
STA2502 Stochastic Models in Investments

1 Discrete Binomial Tree Model

1.1 Financial Derivative

Informally, a derivative is a financial contract that derives its value from some underlying process. The
underlying asset is often traded (e.g. stocks), but it need not be (e.g. weather).

Examples of underlying assets:

• Stocks

• Bonds

• Currencies

• Interest rates

• Indices (S&P 500, TSX, NASDAQ)

• Commodities: energy, livestock, metals and precious metals, grains, coffee, sugar, etc

Financial derivatives have two parties

• Buyer: long position w.r.t. the derivative

• Seller: short position w.r.t. the derivative

How are financial derivatives traded:

• Standard derivatives contracts are traded on exchanges

• Over-the-counter (OTC) market: derivatives traded between banks, corporations, and other major
institutions.

1.2 Types of Derivatives

Definition: 1.1: Forward Contract

A forward contract is an obligation to buy or sell an underlying asset at a specified forward price on
a known date

• Long position: party who agrees to purchase the underlying asset at a specified future date for a
specified price

• Short position: party who agrees to sell the underlying asset at a specifed future date for a specified
price

• It costs nothing to enter into a forward contract

• Forwards are traded OTC
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Definition: 1.2: Futures Contract

A futures contract is a standardized forward contract, which is traded on an exchange. The stan-
darization of the contracts allows for trading by non-institutional investors. One can purchase frac-
tional future contracts

Definition: 1.3: Options

A call option gives the holder the right, but not the obligation, to purchase the underlying asset at
(or by) a given date for a specified price, called the strike price.
A put option gives the holder the right but not the obligation, to sell the underlying asset at (or
by) a given date for a specified price, called the strike price.

Main difference between options and futures/forwards: gives the holder the right to do something, but they
do not have to exercise their right.

• European options: can only be exercised on the maturity date (Easier to analyze)

• American options: can be exercised at any time up to the maturity date (More popular)

Exotics

• Bermudan options: can be exercised on pre-specified dates and the maturity date

• Asian options: payoff depends on the average of the price of the underlying during the life of the
option

• Binary (digital) options: pays all or nothing

• Lookback options: payoff depends on the maximum or minimum price of the underlying asset during
the life of the option

Terminology:

• An option is in the money if the price of the underlying is at a level where the payoff would be
positive

• An option is out of the money if the price of the underlying is at a level where the payoff would be
zero

Definition: 1.4: Swap

A swap is the simultaneous selling and purchasing of cash flows involving various currencies, interest
rates, and a number of other financial assets.
A swaption is an option granting its owner the right but not the obligation to enter into an underlying
swap.

One can price swaps and swaptions by decomposing them into forwards and other options.

1.3 One-Period Binomial Model

Consider two assets: bond (Bt) and stock (St), and two time steps t = 0, t = 1. The portfolio h = (x, y) ∈ R2

has value process:

V h
t = xBt + ySt, t = 0, 1, (1)

x unit in bond, y unit in stock.
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t = 0 t = 1

Bt 1 1 + r

St s

su

sd

Proposition: 1.1:

The following are equivalent
1. The one-period binomial model is arbitrage-free
2. d < 1 + r < u
3. ∃q ∈ (0, 1) s.t. 1 + r = qu+ (1− q)d
4. There exists a martingale measure Q defined by S0 = 1

1+rE
Q[S1] s.t. Q(S1 = su) = q,

Q(S1 = sd) = 1− q

Proof. We show the equivalence of 3. and 4.

1 + r = qu+ (1− q)d

⇔ s(1 + r) = qsu+ (1− q)sd

⇔ S0 =
1

1 + r
EQ[S1]

Also we get a formula for q: q = 1+r−d
u−d

Definition: 1.5: Complete Market

A financial derivative is a stochastic variable of the following form: CT = F (ST ). A financial
derivative can be replicated if there exists a portfolio h s.t. P (V h

1 = CT ) = 1, h is the replicating
portfolio.
If all derivatives can be replicated, we say the market is complete.

Proposition: 1.2:

If a derivative CT can be replicated by a portfolio h, then at t = 0, any price other than V h
0 will lead

to an arbitrage opportunity.

Proposition: 1.3:

If the one-period binomial model is arbitrage free, then it is complete

Proof. Let C1 = F (S1) be an arbitrary derivative. We want to find a portfolio h = (x, y) s.t. V h
1 ={

F (su), if S1 = su

F (sd), if S1 = sd
.

3



Note V h
1 = x(1 + r) + yS1 =

{
x(1 + r) + ysu = F (su), if S1 = su,

x(1 + r) + ysd = F (sd), if S1 = sd,
This gives a system of 2 equations

and 2 unknowns.

x = 1
1+r

[
uF (sd)−dF (su)

u−d

]
y = 1

S

[
F (su)−F (sd)

u−d

]

C0 = V h
0 = x+ sy =

1

1 + r

[
uF (sd)− dF (su)

u− d

]
+

[
F (su)− F (sd)

u− d

]
=

1

1 + r

[
u− (1 + r)

u− d
F (sd) +

1 + r − d

u− d
F (su)

]
=

1

1 + r
[(1− q)F (sd) + qF (su)]

=
1

1 + r
EQ[C1] =

1

1 + r
EQ[F (S1)]

Therefore, we can always find a replicating portfolio for any arbitrary derivative.

Example: In the one-period binomial model, assume s = 100, u = 1.2, d = 0.8, pu = 0.6, r = 0.02.

1. The market is arbitrage free, because d < 1 + r < u

2. Consider a European call option with K = 110, what is the arbitrage-free price?

S 100
120

80

CT = (S1 − 110)+

C0

10

0

q = 1+r−d
u−d = 1+0.02−0.8

1.2−0.8 = 0.55

C0 =
1

1+rE
Q[C1] =

1
1+0.02(10 · 0.55 + 0 · 0.45) = 5.5

1.02 = 5.39

3. What is the replicating portfolio?

x =
1

1 + r

uF (sd)− dF (su)

u− d
=

1

1.02

1.2 · 0− 0.8 · 10
1.2− 0.8

= −19.61

y =
1

S

F (su)− F (sd)

u− d
=

1

100

10− 0

1.2− 0.8
= 0.25

1.4 Multi-Period Binomial Model

t = 0 t = 1 t = 2

Bt 1 1 + r (1 + r)2 · · ·

St s

su

sd

su2

sud

sd2

Assume that we have finite number of periods: Let t ∈ {0, 1, 2, ..., T}. Then
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1. Bond price:

{
B0 = 1

Bt = (1 + r)Bt−1

, Bt = (1 + r)t

2. Let Z0, ..., ZT−1 be i.i.d. r.v.s s.t. P (Zt = u) = pu and P (Zt = d) = pd, pu + pd = 1. Then{
S0 = s

St = St−1Zt−1

.

Let Kt ∈ {0, ..., T} be the number of up-moves of the stocks. Kt is stochastic and Kt ∼ Binom(t, pu).
We can write St = suKtdt−Kt , t ∈ {1, ..., T}, where Kt ∼ Binom(t, pu), P (S2 = sud) = P (K2 = 1) =(
2
1

)
pupd = 2pupd.

Definition: 1.6: Portfolio Strategy

A portfolio strategy is a stochastic process ht = (xt, yt), t ∈ {1, ..., T}. For a given ht, we set h0 = h1.
The process ht depends on S0, ..., St−1. The value is defined by V h

t = xt(1 + t) + ytSt.

Definition: 1.7: Self-Financing Portfolio

A self-financing portfolio (there is no exogenous cash infusions, the purchase of a new asset must be
financed by the sale of an old one) satisfies the budget equation:

xt(1 + r) + ytSt = xt+1 + yt+1St

Definition: 1.8: Arbitrage Portfolio

An arbitrage portfolio is a self-financing portfolio h s.t.
• V h

t = 0
• P (V h

t ≥ 0) = 1
• P (V h

T > 0) > 0

Proposition: 1.4:

The multi-period binomial model if free of arbitrage if and only if d < 1 + r < u.

The martingale measure Q, and the probabilities qu, qd can be defined in the same way.

Let C be a derivative with payoff CT = F (ST ). It can be replicated if there exists a self-financing portfolio
h s.t. P (V h

T = CT ) = 1.

Proposition: 1.5:

If C can be replicated by h, then any price other than Ct = V h
t would lead to an arbitrage. The fair

price process Ct = V h
t for t = 0, 1, ..., T .

Proposition: 1.6:

The multi-period binomial model is complete. i.e. all derivatives can be replicated by a self-financing
portfolio.

Example: Two period model with s = 100, u = 1.2, d = 0.8, pu = 0.6, r = 0.02. Find price of a European
call option at t = 2 with K = 90.
It follows the one-period model that qu = 0.55, qd = 0.45.
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St 100

120

80

144

96

64

Ct C0

Cu
1

Cd
1

54

6

0

Cu
1 =

1

1 + r
[54q + 6(1− q)] = 31.76

Cd
1 =

1

1 + r
[6q + 0(1− q)] = 3.24

C0 =
1

1 + r
[31.76q + 3.24(1− q)] = 18.56

Proposition: 1.7: Binomial Algorithm

The derivative C with payoff CT = F (ST ) can be replicated using a self-financing portfolio. Let
Vt(k) be the value of the portfolio at node (t, k). We have VT (k) = F (sukdT−k). The recursion is
defined as:

Vt(k) =
1

1 + r
[qVt+1(k + 1) + (1− q)Vt+1(k)], where q =

1 + r − d

u− d

The hedging portfolio is

xt(k) =
1

1 + r

uVt(k)− dVt(k + 1)

u− d

yt(k) =
1

St−1

Vt(k + 1)− Vt(k)

u− d

Proposition: 1.8:

The arbitrage free price of a derivative C with payoff CT = F (ST ) is

C0 =
1

(1 + r)T
EQ[X] =

1

(1 + r)T

T∑
k=0

(
T

k

)
qk(1− q)T−kF (sukdT−k)
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2 Probability

2.1 Probability Tripple

The fundational object in probability space is a probability tripple (Ω,F , P ).

Definition: 2.1: Sample Space

The sample space Ω is the set of possible outcomes of a random event. In most cases, we consider
Ω = R.

Example: roll a dice Ω = {1, 2, 3, 4, 5, 6}

Definition: 2.2: σ-algebra

A σ-algebra on a sample space Ω is a collection F of subsets of Ω s.t.
1. ∅ ∈ F
2. If A ∈ F , then AC ∈ F

3. If A1, A2, ... ∈ F , then
∞⋃
i=1

Ai ∈ F

Example: Ω = {a, b, c}, F1 = {∅, {a} , {b, c} ,Ω} and F2 = {∅, {a, b} , {c} ,Ω} are σ-algebras.
Both are not maximal information (power set), but we can define probability measure on it.

F1 ∪ F2 = {∅, {a} , {b, c} , {a, b} , {c} ,Ω} is not a σ-algebra, because {a, c} is not included.

Example: For any Ω, the following are σ-algebra:

1. {∅,Ω} (Trivial σ-algebra)

2. 2Ω = P(Ω) (Power set)

3.
{
∅, A,AC ,Ω

}
, where A ∈ Ω.

Definition: 2.3: Sub-σ-algebra

Let F be a σ-algebra, G is a sub-σ-algebra of F if
1. G is a σ-algebra
2. G ⊂ F

Example: F1,F2 are sub-σ-algebra of P(Ω)

Terminology: (Ω,F) is a measurable space.

Definition: 2.4: Observable Events

The σ-algebra F is the collection of observable events. Elements of F are events whose probabilities
are known.
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Definition: 2.5: Probability Measure

A probability measure on a measurable space (Ω,F) is a function P : F → [0, 1] s.t.
1. P (Ω) = 1
2. P (A) ≥ 0, ∀A ∈ F

3. For any countable set of disjoint sets {Ai}i∈N, P (

∞⋃
i=1

Ai) =

∞∑
i=1

P (Ai).

Some consequences:

1. P (∅) = 0

2. P (AC) = 1− P (A)

Example: Ω = {a, b, c}, F = {∅, {a} , {b, c} ,Ω}
Let P be P (∅) = 0, P ({a}) = 4

5 , P ({b, c}) = 4
5 , P (Ω) = 1. P is a probability measure.

Note: the probability measure is not uniquely defined.

Definition: 2.6: Continuous and Equivalent Probability Measures

Let P and Q be two probability measures on (Ω,F).
1. P is absolutely continuous w.r.t. Q if Q(A) = 0 ⇒ P (A) = 0, ∀A ∈ F . Denote P << Q.
2. P and Q are equivalent, denote P ∼ Q if P (A) = 0 ⇔ Q(A) = 0, ∀A ∈ F . i.e. P << Q and

Q << P .

2.2 Random Variables

Assume (Ω,F , P ). Let R be the smallest σ-algebra that contains all intervals in R (The Borel
σ-algebra).

Definition: 2.7: Random Variable

A random variable is a function X : (Ω,F) → (R, R) s.t. ∀B ∈ R, X−1(B) = {ω ∈ Ω : X(ω) ∈ B} ∈
F . We say that X is F-measurable.

Example: Dice roll Ω = {1, 2, 3, 4, 5, 6}. F = {∅, {1, 2, 3} , {4, 5, 6} ,Ω}.

Let X : Ω → R, X(ω) =


1, ω = 1, 2

2, ω = 3, 4

3, ω = 5, 6

is not a random variable, because X−1((0, 1]) = {1, 2} /∈ F . X is

not F-measurable.
If F̃ = {∅, {1, 2} , {3, 4} , {5, 6} , {1, 2, 3, 4} , {1, 2, 5, 6} , {3, 4, 5, 6} ,Ω}, then X is F̃-measurable.

Example: A ∈ F , X = 1A, X(ω) =

{
1, ω ∈ A

0, ω /∈ A
. Let (a, b] ⊂ R.

X−1((a, b]) =


∅, 0, 1 /∈ (a, b]

AC , 0 ∈ (a, b], 1 /∈ (a, b]

A, 0 /∈ (a, b], 1 ∈ (a, b]

Ω, 0, 1 ∈ (a, b]

. Since A ∈ F , AC ∈ F , X is F-measurable.

Remark 1. 1. If F = P(Ω), any X : Ω → R is measurable
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2. If g : R → R is continuous and X is a random variable, then g(X) is a random variable.

Definition: 2.8: Generated σ-algebra

The σ-algebra generated by a r.v. X, σ(X) is the smallest σ-algebra s.t. X is measurable.

Distribution Function FX(x) = P ({ω ∈ Ω : X(ω) ≤ x}) = P (X ≤ x)

Density fX(x) = dFX(x)
dx defined only if FX is continuously differentiable.

Expected Value E[X] =

∫
Ω
XdP =

∫
R
xfX(x)dx.

Definition: 2.9: Moment Generating Function

The moment generating function (m.g.f.) of a random variable X is the function MX(t) = E[etX ],
t ∈ R. The m.g.f. exists if ∃a > 0 s.t. MX(s) < ∞, ∀s ∈ [−a, a]
It can be used to find moments of X: E[Xn] = dn

dtnMX(t)|t=0.

2.3 Conditional Expectation

Example: X: sum of 2 dices, Y : first dice.

E[X|Y = 2] =
8∑

i=3

i
1

6
= 5.5,E[X|Y = y] =

6∑
i=1

(y + i)
1

6
= y + 3.5

E[X|Y ] is a random variable, E[E[X|Y ]] = E[X]. We condition on information (σ-algebra)

Example: ST : stock price, F : full information, G: limited information, G is a sub-σ-algebra of F . We
estimate the stock price using our information G, E[ST |G].

Definition: 2.10: Conditional Expectation

Let (Ω,F , P ) be a probability space, and G be a sub-σ-algebra of F . Let X be a integrable r.v. i.e.
E[|X|] < ∞ and X is F-measurable. The conditional expectation of X given G, denoted by E[X|G]
is a random variable satisfying:

1. E[X|G] is G-measurable
2. E[E[X|G]1A] = E[X1A] if A ∈ G.

Condition on a r.v.: E[X|Y ] = E[X|σ(Y )], where σ(Y ) is the σ-algebra generated by Y .
Conditional Probability: P (A|G) = E[1A|G]
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Theorem: 2.1: Properties of Conditional Expectations

Let X,Y be integrable r.v., G a sub-σ-algebra of F .
1. Measurability: If X is G-measurable, then E[X|G] = X
2. Taking out what is known: If X is G-measurable, E[XY |G] = XE[Y |G]
3. Tower property: If H is sub-σ-algebra of G, then E[E[X|G]|H] = E[X|H]. Furthermore,

E[E[X|G]] = E[X].
4. Independence: X is independent of G if P ({x ∈ B} ∩ A) = P ({x ∈ B})P (A) for any A ∈

G,B ⊂ R. If X is independent of G, then E[X|G] = E[X].
5. Linearity: E[aX + bY |G] = aE[X|G] + bE[Y |G].
6. Monotonicity: If X ≥ Y , then E[X|G] ≥ E[Y |G]. Also, if X ≥ 0, then E[X|G] ≥ 0.
7. Conditional Jenson’s inequality: Let ϕ : R → R be a convex function, ϕ (E[X|G]) ≤ E[ϕ(X)|G].

Proof. We prove 3 only. Consider F̃ = {∅,Ω}. We claim that E[X|F̃ ] = E[X].
Firstly, E[X] is constant, so F̃ -measurable. This is because preimage of E[X] is either ∅ or Ω.
Secondly, the only sets in F̃ are ∅,Ω.

E[E[X]1∅] = 0 = E[X1∅]

E[E[X]1Ω] = E[E[X]] = E[X] = E[X1Ω]

Now E[E[X|G]] =
By the claim

E[E[X|G]|F̃ ] =
By the first part of tower property

E[X|F̃ ] = E[X]

Example: Show that E [XE[X|G]] = E
[
(E[X|G])2

]
.

Proof.

E
[
(E[X|G])2

]
= E[E[X|G]E[X|G]]

= E[E[XE[X|G]|G]] (By 2)
= E[XE[X|G]] (By 3)
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3 Stochastic Processes

Let T be set of times. For discrete, T = {0, 1, 2, ...}. For continuousm T = [0, T ].

Definition: 3.1: Stochastic Process

A stochastic process is a mapping X : Ω× T → R s.t.
1. ∀ω ∈ Ω, X(ω, t) is a function of time.
2. ∀t ∈ T , X(ω, t) is a random variable.

Notation: X = (Xt)t∈T = {Xt : t ∈ T}.

We can define new stochastic processes Y = f(t,Xt) = {f(t,Xt) : t ∈ T}.

Definition: 3.2: Filtration

A filtration on (Ω,F , P ) is a collection of σ-algebras indexed by time {Ft}t∈T s.t.
1. Ft ⊂ F is a sub-σ-algebra ∀t ∈ T
2. Fs ⊂ Ft, ∀s ≤ t.

It models the incoming information over time. (Ω,F , P ) equipped with a filtration F = {Ft}t∈T is
(Ω,F ,F, P ) called a filtered probability space.

Definition: 3.3: Adapted Process

A stochastic process is adapted to the filtration F = {Ft}t∈T if Xt is Ft-measurable for all t ∈ T .

Definition: 3.4: Adapted Filtration

Let X be a continuous stochastic process on (Ω,F , P ). The σ-algebra generated by X on [0, t] is
FX
t = σ ({Xs} : s ≤ t). FX

t is the smallest filtration that X is adapted to.

Example: Let X be a continuous stochastic process. Consider the filtration FX
t generated by X,

t ∈ [0,∞).

1. Yt = Xt/2 is adapted to FX
t .

2. Yt = Xt+1 is Ft+1-measurable, but not necessarily Ft-measurable, so it is not adapted.

3. Yt = sup
s≤t

Xs is adapted to FX
t , because it only requires information upto t.

4. Yt =

∫ 2t

0
Xsds is not adapted, but Yt =

∫ t

0
Xsds is adapted.

Definition: 3.5: Martingale

A stochastic process X on (Ω,F ,F, P ) is a martingale if
1. X is F-adapted (Ft-measurable for all t ∈ T )
2. EP [|Xt|] < ∞, ∀t ∈ T
3. EP [Xt|Fs] = Xs, ∀s ≤ t, s, t ∈ T

Example: Let Y be an integrable r.v. on (Ω,F ,F, P ) with E[|Y |] < ∞. Show that Mt = E[Y |Ft] is a
martingale.

Proof. 1. Mt is Ft by Definition 2.10
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2. E[|Mt|] = E [|E[Y |Ft]|] ≤
Jensen’s Inequality

E[E[|Y | |Ft]] = E[|Y |] < ∞

3. Let s = t, E[Mt|Fs] = E[E[Y |Ft]|Fs] =
Tower Property

E[Y |Fs] = Ms.

Since Mt satisfies Definition 3.5, Mt is a martingale.

Example: CT = f(ST ) price of European call option, BT = e
∫ T
0 rsds bond price. E

[
CT
BT

|Fs

]
is the

expected relative return.

Example Is Xt = eaWt− 1
2
a2t, a ∈ R a martingale?

Proof.

E
[
eaWt− 1

2
a2t|Fs

]
= e−

1
2
a2tE

[
eaWt |Fs

]
= e−

1
2
a2tE

[
ea(Wt−Ws)+aWs |Fs

]
= e−

1
2
a2teaWsE

[
ea(Wt−Ws)

]
= eaWs− 1

2
a2te

1
2
a2(t−s)

= eaWs− 1
2
a2s = Xs,

so it is a martingale. Note that Wt −Ws ∼ N (0, t− s), and E[eaX ] = e
1
2
a2σ2

X .

3.1 Brownian Motion

We construct Brownian motion using a scaled symmetric random walk.
Let T > 0. We divide [0, T ] into n intervals of size ∆t = T

n . The kth interval is ((k − 1)∆t, k∆t].
Define the following i.i.d. r.v.for i = 1, 2, ..., n:

Zi =

{
1, with probability0.5
−1, with probability0.5

,E[Zi] = 0,Var(Zi) = 1, ∀i

Define the process W as follows:

W0 = 0

Wi −Wi−1 =
√
∆tZi, i = 1, ..., n

Let t = k∆t, Wt =

k∑
i=1

√
∆tZi. Then

E[Wt] = E

[
k∑

i=1

√
∆tZi

]
=

√
∆t

k∑
i=1

E[Zi] = 0

Var(Wt) = Var

(
k∑

i=1

√
∆tZi

)
= ∆t

k∑
i=1

Var(Zi) = ∆t · k = t

Let ∆t → 0, k → ∞, by Central Limit Theorem, Wt ∼ N(0, t).
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Now consider the increments of W : Wtk −Wtj , 0 ≤ tj < tk ≤ T . They are independent.

Wtk −Wtj =
k∑

i=1

√
∆tZi −

j∑
i=1

√
∆tZi =

k∑
i=j+1

√
∆tZi

E[Wtk −Wtj ] = 0

Var
(
Wtk −Wtj

)
= (k − j)∆t = tk − tj

As ∆t → 0, we get Wtk −Wtj ∼ N(0, tk − tj).

Definition: 3.6: Brownian Motion

A stochastic process (Wt)t≥0 is a standard Brownian motion on
(
Ω,F , {Ft}t≥0 , P

)
if

• W0 = 0
• W has stationary increments with distribution Wt+s −Wt ∼ N (0, s)
• W has independent increments, Wt+s −Wt ⊥⊥ Wt

• W is pathwise continuous (but no-where differentiable).

Construction of Brownian motion:

1. Let Z1, ..., Zn be i.i.d. standard normal.

2. Set t0 = 0, W (0) = 0

3. Compute W (ti+1) = W (ti) +
√
ti+1 − tiZi+1.

Remark 2. If {Ft}t≥0 is generated by W , then Wt+s −Wt ⊥⊥ Ft. In particular,
E[f(Wt −Ws)|Fs] = E[f(Wt −Ws)] if s ≤ t. Also E[W 2

t |Fs] = E[(Wt −Ws)
2 + 2WtWs −W 2

s |Fs].

Theorem: 3.1: Holder’s Inequality

Let X,Y be r.v. and p, q > 1, 1
p + 1

q = 1. Then

E[|XY |] ≤ (E[|X|p])1/p (E[|Y |q])1/q

If p = q = 2, E[|XY |] ≤
√

E[X2]E[Y 2].

Proposition: 3.1:

Brownian motion W is a martingale on
(
Ω,F , {Ft}t≥0 , P

)
, where {Ft}t≥0 is the filtration generated

by W .

Proof. 1. By definition of Ft

2. To show that E[|Wt|] < ∞,∀t, apply Theorem 3.1.

E[|Wt|] = E[|Wt · 1|] =
√

E[W 2
t ] · 1 =

√
t < ∞,

because Wt ∼ N (0, t)

3. E[Wt|Fs] = E[Wt−Ws+Ws|Fs] =
Linearity

E[Wt−Ws|Fs]+E[Ws|Fs] = E[Wt −Ws]︸ ︷︷ ︸
Conditional Independence

+Ws = Ws

13



3.2 Stochastic Integration

Ordinary Differential Equation (ODE):

dXt = a(t,Xt)dt ⇔
dXt

dt
= a(t,Xt) ⇔ Xt −Xt =

∫ t

0
a(s,Xs)ds

Stochastic Differential Equation (SDE):

dXt = a(t,Xt)dt+ b(t,Xt)dWt ⇔ Xt −X0 =

∫ t

0
a(s,Xs)ds+

∫ t

0
b(s,Xs)dWs

• a(t,Xt) is drift, the deterministic part

• b(t,Xt) is diffusion

Definition: 3.7: Partition

A partition of [0, T ] is a set of points Π = {t0, ..., tn} s.t. 0 = t0 < t1 < · · · < tn = T . The norm of
the partition is ∥Π∥ = max

1≤k≤n
(tk − tk−1). If we have even increments, then ∥Π∥ = ∆t = T

n .

Definition: 3.8: Total and Quadratic Variation

Let X be a stochastic process. The total variation of X is TVX = lim
∥Π∥→0

n∑
k=1

∣∣Xtk −Xtk−1

∣∣. The

quadratic variation of X is [X,X]T = lim
∥Π∥→0

n∑
k=1

(Xtk −Xtk−1
)2. TV is a proxy for differentiability.

Claim: The TV of a differentiable function is finite

Proof. Let f(x) be a differentiable function.

TVf = lim
∥Π∥→0

n∑
k=1

|f(tk)− f(tk−1)|

= lim
∥Π∥→0

n∑
k=1

∣∣f ′(t∗k)
∣∣ |tk − tk−1| (By Mean Value Theorem) t∗k ∈ (tk−1, tk)

≤ lim
∥Π∥→0

max
1≤k≤n

∣∣f ′(t∗k)
∣∣ n∑
k=1

|tk − tk−1| < ∞

The last inequality is because
n∑

k=1

|tk − tk−1| = T .

Claim: The TV of Brownian motion is infinite

Proof. Let ϵ > 0. Since W is continuous, lim
∥Π∥→0

P (|Wtk −Wtk−1
| > ϵ) = 0.

However, P

(
n∑

k=1

(Wtk −Wtk−1
)2 > 0

)
= 1, since Var(W ) ̸= 0.

n∑
k=1

(Wtk −Wtk−1
)2 < max

k

∣∣Wtk −Wtk−1

∣∣ n∑
k=1

∣∣Wtk −Wtk−1

∣∣
14



Since LHS̸→ 0, but
∣∣Wtk −Wtk−1

∣∣→ 0, we must have
∑n

k=1

∣∣Wtk −Wtk−1

∣∣→ ∞. i.e. TVW is infinite.

Proposition: 3.2:

Let (Wt)t≥0 be standard Brownian motion, [W,W ]T = T a.s. (almost surely)

Proof. We show convergence in probability. Assume an even partition.

[W,W ]T = lim
∥Π∥→0

n∑
k=1

(Wtk −Wtk−1
)2

= lim
∥Π∥→0

n∑
k=1

[
(Wtk −Wtk−1

)2 − (tk − tk−1)
]
+

n∑
k=1

(tk − tk−1)

By definition, lim
∥Π∥→0

n∑
k=1

(tk − tk−1) = T . We consider the mean and variance of

lim
∥Π∥→0

n∑
k=1

[
(Wtk −Wtk−1

)2 − (tk − tk−1)
]

E

[
n∑

k=1

[
(Wtk −Wtk−1

)2 − (tk − tk−1)
]]

=

n∑
k=1

E
[
(Wtk −Wtk−1

)2
]
− E [tk − tk−1]

=

n∑
k=1

(tk − tk−1)− (tk − tk−1) = 0

Let Z ∼ N (0, 1), Wtk −Wtk−1
∼ N (0,∆t) ∼

√
∆tN (0, 1).

Note that for X ∼ N (0, σ2), E[X3] = 0, E[X4] = 3σ4.

Var

[
n∑

k=1

[
(Wtk −Wtk−1

)2 − (tk − tk−1)
]]

=
n∑

k=1

Var
(
(Wtk −Wtk−1

)2
)

=
n∑

k=1

Var(∆tZ2)

=

n∑
k=1

(∆t)2Var(Z2)

= (∆t)2
n∑

k=1

[
E[Z4]− E[Z2]

]
= 2n(∆t)2 = 2n (T/n)2 =

2T 2

n
.

As ∥Π∥ → 0, n → ∞, Var → 0.
Therefore, [W,W ]T → T in probability.

Recall that the Riemann integrals is defined as∫ b

a
f(x)dx = lim

∥Π∥→0

n∑
k=1

f(x∗k)(xk − xk−1),

for some x∗k ∈ [xk−1, xk] and Π = {x0, ..., xn}.

15



However,
∫ t

0
f(s,Ws)dWs ̸= lim

∥Π∥→0

n∑
k=1

f(s∗,W ∗
s )(Wsk −Wsk−1

), because TV of Wsk −Wsk−1
→ ∞.

Example: Suppose we define
∫ t

0
WsdWs by (1) lim

∥Π∥→0

n∑
k=1

Wsk−1
(Wsk −Wsk−1

) or (2)

lim
∥Π∥→0

n∑
k=1

Ws(Wsk −Wsk−1
)

For (1), E

[
n∑

k=1

Wsk−1
(Wsk −Wsk−1

)

]
=

n∑
k=1

E
[
Wsk−1

(Wsk −Wsk−1
)
]

=

n∑
k=1

E[Wsk−1
]E[Wsk −Wsk−1

]

(Because Wsk −Wsk−1
⊥⊥ Wsk−1

)

= 0

For (2), E

[
n∑

k=1

Wsk(Wsk −Wsk−1
)

]
=

n∑
k=1

E
[
Wsk(Wsk −Wsk−1

)
]

(Note that Wsk ⊥̸⊥ Wsk −Wsk−1
)

=
n∑

k=1

E
[
W 2

sk
−WskWsk−1

]
=

n∑
k=1

sk − E
[
Wsk−1

(Wsk −Wsk−1
)
]
− E[W 2

sk−1
]

=
n∑

k=1

sk − 0− sk−1 = sn − s0 = t

The two values do not agree, so we cannot use the usual definition of Riemann integral here.

Definition: 3.9: L2-Process

A process X is L2[a, b] if

1.
∫ b

a
E[Xs]ds < ∞

2. X is adapted
If X ∈ L2[0, t], ∀t > 0, then X is L2.
The mean squared limit (L2-limit) of a sequence of r.v. Xn is a r.v. X s.t. lim

n→∞
E[(Xn −X)2] = 0

Definition: 3.10: Ito Integral

Let f(t,Xt) be an adapted stochastic process satisfying E
[∫ t

0
f(s,Xs)ds

]
< ∞. The integral of f

w.r.t. a standard Brownian motion, called an Ito Integral, is∫ t

0
f(s,Ws)dWs = L2 − lim

n→∞

n∑
k=1

f(sk−1,Wsk−1
)[Wsk −Wsk−1

]

Note the sum is a sequence of r.v. and the integral is a r.v.
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Proposition: 3.3: Properties of Ito Integral

Let It =

∫ t

0
fsdWs, where fs = f(s,Ws).

1. It is a r.v. for t fixed and a stochastic process for t varied.
2. If f is deterministic, then It is normally distributed.

3. Ito integrals are linear, i.e.
∫ t

0
[afs + bgs]dWs = a

∫ t

0
fsdWs + b

∫ t

0
gsdWs

4. Every Ito integral is a martingale

5. For any fs, E
[∫ t

0
fsdWs

]
= 0

6. Ito’s Isometry:

E
[∫ t

0
fsdWs ·

∫ t

0
gsdWs

]
= E

[∫ t

0
fsgsds

]
=

∫ t

0
E[fsgs]ds

In particular, E

[(∫ t

0
fsdWs

)2
]
= E

[∫ t

0
f2
s ds

]
=

∫ t

0
E[f2

s ]ds

3.3 Ito’s Lemma

Consider the SDE: dXt = µ(t,Xt)dt+ σ(t,Xt)dWt, X0 = x0. Equivalenlty,

Xt − x0 =

∫ t

0
µ(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs.

Proposition: 3.4: Uniqueness of SDE Solutions

Suppose µ, σ are adapted and there exists a constant K s.t. for all x, y, t, |µ(t, x)−µ(t, y)| ≤ K|x−y|,
|σ(t, x)− σ(t, y)| ≤ K|x− y|, |µ(t, x)|+ |σ(t, x)| ≤ K(1 + |x|). Then there exists a unique solution.
The solution is Markov, FW

t -adapted with continuous trajectories.

Consider a deterministic smooth function f(t, x). Its total derivative is d(f(t, x)) = ∂f
∂t dt+

∂f
∂xdx. The 2nd

order Taylor approximation is

df =
∂f

∂t
dt+

∂f

∂x
dx+

1

2

∂2f

∂x2
(dx)2 +

1

2

∂2f

∂t2
(dt)2 +

∂2f

∂t∂x
dtdx

Let Xt satisfy the SDE dXt = µ(t,Xt)dt+ σ(t,Xt)dWt. Let f(t,Xt) be a C1,2-function. Then

df(t,Xt) =
∂f

∂t
dt+

∂f

∂x
dXt +

1

2

∂2f

∂x2
(dXt)

2 +
1

2

∂2f

∂t2
(dt)2 +

∂2f

∂t∂x
dtdXt

(dXt)
2 = µ2(dt)2 + 2µσdtdWt + σ2(dWt)

2. (dt)2 and dtdWt tend to 0 faster than dt and dXt as dt → 0, so
we exclude them. Also (dWt)

2 = dt by the quadratic variance of W . Therefore,

df =
∂f

∂t
dt+

∂f

∂x
(µdt+ σdWt) +

1

2
σ2∂

2f

∂x2
dt

=

(
∂f

∂t
+ µ

∂f

∂x
+

1

2
σ2∂

2f

∂x2

)
dt+ σ

∂f

∂x
dWt

Example: Compute d(teaWt).
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Proof. Here Xt = Wt, dXt = 0dt+dWt, µ = 0, σ = 1, f(t, w) = teaw. ∂f
∂t = eaw, ∂f

∂w = ateaw, ∂2f
∂w2 = a2teaw.

Therefore d(teaWt) =
(
eaWt + 1

2a
2teaWt

)
dt+ ateaWtdWt.

Example: Compute d((Wt)
2).

Proof. Here µ = 0, σ = 1, f(t, w) = w2. ∂f
∂t = 0, ∂f

∂w = 2w, ∂2f
∂w2 = 2.

Therefore d((Wt)
2) = dt+ 2WtdWt.

Example: Compute
∫ t

0
WsdWs.

Proof. Consider the previous result d((Wt)
2) = dt+ 2WtdWt. Integrate both sides and use the fact that

W0 = 0.

W 2
t −W 2

0 =

∫ t

0
ds+ 2

∫ t

0
WsdWs

Therefore,
∫ t

0
WsdWs =

1

2

(
W 2

t − t
)

Example: Compute E[W 4
t ].

Proof. f(t, w) = w4, ∂f
∂t = 0, ∂f

∂w = 4w3, ∂2f
∂w2 = 12w2.

Then d((Wt)
4) = 1

212W
2
t dt+ 4W 3

t dWt = 6W 2
t dt+ 4W 3

t dWt

Integrate both sides, W 4
t = 6

∫ t
0 W

2
s ds+ 4

∫ t
0 W

3
s dWs. Note E

[∫ t
0 W

3
s dWs

]
= 0 and E[W 2

s ] = s

Therefore, E[W 4
t ] = 6

∫ t
0 E[W

2
s ]ds = 6

∫ t
0 sds = 3t2.

Definition: 3.11: Correlated Brownian Motion

Correlated Brownian motion (W 1
t ,W

2
t )t≥0 with instantaneous correlation ρ are joint processes satis-

fying
1. W 1

0 = W 2
0 = 0

2. (W 1,W 2) has continuous sample paths
3. (W 1,W 2) has indepedent increments

4. (W 1,W 2) has stationary increments with
[
W 1

t+s −W 1
t

W 2
t+s −W 2

t

]
= N

(
0,

[
s ρs
ρs s

])

Theorem: 3.2: 2D Ito’s Lemma

Let X1, X2 with SDEs: dXi
t = µi

tdt+σi
tdW

i
t where (W 1,W 2) has instantaneous correlation ρ. Then

d(f(t,X1
t , X

2
t )) =

[
∂f

∂t
+

2∑
i=1

µi
t

∂f

∂xi
+

1

2

2∑
i=1

(σi
t)

2∂
2f

∂x2i
+ ρσ1

t σ
2
t

∂2f

∂x1∂x1

]
dt

+
2∑

i=1

σi
t

∂f

∂xi
dW i

t

This can be extended to n-dimensional cases.
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Example: Let W 1,W 2 be correlated Brownian motions with instantaneous correlation ρ. Find an SDE
for W 1

t W
2
t .

Proof. Let f(t,W 1
t ,W

2
t ) = W 1

t W
2
t , ∂f

∂t = 0, ∂f
∂w1 = w2, ∂f

∂w2 = w1, ∂2f
∂w1∂w2 = 1.

Then df(t, w1
t , w

2
t ) = ρdt+W 2

t dW
1
t +W 1

t dW
2
t .

3.4 Geometric Brownian Motion

The SDE is dXt = µXtdt+ σXtdWt, X0 = x0. We want to use Ito’s lemma to get an expansion for Xt,
but we do not know Xt explicitly. Consider Zt = lnXt.

dZt =

[
µXt

1

Xt
+

1

2
σ2X2

t

(
− 1

X2
t

)]
dt+ σXt

1

Xt
dWt

=

(
µ− 1

2
σ2

)
dt+ σdWt

Integrate both sides

Zt − Z0 =

∫ t

0

(
µ− 1

2
σ2

)
ds+ σ

∫ t

0
dWs =

(
µ− 1

2
σ2

)
t+ σWt

Therefore, Xt = x0 exp
((
µ− 1

2σ
2
)
t+ σWt

)
.

This shows that Xt
X0

∼ LogNormal
(
(µ− 1

2σ
2)t, σ2t

)
Proposition: 3.5:

If X is GBM, then for β ∈ R, Y = Xβ is GBM.
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4 Continuous Time Market

Definition: 4.1: Portfolio

The financial market is defined as a filtered probability space (Ω,F ,F, P ). Suppose there are N
assets with price processes Xi = (Xi

t)t≥0, i = 1, ..., N , Xi adapted. A portfolio ht = (h1t , ..., h
N
t ) is

an F-adapted N -dim process, where hit is the number of units of asset i held at time t. Let V h
t be

the value of the portfolio at time t.

V h
t =

N∑
i=1

hitX
i
t

A portfolio h is called self-financing if its value process satisfies

dV h
t =

N∑
i=1

hitdX
i
t

Define the relative portfolio weights

wi
t =

hitX
i
t

V h
t

,
N∑
i=1

wi
t = 1

The self-financing condition can be written as

dV h
t = V h

t

N∑
i=1

wi
t

Xi
t

dXi
t

Definition: 4.2: Arbitrage Portfolio

An arbitrage portfolio is a self-financing portfolio h s.t.
1. V h

0 = 0
2. P (V h

t ≥ 0) = 1
3. P (V h

t > 0) > 0
A market is arbitrage-free if there are no arbitrage opportunities.

Proposition: 4.1:

Suppose there is a risk-free asset B (e.g. bond) with dynamics dBt = rtBtdt (r is adapted). If there
exists a self-financing portfolio h whose value process V h

t has dynamics dV h
t = ktV

h
t dt, where k is

adapted, then it must hold that kt = rt for all t. Otherwise, there exists an arbitrage opportunity.

Proof. If k > r constat. Borrow from bank and invest in h. Costs nothing at t = 0, return is positive for
t > 0.

Markets with 2 Assets The first asset is a risk free asset with process B. The price dynamics is

dBt = rtBtdt,
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where rt is an adapted process, called short rate or risk-free rate. The dynamics is locally deterministic.
Assume B0 = 1, we have

Bt = exp

(∫ t

0
rsds

)
The second asset is a stock with price process S. The stock price dynamics is

dSt = µ(t, St)Stdt+ σ(t, St)StdWt,

where µ(t, St) is the local mean rate of return, σ(t, St) is the volatility.

A classical model is where (r, µ, σ) are constants.

Definition: 4.3: Black-Scholes Model

The Black-Scholes model consists of 2 assets with dynamics:

dBt = rBtdt

dSt = µStdt+ σStdWt

Recall that Bt = exp(rt), St = s0 exp
((
µ− 1

2σ
2
)
t+ σWt

)
4.1 Arbitrage Pricing

We take as given the model:
dBt = rtBtdt

dSt = µ(t, St)Stdt+ σ(t, St)StdWt

B0 = 1, S0 = s0

Definition: 4.4: Derivative

A contingent claim (derivative) with maturity date T is, at time t, a random variable XT ⊂ FS
t .

A contingent claim Xt is simple if it is of the form XT = F (ST ), where F is the payoff function.

Example: F (ST ) = (K − ST )+ is European put, F (ST ) = (ST −K)+ is European call.

The goal is to determine the fair (arbitrage-free) price at t ∈ [0, T ). The fair price at time T is F (ST ). Let
Xt denote the price of the derivative. Assume that

1. The derivative can be bought and sold.

2. The price process for the deerivative is of the form ft = f(t, St), where f is a smooth function.

3. There are no arbitrage opportunities on the market of 3 assets: Bt, St, Xt.

Let ws, wf be the relative weights in St, f(t, St). By Ito’s Lemma

df(t, St) =

(
∂f

∂t
+ µS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2

)
dt+ σS

∂f

∂S
dWt

dVt = Vt

(
ws

S
dSt +

wf

f
df(t, St)

)
= Vt

(
wsµ+

wf

f

(
∂f

∂t
+ µS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2

))
dt+ Vt

(
wsσ +

wf

f
σS

∂f

∂S

)
dWt
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Set dWt term to 0, we have{
0 = ws + wf

f S ∂f
∂S

1 = ws + wf
⇒

wf = f

f−S ∂f
∂S

ws =
−S ∂f

∂S

f−S ∂f
∂S

Also, by Proposition 4.1,

wsµ+
wf

f

(
∂f

∂t
+ µS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2

)
= r

This gives

0 =
∂f

∂t
+ rS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2
− rf(t, St)

f(T, ST ) = F (ST )

This is the Black-Scholes equation. St can take any positive values. f is the solution to the deterministic
PDE. Note that the local mean return µ has no impact on the arbitrage-free price.

Theorem: 4.1: Feynman-Kac

Assume f is a solution to the BVP

0 =
∂f

∂t
+ a(t, x)

∂f

∂x
+

1

2
b2(t, x)

∂2f

∂x2
− rf(t, x)

f(T, x) = F (x)

Then f has the stochastic representation f(t, x) = exp(−r(T−t))E[F (XT )|Xt = x], where X satisfies
the SDE: dXu = a(u,Xu)du+ b(u,Xu)dWu, Xt = x.

Apply Theorem 4.1 to Black-Scholes equation, we have

f(t, S) = exp(−r(T − t))E[F (Xt)|Xt = s],

where dXu = rXudu+ σXudWu, Xt = s. This looks like the SDE for St, but r = µ(t, St). They are the
dynamics of S under some measure Q. Introduce the measure Q for pricing. Use P to denote the
probability measure giving the original dynamics of S.

Theorem: 4.2: Black-Schole Pricing

The arbitrage-free price of a derivative with payoff F (ST ) is f(t, St), where f is given by

f(t, s) = exp(−r(T − t))EQ[F (St)|St = s],

and S has Q-dynamics, dSu = rSudu + σ(u, Su)dW
Q
t , St = s. Q is the risk-neutral/martingale

measure.

Theorem: 4.3:

In the Black-Scholes model, the normalized process of every traded asset (including derivatives) is a
Q-martingale. i.e. if Xt is the price process of an asset, then Zt =

Xt
Bt

is a Q-martingale.
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4.2 The Black-Scholes Formula

Under the Black-Scholes market, where r, µ, σ are constant, derive the arbitrage-free price of a European
call with strike K and maturity T .
Payoff: F (ST ) = (ST −K)+ = (ST −K)χ{ST>K}. Using the risk-neutral pricing formula
(Theorem 4.2):

f(t, s) = exp(−r(T − t))EQ[(ST −K)+|St = s]

dSu = rSudu+ σSudWu, St = s

Recall ST = S exp
[(
r − 1

2σ
2
)
(T − t) + σ(WQ

T −WQ
t )
]
= S exp(X), where

X ∼ N
((
r − 1

2σ
2
)
(T − t), σ2(T − t)

)
. For this normal distribution, the CDF is

fX(x) =
1√

2πσ
√
T − t

exp

−1

2

(
x−

(
r − 1

2σ
2
)
(T − t)

σ
√
T − t

)2


Note: since ST > K, S exp(x) > K, we only need to consider x > ln(K/S).

f(t, s) = exp(−r(T − t))

∫ ∞

−∞
F (S exp(X))fX(x)dx

= exp(−r(T − t))
(
EQ [STχST>K |St = s]−KEQ [χST>K |St = s]

)

The first part:

exp(−r(T − t))EQ [STχST>K |St = s]

= s exp(−r(T − t))

∫ ∞

−∞

1√
2πσ

√
T − t

exp(x) exp

−1

2

(
x−

(
r − 1

2σ
2
)
(T − t)

σ
√
T − t

)2
 dx

Change variable by z =
x−(r− 1

2
σ2)(T−t)

σ
√
T−t

, dz = dx
σ
√
T−t

, z0 =
ln(K/S)−(r+σ2

2
)(T−t)

σ
√
T−t

. Then

exp(−r(T − t))EQ [STχST>K |St = s]

= s

∫ ∞

z0

1√
2π

exp

(
−1

2
z2
)

= sΦ(−z0) = sΦ(d+), where

d± =
ln(S/K) + (r ± 1

2σ
2)(T − t)

σ
√
T − t

For the second part,

−K exp(−r(T − t))EQ [χST>K |St = s]

= −K exp(−r(T − t))Q(ST > K|St = s)

= −K exp(−r(T − t))Q(s exp(X) > K)

= −K exp(−r(T − t))Q(X > ln(K/S))

= −K exp(−r(T − t))Q
(
σ
√
T − tZ > ln(K/S)− (r − 1

2
σ2)(T − t)

)
= −K exp(−r(T − t))Φ(d−)
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Therefore, the European call price is

f(t, St) = StΦ(d+)−K exp(−r(T − t))Φ(d−),

where d± =
ln(S/K)+(r± 1

2
σ2)(T−t)

σ
√
T−t

.

What is Q?
dSt

St
= µdt+ σdW P

t = rdt+ σdW P
t

µ− r

σ
dt+ dW P

t = dWQ
t

Theorem: 4.4: Radon-Nikodym

Let P and Q be two probability measures on the same measurable space (Ω,F) s.t. Q ≪ P (P(E) =

0 ⇒ Q(E) = 0). Then thre exists a r.v. dQ
dP s.t. for any r.v. X, EQ[X] = EP

[
X dQ

dP

]
, dQ

dP is the
Radon-Nikodym derivative, and satisfies

1. dQ
dP > 0 P-a.s.

2. EP
[
dQ
dP

]
= 1

Theorem: 4.5: Girsanov

Let W be a P-Brownian motion and λt be an adapted process. Define a new process Lt on [0, T ] by

Lt = exp

(
−
∫ t

0

λ2
u

2
du+

∫ t

0
λudWu

)
Assume EP[LT ] = 1. Define a new probability measure Q on FT by dQ

dP = LT . Then

dW P
t = −λtdt+ dWQ

t ,

where WQ is a Q-Brownian motion. i.e. WQ
t = W P

t +

∫ t

0
λudu is a Brownian motion.

Example: (Black-Schole Model) Define dQ
dP as a in Theorem 4.5 for some λt adapted. Then

WQ
t = W P

t +

∫ t

0
λudu

dSt = µStdt+ σStdW
P
t = (µSt − σStλt)dt+ σStdW

Q
t

For Q to be a martingale measure, we must have µ− σλt = r, or λt =
µ−r
σ

Proposition: 4.2: Linearity of Price

Let F and G be payoff functions for derivatives X = F (ST ) and Y = G(ST ) with price processes f
and g. Then for α, β ∈ R, the price process of the claim αF (ST ) + βG(ST ) is αf(t, St) + βg(t, St).

Proof.

e−r(T−t)EQ[αF (ST ) + βG(ST )|St = s] = αe−r(T−t)EQ[F (ST )|St = s] + βe−r(T−t)EQ[G(ST )|St = s]

= αf(t, s) + βg(t, s)
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Proposition: 4.3: Put-Call Parity

Let p(t, s) be the price of a European put with strike K and maturity T . Let c(t, s) be the price of
a European call with strike K and maturity T . Then p(t, s) = c(t, s) +Ke−r(T−t) − s.

Proof. Fput(ST ) = (K − ST )+ = (ST −K)+ − ST +K. Therefore,

p(t, s) = exp(−r(T − t))EQ[(ST −K)+ − ST +K|ST = s]

= c(t, s)− exp(−r(T − t))s exp(r(T − t)) + exp(r(T − t))K

= c(t, s) +Ke−r(T−t) − s

Therefore, the European put price is

fput(r, s) = Stϕ(d+)−K exp(−r(T − t))Φ(d−)− St +K exp(−r(T − t))

= K exp(−r(T − t))Φ(−d−)− StΦ(−d+)

4.3 Greeks

How option prices change w.r.t. changes in underlying prices, time, and risk-free rates?

1. Delta: ∆ = ∂f
∂S , ∆call = Φ(d+), ∆put = −Φ(−d+) = Φ(d+)− 1

2. Gamma: Γ = ∂2f
∂S2 , Γcall = Γput = Φ(d+)

Sσ
√
T−t

3. Rho: ρ = ∂f
∂r , ρcall = K(T − t) exp(−r(T − t))Φ(d−), ρput = −K(T − t) exp(−r(T − t))Φ(−d+)

4. Theta: θ = ∂f
∂t

5. Vega: ν = ∂f
∂σ , νcall = νput = SΦ(d+)

√
T − t
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5 Numerical Methods

5.1 Simulate Random Variables

Let U ∼ Unif(0, 1). Consider the CDF, F (x) = P (X ≤ x) is non-decreasing and right-continuous. We can
simulate discrete random variables X = xi, i = 0, 1, 2, ... with probability pi s.t.

∑
pi = 1, pi ≥ 0

with

X =



x1, u ≤ p1

x2, p1 < u ≤ p2
...
xi,
∑i−1

j=1 pj < u ≤
∑i

j=1 pj
...

Recall: For U ∼ Unif(0, 1) and 0 < a < b < 1, then P (a < U ≤ b) = b− a.

If xi are orderd, then P (X = xi) = P

 i−1∑
j=1

pi < U ≤
i∑

j=1

pi

 =

i∑
j=1

pj −
i−1∑
j=1

pj = pi.

P (F (xi−1) < U ≤ F (xi)) = P (xi−1 < F−1(U) < x1)

Theorem: 5.1: Inverse Transform Method

Let U ∼ Unif(0, 1). For any CDF denoted F , the random variable F−1(U) is distributed as F , where
F−1(u) = inf {x : F (x) ≥ u}.

Proof. We simulate U and sample F−1(U). Consider P (F−1(U) ≤ x).
Since F is monotone, we have F−1(U) ≤ x ⇒ F (F−1(U)) ≤ F (x) and F (F−1(U)) = U a.e. Therefore,
P (F−1(U) ≤ x) = P (U ≤ F (x)) = F (x).

Another way is to generate samples from a convenient distribution and accept/reject a subset of the
generated candidates.

• Target distribution: f(x) with support on Df , difficult to generate samples

• Proposal distribution: g(x) with support on Dg ⊃ Df , easy to generate samples

We need to find a constant c ≥ 1 s.t. f(x) ≤ cg(x), ∀x ∈ Df .

Definition: 5.1: Acceptance/Rejection Method

The acceptance/rejection method consists of the following steps:
1. Find c that bounds the ratio f

g
2. Generate Y ∼ g
3. Generate U ∼ Unif(0, 1), independent of Y
4. If U ≤ f(Y )

cg(Y ) , then X = Y , otherwise, return to 2.

Theorem: 5.2:

The random variable generated with acceptance/rejection method is distributed as f . In addition,
the number of candidates generated until one is accepted is geometrically distributed with mean c.
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Proof. Let D ⊂ Df , P (X ∈ D) = P
(
Y ∈ D|U ≤ f(Y )

cg(Y )

)
=

P
(
Y ∈D,U≤ f(Y )

cg(Y )

)
P
(
U≤ f(Y )

cg(Y )

) .

P

(
U ≤ f(Y )

cg(Y )

)
=

∫
R
P

(
U ≤ f(y)

cg(y)

)
g(y)dy =

∫
R

f(y)

cg(y)
dy =

1

c

P (X ∈ D) = cP

(
Y ∈ D,U ≤ f(Y )

cg(Y )

)
= c

∫
R
P

(
Y ∈ D,U ≤ f(y)

cg(y)

)
g(y)dy

= c

∫
D

f(y)

cg(y)
g(y)dy =

∫
D
f(y)dy

5.2 Simulate SDEs

Brownian Motion Given timesteps t0 < t1 < · · · < tn, generate W (t1), ...,W (tn). Algorithm:

1. Set W (0) = 0

2. For i = 1, 2, ..., n, W (ti+1) = W (ti) +
√
ti+1 − tiZi+1, where Zi ∼ N (0, 1) iid.

The method is exact, the joint distribution of W (t1), ...,W (tn) is the same as Brownian motion at
t1, ..., tn.

For n-dimension, Wt+s −Wt ∼ N (0,Σ). We find B such that BBT = Σ by Cholesky decomposition,
because Σ is PSD.

1. Set W (0) = 0

2. Compute B.

3. For i = 1, 2, ..., n, W (ti+1) = W (ti) +
√
ti+1 − tiBZi+1, where Zi ∼ N (0, 1) iid.

For 2D, Σ =

[
s ρs
ρs s

]
, B =

[
1 0

ρ
√

1− ρ2

]

GBM Simulation dSt = µStdt+ σStdWt, S0 = s0. St = s0 exp
((
u− 1

2σ
2
)
t+ σWt

)
. If start at u < t,

St = Su exp
((
u− 1

2σ
2
)
(t− u) + σ(Wt −Wu)

)
.

1. Set S0 = s0

2. For i = 0, 1, ..., n− 1, S(ti+1) = S(ti) exp
((
u− 1

2σ
2
)
(ti+1 − ti) + σ

√
ti+1 − tiZi+1

)
, where

Zi ∼ N (0, 1) iid.

Discretization Scheme Consider dXt = a(t,Xt)dt+ b(t,Xt)dWt, X0 = x0. The goal is to simulate Xt

at t1 < t2 < · · · < dn. An exact scheme would be:

Xti+1 = Xti +

∫ ti+1

ti

a(s,Xs)ds+

∫ ti+1

ti

b(s,Xs)dWs

27



Assume time is evenly splitted ti+1 − ti = ∆t, and X is 1-D. Then the simplest method is Euler
scheme:∫ ti+1

ti

a(s,Xs)ds =

∫ ti+1

ti

a(ti, Xti)ds = a(ti, Xti)∆t∫ ti+1

ti

b(s,Xs)dWs =

∫ ti+1

ti

b(ti, Xti)dWs = b(ti, Xti)(Wti+1 −Wti)

X̂ti+1 = X̂ti + a(ti, Xti)∆t+ b(ti, Xti)
√
∆tZi+1

For GBM, it is:

Ŝti+1 = Ŝti + µŜti∆t+ σŜti

√
∆tZi+1

Milstein scheme The basic discretization is not accurate enough for the diffusion term. By Ito’s
lemma:

d(b(t,Xt)) =

(
∂b

∂t
+ a

∂b

∂x
+

1

2
b2

∂2b

∂x2

)
dt+ b

∂b

∂x
dWt

Let t ∈ [u, u+∆t].

b(t,Xt) = b(u,Xu) + (·)(t− u) + b(u,Xu)
∂b

∂x
(Wt −Wu)

= b(u,Xu) + b(u,Xu)
∂b

∂x
(u,Xu)(Wt −Wu)

Then ∫ ti+1

ti

b(s,Xs)dWs =

∫ ti+1

ti

b(ti, Xti) + b(ti, Xti)
∂b

∂x
(ti, Xti)(Ws −Wti)dWs

= b(ti, Xti)(Wti+1 −Wti) + b(ti, Xti)
∂b

∂x
(ti, Xti)

∫ ti+1

ti

(Ws −Wti)dWs

Recall that
∫ t

u
Wsds =

1

2

(
W 2

t −W 2
u − (t− u)

)
. Therefore,

∫ ti+1

ti

(Ws −Wti)dWs =

∫ ti+1

ti

WsdWs −Wti

∫ ti+1

ti

dWs

=
1

2

(
W 2

ti+1
−W 2

ti − (ti+1 − ti)
)
−Wti(Wti+1 −Wti)

=
1

2

(
(Wti+1 −Wti)

2 − (ti+1 − ti)
)

=
1

2

(
(∆Wt)

2 −∆t
)
=

1

2
∆t
(
Z2
i+1 − 1

)
Then we have:

X̂ti+1 = X̂ti + a(ti, Xti)∆t+ b(ti, Xti)
√
∆tZi+1 +

1

2
b(ti, Xti)

∂b

∂x
(ti, Xti)∆t(Z2

i+1 − 1)
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2nd Order Scheme Expand a(t,Xt) using Ito’s lemma:

d(a(t,Xt)) =

(
∂a

∂t
+ a

∂a

∂x
+

1

2
b2
∂2a

∂x2

)
dt+ b

∂a

∂x
dWt

Introduce operators L0 = ∂
∂t + a ∂

∂x + 1
2b

2 ∂2

∂x2 , L1 = b ∂
∂x . Then d(a(t,Xt)) = L0adt+ L1adWt. Let

u < s,

a(s,Xs)− a(u,Xu) =

∫ s

u
L0a(r,Xr)dr +

∫ s

u
L1a(r,Xr)dWr

Apply Euler’s approximation,

a(s,Xs) = a(u,Xu) + L0a(u,Xu)

∫ s

u
dr + L1a(u,Xu)

∫ s

u
dWr

= a(u,Xu) + L0a(u,Xu)(s− u) + L1a(u,Xu)(Ws −Wu)∫ ti+1

ti

a(s,Xs)ds =

∫ ti+1

ti

a(ti, Xti) + L0a(ti, Xti)(s− ti) + L1a(ti, Xti)(Ws −Wti)ds

= a(ti, Xti)∆t+ L0a(ti, Xti)
1

2
(∆t)2 + L1a(ti, Xti)∆It,

where ∆It =

∫ ti+1

ti

(Ws −Wti)ds. Similary,

∫ ti+1

ti

b(s,Xs)dWs =

∫ ti+1

ti

b(ti, Xti) + L0b(ti, Xti)(s− ti) + L1b(ti, Xti)(Ws −Wti)dWs∫ ti+1

ti

(s− ti)dWs =

∫ ti+1

ti

sdWs − ti

∫ ti+1

ti

dWs

= ti+1Wti+1 − tiWti −
∫ ti+1

ti

Wsds− tiWti+1 + tiWti

= (Wti+1 −Wti)(ti+1 − ti)−
∫ ti+1

ti

(Ws −Wti)ds

= ∆Wt∆t−∆It

To simulate ∆It, one can show that given Wt, ∆It and ∆Wt are jointly normal.[
∆Wt

∆It

]
∼ N

(
0,

[
∆t 1

2(∆t)2
1
2(∆t)2 1

3(∆t)3

])
. Putting it all together, we have:

X̂ti+1 =X̂ti + a∆t+ b∆Wt +
1

2
bbx
(
(∆Wt)

2 −∆t
)

(from Euler + Milstein)

+
1

2

(
at + aax +

1

2
b2axx

)
(∆t)2 + bax∆It (from approximation of a)

+

(
bt + bbx +

1

2
b2bxx

)
(∆Wt∆t−∆It) (from approximation of b)

5.3 Variance Reduction

Motivation: we want to use Monte-Carlo methods to estimate an expectation like E
[
e−rT f(ST )

]
.

The Monte-Carlo estimator is
1

n

n∑
i=1

e−rT f(ST,i).
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Definition: 5.2: Estimator

An estimator θ̂ is a statistic that is used to infer the value of an unknown parameter θ from the
data. The bias of an estimator is E

[
θ̂
]
− θ. if E

[
θ̂
]
= θ, then θ̂ is unbiased. The variance of an

estimator is Var
(
θ̂
)
= E

[(
θ̂ − E

[
θ̂
])2]

. A sequence of estimators θ̂n are consistent for θ if θ̂n → θ

in probability.

Example: Sample mean Y =
1

n

n∑
i=1

Yi as an estimator for E [Y ].

Proof. Let Yi, i = 1, ..., n be i.i.d. samples.

E[Y ] =
1

n

n∑
i=1

E[Yi] = E[Y ]

Therefore, it is unbiased.

The variance of Y is

Var(Y ) =
1

n2

n∑
i=1

Var(Yi) =
1

n
Var(Y )

It is also strongly consistent, since lim
n→∞

Y = E[Y ] a.s. by law of large numbers.

5.3.1 Control Variates

Goal: estimate E[Y ]
Idea: make use of another correlated r.v. X to construct an unbiased estimator for E[Y ] with smaller
variance than Y

Example: Y = e−rT (ST −K)+, X = ST

1. Setup: Yi, i = 1, ..., n outputs from n replications of simulation.

2. For each replication, we also calculate another output Xi.

3. Assume (Xi, Yi) are i.i.d. and E[X] is known

4. For fixed b ∈ R, compute Y C
i = Yi − b(Xi − E[X]) (The error controls the variance).

Definition: 5.3: Control Variate Estimator

For b ∈ R, the control variate estimator is

Ŷ C =
1

n

n∑
i=1

[Yi − b(Xi − E[X])]

30



Theorem: 5.3:

Ŷ C is an unbiased and consistent estimator for E[Y ]. Its variance is

1

n

(
Var(Y )− 2bCov(X,Y ) + b2Var(X)

)
When 2bCov(X,Y ) < Var(X), Var(Ŷ C) < Var(Y ).

Proof.

E[Ŷ C ] =
1

n

n∑
i=1

E[Y ]− b(E[X]− E[X]) = E[Y ]

Ŷ C =
1

n

n∑
i=1

Yi − b
1

n

∑
i = 1nXi + bE[X] → E[Y ] in probability

Var(Ŷ C) =
1

n2

n∑
i=1

Var(Yi − bXi + bE[X]) =
1

n

(
Var(Y )− 2bCov(X,Y ) + b2Var(X)

)

To choose b ∈ R, we minimize Var(Ŷ C) over b

0 =
∂

∂b
Var(Ŷ C) = −2Cov(X,Y ) + 2bVar(X)

b =
Cov(X,Y )

Var

Effectiveness of the control variate estimator:
Compute ratio Var(Ŷ C)

Var(Y )
= 1− ρ2XY

Var(Ŷ C) =
1

n

[
Var(Y )− 2

Cov(X,Y )2

Var
+

(
Cov(X,Y )

Var

)2

Var(X)

]

=
1

n

[
Var(Y )− Cov(X,Y )2

Var

]
However, we may not know the covariance. In practice, we use the sample covariate:

b̂n =

∑n
i=1(Xi −Xi)(Yi − Y i)∑n

i=1(Xi −Xi)2
.

Theorem: 5.4:

b̂n is a consistent estimator of b.

5.3.2 Importance Sampling

Goal: Estimate E[h(Y )]
Idea: Change the probability measure from which the r.v. is generated to obtain a more convenient
representation of E[h(Y )].
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We want to estimate E[h(Y )] where Y has density f .

E[h(Y )] =

∫ ∞

−∞
h(y)f(y)dy

The ordinary Monte-Carlo estimator is
1

n

n∑
i=1

h(Yi), Yi ∼ f .

We choose an importance sampling distribution g(y) s.t. f(y) > 0 ⇒ g(y) > 0, ∀y ∈ R. Then

EP[h(Y )] =

∫ ∞

−∞
h(y)f(y)dy

=

∫ ∞

−∞
h(y)

f(y)

g(y)
g(y)dy

= EP̃
[
h(Y )

f(Y )

g(Y )

]
,

where f(Y )
g(Y ) is the likelihood ratio/Radon-Nikodym derivative.

Definition: 5.4: Importance Sampling Estimator

The importance sampling estimator associated with g is Ŷ I =
1

n

n∑
i=1

h(Yi)
f(Yi)

g(Yi)
, where Yi ∼ g.

Proof. Ŷ I is unbiased by construction.

EP̃[Ŷ I ] = EP̃

[
h(Y )

f(Y )

g(Y )

]
= EP[h(Y )]

The variance is

VarP̃(Ŷ I) =
1

n2

n∑
i=1

VarP̃
(
h(Y )

f(Y )

g(Y )

)

Since EP̃
[(

h(Y )f(Y )
g(Y )

)2]
= EP

[
h2(Y )f(Y )

g(Y )

]
, then

VarP̃(Ŷ I) =
1

n

(
EP
[
h2(Y )

f(Y )

g(Y )

]
− EP[h(Y )]2

)
VarP(Y ) =

1

n

[
EP [h2(Y )

]
− EP[h(Y )]2

]

Is EP
[
h2(Y )f(Y )

g(Y )

]
< EP [h2(Y )

]
?

Assume h is nonnegative. Choose g(y) ∝ f(y)h(y) e.g. g(y) = cf(y)h(y) for c normalizing. Then

Var(Ŷ I) =
1

n

[
EP̃
[
h2(Y )

f2(Y )

g2(Y )

]
− EP̃

[
h(Y )

f(Y )

g(Y )

]2]
=

1

n

[
EP̃
[
1

c2

]
− EP̃

[
1

c

]2]
= 0

So choosing g ∝ fh gives a zero variance estimation. However, 1
c =

∫
fhdy is what we want to

compute.

Takeaways:
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1. The choice of g is the key. A poor choice may increase the variance

2. There is no optimal way to choose g, but we should try to sample in proportion to f(y)h(y)

Example: Payoff of a European call in the Black-Scholes model. EQ [e−rT (SeZ −K)+
]
, where

Z ∼ N
((

r − σ2

2

)
T, σ2T

)
.

If K is large, Monte-Carlo approximation will have a lot of 0s.

With the default Z, EQ[SeZ ] = SerT .

Change to Z ∼ N
(
ln K

S + σ2

2 T, σ2T
)
, we get

EQ̃[SeZ ] = S exp

(
ln

K

S
− σ2

2
T +

1

2
σ2T

)
= K
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