

   
 

 
  

 

 
    .▪

○

•

Matrix representation of spin operators•
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Matrix representation of spin operators

    
   

 

 
       

 

 
    ,    

 

 
    

  
  

 .○

       
 

 
       

 

 
    ,    

 

 
   

  
   

 .○

     
  
  

 ,      
  
  

 .○

•

Pauli spin matrices

   
 

 
   ,        .○

    
  
  

 .○

    
   
  

 .○

    
  
   

 .○

•

Measurement    
 

 
   

  
  

 

 

 
 : 

 

  
      

 
 
 ,  

 

 
 : 

 

  
      

 
  

 .○

 
 
 
  

   

  
       

 

  
     

 

  
     
  

   

  
       

 

  
     

 
 

  
     
 .○

•

Two spins
Four states:   ,   ,   ,   .

First arrow refers to the electron, second arrow refers to the proton.○

•

Operators

           .○

                         .○

    acts only on   ,     acts only on   .○

      
    

   
   

   
                  .

  :          .▪

  :          .▪

  :          .▪

  :           .▪

○

•

Lowering operator

     
      

   .○

               .○

With    . (    )
       .▪

     
 

  
            .▪

        .▪

○

   carries    .

     
 

  
            .▪

○

•
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